diff options
author | dos-reis <gdr@axiomatics.org> | 2013-06-18 00:47:44 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2013-06-18 00:47:44 +0000 |
commit | 5d68f2651a08223febcc172a6cb49a6e92899034 (patch) | |
tree | dfea7ee6418af2cb05fd0747facf7ff92b4fa1c9 /src/share | |
parent | 7db3376a614a5aeacc114c38002ea65e57046dc5 (diff) | |
download | open-axiom-5d68f2651a08223febcc172a6cb49a6e92899034.tar.gz |
* algebra/catdef.spad.pamphlet (CommutativeOperatorCategory): New.
(CommutativeOperation): Likewise.
* algebra/Makefile.am (oa_algebra_layer_0): Include them.
Diffstat (limited to 'src/share')
-rw-r--r-- | src/share/algebra/browse.daase | 3174 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 6642 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 200 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 8022 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 21149 |
5 files changed, 19605 insertions, 19582 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 2580538e..35b97233 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,5 +1,5 @@ -(1965557 . 3580468866) +(1966230 . 3580478883) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the shallowly mutable property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-3995 . T) (-3993 . T) (-3992 . T) ((-4000 "*") . T) (-3991 . T) (-3996 . T) (-3990 . T)) +((-3998 . T) (-3996 . T) (-3995 . T) ((-4003 "*") . T) (-3994 . T) (-3999 . T) (-3993 . T)) NIL (-30) ((|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,10 +56,10 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression `d'.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3095) +(-32 R -3098) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (QUOTE (-952 (-486))))) +((|HasCategory| |#1| (QUOTE (-954 (-488))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\"")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-3992 . T) (-3993 . T) (-3995 . T)) +((-3995 . T) (-3996 . T) (-3998 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an."))) NIL NIL -(-40 -3095 UP UPUP -2617) +(-40 -3098 UP UPUP -2620) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-3991 |has| (-350 |#2|) (-312)) (-3996 |has| (-350 |#2|) (-312)) (-3990 |has| (-350 |#2|) (-312)) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1092))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1092)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1092))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-813 (-1092)))))) (|HasCategory| (-350 |#2|) (QUOTE (-582 (-486)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-952 (-350 (-486)))))) (|HasCategory| (-350 |#2|) (QUOTE (-952 (-350 (-486))))) (|HasCategory| (-350 |#2|) (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-813 (-1092))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1092)))))) -(-41 R -3095) +((-3994 |has| (-352 |#2|) (-314)) (-3999 |has| (-352 |#2|) (-314)) (-3993 |has| (-352 |#2|) (-314)) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| (-352 |#2|) (QUOTE (-118))) (|HasCategory| (-352 |#2|) (QUOTE (-120))) (|HasCategory| (-352 |#2|) (QUOTE (-301))) (OR (|HasCategory| (-352 |#2|) (QUOTE (-314))) (|HasCategory| (-352 |#2|) (QUOTE (-301)))) (|HasCategory| (-352 |#2|) (QUOTE (-314))) (|HasCategory| (-352 |#2|) (QUOTE (-322))) (OR (-12 (|HasCategory| (-352 |#2|) (QUOTE (-192))) (|HasCategory| (-352 |#2|) (QUOTE (-314)))) (|HasCategory| (-352 |#2|) (QUOTE (-301)))) (OR (-12 (|HasCategory| (-352 |#2|) (QUOTE (-192))) (|HasCategory| (-352 |#2|) (QUOTE (-314)))) (-12 (|HasCategory| (-352 |#2|) (QUOTE (-191))) (|HasCategory| (-352 |#2|) (QUOTE (-314)))) (|HasCategory| (-352 |#2|) (QUOTE (-301)))) (OR (-12 (|HasCategory| (-352 |#2|) (QUOTE (-314))) (|HasCategory| (-352 |#2|) (QUOTE (-813 (-1094))))) (-12 (|HasCategory| (-352 |#2|) (QUOTE (-301))) (|HasCategory| (-352 |#2|) (QUOTE (-813 (-1094)))))) (OR (-12 (|HasCategory| (-352 |#2|) (QUOTE (-314))) (|HasCategory| (-352 |#2|) (QUOTE (-813 (-1094))))) (-12 (|HasCategory| (-352 |#2|) (QUOTE (-314))) (|HasCategory| (-352 |#2|) (QUOTE (-815 (-1094)))))) (|HasCategory| (-352 |#2|) (QUOTE (-584 (-488)))) (OR (|HasCategory| (-352 |#2|) (QUOTE (-314))) (|HasCategory| (-352 |#2|) (QUOTE (-954 (-352 (-488)))))) (|HasCategory| (-352 |#2|) (QUOTE (-954 (-352 (-488))))) (|HasCategory| (-352 |#2|) (QUOTE (-954 (-488)))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-322))) (-12 (|HasCategory| (-352 |#2|) (QUOTE (-191))) (|HasCategory| (-352 |#2|) (QUOTE (-314)))) (-12 (|HasCategory| (-352 |#2|) (QUOTE (-314))) (|HasCategory| (-352 |#2|) (QUOTE (-815 (-1094))))) (-12 (|HasCategory| (-352 |#2|) (QUOTE (-192))) (|HasCategory| (-352 |#2|) (QUOTE (-314)))) (-12 (|HasCategory| (-352 |#2|) (QUOTE (-314))) (|HasCategory| (-352 |#2|) (QUOTE (-813 (-1094)))))) +(-41 R -3098) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (|%list| (QUOTE -364) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (|%list| (QUOTE -366) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -103,34 +103,34 @@ NIL (-43 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,a) = 0} and \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,x,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,b,x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,a,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-258)))) +((|HasCategory| |#1| (QUOTE (-260)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-3995 |has| |#1| (-497)) (-3993 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) +((-3998 |has| |#1| (-499)) (-3996 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) NIL -((OR (-12 (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-758)))) (-12 (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))))) (OR (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-475)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-758))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-758))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-758))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))) (-12 (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|))) (-12 (|HasCategory| $ (|%list| (QUOTE -1037) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-758)))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| $ (|%list| (QUOTE -1037) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|)))))) +((OR (-12 (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -262) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-760)))) (-12 (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -262) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017))))) (OR (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-556 (-776)))) (|HasCategory| |#2| (QUOTE (-556 (-776))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-557 (-477)))) (-12 (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-760))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-760))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-760))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-488) (QUOTE (-760))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017))) (-12 (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -262) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#2|))) (-12 (|HasCategory| $ (|%list| (QUOTE -1039) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-760)))) (-12 (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| $ (|%list| (QUOTE -1039) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|)))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) +((|HasCategory| |#2| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-314)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3995 . T) (-3996 . T) (-3998 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| $ (QUOTE (-963))) (|HasCategory| $ (QUOTE (-952 (-486))))) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| $ (QUOTE (-965))) (|HasCategory| $ (QUOTE (-954 (-488))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function `f'.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by `f'."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-3995 . T)) +((-3998 . T)) NIL (-51) ((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and \\spad{AnyFunctions1}.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3095) +(-54 |Base| R -3098) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}rn is applicable to the expression."))) NIL NIL @@ -163,7 +163,7 @@ NIL (-58 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))))) +((OR (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (OR (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-760))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| (-488) (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|))))) (-59 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL @@ -171,15 +171,15 @@ NIL (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-72)))) (-61 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}'s.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-312)))) +((|HasCategory| |#1| (QUOTE (-314)))) (-62 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-72)))) (-63 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -202,11 +202,11 @@ NIL NIL (-68) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4000 "*") . T) (-3995 . T) (-3993 . T) (-3992 . T) (-3991 . T) (-3996 . T) (-3990 . T) (-3989 . T) (-3988 . T) (-3987 . T) (-3986 . T) (-3994 . T) (-3997 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3985 . T)) +(((-4003 "*") . T) (-3998 . T) (-3996 . T) (-3995 . T) (-3994 . T) (-3999 . T) (-3993 . T) (-3992 . T) (-3991 . T) (-3990 . T) (-3989 . T) (-3997 . T) (-4000 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3988 . T)) NIL (-69 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-3995 . T)) +((-3998 . T)) NIL (-70 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -223,11 +223,11 @@ NIL (-73 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|)))) (-74 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4000 "*")))) +((|HasAttribute| |#1| (QUOTE (-4003 "*")))) (-75 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}."))) NIL @@ -238,8 +238,8 @@ NIL NIL (-77) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| (-486) (QUOTE (-823))) (|HasCategory| (-486) (QUOTE (-952 (-1092)))) (|HasCategory| (-486) (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-120))) (|HasCategory| (-486) (QUOTE (-555 (-475)))) (|HasCategory| (-486) (QUOTE (-935))) (|HasCategory| (-486) (QUOTE (-742))) (|HasCategory| (-486) (QUOTE (-758))) (OR (|HasCategory| (-486) (QUOTE (-742))) (|HasCategory| (-486) (QUOTE (-758)))) (|HasCategory| (-486) (QUOTE (-952 (-486)))) (|HasCategory| (-486) (QUOTE (-1068))) (|HasCategory| (-486) (QUOTE (-798 (-330)))) (|HasCategory| (-486) (QUOTE (-798 (-486)))) (|HasCategory| (-486) (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-486) (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-486) (QUOTE (-189))) (|HasCategory| (-486) (QUOTE (-813 (-1092)))) (|HasCategory| (-486) (QUOTE (-190))) (|HasCategory| (-486) (QUOTE (-811 (-1092)))) (|HasCategory| (-486) (QUOTE (-457 (-1092) (-486)))) (|HasCategory| (-486) (QUOTE (-260 (-486)))) (|HasCategory| (-486) (QUOTE (-241 (-486) (-486)))) (|HasCategory| (-486) (QUOTE (-258))) (|HasCategory| (-486) (QUOTE (-485))) (|HasCategory| (-486) (QUOTE (-582 (-486)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-823)))) (|HasCategory| (-486) (QUOTE (-118))))) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| (-488) (QUOTE (-825))) (|HasCategory| (-488) (QUOTE (-954 (-1094)))) (|HasCategory| (-488) (QUOTE (-118))) (|HasCategory| (-488) (QUOTE (-120))) (|HasCategory| (-488) (QUOTE (-557 (-477)))) (|HasCategory| (-488) (QUOTE (-937))) (|HasCategory| (-488) (QUOTE (-744))) (|HasCategory| (-488) (QUOTE (-760))) (OR (|HasCategory| (-488) (QUOTE (-744))) (|HasCategory| (-488) (QUOTE (-760)))) (|HasCategory| (-488) (QUOTE (-954 (-488)))) (|HasCategory| (-488) (QUOTE (-1070))) (|HasCategory| (-488) (QUOTE (-800 (-332)))) (|HasCategory| (-488) (QUOTE (-800 (-488)))) (|HasCategory| (-488) (QUOTE (-557 (-804 (-332))))) (|HasCategory| (-488) (QUOTE (-557 (-804 (-488))))) (|HasCategory| (-488) (QUOTE (-191))) (|HasCategory| (-488) (QUOTE (-815 (-1094)))) (|HasCategory| (-488) (QUOTE (-192))) (|HasCategory| (-488) (QUOTE (-813 (-1094)))) (|HasCategory| (-488) (QUOTE (-459 (-1094) (-488)))) (|HasCategory| (-488) (QUOTE (-262 (-488)))) (|HasCategory| (-488) (QUOTE (-243 (-488) (-488)))) (|HasCategory| (-488) (QUOTE (-260))) (|HasCategory| (-488) (QUOTE (-487))) (|HasCategory| (-488) (QUOTE (-584 (-488)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-488) (QUOTE (-825)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-488) (QUOTE (-825)))) (|HasCategory| (-488) (QUOTE (-118))))) (-78) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -255,10 +255,10 @@ NIL (-81) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) NIL -((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1015)))) (|HasCategory| (-85) (QUOTE (-555 (-475)))) (|HasCategory| (-85) (QUOTE (-758))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| (-85) (QUOTE (-72))) (|HasCategory| (-85) (QUOTE (-554 (-774)))) (|HasCategory| (-85) (QUOTE (-1015))) (-12 (|HasCategory| $ (QUOTE (-1037 (-85)))) (|HasCategory| (-85) (QUOTE (-758)))) (|HasCategory| $ (QUOTE (-318 (-85)))) (-12 (|HasCategory| $ (QUOTE (-318 (-85)))) (|HasCategory| (-85) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-1037 (-85))))) +((-12 (|HasCategory| (-85) (QUOTE (-262 (-85)))) (|HasCategory| (-85) (QUOTE (-1017)))) (|HasCategory| (-85) (QUOTE (-557 (-477)))) (|HasCategory| (-85) (QUOTE (-760))) (|HasCategory| (-488) (QUOTE (-760))) (|HasCategory| (-85) (QUOTE (-72))) (|HasCategory| (-85) (QUOTE (-556 (-776)))) (|HasCategory| (-85) (QUOTE (-1017))) (-12 (|HasCategory| $ (QUOTE (-1039 (-85)))) (|HasCategory| (-85) (QUOTE (-760)))) (|HasCategory| $ (QUOTE (-320 (-85)))) (-12 (|HasCategory| $ (QUOTE (-320 (-85)))) (|HasCategory| (-85) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-1039 (-85))))) (-82 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-3993 . T) (-3992 . T)) +((-3996 . T) (-3995 . T)) NIL (-83 S) ((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}."))) @@ -280,22 +280,22 @@ NIL ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise."))) NIL NIL -(-88 -3095 UP) +(-88 -3098 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-89 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL (-90 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| (-89 |#1|) (QUOTE (-823))) (|HasCategory| (-89 |#1|) (QUOTE (-952 (-1092)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (QUOTE (-555 (-475)))) (|HasCategory| (-89 |#1|) (QUOTE (-935))) (|HasCategory| (-89 |#1|) (QUOTE (-742))) (|HasCategory| (-89 |#1|) (QUOTE (-758))) (OR (|HasCategory| (-89 |#1|) (QUOTE (-742))) (|HasCategory| (-89 |#1|) (QUOTE (-758)))) (|HasCategory| (-89 |#1|) (QUOTE (-952 (-486)))) (|HasCategory| (-89 |#1|) (QUOTE (-1068))) (|HasCategory| (-89 |#1|) (QUOTE (-798 (-330)))) (|HasCategory| (-89 |#1|) (QUOTE (-798 (-486)))) (|HasCategory| (-89 |#1|) (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-89 |#1|) (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-89 |#1|) (QUOTE (-582 (-486)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (QUOTE (-813 (-1092)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (QUOTE (-811 (-1092)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -457) (QUOTE (-1092)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-258))) (|HasCategory| (-89 |#1|) (QUOTE (-485))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-823)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))))) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| (-89 |#1|) (QUOTE (-825))) (|HasCategory| (-89 |#1|) (QUOTE (-954 (-1094)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (QUOTE (-557 (-477)))) (|HasCategory| (-89 |#1|) (QUOTE (-937))) (|HasCategory| (-89 |#1|) (QUOTE (-744))) (|HasCategory| (-89 |#1|) (QUOTE (-760))) (OR (|HasCategory| (-89 |#1|) (QUOTE (-744))) (|HasCategory| (-89 |#1|) (QUOTE (-760)))) (|HasCategory| (-89 |#1|) (QUOTE (-954 (-488)))) (|HasCategory| (-89 |#1|) (QUOTE (-1070))) (|HasCategory| (-89 |#1|) (QUOTE (-800 (-332)))) (|HasCategory| (-89 |#1|) (QUOTE (-800 (-488)))) (|HasCategory| (-89 |#1|) (QUOTE (-557 (-804 (-332))))) (|HasCategory| (-89 |#1|) (QUOTE (-557 (-804 (-488))))) (|HasCategory| (-89 |#1|) (QUOTE (-584 (-488)))) (|HasCategory| (-89 |#1|) (QUOTE (-191))) (|HasCategory| (-89 |#1|) (QUOTE (-815 (-1094)))) (|HasCategory| (-89 |#1|) (QUOTE (-192))) (|HasCategory| (-89 |#1|) (QUOTE (-813 (-1094)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -459) (QUOTE (-1094)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -262) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -243) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-260))) (|HasCategory| (-89 |#1|) (QUOTE (-487))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-825)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-825)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))))) (-91 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1037) (|devaluate| |#2|)))) +((|HasCategory| |#1| (|%list| (QUOTE -1039) (|devaluate| |#2|)))) (-92 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -307,7 +307,7 @@ NIL (-94 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|)))) (-95 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL @@ -327,11 +327,11 @@ NIL (-99 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|)))) (-100 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|)))) (-101) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256."))) NIL @@ -339,7 +339,7 @@ NIL (-102) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) NIL -((OR (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-758)))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1015))))) (|HasCategory| (-101) (QUOTE (-554 (-774)))) (|HasCategory| (-101) (QUOTE (-555 (-475)))) (OR (|HasCategory| (-101) (QUOTE (-758))) (|HasCategory| (-101) (QUOTE (-1015)))) (|HasCategory| (-101) (QUOTE (-758))) (OR (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-758))) (|HasCategory| (-101) (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-1015))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1015)))) (-12 (|HasCategory| $ (QUOTE (-318 (-101)))) (|HasCategory| (-101) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-318 (-101)))) (|HasCategory| $ (QUOTE (-1037 (-101)))) (-12 (|HasCategory| $ (QUOTE (-1037 (-101)))) (|HasCategory| (-101) (QUOTE (-758))))) +((OR (-12 (|HasCategory| (-101) (QUOTE (-262 (-101)))) (|HasCategory| (-101) (QUOTE (-760)))) (-12 (|HasCategory| (-101) (QUOTE (-262 (-101)))) (|HasCategory| (-101) (QUOTE (-1017))))) (|HasCategory| (-101) (QUOTE (-556 (-776)))) (|HasCategory| (-101) (QUOTE (-557 (-477)))) (OR (|HasCategory| (-101) (QUOTE (-760))) (|HasCategory| (-101) (QUOTE (-1017)))) (|HasCategory| (-101) (QUOTE (-760))) (OR (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-760))) (|HasCategory| (-101) (QUOTE (-1017)))) (|HasCategory| (-488) (QUOTE (-760))) (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-1017))) (-12 (|HasCategory| (-101) (QUOTE (-262 (-101)))) (|HasCategory| (-101) (QUOTE (-1017)))) (-12 (|HasCategory| $ (QUOTE (-320 (-101)))) (|HasCategory| (-101) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-320 (-101)))) (|HasCategory| $ (QUOTE (-1039 (-101)))) (-12 (|HasCategory| $ (QUOTE (-1039 (-101)))) (|HasCategory| (-101) (QUOTE (-760))))) (-103) ((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) NIL @@ -358,13 +358,13 @@ NIL NIL (-107) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4000 "*") . T)) +(((-4003 "*") . T)) NIL -(-108 |minix| -2624 R) +(-108 |minix| -2627 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree."))) NIL NIL -(-109 |minix| -2624 S T$) +(-109 |minix| -2627 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL @@ -386,8 +386,8 @@ NIL NIL (-114) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-3988 . T)) -((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-320)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1015))))) (|HasCategory| (-117) (QUOTE (-555 (-475)))) (|HasCategory| (-117) (QUOTE (-320))) (|HasCategory| (-117) (QUOTE (-758))) (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-554 (-774)))) (|HasCategory| (-117) (QUOTE (-1015))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1015)))) (|HasCategory| $ (QUOTE (-318 (-117)))) (-12 (|HasCategory| $ (QUOTE (-318 (-117)))) (|HasCategory| (-117) (QUOTE (-72))))) +((-3991 . T)) +((OR (-12 (|HasCategory| (-117) (QUOTE (-262 (-117)))) (|HasCategory| (-117) (QUOTE (-322)))) (-12 (|HasCategory| (-117) (QUOTE (-262 (-117)))) (|HasCategory| (-117) (QUOTE (-1017))))) (|HasCategory| (-117) (QUOTE (-557 (-477)))) (|HasCategory| (-117) (QUOTE (-322))) (|HasCategory| (-117) (QUOTE (-760))) (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-556 (-776)))) (|HasCategory| (-117) (QUOTE (-1017))) (-12 (|HasCategory| (-117) (QUOTE (-262 (-117)))) (|HasCategory| (-117) (QUOTE (-1017)))) (|HasCategory| $ (QUOTE (-320 (-117)))) (-12 (|HasCategory| $ (QUOTE (-320 (-117)))) (|HasCategory| (-117) (QUOTE (-72))))) (-115 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL @@ -402,7 +402,7 @@ NIL NIL (-118) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-3995 . T)) +((-3998 . T)) NIL (-119 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial 'x,{} then it returns the characteristic polynomial expressed as a polynomial in 'x."))) @@ -410,9 +410,9 @@ NIL NIL (-120) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-3995 . T)) +((-3998 . T)) NIL -(-121 -3095 UP UPUP) +(-121 -3098 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -423,14 +423,14 @@ NIL (-123 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#1| (|%list| (QUOTE -318) (|devaluate| |#2|)))) +((|HasCategory| |#2| (QUOTE (-557 (-477)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#1| (|%list| (QUOTE -320) (|devaluate| |#2|)))) (-124 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-125 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-3993 . T) (-3992 . T) (-3995 . T)) +((-3996 . T) (-3995 . T) (-3998 . T)) NIL (-126) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -452,7 +452,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-131 R -3095) +(-131 R -3098) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} n!.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} n!/(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} n!/(r! * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -480,4301 +480,4309 @@ NIL ((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,y))} returns \\spad{p}(\\spad{y},{}\\spad{x})."))) NIL NIL -(-138 S R) +(-138 T$) +((|constructor| (NIL "This domain implements commutative operations.")) (|commutativeOperation| (($ (|Mapping| |#1| |#1| |#1|)) "\\spad{commutativeOperation f} constructs a commutative operation over \\spad{T},{} thus asserting a commutativity property."))) +(((|%Rule| |commutativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|)) (-3062 (|f| |x| |y|) (|f| |y| |x|)))) . T)) +NIL +(-139 T$) +((|constructor| (NIL "This is the category of all domains that implement commutative operations."))) +(((|%Rule| |commutativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|)) (-3062 (|f| |x| |y|) (|f| |y| |x|)))) . T)) +NIL +(-140 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-917))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-935))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasAttribute| |#2| (QUOTE -3997)) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-497)))) -(-139 R) +((|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-919))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-557 (-477)))) (|HasCategory| |#2| (QUOTE (-314))) (|HasAttribute| |#2| (QUOTE -3997)) (|HasAttribute| |#2| (QUOTE -4000)) (|HasCategory| |#2| (QUOTE (-260))) (|HasCategory| |#2| (QUOTE (-499)))) +(-141 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-3991 OR (|has| |#1| (-497)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3997 |has| |#1| (-6 -3997)) (-1377 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3994 OR (|has| |#1| (-499)) (-12 (|has| |#1| (-260)) (|has| |#1| (-825)))) (-3999 |has| |#1| (-314)) (-3993 |has| |#1| (-314)) (-3997 |has| |#1| (-6 -3997)) (-4000 |has| |#1| (-6 -4000)) (-1380 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-140 RR PR) +(-142 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-141) +(-143) ((|constructor| (NIL "This package implements a Spad compiler.")) (|elaborate| (((|Maybe| (|Elaboration|)) (|SpadAst|)) "\\spad{elaborate(s)} returns the elaboration of the syntax object \\spad{s} in the empty environement.")) (|macroExpand| (((|SpadAst|) (|SpadAst|) (|Environment|)) "\\spad{macroExpand(s,e)} traverses the syntax object \\spad{s} replacing all (niladic) macro invokations with the corresponding substitution."))) NIL NIL -(-142 R) +(-144 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-3991 OR (|has| |#1| (-497)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3997 |has| |#1| (-6 -3997)) (-1377 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1092))))) (|HasCategory| |#1| (QUOTE (-813 (-1092))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-823))))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-917))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| |#1| (|%list| (QUOTE -457) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-975))) (-12 (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasAttribute| |#1| (QUOTE -3997)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-813 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1092))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-143 R S) +((-3994 OR (|has| |#1| (-499)) (-12 (|has| |#1| (-260)) (|has| |#1| (-825)))) (-3999 |has| |#1| (-314)) (-3993 |has| |#1| (-314)) (-3997 |has| |#1| (-6 -3997)) (-4000 |has| |#1| (-6 -4000)) (-1380 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-301))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-301)))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-322))) (OR (|HasCategory| |#1| (QUOTE (-192))) (|HasCategory| |#1| (QUOTE (-301)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-192))) (|HasCategory| |#1| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-191))) (|HasCategory| |#1| (QUOTE (-301)))) (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-813 (-1094))))) (|HasCategory| |#1| (QUOTE (-815 (-1094))))) (|HasCategory| |#1| (QUOTE (-584 (-488)))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-260))) (|HasCategory| |#1| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-314)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-260))) (|HasCategory| |#1| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-825))))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (OR (|HasCategory| |#1| (QUOTE (-260))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-499)))) (OR (|HasCategory| |#1| (QUOTE (-260))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-301)))) (|HasCategory| |#1| (QUOTE (-557 (-804 (-332))))) (|HasCategory| |#1| (QUOTE (-557 (-804 (-488))))) (|HasCategory| |#1| (QUOTE (-800 (-332)))) (|HasCategory| |#1| (QUOTE (-800 (-488)))) (|HasCategory| |#1| (|%list| (QUOTE -459) (QUOTE (-1094)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -243) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-260))) (|HasCategory| |#1| (QUOTE (-825))) (OR (-12 (|HasCategory| |#1| (QUOTE (-260))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-314)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-260))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-499)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-192))) (|HasCategory| |#1| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-191)))) (|HasCategory| |#1| (QUOTE (-191))) (|HasCategory| |#1| (QUOTE (-815 (-1094)))) (|HasCategory| |#1| (QUOTE (-192))) (-12 (|HasCategory| |#1| (QUOTE (-260))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasAttribute| |#1| (QUOTE -3997)) (|HasAttribute| |#1| (QUOTE -4000)) (-12 (|HasCategory| |#1| (QUOTE (-191))) (|HasCategory| |#1| (QUOTE (-314)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-815 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-192))) (|HasCategory| |#1| (QUOTE (-314)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-813 (-1094))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-260))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-301)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-260))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-145 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL -(-144 R S CS) +(-146 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL NIL -(-145) +(-147) ((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented"))) NIL NIL -(-146) +(-148) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +(((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-147) +(-149) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) NIL NIL -(-148 R) +(-150 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4000 "*") . T) (-3991 . T) (-3996 . T) (-3990 . T) (-3992 . T) (-3993 . T) (-3995 . T)) +(((-4003 "*") . T) (-3994 . T) (-3999 . T) (-3993 . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-149) +(-151) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with `n'. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding `b'.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) NIL NIL -(-150 R) +(-152 R) ((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,b)} is a function which will map the point \\spad{(lambda,mu,nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,v,phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}."))) NIL NIL -(-151 R |PolR| E) +(-153 R |PolR| E) ((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants"))) NIL NIL -(-152 R S CS) +(-154 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-859 |#2|) (|%list| (QUOTE -798) (|devaluate| |#1|)))) -(-153 R) +((|HasCategory| (-861 |#2|) (|%list| (QUOTE -800) (|devaluate| |#1|)))) +(-155 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)*lm(2)*...*lm(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL NIL -(-154) +(-156) ((|constructor| (NIL "This domain represents `coerce' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-155 R UP) +(-157 R UP) ((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken's idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user's responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage's variant of Graeffe's method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly, eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} -1\". Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,eps,info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} -1\". Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p, eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p, eps, info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p, eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}."))) NIL NIL -(-156 S ST) +(-158 S ST) ((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic"))) NIL NIL -(-157) +(-159) ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-158 C) +(-160 C) ((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") ((|#1| $) "\\spad{constructor(t)} returns the name of the constructor used to make the call."))) NIL NIL -(-159 S) +(-161 S) ((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(\\spad{i+1}) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL -(-160) +(-162) ((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(\\spad{i+1}) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL -(-161) +(-163) ((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) NIL NIL -(-162 R -3095) +(-164 R -3098) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-163 R) +(-165 R) ((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}"))) NIL NIL -(-164) +(-166) ((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{SFunction(li)} is the \\spad{S}-function of the partition \\spad{li} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}"))) NIL NIL -(-165) +(-167) ((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}"))) NIL NIL -(-166 N T$) +(-168 N T$) ((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|qsetelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "setelt(\\spad{b},{}\\spad{i},{}\\spad{x}) sets the \\spad{i}th entry of data buffer `b' to `x'. Indexing is 0-based.")) (|qelt| ((|#2| $ (|NonNegativeInteger|)) "elt(\\spad{b},{}\\spad{i}) returns the \\spad{i}th element in buffer `b'. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}."))) NIL NIL -(-167 S) +(-169 S) ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-168 |vars|) +(-170 |vars|) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis."))) NIL NIL -(-169 -3095 UP UPUP R) +(-171 -3098 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-170 -3095 FP) +(-172 -3098 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and q= size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL -(-171) +(-173) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| (-486) (QUOTE (-823))) (|HasCategory| (-486) (QUOTE (-952 (-1092)))) (|HasCategory| (-486) (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-120))) (|HasCategory| (-486) (QUOTE (-555 (-475)))) (|HasCategory| (-486) (QUOTE (-935))) (|HasCategory| (-486) (QUOTE (-742))) (|HasCategory| (-486) (QUOTE (-758))) (OR (|HasCategory| (-486) (QUOTE (-742))) (|HasCategory| (-486) (QUOTE (-758)))) (|HasCategory| (-486) (QUOTE (-952 (-486)))) (|HasCategory| (-486) (QUOTE (-1068))) (|HasCategory| (-486) (QUOTE (-798 (-330)))) (|HasCategory| (-486) (QUOTE (-798 (-486)))) (|HasCategory| (-486) (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-486) (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-486) (QUOTE (-189))) (|HasCategory| (-486) (QUOTE (-813 (-1092)))) (|HasCategory| (-486) (QUOTE (-190))) (|HasCategory| (-486) (QUOTE (-811 (-1092)))) (|HasCategory| (-486) (QUOTE (-457 (-1092) (-486)))) (|HasCategory| (-486) (QUOTE (-260 (-486)))) (|HasCategory| (-486) (QUOTE (-241 (-486) (-486)))) (|HasCategory| (-486) (QUOTE (-258))) (|HasCategory| (-486) (QUOTE (-485))) (|HasCategory| (-486) (QUOTE (-582 (-486)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-823)))) (|HasCategory| (-486) (QUOTE (-118))))) -(-172) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| (-488) (QUOTE (-825))) (|HasCategory| (-488) (QUOTE (-954 (-1094)))) (|HasCategory| (-488) (QUOTE (-118))) (|HasCategory| (-488) (QUOTE (-120))) (|HasCategory| (-488) (QUOTE (-557 (-477)))) (|HasCategory| (-488) (QUOTE (-937))) (|HasCategory| (-488) (QUOTE (-744))) (|HasCategory| (-488) (QUOTE (-760))) (OR (|HasCategory| (-488) (QUOTE (-744))) (|HasCategory| (-488) (QUOTE (-760)))) (|HasCategory| (-488) (QUOTE (-954 (-488)))) (|HasCategory| (-488) (QUOTE (-1070))) (|HasCategory| (-488) (QUOTE (-800 (-332)))) (|HasCategory| (-488) (QUOTE (-800 (-488)))) (|HasCategory| (-488) (QUOTE (-557 (-804 (-332))))) (|HasCategory| (-488) (QUOTE (-557 (-804 (-488))))) (|HasCategory| (-488) (QUOTE (-191))) (|HasCategory| (-488) (QUOTE (-815 (-1094)))) (|HasCategory| (-488) (QUOTE (-192))) (|HasCategory| (-488) (QUOTE (-813 (-1094)))) (|HasCategory| (-488) (QUOTE (-459 (-1094) (-488)))) (|HasCategory| (-488) (QUOTE (-262 (-488)))) (|HasCategory| (-488) (QUOTE (-243 (-488) (-488)))) (|HasCategory| (-488) (QUOTE (-260))) (|HasCategory| (-488) (QUOTE (-487))) (|HasCategory| (-488) (QUOTE (-584 (-488)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-488) (QUOTE (-825)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-488) (QUOTE (-825)))) (|HasCategory| (-488) (QUOTE (-118))))) +(-174) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-173 R -3095) +(-175 R -3098) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-174 R) +(-176 R) ((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-175 R1 R2) +(-177 R1 R2) ((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL -(-176 S) +(-178 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-177 |CoefRing| |listIndVar|) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-179 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-3995 . T)) +((-3998 . T)) NIL -(-178 R -3095) +(-180 R -3098) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL -(-179) +(-181) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|nan?| (((|Boolean|) $) "\\spad{nan? x} holds if \\spad{x} is a Not a Number floating point data in the IEEE 754 sense.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3773 . T) (-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3776 . T) (-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-180) +(-182) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) NIL NIL -(-181 R) +(-183 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-497))) (|HasAttribute| |#1| (QUOTE (-4000 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72)))) -(-182 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-260))) (|HasCategory| |#1| (QUOTE (-499))) (|HasAttribute| |#1| (QUOTE (-4003 "*"))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-72)))) +(-184 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-183 S) +(-185 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-184 R) +(-186 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%."))) -((-3995 . T)) +((-3998 . T)) NIL -(-185 S T$) +(-187 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) NIL NIL -(-186 T$) +(-188 T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#1| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#1| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) NIL NIL -(-187 R) +(-189 R) ((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline"))) -((-3993 . T) (-3992 . T)) +((-3996 . T) (-3995 . T)) NIL -(-188 S) +(-190 S) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) NIL NIL -(-189) +(-191) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) NIL NIL -(-190) +(-192) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) -((-3995 . T)) +((-3998 . T)) NIL -(-191) +(-193) ((|constructor| (NIL "Dioid is the class of semirings where the addition operation induces a canonical order relation."))) NIL NIL -(-192 A S) +(-194 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -318) (|devaluate| |#2|)))) -(-193 S) +((|HasCategory| |#1| (|%list| (QUOTE -320) (|devaluate| |#2|)))) +(-195 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL NIL -(-194) +(-196) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-195 S -2624 R) +(-197 S -2627 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim."))) NIL -((|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-758))) (|HasAttribute| |#3| (QUOTE -3995)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (QUOTE (-1015)))) -(-196 -2624 R) +((|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-760))) (|HasAttribute| |#3| (QUOTE -3998)) (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-322))) (|HasCategory| |#3| (QUOTE (-667))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-965))) (|HasCategory| |#3| (QUOTE (-1017)))) +(-198 -2627 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim."))) -((-3992 |has| |#2| (-963)) (-3993 |has| |#2| (-963)) (-3995 |has| |#2| (-6 -3995))) +((-3995 |has| |#2| (-965)) (-3996 |has| |#2| (-965)) (-3998 |has| |#2| (-6 -3998))) NIL -(-197 -2624 R) +(-199 -2627 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-3992 |has| |#2| (-963)) (-3993 |has| |#2| (-963)) (-3995 |has| |#2| (-6 -3995))) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (OR (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758)))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-963))))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (|HasCategory| |#2| (QUOTE (-1015))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-1015))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-963))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-486) (QUOTE (-758))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-1015)))) (|HasAttribute| |#2| (QUOTE -3995)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|)))) -(-198 -2624 A B) +((-3995 |has| |#2| (-965)) (-3996 |has| |#2| (-965)) (-3998 |has| |#2| (-6 -3998))) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-556 (-776)))) (|HasCategory| |#2| (QUOTE (-314))) (OR (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-314)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-721))) (OR (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-760)))) (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-322))) (OR (-12 (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-584 (-488)))) (|HasCategory| |#2| (QUOTE (-813 (-1094))))) (-12 (|HasCategory| |#2| (QUOTE (-584 (-488)))) (|HasCategory| |#2| (QUOTE (-965))))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-1017)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-1017)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (|HasCategory| |#2| (QUOTE (-192))) (OR (|HasCategory| |#2| (QUOTE (-192))) (-12 (|HasCategory| |#2| (QUOTE (-191))) (|HasCategory| |#2| (QUOTE (-965))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-815 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (|HasCategory| |#2| (QUOTE (-813 (-1094))))) (|HasCategory| |#2| (QUOTE (-1017))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-965)))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-1017))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-1017)))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-1017)))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-965))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-488) (QUOTE (-760))) (-12 (|HasCategory| |#2| (QUOTE (-584 (-488)))) (|HasCategory| |#2| (QUOTE (-965)))) (-12 (|HasCategory| |#2| (QUOTE (-191))) (|HasCategory| |#2| (QUOTE (-965)))) (-12 (|HasCategory| |#2| (QUOTE (-815 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-1017)))) (|HasCategory| |#2| (QUOTE (-965)))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-1017)))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-1017)))) (|HasAttribute| |#2| (QUOTE -3998)) (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-965)))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#2|)))) +(-200 -2627 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-199) +(-201) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-200 S) +(-202 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-201) +(-203) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-3991 . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3994 . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-202 S) +(-204 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) NIL NIL -(-203 S) +(-205 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) -(-204 M) +((OR (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (OR (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-760))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| (-488) (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|)))) +(-206 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-205 R) +(-207 R) ((|constructor| (NIL "Category of modules that extend differential rings. \\blankline"))) -((-3993 . T) (-3992 . T)) +((-3996 . T) (-3995 . T)) NIL -(-206 |vl| R) +(-208 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4000 "*") |has| |#2| (-146)) (-3991 |has| |#2| (-497)) (-3996 |has| |#2| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) -((|HasCategory| |#2| (QUOTE (-823))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-497)))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-330)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-486)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-475))))) (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-393))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-207) +(((-4003 "*") |has| |#2| (-148)) (-3994 |has| |#2| (-499)) (-3999 |has| |#2| (-6 -3999)) (-3996 . T) (-3995 . T) (-3998 . T)) +((|HasCategory| |#2| (QUOTE (-825))) (OR (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-825)))) (OR (|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-825)))) (OR (|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-148))) (OR (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-800 (-332)))) (|HasCategory| (-777 |#1|) (QUOTE (-800 (-332))))) (-12 (|HasCategory| |#2| (QUOTE (-800 (-488)))) (|HasCategory| (-777 |#1|) (QUOTE (-800 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-557 (-804 (-332))))) (|HasCategory| (-777 |#1|) (QUOTE (-557 (-804 (-332)))))) (-12 (|HasCategory| |#2| (QUOTE (-557 (-804 (-488))))) (|HasCategory| (-777 |#1|) (QUOTE (-557 (-804 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-557 (-477)))) (|HasCategory| (-777 |#1|) (QUOTE (-557 (-477))))) (|HasCategory| |#2| (QUOTE (-584 (-488)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-954 (-488)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-314))) (|HasAttribute| |#2| (QUOTE -3999)) (|HasCategory| |#2| (QUOTE (-395))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-209) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'."))) NIL NIL -(-208) +(-210) ((|constructor| (NIL "This domain provides representations for domains constructors.")) (|functorData| (((|FunctorData|) $) "\\spad{functorData x} returns the functor data associated with the domain constructor \\spad{x}."))) NIL NIL -(-209) +(-211) ((|constructor| (NIL "Represntation of domain templates resulting from compiling a domain constructor")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# x} returns the length of the domain template \\spad{x}."))) NIL NIL -(-210 |n| R M S) +(-212 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-3995 OR (-2565 (|has| |#4| (-963)) (|has| |#4| (-190))) (|has| |#4| (-6 -3995)) (-2565 (|has| |#4| (-963)) (|has| |#4| (-811 (-1092))))) (-3992 |has| |#4| (-963)) (-3993 |has| |#4| (-963))) -((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-665))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-719))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-758))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1092)))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-963))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-312))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-963)))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312)))) (|HasCategory| |#4| (QUOTE (-963))) (|HasCategory| |#4| (QUOTE (-665))) (|HasCategory| |#4| (QUOTE (-719))) (OR (|HasCategory| |#4| (QUOTE (-719))) (|HasCategory| |#4| (QUOTE (-758)))) (|HasCategory| |#4| (QUOTE (-758))) (|HasCategory| |#4| (QUOTE (-320))) (OR (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-582 (-486)))) (|HasCategory| |#4| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#4| (QUOTE (-582 (-486)))) (|HasCategory| |#4| (QUOTE (-963))))) (|HasCategory| |#4| (QUOTE (-811 (-1092)))) (OR (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-811 (-1092)))) (|HasCategory| |#4| (QUOTE (-963)))) (|HasCategory| |#4| (QUOTE (-190))) (OR (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-813 (-1092)))) (|HasCategory| |#4| (QUOTE (-963)))) (|HasCategory| |#4| (QUOTE (-811 (-1092))))) (|HasCategory| |#4| (QUOTE (-1015))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#4| (QUOTE (-665))) (|HasCategory| |#4| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#4| (QUOTE (-719))) (|HasCategory| |#4| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#4| (QUOTE (-758))) (|HasCategory| |#4| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1092)))) (|HasCategory| |#4| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#4| (QUOTE (-963)))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#4| (QUOTE (-1015))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-719))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-758))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1092)))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-486)))) (|HasCategory| |#4| (QUOTE (-1015)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-665))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (|HasCategory| |#4| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-719))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-758))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1092)))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-486)))) (|HasCategory| |#4| (QUOTE (-1015)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-665))) (|HasCategory| |#4| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-486)))) (|HasCategory| |#4| (QUOTE (-963))))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| (-486) (QUOTE (-758))) (-12 (|HasCategory| |#4| (QUOTE (-582 (-486)))) (|HasCategory| |#4| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-811 (-1092)))) (|HasCategory| |#4| (QUOTE (-963)))) (-12 (|HasCategory| |#4| (QUOTE (-813 (-1092)))) (|HasCategory| |#4| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-963)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-963))))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-486)))) (|HasCategory| |#4| (QUOTE (-1015)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-952 (-486)))) (|HasCategory| |#4| (QUOTE (-1015)))) (|HasCategory| |#4| (QUOTE (-963)))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#4| (QUOTE (-1015)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-811 (-1092)))) (|HasCategory| |#4| (QUOTE (-963)))) (|HasAttribute| |#4| (QUOTE -3995)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-963))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-963)))) (-12 (|HasCategory| |#4| (QUOTE (-813 (-1092)))) (|HasCategory| |#4| (QUOTE (-963)))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-554 (-774)))) (-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#4|)))) -(-211 |n| R S) +((-3998 OR (-2568 (|has| |#4| (-965)) (|has| |#4| (-192))) (|has| |#4| (-6 -3998)) (-2568 (|has| |#4| (-965)) (|has| |#4| (-813 (-1094))))) (-3995 |has| |#4| (-965)) (-3996 |has| |#4| (-965))) +((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -262) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-148))) (|HasCategory| |#4| (|%list| (QUOTE -262) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-192))) (|HasCategory| |#4| (|%list| (QUOTE -262) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-314))) (|HasCategory| |#4| (|%list| (QUOTE -262) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-322))) (|HasCategory| |#4| (|%list| (QUOTE -262) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-667))) (|HasCategory| |#4| (|%list| (QUOTE -262) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (|%list| (QUOTE -262) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-760))) (|HasCategory| |#4| (|%list| (QUOTE -262) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-813 (-1094)))) (|HasCategory| |#4| (|%list| (QUOTE -262) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-965))) (|HasCategory| |#4| (|%list| (QUOTE -262) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1017))) (|HasCategory| |#4| (|%list| (QUOTE -262) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-314))) (OR (|HasCategory| |#4| (QUOTE (-148))) (|HasCategory| |#4| (QUOTE (-314))) (|HasCategory| |#4| (QUOTE (-965)))) (OR (|HasCategory| |#4| (QUOTE (-148))) (|HasCategory| |#4| (QUOTE (-314)))) (|HasCategory| |#4| (QUOTE (-965))) (|HasCategory| |#4| (QUOTE (-667))) (|HasCategory| |#4| (QUOTE (-721))) (OR (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (QUOTE (-760)))) (|HasCategory| |#4| (QUOTE (-760))) (|HasCategory| |#4| (QUOTE (-322))) (OR (-12 (|HasCategory| |#4| (QUOTE (-148))) (|HasCategory| |#4| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-192))) (|HasCategory| |#4| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-314))) (|HasCategory| |#4| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-584 (-488)))) (|HasCategory| |#4| (QUOTE (-813 (-1094))))) (-12 (|HasCategory| |#4| (QUOTE (-584 (-488)))) (|HasCategory| |#4| (QUOTE (-965))))) (|HasCategory| |#4| (QUOTE (-813 (-1094)))) (OR (|HasCategory| |#4| (QUOTE (-192))) (|HasCategory| |#4| (QUOTE (-813 (-1094)))) (|HasCategory| |#4| (QUOTE (-965)))) (|HasCategory| |#4| (QUOTE (-192))) (OR (|HasCategory| |#4| (QUOTE (-192))) (-12 (|HasCategory| |#4| (QUOTE (-191))) (|HasCategory| |#4| (QUOTE (-965))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-815 (-1094)))) (|HasCategory| |#4| (QUOTE (-965)))) (|HasCategory| |#4| (QUOTE (-813 (-1094))))) (|HasCategory| |#4| (QUOTE (-1017))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#4| (QUOTE (-148))) (|HasCategory| |#4| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#4| (QUOTE (-192))) (|HasCategory| |#4| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#4| (QUOTE (-314))) (|HasCategory| |#4| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#4| (QUOTE (-322))) (|HasCategory| |#4| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#4| (QUOTE (-667))) (|HasCategory| |#4| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#4| (QUOTE (-760))) (|HasCategory| |#4| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#4| (QUOTE (-813 (-1094)))) (|HasCategory| |#4| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#4| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#4| (QUOTE (-965)))) (-12 (|HasCategory| |#4| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#4| (QUOTE (-1017))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-148))) (|HasCategory| |#4| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-192))) (|HasCategory| |#4| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-760))) (|HasCategory| |#4| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-813 (-1094)))) (|HasCategory| |#4| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-954 (-488)))) (|HasCategory| |#4| (QUOTE (-1017)))) (-12 (|HasCategory| |#4| (QUOTE (-314))) (|HasCategory| |#4| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-322))) (|HasCategory| |#4| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-667))) (|HasCategory| |#4| (QUOTE (-954 (-488))))) (|HasCategory| |#4| (QUOTE (-965)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-148))) (|HasCategory| |#4| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-192))) (|HasCategory| |#4| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-760))) (|HasCategory| |#4| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-813 (-1094)))) (|HasCategory| |#4| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-954 (-488)))) (|HasCategory| |#4| (QUOTE (-1017)))) (-12 (|HasCategory| |#4| (QUOTE (-314))) (|HasCategory| |#4| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-322))) (|HasCategory| |#4| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-667))) (|HasCategory| |#4| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#4| (QUOTE (-954 (-488)))) (|HasCategory| |#4| (QUOTE (-965))))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| (-488) (QUOTE (-760))) (-12 (|HasCategory| |#4| (QUOTE (-584 (-488)))) (|HasCategory| |#4| (QUOTE (-965)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-813 (-1094)))) (|HasCategory| |#4| (QUOTE (-965)))) (-12 (|HasCategory| |#4| (QUOTE (-815 (-1094)))) (|HasCategory| |#4| (QUOTE (-965))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-192))) (|HasCategory| |#4| (QUOTE (-965)))) (-12 (|HasCategory| |#4| (QUOTE (-191))) (|HasCategory| |#4| (QUOTE (-965))))) (-12 (|HasCategory| |#4| (QUOTE (-954 (-488)))) (|HasCategory| |#4| (QUOTE (-1017)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-954 (-488)))) (|HasCategory| |#4| (QUOTE (-1017)))) (|HasCategory| |#4| (QUOTE (-965)))) (-12 (|HasCategory| |#4| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#4| (QUOTE (-1017)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-813 (-1094)))) (|HasCategory| |#4| (QUOTE (-965)))) (|HasAttribute| |#4| (QUOTE -3998)) (-12 (|HasCategory| |#4| (QUOTE (-192))) (|HasCategory| |#4| (QUOTE (-965))))) (-12 (|HasCategory| |#4| (QUOTE (-191))) (|HasCategory| |#4| (QUOTE (-965)))) (-12 (|HasCategory| |#4| (QUOTE (-815 (-1094)))) (|HasCategory| |#4| (QUOTE (-965)))) (|HasCategory| |#4| (QUOTE (-148))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-556 (-776)))) (-12 (|HasCategory| |#4| (QUOTE (-1017))) (|HasCategory| |#4| (|%list| (QUOTE -262) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#4|)))) +(-213 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-3995 OR (-2565 (|has| |#3| (-963)) (|has| |#3| (-190))) (|has| |#3| (-6 -3995)) (-2565 (|has| |#3| (-963)) (|has| |#3| (-811 (-1092))))) (-3992 |has| |#3| (-963)) (-3993 |has| |#3| (-963))) -((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-719))) (OR (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-758)))) (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-582 (-486)))) (|HasCategory| |#3| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#3| (QUOTE (-582 (-486)))) (|HasCategory| |#3| (QUOTE (-963))))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-813 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-811 (-1092))))) (|HasCategory| |#3| (QUOTE (-1015))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#3| (QUOTE (-1015))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-1015)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-1015)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-963))))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| (-486) (QUOTE (-758))) (-12 (|HasCategory| |#3| (QUOTE (-582 (-486)))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-813 (-1092)))) (|HasCategory| |#3| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-963))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-1015)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-1015)))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#3| (QUOTE (-1015)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasAttribute| |#3| (QUOTE -3995)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-963))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-813 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-554 (-774)))) (-12 (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#3|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#3|)))) -(-212 A R S V E) +((-3998 OR (-2568 (|has| |#3| (-965)) (|has| |#3| (-192))) (|has| |#3| (-6 -3998)) (-2568 (|has| |#3| (-965)) (|has| |#3| (-813 (-1094))))) (-3995 |has| |#3| (-965)) (-3996 |has| |#3| (-965))) +((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-322))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-667))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-760))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-965))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1017))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-314))) (OR (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-965)))) (OR (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-314)))) (|HasCategory| |#3| (QUOTE (-965))) (|HasCategory| |#3| (QUOTE (-667))) (|HasCategory| |#3| (QUOTE (-721))) (OR (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-760)))) (|HasCategory| |#3| (QUOTE (-760))) (|HasCategory| |#3| (QUOTE (-322))) (OR (-12 (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-584 (-488)))) (|HasCategory| |#3| (QUOTE (-813 (-1094))))) (-12 (|HasCategory| |#3| (QUOTE (-584 (-488)))) (|HasCategory| |#3| (QUOTE (-965))))) (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (OR (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (|HasCategory| |#3| (QUOTE (-965)))) (|HasCategory| |#3| (QUOTE (-192))) (OR (|HasCategory| |#3| (QUOTE (-192))) (-12 (|HasCategory| |#3| (QUOTE (-191))) (|HasCategory| |#3| (QUOTE (-965))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-815 (-1094)))) (|HasCategory| |#3| (QUOTE (-965)))) (|HasCategory| |#3| (QUOTE (-813 (-1094))))) (|HasCategory| |#3| (QUOTE (-1017))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-322))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-667))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-760))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#3| (QUOTE (-965)))) (-12 (|HasCategory| |#3| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#3| (QUOTE (-1017))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-760))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-954 (-488)))) (|HasCategory| |#3| (QUOTE (-1017)))) (-12 (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-322))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-667))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (|HasCategory| |#3| (QUOTE (-965)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-760))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-954 (-488)))) (|HasCategory| |#3| (QUOTE (-1017)))) (-12 (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-322))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-667))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-954 (-488)))) (|HasCategory| |#3| (QUOTE (-965))))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| (-488) (QUOTE (-760))) (-12 (|HasCategory| |#3| (QUOTE (-584 (-488)))) (|HasCategory| |#3| (QUOTE (-965)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (|HasCategory| |#3| (QUOTE (-965)))) (-12 (|HasCategory| |#3| (QUOTE (-815 (-1094)))) (|HasCategory| |#3| (QUOTE (-965))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (QUOTE (-965)))) (-12 (|HasCategory| |#3| (QUOTE (-191))) (|HasCategory| |#3| (QUOTE (-965))))) (-12 (|HasCategory| |#3| (QUOTE (-954 (-488)))) (|HasCategory| |#3| (QUOTE (-1017)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-954 (-488)))) (|HasCategory| |#3| (QUOTE (-1017)))) (|HasCategory| |#3| (QUOTE (-965)))) (-12 (|HasCategory| |#3| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#3| (QUOTE (-1017)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (|HasCategory| |#3| (QUOTE (-965)))) (|HasAttribute| |#3| (QUOTE -3998)) (-12 (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (QUOTE (-965))))) (-12 (|HasCategory| |#3| (QUOTE (-191))) (|HasCategory| |#3| (QUOTE (-965)))) (-12 (|HasCategory| |#3| (QUOTE (-815 (-1094)))) (|HasCategory| |#3| (QUOTE (-965)))) (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-556 (-776)))) (-12 (|HasCategory| |#3| (QUOTE (-1017))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#3|)))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#3|)))) +(-214 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-190)))) -(-213 R S V E) +((|HasCategory| |#2| (QUOTE (-192)))) +(-215 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-6 -3999)) (-3996 . T) (-3995 . T) (-3998 . T)) NIL -(-214 S) +(-216 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) NIL NIL -(-215 |Ex|) +(-217 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-216) +(-218) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-217 R |Ex|) +(-219 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-218) +(-220) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{f:\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-219 R) +(-221 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-220) +(-222) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-221) +(-223) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-222) +(-224) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn't exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-223 S) +(-225 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-224 S R) +(-226 S R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL -((|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-189)))) -(-225 R) +((|HasCategory| |#2| (QUOTE (-815 (-1094)))) (|HasCategory| |#2| (QUOTE (-191)))) +(-227 R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL NIL -(-226 R S V) +(-228 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-823))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| |#3| (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| |#3| (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#3| (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#3| (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#3| (QUOTE (-555 (-475))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-227 A S) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-6 -3999)) (-3996 . T) (-3995 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-825))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-825)))) (OR (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-825)))) (OR (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-148))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-800 (-332)))) (|HasCategory| |#3| (QUOTE (-800 (-332))))) (-12 (|HasCategory| |#1| (QUOTE (-800 (-488)))) (|HasCategory| |#3| (QUOTE (-800 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-332))))) (|HasCategory| |#3| (QUOTE (-557 (-804 (-332)))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-488))))) (|HasCategory| |#3| (QUOTE (-557 (-804 (-488)))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-477)))) (|HasCategory| |#3| (QUOTE (-557 (-477))))) (|HasCategory| |#1| (QUOTE (-584 (-488)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-192))) (|HasCategory| |#1| (QUOTE (-191))) (|HasCategory| |#1| (QUOTE (-815 (-1094)))) (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasCategory| |#1| (QUOTE (-314))) (|HasAttribute| |#1| (QUOTE -3999)) (|HasCategory| |#1| (QUOTE (-395))) (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-229 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-228 S) +(-230 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-229) +(-231) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-230 R -3095) +(-232 R -3098) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-231 R -3095) +(-233 R -3098) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-232 |Coef| UTS ULS) +(-234 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-312)))) -(-233 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-314)))) +(-235 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-312)))) -(-234) +((|HasCategory| |#1| (QUOTE (-314)))) +(-236) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|Syntax|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-235) +(-237) ((|environment| (((|Environment|) $) "\\spad{environment(x)} returns the environment of the elaboration \\spad{x}.")) (|typeForm| (((|InternalTypeForm|) $) "\\spad{typeForm(x)} returns the type form of the elaboration \\spad{x}.")) (|irForm| (((|InternalRepresentationForm|) $) "\\spad{irForm(x)} returns the internal representation form of the elaboration \\spad{x}.")) (|elaboration| (($ (|InternalRepresentationForm|) (|InternalTypeForm|) (|Environment|)) "\\spad{elaboration(ir,ty,env)} construct an elaboration object for for the internal representation form \\spad{ir},{} with type \\spad{ty},{} and environment \\spad{env}."))) NIL NIL -(-236 A S) +(-238 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-72)))) -(-237 S) +((|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-72)))) +(-239 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL NIL -(-238 S) +(-240 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-239) +(-241) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-240 |Coef| UTS) +(-242 |Coef| UTS) ((|constructor| (NIL "The elliptic functions sn,{} sc and dn are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function dn as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function cn as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function sn as a Taylor \\indented{1}{series.}"))) NIL NIL -(-241 S T$) +(-243 S T$) ((|constructor| (NIL "An eltable over domains \\spad{S} and \\spad{T} is a structure which can be viewed as a function from \\spad{S} to \\spad{T}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,s)} (also written: \\spad{u.s}) returns the value of \\spad{u} at \\spad{s}. Error: if \\spad{u} is not defined at \\spad{s}."))) NIL NIL -(-242 S |Dom| |Im|) +(-244 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1037) (|devaluate| |#3|)))) -(-243 |Dom| |Im|) +((|HasCategory| |#1| (|%list| (QUOTE -1039) (|devaluate| |#3|)))) +(-245 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-244 S R |Mod| -2039 -3521 |exactQuo|) +(-246 S R |Mod| -2042 -3524 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-245 S) +(-247 S) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) NIL NIL -(-246) +(-248) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-3991 . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3994 . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-247) +(-249) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-248 R) +(-250 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-249 S) +(-251 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-3995 OR (|has| |#1| (-963)) (|has| |#1| (-414))) (-3992 |has| |#1| (-963)) (-3993 |has| |#1| (-963))) -((|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (OR (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#1| (QUOTE (-665)))) (|HasCategory| |#1| (QUOTE (-414))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-1015)))) (OR (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (|%list| (QUOTE -457) (QUOTE (-1092)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-254))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-414)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-665)))) (OR (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-665)))) -(-250 S R) +((-3998 OR (|has| |#1| (-965)) (|has| |#1| (-416))) (-3995 |has| |#1| (-965)) (-3996 |has| |#1| (-965))) +((|HasCategory| |#1| (QUOTE (-314))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-965)))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (OR (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasCategory| |#1| (QUOTE (-965)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasCategory| |#1| (QUOTE (-965)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasCategory| |#1| (QUOTE (-965)))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-965)))) (OR (|HasCategory| |#1| (QUOTE (-416))) (|HasCategory| |#1| (QUOTE (-667)))) (|HasCategory| |#1| (QUOTE (-416))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-416))) (|HasCategory| |#1| (QUOTE (-667))) (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1029))) (|HasCategory| |#1| (QUOTE (-1017)))) (OR (|HasCategory| |#1| (QUOTE (-416))) (|HasCategory| |#1| (QUOTE (-667))) (|HasCategory| |#1| (QUOTE (-1029)))) (|HasCategory| |#1| (|%list| (QUOTE -459) (QUOTE (-1094)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-256))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-416)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-667)))) (OR (|HasCategory| |#1| (QUOTE (-416))) (|HasCategory| |#1| (QUOTE (-965)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1029))) (|HasCategory| |#1| (QUOTE (-667)))) +(-252 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-251 |Key| |Entry|) +(-253 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) NIL -((-12 (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-475)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|)))) -(-252) +((-12 (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -262) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (OR (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (OR (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-556 (-776)))) (|HasCategory| |#2| (QUOTE (-556 (-776))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-557 (-477)))) (-12 (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017))) (-12 (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#2|)))) +(-254) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-253 S) +(-255 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-963)))) -(-254) +((|HasCategory| |#1| (QUOTE (-954 (-488)))) (|HasCategory| |#1| (QUOTE (-965)))) +(-256) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-255 -3095 S) +(-257 -3098 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-256 E -3095) +(-258 E -3098) ((|constructor| (NIL "This package allows a mapping \\spad{E} -> \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL -(-257 S) +(-259 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-258) +(-260) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-259 S R) +(-261 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-260 R) +(-262 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-261 -3095) +(-263 -3098) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-262) +(-264) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-263) +(-265) ((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL -(-264 R FE |var| |cen|) +(-266 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-823))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-952 (-1092)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-555 (-475)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-935))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-742))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-758))) (OR (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-742))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-758)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-952 (-486)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-1068))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-798 (-330)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-798 (-486)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-582 (-486)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-813 (-1092)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-811 (-1092)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -457) (QUOTE (-1092)) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -260) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -241) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-258))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-485))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-823)))) (|HasCategory| (-1168 |#1| |#2| |#3| |#4|) (QUOTE (-118))))) -(-265 R) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-825))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-954 (-1094)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-557 (-477)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-937))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-744))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-760))) (OR (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-744))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-760)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-954 (-488)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-1070))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-800 (-332)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-800 (-488)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-557 (-804 (-332))))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-557 (-804 (-488))))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-584 (-488)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-191))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-815 (-1094)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-192))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-813 (-1094)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -459) (QUOTE (-1094)) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -262) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -243) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-260))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-487))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-825)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-825)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-118))))) +(-267 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-3995 OR (-12 (|has| |#1| (-497)) (OR (|has| |#1| (-963)) (|has| |#1| (-414)))) (|has| |#1| (-963)) (|has| |#1| (-414))) (-3993 |has| |#1| (-146)) (-3992 |has| |#1| (-146)) ((-4000 "*") |has| |#1| (-497)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-497)) (-3990 |has| |#1| (-497))) -((OR (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-952 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-497))) (OR (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-963))))) (OR (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-952 (-486))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-963)))) (-12 (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1027)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-952 (-486)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| $ (QUOTE (-963))) (|HasCategory| $ (QUOTE (-952 (-486))))) -(-266 R S) +((-3998 OR (-12 (|has| |#1| (-499)) (OR (|has| |#1| (-965)) (|has| |#1| (-416)))) (|has| |#1| (-965)) (|has| |#1| (-416))) (-3996 |has| |#1| (-148)) (-3995 |has| |#1| (-148)) ((-4003 "*") |has| |#1| (-499)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-499)) (-3993 |has| |#1| (-499))) +((OR (-12 (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-954 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#1| (QUOTE (-499))) (OR (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-965)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-965)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-584 (-488)))) (|HasCategory| |#1| (QUOTE (-965))))) (OR (|HasCategory| |#1| (QUOTE (-416))) (|HasCategory| |#1| (QUOTE (-1029)))) (|HasCategory| |#1| (QUOTE (-416))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (OR (|HasCategory| |#1| (QUOTE (-954 (-488)))) (|HasCategory| |#1| (QUOTE (-965)))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (|HasCategory| |#1| (QUOTE (-800 (-332)))) (|HasCategory| |#1| (QUOTE (-800 (-488)))) (|HasCategory| |#1| (QUOTE (-557 (-804 (-332))))) (|HasCategory| |#1| (QUOTE (-557 (-804 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-954 (-488))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-965)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-965)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-965)))) (-12 (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-499)))) (OR (|HasCategory| |#1| (QUOTE (-416))) (|HasCategory| |#1| (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-584 (-488)))) (|HasCategory| |#1| (QUOTE (-965)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-584 (-488)))) (|HasCategory| |#1| (QUOTE (-965)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-584 (-488)))) (|HasCategory| |#1| (QUOTE (-965)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1029)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-584 (-488)))) (|HasCategory| |#1| (QUOTE (-965)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-416))) (|HasCategory| |#1| (QUOTE (-965)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-954 (-488)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1029))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| $ (QUOTE (-965))) (|HasCategory| $ (QUOTE (-954 (-488))))) +(-268 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-267 R FE) +(-269 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-268 R -3095) +(-270 R -3098) ((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL -(-269) +(-271) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-270 FE |var| |cen|) +(-272 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-486)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|))))))) -(-271 M) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-314)) (-3993 |has| |#1| (-314)) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-148))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488))) (|devaluate| |#1|)))) (|HasCategory| (-352 (-488)) (QUOTE (-1029))) (|HasCategory| |#1| (QUOTE (-314))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499)))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488)))))) (|HasSignature| |#1| (|%list| (QUOTE -3953) (|%list| (|devaluate| |#1|) (QUOTE (-1094)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-29 (-488)))) (|HasCategory| |#1| (QUOTE (-875))) (|HasCategory| |#1| (QUOTE (-1119)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasSignature| |#1| (|%list| (QUOTE -3818) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1094))))) (|HasSignature| |#1| (|%list| (QUOTE -3087) (|%list| (|%list| (QUOTE -587) (QUOTE (-1094))) (|devaluate| |#1|))))))) +(-273 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-272 E OV R P) +(-274 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between -k and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-273 S) +(-275 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The operation is commutative."))) -((-3993 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| (-486) (QUOTE (-718)))) -(-274 S E) +((-3996 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| (-488) (QUOTE (-720)))) +(-276 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}'s.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\^\\spad{e1} ... an\\^en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-275 S) +(-277 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-696) (QUOTE (-718)))) -(-276 S R E) +((|HasCategory| (-698) (QUOTE (-720)))) +(-278 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-146)))) -(-277 R E) +((|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-148)))) +(-279 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-278 S) +(-280 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))))) -(-279 S -3095) +((OR (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (OR (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-760))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| (-488) (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|))))) +(-281 S -3098) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-320)))) -(-280 -3095) +((|HasCategory| |#2| (QUOTE (-322)))) +(-282 -3098) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-281 E) +(-283 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-282) +(-284) ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-283 -3095 UP UPUP R) +(-285 -3098 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-284 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-286 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-285 S -3095 UP UPUP R) +(-287 S -3098 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-286 -3095 UP UPUP R) +(-288 -3098 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-287 S R) +(-289 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -457) (QUOTE (-1092)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-288 R) +((|HasCategory| |#2| (|%list| (QUOTE -459) (QUOTE (-1094)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -243) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-290 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides."))) NIL NIL -(-289 |p| |n|) +(-291 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((OR (|HasCategory| (-819 |#1|) (QUOTE (-118))) (|HasCategory| (-819 |#1|) (QUOTE (-320)))) (|HasCategory| (-819 |#1|) (QUOTE (-120))) (|HasCategory| (-819 |#1|) (QUOTE (-320))) (|HasCategory| (-819 |#1|) (QUOTE (-118)))) -(-290 S -3095 UP UPUP) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((OR (|HasCategory| (-821 |#1|) (QUOTE (-118))) (|HasCategory| (-821 |#1|) (QUOTE (-322)))) (|HasCategory| (-821 |#1|) (QUOTE (-120))) (|HasCategory| (-821 |#1|) (QUOTE (-322))) (|HasCategory| (-821 |#1|) (QUOTE (-118)))) +(-292 S -3098 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-312)))) -(-291 -3095 UP UPUP) +((|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-314)))) +(-293 -3098 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-3991 |has| (-350 |#2|) (-312)) (-3996 |has| (-350 |#2|) (-312)) (-3990 |has| (-350 |#2|) (-312)) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3994 |has| (-352 |#2|) (-314)) (-3999 |has| (-352 |#2|) (-314)) (-3993 |has| (-352 |#2|) (-314)) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-292 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-294 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-293 |p| |extdeg|) +(-295 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((OR (|HasCategory| (-819 |#1|) (QUOTE (-118))) (|HasCategory| (-819 |#1|) (QUOTE (-320)))) (|HasCategory| (-819 |#1|) (QUOTE (-120))) (|HasCategory| (-819 |#1|) (QUOTE (-320))) (|HasCategory| (-819 |#1|) (QUOTE (-118)))) -(-294 GF |defpol|) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((OR (|HasCategory| (-821 |#1|) (QUOTE (-118))) (|HasCategory| (-821 |#1|) (QUOTE (-322)))) (|HasCategory| (-821 |#1|) (QUOTE (-120))) (|HasCategory| (-821 |#1|) (QUOTE (-322))) (|HasCategory| (-821 |#1|) (QUOTE (-118)))) +(-296 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118)))) -(-295 GF |extdeg|) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-322)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-118)))) +(-297 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118)))) -(-296 GF) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-322)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-118)))) +(-298 GF) ((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-297 F1 GF F2) +(-299 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}GF,{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn't divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn't divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-298 S) +(-300 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-299) +(-301) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-300 R UP -3095) +(-302 R UP -3098) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-301 |p| |extdeg|) +(-303 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((OR (|HasCategory| (-819 |#1|) (QUOTE (-118))) (|HasCategory| (-819 |#1|) (QUOTE (-320)))) (|HasCategory| (-819 |#1|) (QUOTE (-120))) (|HasCategory| (-819 |#1|) (QUOTE (-320))) (|HasCategory| (-819 |#1|) (QUOTE (-118)))) -(-302 GF |uni|) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((OR (|HasCategory| (-821 |#1|) (QUOTE (-118))) (|HasCategory| (-821 |#1|) (QUOTE (-322)))) (|HasCategory| (-821 |#1|) (QUOTE (-120))) (|HasCategory| (-821 |#1|) (QUOTE (-322))) (|HasCategory| (-821 |#1|) (QUOTE (-118)))) +(-304 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118)))) -(-303 GF |extdeg|) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-322)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-118)))) +(-305 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118)))) -(-304 GF |defpol|) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-322)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-118)))) +(-306 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118)))) -(-305 GF) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-322)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-118)))) +(-307 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-306 -3095 GF) +(-308 -3098 GF) ((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}GF) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-307 -3095 FP FPP) +(-309 -3098 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL -(-308 GF |n|) +(-310 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118)))) -(-309 R |ls|) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-322)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-118)))) +(-311 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}."))) NIL NIL -(-310 S) +(-312 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-3995 . T)) +((-3998 . T)) NIL -(-311 S) +(-313 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-312) +(-314) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-313 S) +(-315 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-314 |Name| S) +(-316 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer's file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-315 S R) +(-317 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-497)))) -(-316 R) +((|HasCategory| |#2| (QUOTE (-499)))) +(-318 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-3995 |has| |#1| (-497)) (-3993 . T) (-3992 . T)) +((-3998 |has| |#1| (-499)) (-3996 . T) (-3995 . T)) NIL -(-317 A S) +(-319 A S) ((|constructor| (NIL "A finite aggregate is a homogeneous aggregate with a finite number of elements.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\spad{p(x)} is \\spad{true},{} and \\spad{\"failed\"} otherwise.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\spad{reduce(f,u,x)},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\spad{reduce(f,u,x)} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the starting value,{} usually the identity operation of \\spad{f}. Same as \\spad{reduce(f,u)} if \\spad{u} has 2 or more elements. Returns \\spad{f(x,y)} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\spad{reduce(+,u,0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\spad{[x,y,...,z]} then \\spad{reduce(f,u)} returns \\spad{f(..f(f(x,y),...),z)}. Note: if \\spad{u} has one element \\spad{x},{} \\spad{reduce(f,u)} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{members([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} \\indented{1}{in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} holds. For collections,{}} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) holds for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\spad{p(x)} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#u} returns the number of items in \\spad{u}."))) NIL ((|HasCategory| |#2| (QUOTE (-72)))) -(-318 S) +(-320 S) ((|constructor| (NIL "A finite aggregate is a homogeneous aggregate with a finite number of elements.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\spad{p(x)} is \\spad{true},{} and \\spad{\"failed\"} otherwise.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\spad{reduce(f,u,x)},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\spad{reduce(f,u,x)} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the starting value,{} usually the identity operation of \\spad{f}. Same as \\spad{reduce(f,u)} if \\spad{u} has 2 or more elements. Returns \\spad{f(x,y)} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\spad{reduce(+,u,0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\spad{[x,y,...,z]} then \\spad{reduce(f,u)} returns \\spad{f(..f(f(x,y),...),z)}. Note: if \\spad{u} has one element \\spad{x},{} \\spad{reduce(f,u)} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{members([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} \\indented{1}{in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} holds. For collections,{}} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) holds for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\spad{p(x)} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#u} returns the number of items in \\spad{u}."))) NIL NIL -(-319 S) +(-321 S) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-320) +(-322) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-321 S R UP) +(-323 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-312)))) -(-322 R UP) +((|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-314)))) +(-324 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-3992 . T) (-3993 . T) (-3995 . T)) +((-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-323 A S) +(-325 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1037) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-72)))) -(-324 S) +((|HasCategory| |#1| (|%list| (QUOTE -1039) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-72)))) +(-326 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL NIL -(-325 S A R B) +(-327 S A R B) ((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-326 |VarSet| R) +(-328 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr)")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}xn],{} [\\spad{v1},{}...,{}vn])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3993 . T) (-3992 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3996 . T) (-3995 . T)) NIL -(-327 S V) +(-329 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-328 S R) +(-330 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (QUOTE (-582 (-486))))) -(-329 R) +((|HasCategory| |#2| (QUOTE (-584 (-488))))) +(-331 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL NIL -(-330) +(-332) ((|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3981 . T) (-3989 . T) (-3773 . T) (-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3984 . T) (-3992 . T) (-3776 . T) (-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-331 |Par|) +(-333 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-332 |Par|) +(-334 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in lp,{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-333 R S) +(-335 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-3993 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) -(-334 R S) +((-3996 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-1017))))) +(-336 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.fr)")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-3993 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-146)))) -(-335 R |Basis|) +((-3996 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-148)))) +(-337 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.fr)")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-3993 . T) (-3992 . T)) +((-3996 . T) (-3995 . T)) NIL -(-336 S) +(-338 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-337 S) +(-339 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-758)))) -(-338) +((|HasCategory| |#1| (QUOTE (-760)))) +(-340) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-339) +(-341) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used."))) NIL NIL -(-340 |n| |class| R) +(-342 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-3993 . T) (-3992 . T)) +((-3996 . T) (-3995 . T)) NIL -(-341 -3095 UP UPUP R) +(-343 -3098 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-342 -3095 UP) +(-344 -3098 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-343 R) +(-345 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) NIL NIL -(-344 S) +(-346 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-345) +(-347) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-346 S) +(-348 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -3981)) (|HasAttribute| |#1| (QUOTE -3989))) -(-347) +((|HasAttribute| |#1| (QUOTE -3984)) (|HasAttribute| |#1| (QUOTE -3992))) +(-349) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3773 . T) (-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3776 . T) (-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-348 R) +(-350 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-457 (-1092) $))) (|HasCategory| |#1| (QUOTE (-260 $))) (|HasCategory| |#1| (QUOTE (-241 $ $))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#1| (QUOTE (-1136))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-1136)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (|%list| (QUOTE -457) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-393)))) -(-349 R S) +((-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-459 (-1094) $))) (|HasCategory| |#1| (QUOTE (-262 $))) (|HasCategory| |#1| (QUOTE (-243 $ $))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (|HasCategory| |#1| (QUOTE (-1138))) (OR (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-1138)))) (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (|HasCategory| |#1| (|%list| (QUOTE -459) (QUOTE (-1094)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -243) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-191))) (|HasCategory| |#1| (QUOTE (-815 (-1094)))) (|HasCategory| |#1| (QUOTE (-192))) (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-395)))) +(-351 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-350 S) +(-352 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-3985 -12 (|has| |#1| (-6 -3996)) (|has| |#1| (-393)) (|has| |#1| (-6 -3985))) (-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-952 (-1092)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#1| (QUOTE (-758)))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (|%list| (QUOTE -457) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-485))) (-12 (|HasAttribute| |#1| (QUOTE -3985)) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393)))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-351 A B) +((-3988 -12 (|has| |#1| (-6 -3999)) (|has| |#1| (-395)) (|has| |#1| (-6 -3988))) (-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-954 (-1094)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-744))) (|HasCategory| |#1| (QUOTE (-760))) (OR (|HasCategory| |#1| (QUOTE (-744))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (QUOTE (-800 (-332)))) (|HasCategory| |#1| (QUOTE (-800 (-488)))) (|HasCategory| |#1| (QUOTE (-557 (-804 (-332))))) (|HasCategory| |#1| (QUOTE (-557 (-804 (-488))))) (|HasCategory| |#1| (QUOTE (-584 (-488)))) (|HasCategory| |#1| (QUOTE (-191))) (|HasCategory| |#1| (QUOTE (-815 (-1094)))) (|HasCategory| |#1| (QUOTE (-192))) (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasCategory| |#1| (|%list| (QUOTE -459) (QUOTE (-1094)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -243) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-260))) (|HasCategory| |#1| (QUOTE (-487))) (-12 (|HasAttribute| |#1| (QUOTE -3988)) (|HasAttribute| |#1| (QUOTE -3999)) (|HasCategory| |#1| (QUOTE (-395)))) (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-353 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-352 S R UP) +(-354 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-353 R UP) +(-355 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-3992 . T) (-3993 . T) (-3995 . T)) +((-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-354 A S) +(-356 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) -(-355 S) +((|HasCategory| |#2| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) +(-357 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-356 R -3095 UP A) +(-358 R -3098 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-3995 . T)) +((-3998 . T)) NIL -(-357 R1 F1 U1 A1 R2 F2 U2 A2) +(-359 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-358 R -3095 UP A |ibasis|) +(-360 R -3098 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (|%list| (QUOTE -952) (|devaluate| |#2|)))) -(-359 AR R AS S) +((|HasCategory| |#4| (|%list| (QUOTE -954) (|devaluate| |#2|)))) +(-361 AR R AS S) ((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-360 S R) +(-362 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-312)))) -(-361 R) +((|HasCategory| |#2| (QUOTE (-314)))) +(-363 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-3995 |has| |#1| (-497)) (-3993 . T) (-3992 . T)) +((-3998 |has| |#1| (-499)) (-3996 . T) (-3995 . T)) NIL -(-362 R) +(-364 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL NIL -(-363 S R) +(-365 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-414))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-555 (-475))))) -(-364 R) +((|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-416))) (|HasCategory| |#2| (QUOTE (-1029))) (|HasCategory| |#2| (QUOTE (-557 (-477))))) +(-366 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-3995 OR (|has| |#1| (-963)) (|has| |#1| (-414))) (-3993 |has| |#1| (-146)) (-3992 |has| |#1| (-146)) ((-4000 "*") |has| |#1| (-497)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-497)) (-3990 |has| |#1| (-497))) +((-3998 OR (|has| |#1| (-965)) (|has| |#1| (-416))) (-3996 |has| |#1| (-148)) (-3995 |has| |#1| (-148)) ((-4003 "*") |has| |#1| (-499)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-499)) (-3993 |has| |#1| (-499))) NIL -(-365 R A S B) +(-367 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-366 R FE |x| |cen|) +(-368 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-367 R FE |Expon| UPS TRAN |x|) +(-369 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-368 A S) +(-370 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-320)))) -(-369 S) +((|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-322)))) +(-371 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-3988 . T)) +((-3991 . T)) NIL -(-370 S A R B) +(-372 S A R B) ((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-371 R -3095) +(-373 R -3098) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-372 R E) +(-374 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-3985 -12 (|has| |#1| (-6 -3985)) (|has| |#2| (-6 -3985))) (-3992 . T) (-3993 . T) (-3995 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -3985)) (|HasAttribute| |#2| (QUOTE -3985)))) -(-373 R -3095) +((-3988 -12 (|has| |#1| (-6 -3988)) (|has| |#2| (-6 -3988))) (-3995 . T) (-3996 . T) (-3998 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -3988)) (|HasAttribute| |#2| (QUOTE -3988)))) +(-375 R -3098) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-374 R -3095) +(-376 R -3098) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-375 R -3095) +(-377 R -3098) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-376 R -3095) +(-378 R -3098) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-377) +(-379) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-378 R -3095 UP) +(-380 R -3098 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (QUOTE (-952 (-48))))) -(-379) +((|HasCategory| |#2| (QUOTE (-954 (-48))))) +(-381) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL -(-380 |f|) +(-382 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-381 S) +(-383 S) ((|constructor| (NIL "This category describes the class of structural objects that behave functorially in distinguished class of components.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,x)} returns an object with similar shape and structure as \\spad{x},{} where all \\spad{S}-items \\spad{s} in \\spad{x} have been replacement elementwise by \\spad{f s}."))) NIL NIL -(-382) +(-384) ((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}."))) NIL NIL -(-383 UP) +(-385 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-384 R UP -3095) +(-386 R UP -3098) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the lp norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-385 R UP) +(-387 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-386 R) +(-388 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-347)))) -(-387) +((|HasCategory| |#1| (QUOTE (-349)))) +(-389) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-388 |Dom| |Expon| |VarSet| |Dpol|) +(-390 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-312)))) -(-389 |Dom| |Expon| |VarSet| |Dpol|) +((|HasCategory| |#1| (QUOTE (-314)))) +(-391 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-390 |Dom| |Expon| |VarSet| |Dpol|) +(-392 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-391 |Dom| |Expon| |VarSet| |Dpol|) +(-393 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-392 S) +(-394 S) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-393) +(-395) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-394 R |n| |ls| |gamma|) +(-396 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-3995 |has| (-350 (-859 |#1|)) (-497)) (-3993 . T) (-3992 . T)) -((|HasCategory| (-350 (-859 |#1|)) (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| (-350 (-859 |#1|)) (QUOTE (-497)))) -(-395 |vl| R E) +((-3998 |has| (-352 (-861 |#1|)) (-499)) (-3996 . T) (-3995 . T)) +((|HasCategory| (-352 (-861 |#1|)) (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| (-352 (-861 |#1|)) (QUOTE (-499)))) +(-397 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4000 "*") |has| |#2| (-146)) (-3991 |has| |#2| (-497)) (-3996 |has| |#2| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) -((|HasCategory| |#2| (QUOTE (-823))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-497)))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-330)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-486)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-475))))) (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-393))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-396 R BP) +(((-4003 "*") |has| |#2| (-148)) (-3994 |has| |#2| (-499)) (-3999 |has| |#2| (-6 -3999)) (-3996 . T) (-3995 . T) (-3998 . T)) +((|HasCategory| |#2| (QUOTE (-825))) (OR (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-825)))) (OR (|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-825)))) (OR (|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-148))) (OR (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-800 (-332)))) (|HasCategory| (-777 |#1|) (QUOTE (-800 (-332))))) (-12 (|HasCategory| |#2| (QUOTE (-800 (-488)))) (|HasCategory| (-777 |#1|) (QUOTE (-800 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-557 (-804 (-332))))) (|HasCategory| (-777 |#1|) (QUOTE (-557 (-804 (-332)))))) (-12 (|HasCategory| |#2| (QUOTE (-557 (-804 (-488))))) (|HasCategory| (-777 |#1|) (QUOTE (-557 (-804 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-557 (-477)))) (|HasCategory| (-777 |#1|) (QUOTE (-557 (-477))))) (|HasCategory| |#2| (QUOTE (-584 (-488)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-954 (-488)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-314))) (|HasAttribute| |#2| (QUOTE -3999)) (|HasCategory| |#2| (QUOTE (-395))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-398 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional."))) NIL NIL -(-397 OV E S R P) +(-399 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-398 E OV R P) +(-400 E OV R P) ((|constructor| (NIL "This package provides operations for GCD computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the GCD of \\spad{p} and \\spad{q}"))) NIL NIL -(-399 R) +(-401 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-400 R FE) +(-402 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}."))) NIL NIL -(-401 RP TP) +(-403 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-402 |vl| R IS E |ff| P) +(-404 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-3993 . T) (-3992 . T)) +((-3996 . T) (-3995 . T)) NIL -(-403 E V R P Q) +(-405 E V R P Q) ((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-404 R E |VarSet| P) +(-406 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}."))) NIL -((-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-555 (-475)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#4| (QUOTE (-554 (-774)))) (|HasCategory| |#4| (QUOTE (-1015))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) -(-405 S R E) +((-12 (|HasCategory| |#4| (QUOTE (-1017))) (|HasCategory| |#4| (|%list| (QUOTE -262) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-557 (-477)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#4| (QUOTE (-556 (-776)))) (|HasCategory| |#4| (QUOTE (-1017))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#4|)))) +(-407 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-406 R E) +(-408 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-407) +(-409) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(vv) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-408) +(-410) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-409) +(-411) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}pt) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it's data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it's elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-410 S R E) +(-412 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) (|Zero| (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-411 R E) +(-413 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) (|Zero| (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-412 |lv| -3095 R) +(-414 |lv| -3098 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-413 S) +(-415 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-414) +(-416) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-3995 . T)) +((-3998 . T)) NIL -(-415 |Coef| |var| |cen|) +(-417 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-486)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|))))))) -(-416 |Key| |Entry| |Tbl| |dent|) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-314)) (-3993 |has| |#1| (-314)) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-148))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488))) (|devaluate| |#1|)))) (|HasCategory| (-352 (-488)) (QUOTE (-1029))) (|HasCategory| |#1| (QUOTE (-314))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499)))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488)))))) (|HasSignature| |#1| (|%list| (QUOTE -3953) (|%list| (|devaluate| |#1|) (QUOTE (-1094)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-29 (-488)))) (|HasCategory| |#1| (QUOTE (-875))) (|HasCategory| |#1| (QUOTE (-1119)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasSignature| |#1| (|%list| (QUOTE -3818) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1094))))) (|HasSignature| |#1| (|%list| (QUOTE -3087) (|%list| (|%list| (QUOTE -587) (QUOTE (-1094))) (|devaluate| |#1|))))))) +(-418 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) NIL -((-12 (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-475)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|)))) -(-417 R E V P) +((-12 (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -262) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (OR (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (OR (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-556 (-776)))) (|HasCategory| |#2| (QUOTE (-556 (-776))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-557 (-477)))) (-12 (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017))) (-12 (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#2|)))) +(-419 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) NIL -((-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-555 (-475)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-554 (-774)))) (|HasCategory| |#4| (QUOTE (-1015))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) -(-418) +((-12 (|HasCategory| |#4| (QUOTE (-1017))) (|HasCategory| |#4| (|%list| (QUOTE -262) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-557 (-477)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#3| (QUOTE (-322))) (|HasCategory| |#4| (QUOTE (-556 (-776)))) (|HasCategory| |#4| (QUOTE (-1017))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#4|)))) +(-420) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-419) +(-421) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-420 |Key| |Entry| |hashfn|) +(-422 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) NIL -((-12 (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-475)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|)))) -(-421) +((-12 (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -262) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (OR (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (OR (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-556 (-776)))) (|HasCategory| |#2| (QUOTE (-556 (-776))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-557 (-477)))) (-12 (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017))) (-12 (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#2|)))) +(-423) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-422 |vl| R) +(-424 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4000 "*") |has| |#2| (-146)) (-3991 |has| |#2| (-497)) (-3996 |has| |#2| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) -((|HasCategory| |#2| (QUOTE (-823))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-497)))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-330)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-486)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-475))))) (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-393))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-423 -2624 S) +(((-4003 "*") |has| |#2| (-148)) (-3994 |has| |#2| (-499)) (-3999 |has| |#2| (-6 -3999)) (-3996 . T) (-3995 . T) (-3998 . T)) +((|HasCategory| |#2| (QUOTE (-825))) (OR (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-825)))) (OR (|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-825)))) (OR (|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-148))) (OR (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-800 (-332)))) (|HasCategory| (-777 |#1|) (QUOTE (-800 (-332))))) (-12 (|HasCategory| |#2| (QUOTE (-800 (-488)))) (|HasCategory| (-777 |#1|) (QUOTE (-800 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-557 (-804 (-332))))) (|HasCategory| (-777 |#1|) (QUOTE (-557 (-804 (-332)))))) (-12 (|HasCategory| |#2| (QUOTE (-557 (-804 (-488))))) (|HasCategory| (-777 |#1|) (QUOTE (-557 (-804 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-557 (-477)))) (|HasCategory| (-777 |#1|) (QUOTE (-557 (-477))))) (|HasCategory| |#2| (QUOTE (-584 (-488)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-954 (-488)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-314))) (|HasAttribute| |#2| (QUOTE -3999)) (|HasCategory| |#2| (QUOTE (-395))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-425 -2627 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3992 |has| |#2| (-963)) (-3993 |has| |#2| (-963)) (-3995 |has| |#2| (-6 -3995))) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (OR (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758)))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-963))))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (|HasCategory| |#2| (QUOTE (-1015))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-1015))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-963))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-486) (QUOTE (-758))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-1015)))) (|HasAttribute| |#2| (QUOTE -3995)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|)))) -(-424) +((-3995 |has| |#2| (-965)) (-3996 |has| |#2| (-965)) (-3998 |has| |#2| (-6 -3998))) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-556 (-776)))) (|HasCategory| |#2| (QUOTE (-314))) (OR (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-314)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-721))) (OR (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-760)))) (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-322))) (OR (-12 (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-584 (-488)))) (|HasCategory| |#2| (QUOTE (-813 (-1094))))) (-12 (|HasCategory| |#2| (QUOTE (-584 (-488)))) (|HasCategory| |#2| (QUOTE (-965))))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-1017)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-1017)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (|HasCategory| |#2| (QUOTE (-192))) (OR (|HasCategory| |#2| (QUOTE (-192))) (-12 (|HasCategory| |#2| (QUOTE (-191))) (|HasCategory| |#2| (QUOTE (-965))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-815 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (|HasCategory| |#2| (QUOTE (-813 (-1094))))) (|HasCategory| |#2| (QUOTE (-1017))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-965)))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-1017))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-1017)))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-1017)))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-965))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-488) (QUOTE (-760))) (-12 (|HasCategory| |#2| (QUOTE (-584 (-488)))) (|HasCategory| |#2| (QUOTE (-965)))) (-12 (|HasCategory| |#2| (QUOTE (-191))) (|HasCategory| |#2| (QUOTE (-965)))) (-12 (|HasCategory| |#2| (QUOTE (-815 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-1017)))) (|HasCategory| |#2| (QUOTE (-965)))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-1017)))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-1017)))) (|HasAttribute| |#2| (QUOTE -3998)) (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-965)))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#2|)))) +(-426) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL -(-425 S) +(-427 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-426 -3095 UP UPUP R) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-428 -3098 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-427 BP) +(-429 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer gcd. Geddes's algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = gcd of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = gcd and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = gcd and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = gcd of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = gcd of the polynomials \\spad{fi}."))) NIL NIL -(-428) +(-430) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| (-486) (QUOTE (-823))) (|HasCategory| (-486) (QUOTE (-952 (-1092)))) (|HasCategory| (-486) (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-120))) (|HasCategory| (-486) (QUOTE (-555 (-475)))) (|HasCategory| (-486) (QUOTE (-935))) (|HasCategory| (-486) (QUOTE (-742))) (|HasCategory| (-486) (QUOTE (-758))) (OR (|HasCategory| (-486) (QUOTE (-742))) (|HasCategory| (-486) (QUOTE (-758)))) (|HasCategory| (-486) (QUOTE (-952 (-486)))) (|HasCategory| (-486) (QUOTE (-1068))) (|HasCategory| (-486) (QUOTE (-798 (-330)))) (|HasCategory| (-486) (QUOTE (-798 (-486)))) (|HasCategory| (-486) (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-486) (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-486) (QUOTE (-189))) (|HasCategory| (-486) (QUOTE (-813 (-1092)))) (|HasCategory| (-486) (QUOTE (-190))) (|HasCategory| (-486) (QUOTE (-811 (-1092)))) (|HasCategory| (-486) (QUOTE (-457 (-1092) (-486)))) (|HasCategory| (-486) (QUOTE (-260 (-486)))) (|HasCategory| (-486) (QUOTE (-241 (-486) (-486)))) (|HasCategory| (-486) (QUOTE (-258))) (|HasCategory| (-486) (QUOTE (-485))) (|HasCategory| (-486) (QUOTE (-582 (-486)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-823)))) (|HasCategory| (-486) (QUOTE (-118))))) -(-429 A S) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| (-488) (QUOTE (-825))) (|HasCategory| (-488) (QUOTE (-954 (-1094)))) (|HasCategory| (-488) (QUOTE (-118))) (|HasCategory| (-488) (QUOTE (-120))) (|HasCategory| (-488) (QUOTE (-557 (-477)))) (|HasCategory| (-488) (QUOTE (-937))) (|HasCategory| (-488) (QUOTE (-744))) (|HasCategory| (-488) (QUOTE (-760))) (OR (|HasCategory| (-488) (QUOTE (-744))) (|HasCategory| (-488) (QUOTE (-760)))) (|HasCategory| (-488) (QUOTE (-954 (-488)))) (|HasCategory| (-488) (QUOTE (-1070))) (|HasCategory| (-488) (QUOTE (-800 (-332)))) (|HasCategory| (-488) (QUOTE (-800 (-488)))) (|HasCategory| (-488) (QUOTE (-557 (-804 (-332))))) (|HasCategory| (-488) (QUOTE (-557 (-804 (-488))))) (|HasCategory| (-488) (QUOTE (-191))) (|HasCategory| (-488) (QUOTE (-815 (-1094)))) (|HasCategory| (-488) (QUOTE (-192))) (|HasCategory| (-488) (QUOTE (-813 (-1094)))) (|HasCategory| (-488) (QUOTE (-459 (-1094) (-488)))) (|HasCategory| (-488) (QUOTE (-262 (-488)))) (|HasCategory| (-488) (QUOTE (-243 (-488) (-488)))) (|HasCategory| (-488) (QUOTE (-260))) (|HasCategory| (-488) (QUOTE (-487))) (|HasCategory| (-488) (QUOTE (-584 (-488)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-488) (QUOTE (-825)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-488) (QUOTE (-825)))) (|HasCategory| (-488) (QUOTE (-118))))) +(-431 A S) ((|constructor| (NIL "\\indented{2}{A homogeneous aggregate is an aggregate of elements all of the} \\indented{2}{same type,{} and is functorial in stored elements..} In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) -(-430 S) +((|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-556 (-776))))) +(-432 S) ((|constructor| (NIL "\\indented{2}{A homogeneous aggregate is an aggregate of elements all of the} \\indented{2}{same type,{} and is functorial in stored elements..} In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates."))) NIL NIL -(-431 S) +(-433 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-432) +(-434) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name `n'."))) NIL NIL -(-433 S) +(-435 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-434) +(-436) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-435 -3095 UP |AlExt| |AlPol|) +(-437 -3098 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-436) +(-438) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| $ (QUOTE (-963))) (|HasCategory| $ (QUOTE (-952 (-486))))) -(-437 S |mn|) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| $ (QUOTE (-965))) (|HasCategory| $ (QUOTE (-954 (-488))))) +(-439 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type."))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))))) -(-438 R |Row| |Col|) +((OR (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (OR (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-760))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| (-488) (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|))))) +(-440 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-439 K R UP) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-441 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-440 R UP -3095) +(-442 R UP -3098) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the gcd of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-441 |mn|) +(-443 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data."))) NIL -((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1015)))) (|HasCategory| (-85) (QUOTE (-555 (-475)))) (|HasCategory| (-85) (QUOTE (-758))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| (-85) (QUOTE (-72))) (|HasCategory| (-85) (QUOTE (-554 (-774)))) (|HasCategory| (-85) (QUOTE (-1015))) (-12 (|HasCategory| $ (QUOTE (-1037 (-85)))) (|HasCategory| (-85) (QUOTE (-758)))) (|HasCategory| $ (QUOTE (-318 (-85)))) (-12 (|HasCategory| $ (QUOTE (-318 (-85)))) (|HasCategory| (-85) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-1037 (-85))))) -(-442 K R UP L) +((-12 (|HasCategory| (-85) (QUOTE (-262 (-85)))) (|HasCategory| (-85) (QUOTE (-1017)))) (|HasCategory| (-85) (QUOTE (-557 (-477)))) (|HasCategory| (-85) (QUOTE (-760))) (|HasCategory| (-488) (QUOTE (-760))) (|HasCategory| (-85) (QUOTE (-72))) (|HasCategory| (-85) (QUOTE (-556 (-776)))) (|HasCategory| (-85) (QUOTE (-1017))) (-12 (|HasCategory| $ (QUOTE (-1039 (-85)))) (|HasCategory| (-85) (QUOTE (-760)))) (|HasCategory| $ (QUOTE (-320 (-85)))) (-12 (|HasCategory| $ (QUOTE (-320 (-85)))) (|HasCategory| (-85) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-1039 (-85))))) +(-444 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-443) +(-445) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-444 R Q A B) +(-446 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL NIL -(-445 -3095 |Expon| |VarSet| |DPoly|) +(-447 -3098 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (QUOTE (-555 (-1092))))) -(-446 |vl| |nv|) +((|HasCategory| |#3| (QUOTE (-557 (-1094))))) +(-448 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-447 T$) +(-449 T$) ((|constructor| (NIL "This is the category of all domains that implement idempotent operations."))) -(((|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (-3059 (|f| |x| |x|) |x|))) . T)) +(((|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (-3062 (|f| |x| |x|) |x|))) . T)) NIL -(-448) +(-450) ((|constructor| (NIL "This domain provides representation for plain identifiers. It differs from Symbol in that it does not support any form of scripting. It is a plain basic data structure. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system"))) NIL NIL -(-449 A S) +(-451 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) -(-450 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-1017))))) +(-452 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) -(-451 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-1017))))) +(-453 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|IndexedProductTerm| |#1| |#2|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}"))) NIL NIL -(-452 A S) +(-454 A S) ((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support.")) (|combineWithIf| (($ $ $ (|Mapping| |#1| |#1| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{combineWithIf(u,v,f,p)} returns the result of combining index-wise,{} coefficients of \\spad{u} and \\spad{u} if when satisfy the predicate \\spad{p}. Those pairs of coefficients which fail\\spad{p} are implicitly ignored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) -(-453 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-1017))))) +(-455 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) -(-454 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-1017))))) +(-456 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) -(-455 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-1017))))) +(-457 A S) ((|constructor| (NIL "An indexed product term is a utility domain used in the representation of indexed direct product objects.")) (|coefficient| ((|#1| $) "\\spad{coefficient t} returns the coefficient of the tern \\spad{t}.")) (|index| ((|#2| $) "\\spad{index t} returns the index of the term \\spad{t}.")) (|term| (($ |#2| |#1|) "\\spad{term(s,a)} constructs a term with index \\spad{s} and coefficient \\spad{a}."))) NIL NIL -(-456 S A B) +(-458 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-457 A B) +(-459 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-458 S E |un|) +(-460 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-718)))) -(-459 S |mn|) +((|HasCategory| |#2| (QUOTE (-720)))) +(-461 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))))) -(-460) +((OR (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (OR (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-760))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| (-488) (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|))))) +(-462) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-461 |p| |n|) +(-463 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((OR (|HasCategory| (-519 |#1|) (QUOTE (-118))) (|HasCategory| (-519 |#1|) (QUOTE (-320)))) (|HasCategory| (-519 |#1|) (QUOTE (-120))) (|HasCategory| (-519 |#1|) (QUOTE (-320))) (|HasCategory| (-519 |#1|) (QUOTE (-118)))) -(-462 R |Row| |Col| M) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((OR (|HasCategory| (-521 |#1|) (QUOTE (-118))) (|HasCategory| (-521 |#1|) (QUOTE (-322)))) (|HasCategory| (-521 |#1|) (QUOTE (-120))) (|HasCategory| (-521 |#1|) (QUOTE (-322))) (|HasCategory| (-521 |#1|) (QUOTE (-118)))) +(-464 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -1037) (|devaluate| |#1|)))) -(-463 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasCategory| |#3| (|%list| (QUOTE -1039) (|devaluate| |#1|)))) +(-465 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasCategory| |#7| (|%list| (QUOTE -1037) (|devaluate| |#5|)))) -(-464) +((|HasCategory| |#7| (|%list| (QUOTE -1039) (|devaluate| |#5|)))) +(-466) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-465) +(-467) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-466 S) +(-468 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-467) +(-469) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-468 GF) +(-470 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(GF) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{**}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in GF(2^m) using normal bases\",{} Information and Computation 78,{} pp.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in GF(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} pp.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field GF."))) NIL NIL -(-469) +(-471) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file `f'.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-470 R) +(-472 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} := increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} := increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-471 |Varset|) +(-473 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| (-696) (QUOTE (-1015))))) -(-472 K -3095 |Par|) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| (-698) (QUOTE (-1017))))) +(-474 K -3098 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to br used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-473) +(-475) NIL NIL NIL -(-474) +(-476) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-475) +(-477) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}'s are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) (|One| (($) "\\spad{1} returns the input form corresponding to 1.")) (|Zero| (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-476 R) +(-478 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-477 |Coef| UTS) +(-479 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-478 K -3095 |Par|) +(-480 K -3098 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-479 R BP |pMod| |nextMod|) +(-481 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the gcd of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the gcd of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-480 OV E R P) +(-482 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-481 K UP |Coef| UTS) +(-483 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-482 |Coef| UTS) +(-484 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-483 R UP) +(-485 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) NIL NIL -(-484 S) +(-486 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-485) +(-487) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-3996 . T) (-3997 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3999 . T) (-4000 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-486) +(-488) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-3986 . T) (-3990 . T) (-3985 . T) (-3996 . T) (-3997 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3989 . T) (-3993 . T) (-3988 . T) (-3999 . T) (-4000 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-487) +(-489) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-488) +(-490) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-489) +(-491) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) NIL NIL -(-490) +(-492) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-491 |Key| |Entry| |addDom|) +(-493 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) NIL -((-12 (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-475)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|)))) -(-492 R -3095) +((-12 (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -262) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (OR (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (OR (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-556 (-776)))) (|HasCategory| |#2| (QUOTE (-556 (-776))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-557 (-477)))) (-12 (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017))) (-12 (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#2|)))) +(-494 R -3098) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-493 R0 -3095 UP UPUP R) +(-495 R0 -3098 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-494) +(-496) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-495 R) +(-497 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3773 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3776 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-496 S) +(-498 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-497) +(-499) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-498 R -3095) +(-500 R -3098) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-499 I) +(-501 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra's eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-500 R -3095 L) +(-502 R -3098 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -602) (|devaluate| |#2|)))) -(-501) +((|HasCategory| |#3| (|%list| (QUOTE -604) (|devaluate| |#2|)))) +(-503) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-502 -3095 UP UPUP R) +(-504 -3098 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-503 -3095 UP) +(-505 -3098 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-504 R -3095 L) +(-506 R -3098 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -602) (|devaluate| |#2|)))) -(-505 R -3095) +((|HasCategory| |#3| (|%list| (QUOTE -604) (|devaluate| |#2|)))) +(-507 R -3098) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| |#2| (QUOTE (-571))))) -(-506 -3095 UP) +((-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-488))))) (|HasCategory| |#1| (QUOTE (-800 (-488)))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-488))))) (|HasCategory| |#1| (QUOTE (-800 (-488)))) (|HasCategory| |#2| (QUOTE (-573))))) +(-508 -3098 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-507 S) +(-509 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-508 -3095) +(-510 -3098) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-509 R) +(-511 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3773 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3776 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-510) +(-512) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL -(-511 R -3095) +(-513 R -3098) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-952 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-497)))) -(-512 -3095 UP) +((-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-488))))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-800 (-488)))) (|HasCategory| |#2| (QUOTE (-241))) (|HasCategory| |#2| (QUOTE (-573))) (|HasCategory| |#2| (QUOTE (-954 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-241)))) (|HasCategory| |#1| (QUOTE (-499)))) +(-514 -3098 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-513 R -3095) +(-515 R -3098) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-514) +(-516) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-515) +(-517) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if `f' is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by `f' as a binary file."))) NIL NIL -(-516) +(-518) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input."))) NIL NIL -(-517) +(-519) ((|constructor| (NIL "This domain provides representation for ARPA Internet \\spad{IP4} addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the \\spad{IP4} address of host `h'.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address `x'.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-518 |p| |unBalanced?|) +(-520 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements Zp,{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-519 |p|) +(-521 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-320)))) -(-520) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-322)))) +(-522) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-521 -3095) +(-523 -3098) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-3993 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-952 (-1092))))) -(-522 E -3095) +((-3996 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasCategory| |#1| (QUOTE (-954 (-1094))))) +(-524 E -3098) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-523 R -3095) +(-525 R -3098) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL NIL -(-524) +(-526) ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-525 I) +(-527 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-526 GF) +(-528 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-527 R) +(-529 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-120)))) -(-528) +(-530) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young's natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young's natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young's natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young's natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-529 R E V P TS) +(-531 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-530) +(-532) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-531 E V R P) +(-533 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-532 |Coef|) +(-534 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))) (|HasCategory| (-486) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-486)))))) -(-533 |Coef|) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-499))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-488)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-488)) (|devaluate| |#1|)))) (|HasCategory| (-488) (QUOTE (-1029))) (|HasCategory| |#1| (QUOTE (-314))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-488))))) (|HasSignature| |#1| (|%list| (QUOTE -3953) (|%list| (|devaluate| |#1|) (QUOTE (-1094)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-488)))))) +(-535 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4000 "*") |has| |#1| (-497)) (-3991 |has| |#1| (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-497)))) -(-534) +(((-4003 "*") |has| |#1| (-499)) (-3994 |has| |#1| (-499)) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-499)))) +(-536) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) NIL NIL -(-535 A B) +(-537 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-536 A B C) +(-538 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-537 R -3095 FG) +(-539 R -3098 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and FG should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-538 S) +(-540 S) ((|constructor| (NIL "This package implements 'infinite tuples' for the interpreter. The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}."))) NIL NIL -(-539 S |Index| |Entry|) +(-541 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1037) (|devaluate| |#3|))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -318) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-72)))) -(-540 |Index| |Entry|) +((|HasCategory| |#1| (|%list| (QUOTE -1039) (|devaluate| |#3|))) (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#1| (|%list| (QUOTE -320) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-72)))) +(-542 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-541) +(-543) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join `x'.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-542 R A) +(-544 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-3995 OR (-2565 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) (-3993 . T) (-3992 . T)) -((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) -(-543) +((-3998 OR (-2568 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) (-3996 . T) (-3995 . T)) +((OR (|HasCategory| |#2| (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -363) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -363) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (|%list| (QUOTE -363) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#2| (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#2| (|%list| (QUOTE -363) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -318) (|devaluate| |#1|)))) +(-545) ((|constructor| (NIL "This is the datatype for the JVM bytecodes."))) NIL NIL -(-544) +(-546) ((|constructor| (NIL "JVM class file access bitmask and values.")) (|jvmAbstract| (($) "The class was declared abstract; therefore object of this class may not be created.")) (|jvmInterface| (($) "The class file represents an interface,{} not a class.")) (|jvmSuper| (($) "Instruct the JVM to treat base clss method invokation specially.")) (|jvmFinal| (($) "The class was declared final; therefore no derived class allowed.")) (|jvmPublic| (($) "The class was declared public,{} therefore may be accessed from outside its package"))) NIL NIL -(-545) +(-547) ((|constructor| (NIL "JVM class file constant pool tags.")) (|jvmNameAndTypeConstantTag| (($) "The correspondong constant pool entry represents the name and type of a field or method info.")) (|jvmInterfaceMethodConstantTag| (($) "The correspondong constant pool entry represents an interface method info.")) (|jvmMethodrefConstantTag| (($) "The correspondong constant pool entry represents a class method info.")) (|jvmFieldrefConstantTag| (($) "The corresponding constant pool entry represents a class field info.")) (|jvmStringConstantTag| (($) "The corresponding constant pool entry is a string constant info.")) (|jvmClassConstantTag| (($) "The corresponding constant pool entry represents a class or and interface.")) (|jvmDoubleConstantTag| (($) "The corresponding constant pool entry is a double constant info.")) (|jvmLongConstantTag| (($) "The corresponding constant pool entry is a long constant info.")) (|jvmFloatConstantTag| (($) "The corresponding constant pool entry is a float constant info.")) (|jvmIntegerConstantTag| (($) "The corresponding constant pool entry is an integer constant info.")) (|jvmUTF8ConstantTag| (($) "The corresponding constant pool entry is sequence of bytes representing Java \\spad{UTF8} string constant."))) NIL NIL -(-546) +(-548) ((|constructor| (NIL "JVM class field access bitmask and values.")) (|jvmTransient| (($) "The field was declared transient.")) (|jvmVolatile| (($) "The field was declared volatile.")) (|jvmFinal| (($) "The field was declared final; therefore may not be modified after initialization.")) (|jvmStatic| (($) "The field was declared static.")) (|jvmProtected| (($) "The field was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The field was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The field was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-547) +(-549) ((|constructor| (NIL "JVM class method access bitmask and values.")) (|jvmStrict| (($) "The method was declared fpstrict; therefore floating-point mode is FP-strict.")) (|jvmAbstract| (($) "The method was declared abstract; therefore no implementation is provided.")) (|jvmNative| (($) "The method was declared native; therefore implemented in a language other than Java.")) (|jvmSynchronized| (($) "The method was declared synchronized.")) (|jvmFinal| (($) "The method was declared final; therefore may not be overriden. in derived classes.")) (|jvmStatic| (($) "The method was declared static.")) (|jvmProtected| (($) "The method was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The method was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The method was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-548) +(-550) ((|constructor| (NIL "This is the datatype for the JVM opcodes."))) NIL NIL -(-549 |Entry|) +(-551 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) NIL -((-12 (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3864 (-1075))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (QUOTE (-1015)))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (QUOTE (-555 (-475)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-1075) (QUOTE (-758))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3864 (-1075))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3864 (-1075))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (QUOTE (-72))))) -(-550 S |Key| |Entry|) +((-12 (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (|%list| (QUOTE -262) (|%list| (QUOTE -2) (QUOTE (|:| -3867 (-1077))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (QUOTE (-1017)))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (QUOTE (-557 (-477)))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-1077) (QUOTE (-760))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (QUOTE (-1017))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -2) (QUOTE (|:| -3867 (-1077))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (-12 (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -2) (QUOTE (|:| -3867 (-1077))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (QUOTE (-72))))) +(-552 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-551 |Key| |Entry|) +(-553 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-552 S) +(-554 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-486)))))) -(-553 R S) +((|HasCategory| |#1| (QUOTE (-557 (-477)))) (|HasCategory| |#1| (QUOTE (-557 (-804 (-332))))) (|HasCategory| |#1| (QUOTE (-557 (-804 (-488)))))) +(-555 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-554 S) +(-556 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-555 S) +(-557 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-556 -3095 UP) +(-558 -3098 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-557 S) +(-559 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-558) +(-560) ((|constructor| (NIL "This domain implements Kleene's 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of `x' is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of `x' is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of `x' is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-559 S) +(-561 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-560 A R S) +(-562 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-757)))) -(-561 S R) +((-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-759)))) +(-563 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-562 R) +(-564 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-3995 . T)) +((-3998 . T)) NIL -(-563 R -3095) +(-565 R -3098) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-564 R UP) +(-566 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-3993 . T) (-3992 . T) ((-4000 "*") . T) (-3991 . T) (-3995 . T)) -((|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486))))) -(-565 R E V P TS ST) +((-3996 . T) (-3995 . T) ((-4003 "*") . T) (-3994 . T) (-3998 . T)) +((|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-815 (-1094)))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-191))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488))))) +(-567 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(lp,{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional."))) NIL NIL -(-566 OV E Z P) +(-568 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \"F\".")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-567) +(-569) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-568 |VarSet| R |Order|) +(-570 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-3995 . T)) +((-3998 . T)) NIL -(-569 R |ls|) +(-571 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{lp}."))) NIL NIL -(-570 R -3095) +(-572 R -3098) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-571) +(-573) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-572 |lv| -3095) +(-574 |lv| -3098) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-573) +(-575) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) NIL -((-12 (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (QUOTE (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (QUOTE (-1015)))) (OR (|HasCategory| (-51) (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (QUOTE (-1015)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (QUOTE (-554 (-774)))) (|HasCategory| (-51) (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (QUOTE (-555 (-475)))) (-12 (|HasCategory| (-51) (QUOTE (-260 (-51)))) (|HasCategory| (-51) (QUOTE (-1015)))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-1075) (QUOTE (-758))) (|HasCategory| (-51) (QUOTE (-72))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-1015))) (|HasCategory| (-51) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (QUOTE (-1015))) (-12 (|HasCategory| $ (QUOTE (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))))) (-12 (|HasCategory| $ (QUOTE (-318 (-51)))) (|HasCategory| (-51) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-1037 (-51))))) -(-574 R A) +((-12 (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (QUOTE (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (QUOTE (-1017)))) (OR (|HasCategory| (-51) (QUOTE (-1017))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (QUOTE (-1017)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1017))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (QUOTE (-1017)))) (OR (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (QUOTE (-556 (-776)))) (|HasCategory| (-51) (QUOTE (-556 (-776))))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (QUOTE (-557 (-477)))) (-12 (|HasCategory| (-51) (QUOTE (-262 (-51)))) (|HasCategory| (-51) (QUOTE (-1017)))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-1077) (QUOTE (-760))) (|HasCategory| (-51) (QUOTE (-72))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-1017))) (|HasCategory| (-51) (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (QUOTE (-1017))) (-12 (|HasCategory| $ (QUOTE (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))))) (-12 (|HasCategory| $ (QUOTE (-320 (-51)))) (|HasCategory| (-51) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-1039 (-51))))) +(-576 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-3995 OR (-2565 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) (-3993 . T) (-3992 . T)) -((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) -(-575 S R) +((-3998 OR (-2568 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) (-3996 . T) (-3995 . T)) +((OR (|HasCategory| |#2| (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -363) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -363) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (|%list| (QUOTE -363) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#2| (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#2| (|%list| (QUOTE -363) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -318) (|devaluate| |#1|)))) +(-577 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-312)))) -(-576 R) +((|HasCategory| |#2| (QUOTE (-314)))) +(-578 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3993 . T) (-3992 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3996 . T) (-3995 . T)) NIL -(-577 R FE) +(-579 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-578 R) +(-580 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-579 |vars|) +(-581 |vars|) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a vector space basis,{} given by symbols.}")) (|dual| (($ (|DualBasis| |#1|)) "\\spad{dual f} constructs the dual vector of a linear form which is part of a basis."))) NIL NIL -(-580 S R) +(-582 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2563 (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-312)))) -(-581 K B) +((-2566 (|HasCategory| |#1| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-314)))) +(-583 K B) ((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}."))) -((-3993 . T) (-3992 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| (-579 |#2|) (QUOTE (-1015))))) -(-582 R) +((-3996 . T) (-3995 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| (-581 |#2|) (QUOTE (-1017))))) +(-584 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL NIL -(-583 K B) +(-585 K B) ((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}."))) -((-3993 . T) (-3992 . T)) +((-3996 . T) (-3995 . T)) NIL -(-584 S) +(-586 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-585 S) +(-587 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) -(-586 A B) +((OR (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (OR (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-760))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| (-488) (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|)))) +(-588 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-587 A B) +(-589 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and lb of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index lb. Error: if \\spad{la} and lb are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-588 A B C) +(-590 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-589 T$) +(-591 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-590 S) +(-592 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-591 S) +(-593 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) -(-592 R) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|)))) +(-594 R) ((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline"))) NIL NIL -(-593 S E |un|) +(-595 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-594 A S) +(-596 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1037) (|devaluate| |#2|)))) -(-595 S) +((|HasCategory| |#1| (|%list| (QUOTE -1039) (|devaluate| |#2|)))) +(-597 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-596 M R S) +(-598 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-3993 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-716)))) -(-597 R -3095 L) +((-3996 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-718)))) +(-599 R -3098 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-598 A -2495) +(-600 A -2498) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-312)))) -(-599 A) +((-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-314)))) +(-601 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-312)))) -(-600 A M) +((-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-314)))) +(-602 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-312)))) -(-601 S A) +((-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-314)))) +(-603 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-312)))) -(-602 A) +((|HasCategory| |#2| (QUOTE (-314)))) +(-604 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-3992 . T) (-3993 . T) (-3995 . T)) +((-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-603 -3095 UP) +(-605 -3098 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-604 A L) +(-606 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-605 S) +(-607 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spad{x\\/y} returns the logical `join',{} \\spadignore{e.g.} disjunction,{} or \\spad{x} and \\spad{y}.")) (|/\\| (($ $ $) "\\spad {x/\\y} returns the logical `meet',{} \\spadignore{e.g.} conjunction,{} of \\spad{x} and \\spad{y}.")) (~ (($ $) "\\spad{~x} returns the logical complement of \\spad{x}."))) NIL NIL -(-606) +(-608) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spad{x\\/y} returns the logical `join',{} \\spadignore{e.g.} disjunction,{} or \\spad{x} and \\spad{y}.")) (|/\\| (($ $ $) "\\spad {x/\\y} returns the logical `meet',{} \\spadignore{e.g.} conjunction,{} of \\spad{x} and \\spad{y}.")) (~ (($ $) "\\spad{~x} returns the logical complement of \\spad{x}."))) NIL NIL -(-607 R) +(-609 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-608 |VarSet| R) +(-610 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3993 . T) (-3992 . T)) -((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-146)))) -(-609 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3996 . T) (-3995 . T)) +((|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-148)))) +(-611 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-610 S) +(-612 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-611 -3095 |Row| |Col| M) +(-613 -3098 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-612 -3095) +(-614 -3098) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-613 R E OV P) +(-615 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-614 |n| R) +(-616 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-3995 . T) (-3992 . T) (-3993 . T)) -((|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-4000 #1="*"))) (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-497))) (OR (|HasAttribute| |#2| (QUOTE (-4000 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) -(-615) +((-3998 . T) (-3995 . T) (-3996 . T)) +((|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-815 (-1094)))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-191))) (|HasAttribute| |#2| (QUOTE (-4003 #1="*"))) (|HasCategory| |#2| (QUOTE (-584 (-488)))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-954 (-488)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-584 (-488)))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-260))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-499))) (OR (|HasAttribute| |#2| (QUOTE (-4003 #1#))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-813 (-1094))))) (|HasCategory| |#2| (QUOTE (-556 (-776)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1017))) (-12 (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-148)))) +(-617) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-616 |VarSet|) +(-618 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} <= \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.fr).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(vl,{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{\\spad{LyndonWordsList1}(vl,{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-617 A S) +(-619 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-618 S) +(-620 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-619) +(-621) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-620 |VarSet|) +(-622 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{y*z}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-621 A) +(-623 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-622 A C) +(-624 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-623 A B C) +(-625 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-624) +(-626) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for `s'.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of `s'.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} -> \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-625 A) +(-627 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-626 A C) +(-628 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-627 A B C) +(-629 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-628 S R |Row| |Col|) +(-630 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise."))) NIL -((|HasAttribute| |#2| (QUOTE (-4000 "*"))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-497)))) -(-629 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4003 "*"))) (|HasCategory| |#2| (QUOTE (-260))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-499)))) +(-631 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise."))) NIL NIL -(-630 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-632 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-631 R |Row| |Col| M) +(-633 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that m*n = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-497)))) -(-632 R) +((|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-260))) (|HasCategory| |#1| (QUOTE (-499)))) +(-634 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-497))) (|HasAttribute| |#1| (QUOTE (-4000 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) -(-633 R) +((OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (|HasCategory| |#1| (QUOTE (-260))) (|HasCategory| |#1| (QUOTE (-499))) (|HasAttribute| |#1| (QUOTE (-4003 "*"))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|))))) +(-635 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-634 T$) +(-636 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that `x' really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value `x' into \\%."))) NIL NIL -(-635 R Q) +(-637 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-636 S) +(-638 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) NIL NIL -(-637 U) +(-639 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the gcd of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-638) +(-640) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: ?? Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-639 OV E -3095 PG) +(-641 OV E -3098 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-640 R) +(-642 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-641 S D1 D2 I) +(-643 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-642 S) +(-644 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-643 S) +(-645 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-644 S T$) +(-646 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}."))) NIL NIL -(-645 S -2672 I) +(-647 S -2675 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-646 E OV R P) +(-648 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-647 R) +(-649 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-3992 . T) (-3993 . T) (-3995 . T)) +((-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-648 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-650 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-649) +(-651) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-650 R |Mod| -2039 -3521 |exactQuo|) +(-652 R |Mod| -2042 -3524 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-651 R P) +(-653 R P) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3994 |has| |#1| (-312)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| (-996) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| (-996) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| (-996) (QUOTE (-555 (-475))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-652 IS E |ff|) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3997 |has| |#1| (-314)) (-3999 |has| |#1| (-6 -3999)) (-3996 . T) (-3995 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-148))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-800 (-332)))) (|HasCategory| (-998) (QUOTE (-800 (-332))))) (-12 (|HasCategory| |#1| (QUOTE (-800 (-488)))) (|HasCategory| (-998) (QUOTE (-800 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-332))))) (|HasCategory| (-998) (QUOTE (-557 (-804 (-332)))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-488))))) (|HasCategory| (-998) (QUOTE (-557 (-804 (-488)))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-477)))) (|HasCategory| (-998) (QUOTE (-557 (-477))))) (|HasCategory| |#1| (QUOTE (-584 (-488)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-825)))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-825)))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (QUOTE (-815 (-1094)))) (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-191))) (|HasCategory| |#1| (QUOTE (-192))) (|HasAttribute| |#1| (QUOTE -3999)) (|HasCategory| |#1| (QUOTE (-395))) (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-654 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-653 R M) +(-655 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-3993 |has| |#1| (-146)) (-3992 |has| |#1| (-146)) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120)))) -(-654 R |Mod| -2039 -3521 |exactQuo|) +((-3996 |has| |#1| (-148)) (-3995 |has| |#1| (-148)) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120)))) +(-656 R |Mod| -2042 -3524 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-3995 . T)) +((-3998 . T)) NIL -(-655 S R) +(-657 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-656 R) +(-658 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-3993 . T) (-3992 . T)) +((-3996 . T) (-3995 . T)) NIL -(-657 -3095) +(-659 -3098) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-3995 . T)) +((-3998 . T)) NIL -(-658 S) +(-660 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-659) +(-661) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-660 S) +(-662 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-661) +(-663) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-662 S R UP) +(-664 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320)))) -(-663 R UP) +((|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-322)))) +(-665 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-3991 |has| |#1| (-312)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3994 |has| |#1| (-314)) (-3999 |has| |#1| (-314)) (-3993 |has| |#1| (-314)) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-664 S) +(-666 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity."))) NIL NIL -(-665) +(-667) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity."))) NIL NIL -(-666 T$) +(-668 T$) ((|constructor| (NIL "This domain implements monoid operations.")) (|monoidOperation| (($ (|Mapping| |#1| |#1| |#1|) |#1|) "\\spad{monoidOperation(f,e)} constructs a operation from the binary mapping \\spad{f} with neutral value \\spad{e}."))) -(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3059 (|f| |x| (-2414 |f|)) |x|) (|exit| 1 (-3059 (|f| (-2414 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3059 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3062 (|f| |x| (-2417 |f|)) |x|) (|exit| 1 (-3062 (|f| (-2417 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3062 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-667 T$) +(-669 T$) ((|constructor| (NIL "This is the category of all domains that implement monoid operations")) (|neutralValue| ((|#1| $) "\\spad{neutralValue f} returns the neutral value of the monoid operation \\spad{f}."))) -(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3059 (|f| |x| (-2414 |f|)) |x|) (|exit| 1 (-3059 (|f| (-2414 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3059 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3062 (|f| |x| (-2417 |f|)) |x|) (|exit| 1 (-3062 (|f| (-2417 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3062 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-668 -3095 UP) +(-670 -3098 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-669 |VarSet| E1 E2 R S PR PS) +(-671 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (PG)")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-670 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-672 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-671 E OV R PPR) +(-673 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-672 |vl| R) +(-674 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4000 "*") |has| |#2| (-146)) (-3991 |has| |#2| (-497)) (-3996 |has| |#2| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) -((|HasCategory| |#2| (QUOTE (-823))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-497)))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-330)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-486)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-475))))) (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-393))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-673 E OV R PRF) +(((-4003 "*") |has| |#2| (-148)) (-3994 |has| |#2| (-499)) (-3999 |has| |#2| (-6 -3999)) (-3996 . T) (-3995 . T) (-3998 . T)) +((|HasCategory| |#2| (QUOTE (-825))) (OR (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-825)))) (OR (|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-825)))) (OR (|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-148))) (OR (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-800 (-332)))) (|HasCategory| (-777 |#1|) (QUOTE (-800 (-332))))) (-12 (|HasCategory| |#2| (QUOTE (-800 (-488)))) (|HasCategory| (-777 |#1|) (QUOTE (-800 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-557 (-804 (-332))))) (|HasCategory| (-777 |#1|) (QUOTE (-557 (-804 (-332)))))) (-12 (|HasCategory| |#2| (QUOTE (-557 (-804 (-488))))) (|HasCategory| (-777 |#1|) (QUOTE (-557 (-804 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-557 (-477)))) (|HasCategory| (-777 |#1|) (QUOTE (-557 (-477))))) (|HasCategory| |#2| (QUOTE (-584 (-488)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-954 (-488)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-314))) (|HasAttribute| |#2| (QUOTE -3999)) (|HasCategory| |#2| (QUOTE (-395))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-675 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-674 E OV R P) +(-676 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-675 R S M) +(-677 R S M) ((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-676 R M) +(-678 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-3993 |has| |#1| (-146)) (-3992 |has| |#1| (-146)) (-3995 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-758)))) -(-677 S) +((-3996 |has| |#1| (-148)) (-3995 |has| |#1| (-148)) (-3998 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-322)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-760)))) +(-679 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|unique| (((|List| |#1|) $) "\\spad{unique ms} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{members}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-3988 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) -(-678 S) +((-3991 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-1017))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|)))) +(-680 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-3988 . T)) +((-3991 . T)) NIL -(-679) +(-681) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-680 S) +(-682 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-681 |Coef| |Var|) +(-683 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3993 . T) (-3992 . T) (-3995 . T)) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3996 . T) (-3995 . T) (-3998 . T)) NIL -(-682 OV E R P) +(-684 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-683 E OV R P) +(-685 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-684 S R) +(-686 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-685 R) +(-687 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-3993 . T) (-3992 . T)) +((-3996 . T) (-3995 . T)) NIL -(-686 S) +(-688 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-687) +(-689) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-688 S) +(-690 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-689) +(-691) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-690 |Par|) +(-692 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-691 -3095) +(-693 -3098) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-692 P -3095) +(-694 P -3098) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''."))) NIL NIL -(-693 T$) +(-695 T$) NIL NIL NIL -(-694 UP -3095) +(-696 UP -3098) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-695 R) +(-697 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-696) +(-698) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4000 "*") . T)) +(((-4003 "*") . T)) NIL -(-697 R -3095) +(-699 R -3098) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-698) +(-700) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-699 S) +(-701 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-700 R |PolR| E |PolE|) +(-702 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-701 R E V P TS) +(-703 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}ts)} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}ts)} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}ts)} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-702 -3095 |ExtF| |SUEx| |ExtP| |n|) +(-704 -3098 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-703 BP E OV R P) +(-705 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-704 |Par|) +(-706 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with variable \\spad{x}. Fraction \\spad{P} RN.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with a new symbol as variable."))) NIL NIL -(-705 R |VarSet|) +(-707 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-823))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| |#2| (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| |#2| (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-555 (-475))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-555 (-1092))))) (|HasCategory| |#2| (QUOTE (-555 (-1092)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-555 (-1092))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-486)))) (|HasCategory| |#2| (QUOTE (-555 (-1092)))) (-2563 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-555 (-1092)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-555 (-1092)))) (-2563 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486)))))) (-2563 (|HasCategory| |#1| (QUOTE (-38 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-486)))) (|HasCategory| |#2| (QUOTE (-555 (-1092)))) (-2563 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486)))))) (-2563 (|HasCategory| |#1| (QUOTE (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-555 (-1092)))) (-2563 (|HasCategory| |#1| (QUOTE (-906 (-486))))))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-706 R) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-6 -3999)) (-3996 . T) (-3995 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-825))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-825)))) (OR (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-825)))) (OR (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-148))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-800 (-332)))) (|HasCategory| |#2| (QUOTE (-800 (-332))))) (-12 (|HasCategory| |#1| (QUOTE (-800 (-488)))) (|HasCategory| |#2| (QUOTE (-800 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-332))))) (|HasCategory| |#2| (QUOTE (-557 (-804 (-332)))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-488))))) (|HasCategory| |#2| (QUOTE (-557 (-804 (-488)))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-477)))) (|HasCategory| |#2| (QUOTE (-557 (-477))))) (|HasCategory| |#1| (QUOTE (-584 (-488)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-557 (-1094))))) (|HasCategory| |#2| (QUOTE (-557 (-1094)))) (|HasCategory| |#1| (QUOTE (-314))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-557 (-1094))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-488)))) (|HasCategory| |#2| (QUOTE (-557 (-1094)))) (-2566 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-557 (-1094)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-557 (-1094)))) (-2566 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488)))))) (-2566 (|HasCategory| |#1| (QUOTE (-38 (-488)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-488)))) (|HasCategory| |#2| (QUOTE (-557 (-1094)))) (-2566 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488)))))) (-2566 (|HasCategory| |#1| (QUOTE (-487))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-557 (-1094)))) (-2566 (|HasCategory| |#1| (QUOTE (-908 (-488))))))) (|HasAttribute| |#1| (QUOTE -3999)) (|HasCategory| |#1| (QUOTE (-395))) (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-708 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3994 |has| |#1| (-312)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| (-996) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| (-996) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| (-996) (QUOTE (-555 (-475))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-707 R S) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3997 |has| |#1| (-314)) (-3999 |has| |#1| (-6 -3999)) (-3996 . T) (-3995 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-148))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-800 (-332)))) (|HasCategory| (-998) (QUOTE (-800 (-332))))) (-12 (|HasCategory| |#1| (QUOTE (-800 (-488)))) (|HasCategory| (-998) (QUOTE (-800 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-332))))) (|HasCategory| (-998) (QUOTE (-557 (-804 (-332)))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-488))))) (|HasCategory| (-998) (QUOTE (-557 (-804 (-488)))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-477)))) (|HasCategory| (-998) (QUOTE (-557 (-477))))) (|HasCategory| |#1| (QUOTE (-584 (-488)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-825)))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-825)))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (QUOTE (-815 (-1094)))) (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasCategory| |#1| (QUOTE (-191))) (|HasCategory| |#1| (QUOTE (-192))) (|HasAttribute| |#1| (QUOTE -3999)) (|HasCategory| |#1| (QUOTE (-395))) (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-709 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-708 R) +(-710 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-38 (-350 (-486)))))) -(-709 R E V P) +((|HasCategory| |#1| (QUOTE (-38 (-352 (-488)))))) +(-711 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) NIL NIL -(-710 S) +(-712 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-758)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-146)))) -(-711) +((-12 (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-148)))) +(-713) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-712) +(-714) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})**(\\spad{-1/5})}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation's right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-713) +(-715) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-714 |Curve|) +(-716 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-715 S) +(-717 S) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-716) +(-718) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-717 S) +(-719 S) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-718) +(-720) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-719) +(-721) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-720) +(-722) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-721 S R) +(-723 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-320)))) -(-722 R) +((|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-557 (-477)))) (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-322)))) +(-724 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-3992 . T) (-3993 . T) (-3995 . T)) +((-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-723) +(-725) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-724 R) +(-726 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -457) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| (-911 |#1|) (QUOTE (-952 (-350 (-486)))))) (OR (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| (-911 |#1|) (QUOTE (-952 (-486))))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-911 |#1|) (QUOTE (-952 (-350 (-486))))) (|HasCategory| (-911 |#1|) (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486))))) -(-725 OR R OS S) +((-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (|%list| (QUOTE -459) (QUOTE (-1094)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -243) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| (-913 |#1|) (QUOTE (-954 (-352 (-488)))))) (OR (|HasCategory| |#1| (QUOTE (-954 (-488)))) (|HasCategory| (-913 |#1|) (QUOTE (-954 (-488))))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-913 |#1|) (QUOTE (-954 (-352 (-488))))) (|HasCategory| (-913 |#1|) (QUOTE (-954 (-488)))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488))))) +(-727 OR R OS S) ((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-726 R -3095 L) +(-728 R -3098 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}'s form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-727 R -3095) +(-729 R -3098) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-728 R -3095) +(-730 R -3098) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-729 -3095 UP UPUP R) +(-731 -3098 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-730 -3095 UP L LQ) +(-732 -3098 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-731 -3095 UP L LQ) +(-733 -3098 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}'s in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree mj for some \\spad{j},{} and its leading coefficient is then a zero of pj. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {gcd(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-732 -3095 UP) +(-734 -3098 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-733 -3095 L UP A LO) +(-735 -3098 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-734 -3095 UP) +(-736 -3098 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular ++ part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-735 -3095 LO) +(-737 -3098 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-736 -3095 LODO) +(-738 -3098 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-737 -2624 S |f|) +(-739 -2627 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3992 |has| |#2| (-963)) (-3993 |has| |#2| (-963)) (-3995 |has| |#2| (-6 -3995))) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (OR (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758)))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-963))))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (|HasCategory| |#2| (QUOTE (-1015))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-1015))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-963))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-486) (QUOTE (-758))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-1015)))) (|HasAttribute| |#2| (QUOTE -3995)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|)))) -(-738 R) +((-3995 |has| |#2| (-965)) (-3996 |has| |#2| (-965)) (-3998 |has| |#2| (-6 -3998))) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-556 (-776)))) (|HasCategory| |#2| (QUOTE (-314))) (OR (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-314)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-721))) (OR (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-760)))) (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-322))) (OR (-12 (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-584 (-488)))) (|HasCategory| |#2| (QUOTE (-813 (-1094))))) (-12 (|HasCategory| |#2| (QUOTE (-584 (-488)))) (|HasCategory| |#2| (QUOTE (-965))))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-1017)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-1017)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (|HasCategory| |#2| (QUOTE (-192))) (OR (|HasCategory| |#2| (QUOTE (-192))) (-12 (|HasCategory| |#2| (QUOTE (-191))) (|HasCategory| |#2| (QUOTE (-965))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-815 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (|HasCategory| |#2| (QUOTE (-813 (-1094))))) (|HasCategory| |#2| (QUOTE (-1017))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-965)))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-1017))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-1017)))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-1017)))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-965))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-488) (QUOTE (-760))) (-12 (|HasCategory| |#2| (QUOTE (-584 (-488)))) (|HasCategory| |#2| (QUOTE (-965)))) (-12 (|HasCategory| |#2| (QUOTE (-191))) (|HasCategory| |#2| (QUOTE (-965)))) (-12 (|HasCategory| |#2| (QUOTE (-815 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-1017)))) (|HasCategory| |#2| (QUOTE (-965)))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-1017)))) (-12 (|HasCategory| |#2| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-1017)))) (|HasAttribute| |#2| (QUOTE -3998)) (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-965)))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-965)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#2|)))) +(-740 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-823))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| (-740 (-1092)) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| (-740 (-1092)) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-740 (-1092)) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-740 (-1092)) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| (-740 (-1092)) (QUOTE (-555 (-475))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-739 |Kernels| R |var|) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-6 -3999)) (-3996 . T) (-3995 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-825))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-825)))) (OR (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-825)))) (OR (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-148))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-800 (-332)))) (|HasCategory| (-742 (-1094)) (QUOTE (-800 (-332))))) (-12 (|HasCategory| |#1| (QUOTE (-800 (-488)))) (|HasCategory| (-742 (-1094)) (QUOTE (-800 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-332))))) (|HasCategory| (-742 (-1094)) (QUOTE (-557 (-804 (-332)))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-488))))) (|HasCategory| (-742 (-1094)) (QUOTE (-557 (-804 (-488)))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-477)))) (|HasCategory| (-742 (-1094)) (QUOTE (-557 (-477))))) (|HasCategory| |#1| (QUOTE (-584 (-488)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-192))) (|HasCategory| |#1| (QUOTE (-191))) (|HasCategory| |#1| (QUOTE (-815 (-1094)))) (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasCategory| |#1| (QUOTE (-314))) (|HasAttribute| |#1| (QUOTE -3999)) (|HasCategory| |#1| (QUOTE (-395))) (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-741 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4000 "*") |has| |#2| (-312)) (-3991 |has| |#2| (-312)) (-3996 |has| |#2| (-312)) (-3990 |has| |#2| (-312)) (-3995 . T) (-3993 . T) (-3992 . T)) -((|HasCategory| |#2| (QUOTE (-312)))) -(-740 S) +(((-4003 "*") |has| |#2| (-314)) (-3994 |has| |#2| (-314)) (-3999 |has| |#2| (-314)) (-3993 |has| |#2| (-314)) (-3998 . T) (-3996 . T) (-3995 . T)) +((|HasCategory| |#2| (QUOTE (-314)))) +(-742 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-741 S) +(-743 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-758)))) -(-742) +((|HasCategory| |#1| (QUOTE (-760)))) +(-744) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-743 P R) +(-745 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-190)))) -(-744 S) +((-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-192)))) +(-746 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-3988 . T)) +((-3991 . T)) NIL -(-745 R) +(-747 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-3995 |has| |#1| (-757))) -((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-952 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-485)))) -(-746 R S) +((-3998 |has| |#1| (-759))) +((|HasCategory| |#1| (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-759)))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (OR (|HasCategory| |#1| (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-954 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (|HasCategory| |#1| (QUOTE (-487)))) +(-748 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-747 R) +(-749 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-3993 |has| |#1| (-146)) (-3992 |has| |#1| (-146)) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120)))) -(-748 A S) +((-3996 |has| |#1| (-148)) (-3995 |has| |#1| (-148)) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120)))) +(-750 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-749 S) +(-751 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-750) +(-752) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \"k\" (constructors),{} \"d\" (domains),{} \"c\" (categories) or \"p\" (packages)."))) NIL NIL -(-751) +(-753) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of `x'."))) NIL NIL -(-752 R) +(-754 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-3995 |has| |#1| (-757))) -((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-952 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-485)))) -(-753 R S) +((-3998 |has| |#1| (-759))) +((|HasCategory| |#1| (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-759)))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (OR (|HasCategory| |#1| (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-954 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (|HasCategory| |#1| (QUOTE (-487)))) +(-755 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-754) +(-756) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-755 -2624 S) +(-757 -2627 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-756) +(-758) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-757) +(-759) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline"))) -((-3995 . T)) +((-3998 . T)) NIL -(-758) +(-760) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}."))) NIL NIL -(-759 T$ |f|) +(-761 T$ |f|) ((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}."))) NIL -((|HasCategory| |#1| (QUOTE (-554 (-774))))) -(-760 S) +((|HasCategory| |#1| (QUOTE (-556 (-776))))) +(-762 S) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-761) +(-763) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-762 S R) +(-764 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-146)))) -(-763 R) +((|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-148)))) +(-765 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-3992 . T) (-3993 . T) (-3995 . T)) +((-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-764 R C) +(-766 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) -(-765 R |sigma| -3247) +((|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499)))) +(-767 R |sigma| -3250) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-312)))) -(-766 |x| R |sigma| -3247) +((-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-314)))) +(-768 |x| R |sigma| -3250) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-312)))) -(-767 R) +((-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-314)))) +(-769 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL -((|HasCategory| |#1| (QUOTE (-38 (-350 (-486)))))) -(-768) +((|HasCategory| |#1| (QUOTE (-38 (-352 (-488)))))) +(-770) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-769) +(-771) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-770) +(-772) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-771 S) +(-773 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-772) +(-774) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-773) +(-775) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-774) +(-776) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \"x overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \"f super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-775 |VariableList|) +(-777 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-776) +(-778) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-777 R |vl| |wl| |wtlevel|) +(-779 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-3993 |has| |#1| (-146)) (-3992 |has| |#1| (-146)) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) -(-778 R PS UP) +((-3996 |has| |#1| (-148)) (-3995 |has| |#1| (-148)) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314)))) +(-780 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-779 R |x| |pt|) +(-781 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-780 |p|) +(-782 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-781 |p|) +(-783 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-782 |p|) +(-784 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| (-780 |#1|) (QUOTE (-823))) (|HasCategory| (-780 |#1|) (QUOTE (-952 (-1092)))) (|HasCategory| (-780 |#1|) (QUOTE (-118))) (|HasCategory| (-780 |#1|) (QUOTE (-120))) (|HasCategory| (-780 |#1|) (QUOTE (-555 (-475)))) (|HasCategory| (-780 |#1|) (QUOTE (-935))) (|HasCategory| (-780 |#1|) (QUOTE (-742))) (|HasCategory| (-780 |#1|) (QUOTE (-758))) (OR (|HasCategory| (-780 |#1|) (QUOTE (-742))) (|HasCategory| (-780 |#1|) (QUOTE (-758)))) (|HasCategory| (-780 |#1|) (QUOTE (-952 (-486)))) (|HasCategory| (-780 |#1|) (QUOTE (-1068))) (|HasCategory| (-780 |#1|) (QUOTE (-798 (-330)))) (|HasCategory| (-780 |#1|) (QUOTE (-798 (-486)))) (|HasCategory| (-780 |#1|) (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-780 |#1|) (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-780 |#1|) (QUOTE (-582 (-486)))) (|HasCategory| (-780 |#1|) (QUOTE (-189))) (|HasCategory| (-780 |#1|) (QUOTE (-813 (-1092)))) (|HasCategory| (-780 |#1|) (QUOTE (-190))) (|HasCategory| (-780 |#1|) (QUOTE (-811 (-1092)))) (|HasCategory| (-780 |#1|) (|%list| (QUOTE -457) (QUOTE (-1092)) (|%list| (QUOTE -780) (|devaluate| |#1|)))) (|HasCategory| (-780 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -780) (|devaluate| |#1|)))) (|HasCategory| (-780 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -780) (|devaluate| |#1|)) (|%list| (QUOTE -780) (|devaluate| |#1|)))) (|HasCategory| (-780 |#1|) (QUOTE (-258))) (|HasCategory| (-780 |#1|) (QUOTE (-485))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-780 |#1|) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-780 |#1|) (QUOTE (-823)))) (|HasCategory| (-780 |#1|) (QUOTE (-118))))) -(-783 |p| PADIC) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| (-782 |#1|) (QUOTE (-825))) (|HasCategory| (-782 |#1|) (QUOTE (-954 (-1094)))) (|HasCategory| (-782 |#1|) (QUOTE (-118))) (|HasCategory| (-782 |#1|) (QUOTE (-120))) (|HasCategory| (-782 |#1|) (QUOTE (-557 (-477)))) (|HasCategory| (-782 |#1|) (QUOTE (-937))) (|HasCategory| (-782 |#1|) (QUOTE (-744))) (|HasCategory| (-782 |#1|) (QUOTE (-760))) (OR (|HasCategory| (-782 |#1|) (QUOTE (-744))) (|HasCategory| (-782 |#1|) (QUOTE (-760)))) (|HasCategory| (-782 |#1|) (QUOTE (-954 (-488)))) (|HasCategory| (-782 |#1|) (QUOTE (-1070))) (|HasCategory| (-782 |#1|) (QUOTE (-800 (-332)))) (|HasCategory| (-782 |#1|) (QUOTE (-800 (-488)))) (|HasCategory| (-782 |#1|) (QUOTE (-557 (-804 (-332))))) (|HasCategory| (-782 |#1|) (QUOTE (-557 (-804 (-488))))) (|HasCategory| (-782 |#1|) (QUOTE (-584 (-488)))) (|HasCategory| (-782 |#1|) (QUOTE (-191))) (|HasCategory| (-782 |#1|) (QUOTE (-815 (-1094)))) (|HasCategory| (-782 |#1|) (QUOTE (-192))) (|HasCategory| (-782 |#1|) (QUOTE (-813 (-1094)))) (|HasCategory| (-782 |#1|) (|%list| (QUOTE -459) (QUOTE (-1094)) (|%list| (QUOTE -782) (|devaluate| |#1|)))) (|HasCategory| (-782 |#1|) (|%list| (QUOTE -262) (|%list| (QUOTE -782) (|devaluate| |#1|)))) (|HasCategory| (-782 |#1|) (|%list| (QUOTE -243) (|%list| (QUOTE -782) (|devaluate| |#1|)) (|%list| (QUOTE -782) (|devaluate| |#1|)))) (|HasCategory| (-782 |#1|) (QUOTE (-260))) (|HasCategory| (-782 |#1|) (QUOTE (-487))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-782 |#1|) (QUOTE (-825)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-782 |#1|) (QUOTE (-825)))) (|HasCategory| (-782 |#1|) (QUOTE (-118))))) +(-785 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-952 (-1092)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-935))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-758))) (OR (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-758)))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-798 (-330)))) (|HasCategory| |#2| (QUOTE (-798 (-486)))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (|%list| (QUOTE -457) (QUOTE (-1092)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-485))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-784 S T$) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-954 (-1094)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-557 (-477)))) (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (QUOTE (-760))) (OR (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (QUOTE (-760)))) (|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-800 (-332)))) (|HasCategory| |#2| (QUOTE (-800 (-488)))) (|HasCategory| |#2| (QUOTE (-557 (-804 (-332))))) (|HasCategory| |#2| (QUOTE (-557 (-804 (-488))))) (|HasCategory| |#2| (QUOTE (-584 (-488)))) (|HasCategory| |#2| (QUOTE (-191))) (|HasCategory| |#2| (QUOTE (-815 (-1094)))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (|%list| (QUOTE -459) (QUOTE (-1094)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -243) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-260))) (|HasCategory| |#2| (QUOTE (-487))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-786 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774)))))) -(-785) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-1017)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#2| (QUOTE (-556 (-776))))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-1017))))) (-12 (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#2| (QUOTE (-556 (-776)))))) +(-787) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value."))) NIL NIL -(-786) +(-788) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-787) +(-789) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-788 CF1 CF2) +(-790 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-789 |ComponentFunction|) +(-791 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-790 CF1 CF2) +(-792 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-791 |ComponentFunction|) +(-793 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-792) +(-794) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-793 CF1 CF2) +(-795 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-794 |ComponentFunction|) +(-796 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-795) +(-797) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0's,{}\\spad{l1} 1's,{}\\spad{l2} 2's,{}...,{}\\spad{ln} \\spad{n}'s.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}'s,{} and 4 \\spad{5}'s.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}."))) NIL NIL -(-796 R) +(-798 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-797 R S L) +(-799 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-798 S) +(-800 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-799 |Base| |Subject| |Pat|) +(-801 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2563 (|HasCategory| |#2| (QUOTE (-952 (-1092))))) (-2563 (|HasCategory| |#2| (QUOTE (-963))))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (-2563 (|HasCategory| |#2| (QUOTE (-952 (-1092)))))) (|HasCategory| |#2| (QUOTE (-952 (-1092))))) -(-800 R S) +((-12 (-2566 (|HasCategory| |#2| (QUOTE (-954 (-1094))))) (-2566 (|HasCategory| |#2| (QUOTE (-965))))) (-12 (|HasCategory| |#2| (QUOTE (-965))) (-2566 (|HasCategory| |#2| (QUOTE (-954 (-1094)))))) (|HasCategory| |#2| (QUOTE (-954 (-1094))))) +(-802 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-801 R A B) +(-803 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(vn,{}\\spad{f}(an))]."))) NIL NIL -(-802 R) +(-804 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and pn to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and pn to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and pn.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form 's for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) (|One| (($) "1")) (|Zero| (($) "0"))) NIL NIL -(-803 R -2672) +(-805 R -2675) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and fn to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-804 R S) +(-806 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-805 |VarSet|) +(-807 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) (|One| (($) "\\spad{1} returns the empty list."))) NIL NIL -(-806 UP R) +(-808 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-807 A T$ S) +(-809 A T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-808 T$ S) +(-810 T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-809 UP -3095) +(-811 UP -3098) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-810 R S) +(-812 R S) ((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-3993 . T) (-3992 . T)) +((-3996 . T) (-3995 . T)) NIL -(-811 S) +(-813 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-3995 . T)) +((-3998 . T)) NIL -(-812 A S) +(-814 A S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-813 S) +(-815 S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-814 S) +(-816 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) -(-815 S) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|)))) +(-817 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-3995 . T)) -((OR (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-758)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-758)))) -(-816 |n| R) +((-3998 . T)) +((OR (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-760)))) +(-818 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-817 S) +(-819 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-3995 . T)) +((-3998 . T)) NIL -(-818 S) +(-820 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-819 |p|) +(-821 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-320)))) -(-820 R E |VarSet| S) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-322)))) +(-822 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-821 R S) +(-823 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-822 S) +(-824 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-118)))) -(-823) +(-825) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-824 R0 -3095 UP UPUP R) +(-826 R0 -3098 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-825 UP UPUP R) +(-827 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-826 UP UPUP) +(-828 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-827 R) +(-829 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator,{} while the ``p-adic'' form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-828 R) +(-830 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-829 E OV R P) +(-831 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the gcd of the list of primitive polynomials lp.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-830) +(-832) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik's Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 <= \\spad{i} <= 6,{} 1 <= \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-831 -3095) +(-833 -3098) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any gcd domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-832) +(-834) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = y*x")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4000 "*") . T)) +(((-4003 "*") . T)) NIL -(-833 R) +(-835 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-834) +(-836) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Maybe| (|List| $)) (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \\spad{nothing} if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-835 |xx| -3095) +(-837 |xx| -3098) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-836 -3095 P) +(-838 -3098 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-837 R |Var| |Expon| GR) +(-839 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank >= \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} ~= 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-838) +(-840) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-839 S) +(-841 S) ((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions SF -> SF are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-840) +(-842) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-841) +(-843) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-842) +(-844) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-843 R -3095) +(-845 R -3098) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-844 S A B) +(-846 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-845 S R -3095) +(-847 S R -3098) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-846 I) +(-848 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-847 S E) +(-849 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-848 S R L) +(-850 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-849 S E V R P) +(-851 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -798) (|devaluate| |#1|)))) -(-850 -2672) +((|HasCategory| |#3| (|%list| (QUOTE -800) (|devaluate| |#1|)))) +(-852 -2675) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-851 R -3095 -2672) +(-853 R -3098 -2675) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-852 S R Q) +(-854 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-853 S) +(-855 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-854 S R P) +(-856 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-855) +(-857) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-856 R) +(-858 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#1| (QUOTE (-963))) (-12 (|HasCategory| |#1| (QUOTE (-917))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))))) -(-857 |lv| R) +((OR (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (OR (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-760))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| (-488) (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-667))) (|HasCategory| |#1| (QUOTE (-965))) (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-965)))) (|HasCategory| |#1| (QUOTE (-1017))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|))))) +(-859 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-858 |TheField| |ThePols|) +(-860 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}sn)} is the number of sign variations in the list of non null numbers [s1::l]@sn,{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}p')}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-757)))) -(-859 R) +((|HasCategory| |#1| (QUOTE (-759)))) +(-861 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-823))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| (-1092) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| (-1092) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-1092) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-1092) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| (-1092) (QUOTE (-555 (-475))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-860 R S) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-6 -3999)) (-3996 . T) (-3995 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-825))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-825)))) (OR (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-825)))) (OR (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-148))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-800 (-332)))) (|HasCategory| (-1094) (QUOTE (-800 (-332))))) (-12 (|HasCategory| |#1| (QUOTE (-800 (-488)))) (|HasCategory| (-1094) (QUOTE (-800 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-332))))) (|HasCategory| (-1094) (QUOTE (-557 (-804 (-332)))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-488))))) (|HasCategory| (-1094) (QUOTE (-557 (-804 (-488)))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-477)))) (|HasCategory| (-1094) (QUOTE (-557 (-477))))) (|HasCategory| |#1| (QUOTE (-584 (-488)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-314))) (|HasAttribute| |#1| (QUOTE -3999)) (|HasCategory| |#1| (QUOTE (-395))) (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-862 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-861 |x| R) +(-863 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-862 S R E |VarSet|) +(-864 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-823))) (|HasAttribute| |#2| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-798 (-330)))) (|HasCategory| |#2| (QUOTE (-798 (-330)))) (|HasCategory| |#4| (QUOTE (-798 (-486)))) (|HasCategory| |#2| (QUOTE (-798 (-486)))) (|HasCategory| |#4| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#4| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#4| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-555 (-475))))) -(-863 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-825))) (|HasAttribute| |#2| (QUOTE -3999)) (|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#4| (QUOTE (-800 (-332)))) (|HasCategory| |#2| (QUOTE (-800 (-332)))) (|HasCategory| |#4| (QUOTE (-800 (-488)))) (|HasCategory| |#2| (QUOTE (-800 (-488)))) (|HasCategory| |#4| (QUOTE (-557 (-804 (-332))))) (|HasCategory| |#2| (QUOTE (-557 (-804 (-332))))) (|HasCategory| |#4| (QUOTE (-557 (-804 (-488))))) (|HasCategory| |#2| (QUOTE (-557 (-804 (-488))))) (|HasCategory| |#4| (QUOTE (-557 (-477)))) (|HasCategory| |#2| (QUOTE (-557 (-477))))) +(-865 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-6 -3999)) (-3996 . T) (-3995 . T) (-3998 . T)) NIL -(-864 E V R P -3095) +(-866 E V R P -3098) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}mn] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-865 E |Vars| R P S) +(-867 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-866 E V R P -3095) +(-868 E V R P -3098) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-393)))) -(-867) +((|HasCategory| |#3| (QUOTE (-395)))) +(-869) ((|constructor| (NIL "This domain represents network port numbers (notable TCP and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer `n'."))) NIL NIL -(-868) +(-870) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-869 R E) +(-871 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3996))) -(-870 R L) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-6 -3999)) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-499))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-395))) (-12 (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3999))) +(-872 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-871 S) +(-873 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed"))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))))) -(-872 A B) +((OR (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (OR (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-760))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| (-488) (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|))))) +(-874 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-873) +(-875) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} dx for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} dx."))) NIL NIL -(-874 -3095) +(-876 -3098) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}."))) NIL NIL -(-875 I) +(-877 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin's probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin's probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-876) +(-878) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-877 A B) +(-879 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-3995 -12 (|has| |#2| (-414)) (|has| |#1| (-414)))) -((OR (-12 (|HasCategory| |#1| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-719)))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-758))))) (-12 (|HasCategory| |#1| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-719)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-719)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-719)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#2| (QUOTE (-414)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#2| (QUOTE (-414)))) (-12 (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-665))))) (-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-320)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-719)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-414))) (|HasCategory| |#2| (QUOTE (-414)))) (-12 (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-665))))) (-12 (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-665)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-758))))) -(-878) +((-3998 -12 (|has| |#2| (-416)) (|has| |#1| (-416)))) +((OR (-12 (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-760))))) (-12 (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-721)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-416))) (|HasCategory| |#2| (QUOTE (-416)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-416))) (|HasCategory| |#2| (QUOTE (-416)))) (-12 (|HasCategory| |#1| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-667))))) (-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-322)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-416))) (|HasCategory| |#2| (QUOTE (-416)))) (-12 (|HasCategory| |#1| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-667))))) (-12 (|HasCategory| |#1| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-667)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-760))))) +(-880) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-879 T$) +(-881 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-880 T$) +(-882 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} ++ returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-881 S T$) +(-883 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-882) +(-884) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of `p',{} `q'.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of `q' by `p'.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-883 S) +(-885 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) NIL NIL -(-884 R |polR|) +(-886 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.fr}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{S_{\\spad{e}-1}} where \\axiom{\\spad{P} ~ S_d,{} \\spad{Q} = S_{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)**(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(\\spad{P},{} \\spad{Q})} returns the gcd of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the gcd of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-393)))) -(-885) +((|HasCategory| |#1| (QUOTE (-395)))) +(-887) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-886) +(-888) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-887 S |Coef| |Expon| |Var|) +(-889 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-888 |Coef| |Expon| |Var|) +(-890 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-889) +(-891) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the x-,{} y-,{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-890 S R E |VarSet| P) +(-892 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#4| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-497)))) -(-891 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-499)))) +(-893 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL NIL -(-892 R E V P) +(-894 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,{}lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,{}lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of gcd techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover,{} \\axiom{lq} is computed by reducing \\axiom{lp} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,{}pred?,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}lf)} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}lf,{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf,{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,{}nbps} where \\axiom{bps} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,{}nlps} where \\axiom{lps} is a list of the linear polynomials in lp,{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,{}lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}lp)} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{lp} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is gcd-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in lp]} if \\axiom{\\spad{R}} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,{}lq,{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,{}lq)),{}lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,{}lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,{}lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lq = [\\spad{q1},{}...,{}qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{pj},{} and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{lq} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is gcd-domain,{} the polynomials in \\axiom{lq} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-393)))) -(-893 K) +((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-260)))) (|HasCategory| |#1| (QUOTE (-395)))) +(-895 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-894 |VarSet| E RC P) +(-896 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary gcd domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-895 R) +(-897 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) NIL NIL -(-896 R1 R2) +(-898 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-897 R) +(-899 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-898 K) +(-900 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns csc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-899 R E OV PPR) +(-901 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-900 K R UP -3095) +(-902 K R UP -3098) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-901 R |Var| |Expon| |Dpoly|) +(-903 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don't know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} ~= 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-258))))) -(-902 |vl| |nv|) +((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-260))))) +(-904 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-903 R E V P TS) +(-905 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-904) +(-906) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-905 A S) +(-907 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-952 (-1092)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-935))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-1068)))) -(-906 S) +((|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-260))) (|HasCategory| |#2| (QUOTE (-954 (-1094)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-557 (-477)))) (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-1070)))) +(-908 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-907 A B R S) +(-909 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-908 |n| K) +(-910 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-909) +(-911) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-910 S) +(-912 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) NIL NIL -(-911 R) +(-913 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-3991 |has| |#1| (-246)) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (|%list| (QUOTE -457) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-485)))) -(-912 S R) +((-3994 |has| |#1| (-248)) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (|HasCategory| |#1| (QUOTE (-314))) (OR (|HasCategory| |#1| (QUOTE (-248))) (|HasCategory| |#1| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-248))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-584 (-488)))) (|HasCategory| |#1| (|%list| (QUOTE -459) (QUOTE (-1094)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -243) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-191))) (|HasCategory| |#1| (QUOTE (-815 (-1094)))) (|HasCategory| |#1| (QUOTE (-192))) (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-487)))) +(-914 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-246)))) -(-913 R) +((|HasCategory| |#2| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-557 (-477)))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-248)))) +(-915 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-3991 |has| |#1| (-246)) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3994 |has| |#1| (-248)) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-914 QR R QS S) +(-916 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-915 S) +(-917 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-916 S) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-918 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-917) +(-919) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-918 -3095 UP UPUP |radicnd| |n|) +(-920 -3098 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-3991 |has| (-350 |#2|) (-312)) (-3996 |has| (-350 |#2|) (-312)) (-3990 |has| (-350 |#2|) (-312)) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1092))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1092)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1092))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-813 (-1092)))))) (|HasCategory| (-350 |#2|) (QUOTE (-582 (-486)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-952 (-350 (-486)))))) (|HasCategory| (-350 |#2|) (QUOTE (-952 (-350 (-486))))) (|HasCategory| (-350 |#2|) (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-813 (-1092))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1092)))))) -(-919 |bb|) +((-3994 |has| (-352 |#2|) (-314)) (-3999 |has| (-352 |#2|) (-314)) (-3993 |has| (-352 |#2|) (-314)) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| (-352 |#2|) (QUOTE (-118))) (|HasCategory| (-352 |#2|) (QUOTE (-120))) (|HasCategory| (-352 |#2|) (QUOTE (-301))) (OR (|HasCategory| (-352 |#2|) (QUOTE (-314))) (|HasCategory| (-352 |#2|) (QUOTE (-301)))) (|HasCategory| (-352 |#2|) (QUOTE (-314))) (|HasCategory| (-352 |#2|) (QUOTE (-322))) (OR (-12 (|HasCategory| (-352 |#2|) (QUOTE (-192))) (|HasCategory| (-352 |#2|) (QUOTE (-314)))) (|HasCategory| (-352 |#2|) (QUOTE (-301)))) (OR (-12 (|HasCategory| (-352 |#2|) (QUOTE (-192))) (|HasCategory| (-352 |#2|) (QUOTE (-314)))) (-12 (|HasCategory| (-352 |#2|) (QUOTE (-191))) (|HasCategory| (-352 |#2|) (QUOTE (-314)))) (|HasCategory| (-352 |#2|) (QUOTE (-301)))) (OR (-12 (|HasCategory| (-352 |#2|) (QUOTE (-314))) (|HasCategory| (-352 |#2|) (QUOTE (-813 (-1094))))) (-12 (|HasCategory| (-352 |#2|) (QUOTE (-301))) (|HasCategory| (-352 |#2|) (QUOTE (-813 (-1094)))))) (OR (-12 (|HasCategory| (-352 |#2|) (QUOTE (-314))) (|HasCategory| (-352 |#2|) (QUOTE (-813 (-1094))))) (-12 (|HasCategory| (-352 |#2|) (QUOTE (-314))) (|HasCategory| (-352 |#2|) (QUOTE (-815 (-1094)))))) (|HasCategory| (-352 |#2|) (QUOTE (-584 (-488)))) (OR (|HasCategory| (-352 |#2|) (QUOTE (-314))) (|HasCategory| (-352 |#2|) (QUOTE (-954 (-352 (-488)))))) (|HasCategory| (-352 |#2|) (QUOTE (-954 (-352 (-488))))) (|HasCategory| (-352 |#2|) (QUOTE (-954 (-488)))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-322))) (-12 (|HasCategory| (-352 |#2|) (QUOTE (-191))) (|HasCategory| (-352 |#2|) (QUOTE (-314)))) (-12 (|HasCategory| (-352 |#2|) (QUOTE (-314))) (|HasCategory| (-352 |#2|) (QUOTE (-815 (-1094))))) (-12 (|HasCategory| (-352 |#2|) (QUOTE (-192))) (|HasCategory| (-352 |#2|) (QUOTE (-314)))) (-12 (|HasCategory| (-352 |#2|) (QUOTE (-314))) (|HasCategory| (-352 |#2|) (QUOTE (-813 (-1094)))))) +(-921 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| (-486) (QUOTE (-823))) (|HasCategory| (-486) (QUOTE (-952 (-1092)))) (|HasCategory| (-486) (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-120))) (|HasCategory| (-486) (QUOTE (-555 (-475)))) (|HasCategory| (-486) (QUOTE (-935))) (|HasCategory| (-486) (QUOTE (-742))) (|HasCategory| (-486) (QUOTE (-758))) (OR (|HasCategory| (-486) (QUOTE (-742))) (|HasCategory| (-486) (QUOTE (-758)))) (|HasCategory| (-486) (QUOTE (-952 (-486)))) (|HasCategory| (-486) (QUOTE (-1068))) (|HasCategory| (-486) (QUOTE (-798 (-330)))) (|HasCategory| (-486) (QUOTE (-798 (-486)))) (|HasCategory| (-486) (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-486) (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-486) (QUOTE (-189))) (|HasCategory| (-486) (QUOTE (-813 (-1092)))) (|HasCategory| (-486) (QUOTE (-190))) (|HasCategory| (-486) (QUOTE (-811 (-1092)))) (|HasCategory| (-486) (QUOTE (-457 (-1092) (-486)))) (|HasCategory| (-486) (QUOTE (-260 (-486)))) (|HasCategory| (-486) (QUOTE (-241 (-486) (-486)))) (|HasCategory| (-486) (QUOTE (-258))) (|HasCategory| (-486) (QUOTE (-485))) (|HasCategory| (-486) (QUOTE (-582 (-486)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-486) (QUOTE (-823)))) (|HasCategory| (-486) (QUOTE (-118))))) -(-920) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| (-488) (QUOTE (-825))) (|HasCategory| (-488) (QUOTE (-954 (-1094)))) (|HasCategory| (-488) (QUOTE (-118))) (|HasCategory| (-488) (QUOTE (-120))) (|HasCategory| (-488) (QUOTE (-557 (-477)))) (|HasCategory| (-488) (QUOTE (-937))) (|HasCategory| (-488) (QUOTE (-744))) (|HasCategory| (-488) (QUOTE (-760))) (OR (|HasCategory| (-488) (QUOTE (-744))) (|HasCategory| (-488) (QUOTE (-760)))) (|HasCategory| (-488) (QUOTE (-954 (-488)))) (|HasCategory| (-488) (QUOTE (-1070))) (|HasCategory| (-488) (QUOTE (-800 (-332)))) (|HasCategory| (-488) (QUOTE (-800 (-488)))) (|HasCategory| (-488) (QUOTE (-557 (-804 (-332))))) (|HasCategory| (-488) (QUOTE (-557 (-804 (-488))))) (|HasCategory| (-488) (QUOTE (-191))) (|HasCategory| (-488) (QUOTE (-815 (-1094)))) (|HasCategory| (-488) (QUOTE (-192))) (|HasCategory| (-488) (QUOTE (-813 (-1094)))) (|HasCategory| (-488) (QUOTE (-459 (-1094) (-488)))) (|HasCategory| (-488) (QUOTE (-262 (-488)))) (|HasCategory| (-488) (QUOTE (-243 (-488) (-488)))) (|HasCategory| (-488) (QUOTE (-260))) (|HasCategory| (-488) (QUOTE (-487))) (|HasCategory| (-488) (QUOTE (-584 (-488)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-488) (QUOTE (-825)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-488) (QUOTE (-825)))) (|HasCategory| (-488) (QUOTE (-118))))) +(-922) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-921) +(-923) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-922 RP) +(-924 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-923 S) +(-925 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-924 A S) +(-926 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1037) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-72)))) -(-925 S) +((|HasCategory| |#1| (|%list| (QUOTE -1039) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-72)))) +(-927 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-926 S) +(-928 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-927) +(-929) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-3991 . T) (-3996 . T) (-3990 . T) (-3993 . T) (-3992 . T) ((-4000 "*") . T) (-3995 . T)) +((-3994 . T) (-3999 . T) (-3993 . T) (-3996 . T) (-3995 . T) ((-4003 "*") . T) (-3998 . T)) NIL -(-928 R -3095) +(-930 R -3098) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-929 R -3095) +(-931 R -3098) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-930 -3095 UP) +(-932 -3098 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-931 -3095 UP) +(-933 -3098 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-932 S) +(-934 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-933 F1 UP UPUP R F2) +(-935 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-934) +(-936) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-935) +(-937) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-936 |Pol|) +(-938 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-937 |Pol|) +(-939 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-938) +(-940) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-939 |TheField|) +(-941 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-3991 . T) (-3996 . T) (-3990 . T) (-3993 . T) (-3992 . T) ((-4000 "*") . T) (-3995 . T)) -((OR (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| (-350 (-486)) (QUOTE (-952 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| (-350 (-486)) (QUOTE (-952 (-350 (-486))))) (|HasCategory| (-350 (-486)) (QUOTE (-952 (-486))))) -(-940 -3095 L) +((-3994 . T) (-3999 . T) (-3993 . T) (-3996 . T) (-3995 . T) ((-4003 "*") . T) (-3998 . T)) +((OR (|HasCategory| |#1| (QUOTE (-954 (-488)))) (|HasCategory| (-352 (-488)) (QUOTE (-954 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (|HasCategory| (-352 (-488)) (QUOTE (-954 (-352 (-488))))) (|HasCategory| (-352 (-488)) (QUOTE (-954 (-488))))) +(-942 -3098 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-941 S) +(-943 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(r,s)} reset the reference \\spad{r} to refer to \\spad{s}")) (|deref| ((|#1| $) "\\spad{deref(r)} returns the object referenced by \\spad{r}")) (|ref| (($ |#1|) "\\spad{ref(s)} creates a reference to the object \\spad{s}."))) NIL NIL -(-942 R E V P) +(-944 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) NIL -((-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-555 (-475)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-554 (-774)))) (|HasCategory| |#4| (QUOTE (-1015))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) -(-943) +((-12 (|HasCategory| |#4| (QUOTE (-1017))) (|HasCategory| |#4| (|%list| (QUOTE -262) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-557 (-477)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#3| (QUOTE (-322))) (|HasCategory| |#4| (QUOTE (-556 (-776)))) (|HasCategory| |#4| (QUOTE (-1017))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#4|)))) +(-945) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-944 R) +(-946 R) ((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 <= \\spad{i} <= \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 <= \\spad{i} <= \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4000 "*")))) -(-945 R) +((|HasAttribute| |#1| (QUOTE (-4003 "*")))) +(-947 R) ((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker's fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258)))) -(-946 S) +((-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-322)))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-260)))) +(-948 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-947 S) +(-949 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-948 S) +(-950 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-949 -3095 |Expon| |VarSet| |FPol| |LFPol|) +(-951 -3098 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +(((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-950) +(-952) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-951 A S) +(-953 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-952 S) +(-954 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-953 Q R) +(-955 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-954 R) +(-956 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-955) +(-957) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-956 UP) +(-958 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-957 R) +(-959 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-958 T$) +(-960 T$) ((|constructor| (NIL "This category defines the common interface for RGB color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of `c'.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of `c'.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of `c'."))) NIL NIL -(-959 T$) +(-961 T$) ((|constructor| (NIL "This category defines the common interface for RGB color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-960 R |ls|) +(-962 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) NIL -((-12 (|HasCategory| (-705 |#1| (-775 |#2|)) (QUOTE (-1015))) (|HasCategory| (-705 |#1| (-775 |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -705) (|devaluate| |#1|) (|%list| (QUOTE -775) (|devaluate| |#2|)))))) (|HasCategory| (-705 |#1| (-775 |#2|)) (QUOTE (-555 (-475)))) (|HasCategory| (-705 |#1| (-775 |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| (-775 |#2|) (QUOTE (-320))) (|HasCategory| (-705 |#1| (-775 |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-705 |#1| (-775 |#2|)) (QUOTE (-1015))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -705) (|devaluate| |#1|) (|%list| (QUOTE -775) (|devaluate| |#2|))))) (|HasCategory| (-705 |#1| (-775 |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -705) (|devaluate| |#1|) (|%list| (QUOTE -775) (|devaluate| |#2|)))))) -(-961) +((-12 (|HasCategory| (-707 |#1| (-777 |#2|)) (QUOTE (-1017))) (|HasCategory| (-707 |#1| (-777 |#2|)) (|%list| (QUOTE -262) (|%list| (QUOTE -707) (|devaluate| |#1|) (|%list| (QUOTE -777) (|devaluate| |#2|)))))) (|HasCategory| (-707 |#1| (-777 |#2|)) (QUOTE (-557 (-477)))) (|HasCategory| (-707 |#1| (-777 |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| (-777 |#2|) (QUOTE (-322))) (|HasCategory| (-707 |#1| (-777 |#2|)) (QUOTE (-556 (-776)))) (|HasCategory| (-707 |#1| (-777 |#2|)) (QUOTE (-1017))) (-12 (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -707) (|devaluate| |#1|) (|%list| (QUOTE -777) (|devaluate| |#2|))))) (|HasCategory| (-707 |#1| (-777 |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -707) (|devaluate| |#1|) (|%list| (QUOTE -777) (|devaluate| |#2|)))))) +(-963) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-962 S) +(-964 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-963) +(-965) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-3995 . T)) +((-3998 . T)) NIL -(-964 |xx| -3095) +(-966 |xx| -3098) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-965 S) +(-967 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-966 S |m| |n| R |Row| |Col|) +(-968 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix."))) NIL -((|HasCategory| |#4| (QUOTE (-258))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-497))) (|HasCategory| |#4| (QUOTE (-146)))) -(-967 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-260))) (|HasCategory| |#4| (QUOTE (-314))) (|HasCategory| |#4| (QUOTE (-499))) (|HasCategory| |#4| (QUOTE (-148)))) +(-969 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix."))) -((-3993 . T) (-3992 . T)) +((-3996 . T) (-3995 . T)) NIL -(-968 |m| |n| R) +(-970 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-3993 . T) (-3992 . T)) -((|HasCategory| |#3| (QUOTE (-146))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-258))) (|HasCategory| |#3| (QUOTE (-497))) (-12 (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-554 (-774))))) -(-969 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-3996 . T) (-3995 . T)) +((|HasCategory| |#3| (QUOTE (-148))) (OR (-12 (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1017))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-557 (-477)))) (OR (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-314)))) (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-260))) (|HasCategory| |#3| (QUOTE (-499))) (-12 (|HasCategory| |#3| (QUOTE (-1017))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-1017))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-556 (-776))))) +(-971 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-970 R) +(-972 R) ((|constructor| (NIL "The category of right modules over an rng (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the rng. \\blankline"))) NIL NIL -(-971 S) +(-973 S) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")) (|annihilate?| (((|Boolean|) $ $) "\\spad{annihilate?(x,y)} holds when the product of \\spad{x} and \\spad{y} is \\spad{0}."))) NIL NIL -(-972) +(-974) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")) (|annihilate?| (((|Boolean|) $ $) "\\spad{annihilate?(x,y)} holds when the product of \\spad{x} and \\spad{y} is \\spad{0}."))) NIL NIL -(-973 S T$) +(-975 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1015)))) -(-974 S) +((|HasCategory| |#1| (QUOTE (-1017)))) +(-976 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-975) +(-977) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-976 |TheField| |ThePolDom|) +(-978 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-977) +(-979) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-3986 . T) (-3990 . T) (-3985 . T) (-3996 . T) (-3997 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3989 . T) (-3993 . T) (-3988 . T) (-3999 . T) (-4000 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-978 S R E V) +(-980 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-38 (-486)))) (|HasCategory| |#2| (QUOTE (-906 (-486)))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#4| (QUOTE (-555 (-1092))))) -(-979 R E V) +((|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-954 (-488)))) (|HasCategory| |#2| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-38 (-488)))) (|HasCategory| |#2| (QUOTE (-908 (-488)))) (|HasCategory| |#2| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#4| (QUOTE (-557 (-1094))))) +(-981 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-6 -3999)) (-3996 . T) (-3995 . T) (-3998 . T)) NIL -(-980) +(-982) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-981 S |TheField| |ThePols|) +(-983 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-982 |TheField| |ThePols|) +(-984 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-983 R E V P TS) +(-985 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS). The same way it does not care about the way univariate polynomial gcd (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcd need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-984 S R E V P) +(-986 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-985 R E V P) +(-987 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-986 R E V P TS) +(-988 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}ts)} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts,{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-987) +(-989) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-988) +(-990) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-989 |Base| R -3095) +(-991 |Base| R -3098) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}fn are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-990 |f|) +(-992 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-991 |Base| R -3095) +(-993 |Base| R -3098) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-992 R |ls|) +(-994 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-993 R UP M) +(-995 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-3991 |has| |#1| (-312)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-813 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))))) -(-994 UP SAE UPA) +((-3994 |has| |#1| (-314)) (-3999 |has| |#1| (-314)) (-3993 |has| |#1| (-314)) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-301))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-301)))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-322))) (OR (-12 (|HasCategory| |#1| (QUOTE (-192))) (|HasCategory| |#1| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-301)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-192))) (|HasCategory| |#1| (QUOTE (-314)))) (-12 (|HasCategory| |#1| (QUOTE (-191))) (|HasCategory| |#1| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-301)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-813 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-813 (-1094)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-813 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-815 (-1094)))))) (|HasCategory| |#1| (QUOTE (-584 (-488)))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-191))) (|HasCategory| |#1| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-301)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-815 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-191))) (|HasCategory| |#1| (QUOTE (-314)))) (-12 (|HasCategory| |#1| (QUOTE (-192))) (|HasCategory| |#1| (QUOTE (-314)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-813 (-1094)))))) +(-996 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-995 UP SAE UPA) +(-997 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-996) +(-998) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-997) +(-999) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-998 S) +(-1000 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-999) +(-1001) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding `b'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of `n' in `s'; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1000 R) +(-1002 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1001 R) +(-1003 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-823))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| (-1002 (-1092)) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| (-1002 (-1092)) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-1002 (-1092)) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-1002 (-1092)) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| (-1002 (-1092)) (QUOTE (-555 (-475))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1002 S) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-6 -3999)) (-3996 . T) (-3995 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-825))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-825)))) (OR (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-825)))) (OR (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-148))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-800 (-332)))) (|HasCategory| (-1004 (-1094)) (QUOTE (-800 (-332))))) (-12 (|HasCategory| |#1| (QUOTE (-800 (-488)))) (|HasCategory| (-1004 (-1094)) (QUOTE (-800 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-332))))) (|HasCategory| (-1004 (-1094)) (QUOTE (-557 (-804 (-332)))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-488))))) (|HasCategory| (-1004 (-1094)) (QUOTE (-557 (-804 (-488)))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-477)))) (|HasCategory| (-1004 (-1094)) (QUOTE (-557 (-477))))) (|HasCategory| |#1| (QUOTE (-584 (-488)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-192))) (|HasCategory| |#1| (QUOTE (-191))) (|HasCategory| |#1| (QUOTE (-815 (-1094)))) (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasCategory| |#1| (QUOTE (-314))) (|HasAttribute| |#1| (QUOTE -3999)) (|HasCategory| |#1| (QUOTE (-395))) (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1004 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1003 S) +(-1005 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1015)))) -(-1004 R S) +((|HasCategory| |#1| (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-1017)))) +(-1006 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-757)))) -(-1005) +((|HasCategory| |#1| (QUOTE (-759)))) +(-1007) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment `s'. If `s' designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1006 S) +(-1008 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1003 |#1|) (QUOTE (-1015)))) -(-1007 R S) +((|HasCategory| (-1005 |#1|) (QUOTE (-1017)))) +(-1009 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1008 S) +(-1010 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1009 S L) +(-1011 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1010) +(-1012) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1011 S) +(-1013 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the members function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-3988 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) -(-1012 A S) +((-3991 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-1017))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|)))) +(-1014 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1013 S) +(-1015 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-3988 . T)) +((-3991 . T)) NIL -(-1014 S) +(-1016 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1015) +(-1017) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1016 |m| |n|) +(-1018 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1017) +(-1019) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1018 |Str| |Sym| |Int| |Flt| |Expr|) +(-1020 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns \\spad{a1}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of Flt; Error: if \\spad{s} is not an atom that also belongs to Flt.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of Sym. Error: if \\spad{s} is not an atom that also belongs to Sym.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of Str. Error: if \\spad{s} is not an atom that also belongs to Str.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Flt.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Sym.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Str.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL NIL -(-1019 |Str| |Sym| |Int| |Flt| |Expr|) +(-1021 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1020 R E V P TS) +(-1022 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(ts,{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1021 R E V P TS) +(-1023 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1022 R E V P) +(-1024 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the gcd of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1023) +(-1025) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1024 T$) +(-1026 T$) ((|constructor| (NIL "This domain implements semigroup operations.")) (|semiGroupOperation| (($ (|Mapping| |#1| |#1| |#1|)) "\\spad{semiGroupOperation f} constructs a semigroup operation out of a binary homogeneous mapping known to be associative."))) -(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3059 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3062 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-1025 T$) +(-1027 T$) ((|constructor| (NIL "This is the category of all domains that implement semigroup operations"))) -(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3059 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3062 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-1026 S) +(-1028 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1027) +(-1029) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1028 |dimtot| |dim1| S) +(-1030 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3992 |has| |#3| (-963)) (-3993 |has| |#3| (-963)) (-3995 |has| |#3| (-6 -3995))) -((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-554 (-774)))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-719))) (OR (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-758)))) (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-582 (-486)))) (|HasCategory| |#3| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#3| (QUOTE (-582 (-486)))) (|HasCategory| |#3| (QUOTE (-963))))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (QUOTE (-1015)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (QUOTE (-1015)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-813 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-811 (-1092))))) (|HasCategory| |#3| (QUOTE (-1015))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-952 (-350 (-486)))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#3| (QUOTE (-1015))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-1015)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-1015)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-963))))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| (-486) (QUOTE (-758))) (-12 (|HasCategory| |#3| (QUOTE (-582 (-486)))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-813 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-1015)))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-486)))) (|HasCategory| |#3| (QUOTE (-1015)))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#3| (QUOTE (-1015)))) (|HasAttribute| |#3| (QUOTE -3995)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1092)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#3|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#3|)))) -(-1029 R |x|) +((-3995 |has| |#3| (-965)) (-3996 |has| |#3| (-965)) (-3998 |has| |#3| (-6 -3998))) +((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-322))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-667))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-760))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-965))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1017))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-556 (-776)))) (|HasCategory| |#3| (QUOTE (-314))) (OR (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-965)))) (OR (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-314)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-965))) (|HasCategory| |#3| (QUOTE (-667))) (|HasCategory| |#3| (QUOTE (-721))) (OR (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-760)))) (|HasCategory| |#3| (QUOTE (-760))) (|HasCategory| |#3| (QUOTE (-322))) (OR (-12 (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-584 (-488)))) (|HasCategory| |#3| (QUOTE (-813 (-1094))))) (-12 (|HasCategory| |#3| (QUOTE (-584 (-488)))) (|HasCategory| |#3| (QUOTE (-965))))) (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-322))) (|HasCategory| |#3| (QUOTE (-667))) (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-760))) (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (|HasCategory| |#3| (QUOTE (-965))) (|HasCategory| |#3| (QUOTE (-1017)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-322))) (|HasCategory| |#3| (QUOTE (-667))) (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-760))) (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (|HasCategory| |#3| (QUOTE (-965))) (|HasCategory| |#3| (QUOTE (-1017)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (|HasCategory| |#3| (QUOTE (-965)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (|HasCategory| |#3| (QUOTE (-965)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (|HasCategory| |#3| (QUOTE (-965)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (|HasCategory| |#3| (QUOTE (-965)))) (OR (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (|HasCategory| |#3| (QUOTE (-965)))) (|HasCategory| |#3| (QUOTE (-192))) (OR (|HasCategory| |#3| (QUOTE (-192))) (-12 (|HasCategory| |#3| (QUOTE (-191))) (|HasCategory| |#3| (QUOTE (-965))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-815 (-1094)))) (|HasCategory| |#3| (QUOTE (-965)))) (|HasCategory| |#3| (QUOTE (-813 (-1094))))) (|HasCategory| |#3| (QUOTE (-1017))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-322))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-667))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-760))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (|HasCategory| |#3| (QUOTE (-954 (-352 (-488)))))) (-12 (|HasCategory| |#3| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#3| (QUOTE (-965)))) (-12 (|HasCategory| |#3| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#3| (QUOTE (-1017))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-760))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-954 (-488)))) (|HasCategory| |#3| (QUOTE (-1017)))) (-12 (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-322))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-667))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (|HasCategory| |#3| (QUOTE (-965)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-760))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-954 (-488)))) (|HasCategory| |#3| (QUOTE (-1017)))) (-12 (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-322))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-667))) (|HasCategory| |#3| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#3| (QUOTE (-954 (-488)))) (|HasCategory| |#3| (QUOTE (-965))))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| (-488) (QUOTE (-760))) (-12 (|HasCategory| |#3| (QUOTE (-584 (-488)))) (|HasCategory| |#3| (QUOTE (-965)))) (-12 (|HasCategory| |#3| (QUOTE (-191))) (|HasCategory| |#3| (QUOTE (-965)))) (-12 (|HasCategory| |#3| (QUOTE (-815 (-1094)))) (|HasCategory| |#3| (QUOTE (-965)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-954 (-488)))) (|HasCategory| |#3| (QUOTE (-1017)))) (|HasCategory| |#3| (QUOTE (-965)))) (-12 (|HasCategory| |#3| (QUOTE (-954 (-488)))) (|HasCategory| |#3| (QUOTE (-1017)))) (-12 (|HasCategory| |#3| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#3| (QUOTE (-1017)))) (|HasAttribute| |#3| (QUOTE -3998)) (-12 (|HasCategory| |#3| (QUOTE (-192))) (|HasCategory| |#3| (QUOTE (-965)))) (-12 (|HasCategory| |#3| (QUOTE (-813 (-1094)))) (|HasCategory| |#3| (QUOTE (-965)))) (|HasCategory| |#3| (QUOTE (-148))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1017))) (|HasCategory| |#3| (|%list| (QUOTE -262) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#3|)))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#3|)))) +(-1031 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-393)))) -(-1030) +((|HasCategory| |#1| (QUOTE (-395)))) +(-1032) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of `s'.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature `s'.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by `s',{} and return type indicated by `t'."))) NIL NIL -(-1031) +(-1033) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for `s'.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature `s'.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST n: \\spad{s} -> \\spad{t}"))) NIL NIL -(-1032 R -3095) +(-1034 R -3098) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1033 R) +(-1035 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1034) +(-1036) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1035) +(-1037) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-3986 . T) (-3990 . T) (-3985 . T) (-3996 . T) (-3997 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3989 . T) (-3993 . T) (-3988 . T) (-3999 . T) (-4000 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-1036 S) +(-1038 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\#s}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) NIL NIL -(-1037 S) +(-1039 S) ((|constructor| (NIL "This category describes the class of homogeneous aggregates that support in place mutation that do not change their general shapes.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\spad{f(x)}"))) NIL NIL -(-1038 S |ndim| R |Row| |Col|) +(-1040 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-312))) (|HasAttribute| |#3| (QUOTE (-4000 "*"))) (|HasCategory| |#3| (QUOTE (-146)))) -(-1039 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-314))) (|HasAttribute| |#3| (QUOTE (-4003 "*"))) (|HasCategory| |#3| (QUOTE (-148)))) +(-1041 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) -((-3992 . T) (-3993 . T) (-3995 . T)) +((-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-1040 R |Row| |Col| M) +(-1042 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1041 R |VarSet|) +(-1043 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-823))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| |#2| (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| |#2| (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-555 (-475))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1042 |Coef| |Var| SMP) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-6 -3999)) (-3996 . T) (-3995 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-825))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-825)))) (OR (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-825)))) (OR (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-148))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-800 (-332)))) (|HasCategory| |#2| (QUOTE (-800 (-332))))) (-12 (|HasCategory| |#1| (QUOTE (-800 (-488)))) (|HasCategory| |#2| (QUOTE (-800 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-332))))) (|HasCategory| |#2| (QUOTE (-557 (-804 (-332)))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-488))))) (|HasCategory| |#2| (QUOTE (-557 (-804 (-488)))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-477)))) (|HasCategory| |#2| (QUOTE (-557 (-477))))) (|HasCategory| |#1| (QUOTE (-584 (-488)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-314))) (|HasAttribute| |#1| (QUOTE -3999)) (|HasCategory| |#1| (QUOTE (-395))) (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1044 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3993 . T) (-3992 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-312)))) -(-1043 R E V P) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3996 . T) (-3995 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-314)))) +(-1045 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) NIL NIL -(-1044 UP -3095) +(-1046 UP -3098) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1045 R) +(-1047 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1046 R) +(-1048 R) ((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1047 R) +(-1049 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1048 S A) +(-1050 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-758)))) -(-1049 R) +((|HasCategory| |#1| (QUOTE (-760)))) +(-1051 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1050 R) +(-1052 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through pn,{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through pn,{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through pn,{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught pn,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through pn defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through pn to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1051) +(-1053) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1052) +(-1054) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1053) +(-1055) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of `s'. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of `s'. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of `s'. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of `s'. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of `s'. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of `s'. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of `s'. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of `s'. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of `s'. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of `s'. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of `s'. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of `s'. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of `s'. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of `s'. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of `s'. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of `s'. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of `s'. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of `s'. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of `s'. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of `s'. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of `s'. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of `s'. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of `s'. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of `s'. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of `s'. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of `s'. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of `s'. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of `s'. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of `s'. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of `s'. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of `s'. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if `s' represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if `s' represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if `s' represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if `s' represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if `s' represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if `s' represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if `s' represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if `s' represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if `s' represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if `s' represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if `s' represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if `s' represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if `s' represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if `s' represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if `s' represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if `s' represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if `s' represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if `s' represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if `s' represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if `s' represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if `s' represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if `s' represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if `s' represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if `s' represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if `s' represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if `s' represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if `s' represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if `s' represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if `s' represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if `s' represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if `s' represents an `import' statement."))) NIL NIL -(-1054) +(-1056) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1055) +(-1057) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1056 V C) +(-1058 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}lt)} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,{}vt.tower) for vt in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,{}vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1057 V C) +(-1059 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) NIL -((-12 (|HasCategory| (-1056 |#1| |#2|) (|%list| (QUOTE -260) (|%list| (QUOTE -1056) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-1015)))) (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-1015))) (OR (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-1015)))) (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-554 (-774)))) (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1037) (|%list| (QUOTE -1056) (|devaluate| |#1|) (|devaluate| |#2|))))) -(-1058 |ndim| R) +((-12 (|HasCategory| (-1058 |#1| |#2|) (|%list| (QUOTE -262) (|%list| (QUOTE -1058) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1058 |#1| |#2|) (QUOTE (-1017)))) (|HasCategory| (-1058 |#1| |#2|) (QUOTE (-1017))) (OR (|HasCategory| (-1058 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1058 |#1| |#2|) (QUOTE (-1017)))) (|HasCategory| (-1058 |#1| |#2|) (QUOTE (-556 (-776)))) (|HasCategory| (-1058 |#1| |#2|) (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1039) (|%list| (QUOTE -1058) (|devaluate| |#1|) (|devaluate| |#2|))))) +(-1060 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-3995 . T) (-3987 |has| |#2| (-6 (-4000 "*"))) (-3992 . T) (-3993 . T)) -((|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-4000 #1="*"))) (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasAttribute| |#2| (QUOTE (-4000 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) -(-1059 S) +((-3998 . T) (-3990 |has| |#2| (-6 (-4003 "*"))) (-3995 . T) (-3996 . T)) +((|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-815 (-1094)))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-191))) (|HasAttribute| |#2| (QUOTE (-4003 #1="*"))) (|HasCategory| |#2| (QUOTE (-584 (-488)))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-954 (-488)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-584 (-488)))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-557 (-477)))) (|HasCategory| |#2| (QUOTE (-260))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-314))) (OR (|HasAttribute| |#2| (QUOTE (-4003 #1#))) (|HasCategory| |#2| (QUOTE (-192))) (|HasCategory| |#2| (QUOTE (-813 (-1094))))) (|HasCategory| |#2| (QUOTE (-556 (-776)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1017))) (-12 (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-148)))) +(-1061 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1060) +(-1062) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1061 R E V P TS) +(-1063 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1062 R E V P) +(-1064 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) NIL -((-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-555 (-475)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-554 (-774)))) (|HasCategory| |#4| (QUOTE (-1015))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) -(-1063) +((-12 (|HasCategory| |#4| (QUOTE (-1017))) (|HasCategory| |#4| (|%list| (QUOTE -262) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-557 (-477)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#3| (QUOTE (-322))) (|HasCategory| |#4| (QUOTE (-556 (-776)))) (|HasCategory| |#4| (QUOTE (-1017))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#4|)))) +(-1065) ((|constructor| (NIL "The category of all semiring structures,{} \\spadignore{e.g.} triples (\\spad{D},{}+,{}*) such that (\\spad{D},{}+) is an Abelian monoid and (\\spad{D},{}*) is a monoid with the following laws:"))) NIL NIL -(-1064 S) +(-1066 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-1065 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1067 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1066 S) +(-1068 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1067 |Key| |Ent| |dent|) +(-1069 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) NIL -((-12 (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-475)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|)))) -(-1068) +((-12 (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -262) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (OR (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (OR (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-556 (-776)))) (|HasCategory| |#2| (QUOTE (-556 (-776))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-557 (-477)))) (-12 (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017))) (-12 (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#2|)))) +(-1070) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For non-fiinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline")) (|nextItem| (((|Maybe| $) $) "\\spad{nextItem(x)} returns the next item,{} or \\spad{failed} if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1069) +(-1071) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1070 |Coef|) +(-1072 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1071 S) +(-1073 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) -(-1072 S) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (|HasCategory| (-488) (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|)))) +(-1074 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1073 A B) +(-1075 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1074 A B C) +(-1076 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1075) +(-1077) ((|constructor| (NIL "This is the domain of character strings.")) (|string| (($ (|Identifier|)) "\\spad{string id} is the string representation of the identifier \\spad{id}") (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) NIL -((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-758)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1015))))) (|HasCategory| (-117) (QUOTE (-554 (-774)))) (|HasCategory| (-117) (QUOTE (-555 (-475)))) (OR (|HasCategory| (-117) (QUOTE (-758))) (|HasCategory| (-117) (QUOTE (-1015)))) (|HasCategory| (-117) (QUOTE (-758))) (OR (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-758))) (|HasCategory| (-117) (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-1015))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1015)))) (-12 (|HasCategory| $ (QUOTE (-318 (-117)))) (|HasCategory| (-117) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-318 (-117)))) (|HasCategory| $ (QUOTE (-1037 (-117)))) (-12 (|HasCategory| $ (QUOTE (-1037 (-117)))) (|HasCategory| (-117) (QUOTE (-758))))) -(-1076 |Entry|) +((OR (-12 (|HasCategory| (-117) (QUOTE (-262 (-117)))) (|HasCategory| (-117) (QUOTE (-760)))) (-12 (|HasCategory| (-117) (QUOTE (-262 (-117)))) (|HasCategory| (-117) (QUOTE (-1017))))) (|HasCategory| (-117) (QUOTE (-556 (-776)))) (|HasCategory| (-117) (QUOTE (-557 (-477)))) (OR (|HasCategory| (-117) (QUOTE (-760))) (|HasCategory| (-117) (QUOTE (-1017)))) (|HasCategory| (-117) (QUOTE (-760))) (OR (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-760))) (|HasCategory| (-117) (QUOTE (-1017)))) (|HasCategory| (-488) (QUOTE (-760))) (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-1017))) (-12 (|HasCategory| (-117) (QUOTE (-262 (-117)))) (|HasCategory| (-117) (QUOTE (-1017)))) (-12 (|HasCategory| $ (QUOTE (-320 (-117)))) (|HasCategory| (-117) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-320 (-117)))) (|HasCategory| $ (QUOTE (-1039 (-117)))) (-12 (|HasCategory| $ (QUOTE (-1039 (-117)))) (|HasCategory| (-117) (QUOTE (-760))))) +(-1078 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) NIL -((-12 (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3864 (-1075))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (QUOTE (-1015)))) (OR (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (QUOTE (-1015)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (QUOTE (-555 (-475)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-1075) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (QUOTE (-1015))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3864 (-1075))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3864 (-1075))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) -(-1077 A) +((-12 (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (|%list| (QUOTE -262) (|%list| (QUOTE -2) (QUOTE (|:| -3867 (-1077))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (QUOTE (-1017)))) (OR (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (QUOTE (-1017)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (QUOTE (-1017)))) (OR (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-556 (-776))))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (QUOTE (-557 (-477)))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-1077) (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-72))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (QUOTE (-1017))) (-12 (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -2) (QUOTE (|:| -3867 (-1077))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -2) (QUOTE (|:| -3867 (-1077))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|)))) +(-1079 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486)))))) -(-1078 |Coef|) +((|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-38 (-352 (-488)))))) +(-1080 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1079 |Coef|) +(-1081 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1080 R UP) +(-1082 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-258)))) -(-1081 |n| R) +((|HasCategory| |#1| (QUOTE (-260)))) +(-1083 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1082 S1 S2) +(-1084 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form s:t"))) NIL NIL -(-1083) +(-1085) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1084 |Coef| |var| |cen|) +(-1086 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4000 "*") OR (-2565 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-742))) (|has| |#1| (-146)) (-2565 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-823)))) (-3991 OR (-2565 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-742))) (|has| |#1| (-497)) (-2565 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-823)))) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-813 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|))))) (|HasCategory| (-486) (QUOTE (-1027))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-952 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-555 (-475))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-935)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-742)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-758))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-952 (-486))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-1068)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1091) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1091) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1091) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (|%list| (QUOTE -457) (QUOTE (-1092)) (|%list| (QUOTE -1091) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-798 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-486))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-823))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-813 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-758)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-823)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1091 |#1| |#2| |#3|) (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1085 R -3095) +(((-4003 "*") OR (-2568 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-744))) (|has| |#1| (-148)) (-2568 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-825)))) (-3994 OR (-2568 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-744))) (|has| |#1| (-499)) (-2568 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-825)))) (-3999 |has| |#1| (-314)) (-3993 |has| |#1| (-314)) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-148))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-744)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-813 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-488)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-813 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-815 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-488)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-192)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-488)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-192)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-191)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-488)) (|devaluate| |#1|))))) (|HasCategory| (-488) (QUOTE (-1029))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-314))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-954 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-557 (-477))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-937)))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-744)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-744)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-760))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-954 (-488))))) (|HasCategory| |#1| (QUOTE (-38 (-352 (-488)))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-1070)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (|%list| (QUOTE -243) (|%list| (QUOTE -1093) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1093) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (|%list| (QUOTE -262) (|%list| (QUOTE -1093) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (|%list| (QUOTE -459) (QUOTE (-1094)) (|%list| (QUOTE -1093) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-557 (-804 (-488)))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-557 (-804 (-332)))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-800 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-800 (-332))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-488))))) (|HasSignature| |#1| (|%list| (QUOTE -3953) (|%list| (|devaluate| |#1|) (QUOTE (-1094)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-488))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-29 (-488)))) (|HasCategory| |#1| (QUOTE (-875))) (|HasCategory| |#1| (QUOTE (-1119)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasSignature| |#1| (|%list| (QUOTE -3818) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1094))))) (|HasSignature| |#1| (|%list| (QUOTE -3087) (|%list| (|%list| (QUOTE -587) (QUOTE (-1094))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-260)))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-744)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-499)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-744)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-148)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-815 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-191)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-760)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-825)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1087 R -3098) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1086 R) +(-1088 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1087 R) +(-1089 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3994 |has| |#1| (-312)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-330)))) (|HasCategory| (-996) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-486)))) (|HasCategory| (-996) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-475)))) (|HasCategory| (-996) (QUOTE (-555 (-475))))) (|HasCategory| |#1| (QUOTE (-582 (-486)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-813 (-1092)))) (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1088 R S) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3997 |has| |#1| (-314)) (-3999 |has| |#1| (-6 -3999)) (-3996 . T) (-3995 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-148))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-800 (-332)))) (|HasCategory| (-998) (QUOTE (-800 (-332))))) (-12 (|HasCategory| |#1| (QUOTE (-800 (-488)))) (|HasCategory| (-998) (QUOTE (-800 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-332))))) (|HasCategory| (-998) (QUOTE (-557 (-804 (-332)))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-804 (-488))))) (|HasCategory| (-998) (QUOTE (-557 (-804 (-488)))))) (-12 (|HasCategory| |#1| (QUOTE (-557 (-477)))) (|HasCategory| (-998) (QUOTE (-557 (-477))))) (|HasCategory| |#1| (QUOTE (-584 (-488)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-825)))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-825)))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-395))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (QUOTE (-815 (-1094)))) (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasCategory| |#1| (QUOTE (-191))) (|HasCategory| |#1| (QUOTE (-192))) (|HasAttribute| |#1| (QUOTE -3999)) (|HasCategory| |#1| (QUOTE (-395))) (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1090 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1089 E OV R P) +(-1091 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1090 |Coef| |var| |cen|) +(-1092 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-486)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|))))))) -(-1091 |Coef| |var| |cen|) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-314)) (-3993 |has| |#1| (-314)) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-148))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488))) (|devaluate| |#1|)))) (|HasCategory| (-352 (-488)) (QUOTE (-1029))) (|HasCategory| |#1| (QUOTE (-314))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499)))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488)))))) (|HasSignature| |#1| (|%list| (QUOTE -3953) (|%list| (|devaluate| |#1|) (QUOTE (-1094)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-29 (-488)))) (|HasCategory| |#1| (QUOTE (-875))) (|HasCategory| |#1| (QUOTE (-1119)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasSignature| |#1| (|%list| (QUOTE -3818) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1094))))) (|HasSignature| |#1| (|%list| (QUOTE -3087) (|%list| (|%list| (QUOTE -587) (QUOTE (-1094))) (|devaluate| |#1|))))))) +(-1093 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-696)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-696)) (|devaluate| |#1|)))) (|HasCategory| (-696) (QUOTE (-1027))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-696))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-696))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|))))))) -(-1092) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-499))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-698)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-698)) (|devaluate| |#1|)))) (|HasCategory| (-698) (QUOTE (-1029))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-698))))) (|HasSignature| |#1| (|%list| (QUOTE -3953) (|%list| (|devaluate| |#1|) (QUOTE (-1094)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-698))))) (|HasCategory| |#1| (QUOTE (-314))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-29 (-488)))) (|HasCategory| |#1| (QUOTE (-875))) (|HasCategory| |#1| (QUOTE (-1119)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasSignature| |#1| (|%list| (QUOTE -3818) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1094))))) (|HasSignature| |#1| (|%list| (QUOTE -3087) (|%list| (|%list| (QUOTE -587) (QUOTE (-1094))) (|devaluate| |#1|))))))) +(-1094) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([\\spad{a1},{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1093 R) +(-1095 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1094 R) +(-1096 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-6 -3996)) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#1| (QUOTE (-952 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-952 (-486)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-393))) (-12 (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| (-886) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3996))) -(-1095) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-6 -3999)) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-499))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#1| (QUOTE (-954 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-954 (-488)))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-395))) (-12 (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| (-888) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3999))) +(-1097) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1096) +(-1098) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1097) +(-1099) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if `x' really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if `x' really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if `x' really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if `x' really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when `x' is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in `x'.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax `x'. The value returned is itself a syntax if `x' really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when `s' is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain `s'; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax `s'; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax `s'.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax `s'.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax `s'.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax `s'")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when `s' is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1098 N) +(-1100 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1099 N) +(-1101 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'."))) NIL NIL -(-1100) +(-1102) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1101 R) +(-1103 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1102) +(-1104) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1103 S) +(-1105 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for mr")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{\\spad{ListFunctions3}}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{\\spad{tab1}}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation \\spad{bat1} is the inverse of \\spad{tab1}.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1104 |Key| |Entry|) +(-1106 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) NIL -((-12 (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-475)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#2|)))) -(-1105 S) +((-12 (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -262) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (OR (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017)))) (OR (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-556 (-776)))) (|HasCategory| |#2| (QUOTE (-556 (-776))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-557 (-477)))) (-12 (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-556 (-776)))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-1017))) (-12 (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -320) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#2|)))) +(-1107 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1106 S) +(-1108 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL NIL -(-1107 R) +(-1109 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1108 S |Key| |Entry|) +(-1110 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}."))) NIL NIL -(-1109 |Key| |Entry|) +(-1111 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}."))) NIL NIL -(-1110 |Key| |Entry|) +(-1112 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key -> Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1111) +(-1113) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'',{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1112 S) +(-1114 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1113) +(-1115) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1114 R) +(-1116 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1115) +(-1117) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1116 S) +(-1118 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1117) +(-1119) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1118 S) +(-1120 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|)))) -(-1119 S) +((-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1017))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|)))) +(-1121 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1120) +(-1122) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1121 R -3095) +(-1123 R -3098) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1122 R |Row| |Col| M) +(-1124 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1123 R -3095) +(-1125 R -3098) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (|%list| (QUOTE -555) (|%list| (QUOTE -802) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -798) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -555) (|%list| (QUOTE -802) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -798) (|devaluate| |#1|))))) -(-1124 |Coef|) +((-12 (|HasCategory| |#1| (|%list| (QUOTE -557) (|%list| (QUOTE -804) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -800) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -557) (|%list| (QUOTE -804) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -800) (|devaluate| |#1|))))) +(-1126 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3993 . T) (-3992 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-312)))) -(-1125 S R E V P) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3996 . T) (-3995 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-314)))) +(-1127 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-320)))) -(-1126 R E V P) +((|HasCategory| |#4| (QUOTE (-322)))) +(-1128 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL NIL -(-1127 |Curve|) +(-1129 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1128) +(-1130) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1129 S) +(-1131 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter's notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-554 (-774))))) -(-1130 -3095) +((|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-556 (-776))))) +(-1132 -3098) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1131) +(-1133) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1132) +(-1134) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1133 S) +(-1135 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by fn.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}'s and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}'s,{}bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}'s.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}'s.}"))) NIL -((|HasCategory| |#1| (QUOTE (-758)))) -(-1134) +((|HasCategory| |#1| (QUOTE (-760)))) +(-1136) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1135 S) +(-1137 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1136) +(-1138) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-1137) +(-1139) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1138) +(-1140) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1139) +(-1141) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1140) +(-1142) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1141 |Coef| |var| |cen|) +(-1143 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4000 "*") OR (-2565 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-742))) (|has| |#1| (-146)) (-2565 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-823)))) (-3991 OR (-2565 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-742))) (|has| |#1| (-497)) (-2565 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-823)))) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-742)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-813 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|))))) (|HasCategory| (-486) (QUOTE (-1027))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-952 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-555 (-475))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-935)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-742)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-758))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-952 (-486))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-1068)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (|%list| (QUOTE -457) (QUOTE (-1092)) (|%list| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-798 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-486))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-823))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-742)))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-742)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-813 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-758)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-823)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1142 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-4003 "*") OR (-2568 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-744))) (|has| |#1| (-148)) (-2568 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-825)))) (-3994 OR (-2568 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-744))) (|has| |#1| (-499)) (-2568 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-825)))) (-3999 |has| |#1| (-314)) (-3993 |has| |#1| (-314)) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-148))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-744)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-813 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-488)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-813 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-815 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-488)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-192)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-488)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-192)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-191)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-488)) (|devaluate| |#1|))))) (|HasCategory| (-488) (QUOTE (-1029))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-314))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-954 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-557 (-477))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-937)))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-744)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-744)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-760))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-954 (-488))))) (|HasCategory| |#1| (QUOTE (-38 (-352 (-488)))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1070)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (|%list| (QUOTE -243) (|%list| (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (|%list| (QUOTE -262) (|%list| (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (|%list| (QUOTE -459) (QUOTE (-1094)) (|%list| (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-557 (-804 (-488)))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-557 (-804 (-332)))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-800 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-800 (-332))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-488))))) (|HasSignature| |#1| (|%list| (QUOTE -3953) (|%list| (|devaluate| |#1|) (QUOTE (-1094)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-488))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-29 (-488)))) (|HasCategory| |#1| (QUOTE (-875))) (|HasCategory| |#1| (QUOTE (-1119)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasSignature| |#1| (|%list| (QUOTE -3818) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1094))))) (|HasSignature| |#1| (|%list| (QUOTE -3087) (|%list| (|%list| (QUOTE -587) (QUOTE (-1094))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-260)))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-744)))) (|HasCategory| |#1| (QUOTE (-499)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-744)))) (|HasCategory| |#1| (QUOTE (-148)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-815 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-191)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-760)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-825)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1144 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1143 |Coef|) +(-1145 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree <= \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-314)) (-3993 |has| |#1| (-314)) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-1144 S |Coef| UTS) +(-1146 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-312)))) -(-1145 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-314)))) +(-1147 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-314)) (-3993 |has| |#1| (-314)) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-1146 |Coef| UTS) +(-1148 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-742))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-813 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-486) (QUOTE (-1027))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-555 (-475))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-935)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-742)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-758))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -457) (QUOTE (-1092)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-582 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-798 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-486))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-758)))) (|HasCategory| |#2| (QUOTE (-823))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-813 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-486)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-813 (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189)))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118)))))) -(-1147 ZP) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-314)) (-3993 |has| |#1| (-314)) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-148))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-744))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-813 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-488)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-813 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-815 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-488)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-488)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-192))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-488)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-192)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-191))))) (|HasCategory| (-488) (QUOTE (-1029))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-314))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-954 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-557 (-477))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-937)))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-744)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-744)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-760))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-954 (-488)))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-954 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (|%list| (QUOTE -243) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (|%list| (QUOTE -262) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (|%list| (QUOTE -459) (QUOTE (-1094)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-584 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-557 (-804 (-488)))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-557 (-804 (-332)))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-800 (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-800 (-332))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-488))))) (|HasSignature| |#1| (|%list| (QUOTE -3953) (|%list| (|devaluate| |#1|) (QUOTE (-1094)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-488))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-29 (-488)))) (|HasCategory| |#1| (QUOTE (-875))) (|HasCategory| |#1| (QUOTE (-1119)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasSignature| |#1| (|%list| (QUOTE -3818) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1094))))) (|HasSignature| |#1| (|%list| (QUOTE -3087) (|%list| (|%list| (QUOTE -587) (QUOTE (-1094))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-760)))) (|HasCategory| |#2| (QUOTE (-825))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-260)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-488)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-191))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-815 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-488)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-815 (-1094))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-191)))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-120))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-118)))))) +(-1149 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1148 S) +(-1150 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1015)))) -(-1149 R S) +((|HasCategory| |#1| (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-1017)))) +(-1151 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-757)))) -(-1150 |x| R) +((|HasCategory| |#1| (QUOTE (-759)))) +(-1152 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4000 "*") |has| |#2| (-146)) (-3991 |has| |#2| (-497)) (-3994 |has| |#2| (-312)) (-3996 |has| |#2| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) -((|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-497)))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-330)))) (|HasCategory| (-996) (QUOTE (-798 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-486)))) (|HasCategory| (-996) (QUOTE (-798 (-486))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-330))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-486))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-486)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-475)))) (|HasCategory| (-996) (QUOTE (-555 (-475))))) (|HasCategory| |#2| (QUOTE (-582 (-486)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-486)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486)))))) (|HasCategory| |#2| (QUOTE (-952 (-350 (-486))))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-813 (-1092)))) (|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-393))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-1151 |x| R |y| S) +(((-4003 "*") |has| |#2| (-148)) (-3994 |has| |#2| (-499)) (-3997 |has| |#2| (-314)) (-3999 |has| |#2| (-6 -3999)) (-3996 . T) (-3995 . T) (-3998 . T)) +((|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-148))) (OR (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-800 (-332)))) (|HasCategory| (-998) (QUOTE (-800 (-332))))) (-12 (|HasCategory| |#2| (QUOTE (-800 (-488)))) (|HasCategory| (-998) (QUOTE (-800 (-488))))) (-12 (|HasCategory| |#2| (QUOTE (-557 (-804 (-332))))) (|HasCategory| (-998) (QUOTE (-557 (-804 (-332)))))) (-12 (|HasCategory| |#2| (QUOTE (-557 (-804 (-488))))) (|HasCategory| (-998) (QUOTE (-557 (-804 (-488)))))) (-12 (|HasCategory| |#2| (QUOTE (-557 (-477)))) (|HasCategory| (-998) (QUOTE (-557 (-477))))) (|HasCategory| |#2| (QUOTE (-584 (-488)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-954 (-488)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488)))))) (|HasCategory| |#2| (QUOTE (-954 (-352 (-488))))) (OR (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-825)))) (OR (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-825)))) (OR (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-815 (-1094)))) (|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasCategory| |#2| (QUOTE (-191))) (|HasCategory| |#2| (QUOTE (-192))) (|HasAttribute| |#2| (QUOTE -3999)) (|HasCategory| |#2| (QUOTE (-395))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-1153 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1152 R Q UP) +(-1154 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a gcd domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1153 R UP) +(-1155 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} fn ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1154 R UP) +(-1156 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1155 R U) +(-1157 R U) ((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all."))) NIL NIL -(-1156 S R) +(-1158 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-393))) (|HasCategory| |#2| (QUOTE (-497))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1068)))) -(-1157 R) +((|HasCategory| |#2| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-395))) (|HasCategory| |#2| (QUOTE (-499))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1070)))) +(-1159 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3994 |has| |#1| (-312)) (-3996 |has| |#1| (-6 -3996)) (-3993 . T) (-3992 . T) (-3995 . T)) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3997 |has| |#1| (-314)) (-3999 |has| |#1| (-6 -3999)) (-3996 . T) (-3995 . T) (-3998 . T)) NIL -(-1158 R PR S PS) +(-1160 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1159 S |Coef| |Expon|) +(-1161 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (QUOTE (-811 (-1092)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1027))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#2|) (QUOTE (-1092)))))) -(-1160 |Coef| |Expon|) +((|HasCategory| |#2| (QUOTE (-813 (-1094)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1029))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3953) (|%list| (|devaluate| |#2|) (QUOTE (-1094)))))) +(-1162 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-1161 RC P) +(-1163 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1162 |Coef| |var| |cen|) +(-1164 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-486)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|))))))) -(-1163 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-314)) (-3993 |has| |#1| (-314)) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-148))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488))) (|devaluate| |#1|)))) (|HasCategory| (-352 (-488)) (QUOTE (-1029))) (|HasCategory| |#1| (QUOTE (-314))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499)))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488)))))) (|HasSignature| |#1| (|%list| (QUOTE -3953) (|%list| (|devaluate| |#1|) (QUOTE (-1094)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-29 (-488)))) (|HasCategory| |#1| (QUOTE (-875))) (|HasCategory| |#1| (QUOTE (-1119)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasSignature| |#1| (|%list| (QUOTE -3818) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1094))))) (|HasSignature| |#1| (|%list| (QUOTE -3087) (|%list| (|%list| (QUOTE -587) (QUOTE (-1094))) (|devaluate| |#1|))))))) +(-1165 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1164 |Coef|) +(-1166 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-314)) (-3993 |has| |#1| (-314)) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-1165 S |Coef| ULS) +(-1167 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1166 |Coef| ULS) +(-1168 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-314)) (-3993 |has| |#1| (-314)) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-1167 |Coef| ULS) +(-1169 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3996 |has| |#1| (-312)) (-3990 |has| |#1| (-312)) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-486)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-497)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-486)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-486)))))) -(-1168 R FE |var| |cen|) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3999 |has| |#1| (-314)) (-3993 |has| |#1| (-314)) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#1| (QUOTE (-148))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488))) (|devaluate| |#1|)))) (|HasCategory| (-352 (-488)) (QUOTE (-1029))) (|HasCategory| |#1| (QUOTE (-314))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499)))) (OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-499)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488)))))) (|HasSignature| |#1| (|%list| (QUOTE -3953) (|%list| (|devaluate| |#1|) (QUOTE (-1094)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -352) (QUOTE (-488)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-29 (-488)))) (|HasCategory| |#1| (QUOTE (-875))) (|HasCategory| |#1| (QUOTE (-1119)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasSignature| |#1| (|%list| (QUOTE -3818) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1094))))) (|HasSignature| |#1| (|%list| (QUOTE -3087) (|%list| (|%list| (QUOTE -587) (QUOTE (-1094))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-352 (-488)))))) +(-1170 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4000 "*") |has| (-1162 |#2| |#3| |#4|) (-146)) (-3991 |has| (-1162 |#2| |#3| |#4|) (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-486))))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-146))) (OR (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-486))))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-952 (-350 (-486)))))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-952 (-350 (-486))))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-952 (-486)))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-312))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-393))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-497)))) -(-1169 A S) +(((-4003 "*") |has| (-1164 |#2| |#3| |#4|) (-148)) (-3994 |has| (-1164 |#2| |#3| |#4|) (-499)) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| (-1164 |#2| |#3| |#4|) (QUOTE (-38 (-352 (-488))))) (|HasCategory| (-1164 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1164 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1164 |#2| |#3| |#4|) (QUOTE (-148))) (OR (|HasCategory| (-1164 |#2| |#3| |#4|) (QUOTE (-38 (-352 (-488))))) (|HasCategory| (-1164 |#2| |#3| |#4|) (QUOTE (-954 (-352 (-488)))))) (|HasCategory| (-1164 |#2| |#3| |#4|) (QUOTE (-954 (-352 (-488))))) (|HasCategory| (-1164 |#2| |#3| |#4|) (QUOTE (-954 (-488)))) (|HasCategory| (-1164 |#2| |#3| |#4|) (QUOTE (-314))) (|HasCategory| (-1164 |#2| |#3| |#4|) (QUOTE (-395))) (|HasCategory| (-1164 |#2| |#3| |#4|) (QUOTE (-499)))) +(-1171 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1037) (|devaluate| |#2|)))) -(-1170 S) +((|HasCategory| |#1| (|%list| (QUOTE -1039) (|devaluate| |#2|)))) +(-1172 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1171 |Coef| |var| |cen|) +(-1173 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-497))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1092)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-696)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-696)) (|devaluate| |#1|)))) (|HasCategory| (-696) (QUOTE (-1027))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-696))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-696))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#1| (QUOTE (-29 (-486)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-486))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#1|))))))) -(-1172 |Coef1| |Coef2| UTS1 UTS2) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3995 . T) (-3996 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-499))) (OR (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-813 (-1094)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-698)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-698)) (|devaluate| |#1|)))) (|HasCategory| (-698) (QUOTE (-1029))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-698))))) (|HasSignature| |#1| (|%list| (QUOTE -3953) (|%list| (|devaluate| |#1|) (QUOTE (-1094)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-698))))) (|HasCategory| |#1| (QUOTE (-314))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#1| (QUOTE (-29 (-488)))) (|HasCategory| |#1| (QUOTE (-875))) (|HasCategory| |#1| (QUOTE (-1119)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-352 (-488))))) (|HasSignature| |#1| (|%list| (QUOTE -3818) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1094))))) (|HasSignature| |#1| (|%list| (QUOTE -3087) (|%list| (|%list| (QUOTE -587) (QUOTE (-1094))) (|devaluate| |#1|))))))) +(-1174 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1173 S |Coef|) +(-1175 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (QUOTE (-29 (-486)))) (|HasCategory| |#2| (QUOTE (-873))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasSignature| |#2| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -585) (QUOTE (-1092))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1092))))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-486))))) (|HasCategory| |#2| (QUOTE (-312)))) -(-1174 |Coef|) +((|HasCategory| |#2| (QUOTE (-29 (-488)))) (|HasCategory| |#2| (QUOTE (-875))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasSignature| |#2| (|%list| (QUOTE -3087) (|%list| (|%list| (QUOTE -587) (QUOTE (-1094))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3818) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1094))))) (|HasCategory| |#2| (QUOTE (-38 (-352 (-488))))) (|HasCategory| |#2| (QUOTE (-314)))) +(-1176 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4000 "*") |has| |#1| (-146)) (-3991 |has| |#1| (-497)) (-3992 . T) (-3993 . T) (-3995 . T)) +(((-4003 "*") |has| |#1| (-148)) (-3994 |has| |#1| (-499)) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-1175 |Coef| UTS) +(-1177 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1176 -3095 UP L UTS) +(-1178 -3098 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-497)))) -(-1177) +((|HasCategory| |#1| (QUOTE (-499)))) +(-1179) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1178 |sym|) +(-1180 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1179 S R) +(-1181 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-917))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1180 R) +((|HasCategory| |#2| (QUOTE (-919))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-667))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1182 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL NIL -(-1181 R) +(-1183 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) NIL -((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-475)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-486) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#1| (QUOTE (-963))) (-12 (|HasCategory| |#1| (QUOTE (-917))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-1015))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| $ (|%list| (QUOTE -1037) (|devaluate| |#1|))))) -(-1182 A B) +((OR (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-556 (-776)))) (|HasCategory| |#1| (QUOTE (-557 (-477)))) (OR (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| |#1| (QUOTE (-760))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-1017)))) (|HasCategory| (-488) (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-667))) (|HasCategory| |#1| (QUOTE (-965))) (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-965)))) (|HasCategory| |#1| (QUOTE (-1017))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (|%list| (QUOTE -262) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| $ (|%list| (QUOTE -1039) (|devaluate| |#1|))))) +(-1184 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1183) +(-1185) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through pn.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1184) +(-1186) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1185) +(-1187) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1186) +(-1188) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1187) +(-1189) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1188 A S) +(-1190 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1189 S) +(-1191 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-3993 . T) (-3992 . T)) +((-3996 . T) (-3995 . T)) NIL -(-1190 R) +(-1192 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]*v + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1191 K R UP -3095) +(-1193 K R UP -3098) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1192) +(-1194) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1193) +(-1195) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1194 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1196 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-3993 |has| |#1| (-146)) (-3992 |has| |#1| (-146)) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) -(-1195 R E V P) +((-3996 |has| |#1| (-148)) (-3995 |has| |#1| (-148)) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314)))) +(-1197 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}."))) NIL -((-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-555 (-475)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-497))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-554 (-774)))) (|HasCategory| |#4| (QUOTE (-1015))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) -(-1196 R) +((-12 (|HasCategory| |#4| (QUOTE (-1017))) (|HasCategory| |#4| (|%list| (QUOTE -262) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-557 (-477)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-499))) (|HasCategory| |#3| (QUOTE (-322))) (|HasCategory| |#4| (QUOTE (-556 (-776)))) (|HasCategory| |#4| (QUOTE (-1017))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -320) (|devaluate| |#4|)))) +(-1198 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)"))) -((-3992 . T) (-3993 . T) (-3995 . T)) +((-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-1197 |vl| R) +(-1199 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-3995 . T) (-3991 |has| |#2| (-6 -3991)) (-3993 . T) (-3992 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3991))) -(-1198 R |VarSet| XPOLY) +((-3998 . T) (-3994 |has| |#2| (-6 -3994)) (-3996 . T) (-3995 . T)) +((|HasCategory| |#2| (QUOTE (-148))) (|HasAttribute| |#2| (QUOTE -3994))) +(-1200 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1199 S -3095) +(-1201 S -3098) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120)))) -(-1200 -3095) +((|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120)))) +(-1202 -3098) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-3990 . T) (-3996 . T) (-3991 . T) ((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +((-3993 . T) (-3999 . T) (-3994 . T) ((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL -(-1201 |vl| R) +(-1203 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-3991 |has| |#2| (-6 -3991)) (-3993 . T) (-3992 . T) (-3995 . T)) +((-3994 |has| |#2| (-6 -3994)) (-3996 . T) (-3995 . T) (-3998 . T)) NIL -(-1202 |VarSet| R) +(-1204 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-3991 |has| |#2| (-6 -3991)) (-3993 . T) (-3992 . T) (-3995 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-656 (-350 (-486))))) (|HasAttribute| |#2| (QUOTE -3991))) -(-1203 R) +((-3994 |has| |#2| (-6 -3994)) (-3996 . T) (-3995 . T) (-3998 . T)) +((|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-658 (-352 (-488))))) (|HasAttribute| |#2| (QUOTE -3994))) +(-1205 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-3991 |has| |#1| (-6 -3991)) (-3993 . T) (-3992 . T) (-3995 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -3991))) -(-1204 |vl| R) +((-3994 |has| |#1| (-6 -3994)) (-3996 . T) (-3995 . T) (-3998 . T)) +((|HasCategory| |#1| (QUOTE (-148))) (|HasAttribute| |#1| (QUOTE -3994))) +(-1206 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-3991 |has| |#2| (-6 -3991)) (-3993 . T) (-3992 . T) (-3995 . T)) +((-3994 |has| |#2| (-6 -3994)) (-3996 . T) (-3995 . T) (-3998 . T)) NIL -(-1205 R E) +(-1207 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-3995 . T) (-3996 |has| |#1| (-6 -3996)) (-3991 |has| |#1| (-6 -3991)) (-3993 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasAttribute| |#1| (QUOTE -3996)) (|HasAttribute| |#1| (QUOTE -3991))) -(-1206 |VarSet| R) +((-3998 . T) (-3999 |has| |#1| (-6 -3999)) (-3994 |has| |#1| (-6 -3994)) (-3996 . T) (-3995 . T)) +((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314))) (|HasAttribute| |#1| (QUOTE -3998)) (|HasAttribute| |#1| (QUOTE -3999)) (|HasAttribute| |#1| (QUOTE -3994))) +(-1208 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-3991 |has| |#2| (-6 -3991)) (-3993 . T) (-3992 . T) (-3995 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3991))) -(-1207) +((-3994 |has| |#2| (-6 -3994)) (-3996 . T) (-3995 . T) (-3998 . T)) +((|HasCategory| |#2| (QUOTE (-148))) (|HasAttribute| |#2| (QUOTE -3994))) +(-1209) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1208 A) +(-1210 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1209 R |ls| |ls2|) +(-1211 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1210 R) +(-1212 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}'s exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1211 |p|) +(-1213 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4000 "*") . T) (-3992 . T) (-3993 . T) (-3995 . T)) +(((-4003 "*") . T) (-3995 . T) (-3996 . T) (-3998 . T)) NIL NIL NIL @@ -4792,4 +4800,4 @@ NIL NIL NIL NIL -((-3 NIL 1965537 1965542 1965547 1965552) (-2 NIL 1965517 1965522 1965527 1965532) (-1 NIL 1965497 1965502 1965507 1965512) (0 NIL 1965477 1965482 1965487 1965492) (-1211 "ZMOD.spad" 1965286 1965299 1965415 1965472) (-1210 "ZLINDEP.spad" 1964384 1964395 1965276 1965281) (-1209 "ZDSOLVE.spad" 1954345 1954367 1964374 1964379) (-1208 "YSTREAM.spad" 1953840 1953851 1954335 1954340) (-1207 "YDIAGRAM.spad" 1953474 1953483 1953830 1953835) (-1206 "XRPOLY.spad" 1952694 1952714 1953330 1953399) (-1205 "XPR.spad" 1950622 1950635 1952412 1952511) (-1204 "XPOLYC.spad" 1949941 1949957 1950548 1950617) (-1203 "XPOLY.spad" 1949496 1949507 1949797 1949866) (-1202 "XPBWPOLY.spad" 1947967 1947987 1949302 1949371) (-1201 "XFALG.spad" 1945148 1945164 1947893 1947962) (-1200 "XF.spad" 1943611 1943626 1945050 1945143) (-1199 "XF.spad" 1942054 1942071 1943495 1943500) (-1198 "XEXPPKG.spad" 1941313 1941339 1942044 1942049) (-1197 "XDPOLY.spad" 1940927 1940943 1941169 1941238) (-1196 "XALG.spad" 1940595 1940606 1940883 1940922) (-1195 "WUTSET.spad" 1936459 1936476 1940090 1940095) (-1194 "WP.spad" 1935666 1935710 1936317 1936384) (-1193 "WHILEAST.spad" 1935464 1935473 1935656 1935661) (-1192 "WHEREAST.spad" 1935135 1935144 1935454 1935459) (-1191 "WFFINTBS.spad" 1932798 1932820 1935125 1935130) (-1190 "WEIER.spad" 1931020 1931031 1932788 1932793) (-1189 "VSPACE.spad" 1930693 1930704 1930988 1931015) (-1188 "VSPACE.spad" 1930386 1930399 1930683 1930688) (-1187 "VOID.spad" 1930063 1930072 1930376 1930381) (-1186 "VIEWDEF.spad" 1925264 1925273 1930053 1930058) (-1185 "VIEW3D.spad" 1909225 1909234 1925254 1925259) (-1184 "VIEW2D.spad" 1897124 1897133 1909215 1909220) (-1183 "VIEW.spad" 1894844 1894853 1897114 1897119) (-1182 "VECTOR2.spad" 1893483 1893496 1894834 1894839) (-1181 "VECTOR.spad" 1891899 1891910 1892150 1892155) (-1180 "VECTCAT.spad" 1889833 1889844 1891889 1891894) (-1179 "VECTCAT.spad" 1887554 1887567 1889612 1889617) (-1178 "VARIABLE.spad" 1887334 1887349 1887544 1887549) (-1177 "UTYPE.spad" 1886978 1886987 1887324 1887329) (-1176 "UTSODETL.spad" 1886273 1886297 1886934 1886939) (-1175 "UTSODE.spad" 1884489 1884509 1886263 1886268) (-1174 "UTSCAT.spad" 1881968 1881984 1884387 1884484) (-1173 "UTSCAT.spad" 1879115 1879133 1881536 1881541) (-1172 "UTS2.spad" 1878710 1878745 1879105 1879110) (-1171 "UTS.spad" 1873722 1873750 1877242 1877339) (-1170 "URAGG.spad" 1868443 1868454 1873712 1873717) (-1169 "URAGG.spad" 1863100 1863113 1868371 1868376) (-1168 "UPXSSING.spad" 1860868 1860894 1862304 1862437) (-1167 "UPXSCONS.spad" 1858686 1858706 1859059 1859208) (-1166 "UPXSCCA.spad" 1857257 1857277 1858532 1858681) (-1165 "UPXSCCA.spad" 1855970 1855992 1857247 1857252) (-1164 "UPXSCAT.spad" 1854559 1854575 1855816 1855965) (-1163 "UPXS2.spad" 1854102 1854155 1854549 1854554) (-1162 "UPXS.spad" 1851457 1851485 1852293 1852442) (-1161 "UPSQFREE.spad" 1849872 1849886 1851447 1851452) (-1160 "UPSCAT.spad" 1847667 1847691 1849770 1849867) (-1159 "UPSCAT.spad" 1845163 1845189 1847268 1847273) (-1158 "UPOLYC2.spad" 1844634 1844653 1845153 1845158) (-1157 "UPOLYC.spad" 1839714 1839725 1844476 1844629) (-1156 "UPOLYC.spad" 1834712 1834725 1839476 1839481) (-1155 "UPMP.spad" 1833644 1833657 1834702 1834707) (-1154 "UPDIVP.spad" 1833209 1833223 1833634 1833639) (-1153 "UPDECOMP.spad" 1831470 1831484 1833199 1833204) (-1152 "UPCDEN.spad" 1830687 1830703 1831460 1831465) (-1151 "UP2.spad" 1830051 1830072 1830677 1830682) (-1150 "UP.spad" 1827521 1827536 1827908 1828061) (-1149 "UNISEG2.spad" 1827018 1827031 1827477 1827482) (-1148 "UNISEG.spad" 1826371 1826382 1826937 1826942) (-1147 "UNIFACT.spad" 1825474 1825486 1826361 1826366) (-1146 "ULSCONS.spad" 1819320 1819340 1819690 1819839) (-1145 "ULSCCAT.spad" 1817057 1817077 1819166 1819315) (-1144 "ULSCCAT.spad" 1814902 1814924 1817013 1817018) (-1143 "ULSCAT.spad" 1813142 1813158 1814748 1814897) (-1142 "ULS2.spad" 1812656 1812709 1813132 1813137) (-1141 "ULS.spad" 1804689 1804717 1805634 1806057) (-1140 "UINT8.spad" 1804566 1804575 1804679 1804684) (-1139 "UINT64.spad" 1804442 1804451 1804556 1804561) (-1138 "UINT32.spad" 1804318 1804327 1804432 1804437) (-1137 "UINT16.spad" 1804194 1804203 1804308 1804313) (-1136 "UFD.spad" 1803259 1803268 1804120 1804189) (-1135 "UFD.spad" 1802386 1802397 1803249 1803254) (-1134 "UDVO.spad" 1801267 1801276 1802376 1802381) (-1133 "UDPO.spad" 1798848 1798859 1801223 1801228) (-1132 "TYPEAST.spad" 1798767 1798776 1798838 1798843) (-1131 "TYPE.spad" 1798699 1798708 1798757 1798762) (-1130 "TWOFACT.spad" 1797351 1797366 1798689 1798694) (-1129 "TUPLE.spad" 1796858 1796869 1797263 1797268) (-1128 "TUBETOOL.spad" 1793725 1793734 1796848 1796853) (-1127 "TUBE.spad" 1792372 1792389 1793715 1793720) (-1126 "TSETCAT.spad" 1780465 1780482 1792362 1792367) (-1125 "TSETCAT.spad" 1768522 1768541 1780421 1780426) (-1124 "TS.spad" 1767150 1767166 1768116 1768213) (-1123 "TRMANIP.spad" 1761514 1761531 1766838 1766843) (-1122 "TRIMAT.spad" 1760477 1760502 1761504 1761509) (-1121 "TRIGMNIP.spad" 1759004 1759021 1760467 1760472) (-1120 "TRIGCAT.spad" 1758516 1758525 1758994 1758999) (-1119 "TRIGCAT.spad" 1758026 1758037 1758506 1758511) (-1118 "TREE.spad" 1756627 1756638 1757659 1757664) (-1117 "TRANFUN.spad" 1756466 1756475 1756617 1756622) (-1116 "TRANFUN.spad" 1756303 1756314 1756456 1756461) (-1115 "TOPSP.spad" 1755977 1755986 1756293 1756298) (-1114 "TOOLSIGN.spad" 1755640 1755651 1755967 1755972) (-1113 "TEXTFILE.spad" 1754201 1754210 1755630 1755635) (-1112 "TEX1.spad" 1753757 1753768 1754191 1754196) (-1111 "TEX.spad" 1750951 1750960 1753747 1753752) (-1110 "TBCMPPK.spad" 1749052 1749075 1750941 1750946) (-1109 "TBAGG.spad" 1748317 1748340 1749042 1749047) (-1108 "TBAGG.spad" 1747580 1747605 1748307 1748312) (-1107 "TANEXP.spad" 1746988 1746999 1747570 1747575) (-1106 "TALGOP.spad" 1746712 1746723 1746978 1746983) (-1105 "TABLEAU.spad" 1746193 1746204 1746702 1746707) (-1104 "TABLE.spad" 1743903 1743926 1744173 1744178) (-1103 "TABLBUMP.spad" 1740682 1740693 1743893 1743898) (-1102 "SYSTEM.spad" 1739910 1739919 1740672 1740677) (-1101 "SYSSOLP.spad" 1737393 1737404 1739900 1739905) (-1100 "SYSPTR.spad" 1737292 1737301 1737383 1737388) (-1099 "SYSNNI.spad" 1736515 1736526 1737282 1737287) (-1098 "SYSINT.spad" 1735919 1735930 1736505 1736510) (-1097 "SYNTAX.spad" 1732253 1732262 1735909 1735914) (-1096 "SYMTAB.spad" 1730321 1730330 1732243 1732248) (-1095 "SYMS.spad" 1726350 1726359 1730311 1730316) (-1094 "SYMPOLY.spad" 1725483 1725494 1725565 1725692) (-1093 "SYMFUNC.spad" 1724984 1724995 1725473 1725478) (-1092 "SYMBOL.spad" 1722479 1722488 1724974 1724979) (-1091 "SUTS.spad" 1719592 1719620 1721011 1721108) (-1090 "SUPXS.spad" 1716934 1716962 1717783 1717932) (-1089 "SUPFRACF.spad" 1716039 1716057 1716924 1716929) (-1088 "SUP2.spad" 1715431 1715444 1716029 1716034) (-1087 "SUP.spad" 1712515 1712526 1713288 1713441) (-1086 "SUMRF.spad" 1711489 1711500 1712505 1712510) (-1085 "SUMFS.spad" 1711118 1711135 1711479 1711484) (-1084 "SULS.spad" 1703138 1703166 1704096 1704519) (-1083 "syntax.spad" 1702907 1702916 1703128 1703133) (-1082 "SUCH.spad" 1702597 1702612 1702897 1702902) (-1081 "SUBSPACE.spad" 1694728 1694743 1702587 1702592) (-1080 "SUBRESP.spad" 1693898 1693912 1694684 1694689) (-1079 "STTFNC.spad" 1690366 1690382 1693888 1693893) (-1078 "STTF.spad" 1686465 1686481 1690356 1690361) (-1077 "STTAYLOR.spad" 1679142 1679153 1686372 1686377) (-1076 "STRTBL.spad" 1677015 1677032 1677164 1677169) (-1075 "STRING.spad" 1675656 1675665 1676041 1676046) (-1074 "STREAM3.spad" 1675229 1675244 1675646 1675651) (-1073 "STREAM2.spad" 1674357 1674370 1675219 1675224) (-1072 "STREAM1.spad" 1674063 1674074 1674347 1674352) (-1071 "STREAM.spad" 1671023 1671034 1673514 1673519) (-1070 "STINPROD.spad" 1669959 1669975 1671013 1671018) (-1069 "STEPAST.spad" 1669193 1669202 1669949 1669954) (-1068 "STEP.spad" 1668510 1668519 1669183 1669188) (-1067 "STBL.spad" 1666323 1666351 1666490 1666495) (-1066 "STAGG.spad" 1665022 1665033 1666313 1666318) (-1065 "STAGG.spad" 1663719 1663732 1665012 1665017) (-1064 "STACK.spad" 1663163 1663174 1663413 1663418) (-1063 "SRING.spad" 1662923 1662932 1663153 1663158) (-1062 "SREGSET.spad" 1660516 1660533 1662418 1662423) (-1061 "SRDCMPK.spad" 1659093 1659113 1660506 1660511) (-1060 "SRAGG.spad" 1654298 1654307 1659083 1659088) (-1059 "SRAGG.spad" 1649501 1649512 1654288 1654293) (-1058 "SQMATRIX.spad" 1647190 1647208 1648106 1648181) (-1057 "SPLTREE.spad" 1641850 1641863 1646646 1646651) (-1056 "SPLNODE.spad" 1638470 1638483 1641840 1641845) (-1055 "SPFCAT.spad" 1637279 1637288 1638460 1638465) (-1054 "SPECOUT.spad" 1635831 1635840 1637269 1637274) (-1053 "SPADXPT.spad" 1627922 1627931 1635821 1635826) (-1052 "spad-parser.spad" 1627387 1627396 1627912 1627917) (-1051 "SPADAST.spad" 1627088 1627097 1627377 1627382) (-1050 "SPACEC.spad" 1611303 1611314 1627078 1627083) (-1049 "SPACE3.spad" 1611079 1611090 1611293 1611298) (-1048 "SORTPAK.spad" 1610628 1610641 1611035 1611040) (-1047 "SOLVETRA.spad" 1608391 1608402 1610618 1610623) (-1046 "SOLVESER.spad" 1606847 1606858 1608381 1608386) (-1045 "SOLVERAD.spad" 1602873 1602884 1606837 1606842) (-1044 "SOLVEFOR.spad" 1601335 1601353 1602863 1602868) (-1043 "SNTSCAT.spad" 1600957 1600974 1601325 1601330) (-1042 "SMTS.spad" 1599274 1599300 1600551 1600648) (-1041 "SMP.spad" 1597082 1597102 1597472 1597599) (-1040 "SMITH.spad" 1595927 1595952 1597072 1597077) (-1039 "SMATCAT.spad" 1594057 1594087 1595883 1595922) (-1038 "SMATCAT.spad" 1592107 1592139 1593935 1593940) (-1037 "aggcat.spad" 1591793 1591804 1592097 1592102) (-1036 "SKAGG.spad" 1590784 1590795 1591783 1591788) (-1035 "SINT.spad" 1590083 1590092 1590650 1590779) (-1034 "SIMPAN.spad" 1589811 1589820 1590073 1590078) (-1033 "SIGNRF.spad" 1588936 1588947 1589801 1589806) (-1032 "SIGNEF.spad" 1588222 1588239 1588926 1588931) (-1031 "syntax.spad" 1587639 1587648 1588212 1588217) (-1030 "SIG.spad" 1587001 1587010 1587629 1587634) (-1029 "SHP.spad" 1584945 1584960 1586957 1586962) (-1028 "SHDP.spad" 1574288 1574315 1574805 1574890) (-1027 "SGROUP.spad" 1573896 1573905 1574278 1574283) (-1026 "SGROUP.spad" 1573502 1573513 1573886 1573891) (-1025 "catdef.spad" 1573212 1573224 1573323 1573497) (-1024 "catdef.spad" 1572768 1572780 1573033 1573207) (-1023 "SGCF.spad" 1565907 1565916 1572758 1572763) (-1022 "SFRTCAT.spad" 1564875 1564892 1565897 1565902) (-1021 "SFRGCD.spad" 1563938 1563958 1564865 1564870) (-1020 "SFQCMPK.spad" 1558751 1558771 1563928 1563933) (-1019 "SEXOF.spad" 1558594 1558634 1558741 1558746) (-1018 "SEXCAT.spad" 1556422 1556462 1558584 1558589) (-1017 "SEX.spad" 1556314 1556323 1556412 1556417) (-1016 "SETMN.spad" 1554774 1554791 1556304 1556309) (-1015 "SETCAT.spad" 1554259 1554268 1554764 1554769) (-1014 "SETCAT.spad" 1553742 1553753 1554249 1554254) (-1013 "SETAGG.spad" 1550291 1550302 1553722 1553737) (-1012 "SETAGG.spad" 1546848 1546861 1550281 1550286) (-1011 "SET.spad" 1545018 1545029 1546117 1546132) (-1010 "syntax.spad" 1544721 1544730 1545008 1545013) (-1009 "SEGXCAT.spad" 1543877 1543890 1544711 1544716) (-1008 "SEGCAT.spad" 1542802 1542813 1543867 1543872) (-1007 "SEGBIND2.spad" 1542500 1542513 1542792 1542797) (-1006 "SEGBIND.spad" 1542258 1542269 1542447 1542452) (-1005 "SEGAST.spad" 1541988 1541997 1542248 1542253) (-1004 "SEG2.spad" 1541423 1541436 1541944 1541949) (-1003 "SEG.spad" 1541236 1541247 1541342 1541347) (-1002 "SDVAR.spad" 1540512 1540523 1541226 1541231) (-1001 "SDPOL.spad" 1538204 1538215 1538495 1538622) (-1000 "SCPKG.spad" 1536293 1536304 1538194 1538199) (-999 "SCOPE.spad" 1535471 1535479 1536283 1536288) (-998 "SCACHE.spad" 1534168 1534178 1535461 1535466) (-997 "SASTCAT.spad" 1534078 1534086 1534158 1534163) (-996 "SAOS.spad" 1533951 1533959 1534068 1534073) (-995 "SAERFFC.spad" 1533665 1533684 1533941 1533946) (-994 "SAEFACT.spad" 1533367 1533386 1533655 1533660) (-993 "SAE.spad" 1531018 1531033 1531628 1531763) (-992 "RURPK.spad" 1528678 1528693 1531008 1531013) (-991 "RULESET.spad" 1528132 1528155 1528668 1528673) (-990 "RULECOLD.spad" 1527985 1527997 1528122 1528127) (-989 "RULE.spad" 1526234 1526257 1527975 1527980) (-988 "RTVALUE.spad" 1525970 1525978 1526224 1526229) (-987 "syntax.spad" 1525688 1525696 1525960 1525965) (-986 "RSETGCD.spad" 1522131 1522150 1525678 1525683) (-985 "RSETCAT.spad" 1512122 1512138 1522121 1522126) (-984 "RSETCAT.spad" 1502111 1502129 1512112 1512117) (-983 "RSDCMPK.spad" 1500612 1500631 1502101 1502106) (-982 "RRCC.spad" 1498997 1499026 1500602 1500607) (-981 "RRCC.spad" 1497380 1497411 1498987 1498992) (-980 "RPTAST.spad" 1497083 1497091 1497370 1497375) (-979 "RPOLCAT.spad" 1476588 1476602 1496951 1497078) (-978 "RPOLCAT.spad" 1455886 1455902 1476251 1476256) (-977 "ROMAN.spad" 1455215 1455223 1455752 1455881) (-976 "ROIRC.spad" 1454296 1454327 1455205 1455210) (-975 "RNS.spad" 1453273 1453281 1454198 1454291) (-974 "RNS.spad" 1452336 1452346 1453263 1453268) (-973 "RNGBIND.spad" 1451497 1451510 1452291 1452296) (-972 "RNG.spad" 1451106 1451114 1451487 1451492) (-971 "RNG.spad" 1450713 1450723 1451096 1451101) (-970 "RMODULE.spad" 1450495 1450505 1450703 1450708) (-969 "RMCAT2.spad" 1449916 1449972 1450485 1450490) (-968 "RMATRIX.spad" 1448738 1448756 1449080 1449107) (-967 "RMATCAT.spad" 1444520 1444550 1448706 1448733) (-966 "RMATCAT.spad" 1440180 1440212 1444368 1444373) (-965 "RLINSET.spad" 1439885 1439895 1440170 1440175) (-964 "RINTERP.spad" 1439774 1439793 1439875 1439880) (-963 "RING.spad" 1439245 1439253 1439754 1439769) (-962 "RING.spad" 1438724 1438734 1439235 1439240) (-961 "RIDIST.spad" 1438117 1438125 1438714 1438719) (-960 "RGCHAIN.spad" 1436384 1436399 1437277 1437282) (-959 "RGBCSPC.spad" 1436174 1436185 1436374 1436379) (-958 "RGBCMDL.spad" 1435737 1435748 1436164 1436169) (-957 "RFFACTOR.spad" 1435200 1435210 1435727 1435732) (-956 "RFFACT.spad" 1434936 1434947 1435190 1435195) (-955 "RFDIST.spad" 1433933 1433941 1434926 1434931) (-954 "RF.spad" 1431608 1431618 1433923 1433928) (-953 "RETSOL.spad" 1431028 1431040 1431598 1431603) (-952 "RETRACT.spad" 1430457 1430467 1431018 1431023) (-951 "RETRACT.spad" 1429884 1429896 1430447 1430452) (-950 "RETAST.spad" 1429697 1429705 1429874 1429879) (-949 "RESRING.spad" 1429045 1429091 1429635 1429692) (-948 "RESLATC.spad" 1428370 1428380 1429035 1429040) (-947 "REPSQ.spad" 1428102 1428112 1428360 1428365) (-946 "REPDB.spad" 1427810 1427820 1428092 1428097) (-945 "REP2.spad" 1417525 1417535 1427652 1427657) (-944 "REP1.spad" 1411746 1411756 1417475 1417480) (-943 "REP.spad" 1409301 1409309 1411736 1411741) (-942 "REGSET.spad" 1406988 1407004 1408796 1408801) (-941 "REF.spad" 1406507 1406517 1406978 1406983) (-940 "REDORDER.spad" 1405714 1405730 1406497 1406502) (-939 "RECLOS.spad" 1404611 1404630 1405314 1405407) (-938 "REALSOLV.spad" 1403752 1403760 1404601 1404606) (-937 "REAL0Q.spad" 1401051 1401065 1403742 1403747) (-936 "REAL0.spad" 1397896 1397910 1401041 1401046) (-935 "REAL.spad" 1397769 1397777 1397886 1397891) (-934 "RDUCEAST.spad" 1397491 1397499 1397759 1397764) (-933 "RDIV.spad" 1397147 1397171 1397481 1397486) (-932 "RDIST.spad" 1396715 1396725 1397137 1397142) (-931 "RDETRS.spad" 1395580 1395597 1396705 1396710) (-930 "RDETR.spad" 1393720 1393737 1395570 1395575) (-929 "RDEEFS.spad" 1392820 1392836 1393710 1393715) (-928 "RDEEF.spad" 1391831 1391847 1392810 1392815) (-927 "RCFIELD.spad" 1389050 1389058 1391733 1391826) (-926 "RCFIELD.spad" 1386355 1386365 1389040 1389045) (-925 "RCAGG.spad" 1384292 1384302 1386345 1386350) (-924 "RCAGG.spad" 1382130 1382142 1384185 1384190) (-923 "RATRET.spad" 1381491 1381501 1382120 1382125) (-922 "RATFACT.spad" 1381184 1381195 1381481 1381486) (-921 "RANDSRC.spad" 1380504 1380512 1381174 1381179) (-920 "RADUTIL.spad" 1380261 1380269 1380494 1380499) (-919 "RADIX.spad" 1377306 1377319 1378851 1378944) (-918 "RADFF.spad" 1375223 1375259 1375341 1375497) (-917 "RADCAT.spad" 1374819 1374827 1375213 1375218) (-916 "RADCAT.spad" 1374413 1374423 1374809 1374814) (-915 "QUEUE.spad" 1373849 1373859 1374107 1374112) (-914 "QUATCT2.spad" 1373470 1373488 1373839 1373844) (-913 "QUATCAT.spad" 1371641 1371651 1373400 1373465) (-912 "QUATCAT.spad" 1369577 1369589 1371338 1371343) (-911 "QUAT.spad" 1368184 1368194 1368526 1368591) (-910 "QUAGG.spad" 1367040 1367050 1368174 1368179) (-909 "QQUTAST.spad" 1366809 1366817 1367030 1367035) (-908 "QFORM.spad" 1366428 1366442 1366799 1366804) (-907 "QFCAT2.spad" 1366121 1366137 1366418 1366423) (-906 "QFCAT.spad" 1364824 1364834 1366023 1366116) (-905 "QFCAT.spad" 1363160 1363172 1364361 1364366) (-904 "QEQUAT.spad" 1362719 1362727 1363150 1363155) (-903 "QCMPACK.spad" 1357634 1357653 1362709 1362714) (-902 "QALGSET2.spad" 1355630 1355648 1357624 1357629) (-901 "QALGSET.spad" 1351735 1351767 1355544 1355549) (-900 "PWFFINTB.spad" 1349151 1349172 1351725 1351730) (-899 "PUSHVAR.spad" 1348490 1348509 1349141 1349146) (-898 "PTRANFN.spad" 1344626 1344636 1348480 1348485) (-897 "PTPACK.spad" 1341714 1341724 1344616 1344621) (-896 "PTFUNC2.spad" 1341537 1341551 1341704 1341709) (-895 "PTCAT.spad" 1340814 1340824 1341527 1341532) (-894 "PSQFR.spad" 1340129 1340153 1340804 1340809) (-893 "PSEUDLIN.spad" 1339015 1339025 1340119 1340124) (-892 "PSETPK.spad" 1325720 1325736 1338893 1338898) (-891 "PSETCAT.spad" 1320130 1320153 1325710 1325715) (-890 "PSETCAT.spad" 1314504 1314529 1320086 1320091) (-889 "PSCURVE.spad" 1313503 1313511 1314494 1314499) (-888 "PSCAT.spad" 1312286 1312315 1313401 1313498) (-887 "PSCAT.spad" 1311159 1311190 1312276 1312281) (-886 "PRTITION.spad" 1309857 1309865 1311149 1311154) (-885 "PRTDAST.spad" 1309576 1309584 1309847 1309852) (-884 "PRS.spad" 1299194 1299211 1309532 1309537) (-883 "PRQAGG.spad" 1298651 1298661 1299184 1299189) (-882 "PROPLOG.spad" 1298255 1298263 1298641 1298646) (-881 "PROPFUN2.spad" 1297878 1297891 1298245 1298250) (-880 "PROPFUN1.spad" 1297284 1297295 1297868 1297873) (-879 "PROPFRML.spad" 1295852 1295863 1297274 1297279) (-878 "PROPERTY.spad" 1295348 1295356 1295842 1295847) (-877 "PRODUCT.spad" 1293045 1293057 1293329 1293384) (-876 "PRINT.spad" 1292797 1292805 1293035 1293040) (-875 "PRIMES.spad" 1291058 1291068 1292787 1292792) (-874 "PRIMELT.spad" 1289179 1289193 1291048 1291053) (-873 "PRIMCAT.spad" 1288822 1288830 1289169 1289174) (-872 "PRIMARR2.spad" 1287589 1287601 1288812 1288817) (-871 "PRIMARR.spad" 1286341 1286351 1286511 1286516) (-870 "PREASSOC.spad" 1285723 1285735 1286331 1286336) (-869 "PR.spad" 1284241 1284253 1284940 1285067) (-868 "PPCURVE.spad" 1283378 1283386 1284231 1284236) (-867 "PORTNUM.spad" 1283169 1283177 1283368 1283373) (-866 "POLYROOT.spad" 1282018 1282040 1283125 1283130) (-865 "POLYLIFT.spad" 1281283 1281306 1282008 1282013) (-864 "POLYCATQ.spad" 1279409 1279431 1281273 1281278) (-863 "POLYCAT.spad" 1272911 1272932 1279277 1279404) (-862 "POLYCAT.spad" 1265933 1265956 1272301 1272306) (-861 "POLY2UP.spad" 1265385 1265399 1265923 1265928) (-860 "POLY2.spad" 1264982 1264994 1265375 1265380) (-859 "POLY.spad" 1262650 1262660 1263165 1263292) (-858 "POLUTIL.spad" 1261615 1261644 1262606 1262611) (-857 "POLTOPOL.spad" 1260363 1260378 1261605 1261610) (-856 "POINT.spad" 1258943 1258953 1259030 1259035) (-855 "PNTHEORY.spad" 1255645 1255653 1258933 1258938) (-854 "PMTOOLS.spad" 1254420 1254434 1255635 1255640) (-853 "PMSYM.spad" 1253969 1253979 1254410 1254415) (-852 "PMQFCAT.spad" 1253560 1253574 1253959 1253964) (-851 "PMPREDFS.spad" 1253022 1253044 1253550 1253555) (-850 "PMPRED.spad" 1252509 1252523 1253012 1253017) (-849 "PMPLCAT.spad" 1251586 1251604 1252438 1252443) (-848 "PMLSAGG.spad" 1251171 1251185 1251576 1251581) (-847 "PMKERNEL.spad" 1250750 1250762 1251161 1251166) (-846 "PMINS.spad" 1250330 1250340 1250740 1250745) (-845 "PMFS.spad" 1249907 1249925 1250320 1250325) (-844 "PMDOWN.spad" 1249197 1249211 1249897 1249902) (-843 "PMASSFS.spad" 1248172 1248188 1249187 1249192) (-842 "PMASS.spad" 1247190 1247198 1248162 1248167) (-841 "PLOTTOOL.spad" 1246970 1246978 1247180 1247185) (-840 "PLOT3D.spad" 1243434 1243442 1246960 1246965) (-839 "PLOT1.spad" 1242607 1242617 1243424 1243429) (-838 "PLOT.spad" 1237530 1237538 1242597 1242602) (-837 "PLEQN.spad" 1224932 1224959 1237520 1237525) (-836 "PINTERPA.spad" 1224716 1224732 1224922 1224927) (-835 "PINTERP.spad" 1224338 1224357 1224706 1224711) (-834 "PID.spad" 1223312 1223320 1224264 1224333) (-833 "PICOERCE.spad" 1222969 1222979 1223302 1223307) (-832 "PI.spad" 1222586 1222594 1222943 1222964) (-831 "PGROEB.spad" 1221195 1221209 1222576 1222581) (-830 "PGE.spad" 1212868 1212876 1221185 1221190) (-829 "PGCD.spad" 1211822 1211839 1212858 1212863) (-828 "PFRPAC.spad" 1210971 1210981 1211812 1211817) (-827 "PFR.spad" 1207674 1207684 1210873 1210966) (-826 "PFOTOOLS.spad" 1206932 1206948 1207664 1207669) (-825 "PFOQ.spad" 1206302 1206320 1206922 1206927) (-824 "PFO.spad" 1205721 1205748 1206292 1206297) (-823 "PFECAT.spad" 1203431 1203439 1205647 1205716) (-822 "PFECAT.spad" 1201169 1201179 1203387 1203392) (-821 "PFBRU.spad" 1199057 1199069 1201159 1201164) (-820 "PFBR.spad" 1196617 1196640 1199047 1199052) (-819 "PF.spad" 1196191 1196203 1196422 1196515) (-818 "PERMGRP.spad" 1190961 1190971 1196181 1196186) (-817 "PERMCAT.spad" 1189622 1189632 1190941 1190956) (-816 "PERMAN.spad" 1188178 1188192 1189612 1189617) (-815 "PERM.spad" 1183988 1183998 1188011 1188026) (-814 "PENDTREE.spad" 1183341 1183351 1183621 1183626) (-813 "PDSPC.spad" 1182154 1182164 1183331 1183336) (-812 "PDSPC.spad" 1180965 1180977 1182144 1182149) (-811 "PDRING.spad" 1180807 1180817 1180945 1180960) (-810 "PDMOD.spad" 1180623 1180635 1180775 1180802) (-809 "PDECOMP.spad" 1180093 1180110 1180613 1180618) (-808 "PDDOM.spad" 1179531 1179544 1180083 1180088) (-807 "PDDOM.spad" 1178967 1178982 1179521 1179526) (-806 "PCOMP.spad" 1178820 1178833 1178957 1178962) (-805 "PBWLB.spad" 1177418 1177435 1178810 1178815) (-804 "PATTERN2.spad" 1177156 1177168 1177408 1177413) (-803 "PATTERN1.spad" 1175500 1175516 1177146 1177151) (-802 "PATTERN.spad" 1170075 1170085 1175490 1175495) (-801 "PATRES2.spad" 1169747 1169761 1170065 1170070) (-800 "PATRES.spad" 1167330 1167342 1169737 1169742) (-799 "PATMATCH.spad" 1165571 1165602 1167082 1167087) (-798 "PATMAB.spad" 1165000 1165010 1165561 1165566) (-797 "PATLRES.spad" 1164086 1164100 1164990 1164995) (-796 "PATAB.spad" 1163850 1163860 1164076 1164081) (-795 "PARTPERM.spad" 1161906 1161914 1163840 1163845) (-794 "PARSURF.spad" 1161340 1161368 1161896 1161901) (-793 "PARSU2.spad" 1161137 1161153 1161330 1161335) (-792 "script-parser.spad" 1160657 1160665 1161127 1161132) (-791 "PARSCURV.spad" 1160091 1160119 1160647 1160652) (-790 "PARSC2.spad" 1159882 1159898 1160081 1160086) (-789 "PARPCURV.spad" 1159344 1159372 1159872 1159877) (-788 "PARPC2.spad" 1159135 1159151 1159334 1159339) (-787 "PARAMAST.spad" 1158263 1158271 1159125 1159130) (-786 "PAN2EXPR.spad" 1157675 1157683 1158253 1158258) (-785 "PALETTE.spad" 1156789 1156797 1157665 1157670) (-784 "PAIR.spad" 1155863 1155876 1156432 1156437) (-783 "PADICRC.spad" 1153268 1153286 1154431 1154524) (-782 "PADICRAT.spad" 1151328 1151340 1151541 1151634) (-781 "PADICCT.spad" 1149877 1149889 1151254 1151323) (-780 "PADIC.spad" 1149580 1149592 1149803 1149872) (-779 "PADEPAC.spad" 1148269 1148288 1149570 1149575) (-778 "PADE.spad" 1147021 1147037 1148259 1148264) (-777 "OWP.spad" 1146269 1146299 1146879 1146946) (-776 "OVERSET.spad" 1145842 1145850 1146259 1146264) (-775 "OVAR.spad" 1145623 1145646 1145832 1145837) (-774 "OUTFORM.spad" 1135031 1135039 1145613 1145618) (-773 "OUTBFILE.spad" 1134465 1134473 1135021 1135026) (-772 "OUTBCON.spad" 1133535 1133543 1134455 1134460) (-771 "OUTBCON.spad" 1132603 1132613 1133525 1133530) (-770 "OUT.spad" 1131721 1131729 1132593 1132598) (-769 "OSI.spad" 1131196 1131204 1131711 1131716) (-768 "OSGROUP.spad" 1131114 1131122 1131186 1131191) (-767 "ORTHPOL.spad" 1129625 1129635 1131057 1131062) (-766 "OREUP.spad" 1129119 1129147 1129346 1129385) (-765 "ORESUP.spad" 1128461 1128485 1128840 1128879) (-764 "OREPCTO.spad" 1126350 1126362 1128381 1128386) (-763 "OREPCAT.spad" 1120537 1120547 1126306 1126345) (-762 "OREPCAT.spad" 1114614 1114626 1120385 1120390) (-761 "ORDTYPE.spad" 1113851 1113859 1114604 1114609) (-760 "ORDTYPE.spad" 1113086 1113096 1113841 1113846) (-759 "ORDSTRCT.spad" 1112872 1112887 1113035 1113040) (-758 "ORDSET.spad" 1112572 1112580 1112862 1112867) (-757 "ORDRING.spad" 1112389 1112397 1112552 1112567) (-756 "ORDMON.spad" 1112244 1112252 1112379 1112384) (-755 "ORDFUNS.spad" 1111376 1111392 1112234 1112239) (-754 "ORDFIN.spad" 1111196 1111204 1111366 1111371) (-753 "ORDCOMP2.spad" 1110489 1110501 1111186 1111191) (-752 "ORDCOMP.spad" 1109015 1109025 1110097 1110126) (-751 "OPSIG.spad" 1108677 1108685 1109005 1109010) (-750 "OPQUERY.spad" 1108258 1108266 1108667 1108672) (-749 "OPERCAT.spad" 1107724 1107734 1108248 1108253) (-748 "OPERCAT.spad" 1107188 1107200 1107714 1107719) (-747 "OP.spad" 1106930 1106940 1107010 1107077) (-746 "ONECOMP2.spad" 1106354 1106366 1106920 1106925) (-745 "ONECOMP.spad" 1105160 1105170 1105962 1105991) (-744 "OMSAGG.spad" 1104972 1104982 1105140 1105155) (-743 "OMLO.spad" 1104405 1104417 1104858 1104897) (-742 "OINTDOM.spad" 1104168 1104176 1104331 1104400) (-741 "OFMONOID.spad" 1102307 1102317 1104124 1104129) (-740 "ODVAR.spad" 1101568 1101578 1102297 1102302) (-739 "ODR.spad" 1101212 1101238 1101380 1101529) (-738 "ODPOL.spad" 1098860 1098870 1099200 1099327) (-737 "ODP.spad" 1088347 1088367 1088720 1088805) (-736 "ODETOOLS.spad" 1086996 1087015 1088337 1088342) (-735 "ODESYS.spad" 1084690 1084707 1086986 1086991) (-734 "ODERTRIC.spad" 1080723 1080740 1084647 1084652) (-733 "ODERED.spad" 1080122 1080146 1080713 1080718) (-732 "ODERAT.spad" 1077755 1077772 1080112 1080117) (-731 "ODEPRRIC.spad" 1074848 1074870 1077745 1077750) (-730 "ODEPRIM.spad" 1072246 1072268 1074838 1074843) (-729 "ODEPAL.spad" 1071632 1071656 1072236 1072241) (-728 "ODEINT.spad" 1071067 1071083 1071622 1071627) (-727 "ODEEF.spad" 1066562 1066578 1071057 1071062) (-726 "ODECONST.spad" 1066107 1066125 1066552 1066557) (-725 "OCTCT2.spad" 1065748 1065766 1066097 1066102) (-724 "OCT.spad" 1064063 1064073 1064777 1064816) (-723 "OCAMON.spad" 1063911 1063919 1064053 1064058) (-722 "OC.spad" 1061707 1061717 1063867 1063906) (-721 "OC.spad" 1059242 1059254 1061404 1061409) (-720 "OASGP.spad" 1059057 1059065 1059232 1059237) (-719 "OAMONS.spad" 1058579 1058587 1059047 1059052) (-718 "OAMON.spad" 1058337 1058345 1058569 1058574) (-717 "OAMON.spad" 1058093 1058103 1058327 1058332) (-716 "OAGROUP.spad" 1057631 1057639 1058083 1058088) (-715 "OAGROUP.spad" 1057167 1057177 1057621 1057626) (-714 "NUMTUBE.spad" 1056758 1056774 1057157 1057162) (-713 "NUMQUAD.spad" 1044734 1044742 1056748 1056753) (-712 "NUMODE.spad" 1036086 1036094 1044724 1044729) (-711 "NUMFMT.spad" 1034926 1034934 1036076 1036081) (-710 "NUMERIC.spad" 1027041 1027051 1034732 1034737) (-709 "NTSCAT.spad" 1025571 1025587 1027031 1027036) (-708 "NTPOLFN.spad" 1025148 1025158 1025514 1025519) (-707 "NSUP2.spad" 1024540 1024552 1025138 1025143) (-706 "NSUP.spad" 1017977 1017987 1022397 1022550) (-705 "NSMP.spad" 1014889 1014908 1015181 1015308) (-704 "NREP.spad" 1013291 1013305 1014879 1014884) (-703 "NPCOEF.spad" 1012537 1012557 1013281 1013286) (-702 "NORMRETR.spad" 1012135 1012174 1012527 1012532) (-701 "NORMPK.spad" 1010077 1010096 1012125 1012130) (-700 "NORMMA.spad" 1009765 1009791 1010067 1010072) (-699 "NONE1.spad" 1009441 1009451 1009755 1009760) (-698 "NONE.spad" 1009182 1009190 1009431 1009436) (-697 "NODE1.spad" 1008669 1008685 1009172 1009177) (-696 "NNI.spad" 1007564 1007572 1008643 1008664) (-695 "NLINSOL.spad" 1006190 1006200 1007554 1007559) (-694 "NFINTBAS.spad" 1003750 1003767 1006180 1006185) (-693 "NETCLT.spad" 1003724 1003735 1003740 1003745) (-692 "NCODIV.spad" 1001948 1001964 1003714 1003719) (-691 "NCNTFRAC.spad" 1001590 1001604 1001938 1001943) (-690 "NCEP.spad" 999756 999770 1001580 1001585) (-689 "NASRING.spad" 999360 999368 999746 999751) (-688 "NASRING.spad" 998962 998972 999350 999355) (-687 "NARNG.spad" 998362 998370 998952 998957) (-686 "NARNG.spad" 997760 997770 998352 998357) (-685 "NAALG.spad" 997325 997335 997728 997755) (-684 "NAALG.spad" 996910 996922 997315 997320) (-683 "MULTSQFR.spad" 993868 993885 996900 996905) (-682 "MULTFACT.spad" 993251 993268 993858 993863) (-681 "MTSCAT.spad" 991345 991366 993149 993246) (-680 "MTHING.spad" 991004 991014 991335 991340) (-679 "MSYSCMD.spad" 990438 990446 990994 990999) (-678 "MSETAGG.spad" 990295 990305 990418 990433) (-677 "MSET.spad" 988105 988115 989852 989867) (-676 "MRING.spad" 985227 985239 987813 987880) (-675 "MRF2.spad" 984789 984803 985217 985222) (-674 "MRATFAC.spad" 984335 984352 984779 984784) (-673 "MPRFF.spad" 982375 982394 984325 984330) (-672 "MPOLY.spad" 980179 980194 980538 980665) (-671 "MPCPF.spad" 979443 979462 980169 980174) (-670 "MPC3.spad" 979260 979300 979433 979438) (-669 "MPC2.spad" 978914 978947 979250 979255) (-668 "MONOTOOL.spad" 977265 977282 978904 978909) (-667 "catdef.spad" 976698 976709 976919 977260) (-666 "catdef.spad" 976096 976107 976352 976693) (-665 "MONOID.spad" 975417 975425 976086 976091) (-664 "MONOID.spad" 974736 974746 975407 975412) (-663 "MONOGEN.spad" 973484 973497 974596 974731) (-662 "MONOGEN.spad" 972254 972269 973368 973373) (-661 "MONADWU.spad" 970334 970342 972244 972249) (-660 "MONADWU.spad" 968412 968422 970324 970329) (-659 "MONAD.spad" 967572 967580 968402 968407) (-658 "MONAD.spad" 966730 966740 967562 967567) (-657 "MOEBIUS.spad" 965466 965480 966710 966725) (-656 "MODULE.spad" 965336 965346 965434 965461) (-655 "MODULE.spad" 965226 965238 965326 965331) (-654 "MODRING.spad" 964561 964600 965206 965221) (-653 "MODOP.spad" 963218 963230 964383 964450) (-652 "MODMONOM.spad" 962949 962967 963208 963213) (-651 "MODMON.spad" 960019 960031 960734 960887) (-650 "MODFIELD.spad" 959381 959420 959921 960014) (-649 "MMLFORM.spad" 958241 958249 959371 959376) (-648 "MMAP.spad" 957983 958017 958231 958236) (-647 "MLO.spad" 956442 956452 957939 957978) (-646 "MLIFT.spad" 955054 955071 956432 956437) (-645 "MKUCFUNC.spad" 954589 954607 955044 955049) (-644 "MKRECORD.spad" 954177 954190 954579 954584) (-643 "MKFUNC.spad" 953584 953594 954167 954172) (-642 "MKFLCFN.spad" 952552 952562 953574 953579) (-641 "MKBCFUNC.spad" 952047 952065 952542 952547) (-640 "MHROWRED.spad" 950558 950568 952037 952042) (-639 "MFINFACT.spad" 949958 949980 950548 950553) (-638 "MESH.spad" 947753 947761 949948 949953) (-637 "MDDFACT.spad" 945972 945982 947743 947748) (-636 "MDAGG.spad" 945273 945283 945962 945967) (-635 "MCDEN.spad" 944483 944495 945263 945268) (-634 "MAYBE.spad" 943783 943794 944473 944478) (-633 "MATSTOR.spad" 941099 941109 943773 943778) (-632 "MATRIX.spad" 939900 939910 940384 940389) (-631 "MATLIN.spad" 937268 937292 939784 939789) (-630 "MATCAT2.spad" 936550 936598 937258 937263) (-629 "MATCAT.spad" 928268 928290 936540 936545) (-628 "MATCAT.spad" 919836 919860 928110 928115) (-627 "MAPPKG3.spad" 918751 918765 919826 919831) (-626 "MAPPKG2.spad" 918089 918101 918741 918746) (-625 "MAPPKG1.spad" 916917 916927 918079 918084) (-624 "MAPPAST.spad" 916256 916264 916907 916912) (-623 "MAPHACK3.spad" 916068 916082 916246 916251) (-622 "MAPHACK2.spad" 915837 915849 916058 916063) (-621 "MAPHACK1.spad" 915481 915491 915827 915832) (-620 "MAGMA.spad" 913287 913304 915471 915476) (-619 "MACROAST.spad" 912882 912890 913277 913282) (-618 "LZSTAGG.spad" 910136 910146 912872 912877) (-617 "LZSTAGG.spad" 907388 907400 910126 910131) (-616 "LWORD.spad" 904133 904150 907378 907383) (-615 "LSTAST.spad" 903917 903925 904123 904128) (-614 "LSQM.spad" 902207 902221 902601 902640) (-613 "LSPP.spad" 901742 901759 902197 902202) (-612 "LSMP1.spad" 899585 899599 901732 901737) (-611 "LSMP.spad" 898442 898470 899575 899580) (-610 "LSAGG.spad" 898133 898143 898432 898437) (-609 "LSAGG.spad" 897822 897834 898123 898128) (-608 "LPOLY.spad" 896784 896803 897678 897747) (-607 "LPEFRAC.spad" 896055 896065 896774 896779) (-606 "LOGIC.spad" 895597 895605 896045 896050) (-605 "LOGIC.spad" 895137 895147 895587 895592) (-604 "LODOOPS.spad" 894067 894079 895127 895132) (-603 "LODOF.spad" 893113 893130 894024 894029) (-602 "LODOCAT.spad" 891779 891789 893069 893108) (-601 "LODOCAT.spad" 890443 890455 891735 891740) (-600 "LODO2.spad" 889757 889769 890164 890203) (-599 "LODO1.spad" 889198 889208 889478 889517) (-598 "LODO.spad" 888623 888639 888919 888958) (-597 "LODEEF.spad" 887425 887443 888613 888618) (-596 "LO.spad" 886826 886840 887359 887386) (-595 "LNAGG.spad" 883013 883023 886816 886821) (-594 "LNAGG.spad" 879136 879148 882941 882946) (-593 "LMOPS.spad" 875904 875921 879126 879131) (-592 "LMODULE.spad" 875688 875698 875894 875899) (-591 "LMDICT.spad" 874930 874940 875178 875183) (-590 "LLINSET.spad" 874637 874647 874920 874925) (-589 "LITERAL.spad" 874543 874554 874627 874632) (-588 "LIST3.spad" 873854 873868 874533 874538) (-587 "LIST2MAP.spad" 870781 870793 873844 873849) (-586 "LIST2.spad" 869483 869495 870771 870776) (-585 "LIST.spad" 867062 867072 868405 868410) (-584 "LINSET.spad" 866841 866851 867052 867057) (-583 "LINFORM.spad" 866304 866316 866809 866836) (-582 "LINEXP.spad" 865047 865057 866294 866299) (-581 "LINELT.spad" 864418 864430 864930 864957) (-580 "LINDEP.spad" 863267 863279 864330 864335) (-579 "LINBASIS.spad" 862903 862918 863257 863262) (-578 "LIMITRF.spad" 860850 860860 862893 862898) (-577 "LIMITPS.spad" 859760 859773 860840 860845) (-576 "LIECAT.spad" 859244 859254 859686 859755) (-575 "LIECAT.spad" 858756 858768 859200 859205) (-574 "LIE.spad" 856760 856772 858034 858176) (-573 "LIB.spad" 854583 854591 855029 855034) (-572 "LGROBP.spad" 851936 851955 854573 854578) (-571 "LFCAT.spad" 850995 851003 851926 851931) (-570 "LF.spad" 849950 849966 850985 850990) (-569 "LEXTRIPK.spad" 845573 845588 849940 849945) (-568 "LEXP.spad" 843592 843619 845553 845568) (-567 "LETAST.spad" 843291 843299 843582 843587) (-566 "LEADCDET.spad" 841697 841714 843281 843286) (-565 "LAZM3PK.spad" 840441 840463 841687 841692) (-564 "LAUPOL.spad" 839108 839121 840008 840077) (-563 "LAPLACE.spad" 838691 838707 839098 839103) (-562 "LALG.spad" 838467 838477 838671 838686) (-561 "LALG.spad" 838251 838263 838457 838462) (-560 "LA.spad" 837691 837705 838173 838212) (-559 "KVTFROM.spad" 837434 837444 837681 837686) (-558 "KTVLOGIC.spad" 836978 836986 837424 837429) (-557 "KRCFROM.spad" 836724 836734 836968 836973) (-556 "KOVACIC.spad" 835455 835472 836714 836719) (-555 "KONVERT.spad" 835177 835187 835445 835450) (-554 "KOERCE.spad" 834914 834924 835167 835172) (-553 "KERNEL2.spad" 834617 834629 834904 834909) (-552 "KERNEL.spad" 833337 833347 834466 834471) (-551 "KDAGG.spad" 832456 832478 833327 833332) (-550 "KDAGG.spad" 831573 831597 832446 832451) (-549 "KAFILE.spad" 829949 829965 830184 830189) (-548 "JVMOP.spad" 829862 829870 829939 829944) (-547 "JVMMDACC.spad" 828916 828924 829852 829857) (-546 "JVMFDACC.spad" 828232 828240 828906 828911) (-545 "JVMCSTTG.spad" 826961 826969 828222 828227) (-544 "JVMCFACC.spad" 826407 826415 826951 826956) (-543 "JVMBCODE.spad" 826318 826326 826397 826402) (-542 "JORDAN.spad" 824135 824147 825596 825738) (-541 "JOINAST.spad" 823837 823845 824125 824130) (-540 "IXAGG.spad" 821970 821994 823827 823832) (-539 "IXAGG.spad" 819905 819931 821764 821769) (-538 "ITUPLE.spad" 819197 819207 819895 819900) (-537 "ITRIGMNP.spad" 818044 818063 819187 819192) (-536 "ITFUN3.spad" 817550 817564 818034 818039) (-535 "ITFUN2.spad" 817294 817306 817540 817545) (-534 "ITFORM.spad" 816649 816657 817284 817289) (-533 "ITAYLOR.spad" 814643 814658 816513 816610) (-532 "ISUPS.spad" 807092 807107 813629 813726) (-531 "ISUMP.spad" 806593 806609 807082 807087) (-530 "ISAST.spad" 806312 806320 806583 806588) (-529 "IRURPK.spad" 805029 805048 806302 806307) (-528 "IRSN.spad" 803033 803041 805019 805024) (-527 "IRRF2F.spad" 801526 801536 802989 802994) (-526 "IRREDFFX.spad" 801127 801138 801516 801521) (-525 "IROOT.spad" 799466 799476 801117 801122) (-524 "IRFORM.spad" 798790 798798 799456 799461) (-523 "IR2F.spad" 798004 798020 798780 798785) (-522 "IR2.spad" 797032 797048 797994 797999) (-521 "IR.spad" 794868 794882 796914 796941) (-520 "IPRNTPK.spad" 794628 794636 794858 794863) (-519 "IPF.spad" 794193 794205 794433 794526) (-518 "IPADIC.spad" 793962 793988 794119 794188) (-517 "IP4ADDR.spad" 793519 793527 793952 793957) (-516 "IOMODE.spad" 793041 793049 793509 793514) (-515 "IOBFILE.spad" 792426 792434 793031 793036) (-514 "IOBCON.spad" 792291 792299 792416 792421) (-513 "INVLAPLA.spad" 791940 791956 792281 792286) (-512 "INTTR.spad" 785334 785351 791930 791935) (-511 "INTTOOLS.spad" 783142 783158 784961 784966) (-510 "INTSLPE.spad" 782470 782478 783132 783137) (-509 "INTRVL.spad" 782036 782046 782384 782465) (-508 "INTRF.spad" 780468 780482 782026 782031) (-507 "INTRET.spad" 779900 779910 780458 780463) (-506 "INTRAT.spad" 778635 778652 779890 779895) (-505 "INTPM.spad" 777098 777114 778356 778361) (-504 "INTPAF.spad" 774974 774992 777027 777032) (-503 "INTHERTR.spad" 774248 774265 774964 774969) (-502 "INTHERAL.spad" 773918 773942 774238 774243) (-501 "INTHEORY.spad" 770357 770365 773908 773913) (-500 "INTG0.spad" 764121 764139 770286 770291) (-499 "INTFACT.spad" 763188 763198 764111 764116) (-498 "INTEF.spad" 761599 761615 763178 763183) (-497 "INTDOM.spad" 760222 760230 761525 761594) (-496 "INTDOM.spad" 758907 758917 760212 760217) (-495 "INTCAT.spad" 757174 757184 758821 758902) (-494 "INTBIT.spad" 756681 756689 757164 757169) (-493 "INTALG.spad" 755869 755896 756671 756676) (-492 "INTAF.spad" 755369 755385 755859 755864) (-491 "INTABL.spad" 753186 753217 753349 753354) (-490 "INT8.spad" 753066 753074 753176 753181) (-489 "INT64.spad" 752945 752953 753056 753061) (-488 "INT32.spad" 752824 752832 752935 752940) (-487 "INT16.spad" 752703 752711 752814 752819) (-486 "INT.spad" 752229 752237 752569 752698) (-485 "INS.spad" 749732 749740 752131 752224) (-484 "INS.spad" 747321 747331 749722 749727) (-483 "INPSIGN.spad" 746791 746804 747311 747316) (-482 "INPRODPF.spad" 745887 745906 746781 746786) (-481 "INPRODFF.spad" 744975 744999 745877 745882) (-480 "INNMFACT.spad" 743950 743967 744965 744970) (-479 "INMODGCD.spad" 743454 743484 743940 743945) (-478 "INFSP.spad" 741751 741773 743444 743449) (-477 "INFPROD0.spad" 740831 740850 741741 741746) (-476 "INFORM1.spad" 740456 740466 740821 740826) (-475 "INFORM.spad" 737667 737675 740446 740451) (-474 "INFINITY.spad" 737219 737227 737657 737662) (-473 "INETCLTS.spad" 737196 737204 737209 737214) (-472 "INEP.spad" 735742 735764 737186 737191) (-471 "INDE.spad" 735391 735408 735652 735657) (-470 "INCRMAPS.spad" 734828 734838 735381 735386) (-469 "INBFILE.spad" 733924 733932 734818 734823) (-468 "INBFF.spad" 729774 729785 733914 733919) (-467 "INBCON.spad" 728040 728048 729764 729769) (-466 "INBCON.spad" 726304 726314 728030 728035) (-465 "INAST.spad" 725965 725973 726294 726299) (-464 "IMPTAST.spad" 725673 725681 725955 725960) (-463 "IMATQF.spad" 724739 724783 725601 725606) (-462 "IMATLIN.spad" 723332 723356 724667 724672) (-461 "IFF.spad" 722745 722761 723016 723109) (-460 "IFAST.spad" 722359 722367 722735 722740) (-459 "IFARRAY.spad" 719583 719598 721281 721286) (-458 "IFAMON.spad" 719445 719462 719539 719544) (-457 "IEVALAB.spad" 718858 718870 719435 719440) (-456 "IEVALAB.spad" 718269 718283 718848 718853) (-455 "indexedp.spad" 717825 717837 718259 718264) (-454 "IDPOAMS.spad" 717503 717515 717737 717742) (-453 "IDPOAM.spad" 717145 717157 717415 717420) (-452 "IDPO.spad" 716559 716571 717057 717062) (-451 "IDPC.spad" 715457 715469 716549 716554) (-450 "IDPAM.spad" 715124 715136 715369 715374) (-449 "IDPAG.spad" 714793 714805 715036 715041) (-448 "IDENT.spad" 714445 714453 714783 714788) (-447 "catdef.spad" 714216 714227 714328 714440) (-446 "IDECOMP.spad" 711455 711473 714206 714211) (-445 "IDEAL.spad" 706417 706456 711403 711408) (-444 "ICDEN.spad" 705630 705646 706407 706412) (-443 "ICARD.spad" 705023 705031 705620 705625) (-442 "IBPTOOLS.spad" 703630 703647 705013 705018) (-441 "boolean.spad" 702922 702935 703055 703060) (-440 "IBATOOL.spad" 699907 699926 702912 702917) (-439 "IBACHIN.spad" 698414 698429 699897 699902) (-438 "array2.spad" 697921 697943 698108 698113) (-437 "IARRAY1.spad" 696697 696712 696843 696848) (-436 "IAN.spad" 695079 695087 696528 696621) (-435 "IALGFACT.spad" 694690 694723 695069 695074) (-434 "HYPCAT.spad" 694114 694122 694680 694685) (-433 "HYPCAT.spad" 693536 693546 694104 694109) (-432 "HOSTNAME.spad" 693352 693360 693526 693531) (-431 "HOMOTOP.spad" 693095 693105 693342 693347) (-430 "HOAGG.spad" 692795 692805 693085 693090) (-429 "HOAGG.spad" 692317 692329 692609 692614) (-428 "HEXADEC.spad" 690542 690550 690907 691000) (-427 "HEUGCD.spad" 689633 689644 690532 690537) (-426 "HELLFDIV.spad" 689239 689263 689623 689628) (-425 "HEAP.spad" 688718 688728 688933 688938) (-424 "HEADAST.spad" 688259 688267 688708 688713) (-423 "HDP.spad" 677742 677758 678119 678204) (-422 "HDMP.spad" 675289 675304 675905 676032) (-421 "HB.spad" 673564 673572 675279 675284) (-420 "HASHTBL.spad" 671333 671364 671544 671549) (-419 "HASAST.spad" 671049 671057 671323 671328) (-418 "HACKPI.spad" 670540 670548 670951 671044) (-417 "GTSET.spad" 669328 669344 670035 670040) (-416 "GSTBL.spad" 667134 667169 667308 667313) (-415 "GSERIES.spad" 664506 664533 665325 665474) (-414 "GROUP.spad" 663779 663787 664486 664501) (-413 "GROUP.spad" 663060 663070 663769 663774) (-412 "GROEBSOL.spad" 661554 661575 663050 663055) (-411 "GRMOD.spad" 660135 660147 661544 661549) (-410 "GRMOD.spad" 658714 658728 660125 660130) (-409 "GRIMAGE.spad" 651627 651635 658704 658709) (-408 "GRDEF.spad" 650006 650014 651617 651622) (-407 "GRAY.spad" 648477 648485 649996 650001) (-406 "GRALG.spad" 647572 647584 648467 648472) (-405 "GRALG.spad" 646665 646679 647562 647567) (-404 "GPOLSET.spad" 645984 646007 646196 646201) (-403 "GOSPER.spad" 645261 645279 645974 645979) (-402 "GMODPOL.spad" 644409 644436 645229 645256) (-401 "GHENSEL.spad" 643492 643506 644399 644404) (-400 "GENUPS.spad" 639785 639798 643482 643487) (-399 "GENUFACT.spad" 639362 639372 639775 639780) (-398 "GENPGCD.spad" 638964 638981 639352 639357) (-397 "GENMFACT.spad" 638416 638435 638954 638959) (-396 "GENEEZ.spad" 636375 636388 638406 638411) (-395 "GDMP.spad" 633764 633781 634538 634665) (-394 "GCNAALG.spad" 627687 627714 633558 633625) (-393 "GCDDOM.spad" 626879 626887 627613 627682) (-392 "GCDDOM.spad" 626133 626143 626869 626874) (-391 "GBINTERN.spad" 622153 622191 626123 626128) (-390 "GBF.spad" 617936 617974 622143 622148) (-389 "GBEUCLID.spad" 615818 615856 617926 617931) (-388 "GB.spad" 613344 613382 615774 615779) (-387 "GAUSSFAC.spad" 612657 612665 613334 613339) (-386 "GALUTIL.spad" 610983 610993 612613 612618) (-385 "GALPOLYU.spad" 609437 609450 610973 610978) (-384 "GALFACTU.spad" 607650 607669 609427 609432) (-383 "GALFACT.spad" 597863 597874 607640 607645) (-382 "FUNDESC.spad" 597541 597549 597853 597858) (-381 "catdef.spad" 597152 597162 597531 597536) (-380 "FUNCTION.spad" 597001 597013 597142 597147) (-379 "FT.spad" 595301 595309 596991 596996) (-378 "FSUPFACT.spad" 594215 594234 595251 595256) (-377 "FST.spad" 592301 592309 594205 594210) (-376 "FSRED.spad" 591781 591797 592291 592296) (-375 "FSPRMELT.spad" 590647 590663 591738 591743) (-374 "FSPECF.spad" 588738 588754 590637 590642) (-373 "FSINT.spad" 588398 588414 588728 588733) (-372 "FSERIES.spad" 587589 587601 588218 588317) (-371 "FSCINT.spad" 586906 586922 587579 587584) (-370 "FSAGG2.spad" 585641 585657 586896 586901) (-369 "FSAGG.spad" 584782 584792 585621 585636) (-368 "FSAGG.spad" 583861 583873 584702 584707) (-367 "FS2UPS.spad" 578376 578410 583851 583856) (-366 "FS2EXPXP.spad" 577517 577540 578366 578371) (-365 "FS2.spad" 577172 577188 577507 577512) (-364 "FS.spad" 571444 571454 576951 577167) (-363 "FS.spad" 565518 565530 571027 571032) (-362 "FRUTIL.spad" 564472 564482 565508 565513) (-361 "FRNAALG.spad" 559749 559759 564414 564467) (-360 "FRNAALG.spad" 555038 555050 559705 559710) (-359 "FRNAAF2.spad" 554486 554504 555028 555033) (-358 "FRMOD.spad" 553894 553924 554415 554420) (-357 "FRIDEAL2.spad" 553498 553530 553884 553889) (-356 "FRIDEAL.spad" 552723 552744 553478 553493) (-355 "FRETRCT.spad" 552242 552252 552713 552718) (-354 "FRETRCT.spad" 551668 551680 552141 552146) (-353 "FRAMALG.spad" 550048 550061 551624 551663) (-352 "FRAMALG.spad" 548460 548475 550038 550043) (-351 "FRAC2.spad" 548065 548077 548450 548455) (-350 "FRAC.spad" 546052 546062 546439 546612) (-349 "FR2.spad" 545388 545400 546042 546047) (-348 "FR.spad" 539492 539502 544449 544518) (-347 "FPS.spad" 536331 536339 539382 539487) (-346 "FPS.spad" 533198 533208 536251 536256) (-345 "FPC.spad" 532244 532252 533100 533193) (-344 "FPC.spad" 531376 531386 532234 532239) (-343 "FPATMAB.spad" 531138 531148 531366 531371) (-342 "FPARFRAC.spad" 529980 529997 531128 531133) (-341 "FORDER.spad" 529671 529695 529970 529975) (-340 "FNLA.spad" 529095 529117 529639 529666) (-339 "FNCAT.spad" 527690 527698 529085 529090) (-338 "FNAME.spad" 527582 527590 527680 527685) (-337 "FMONOID.spad" 527263 527273 527538 527543) (-336 "FMONCAT.spad" 524432 524442 527253 527258) (-335 "FMCAT.spad" 522268 522286 524400 524427) (-334 "FM1.spad" 521633 521645 522202 522229) (-333 "FM.spad" 521248 521260 521487 521514) (-332 "FLOATRP.spad" 518991 519005 521238 521243) (-331 "FLOATCP.spad" 516430 516444 518981 518986) (-330 "FLOAT.spad" 513521 513529 516296 516425) (-329 "FLINEXP.spad" 513243 513253 513511 513516) (-328 "FLINEXP.spad" 512922 512934 513192 513197) (-327 "FLASORT.spad" 512248 512260 512912 512917) (-326 "FLALG.spad" 509918 509937 512174 512243) (-325 "FLAGG2.spad" 508635 508651 509908 509913) (-324 "FLAGG.spad" 505711 505721 508625 508630) (-323 "FLAGG.spad" 502652 502664 505568 505573) (-322 "FINRALG.spad" 500737 500750 502608 502647) (-321 "FINRALG.spad" 498748 498763 500621 500626) (-320 "FINITE.spad" 497900 497908 498738 498743) (-319 "FINITE.spad" 497050 497060 497890 497895) (-318 "aggcat.spad" 493775 493785 497040 497045) (-317 "FINAGG.spad" 490465 490477 493732 493737) (-316 "FINAALG.spad" 479650 479660 490407 490460) (-315 "FINAALG.spad" 468847 468859 479606 479611) (-314 "FILECAT.spad" 467381 467398 468837 468842) (-313 "FILE.spad" 466964 466974 467371 467376) (-312 "FIELD.spad" 466370 466378 466866 466959) (-311 "FIELD.spad" 465862 465872 466360 466365) (-310 "FGROUP.spad" 464525 464535 465842 465857) (-309 "FGLMICPK.spad" 463320 463335 464515 464520) (-308 "FFX.spad" 462706 462721 463039 463132) (-307 "FFSLPE.spad" 462217 462238 462696 462701) (-306 "FFPOLY2.spad" 461277 461294 462207 462212) (-305 "FFPOLY.spad" 452619 452630 461267 461272) (-304 "FFP.spad" 452027 452047 452338 452431) (-303 "FFNBX.spad" 450550 450570 451746 451839) (-302 "FFNBP.spad" 449074 449091 450269 450362) (-301 "FFNB.spad" 447542 447563 448758 448851) (-300 "FFINTBAS.spad" 445056 445075 447532 447537) (-299 "FFIELDC.spad" 442641 442649 444958 445051) (-298 "FFIELDC.spad" 440312 440322 442631 442636) (-297 "FFHOM.spad" 439084 439101 440302 440307) (-296 "FFF.spad" 436527 436538 439074 439079) (-295 "FFCGX.spad" 435385 435405 436246 436339) (-294 "FFCGP.spad" 434285 434305 435104 435197) (-293 "FFCG.spad" 433080 433101 433969 434062) (-292 "FFCAT2.spad" 432827 432867 433070 433075) (-291 "FFCAT.spad" 425992 426014 432666 432822) (-290 "FFCAT.spad" 419236 419260 425912 425917) (-289 "FF.spad" 418687 418703 418920 419013) (-288 "FEVALAB.spad" 418524 418534 418677 418682) (-287 "FEVALAB.spad" 418137 418149 418292 418297) (-286 "FDIVCAT.spad" 416233 416257 418127 418132) (-285 "FDIVCAT.spad" 414327 414353 416223 416228) (-284 "FDIV2.spad" 413983 414023 414317 414322) (-283 "FDIV.spad" 413441 413465 413973 413978) (-282 "FCTRDATA.spad" 412449 412457 413431 413436) (-281 "FCOMP.spad" 411828 411838 412439 412444) (-280 "FAXF.spad" 404863 404877 411730 411823) (-279 "FAXF.spad" 397950 397966 404819 404824) (-278 "FARRAY.spad" 395839 395849 396872 396877) (-277 "FAMR.spad" 393983 393995 395737 395834) (-276 "FAMR.spad" 392111 392125 393867 393872) (-275 "FAMONOID.spad" 391795 391805 392065 392070) (-274 "FAMONC.spad" 390115 390127 391785 391790) (-273 "FAGROUP.spad" 389755 389765 390011 390038) (-272 "FACUTIL.spad" 387967 387984 389745 389750) (-271 "FACTFUNC.spad" 387169 387179 387957 387962) (-270 "EXPUPXS.spad" 384061 384084 385360 385509) (-269 "EXPRTUBE.spad" 381349 381357 384051 384056) (-268 "EXPRODE.spad" 378517 378533 381339 381344) (-267 "EXPR2UPS.spad" 374639 374652 378507 378512) (-266 "EXPR2.spad" 374344 374356 374629 374634) (-265 "EXPR.spad" 369989 369999 370703 370990) (-264 "EXPEXPAN.spad" 366934 366959 367566 367659) (-263 "EXITAST.spad" 366670 366678 366924 366929) (-262 "EXIT.spad" 366341 366349 366660 366665) (-261 "EVALCYC.spad" 365801 365815 366331 366336) (-260 "EVALAB.spad" 365381 365391 365791 365796) (-259 "EVALAB.spad" 364959 364971 365371 365376) (-258 "EUCDOM.spad" 362549 362557 364885 364954) (-257 "EUCDOM.spad" 360201 360211 362539 362544) (-256 "ES2.spad" 359714 359730 360191 360196) (-255 "ES1.spad" 359284 359300 359704 359709) (-254 "ES.spad" 352155 352163 359274 359279) (-253 "ES.spad" 344947 344957 352068 352073) (-252 "ERROR.spad" 342274 342282 344937 344942) (-251 "EQTBL.spad" 340045 340067 340254 340259) (-250 "EQ2.spad" 339763 339775 340035 340040) (-249 "EQ.spad" 334806 334816 337464 337570) (-248 "EP.spad" 331132 331142 334796 334801) (-247 "ENV.spad" 329810 329818 331122 331127) (-246 "ENTIRER.spad" 329478 329486 329754 329805) (-245 "ENTIRER.spad" 329190 329200 329468 329473) (-244 "EMR.spad" 328478 328519 329116 329185) (-243 "ELTAGG.spad" 326732 326751 328468 328473) (-242 "ELTAGG.spad" 324922 324943 326660 326665) (-241 "ELTAB.spad" 324397 324410 324912 324917) (-240 "ELFUTS.spad" 323832 323851 324387 324392) (-239 "ELEMFUN.spad" 323521 323529 323822 323827) (-238 "ELEMFUN.spad" 323208 323218 323511 323516) (-237 "ELAGG.spad" 321189 321199 323198 323203) (-236 "ELAGG.spad" 319099 319111 321110 321115) (-235 "ELABOR.spad" 318445 318453 319089 319094) (-234 "ELABEXPR.spad" 317377 317385 318435 318440) (-233 "EFUPXS.spad" 314153 314183 317333 317338) (-232 "EFULS.spad" 310989 311012 314109 314114) (-231 "EFSTRUC.spad" 309004 309020 310979 310984) (-230 "EF.spad" 303780 303796 308994 308999) (-229 "EAB.spad" 302080 302088 303770 303775) (-228 "DVARCAT.spad" 299086 299096 302070 302075) (-227 "DVARCAT.spad" 296090 296102 299076 299081) (-226 "DSMP.spad" 293823 293837 294128 294255) (-225 "DSEXT.spad" 293125 293135 293813 293818) (-224 "DSEXT.spad" 292347 292359 293037 293042) (-223 "DROPT1.spad" 292012 292022 292337 292342) (-222 "DROPT0.spad" 286877 286885 292002 292007) (-221 "DROPT.spad" 280836 280844 286867 286872) (-220 "DRAWPT.spad" 279009 279017 280826 280831) (-219 "DRAWHACK.spad" 278317 278327 278999 279004) (-218 "DRAWCX.spad" 275795 275803 278307 278312) (-217 "DRAWCURV.spad" 275342 275357 275785 275790) (-216 "DRAWCFUN.spad" 264874 264882 275332 275337) (-215 "DRAW.spad" 257750 257763 264864 264869) (-214 "DQAGG.spad" 255950 255960 257740 257745) (-213 "DPOLCAT.spad" 251307 251323 255818 255945) (-212 "DPOLCAT.spad" 246750 246768 251263 251268) (-211 "DPMO.spad" 239303 239319 239441 239635) (-210 "DPMM.spad" 231869 231887 231994 232188) (-209 "DOMTMPLT.spad" 231640 231648 231859 231864) (-208 "DOMCTOR.spad" 231395 231403 231630 231635) (-207 "DOMAIN.spad" 230506 230514 231385 231390) (-206 "DMP.spad" 228099 228114 228669 228796) (-205 "DMEXT.spad" 227966 227976 228067 228094) (-204 "DLP.spad" 227326 227336 227956 227961) (-203 "DLIST.spad" 225644 225654 226248 226253) (-202 "DLAGG.spad" 224061 224071 225634 225639) (-201 "DIVRING.spad" 223603 223611 224005 224056) (-200 "DIVRING.spad" 223189 223199 223593 223598) (-199 "DISPLAY.spad" 221379 221387 223179 223184) (-198 "DIRPROD2.spad" 220197 220215 221369 221374) (-197 "DIRPROD.spad" 209417 209433 210057 210142) (-196 "DIRPCAT.spad" 208712 208728 209327 209412) (-195 "DIRPCAT.spad" 207621 207639 208238 208243) (-194 "DIOSP.spad" 206446 206454 207611 207616) (-193 "DIOPS.spad" 205452 205462 206436 206441) (-192 "DIOPS.spad" 204395 204407 205381 205386) (-191 "catdef.spad" 204253 204261 204385 204390) (-190 "DIFRING.spad" 204091 204099 204233 204248) (-189 "DIFFSPC.spad" 203670 203678 204081 204086) (-188 "DIFFSPC.spad" 203247 203257 203660 203665) (-187 "DIFFMOD.spad" 202736 202746 203215 203242) (-186 "DIFFDOM.spad" 201901 201912 202726 202731) (-185 "DIFFDOM.spad" 201064 201077 201891 201896) (-184 "DIFEXT.spad" 200883 200893 201044 201059) (-183 "DIAGG.spad" 200523 200533 200873 200878) (-182 "DIAGG.spad" 200161 200173 200513 200518) (-181 "DHMATRIX.spad" 198560 198570 199705 199710) (-180 "DFSFUN.spad" 192200 192208 198550 198555) (-179 "DFLOAT.spad" 188807 188815 192090 192195) (-178 "DFINTTLS.spad" 187038 187054 188797 188802) (-177 "DERHAM.spad" 185125 185157 187018 187033) (-176 "DEQUEUE.spad" 184536 184546 184819 184824) (-175 "DEGRED.spad" 184153 184167 184526 184531) (-174 "DEFINTRF.spad" 181735 181745 184143 184148) (-173 "DEFINTEF.spad" 180273 180289 181725 181730) (-172 "DEFAST.spad" 179657 179665 180263 180268) (-171 "DECIMAL.spad" 177886 177894 178247 178340) (-170 "DDFACT.spad" 175707 175724 177876 177881) (-169 "DBLRESP.spad" 175307 175331 175697 175702) (-168 "DBASIS.spad" 174933 174948 175297 175302) (-167 "DBASE.spad" 173597 173607 174923 174928) (-166 "DATAARY.spad" 173083 173096 173587 173592) (-165 "CYCLOTOM.spad" 172589 172597 173073 173078) (-164 "CYCLES.spad" 169372 169380 172579 172584) (-163 "CVMP.spad" 168789 168799 169362 169367) (-162 "CTRIGMNP.spad" 167289 167305 168779 168784) (-161 "CTORKIND.spad" 166892 166900 167279 167284) (-160 "CTORCAT.spad" 166133 166141 166882 166887) (-159 "CTORCAT.spad" 165372 165382 166123 166128) (-158 "CTORCALL.spad" 164961 164971 165362 165367) (-157 "CTOR.spad" 164652 164660 164951 164956) (-156 "CSTTOOLS.spad" 163897 163910 164642 164647) (-155 "CRFP.spad" 157669 157682 163887 163892) (-154 "CRCEAST.spad" 157389 157397 157659 157664) (-153 "CRAPACK.spad" 156456 156466 157379 157384) (-152 "CPMATCH.spad" 155957 155972 156378 156383) (-151 "CPIMA.spad" 155662 155681 155947 155952) (-150 "COORDSYS.spad" 150671 150681 155652 155657) (-149 "CONTOUR.spad" 150098 150106 150661 150666) (-148 "CONTFRAC.spad" 145848 145858 150000 150093) (-147 "CONDUIT.spad" 145606 145614 145838 145843) (-146 "COMRING.spad" 145280 145288 145544 145601) (-145 "COMPPROP.spad" 144798 144806 145270 145275) (-144 "COMPLPAT.spad" 144565 144580 144788 144793) (-143 "COMPLEX2.spad" 144280 144292 144555 144560) (-142 "COMPLEX.spad" 139986 139996 140230 140488) (-141 "COMPILER.spad" 139535 139543 139976 139981) (-140 "COMPFACT.spad" 139137 139151 139525 139530) (-139 "COMPCAT.spad" 137212 137222 138874 139132) (-138 "COMPCAT.spad" 135028 135040 136692 136697) (-137 "COMMUPC.spad" 134776 134794 135018 135023) (-136 "COMMONOP.spad" 134309 134317 134766 134771) (-135 "COMMAAST.spad" 134072 134080 134299 134304) (-134 "COMM.spad" 133883 133891 134062 134067) (-133 "COMBOPC.spad" 132806 132814 133873 133878) (-132 "COMBINAT.spad" 131573 131583 132796 132801) (-131 "COMBF.spad" 128995 129011 131563 131568) (-130 "COLOR.spad" 127832 127840 128985 128990) (-129 "COLONAST.spad" 127498 127506 127822 127827) (-128 "CMPLXRT.spad" 127209 127226 127488 127493) (-127 "CLLCTAST.spad" 126871 126879 127199 127204) (-126 "CLIP.spad" 122979 122987 126861 126866) (-125 "CLIF.spad" 121634 121650 122935 122974) (-124 "CLAGG.spad" 119840 119850 121624 121629) (-123 "CLAGG.spad" 117905 117917 119691 119696) (-122 "CINTSLPE.spad" 117260 117273 117895 117900) (-121 "CHVAR.spad" 115398 115420 117250 117255) (-120 "CHARZ.spad" 115313 115321 115378 115393) (-119 "CHARPOL.spad" 114839 114849 115303 115308) (-118 "CHARNZ.spad" 114601 114609 114819 114834) (-117 "CHAR.spad" 111969 111977 114591 114596) (-116 "CFCAT.spad" 111297 111305 111959 111964) (-115 "CDEN.spad" 110517 110531 111287 111292) (-114 "CCLASS.spad" 108598 108606 109860 109875) (-113 "CATEGORY.spad" 107672 107680 108588 108593) (-112 "CATCTOR.spad" 107563 107571 107662 107667) (-111 "CATAST.spad" 107189 107197 107553 107558) (-110 "CASEAST.spad" 106903 106911 107179 107184) (-109 "CARTEN2.spad" 106293 106320 106893 106898) (-108 "CARTEN.spad" 102045 102069 106283 106288) (-107 "CARD.spad" 99340 99348 102019 102040) (-106 "CAPSLAST.spad" 99122 99130 99330 99335) (-105 "CACHSET.spad" 98746 98754 99112 99117) (-104 "CABMON.spad" 98301 98309 98736 98741) (-103 "BYTEORD.spad" 97976 97984 98291 98296) (-102 "BYTEBUF.spad" 95796 95804 97002 97007) (-101 "BYTE.spad" 95271 95279 95786 95791) (-100 "BTREE.spad" 94370 94380 94904 94909) (-99 "BTOURN.spad" 93402 93411 94003 94008) (-98 "BTCAT.spad" 92982 92991 93392 93397) (-97 "BTCAT.spad" 92560 92571 92972 92977) (-96 "BTAGG.spad" 92049 92056 92550 92555) (-95 "BTAGG.spad" 91536 91545 92039 92044) (-94 "BSTREE.spad" 90304 90313 91169 91174) (-93 "BRILL.spad" 88510 88520 90294 90299) (-92 "BRAGG.spad" 87467 87476 88500 88505) (-91 "BRAGG.spad" 86360 86371 87395 87400) (-90 "BPADICRT.spad" 84420 84431 84666 84759) (-89 "BPADIC.spad" 84093 84104 84346 84415) (-88 "BOUNDZRO.spad" 83750 83766 84083 84088) (-87 "BOP1.spad" 81209 81218 83740 83745) (-86 "BOP.spad" 76352 76359 81199 81204) (-85 "BOOLEAN.spad" 75901 75908 76342 76347) (-84 "BOOLE.spad" 75552 75559 75891 75896) (-83 "BOOLE.spad" 75201 75210 75542 75547) (-82 "BMODULE.spad" 74914 74925 75169 75196) (-81 "BITS.spad" 74125 74132 74339 74344) (-80 "catdef.spad" 74008 74018 74115 74120) (-79 "catdef.spad" 73759 73769 73998 74003) (-78 "BINDING.spad" 73181 73188 73749 73754) (-77 "BINARY.spad" 71416 71423 71771 71864) (-76 "BGAGG.spad" 70746 70755 71406 71411) (-75 "BGAGG.spad" 70074 70085 70736 70741) (-74 "BEZOUT.spad" 69215 69241 70024 70029) (-73 "BBTREE.spad" 66119 66128 68848 68853) (-72 "BASTYPE.spad" 65619 65626 66109 66114) (-71 "BASTYPE.spad" 65117 65126 65609 65614) (-70 "BALFACT.spad" 64577 64589 65107 65112) (-69 "AUTOMOR.spad" 64028 64037 64557 64572) (-68 "ATTREG.spad" 61160 61167 63804 64023) (-67 "ATTRAST.spad" 60877 60884 61150 61155) (-66 "ATRIG.spad" 60347 60354 60867 60872) (-65 "ATRIG.spad" 59815 59824 60337 60342) (-64 "ASTCAT.spad" 59719 59726 59805 59810) (-63 "ASTCAT.spad" 59621 59630 59709 59714) (-62 "ASTACK.spad" 59047 59056 59315 59320) (-61 "ASSOCEQ.spad" 57881 57892 59003 59008) (-60 "ARRAY2.spad" 57426 57435 57575 57580) (-59 "ARRAY12.spad" 56139 56150 57416 57421) (-58 "ARRAY1.spad" 54715 54724 55061 55066) (-57 "ARR2CAT.spad" 51024 51045 54705 54710) (-56 "ARR2CAT.spad" 47331 47354 51014 51019) (-55 "ARITY.spad" 46703 46710 47321 47326) (-54 "APPRULE.spad" 45987 46009 46693 46698) (-53 "APPLYORE.spad" 45606 45619 45977 45982) (-52 "ANY1.spad" 44677 44686 45596 45601) (-51 "ANY.spad" 43528 43535 44667 44672) (-50 "ANTISYM.spad" 42101 42117 43508 43523) (-49 "ANON.spad" 41810 41817 42091 42096) (-48 "AN.spad" 40278 40285 41641 41734) (-47 "AMR.spad" 38608 38619 40176 40273) (-46 "AMR.spad" 36801 36814 38371 38376) (-45 "ALIST.spad" 33046 33067 33396 33401) (-44 "ALGSC.spad" 32181 32207 32918 32971) (-43 "ALGPKG.spad" 27964 27975 32137 32142) (-42 "ALGMFACT.spad" 27157 27171 27954 27959) (-41 "ALGMANIP.spad" 24658 24673 27001 27006) (-40 "ALGFF.spad" 22476 22503 22693 22849) (-39 "ALGFACT.spad" 21595 21605 22466 22471) (-38 "ALGEBRA.spad" 21428 21437 21551 21590) (-37 "ALGEBRA.spad" 21293 21304 21418 21423) (-36 "ALAGG.spad" 20831 20852 21283 21288) (-35 "AHYP.spad" 20212 20219 20821 20826) (-34 "AGG.spad" 19119 19126 20202 20207) (-33 "AGG.spad" 18024 18033 19109 19114) (-32 "AF.spad" 16469 16484 17973 17978) (-31 "ADDAST.spad" 16155 16162 16459 16464) (-30 "ACPLOT.spad" 15032 15039 16145 16150) (-29 "ACFS.spad" 12889 12898 14934 15027) (-28 "ACFS.spad" 10832 10843 12879 12884) (-27 "ACF.spad" 7586 7593 10734 10827) (-26 "ACF.spad" 4426 4435 7576 7581) (-25 "ABELSG.spad" 3967 3974 4416 4421) (-24 "ABELSG.spad" 3506 3515 3957 3962) (-23 "ABELMON.spad" 2934 2941 3496 3501) (-22 "ABELMON.spad" 2360 2369 2924 2929) (-21 "ABELGRP.spad" 2025 2032 2350 2355) (-20 "ABELGRP.spad" 1688 1697 2015 2020) (-19 "A1AGG.spad" 860 869 1678 1683) (-18 "A1AGG.spad" 30 41 850 855))
\ No newline at end of file +((-3 NIL 1966210 1966215 1966220 1966225) (-2 NIL 1966190 1966195 1966200 1966205) (-1 NIL 1966170 1966175 1966180 1966185) (0 NIL 1966150 1966155 1966160 1966165) (-1213 "ZMOD.spad" 1965959 1965972 1966088 1966145) (-1212 "ZLINDEP.spad" 1965057 1965068 1965949 1965954) (-1211 "ZDSOLVE.spad" 1955018 1955040 1965047 1965052) (-1210 "YSTREAM.spad" 1954513 1954524 1955008 1955013) (-1209 "YDIAGRAM.spad" 1954147 1954156 1954503 1954508) (-1208 "XRPOLY.spad" 1953367 1953387 1954003 1954072) (-1207 "XPR.spad" 1951295 1951308 1953085 1953184) (-1206 "XPOLYC.spad" 1950614 1950630 1951221 1951290) (-1205 "XPOLY.spad" 1950169 1950180 1950470 1950539) (-1204 "XPBWPOLY.spad" 1948640 1948660 1949975 1950044) (-1203 "XFALG.spad" 1945821 1945837 1948566 1948635) (-1202 "XF.spad" 1944284 1944299 1945723 1945816) (-1201 "XF.spad" 1942727 1942744 1944168 1944173) (-1200 "XEXPPKG.spad" 1941986 1942012 1942717 1942722) (-1199 "XDPOLY.spad" 1941600 1941616 1941842 1941911) (-1198 "XALG.spad" 1941268 1941279 1941556 1941595) (-1197 "WUTSET.spad" 1937132 1937149 1940763 1940768) (-1196 "WP.spad" 1936339 1936383 1936990 1937057) (-1195 "WHILEAST.spad" 1936137 1936146 1936329 1936334) (-1194 "WHEREAST.spad" 1935808 1935817 1936127 1936132) (-1193 "WFFINTBS.spad" 1933471 1933493 1935798 1935803) (-1192 "WEIER.spad" 1931693 1931704 1933461 1933466) (-1191 "VSPACE.spad" 1931366 1931377 1931661 1931688) (-1190 "VSPACE.spad" 1931059 1931072 1931356 1931361) (-1189 "VOID.spad" 1930736 1930745 1931049 1931054) (-1188 "VIEWDEF.spad" 1925937 1925946 1930726 1930731) (-1187 "VIEW3D.spad" 1909898 1909907 1925927 1925932) (-1186 "VIEW2D.spad" 1897797 1897806 1909888 1909893) (-1185 "VIEW.spad" 1895517 1895526 1897787 1897792) (-1184 "VECTOR2.spad" 1894156 1894169 1895507 1895512) (-1183 "VECTOR.spad" 1892572 1892583 1892823 1892828) (-1182 "VECTCAT.spad" 1890506 1890517 1892562 1892567) (-1181 "VECTCAT.spad" 1888227 1888240 1890285 1890290) (-1180 "VARIABLE.spad" 1888007 1888022 1888217 1888222) (-1179 "UTYPE.spad" 1887651 1887660 1887997 1888002) (-1178 "UTSODETL.spad" 1886946 1886970 1887607 1887612) (-1177 "UTSODE.spad" 1885162 1885182 1886936 1886941) (-1176 "UTSCAT.spad" 1882641 1882657 1885060 1885157) (-1175 "UTSCAT.spad" 1879788 1879806 1882209 1882214) (-1174 "UTS2.spad" 1879383 1879418 1879778 1879783) (-1173 "UTS.spad" 1874395 1874423 1877915 1878012) (-1172 "URAGG.spad" 1869116 1869127 1874385 1874390) (-1171 "URAGG.spad" 1863773 1863786 1869044 1869049) (-1170 "UPXSSING.spad" 1861541 1861567 1862977 1863110) (-1169 "UPXSCONS.spad" 1859359 1859379 1859732 1859881) (-1168 "UPXSCCA.spad" 1857930 1857950 1859205 1859354) (-1167 "UPXSCCA.spad" 1856643 1856665 1857920 1857925) (-1166 "UPXSCAT.spad" 1855232 1855248 1856489 1856638) (-1165 "UPXS2.spad" 1854775 1854828 1855222 1855227) (-1164 "UPXS.spad" 1852130 1852158 1852966 1853115) (-1163 "UPSQFREE.spad" 1850545 1850559 1852120 1852125) (-1162 "UPSCAT.spad" 1848340 1848364 1850443 1850540) (-1161 "UPSCAT.spad" 1845836 1845862 1847941 1847946) (-1160 "UPOLYC2.spad" 1845307 1845326 1845826 1845831) (-1159 "UPOLYC.spad" 1840387 1840398 1845149 1845302) (-1158 "UPOLYC.spad" 1835385 1835398 1840149 1840154) (-1157 "UPMP.spad" 1834317 1834330 1835375 1835380) (-1156 "UPDIVP.spad" 1833882 1833896 1834307 1834312) (-1155 "UPDECOMP.spad" 1832143 1832157 1833872 1833877) (-1154 "UPCDEN.spad" 1831360 1831376 1832133 1832138) (-1153 "UP2.spad" 1830724 1830745 1831350 1831355) (-1152 "UP.spad" 1828194 1828209 1828581 1828734) (-1151 "UNISEG2.spad" 1827691 1827704 1828150 1828155) (-1150 "UNISEG.spad" 1827044 1827055 1827610 1827615) (-1149 "UNIFACT.spad" 1826147 1826159 1827034 1827039) (-1148 "ULSCONS.spad" 1819993 1820013 1820363 1820512) (-1147 "ULSCCAT.spad" 1817730 1817750 1819839 1819988) (-1146 "ULSCCAT.spad" 1815575 1815597 1817686 1817691) (-1145 "ULSCAT.spad" 1813815 1813831 1815421 1815570) (-1144 "ULS2.spad" 1813329 1813382 1813805 1813810) (-1143 "ULS.spad" 1805362 1805390 1806307 1806730) (-1142 "UINT8.spad" 1805239 1805248 1805352 1805357) (-1141 "UINT64.spad" 1805115 1805124 1805229 1805234) (-1140 "UINT32.spad" 1804991 1805000 1805105 1805110) (-1139 "UINT16.spad" 1804867 1804876 1804981 1804986) (-1138 "UFD.spad" 1803932 1803941 1804793 1804862) (-1137 "UFD.spad" 1803059 1803070 1803922 1803927) (-1136 "UDVO.spad" 1801940 1801949 1803049 1803054) (-1135 "UDPO.spad" 1799521 1799532 1801896 1801901) (-1134 "TYPEAST.spad" 1799440 1799449 1799511 1799516) (-1133 "TYPE.spad" 1799372 1799381 1799430 1799435) (-1132 "TWOFACT.spad" 1798024 1798039 1799362 1799367) (-1131 "TUPLE.spad" 1797531 1797542 1797936 1797941) (-1130 "TUBETOOL.spad" 1794398 1794407 1797521 1797526) (-1129 "TUBE.spad" 1793045 1793062 1794388 1794393) (-1128 "TSETCAT.spad" 1781138 1781155 1793035 1793040) (-1127 "TSETCAT.spad" 1769195 1769214 1781094 1781099) (-1126 "TS.spad" 1767823 1767839 1768789 1768886) (-1125 "TRMANIP.spad" 1762187 1762204 1767511 1767516) (-1124 "TRIMAT.spad" 1761150 1761175 1762177 1762182) (-1123 "TRIGMNIP.spad" 1759677 1759694 1761140 1761145) (-1122 "TRIGCAT.spad" 1759189 1759198 1759667 1759672) (-1121 "TRIGCAT.spad" 1758699 1758710 1759179 1759184) (-1120 "TREE.spad" 1757300 1757311 1758332 1758337) (-1119 "TRANFUN.spad" 1757139 1757148 1757290 1757295) (-1118 "TRANFUN.spad" 1756976 1756987 1757129 1757134) (-1117 "TOPSP.spad" 1756650 1756659 1756966 1756971) (-1116 "TOOLSIGN.spad" 1756313 1756324 1756640 1756645) (-1115 "TEXTFILE.spad" 1754874 1754883 1756303 1756308) (-1114 "TEX1.spad" 1754430 1754441 1754864 1754869) (-1113 "TEX.spad" 1751624 1751633 1754420 1754425) (-1112 "TBCMPPK.spad" 1749725 1749748 1751614 1751619) (-1111 "TBAGG.spad" 1748990 1749013 1749715 1749720) (-1110 "TBAGG.spad" 1748253 1748278 1748980 1748985) (-1109 "TANEXP.spad" 1747661 1747672 1748243 1748248) (-1108 "TALGOP.spad" 1747385 1747396 1747651 1747656) (-1107 "TABLEAU.spad" 1746866 1746877 1747375 1747380) (-1106 "TABLE.spad" 1744576 1744599 1744846 1744851) (-1105 "TABLBUMP.spad" 1741355 1741366 1744566 1744571) (-1104 "SYSTEM.spad" 1740583 1740592 1741345 1741350) (-1103 "SYSSOLP.spad" 1738066 1738077 1740573 1740578) (-1102 "SYSPTR.spad" 1737965 1737974 1738056 1738061) (-1101 "SYSNNI.spad" 1737188 1737199 1737955 1737960) (-1100 "SYSINT.spad" 1736592 1736603 1737178 1737183) (-1099 "SYNTAX.spad" 1732926 1732935 1736582 1736587) (-1098 "SYMTAB.spad" 1730994 1731003 1732916 1732921) (-1097 "SYMS.spad" 1727023 1727032 1730984 1730989) (-1096 "SYMPOLY.spad" 1726156 1726167 1726238 1726365) (-1095 "SYMFUNC.spad" 1725657 1725668 1726146 1726151) (-1094 "SYMBOL.spad" 1723152 1723161 1725647 1725652) (-1093 "SUTS.spad" 1720265 1720293 1721684 1721781) (-1092 "SUPXS.spad" 1717607 1717635 1718456 1718605) (-1091 "SUPFRACF.spad" 1716712 1716730 1717597 1717602) (-1090 "SUP2.spad" 1716104 1716117 1716702 1716707) (-1089 "SUP.spad" 1713188 1713199 1713961 1714114) (-1088 "SUMRF.spad" 1712162 1712173 1713178 1713183) (-1087 "SUMFS.spad" 1711791 1711808 1712152 1712157) (-1086 "SULS.spad" 1703811 1703839 1704769 1705192) (-1085 "syntax.spad" 1703580 1703589 1703801 1703806) (-1084 "SUCH.spad" 1703270 1703285 1703570 1703575) (-1083 "SUBSPACE.spad" 1695401 1695416 1703260 1703265) (-1082 "SUBRESP.spad" 1694571 1694585 1695357 1695362) (-1081 "STTFNC.spad" 1691039 1691055 1694561 1694566) (-1080 "STTF.spad" 1687138 1687154 1691029 1691034) (-1079 "STTAYLOR.spad" 1679815 1679826 1687045 1687050) (-1078 "STRTBL.spad" 1677688 1677705 1677837 1677842) (-1077 "STRING.spad" 1676329 1676338 1676714 1676719) (-1076 "STREAM3.spad" 1675902 1675917 1676319 1676324) (-1075 "STREAM2.spad" 1675030 1675043 1675892 1675897) (-1074 "STREAM1.spad" 1674736 1674747 1675020 1675025) (-1073 "STREAM.spad" 1671696 1671707 1674187 1674192) (-1072 "STINPROD.spad" 1670632 1670648 1671686 1671691) (-1071 "STEPAST.spad" 1669866 1669875 1670622 1670627) (-1070 "STEP.spad" 1669183 1669192 1669856 1669861) (-1069 "STBL.spad" 1666996 1667024 1667163 1667168) (-1068 "STAGG.spad" 1665695 1665706 1666986 1666991) (-1067 "STAGG.spad" 1664392 1664405 1665685 1665690) (-1066 "STACK.spad" 1663836 1663847 1664086 1664091) (-1065 "SRING.spad" 1663596 1663605 1663826 1663831) (-1064 "SREGSET.spad" 1661189 1661206 1663091 1663096) (-1063 "SRDCMPK.spad" 1659766 1659786 1661179 1661184) (-1062 "SRAGG.spad" 1654971 1654980 1659756 1659761) (-1061 "SRAGG.spad" 1650174 1650185 1654961 1654966) (-1060 "SQMATRIX.spad" 1647863 1647881 1648779 1648854) (-1059 "SPLTREE.spad" 1642523 1642536 1647319 1647324) (-1058 "SPLNODE.spad" 1639143 1639156 1642513 1642518) (-1057 "SPFCAT.spad" 1637952 1637961 1639133 1639138) (-1056 "SPECOUT.spad" 1636504 1636513 1637942 1637947) (-1055 "SPADXPT.spad" 1628595 1628604 1636494 1636499) (-1054 "spad-parser.spad" 1628060 1628069 1628585 1628590) (-1053 "SPADAST.spad" 1627761 1627770 1628050 1628055) (-1052 "SPACEC.spad" 1611976 1611987 1627751 1627756) (-1051 "SPACE3.spad" 1611752 1611763 1611966 1611971) (-1050 "SORTPAK.spad" 1611301 1611314 1611708 1611713) (-1049 "SOLVETRA.spad" 1609064 1609075 1611291 1611296) (-1048 "SOLVESER.spad" 1607520 1607531 1609054 1609059) (-1047 "SOLVERAD.spad" 1603546 1603557 1607510 1607515) (-1046 "SOLVEFOR.spad" 1602008 1602026 1603536 1603541) (-1045 "SNTSCAT.spad" 1601630 1601647 1601998 1602003) (-1044 "SMTS.spad" 1599947 1599973 1601224 1601321) (-1043 "SMP.spad" 1597755 1597775 1598145 1598272) (-1042 "SMITH.spad" 1596600 1596625 1597745 1597750) (-1041 "SMATCAT.spad" 1594730 1594760 1596556 1596595) (-1040 "SMATCAT.spad" 1592780 1592812 1594608 1594613) (-1039 "aggcat.spad" 1592466 1592477 1592770 1592775) (-1038 "SKAGG.spad" 1591457 1591468 1592456 1592461) (-1037 "SINT.spad" 1590756 1590765 1591323 1591452) (-1036 "SIMPAN.spad" 1590484 1590493 1590746 1590751) (-1035 "SIGNRF.spad" 1589609 1589620 1590474 1590479) (-1034 "SIGNEF.spad" 1588895 1588912 1589599 1589604) (-1033 "syntax.spad" 1588312 1588321 1588885 1588890) (-1032 "SIG.spad" 1587674 1587683 1588302 1588307) (-1031 "SHP.spad" 1585618 1585633 1587630 1587635) (-1030 "SHDP.spad" 1574961 1574988 1575478 1575563) (-1029 "SGROUP.spad" 1574569 1574578 1574951 1574956) (-1028 "SGROUP.spad" 1574175 1574186 1574559 1574564) (-1027 "catdef.spad" 1573885 1573897 1573996 1574170) (-1026 "catdef.spad" 1573441 1573453 1573706 1573880) (-1025 "SGCF.spad" 1566580 1566589 1573431 1573436) (-1024 "SFRTCAT.spad" 1565548 1565565 1566570 1566575) (-1023 "SFRGCD.spad" 1564611 1564631 1565538 1565543) (-1022 "SFQCMPK.spad" 1559424 1559444 1564601 1564606) (-1021 "SEXOF.spad" 1559267 1559307 1559414 1559419) (-1020 "SEXCAT.spad" 1557095 1557135 1559257 1559262) (-1019 "SEX.spad" 1556987 1556996 1557085 1557090) (-1018 "SETMN.spad" 1555447 1555464 1556977 1556982) (-1017 "SETCAT.spad" 1554932 1554941 1555437 1555442) (-1016 "SETCAT.spad" 1554415 1554426 1554922 1554927) (-1015 "SETAGG.spad" 1550964 1550975 1554395 1554410) (-1014 "SETAGG.spad" 1547521 1547534 1550954 1550959) (-1013 "SET.spad" 1545691 1545702 1546790 1546805) (-1012 "syntax.spad" 1545394 1545403 1545681 1545686) (-1011 "SEGXCAT.spad" 1544550 1544563 1545384 1545389) (-1010 "SEGCAT.spad" 1543475 1543486 1544540 1544545) (-1009 "SEGBIND2.spad" 1543173 1543186 1543465 1543470) (-1008 "SEGBIND.spad" 1542931 1542942 1543120 1543125) (-1007 "SEGAST.spad" 1542661 1542670 1542921 1542926) (-1006 "SEG2.spad" 1542096 1542109 1542617 1542622) (-1005 "SEG.spad" 1541909 1541920 1542015 1542020) (-1004 "SDVAR.spad" 1541185 1541196 1541899 1541904) (-1003 "SDPOL.spad" 1538877 1538888 1539168 1539295) (-1002 "SCPKG.spad" 1536966 1536977 1538867 1538872) (-1001 "SCOPE.spad" 1536143 1536152 1536956 1536961) (-1000 "SCACHE.spad" 1534839 1534850 1536133 1536138) (-999 "SASTCAT.spad" 1534749 1534757 1534829 1534834) (-998 "SAOS.spad" 1534622 1534630 1534739 1534744) (-997 "SAERFFC.spad" 1534336 1534355 1534612 1534617) (-996 "SAEFACT.spad" 1534038 1534057 1534326 1534331) (-995 "SAE.spad" 1531689 1531704 1532299 1532434) (-994 "RURPK.spad" 1529349 1529364 1531679 1531684) (-993 "RULESET.spad" 1528803 1528826 1529339 1529344) (-992 "RULECOLD.spad" 1528656 1528668 1528793 1528798) (-991 "RULE.spad" 1526905 1526928 1528646 1528651) (-990 "RTVALUE.spad" 1526641 1526649 1526895 1526900) (-989 "syntax.spad" 1526359 1526367 1526631 1526636) (-988 "RSETGCD.spad" 1522802 1522821 1526349 1526354) (-987 "RSETCAT.spad" 1512793 1512809 1522792 1522797) (-986 "RSETCAT.spad" 1502782 1502800 1512783 1512788) (-985 "RSDCMPK.spad" 1501283 1501302 1502772 1502777) (-984 "RRCC.spad" 1499668 1499697 1501273 1501278) (-983 "RRCC.spad" 1498051 1498082 1499658 1499663) (-982 "RPTAST.spad" 1497754 1497762 1498041 1498046) (-981 "RPOLCAT.spad" 1477259 1477273 1497622 1497749) (-980 "RPOLCAT.spad" 1456557 1456573 1476922 1476927) (-979 "ROMAN.spad" 1455886 1455894 1456423 1456552) (-978 "ROIRC.spad" 1454967 1454998 1455876 1455881) (-977 "RNS.spad" 1453944 1453952 1454869 1454962) (-976 "RNS.spad" 1453007 1453017 1453934 1453939) (-975 "RNGBIND.spad" 1452168 1452181 1452962 1452967) (-974 "RNG.spad" 1451777 1451785 1452158 1452163) (-973 "RNG.spad" 1451384 1451394 1451767 1451772) (-972 "RMODULE.spad" 1451166 1451176 1451374 1451379) (-971 "RMCAT2.spad" 1450587 1450643 1451156 1451161) (-970 "RMATRIX.spad" 1449409 1449427 1449751 1449778) (-969 "RMATCAT.spad" 1445191 1445221 1449377 1449404) (-968 "RMATCAT.spad" 1440851 1440883 1445039 1445044) (-967 "RLINSET.spad" 1440556 1440566 1440841 1440846) (-966 "RINTERP.spad" 1440445 1440464 1440546 1440551) (-965 "RING.spad" 1439916 1439924 1440425 1440440) (-964 "RING.spad" 1439395 1439405 1439906 1439911) (-963 "RIDIST.spad" 1438788 1438796 1439385 1439390) (-962 "RGCHAIN.spad" 1437055 1437070 1437948 1437953) (-961 "RGBCSPC.spad" 1436845 1436856 1437045 1437050) (-960 "RGBCMDL.spad" 1436408 1436419 1436835 1436840) (-959 "RFFACTOR.spad" 1435871 1435881 1436398 1436403) (-958 "RFFACT.spad" 1435607 1435618 1435861 1435866) (-957 "RFDIST.spad" 1434604 1434612 1435597 1435602) (-956 "RF.spad" 1432279 1432289 1434594 1434599) (-955 "RETSOL.spad" 1431699 1431711 1432269 1432274) (-954 "RETRACT.spad" 1431128 1431138 1431689 1431694) (-953 "RETRACT.spad" 1430555 1430567 1431118 1431123) (-952 "RETAST.spad" 1430368 1430376 1430545 1430550) (-951 "RESRING.spad" 1429716 1429762 1430306 1430363) (-950 "RESLATC.spad" 1429041 1429051 1429706 1429711) (-949 "REPSQ.spad" 1428773 1428783 1429031 1429036) (-948 "REPDB.spad" 1428481 1428491 1428763 1428768) (-947 "REP2.spad" 1418196 1418206 1428323 1428328) (-946 "REP1.spad" 1412417 1412427 1418146 1418151) (-945 "REP.spad" 1409972 1409980 1412407 1412412) (-944 "REGSET.spad" 1407659 1407675 1409467 1409472) (-943 "REF.spad" 1407178 1407188 1407649 1407654) (-942 "REDORDER.spad" 1406385 1406401 1407168 1407173) (-941 "RECLOS.spad" 1405282 1405301 1405985 1406078) (-940 "REALSOLV.spad" 1404423 1404431 1405272 1405277) (-939 "REAL0Q.spad" 1401722 1401736 1404413 1404418) (-938 "REAL0.spad" 1398567 1398581 1401712 1401717) (-937 "REAL.spad" 1398440 1398448 1398557 1398562) (-936 "RDUCEAST.spad" 1398162 1398170 1398430 1398435) (-935 "RDIV.spad" 1397818 1397842 1398152 1398157) (-934 "RDIST.spad" 1397386 1397396 1397808 1397813) (-933 "RDETRS.spad" 1396251 1396268 1397376 1397381) (-932 "RDETR.spad" 1394391 1394408 1396241 1396246) (-931 "RDEEFS.spad" 1393491 1393507 1394381 1394386) (-930 "RDEEF.spad" 1392502 1392518 1393481 1393486) (-929 "RCFIELD.spad" 1389721 1389729 1392404 1392497) (-928 "RCFIELD.spad" 1387026 1387036 1389711 1389716) (-927 "RCAGG.spad" 1384963 1384973 1387016 1387021) (-926 "RCAGG.spad" 1382801 1382813 1384856 1384861) (-925 "RATRET.spad" 1382162 1382172 1382791 1382796) (-924 "RATFACT.spad" 1381855 1381866 1382152 1382157) (-923 "RANDSRC.spad" 1381175 1381183 1381845 1381850) (-922 "RADUTIL.spad" 1380932 1380940 1381165 1381170) (-921 "RADIX.spad" 1377977 1377990 1379522 1379615) (-920 "RADFF.spad" 1375894 1375930 1376012 1376168) (-919 "RADCAT.spad" 1375490 1375498 1375884 1375889) (-918 "RADCAT.spad" 1375084 1375094 1375480 1375485) (-917 "QUEUE.spad" 1374520 1374530 1374778 1374783) (-916 "QUATCT2.spad" 1374141 1374159 1374510 1374515) (-915 "QUATCAT.spad" 1372312 1372322 1374071 1374136) (-914 "QUATCAT.spad" 1370248 1370260 1372009 1372014) (-913 "QUAT.spad" 1368855 1368865 1369197 1369262) (-912 "QUAGG.spad" 1367711 1367721 1368845 1368850) (-911 "QQUTAST.spad" 1367480 1367488 1367701 1367706) (-910 "QFORM.spad" 1367099 1367113 1367470 1367475) (-909 "QFCAT2.spad" 1366792 1366808 1367089 1367094) (-908 "QFCAT.spad" 1365495 1365505 1366694 1366787) (-907 "QFCAT.spad" 1363831 1363843 1365032 1365037) (-906 "QEQUAT.spad" 1363390 1363398 1363821 1363826) (-905 "QCMPACK.spad" 1358305 1358324 1363380 1363385) (-904 "QALGSET2.spad" 1356301 1356319 1358295 1358300) (-903 "QALGSET.spad" 1352406 1352438 1356215 1356220) (-902 "PWFFINTB.spad" 1349822 1349843 1352396 1352401) (-901 "PUSHVAR.spad" 1349161 1349180 1349812 1349817) (-900 "PTRANFN.spad" 1345297 1345307 1349151 1349156) (-899 "PTPACK.spad" 1342385 1342395 1345287 1345292) (-898 "PTFUNC2.spad" 1342208 1342222 1342375 1342380) (-897 "PTCAT.spad" 1341485 1341495 1342198 1342203) (-896 "PSQFR.spad" 1340800 1340824 1341475 1341480) (-895 "PSEUDLIN.spad" 1339686 1339696 1340790 1340795) (-894 "PSETPK.spad" 1326391 1326407 1339564 1339569) (-893 "PSETCAT.spad" 1320801 1320824 1326381 1326386) (-892 "PSETCAT.spad" 1315175 1315200 1320757 1320762) (-891 "PSCURVE.spad" 1314174 1314182 1315165 1315170) (-890 "PSCAT.spad" 1312957 1312986 1314072 1314169) (-889 "PSCAT.spad" 1311830 1311861 1312947 1312952) (-888 "PRTITION.spad" 1310528 1310536 1311820 1311825) (-887 "PRTDAST.spad" 1310247 1310255 1310518 1310523) (-886 "PRS.spad" 1299865 1299882 1310203 1310208) (-885 "PRQAGG.spad" 1299322 1299332 1299855 1299860) (-884 "PROPLOG.spad" 1298926 1298934 1299312 1299317) (-883 "PROPFUN2.spad" 1298549 1298562 1298916 1298921) (-882 "PROPFUN1.spad" 1297955 1297966 1298539 1298544) (-881 "PROPFRML.spad" 1296523 1296534 1297945 1297950) (-880 "PROPERTY.spad" 1296019 1296027 1296513 1296518) (-879 "PRODUCT.spad" 1293716 1293728 1294000 1294055) (-878 "PRINT.spad" 1293468 1293476 1293706 1293711) (-877 "PRIMES.spad" 1291729 1291739 1293458 1293463) (-876 "PRIMELT.spad" 1289850 1289864 1291719 1291724) (-875 "PRIMCAT.spad" 1289493 1289501 1289840 1289845) (-874 "PRIMARR2.spad" 1288260 1288272 1289483 1289488) (-873 "PRIMARR.spad" 1287012 1287022 1287182 1287187) (-872 "PREASSOC.spad" 1286394 1286406 1287002 1287007) (-871 "PR.spad" 1284912 1284924 1285611 1285738) (-870 "PPCURVE.spad" 1284049 1284057 1284902 1284907) (-869 "PORTNUM.spad" 1283840 1283848 1284039 1284044) (-868 "POLYROOT.spad" 1282689 1282711 1283796 1283801) (-867 "POLYLIFT.spad" 1281954 1281977 1282679 1282684) (-866 "POLYCATQ.spad" 1280080 1280102 1281944 1281949) (-865 "POLYCAT.spad" 1273582 1273603 1279948 1280075) (-864 "POLYCAT.spad" 1266604 1266627 1272972 1272977) (-863 "POLY2UP.spad" 1266056 1266070 1266594 1266599) (-862 "POLY2.spad" 1265653 1265665 1266046 1266051) (-861 "POLY.spad" 1263321 1263331 1263836 1263963) (-860 "POLUTIL.spad" 1262286 1262315 1263277 1263282) (-859 "POLTOPOL.spad" 1261034 1261049 1262276 1262281) (-858 "POINT.spad" 1259614 1259624 1259701 1259706) (-857 "PNTHEORY.spad" 1256316 1256324 1259604 1259609) (-856 "PMTOOLS.spad" 1255091 1255105 1256306 1256311) (-855 "PMSYM.spad" 1254640 1254650 1255081 1255086) (-854 "PMQFCAT.spad" 1254231 1254245 1254630 1254635) (-853 "PMPREDFS.spad" 1253693 1253715 1254221 1254226) (-852 "PMPRED.spad" 1253180 1253194 1253683 1253688) (-851 "PMPLCAT.spad" 1252257 1252275 1253109 1253114) (-850 "PMLSAGG.spad" 1251842 1251856 1252247 1252252) (-849 "PMKERNEL.spad" 1251421 1251433 1251832 1251837) (-848 "PMINS.spad" 1251001 1251011 1251411 1251416) (-847 "PMFS.spad" 1250578 1250596 1250991 1250996) (-846 "PMDOWN.spad" 1249868 1249882 1250568 1250573) (-845 "PMASSFS.spad" 1248843 1248859 1249858 1249863) (-844 "PMASS.spad" 1247861 1247869 1248833 1248838) (-843 "PLOTTOOL.spad" 1247641 1247649 1247851 1247856) (-842 "PLOT3D.spad" 1244105 1244113 1247631 1247636) (-841 "PLOT1.spad" 1243278 1243288 1244095 1244100) (-840 "PLOT.spad" 1238201 1238209 1243268 1243273) (-839 "PLEQN.spad" 1225603 1225630 1238191 1238196) (-838 "PINTERPA.spad" 1225387 1225403 1225593 1225598) (-837 "PINTERP.spad" 1225009 1225028 1225377 1225382) (-836 "PID.spad" 1223983 1223991 1224935 1225004) (-835 "PICOERCE.spad" 1223640 1223650 1223973 1223978) (-834 "PI.spad" 1223257 1223265 1223614 1223635) (-833 "PGROEB.spad" 1221866 1221880 1223247 1223252) (-832 "PGE.spad" 1213539 1213547 1221856 1221861) (-831 "PGCD.spad" 1212493 1212510 1213529 1213534) (-830 "PFRPAC.spad" 1211642 1211652 1212483 1212488) (-829 "PFR.spad" 1208345 1208355 1211544 1211637) (-828 "PFOTOOLS.spad" 1207603 1207619 1208335 1208340) (-827 "PFOQ.spad" 1206973 1206991 1207593 1207598) (-826 "PFO.spad" 1206392 1206419 1206963 1206968) (-825 "PFECAT.spad" 1204102 1204110 1206318 1206387) (-824 "PFECAT.spad" 1201840 1201850 1204058 1204063) (-823 "PFBRU.spad" 1199728 1199740 1201830 1201835) (-822 "PFBR.spad" 1197288 1197311 1199718 1199723) (-821 "PF.spad" 1196862 1196874 1197093 1197186) (-820 "PERMGRP.spad" 1191632 1191642 1196852 1196857) (-819 "PERMCAT.spad" 1190293 1190303 1191612 1191627) (-818 "PERMAN.spad" 1188849 1188863 1190283 1190288) (-817 "PERM.spad" 1184659 1184669 1188682 1188697) (-816 "PENDTREE.spad" 1184012 1184022 1184292 1184297) (-815 "PDSPC.spad" 1182825 1182835 1184002 1184007) (-814 "PDSPC.spad" 1181636 1181648 1182815 1182820) (-813 "PDRING.spad" 1181478 1181488 1181616 1181631) (-812 "PDMOD.spad" 1181294 1181306 1181446 1181473) (-811 "PDECOMP.spad" 1180764 1180781 1181284 1181289) (-810 "PDDOM.spad" 1180202 1180215 1180754 1180759) (-809 "PDDOM.spad" 1179638 1179653 1180192 1180197) (-808 "PCOMP.spad" 1179491 1179504 1179628 1179633) (-807 "PBWLB.spad" 1178089 1178106 1179481 1179486) (-806 "PATTERN2.spad" 1177827 1177839 1178079 1178084) (-805 "PATTERN1.spad" 1176171 1176187 1177817 1177822) (-804 "PATTERN.spad" 1170746 1170756 1176161 1176166) (-803 "PATRES2.spad" 1170418 1170432 1170736 1170741) (-802 "PATRES.spad" 1168001 1168013 1170408 1170413) (-801 "PATMATCH.spad" 1166242 1166273 1167753 1167758) (-800 "PATMAB.spad" 1165671 1165681 1166232 1166237) (-799 "PATLRES.spad" 1164757 1164771 1165661 1165666) (-798 "PATAB.spad" 1164521 1164531 1164747 1164752) (-797 "PARTPERM.spad" 1162577 1162585 1164511 1164516) (-796 "PARSURF.spad" 1162011 1162039 1162567 1162572) (-795 "PARSU2.spad" 1161808 1161824 1162001 1162006) (-794 "script-parser.spad" 1161328 1161336 1161798 1161803) (-793 "PARSCURV.spad" 1160762 1160790 1161318 1161323) (-792 "PARSC2.spad" 1160553 1160569 1160752 1160757) (-791 "PARPCURV.spad" 1160015 1160043 1160543 1160548) (-790 "PARPC2.spad" 1159806 1159822 1160005 1160010) (-789 "PARAMAST.spad" 1158934 1158942 1159796 1159801) (-788 "PAN2EXPR.spad" 1158346 1158354 1158924 1158929) (-787 "PALETTE.spad" 1157460 1157468 1158336 1158341) (-786 "PAIR.spad" 1156534 1156547 1157103 1157108) (-785 "PADICRC.spad" 1153939 1153957 1155102 1155195) (-784 "PADICRAT.spad" 1151999 1152011 1152212 1152305) (-783 "PADICCT.spad" 1150548 1150560 1151925 1151994) (-782 "PADIC.spad" 1150251 1150263 1150474 1150543) (-781 "PADEPAC.spad" 1148940 1148959 1150241 1150246) (-780 "PADE.spad" 1147692 1147708 1148930 1148935) (-779 "OWP.spad" 1146940 1146970 1147550 1147617) (-778 "OVERSET.spad" 1146513 1146521 1146930 1146935) (-777 "OVAR.spad" 1146294 1146317 1146503 1146508) (-776 "OUTFORM.spad" 1135702 1135710 1146284 1146289) (-775 "OUTBFILE.spad" 1135136 1135144 1135692 1135697) (-774 "OUTBCON.spad" 1134206 1134214 1135126 1135131) (-773 "OUTBCON.spad" 1133274 1133284 1134196 1134201) (-772 "OUT.spad" 1132392 1132400 1133264 1133269) (-771 "OSI.spad" 1131867 1131875 1132382 1132387) (-770 "OSGROUP.spad" 1131785 1131793 1131857 1131862) (-769 "ORTHPOL.spad" 1130296 1130306 1131728 1131733) (-768 "OREUP.spad" 1129790 1129818 1130017 1130056) (-767 "ORESUP.spad" 1129132 1129156 1129511 1129550) (-766 "OREPCTO.spad" 1127021 1127033 1129052 1129057) (-765 "OREPCAT.spad" 1121208 1121218 1126977 1127016) (-764 "OREPCAT.spad" 1115285 1115297 1121056 1121061) (-763 "ORDTYPE.spad" 1114522 1114530 1115275 1115280) (-762 "ORDTYPE.spad" 1113757 1113767 1114512 1114517) (-761 "ORDSTRCT.spad" 1113543 1113558 1113706 1113711) (-760 "ORDSET.spad" 1113243 1113251 1113533 1113538) (-759 "ORDRING.spad" 1113060 1113068 1113223 1113238) (-758 "ORDMON.spad" 1112915 1112923 1113050 1113055) (-757 "ORDFUNS.spad" 1112047 1112063 1112905 1112910) (-756 "ORDFIN.spad" 1111867 1111875 1112037 1112042) (-755 "ORDCOMP2.spad" 1111160 1111172 1111857 1111862) (-754 "ORDCOMP.spad" 1109686 1109696 1110768 1110797) (-753 "OPSIG.spad" 1109348 1109356 1109676 1109681) (-752 "OPQUERY.spad" 1108929 1108937 1109338 1109343) (-751 "OPERCAT.spad" 1108395 1108405 1108919 1108924) (-750 "OPERCAT.spad" 1107859 1107871 1108385 1108390) (-749 "OP.spad" 1107601 1107611 1107681 1107748) (-748 "ONECOMP2.spad" 1107025 1107037 1107591 1107596) (-747 "ONECOMP.spad" 1105831 1105841 1106633 1106662) (-746 "OMSAGG.spad" 1105643 1105653 1105811 1105826) (-745 "OMLO.spad" 1105076 1105088 1105529 1105568) (-744 "OINTDOM.spad" 1104839 1104847 1105002 1105071) (-743 "OFMONOID.spad" 1102978 1102988 1104795 1104800) (-742 "ODVAR.spad" 1102239 1102249 1102968 1102973) (-741 "ODR.spad" 1101883 1101909 1102051 1102200) (-740 "ODPOL.spad" 1099531 1099541 1099871 1099998) (-739 "ODP.spad" 1089018 1089038 1089391 1089476) (-738 "ODETOOLS.spad" 1087667 1087686 1089008 1089013) (-737 "ODESYS.spad" 1085361 1085378 1087657 1087662) (-736 "ODERTRIC.spad" 1081394 1081411 1085318 1085323) (-735 "ODERED.spad" 1080793 1080817 1081384 1081389) (-734 "ODERAT.spad" 1078426 1078443 1080783 1080788) (-733 "ODEPRRIC.spad" 1075519 1075541 1078416 1078421) (-732 "ODEPRIM.spad" 1072917 1072939 1075509 1075514) (-731 "ODEPAL.spad" 1072303 1072327 1072907 1072912) (-730 "ODEINT.spad" 1071738 1071754 1072293 1072298) (-729 "ODEEF.spad" 1067233 1067249 1071728 1071733) (-728 "ODECONST.spad" 1066778 1066796 1067223 1067228) (-727 "OCTCT2.spad" 1066419 1066437 1066768 1066773) (-726 "OCT.spad" 1064734 1064744 1065448 1065487) (-725 "OCAMON.spad" 1064582 1064590 1064724 1064729) (-724 "OC.spad" 1062378 1062388 1064538 1064577) (-723 "OC.spad" 1059913 1059925 1062075 1062080) (-722 "OASGP.spad" 1059728 1059736 1059903 1059908) (-721 "OAMONS.spad" 1059250 1059258 1059718 1059723) (-720 "OAMON.spad" 1059008 1059016 1059240 1059245) (-719 "OAMON.spad" 1058764 1058774 1058998 1059003) (-718 "OAGROUP.spad" 1058302 1058310 1058754 1058759) (-717 "OAGROUP.spad" 1057838 1057848 1058292 1058297) (-716 "NUMTUBE.spad" 1057429 1057445 1057828 1057833) (-715 "NUMQUAD.spad" 1045405 1045413 1057419 1057424) (-714 "NUMODE.spad" 1036757 1036765 1045395 1045400) (-713 "NUMFMT.spad" 1035597 1035605 1036747 1036752) (-712 "NUMERIC.spad" 1027712 1027722 1035403 1035408) (-711 "NTSCAT.spad" 1026242 1026258 1027702 1027707) (-710 "NTPOLFN.spad" 1025819 1025829 1026185 1026190) (-709 "NSUP2.spad" 1025211 1025223 1025809 1025814) (-708 "NSUP.spad" 1018648 1018658 1023068 1023221) (-707 "NSMP.spad" 1015560 1015579 1015852 1015979) (-706 "NREP.spad" 1013962 1013976 1015550 1015555) (-705 "NPCOEF.spad" 1013208 1013228 1013952 1013957) (-704 "NORMRETR.spad" 1012806 1012845 1013198 1013203) (-703 "NORMPK.spad" 1010748 1010767 1012796 1012801) (-702 "NORMMA.spad" 1010436 1010462 1010738 1010743) (-701 "NONE1.spad" 1010112 1010122 1010426 1010431) (-700 "NONE.spad" 1009853 1009861 1010102 1010107) (-699 "NODE1.spad" 1009340 1009356 1009843 1009848) (-698 "NNI.spad" 1008235 1008243 1009314 1009335) (-697 "NLINSOL.spad" 1006861 1006871 1008225 1008230) (-696 "NFINTBAS.spad" 1004421 1004438 1006851 1006856) (-695 "NETCLT.spad" 1004395 1004406 1004411 1004416) (-694 "NCODIV.spad" 1002619 1002635 1004385 1004390) (-693 "NCNTFRAC.spad" 1002261 1002275 1002609 1002614) (-692 "NCEP.spad" 1000427 1000441 1002251 1002256) (-691 "NASRING.spad" 1000031 1000039 1000417 1000422) (-690 "NASRING.spad" 999633 999643 1000021 1000026) (-689 "NARNG.spad" 999033 999041 999623 999628) (-688 "NARNG.spad" 998431 998441 999023 999028) (-687 "NAALG.spad" 997996 998006 998399 998426) (-686 "NAALG.spad" 997581 997593 997986 997991) (-685 "MULTSQFR.spad" 994539 994556 997571 997576) (-684 "MULTFACT.spad" 993922 993939 994529 994534) (-683 "MTSCAT.spad" 992016 992037 993820 993917) (-682 "MTHING.spad" 991675 991685 992006 992011) (-681 "MSYSCMD.spad" 991109 991117 991665 991670) (-680 "MSETAGG.spad" 990966 990976 991089 991104) (-679 "MSET.spad" 988776 988786 990523 990538) (-678 "MRING.spad" 985898 985910 988484 988551) (-677 "MRF2.spad" 985460 985474 985888 985893) (-676 "MRATFAC.spad" 985006 985023 985450 985455) (-675 "MPRFF.spad" 983046 983065 984996 985001) (-674 "MPOLY.spad" 980850 980865 981209 981336) (-673 "MPCPF.spad" 980114 980133 980840 980845) (-672 "MPC3.spad" 979931 979971 980104 980109) (-671 "MPC2.spad" 979585 979618 979921 979926) (-670 "MONOTOOL.spad" 977936 977953 979575 979580) (-669 "catdef.spad" 977369 977380 977590 977931) (-668 "catdef.spad" 976767 976778 977023 977364) (-667 "MONOID.spad" 976088 976096 976757 976762) (-666 "MONOID.spad" 975407 975417 976078 976083) (-665 "MONOGEN.spad" 974155 974168 975267 975402) (-664 "MONOGEN.spad" 972925 972940 974039 974044) (-663 "MONADWU.spad" 971005 971013 972915 972920) (-662 "MONADWU.spad" 969083 969093 970995 971000) (-661 "MONAD.spad" 968243 968251 969073 969078) (-660 "MONAD.spad" 967401 967411 968233 968238) (-659 "MOEBIUS.spad" 966137 966151 967381 967396) (-658 "MODULE.spad" 966007 966017 966105 966132) (-657 "MODULE.spad" 965897 965909 965997 966002) (-656 "MODRING.spad" 965232 965271 965877 965892) (-655 "MODOP.spad" 963889 963901 965054 965121) (-654 "MODMONOM.spad" 963620 963638 963879 963884) (-653 "MODMON.spad" 960690 960702 961405 961558) (-652 "MODFIELD.spad" 960052 960091 960592 960685) (-651 "MMLFORM.spad" 958912 958920 960042 960047) (-650 "MMAP.spad" 958654 958688 958902 958907) (-649 "MLO.spad" 957113 957123 958610 958649) (-648 "MLIFT.spad" 955725 955742 957103 957108) (-647 "MKUCFUNC.spad" 955260 955278 955715 955720) (-646 "MKRECORD.spad" 954848 954861 955250 955255) (-645 "MKFUNC.spad" 954255 954265 954838 954843) (-644 "MKFLCFN.spad" 953223 953233 954245 954250) (-643 "MKBCFUNC.spad" 952718 952736 953213 953218) (-642 "MHROWRED.spad" 951229 951239 952708 952713) (-641 "MFINFACT.spad" 950629 950651 951219 951224) (-640 "MESH.spad" 948424 948432 950619 950624) (-639 "MDDFACT.spad" 946643 946653 948414 948419) (-638 "MDAGG.spad" 945944 945954 946633 946638) (-637 "MCDEN.spad" 945154 945166 945934 945939) (-636 "MAYBE.spad" 944454 944465 945144 945149) (-635 "MATSTOR.spad" 941770 941780 944444 944449) (-634 "MATRIX.spad" 940571 940581 941055 941060) (-633 "MATLIN.spad" 937939 937963 940455 940460) (-632 "MATCAT2.spad" 937221 937269 937929 937934) (-631 "MATCAT.spad" 928939 928961 937211 937216) (-630 "MATCAT.spad" 920507 920531 928781 928786) (-629 "MAPPKG3.spad" 919422 919436 920497 920502) (-628 "MAPPKG2.spad" 918760 918772 919412 919417) (-627 "MAPPKG1.spad" 917588 917598 918750 918755) (-626 "MAPPAST.spad" 916927 916935 917578 917583) (-625 "MAPHACK3.spad" 916739 916753 916917 916922) (-624 "MAPHACK2.spad" 916508 916520 916729 916734) (-623 "MAPHACK1.spad" 916152 916162 916498 916503) (-622 "MAGMA.spad" 913958 913975 916142 916147) (-621 "MACROAST.spad" 913553 913561 913948 913953) (-620 "LZSTAGG.spad" 910807 910817 913543 913548) (-619 "LZSTAGG.spad" 908059 908071 910797 910802) (-618 "LWORD.spad" 904804 904821 908049 908054) (-617 "LSTAST.spad" 904588 904596 904794 904799) (-616 "LSQM.spad" 902878 902892 903272 903311) (-615 "LSPP.spad" 902413 902430 902868 902873) (-614 "LSMP1.spad" 900256 900270 902403 902408) (-613 "LSMP.spad" 899113 899141 900246 900251) (-612 "LSAGG.spad" 898804 898814 899103 899108) (-611 "LSAGG.spad" 898493 898505 898794 898799) (-610 "LPOLY.spad" 897455 897474 898349 898418) (-609 "LPEFRAC.spad" 896726 896736 897445 897450) (-608 "LOGIC.spad" 896268 896276 896716 896721) (-607 "LOGIC.spad" 895808 895818 896258 896263) (-606 "LODOOPS.spad" 894738 894750 895798 895803) (-605 "LODOF.spad" 893784 893801 894695 894700) (-604 "LODOCAT.spad" 892450 892460 893740 893779) (-603 "LODOCAT.spad" 891114 891126 892406 892411) (-602 "LODO2.spad" 890428 890440 890835 890874) (-601 "LODO1.spad" 889869 889879 890149 890188) (-600 "LODO.spad" 889294 889310 889590 889629) (-599 "LODEEF.spad" 888096 888114 889284 889289) (-598 "LO.spad" 887497 887511 888030 888057) (-597 "LNAGG.spad" 883684 883694 887487 887492) (-596 "LNAGG.spad" 879807 879819 883612 883617) (-595 "LMOPS.spad" 876575 876592 879797 879802) (-594 "LMODULE.spad" 876359 876369 876565 876570) (-593 "LMDICT.spad" 875601 875611 875849 875854) (-592 "LLINSET.spad" 875308 875318 875591 875596) (-591 "LITERAL.spad" 875214 875225 875298 875303) (-590 "LIST3.spad" 874525 874539 875204 875209) (-589 "LIST2MAP.spad" 871452 871464 874515 874520) (-588 "LIST2.spad" 870154 870166 871442 871447) (-587 "LIST.spad" 867733 867743 869076 869081) (-586 "LINSET.spad" 867512 867522 867723 867728) (-585 "LINFORM.spad" 866975 866987 867480 867507) (-584 "LINEXP.spad" 865718 865728 866965 866970) (-583 "LINELT.spad" 865089 865101 865601 865628) (-582 "LINDEP.spad" 863938 863950 865001 865006) (-581 "LINBASIS.spad" 863574 863589 863928 863933) (-580 "LIMITRF.spad" 861521 861531 863564 863569) (-579 "LIMITPS.spad" 860431 860444 861511 861516) (-578 "LIECAT.spad" 859915 859925 860357 860426) (-577 "LIECAT.spad" 859427 859439 859871 859876) (-576 "LIE.spad" 857431 857443 858705 858847) (-575 "LIB.spad" 855254 855262 855700 855705) (-574 "LGROBP.spad" 852607 852626 855244 855249) (-573 "LFCAT.spad" 851666 851674 852597 852602) (-572 "LF.spad" 850621 850637 851656 851661) (-571 "LEXTRIPK.spad" 846244 846259 850611 850616) (-570 "LEXP.spad" 844263 844290 846224 846239) (-569 "LETAST.spad" 843962 843970 844253 844258) (-568 "LEADCDET.spad" 842368 842385 843952 843957) (-567 "LAZM3PK.spad" 841112 841134 842358 842363) (-566 "LAUPOL.spad" 839779 839792 840679 840748) (-565 "LAPLACE.spad" 839362 839378 839769 839774) (-564 "LALG.spad" 839138 839148 839342 839357) (-563 "LALG.spad" 838922 838934 839128 839133) (-562 "LA.spad" 838362 838376 838844 838883) (-561 "KVTFROM.spad" 838105 838115 838352 838357) (-560 "KTVLOGIC.spad" 837649 837657 838095 838100) (-559 "KRCFROM.spad" 837395 837405 837639 837644) (-558 "KOVACIC.spad" 836126 836143 837385 837390) (-557 "KONVERT.spad" 835848 835858 836116 836121) (-556 "KOERCE.spad" 835585 835595 835838 835843) (-555 "KERNEL2.spad" 835288 835300 835575 835580) (-554 "KERNEL.spad" 834008 834018 835137 835142) (-553 "KDAGG.spad" 833127 833149 833998 834003) (-552 "KDAGG.spad" 832244 832268 833117 833122) (-551 "KAFILE.spad" 830620 830636 830855 830860) (-550 "JVMOP.spad" 830533 830541 830610 830615) (-549 "JVMMDACC.spad" 829587 829595 830523 830528) (-548 "JVMFDACC.spad" 828903 828911 829577 829582) (-547 "JVMCSTTG.spad" 827632 827640 828893 828898) (-546 "JVMCFACC.spad" 827078 827086 827622 827627) (-545 "JVMBCODE.spad" 826989 826997 827068 827073) (-544 "JORDAN.spad" 824806 824818 826267 826409) (-543 "JOINAST.spad" 824508 824516 824796 824801) (-542 "IXAGG.spad" 822641 822665 824498 824503) (-541 "IXAGG.spad" 820576 820602 822435 822440) (-540 "ITUPLE.spad" 819868 819878 820566 820571) (-539 "ITRIGMNP.spad" 818715 818734 819858 819863) (-538 "ITFUN3.spad" 818221 818235 818705 818710) (-537 "ITFUN2.spad" 817965 817977 818211 818216) (-536 "ITFORM.spad" 817320 817328 817955 817960) (-535 "ITAYLOR.spad" 815314 815329 817184 817281) (-534 "ISUPS.spad" 807763 807778 814300 814397) (-533 "ISUMP.spad" 807264 807280 807753 807758) (-532 "ISAST.spad" 806983 806991 807254 807259) (-531 "IRURPK.spad" 805700 805719 806973 806978) (-530 "IRSN.spad" 803704 803712 805690 805695) (-529 "IRRF2F.spad" 802197 802207 803660 803665) (-528 "IRREDFFX.spad" 801798 801809 802187 802192) (-527 "IROOT.spad" 800137 800147 801788 801793) (-526 "IRFORM.spad" 799461 799469 800127 800132) (-525 "IR2F.spad" 798675 798691 799451 799456) (-524 "IR2.spad" 797703 797719 798665 798670) (-523 "IR.spad" 795539 795553 797585 797612) (-522 "IPRNTPK.spad" 795299 795307 795529 795534) (-521 "IPF.spad" 794864 794876 795104 795197) (-520 "IPADIC.spad" 794633 794659 794790 794859) (-519 "IP4ADDR.spad" 794190 794198 794623 794628) (-518 "IOMODE.spad" 793712 793720 794180 794185) (-517 "IOBFILE.spad" 793097 793105 793702 793707) (-516 "IOBCON.spad" 792962 792970 793087 793092) (-515 "INVLAPLA.spad" 792611 792627 792952 792957) (-514 "INTTR.spad" 786005 786022 792601 792606) (-513 "INTTOOLS.spad" 783813 783829 785632 785637) (-512 "INTSLPE.spad" 783141 783149 783803 783808) (-511 "INTRVL.spad" 782707 782717 783055 783136) (-510 "INTRF.spad" 781139 781153 782697 782702) (-509 "INTRET.spad" 780571 780581 781129 781134) (-508 "INTRAT.spad" 779306 779323 780561 780566) (-507 "INTPM.spad" 777769 777785 779027 779032) (-506 "INTPAF.spad" 775645 775663 777698 777703) (-505 "INTHERTR.spad" 774919 774936 775635 775640) (-504 "INTHERAL.spad" 774589 774613 774909 774914) (-503 "INTHEORY.spad" 771028 771036 774579 774584) (-502 "INTG0.spad" 764792 764810 770957 770962) (-501 "INTFACT.spad" 763859 763869 764782 764787) (-500 "INTEF.spad" 762270 762286 763849 763854) (-499 "INTDOM.spad" 760893 760901 762196 762265) (-498 "INTDOM.spad" 759578 759588 760883 760888) (-497 "INTCAT.spad" 757845 757855 759492 759573) (-496 "INTBIT.spad" 757352 757360 757835 757840) (-495 "INTALG.spad" 756540 756567 757342 757347) (-494 "INTAF.spad" 756040 756056 756530 756535) (-493 "INTABL.spad" 753857 753888 754020 754025) (-492 "INT8.spad" 753737 753745 753847 753852) (-491 "INT64.spad" 753616 753624 753727 753732) (-490 "INT32.spad" 753495 753503 753606 753611) (-489 "INT16.spad" 753374 753382 753485 753490) (-488 "INT.spad" 752900 752908 753240 753369) (-487 "INS.spad" 750403 750411 752802 752895) (-486 "INS.spad" 747992 748002 750393 750398) (-485 "INPSIGN.spad" 747462 747475 747982 747987) (-484 "INPRODPF.spad" 746558 746577 747452 747457) (-483 "INPRODFF.spad" 745646 745670 746548 746553) (-482 "INNMFACT.spad" 744621 744638 745636 745641) (-481 "INMODGCD.spad" 744125 744155 744611 744616) (-480 "INFSP.spad" 742422 742444 744115 744120) (-479 "INFPROD0.spad" 741502 741521 742412 742417) (-478 "INFORM1.spad" 741127 741137 741492 741497) (-477 "INFORM.spad" 738338 738346 741117 741122) (-476 "INFINITY.spad" 737890 737898 738328 738333) (-475 "INETCLTS.spad" 737867 737875 737880 737885) (-474 "INEP.spad" 736413 736435 737857 737862) (-473 "INDE.spad" 736062 736079 736323 736328) (-472 "INCRMAPS.spad" 735499 735509 736052 736057) (-471 "INBFILE.spad" 734595 734603 735489 735494) (-470 "INBFF.spad" 730445 730456 734585 734590) (-469 "INBCON.spad" 728711 728719 730435 730440) (-468 "INBCON.spad" 726975 726985 728701 728706) (-467 "INAST.spad" 726636 726644 726965 726970) (-466 "IMPTAST.spad" 726344 726352 726626 726631) (-465 "IMATQF.spad" 725410 725454 726272 726277) (-464 "IMATLIN.spad" 724003 724027 725338 725343) (-463 "IFF.spad" 723416 723432 723687 723780) (-462 "IFAST.spad" 723030 723038 723406 723411) (-461 "IFARRAY.spad" 720254 720269 721952 721957) (-460 "IFAMON.spad" 720116 720133 720210 720215) (-459 "IEVALAB.spad" 719529 719541 720106 720111) (-458 "IEVALAB.spad" 718940 718954 719519 719524) (-457 "indexedp.spad" 718496 718508 718930 718935) (-456 "IDPOAMS.spad" 718174 718186 718408 718413) (-455 "IDPOAM.spad" 717816 717828 718086 718091) (-454 "IDPO.spad" 717230 717242 717728 717733) (-453 "IDPC.spad" 716128 716140 717220 717225) (-452 "IDPAM.spad" 715795 715807 716040 716045) (-451 "IDPAG.spad" 715464 715476 715707 715712) (-450 "IDENT.spad" 715116 715124 715454 715459) (-449 "catdef.spad" 714887 714898 714999 715111) (-448 "IDECOMP.spad" 712126 712144 714877 714882) (-447 "IDEAL.spad" 707088 707127 712074 712079) (-446 "ICDEN.spad" 706301 706317 707078 707083) (-445 "ICARD.spad" 705694 705702 706291 706296) (-444 "IBPTOOLS.spad" 704301 704318 705684 705689) (-443 "boolean.spad" 703593 703606 703726 703731) (-442 "IBATOOL.spad" 700578 700597 703583 703588) (-441 "IBACHIN.spad" 699085 699100 700568 700573) (-440 "array2.spad" 698592 698614 698779 698784) (-439 "IARRAY1.spad" 697368 697383 697514 697519) (-438 "IAN.spad" 695750 695758 697199 697292) (-437 "IALGFACT.spad" 695361 695394 695740 695745) (-436 "HYPCAT.spad" 694785 694793 695351 695356) (-435 "HYPCAT.spad" 694207 694217 694775 694780) (-434 "HOSTNAME.spad" 694023 694031 694197 694202) (-433 "HOMOTOP.spad" 693766 693776 694013 694018) (-432 "HOAGG.spad" 693466 693476 693756 693761) (-431 "HOAGG.spad" 692988 693000 693280 693285) (-430 "HEXADEC.spad" 691213 691221 691578 691671) (-429 "HEUGCD.spad" 690304 690315 691203 691208) (-428 "HELLFDIV.spad" 689910 689934 690294 690299) (-427 "HEAP.spad" 689389 689399 689604 689609) (-426 "HEADAST.spad" 688930 688938 689379 689384) (-425 "HDP.spad" 678413 678429 678790 678875) (-424 "HDMP.spad" 675960 675975 676576 676703) (-423 "HB.spad" 674235 674243 675950 675955) (-422 "HASHTBL.spad" 672004 672035 672215 672220) (-421 "HASAST.spad" 671720 671728 671994 671999) (-420 "HACKPI.spad" 671211 671219 671622 671715) (-419 "GTSET.spad" 669999 670015 670706 670711) (-418 "GSTBL.spad" 667805 667840 667979 667984) (-417 "GSERIES.spad" 665177 665204 665996 666145) (-416 "GROUP.spad" 664450 664458 665157 665172) (-415 "GROUP.spad" 663731 663741 664440 664445) (-414 "GROEBSOL.spad" 662225 662246 663721 663726) (-413 "GRMOD.spad" 660806 660818 662215 662220) (-412 "GRMOD.spad" 659385 659399 660796 660801) (-411 "GRIMAGE.spad" 652298 652306 659375 659380) (-410 "GRDEF.spad" 650677 650685 652288 652293) (-409 "GRAY.spad" 649148 649156 650667 650672) (-408 "GRALG.spad" 648243 648255 649138 649143) (-407 "GRALG.spad" 647336 647350 648233 648238) (-406 "GPOLSET.spad" 646655 646678 646867 646872) (-405 "GOSPER.spad" 645932 645950 646645 646650) (-404 "GMODPOL.spad" 645080 645107 645900 645927) (-403 "GHENSEL.spad" 644163 644177 645070 645075) (-402 "GENUPS.spad" 640456 640469 644153 644158) (-401 "GENUFACT.spad" 640033 640043 640446 640451) (-400 "GENPGCD.spad" 639635 639652 640023 640028) (-399 "GENMFACT.spad" 639087 639106 639625 639630) (-398 "GENEEZ.spad" 637046 637059 639077 639082) (-397 "GDMP.spad" 634435 634452 635209 635336) (-396 "GCNAALG.spad" 628358 628385 634229 634296) (-395 "GCDDOM.spad" 627550 627558 628284 628353) (-394 "GCDDOM.spad" 626804 626814 627540 627545) (-393 "GBINTERN.spad" 622824 622862 626794 626799) (-392 "GBF.spad" 618607 618645 622814 622819) (-391 "GBEUCLID.spad" 616489 616527 618597 618602) (-390 "GB.spad" 614015 614053 616445 616450) (-389 "GAUSSFAC.spad" 613328 613336 614005 614010) (-388 "GALUTIL.spad" 611654 611664 613284 613289) (-387 "GALPOLYU.spad" 610108 610121 611644 611649) (-386 "GALFACTU.spad" 608321 608340 610098 610103) (-385 "GALFACT.spad" 598534 598545 608311 608316) (-384 "FUNDESC.spad" 598212 598220 598524 598529) (-383 "catdef.spad" 597823 597833 598202 598207) (-382 "FUNCTION.spad" 597672 597684 597813 597818) (-381 "FT.spad" 595972 595980 597662 597667) (-380 "FSUPFACT.spad" 594886 594905 595922 595927) (-379 "FST.spad" 592972 592980 594876 594881) (-378 "FSRED.spad" 592452 592468 592962 592967) (-377 "FSPRMELT.spad" 591318 591334 592409 592414) (-376 "FSPECF.spad" 589409 589425 591308 591313) (-375 "FSINT.spad" 589069 589085 589399 589404) (-374 "FSERIES.spad" 588260 588272 588889 588988) (-373 "FSCINT.spad" 587577 587593 588250 588255) (-372 "FSAGG2.spad" 586312 586328 587567 587572) (-371 "FSAGG.spad" 585453 585463 586292 586307) (-370 "FSAGG.spad" 584532 584544 585373 585378) (-369 "FS2UPS.spad" 579047 579081 584522 584527) (-368 "FS2EXPXP.spad" 578188 578211 579037 579042) (-367 "FS2.spad" 577843 577859 578178 578183) (-366 "FS.spad" 572115 572125 577622 577838) (-365 "FS.spad" 566189 566201 571698 571703) (-364 "FRUTIL.spad" 565143 565153 566179 566184) (-363 "FRNAALG.spad" 560420 560430 565085 565138) (-362 "FRNAALG.spad" 555709 555721 560376 560381) (-361 "FRNAAF2.spad" 555157 555175 555699 555704) (-360 "FRMOD.spad" 554565 554595 555086 555091) (-359 "FRIDEAL2.spad" 554169 554201 554555 554560) (-358 "FRIDEAL.spad" 553394 553415 554149 554164) (-357 "FRETRCT.spad" 552913 552923 553384 553389) (-356 "FRETRCT.spad" 552339 552351 552812 552817) (-355 "FRAMALG.spad" 550719 550732 552295 552334) (-354 "FRAMALG.spad" 549131 549146 550709 550714) (-353 "FRAC2.spad" 548736 548748 549121 549126) (-352 "FRAC.spad" 546723 546733 547110 547283) (-351 "FR2.spad" 546059 546071 546713 546718) (-350 "FR.spad" 540163 540173 545120 545189) (-349 "FPS.spad" 537002 537010 540053 540158) (-348 "FPS.spad" 533869 533879 536922 536927) (-347 "FPC.spad" 532915 532923 533771 533864) (-346 "FPC.spad" 532047 532057 532905 532910) (-345 "FPATMAB.spad" 531809 531819 532037 532042) (-344 "FPARFRAC.spad" 530651 530668 531799 531804) (-343 "FORDER.spad" 530342 530366 530641 530646) (-342 "FNLA.spad" 529766 529788 530310 530337) (-341 "FNCAT.spad" 528361 528369 529756 529761) (-340 "FNAME.spad" 528253 528261 528351 528356) (-339 "FMONOID.spad" 527934 527944 528209 528214) (-338 "FMONCAT.spad" 525103 525113 527924 527929) (-337 "FMCAT.spad" 522939 522957 525071 525098) (-336 "FM1.spad" 522304 522316 522873 522900) (-335 "FM.spad" 521919 521931 522158 522185) (-334 "FLOATRP.spad" 519662 519676 521909 521914) (-333 "FLOATCP.spad" 517101 517115 519652 519657) (-332 "FLOAT.spad" 514192 514200 516967 517096) (-331 "FLINEXP.spad" 513914 513924 514182 514187) (-330 "FLINEXP.spad" 513593 513605 513863 513868) (-329 "FLASORT.spad" 512919 512931 513583 513588) (-328 "FLALG.spad" 510589 510608 512845 512914) (-327 "FLAGG2.spad" 509306 509322 510579 510584) (-326 "FLAGG.spad" 506382 506392 509296 509301) (-325 "FLAGG.spad" 503323 503335 506239 506244) (-324 "FINRALG.spad" 501408 501421 503279 503318) (-323 "FINRALG.spad" 499419 499434 501292 501297) (-322 "FINITE.spad" 498571 498579 499409 499414) (-321 "FINITE.spad" 497721 497731 498561 498566) (-320 "aggcat.spad" 494446 494456 497711 497716) (-319 "FINAGG.spad" 491136 491148 494403 494408) (-318 "FINAALG.spad" 480321 480331 491078 491131) (-317 "FINAALG.spad" 469518 469530 480277 480282) (-316 "FILECAT.spad" 468052 468069 469508 469513) (-315 "FILE.spad" 467635 467645 468042 468047) (-314 "FIELD.spad" 467041 467049 467537 467630) (-313 "FIELD.spad" 466533 466543 467031 467036) (-312 "FGROUP.spad" 465196 465206 466513 466528) (-311 "FGLMICPK.spad" 463991 464006 465186 465191) (-310 "FFX.spad" 463377 463392 463710 463803) (-309 "FFSLPE.spad" 462888 462909 463367 463372) (-308 "FFPOLY2.spad" 461948 461965 462878 462883) (-307 "FFPOLY.spad" 453290 453301 461938 461943) (-306 "FFP.spad" 452698 452718 453009 453102) (-305 "FFNBX.spad" 451221 451241 452417 452510) (-304 "FFNBP.spad" 449745 449762 450940 451033) (-303 "FFNB.spad" 448213 448234 449429 449522) (-302 "FFINTBAS.spad" 445727 445746 448203 448208) (-301 "FFIELDC.spad" 443312 443320 445629 445722) (-300 "FFIELDC.spad" 440983 440993 443302 443307) (-299 "FFHOM.spad" 439755 439772 440973 440978) (-298 "FFF.spad" 437198 437209 439745 439750) (-297 "FFCGX.spad" 436056 436076 436917 437010) (-296 "FFCGP.spad" 434956 434976 435775 435868) (-295 "FFCG.spad" 433751 433772 434640 434733) (-294 "FFCAT2.spad" 433498 433538 433741 433746) (-293 "FFCAT.spad" 426663 426685 433337 433493) (-292 "FFCAT.spad" 419907 419931 426583 426588) (-291 "FF.spad" 419358 419374 419591 419684) (-290 "FEVALAB.spad" 419195 419205 419348 419353) (-289 "FEVALAB.spad" 418808 418820 418963 418968) (-288 "FDIVCAT.spad" 416904 416928 418798 418803) (-287 "FDIVCAT.spad" 414998 415024 416894 416899) (-286 "FDIV2.spad" 414654 414694 414988 414993) (-285 "FDIV.spad" 414112 414136 414644 414649) (-284 "FCTRDATA.spad" 413120 413128 414102 414107) (-283 "FCOMP.spad" 412499 412509 413110 413115) (-282 "FAXF.spad" 405534 405548 412401 412494) (-281 "FAXF.spad" 398621 398637 405490 405495) (-280 "FARRAY.spad" 396510 396520 397543 397548) (-279 "FAMR.spad" 394654 394666 396408 396505) (-278 "FAMR.spad" 392782 392796 394538 394543) (-277 "FAMONOID.spad" 392466 392476 392736 392741) (-276 "FAMONC.spad" 390786 390798 392456 392461) (-275 "FAGROUP.spad" 390426 390436 390682 390709) (-274 "FACUTIL.spad" 388638 388655 390416 390421) (-273 "FACTFUNC.spad" 387840 387850 388628 388633) (-272 "EXPUPXS.spad" 384732 384755 386031 386180) (-271 "EXPRTUBE.spad" 382020 382028 384722 384727) (-270 "EXPRODE.spad" 379188 379204 382010 382015) (-269 "EXPR2UPS.spad" 375310 375323 379178 379183) (-268 "EXPR2.spad" 375015 375027 375300 375305) (-267 "EXPR.spad" 370660 370670 371374 371661) (-266 "EXPEXPAN.spad" 367605 367630 368237 368330) (-265 "EXITAST.spad" 367341 367349 367595 367600) (-264 "EXIT.spad" 367012 367020 367331 367336) (-263 "EVALCYC.spad" 366472 366486 367002 367007) (-262 "EVALAB.spad" 366052 366062 366462 366467) (-261 "EVALAB.spad" 365630 365642 366042 366047) (-260 "EUCDOM.spad" 363220 363228 365556 365625) (-259 "EUCDOM.spad" 360872 360882 363210 363215) (-258 "ES2.spad" 360385 360401 360862 360867) (-257 "ES1.spad" 359955 359971 360375 360380) (-256 "ES.spad" 352826 352834 359945 359950) (-255 "ES.spad" 345618 345628 352739 352744) (-254 "ERROR.spad" 342945 342953 345608 345613) (-253 "EQTBL.spad" 340716 340738 340925 340930) (-252 "EQ2.spad" 340434 340446 340706 340711) (-251 "EQ.spad" 335477 335487 338135 338241) (-250 "EP.spad" 331803 331813 335467 335472) (-249 "ENV.spad" 330481 330489 331793 331798) (-248 "ENTIRER.spad" 330149 330157 330425 330476) (-247 "ENTIRER.spad" 329861 329871 330139 330144) (-246 "EMR.spad" 329149 329190 329787 329856) (-245 "ELTAGG.spad" 327403 327422 329139 329144) (-244 "ELTAGG.spad" 325593 325614 327331 327336) (-243 "ELTAB.spad" 325068 325081 325583 325588) (-242 "ELFUTS.spad" 324503 324522 325058 325063) (-241 "ELEMFUN.spad" 324192 324200 324493 324498) (-240 "ELEMFUN.spad" 323879 323889 324182 324187) (-239 "ELAGG.spad" 321860 321870 323869 323874) (-238 "ELAGG.spad" 319770 319782 321781 321786) (-237 "ELABOR.spad" 319116 319124 319760 319765) (-236 "ELABEXPR.spad" 318048 318056 319106 319111) (-235 "EFUPXS.spad" 314824 314854 318004 318009) (-234 "EFULS.spad" 311660 311683 314780 314785) (-233 "EFSTRUC.spad" 309675 309691 311650 311655) (-232 "EF.spad" 304451 304467 309665 309670) (-231 "EAB.spad" 302751 302759 304441 304446) (-230 "DVARCAT.spad" 299757 299767 302741 302746) (-229 "DVARCAT.spad" 296761 296773 299747 299752) (-228 "DSMP.spad" 294494 294508 294799 294926) (-227 "DSEXT.spad" 293796 293806 294484 294489) (-226 "DSEXT.spad" 293018 293030 293708 293713) (-225 "DROPT1.spad" 292683 292693 293008 293013) (-224 "DROPT0.spad" 287548 287556 292673 292678) (-223 "DROPT.spad" 281507 281515 287538 287543) (-222 "DRAWPT.spad" 279680 279688 281497 281502) (-221 "DRAWHACK.spad" 278988 278998 279670 279675) (-220 "DRAWCX.spad" 276466 276474 278978 278983) (-219 "DRAWCURV.spad" 276013 276028 276456 276461) (-218 "DRAWCFUN.spad" 265545 265553 276003 276008) (-217 "DRAW.spad" 258421 258434 265535 265540) (-216 "DQAGG.spad" 256621 256631 258411 258416) (-215 "DPOLCAT.spad" 251978 251994 256489 256616) (-214 "DPOLCAT.spad" 247421 247439 251934 251939) (-213 "DPMO.spad" 239974 239990 240112 240306) (-212 "DPMM.spad" 232540 232558 232665 232859) (-211 "DOMTMPLT.spad" 232311 232319 232530 232535) (-210 "DOMCTOR.spad" 232066 232074 232301 232306) (-209 "DOMAIN.spad" 231177 231185 232056 232061) (-208 "DMP.spad" 228770 228785 229340 229467) (-207 "DMEXT.spad" 228637 228647 228738 228765) (-206 "DLP.spad" 227997 228007 228627 228632) (-205 "DLIST.spad" 226315 226325 226919 226924) (-204 "DLAGG.spad" 224732 224742 226305 226310) (-203 "DIVRING.spad" 224274 224282 224676 224727) (-202 "DIVRING.spad" 223860 223870 224264 224269) (-201 "DISPLAY.spad" 222050 222058 223850 223855) (-200 "DIRPROD2.spad" 220868 220886 222040 222045) (-199 "DIRPROD.spad" 210088 210104 210728 210813) (-198 "DIRPCAT.spad" 209383 209399 209998 210083) (-197 "DIRPCAT.spad" 208292 208310 208909 208914) (-196 "DIOSP.spad" 207117 207125 208282 208287) (-195 "DIOPS.spad" 206123 206133 207107 207112) (-194 "DIOPS.spad" 205066 205078 206052 206057) (-193 "catdef.spad" 204924 204932 205056 205061) (-192 "DIFRING.spad" 204762 204770 204904 204919) (-191 "DIFFSPC.spad" 204341 204349 204752 204757) (-190 "DIFFSPC.spad" 203918 203928 204331 204336) (-189 "DIFFMOD.spad" 203407 203417 203886 203913) (-188 "DIFFDOM.spad" 202572 202583 203397 203402) (-187 "DIFFDOM.spad" 201735 201748 202562 202567) (-186 "DIFEXT.spad" 201554 201564 201715 201730) (-185 "DIAGG.spad" 201194 201204 201544 201549) (-184 "DIAGG.spad" 200832 200844 201184 201189) (-183 "DHMATRIX.spad" 199231 199241 200376 200381) (-182 "DFSFUN.spad" 192871 192879 199221 199226) (-181 "DFLOAT.spad" 189478 189486 192761 192866) (-180 "DFINTTLS.spad" 187709 187725 189468 189473) (-179 "DERHAM.spad" 185796 185828 187689 187704) (-178 "DEQUEUE.spad" 185207 185217 185490 185495) (-177 "DEGRED.spad" 184824 184838 185197 185202) (-176 "DEFINTRF.spad" 182406 182416 184814 184819) (-175 "DEFINTEF.spad" 180944 180960 182396 182401) (-174 "DEFAST.spad" 180328 180336 180934 180939) (-173 "DECIMAL.spad" 178557 178565 178918 179011) (-172 "DDFACT.spad" 176378 176395 178547 178552) (-171 "DBLRESP.spad" 175978 176002 176368 176373) (-170 "DBASIS.spad" 175604 175619 175968 175973) (-169 "DBASE.spad" 174268 174278 175594 175599) (-168 "DATAARY.spad" 173754 173767 174258 174263) (-167 "CYCLOTOM.spad" 173260 173268 173744 173749) (-166 "CYCLES.spad" 170043 170051 173250 173255) (-165 "CVMP.spad" 169460 169470 170033 170038) (-164 "CTRIGMNP.spad" 167960 167976 169450 169455) (-163 "CTORKIND.spad" 167563 167571 167950 167955) (-162 "CTORCAT.spad" 166804 166812 167553 167558) (-161 "CTORCAT.spad" 166043 166053 166794 166799) (-160 "CTORCALL.spad" 165632 165642 166033 166038) (-159 "CTOR.spad" 165323 165331 165622 165627) (-158 "CSTTOOLS.spad" 164568 164581 165313 165318) (-157 "CRFP.spad" 158340 158353 164558 164563) (-156 "CRCEAST.spad" 158060 158068 158330 158335) (-155 "CRAPACK.spad" 157127 157137 158050 158055) (-154 "CPMATCH.spad" 156628 156643 157049 157054) (-153 "CPIMA.spad" 156333 156352 156618 156623) (-152 "COORDSYS.spad" 151342 151352 156323 156328) (-151 "CONTOUR.spad" 150769 150777 151332 151337) (-150 "CONTFRAC.spad" 146519 146529 150671 150764) (-149 "CONDUIT.spad" 146277 146285 146509 146514) (-148 "COMRING.spad" 145951 145959 146215 146272) (-147 "COMPPROP.spad" 145469 145477 145941 145946) (-146 "COMPLPAT.spad" 145236 145251 145459 145464) (-145 "COMPLEX2.spad" 144951 144963 145226 145231) (-144 "COMPLEX.spad" 140657 140667 140901 141159) (-143 "COMPILER.spad" 140206 140214 140647 140652) (-142 "COMPFACT.spad" 139808 139822 140196 140201) (-141 "COMPCAT.spad" 137883 137893 139545 139803) (-140 "COMPCAT.spad" 135699 135711 137363 137368) (-139 "catdef.spad" 135442 135453 135555 135694) (-138 "/home/gdr/build/1.5.x/x86_64-unknown-linux-gnu/src/algebra/catdef.spad" 135028 135039 135298 135437) (-137 "COMMUPC.spad" 134776 134794 135018 135023) (-136 "COMMONOP.spad" 134309 134317 134766 134771) (-135 "COMMAAST.spad" 134072 134080 134299 134304) (-134 "COMM.spad" 133883 133891 134062 134067) (-133 "COMBOPC.spad" 132806 132814 133873 133878) (-132 "COMBINAT.spad" 131573 131583 132796 132801) (-131 "COMBF.spad" 128995 129011 131563 131568) (-130 "COLOR.spad" 127832 127840 128985 128990) (-129 "COLONAST.spad" 127498 127506 127822 127827) (-128 "CMPLXRT.spad" 127209 127226 127488 127493) (-127 "CLLCTAST.spad" 126871 126879 127199 127204) (-126 "CLIP.spad" 122979 122987 126861 126866) (-125 "CLIF.spad" 121634 121650 122935 122974) (-124 "CLAGG.spad" 119840 119850 121624 121629) (-123 "CLAGG.spad" 117905 117917 119691 119696) (-122 "CINTSLPE.spad" 117260 117273 117895 117900) (-121 "CHVAR.spad" 115398 115420 117250 117255) (-120 "CHARZ.spad" 115313 115321 115378 115393) (-119 "CHARPOL.spad" 114839 114849 115303 115308) (-118 "CHARNZ.spad" 114601 114609 114819 114834) (-117 "CHAR.spad" 111969 111977 114591 114596) (-116 "CFCAT.spad" 111297 111305 111959 111964) (-115 "CDEN.spad" 110517 110531 111287 111292) (-114 "CCLASS.spad" 108598 108606 109860 109875) (-113 "CATEGORY.spad" 107672 107680 108588 108593) (-112 "CATCTOR.spad" 107563 107571 107662 107667) (-111 "CATAST.spad" 107189 107197 107553 107558) (-110 "CASEAST.spad" 106903 106911 107179 107184) (-109 "CARTEN2.spad" 106293 106320 106893 106898) (-108 "CARTEN.spad" 102045 102069 106283 106288) (-107 "CARD.spad" 99340 99348 102019 102040) (-106 "CAPSLAST.spad" 99122 99130 99330 99335) (-105 "CACHSET.spad" 98746 98754 99112 99117) (-104 "CABMON.spad" 98301 98309 98736 98741) (-103 "BYTEORD.spad" 97976 97984 98291 98296) (-102 "BYTEBUF.spad" 95796 95804 97002 97007) (-101 "BYTE.spad" 95271 95279 95786 95791) (-100 "BTREE.spad" 94370 94380 94904 94909) (-99 "BTOURN.spad" 93402 93411 94003 94008) (-98 "BTCAT.spad" 92982 92991 93392 93397) (-97 "BTCAT.spad" 92560 92571 92972 92977) (-96 "BTAGG.spad" 92049 92056 92550 92555) (-95 "BTAGG.spad" 91536 91545 92039 92044) (-94 "BSTREE.spad" 90304 90313 91169 91174) (-93 "BRILL.spad" 88510 88520 90294 90299) (-92 "BRAGG.spad" 87467 87476 88500 88505) (-91 "BRAGG.spad" 86360 86371 87395 87400) (-90 "BPADICRT.spad" 84420 84431 84666 84759) (-89 "BPADIC.spad" 84093 84104 84346 84415) (-88 "BOUNDZRO.spad" 83750 83766 84083 84088) (-87 "BOP1.spad" 81209 81218 83740 83745) (-86 "BOP.spad" 76352 76359 81199 81204) (-85 "BOOLEAN.spad" 75901 75908 76342 76347) (-84 "BOOLE.spad" 75552 75559 75891 75896) (-83 "BOOLE.spad" 75201 75210 75542 75547) (-82 "BMODULE.spad" 74914 74925 75169 75196) (-81 "BITS.spad" 74125 74132 74339 74344) (-80 "catdef.spad" 74008 74018 74115 74120) (-79 "catdef.spad" 73759 73769 73998 74003) (-78 "BINDING.spad" 73181 73188 73749 73754) (-77 "BINARY.spad" 71416 71423 71771 71864) (-76 "BGAGG.spad" 70746 70755 71406 71411) (-75 "BGAGG.spad" 70074 70085 70736 70741) (-74 "BEZOUT.spad" 69215 69241 70024 70029) (-73 "BBTREE.spad" 66119 66128 68848 68853) (-72 "BASTYPE.spad" 65619 65626 66109 66114) (-71 "BASTYPE.spad" 65117 65126 65609 65614) (-70 "BALFACT.spad" 64577 64589 65107 65112) (-69 "AUTOMOR.spad" 64028 64037 64557 64572) (-68 "ATTREG.spad" 61160 61167 63804 64023) (-67 "ATTRAST.spad" 60877 60884 61150 61155) (-66 "ATRIG.spad" 60347 60354 60867 60872) (-65 "ATRIG.spad" 59815 59824 60337 60342) (-64 "ASTCAT.spad" 59719 59726 59805 59810) (-63 "ASTCAT.spad" 59621 59630 59709 59714) (-62 "ASTACK.spad" 59047 59056 59315 59320) (-61 "ASSOCEQ.spad" 57881 57892 59003 59008) (-60 "ARRAY2.spad" 57426 57435 57575 57580) (-59 "ARRAY12.spad" 56139 56150 57416 57421) (-58 "ARRAY1.spad" 54715 54724 55061 55066) (-57 "ARR2CAT.spad" 51024 51045 54705 54710) (-56 "ARR2CAT.spad" 47331 47354 51014 51019) (-55 "ARITY.spad" 46703 46710 47321 47326) (-54 "APPRULE.spad" 45987 46009 46693 46698) (-53 "APPLYORE.spad" 45606 45619 45977 45982) (-52 "ANY1.spad" 44677 44686 45596 45601) (-51 "ANY.spad" 43528 43535 44667 44672) (-50 "ANTISYM.spad" 42101 42117 43508 43523) (-49 "ANON.spad" 41810 41817 42091 42096) (-48 "AN.spad" 40278 40285 41641 41734) (-47 "AMR.spad" 38608 38619 40176 40273) (-46 "AMR.spad" 36801 36814 38371 38376) (-45 "ALIST.spad" 33046 33067 33396 33401) (-44 "ALGSC.spad" 32181 32207 32918 32971) (-43 "ALGPKG.spad" 27964 27975 32137 32142) (-42 "ALGMFACT.spad" 27157 27171 27954 27959) (-41 "ALGMANIP.spad" 24658 24673 27001 27006) (-40 "ALGFF.spad" 22476 22503 22693 22849) (-39 "ALGFACT.spad" 21595 21605 22466 22471) (-38 "ALGEBRA.spad" 21428 21437 21551 21590) (-37 "ALGEBRA.spad" 21293 21304 21418 21423) (-36 "ALAGG.spad" 20831 20852 21283 21288) (-35 "AHYP.spad" 20212 20219 20821 20826) (-34 "AGG.spad" 19119 19126 20202 20207) (-33 "AGG.spad" 18024 18033 19109 19114) (-32 "AF.spad" 16469 16484 17973 17978) (-31 "ADDAST.spad" 16155 16162 16459 16464) (-30 "ACPLOT.spad" 15032 15039 16145 16150) (-29 "ACFS.spad" 12889 12898 14934 15027) (-28 "ACFS.spad" 10832 10843 12879 12884) (-27 "ACF.spad" 7586 7593 10734 10827) (-26 "ACF.spad" 4426 4435 7576 7581) (-25 "ABELSG.spad" 3967 3974 4416 4421) (-24 "ABELSG.spad" 3506 3515 3957 3962) (-23 "ABELMON.spad" 2934 2941 3496 3501) (-22 "ABELMON.spad" 2360 2369 2924 2929) (-21 "ABELGRP.spad" 2025 2032 2350 2355) (-20 "ABELGRP.spad" 1688 1697 2015 2020) (-19 "A1AGG.spad" 860 869 1678 1683) (-18 "A1AGG.spad" 30 41 850 855))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 3076432c..5b6b753c 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,312 +1,312 @@ -(203793 . 3580468870) -((((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-350 |#2|) |#3|) . T)) -((((-350 (-486))) |has| (-350 |#2|) (-952 (-350 (-486)))) (((-486)) |has| (-350 |#2|) (-952 (-486))) (((-350 |#2|)) . T)) -((((-350 |#2|)) . T)) -((((-486)) |has| (-350 |#2|) (-582 (-486))) (((-350 |#2|)) . T)) -((((-350 |#2|)) . T)) -((((-350 |#2|) |#3|) . T)) -(|has| (-350 |#2|) (-120)) -((((-350 |#2|) |#3|) . T)) -(|has| (-350 |#2|) (-118)) -((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) -(|has| (-350 |#2|) (-190)) -((($) OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189)))) -(OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189))) -((((-350 |#2|)) . T)) -((($ (-1092)) OR (|has| (-350 |#2|) (-811 (-1092))) (|has| (-350 |#2|) (-813 (-1092))))) -((((-1092)) OR (|has| (-350 |#2|) (-811 (-1092))) (|has| (-350 |#2|) (-813 (-1092))))) -((((-1092)) |has| (-350 |#2|) (-811 (-1092)))) -((((-350 |#2|)) . T)) +(203873 . 3580478887) +((((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-352 |#2|) |#3|) . T)) +((((-352 (-488))) |has| (-352 |#2|) (-954 (-352 (-488)))) (((-488)) |has| (-352 |#2|) (-954 (-488))) (((-352 |#2|)) . T)) +((((-352 |#2|)) . T)) +((((-488)) |has| (-352 |#2|) (-584 (-488))) (((-352 |#2|)) . T)) +((((-352 |#2|)) . T)) +((((-352 |#2|) |#3|) . T)) +(|has| (-352 |#2|) (-120)) +((((-352 |#2|) |#3|) . T)) +(|has| (-352 |#2|) (-118)) +((((-352 |#2|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-352 |#2|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-352 |#2|)) . T) (((-352 (-488))) . T) (($) . T)) +(|has| (-352 |#2|) (-192)) +((($) OR (|has| (-352 |#2|) (-192)) (|has| (-352 |#2|) (-191)))) +(OR (|has| (-352 |#2|) (-192)) (|has| (-352 |#2|) (-191))) +((((-352 |#2|)) . T)) +((($ (-1094)) OR (|has| (-352 |#2|) (-813 (-1094))) (|has| (-352 |#2|) (-815 (-1094))))) +((((-1094)) OR (|has| (-352 |#2|) (-813 (-1094))) (|has| (-352 |#2|) (-815 (-1094))))) +((((-1094)) |has| (-352 |#2|) (-813 (-1094)))) +((((-352 |#2|)) . T)) (((|#3|) . T)) -((((-350 |#2|) (-350 |#2|)) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) -((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-774)) . T)) -((((-350 |#2|)) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) -((((-486)) |has| (-350 |#2|) (-582 (-486))) (((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) +((((-352 |#2|) (-352 |#2|)) . T) (((-352 (-488)) (-352 (-488))) . T) (($ $) . T)) +((((-352 |#2|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-352 |#2|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-776)) . T)) +((((-352 |#2|)) . T) (((-352 (-488))) . T) (((-488)) . T) (($) . T)) +((((-488)) |has| (-352 |#2|) (-584 (-488))) (((-352 |#2|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-352 |#2|)) . T) (((-352 (-488))) . T) (($) . T) (((-488)) . T)) (((|#1| |#2| |#3|) . T)) -((((-486) |#1|) . T)) +((((-488) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1058 |#2| |#1|)) . T) ((|#1|) . T)) -((((-774)) . T)) -((((-1058 |#2| |#1|)) . T) ((|#1|) . T) (((-486)) . T)) +((((-1060 |#2| |#1|)) . T) ((|#1|) . T)) +((((-776)) . T)) +((((-1060 |#2| |#1|)) . T) ((|#1|) . T) (((-488)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-774)) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-776)) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-486) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-486) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) (((-1148 (-486)) $) . T) ((|#1| |#2|) . T)) -((((-486) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-488) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-488) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) (((-1150 (-488)) $) . T) ((|#1| |#2|) . T)) +((((-488) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) ((($) . T)) -((((-142 (-330))) . T) (((-179)) . T) (((-330)) . T)) -((((-350 (-486))) . T) (((-486)) . T)) -((($) . T) (((-350 (-486))) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) . T)) -((((-486)) . T) (($) . T) (((-350 (-486))) . T)) -((($) . T) (((-350 (-486))) . T)) -((($) . T) (((-350 (-486))) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) +((((-144 (-332))) . T) (((-181)) . T) (((-332)) . T)) +((((-352 (-488))) . T) (((-488)) . T)) +((($) . T) (((-352 (-488))) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) . T)) +((((-488)) . T) (($) . T) (((-352 (-488))) . T)) +((($) . T) (((-352 (-488))) . T)) +((($) . T) (((-352 (-488))) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488)) (-352 (-488))) . T) (($ $) . T)) ((($) . T)) -((($ $) . T) (((-552 $) $) . T)) -((((-350 (-486))) . T) (((-486)) . T) (((-552 $)) . T)) -((((-1041 (-486) (-552 $))) . T) (($) . T) (((-486)) . T) (((-350 (-486))) . T) (((-552 $)) . T)) -((((-774)) . T)) -((((-774)) . T)) +((($ $) . T) (((-554 $) $) . T)) +((((-352 (-488))) . T) (((-488)) . T) (((-554 $)) . T)) +((((-1043 (-488) (-554 $))) . T) (($) . T) (((-488)) . T) (((-352 (-488))) . T) (((-554 $)) . T)) +((((-776)) . T)) +((((-776)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-774)) . T)) -(((|#1|) . T) (((-486)) . T) (($) . T)) +((((-776)) . T)) +(((|#1|) . T) (((-488)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-486)) . T)) +(((|#1|) . T) (((-488)) . T)) (((|#1|) . T)) -((((-774)) . T)) -((((-696)) . T)) -((((-696)) . T)) -((((-774)) . T)) +((((-776)) . T)) +((((-698)) . T)) +((((-698)) . T)) +((((-776)) . T)) (((|#1|) . T)) -(|has| |#1| (-758)) -(|has| |#1| (-758)) +(|has| |#1| (-760)) +(|has| |#1| (-760)) (((|#1|) . T)) -((((-475)) |has| |#1| (-555 (-475)))) -((((-486) |#1|) . T)) -((((-1148 (-486)) $) . T) (((-486) |#1|) . T)) -((((-486) |#1|) . T)) +((((-477)) |has| |#1| (-557 (-477)))) +((((-488) |#1|) . T)) +((((-1150 (-488)) $) . T) (((-488) |#1|) . T)) +((((-488) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) +(OR (|has| |#1| (-760)) (|has| |#1| (-1017))) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-760)) (|has| |#1| (-1017)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-760)) (|has| |#1| (-1017))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1017))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) (((|#1|) . T)) -(|has| |#1| (-1015)) +(|has| |#1| (-1017)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| (-58 |#1|) (-58 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1017))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) (((|#1|) . T)) -(|has| |#1| (-1015)) +(|has| |#1| (-1017)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) (((|#1| |#1|) . T)) -((((-774)) . T)) +((((-776)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1015)) +(|has| |#1| (-1017)) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-1017)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1017))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-919 2)) . T) (((-350 (-486))) . T) (((-774)) . T)) -((((-486)) . T)) -((((-486)) . T)) +((((-921 2)) . T) (((-352 (-488))) . T) (((-776)) . T)) +((((-488)) . T)) +((((-488)) . T)) ((($) . T)) -((((-486)) . T) (($) . T) (((-350 (-486))) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) . T)) -((((-486)) . T) (($) . T) (((-350 (-486))) . T)) -((((-486)) . T) (($) . T) (((-350 (-486))) . T)) -((((-486)) . T) (((-350 (-486))) . T) (($) . T)) -((((-486)) . T) (((-350 (-486))) . T) (($) . T)) -((((-486) (-486)) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-475)) . T) (((-802 (-486))) . T) (((-330)) . T) (((-179)) . T)) -((((-350 (-486))) . T) (((-486)) . T)) -((((-486)) . T) (($) . T) (((-350 (-486))) . T)) -((((-486)) . T)) -((((-774)) . T)) -((((-774)) . T)) +((((-488)) . T) (($) . T) (((-352 (-488))) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) . T)) +((((-488)) . T) (($) . T) (((-352 (-488))) . T)) +((((-488)) . T) (($) . T) (((-352 (-488))) . T)) +((((-488)) . T) (((-352 (-488))) . T) (($) . T)) +((((-488)) . T) (((-352 (-488))) . T) (($) . T)) +((((-488) (-488)) . T) (((-352 (-488)) (-352 (-488))) . T) (($ $) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-477)) . T) (((-804 (-488))) . T) (((-332)) . T) (((-181)) . T)) +((((-352 (-488))) . T) (((-488)) . T)) +((((-488)) . T) (($) . T) (((-352 (-488))) . T)) +((((-488)) . T)) +((((-776)) . T)) +((((-776)) . T)) (((|#1| |#1| |#1|) . T)) (((|#1|) . T)) ((((-85)) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-774)) . T)) +((((-776)) . T)) ((((-85)) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-486) (-85)) . T)) -((((-486) (-85)) . T)) -((((-486) (-85)) . T) (((-1148 (-486)) $) . T)) -((((-475)) . T)) +((((-488) (-85)) . T)) +((((-488) (-85)) . T)) +((((-488) (-85)) . T) (((-1150 (-488)) $) . T)) +((((-477)) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-475)) . T)) -((((-774)) . T)) -((((-1092)) . T)) -((((-774)) . T)) +((((-477)) . T)) +((((-776)) . T)) +((((-1094)) . T)) +((((-776)) . T)) ((($) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T)) +((((-776)) . T)) +((($) . T) (((-488)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-486)) . T) (($) . T)) +((((-488)) . T) (($) . T)) (((|#1|) . T)) -((((-774)) . T)) +((((-776)) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) -((((-89 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) -((($) . T) (((-486)) . T) (((-89 |#1|)) . T) (((-350 (-486))) . T)) -((((-89 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) -((((-89 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) -((((-89 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-89 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-89 |#1|) (-89 |#1|)) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) +((((-89 |#1|)) . T) (($) . T) (((-352 (-488))) . T)) +((($) . T) (((-488)) . T) (((-89 |#1|)) . T) (((-352 (-488))) . T)) +((((-89 |#1|)) . T) (($) . T) (((-352 (-488))) . T)) +((((-89 |#1|)) . T) (($) . T) (((-352 (-488))) . T)) +((((-89 |#1|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-89 |#1|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-89 |#1|) (-89 |#1|)) . T) (((-352 (-488)) (-352 (-488))) . T) (($ $) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) -((((-1092) (-89 |#1|)) |has| (-89 |#1|) (-457 (-1092) (-89 |#1|))) (((-89 |#1|) (-89 |#1|)) |has| (-89 |#1|) (-260 (-89 |#1|)))) -((((-89 |#1|)) |has| (-89 |#1|) (-260 (-89 |#1|)))) -((((-89 |#1|) $) |has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|)))) +((((-1094) (-89 |#1|)) |has| (-89 |#1|) (-459 (-1094) (-89 |#1|))) (((-89 |#1|) (-89 |#1|)) |has| (-89 |#1|) (-262 (-89 |#1|)))) +((((-89 |#1|)) |has| (-89 |#1|) (-262 (-89 |#1|)))) +((((-89 |#1|) $) |has| (-89 |#1|) (-243 (-89 |#1|) (-89 |#1|)))) ((((-89 |#1|)) . T)) -((($) . T) (((-89 |#1|)) . T) (((-350 (-486))) . T)) +((($) . T) (((-89 |#1|)) . T) (((-352 (-488))) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) -((((-486)) . T) (((-89 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) +((((-488)) . T) (((-89 |#1|)) . T) (($) . T) (((-352 (-488))) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1015)) +(|has| |#1| (-1017)) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-1017)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1017))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1015)) +(|has| |#1| (-1017)) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-1017)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1017))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1015)) +(|has| |#1| (-1017)) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-1017)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1017))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-774)) . T)) +((((-776)) . T)) ((((-101)) . T)) ((((-101)) . T)) -((((-486) (-101)) . T)) -((((-1148 (-486)) $) . T) (((-486) (-101)) . T)) -((((-486) (-101)) . T)) +((((-488) (-101)) . T)) +((((-1150 (-488)) $) . T) (((-488) (-101)) . T)) +((((-488) (-101)) . T)) ((((-101)) . T)) ((((-101)) . T)) ((((-101)) . T)) -((((-1075)) . T) (((-871 (-101))) . T) (((-774)) . T)) +((((-1077)) . T) (((-873 (-101))) . T) (((-776)) . T)) ((((-101)) . T)) ((((-101)) . T)) ((((-101)) . T)) -((((-774)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-696)) . T)) -((((-696)) . T)) -((((-774)) . T)) -((((-486) |#3|) . T)) -((((-486) (-696)) . T) ((|#3| (-696)) . T)) -((((-774)) . T)) +((((-776)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-698)) . T)) +((((-698)) . T)) +((((-776)) . T)) +((((-488) |#3|) . T)) +((((-488) (-698)) . T) ((|#3| (-698)) . T)) +((((-776)) . T)) (((|#3|) . T)) -((((-585 $)) . T) (((-585 |#3|)) . T) (((-1058 |#2| |#3|)) . T) (((-197 |#2| |#3|)) . T) ((|#3|) . T)) -(((|#3| (-696)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-448)) . T)) -((((-157)) . T) (((-774)) . T)) -((((-774)) . T)) +((((-587 $)) . T) (((-587 |#3|)) . T) (((-1060 |#2| |#3|)) . T) (((-199 |#2| |#3|)) . T) ((|#3|) . T)) +(((|#3| (-698)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-450)) . T)) +((((-159)) . T) (((-776)) . T)) +((((-776)) . T)) ((((-117)) . T)) ((((-117)) . T)) ((((-117)) . T)) @@ -317,9 +317,9 @@ ((((-117)) . T)) ((((-117)) . T)) ((((-117)) . T)) -((((-585 (-117))) . T) (((-1075)) . T)) -((((-774)) . T)) -((((-774)) . T)) +((((-587 (-117))) . T) (((-1077)) . T)) +((((-776)) . T)) +((((-776)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -327,1407 +327,1411 @@ (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) -(((|#2|) . T) (((-486)) . T)) +(((|#2|) . T) (((-488)) . T)) (((|#2|) . T) (($) . T)) -((((-774)) . T)) -(((|#2|) . T) (($) . T) (((-486)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-299))) -((((-774)) . T)) +((((-776)) . T)) +(((|#2|) . T) (($) . T) (((-488)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-79 |#1|)) . T)) +(((|#1|) . T)) +(((|#1| |#1| |#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-301))) +((((-776)) . T)) (|has| |#1| (-120)) (((|#1|) . T)) -((((-1092)) |has| |#1| (-811 (-1092)))) -((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092))))) -((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092))))) -(((|#1|) . T)) -(OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-299))) -((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-299)))) -(OR (|has| |#1| (-190)) (|has| |#1| (-299))) -(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-497))) -(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-497))) -(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (|has| |#1| (-312)) (|has| |#1| (-299))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1092) |#1|) |has| |#1| (-457 (-1092) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) -(((|#1|) |has| |#1| (-260 |#1|))) -(((|#1| $) |has| |#1| (-241 |#1| |#1|))) -(((|#1|) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) -(((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) -(((|#1|) . T)) -((((-486)) |has| |#1| (-798 (-486))) (((-330)) |has| |#1| (-798 (-330)))) -(((|#1|) . T)) -((((-486)) . T) (($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-952 (-350 (-486))))) ((|#1|) . T)) -(((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) -(((|#1| (-1087 |#1|)) . T)) -(((|#1| (-1087 |#1|)) . T)) -((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($ $) . T) (((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -(((|#1| (-1087 |#1|)) . T)) -(|has| |#1| (-299)) -(|has| |#1| (-299)) -(|has| |#1| (-299)) -(OR (|has| |#1| (-320)) (|has| |#1| (-299))) -(((|#1|) . T)) -((((-142 (-179))) |has| |#1| (-935)) (((-142 (-330))) |has| |#1| (-935)) (((-475)) |has| |#1| (-555 (-475))) (((-1087 |#1|)) . T) (((-802 (-486))) |has| |#1| (-555 (-802 (-486)))) (((-802 (-330))) |has| |#1| (-555 (-802 (-330))))) -(-12 (|has| |#1| (-258)) (|has| |#1| (-823))) -(-12 (|has| |#1| (-917)) (|has| |#1| (-1117))) -(|has| |#1| (-1117)) -(|has| |#1| (-1117)) -(|has| |#1| (-1117)) -(|has| |#1| (-1117)) -(|has| |#1| (-1117)) -(|has| |#1| (-1117)) -(((|#1|) . T)) -((((-774)) . T)) -((((-350 (-486))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T)) -((((-350 (-486))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T)) -((((-774)) . T)) -((($) . T) (((-350 (-486))) . T) (((-350 |#1|)) . T) ((|#1|) . T)) -((($) . T) (((-350 (-486))) . T) (((-350 |#1|)) . T) ((|#1|) . T)) -((($ $) . T) (((-350 (-486)) (-350 (-486))) . T) (((-350 |#1|) (-350 |#1|)) . T) ((|#1| |#1|) . T)) -((((-350 (-486))) . T) (((-350 |#1|)) . T) ((|#1|) . T) (((-486)) . T) (($) . T)) -((((-350 (-486))) . T) (((-350 |#1|)) . T) ((|#1|) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T) (((-486)) . T)) -((((-350 (-486))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T)) -((((-774)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-448)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-585 |#1|)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-919 10)) . T) (((-350 (-486))) . T) (((-774)) . T)) -((((-486)) . T)) -((((-486)) . T)) +((((-1094)) |has| |#1| (-813 (-1094)))) +((((-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094))))) +((($ (-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094))))) +(((|#1|) . T)) +(OR (|has| |#1| (-192)) (|has| |#1| (-191)) (|has| |#1| (-301))) +((($) OR (|has| |#1| (-192)) (|has| |#1| (-191)) (|has| |#1| (-301)))) +(OR (|has| |#1| (-192)) (|has| |#1| (-301))) +(OR (|has| |#1| (-260)) (|has| |#1| (-314)) (|has| |#1| (-301))) +(OR (|has| |#1| (-260)) (|has| |#1| (-314)) (|has| |#1| (-301))) +(OR (|has| |#1| (-260)) (|has| |#1| (-314)) (|has| |#1| (-301)) (|has| |#1| (-499))) +(OR (|has| |#1| (-260)) (|has| |#1| (-314)) (|has| |#1| (-301)) (|has| |#1| (-499))) +(OR (|has| |#1| (-260)) (|has| |#1| (-314)) (|has| |#1| (-301))) +(OR (|has| |#1| (-314)) (|has| |#1| (-301))) +(OR (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) (|has| |#1| (-314)) (|has| |#1| (-301))) +(OR (|has| |#1| (-314)) (|has| |#1| (-301))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1094) |#1|) |has| |#1| (-459 (-1094) |#1|)) ((|#1| |#1|) |has| |#1| (-262 |#1|))) +(((|#1|) |has| |#1| (-262 |#1|))) +(((|#1| $) |has| |#1| (-243 |#1| |#1|))) +(((|#1|) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-301))) ((|#1|) . T)) +((($) . T) (((-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-301))) ((|#1|) . T) (((-488)) |has| |#1| (-584 (-488)))) +(((|#1|) . T) (((-488)) |has| |#1| (-584 (-488)))) +(((|#1|) . T)) +((((-488)) |has| |#1| (-800 (-488))) (((-332)) |has| |#1| (-800 (-332)))) +(((|#1|) . T)) +((((-488)) . T) (($) OR (|has| |#1| (-260)) (|has| |#1| (-314)) (|has| |#1| (-301)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-301)) (|has| |#1| (-954 (-352 (-488))))) ((|#1|) . T)) +(((|#1|) . T) (((-488)) |has| |#1| (-954 (-488))) (((-352 (-488))) |has| |#1| (-954 (-352 (-488))))) +(((|#1| (-1089 |#1|)) . T)) +(((|#1| (-1089 |#1|)) . T)) +((($) OR (|has| |#1| (-260)) (|has| |#1| (-314)) (|has| |#1| (-301)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-301))) ((|#1|) . T)) +((($) OR (|has| |#1| (-260)) (|has| |#1| (-314)) (|has| |#1| (-301)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-301))) ((|#1|) . T)) +((($) . T) (((-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-301))) ((|#1|) . T)) +((($) . T) (((-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-301))) ((|#1|) . T)) +((($ $) . T) (((-352 (-488)) (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-301))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-260)) (|has| |#1| (-314)) (|has| |#1| (-301)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-301))) ((|#1|) . T)) +(((|#1| (-1089 |#1|)) . T)) +(|has| |#1| (-301)) +(|has| |#1| (-301)) +(|has| |#1| (-301)) +(OR (|has| |#1| (-322)) (|has| |#1| (-301))) +(((|#1|) . T)) +((((-144 (-181))) |has| |#1| (-937)) (((-144 (-332))) |has| |#1| (-937)) (((-477)) |has| |#1| (-557 (-477))) (((-1089 |#1|)) . T) (((-804 (-488))) |has| |#1| (-557 (-804 (-488)))) (((-804 (-332))) |has| |#1| (-557 (-804 (-332))))) +(-12 (|has| |#1| (-260)) (|has| |#1| (-825))) +(-12 (|has| |#1| (-919)) (|has| |#1| (-1119))) +(|has| |#1| (-1119)) +(|has| |#1| (-1119)) +(|has| |#1| (-1119)) +(|has| |#1| (-1119)) +(|has| |#1| (-1119)) +(|has| |#1| (-1119)) +(((|#1|) . T)) +((((-776)) . T)) +((((-352 (-488))) . T) (($) . T) (((-352 |#1|)) . T) ((|#1|) . T)) +((((-352 (-488))) . T) (($) . T) (((-352 |#1|)) . T) ((|#1|) . T)) +((((-776)) . T)) +((($) . T) (((-352 (-488))) . T) (((-352 |#1|)) . T) ((|#1|) . T)) +((($) . T) (((-352 (-488))) . T) (((-352 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) (((-352 (-488)) (-352 (-488))) . T) (((-352 |#1|) (-352 |#1|)) . T) ((|#1| |#1|) . T)) +((((-352 (-488))) . T) (((-352 |#1|)) . T) ((|#1|) . T) (((-488)) . T) (($) . T)) +((((-352 (-488))) . T) (((-352 |#1|)) . T) ((|#1|) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T) (((-352 |#1|)) . T) ((|#1|) . T) (((-488)) . T)) +((((-352 (-488))) . T) (($) . T) (((-352 |#1|)) . T) ((|#1|) . T)) +((((-776)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-450)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-587 |#1|)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-921 10)) . T) (((-352 (-488))) . T) (((-776)) . T)) +((((-488)) . T)) +((((-488)) . T)) ((($) . T)) -((((-486)) . T) (($) . T) (((-350 (-486))) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) . T)) -((((-486)) . T) (($) . T) (((-350 (-486))) . T)) -((((-486)) . T) (($) . T) (((-350 (-486))) . T)) -((((-486)) . T) (((-350 (-486))) . T) (($) . T)) -((((-486)) . T) (((-350 (-486))) . T) (($) . T)) -((((-486) (-486)) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-475)) . T) (((-802 (-486))) . T) (((-330)) . T) (((-179)) . T)) -((((-350 (-486))) . T) (((-486)) . T)) -((((-486)) . T) (($) . T) (((-350 (-486))) . T)) -((((-486)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1015)) -(((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-265 |#1|)) . T)) -((((-265 |#1|)) . T)) -((((-774)) . T)) -((((-265 |#1|)) . T) (((-486)) . T) (($) . T)) -((((-265 |#1|)) . T) (($) . T)) -((((-265 |#1|)) . T) (((-486)) . T)) -((((-265 |#1|)) . T)) +((((-488)) . T) (($) . T) (((-352 (-488))) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) . T)) +((((-488)) . T) (($) . T) (((-352 (-488))) . T)) +((((-488)) . T) (($) . T) (((-352 (-488))) . T)) +((((-488)) . T) (((-352 (-488))) . T) (($) . T)) +((((-488)) . T) (((-352 (-488))) . T) (($) . T)) +((((-488) (-488)) . T) (((-352 (-488)) (-352 (-488))) . T) (($ $) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-477)) . T) (((-804 (-488))) . T) (((-332)) . T) (((-181)) . T)) +((((-352 (-488))) . T) (((-488)) . T)) +((((-488)) . T) (($) . T) (((-352 (-488))) . T)) +((((-488)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1017)) +(((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-1017)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1017))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-267 |#1|)) . T)) +((((-267 |#1|)) . T)) +((((-776)) . T)) +((((-267 |#1|)) . T) (((-488)) . T) (($) . T)) +((((-267 |#1|)) . T) (($) . T)) +((((-267 |#1|)) . T) (((-488)) . T)) +((((-267 |#1|)) . T)) ((($) . T)) -((((-486)) . T) (((-350 (-486))) . T)) -((((-330)) . T)) -((($) . T) (((-350 (-486))) . T)) -((($) . T) (((-350 (-486))) . T)) -((($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-475)) . T) (((-179)) . T) (((-330)) . T) (((-802 (-330))) . T)) -((((-774)) . T)) -((((-350 (-486))) . T) (((-486)) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T) (((-486)) . T)) -(((|#1| (-1181 |#1|) (-1181 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1015)) -(((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) -(((|#1|) . T)) -(((|#1| (-1181 |#1|) (-1181 |#1|)) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) -(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) -(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)) (|has| |#2| (-963)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963)))) -((((-774)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-554 (-774))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) (((-1181 |#2|)) . T)) -(((|#2|) |has| |#2| (-963))) -((((-1092)) -12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963)))) -((((-1092)) OR (-12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963))) (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))))) -((($ (-1092)) OR (-12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963))) (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))))) -(((|#2|) |has| |#2| (-963))) -(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (-12 (|has| |#2| (-189)) (|has| |#2| (-963)))) -((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (-12 (|has| |#2| (-189)) (|has| |#2| (-963))))) -(|has| |#2| (-963)) -(|has| |#2| (-963)) -(|has| |#2| (-963)) -(|has| |#2| (-963)) -(|has| |#2| (-963)) -((((-486)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)) (|has| |#2| (-963))) (($) |has| |#2| (-963))) -(-12 (|has| |#2| (-190)) (|has| |#2| (-963))) -(|has| |#2| (-320)) +((((-488)) . T) (((-352 (-488))) . T)) +((((-332)) . T)) +((($) . T) (((-352 (-488))) . T)) +((($) . T) (((-352 (-488))) . T)) +((($ $) . T) (((-352 (-488)) (-352 (-488))) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-477)) . T) (((-181)) . T) (((-332)) . T) (((-804 (-332))) . T)) +((((-776)) . T)) +((((-352 (-488))) . T) (((-488)) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T) (((-488)) . T)) +(((|#1| (-1183 |#1|) (-1183 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1017)) +(((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-1017)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1017))) +(((|#1|) . T)) +(((|#1| (-1183 |#1|) (-1183 |#1|)) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-965))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-721)) (|has| |#2| (-965))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-322)) (|has| |#2| (-667)) (|has| |#2| (-721)) (|has| |#2| (-760)) (|has| |#2| (-965)) (|has| |#2| (-1017))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-322)) (|has| |#2| (-667)) (|has| |#2| (-721)) (|has| |#2| (-760)) (|has| |#2| (-965)) (|has| |#2| (-1017))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-721)) (|has| |#2| (-965))) +(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-721)) (|has| |#2| (-965))) +(((|#2| |#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-965)))) +(((|#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-667)) (|has| |#2| (-965)))) +(((|#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-965)))) +((((-776)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-556 (-776))) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-322)) (|has| |#2| (-667)) (|has| |#2| (-721)) (|has| |#2| (-760)) (|has| |#2| (-965)) (|has| |#2| (-1017))) (((-1183 |#2|)) . T)) +(((|#2|) |has| |#2| (-965))) +((((-1094)) -12 (|has| |#2| (-813 (-1094))) (|has| |#2| (-965)))) +((((-1094)) OR (-12 (|has| |#2| (-813 (-1094))) (|has| |#2| (-965))) (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))))) +((($ (-1094)) OR (-12 (|has| |#2| (-813 (-1094))) (|has| |#2| (-965))) (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))))) +(((|#2|) |has| |#2| (-965))) +(OR (-12 (|has| |#2| (-192)) (|has| |#2| (-965))) (-12 (|has| |#2| (-191)) (|has| |#2| (-965)))) +((($) OR (-12 (|has| |#2| (-192)) (|has| |#2| (-965))) (-12 (|has| |#2| (-191)) (|has| |#2| (-965))))) +(|has| |#2| (-965)) +(|has| |#2| (-965)) +(|has| |#2| (-965)) +(|has| |#2| (-965)) +(|has| |#2| (-965)) +((((-488)) OR (|has| |#2| (-21)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-965))) ((|#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-667)) (|has| |#2| (-965))) (($) |has| |#2| (-965))) +(-12 (|has| |#2| (-192)) (|has| |#2| (-965))) +(|has| |#2| (-322)) (((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) +(((|#2| |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-963))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) (($) |has| |#2| (-963)) (((-486)) -12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963)))) -(((|#2|) |has| |#2| (-963)) (((-486)) -12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963)))) -(((|#2|) |has| |#2| (-1015))) -((((-486)) OR (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ((|#2|) |has| |#2| (-1015)) (((-350 (-486))) -12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015)))) -(((|#2|) |has| |#2| (-1015)) (((-486)) -12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (((-350 (-486))) -12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015)))) -((((-486) |#2|) . T)) -((((-486) |#2|) . T)) -((((-486) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)))) -(|has| |#2| (-719)) -(|has| |#2| (-719)) -(OR (|has| |#2| (-719)) (|has| |#2| (-758))) -(OR (|has| |#2| (-719)) (|has| |#2| (-758))) -(|has| |#2| (-719)) -(|has| |#2| (-719)) -(((|#2|) |has| |#2| (-312))) +(((|#2|) |has| |#2| (-965))) +(((|#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-965))) (($) |has| |#2| (-965)) (((-488)) -12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965)))) +(((|#2|) |has| |#2| (-965)) (((-488)) -12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965)))) +(((|#2|) |has| |#2| (-1017))) +((((-488)) OR (-12 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017))) (|has| |#2| (-965))) ((|#2|) |has| |#2| (-1017)) (((-352 (-488))) -12 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017)))) +(((|#2|) |has| |#2| (-1017)) (((-488)) -12 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017))) (((-352 (-488))) -12 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017)))) +((((-488) |#2|) . T)) +((((-488) |#2|) . T)) +((((-488) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-667)))) +(((|#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)))) +(|has| |#2| (-721)) +(|has| |#2| (-721)) +(OR (|has| |#2| (-721)) (|has| |#2| (-760))) +(OR (|has| |#2| (-721)) (|has| |#2| (-760))) +(|has| |#2| (-721)) +(|has| |#2| (-721)) +(((|#2|) |has| |#2| (-314))) (((|#1| |#2|) . T)) -((((-585 |#1|)) . T)) -((((-585 |#1|)) . T)) +((((-587 |#1|)) . T)) +((((-587 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) -((((-585 |#1|)) . T) (((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-760)) (|has| |#1| (-1017))) +((((-587 |#1|)) . T) (((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-760)) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) (((|#1|) . T)) -(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) +(OR (|has| |#1| (-760)) (|has| |#1| (-1017))) (((|#1|) . T)) -((((-475)) |has| |#1| (-555 (-475)))) -((((-486) |#1|) . T)) -((((-1148 (-486)) $) . T) (((-486) |#1|) . T)) -((((-486) |#1|) . T)) +((((-477)) |has| |#1| (-557 (-477)))) +((((-488) |#1|) . T)) +((((-1150 (-488)) $) . T) (((-488) |#1|) . T)) +((((-488) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-758)) -(|has| |#1| (-758)) +(|has| |#1| (-760)) +(|has| |#1| (-760)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-475)) |has| |#2| (-555 (-475))) (((-802 (-330))) |has| |#2| (-555 (-802 (-330)))) (((-802 (-486))) |has| |#2| (-555 (-802 (-486))))) +((((-477)) |has| |#2| (-557 (-477))) (((-804 (-332))) |has| |#2| (-557 (-804 (-332)))) (((-804 (-488))) |has| |#2| (-557 (-804 (-488))))) ((($) . T)) -(((|#2| (-197 (-3961 |#1|) (-696))) . T)) +(((|#2| (-199 (-3964 |#1|) (-698))) . T)) (((|#2|) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T)) +((((-776)) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) -((((-350 (-486)) (-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +(OR (|has| |#2| (-148)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) . T) (($) OR (|has| |#2| (-148)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) . T) (($) OR (|has| |#2| (-148)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) +((((-352 (-488)) (-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-148)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) (((|#2|) . T)) -(OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) -(OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) -(((|#2| (-197 (-3961 |#1|) (-696))) . T)) +(OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) +(OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) |has| |#2| (-148)) (($) OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) |has| |#2| (-148)) (($) OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) |has| |#2| (-148)) (($) OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) +(((|#2| (-199 (-3964 |#1|) (-698))) . T)) (((|#2|) . T)) -((($) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) -(((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) -(OR (|has| |#2| (-393)) (|has| |#2| (-823))) -((($ $) . T) (((-775 |#1|) $) . T) (((-775 |#1|) |#2|) . T)) -((((-775 |#1|)) . T)) -((($ (-775 |#1|)) . T)) -((((-775 |#1|)) . T)) -(|has| |#2| (-823)) -(|has| |#2| (-823)) -((((-350 (-486))) |has| |#2| (-952 (-350 (-486)))) (((-486)) |has| |#2| (-952 (-486))) ((|#2|) . T) (((-775 |#1|)) . T)) -((((-486)) . T) (((-350 (-486))) OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486))))) ((|#2|) . T) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) (((-775 |#1|)) . T)) -(((|#2| (-197 (-3961 |#1|) (-696)) (-775 |#1|)) . T)) -((((-774)) . T)) -((((-448)) . T)) -((((-157)) . T) (((-774)) . T)) -((((-696) (-1097)) . T)) -((((-774)) . T)) -(((|#4| |#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-963)))) -(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-665)) (|has| |#4| (-963)))) -(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-963)))) -((((-774)) . T) (((-1181 |#4|)) . T)) -(((|#4|) |has| |#4| (-963))) -((((-1092)) -12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963)))) -((((-1092)) OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963))))) -((($ (-1092)) OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963))))) -(((|#4|) |has| |#4| (-963))) -(OR (-12 (|has| |#4| (-190)) (|has| |#4| (-963))) (-12 (|has| |#4| (-189)) (|has| |#4| (-963)))) -((($) OR (-12 (|has| |#4| (-190)) (|has| |#4| (-963))) (-12 (|has| |#4| (-189)) (|has| |#4| (-963))))) -(|has| |#4| (-963)) -(|has| |#4| (-963)) -(|has| |#4| (-963)) -(|has| |#4| (-963)) -(|has| |#4| (-963)) -(((|#3|) . T) ((|#2|) . T) (((-486)) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-665)) (|has| |#4| (-963))) (($) |has| |#4| (-963))) -(-12 (|has| |#4| (-190)) (|has| |#4| (-963))) -(|has| |#4| (-320)) +((($) . T) (((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) . T) (((-488)) |has| |#2| (-584 (-488)))) +(((|#2|) . T) (((-488)) |has| |#2| (-584 (-488)))) +(OR (|has| |#2| (-395)) (|has| |#2| (-825))) +((($ $) . T) (((-777 |#1|) $) . T) (((-777 |#1|) |#2|) . T)) +((((-777 |#1|)) . T)) +((($ (-777 |#1|)) . T)) +((((-777 |#1|)) . T)) +(|has| |#2| (-825)) +(|has| |#2| (-825)) +((((-352 (-488))) |has| |#2| (-954 (-352 (-488)))) (((-488)) |has| |#2| (-954 (-488))) ((|#2|) . T) (((-777 |#1|)) . T)) +((((-488)) . T) (((-352 (-488))) OR (|has| |#2| (-38 (-352 (-488)))) (|has| |#2| (-954 (-352 (-488))))) ((|#2|) . T) (($) OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) (((-777 |#1|)) . T)) +(((|#2| (-199 (-3964 |#1|) (-698)) (-777 |#1|)) . T)) +((((-776)) . T)) +((((-450)) . T)) +((((-159)) . T) (((-776)) . T)) +((((-698) (-1099)) . T)) +((((-776)) . T)) +(((|#4| |#4|) OR (|has| |#4| (-148)) (|has| |#4| (-314)) (|has| |#4| (-965)))) +(((|#4|) OR (|has| |#4| (-148)) (|has| |#4| (-314)) (|has| |#4| (-667)) (|has| |#4| (-965)))) +(((|#4|) OR (|has| |#4| (-148)) (|has| |#4| (-314)) (|has| |#4| (-965)))) +((((-776)) . T) (((-1183 |#4|)) . T)) +(((|#4|) |has| |#4| (-965))) +((((-1094)) -12 (|has| |#4| (-813 (-1094))) (|has| |#4| (-965)))) +((((-1094)) OR (-12 (|has| |#4| (-813 (-1094))) (|has| |#4| (-965))) (-12 (|has| |#4| (-815 (-1094))) (|has| |#4| (-965))))) +((($ (-1094)) OR (-12 (|has| |#4| (-813 (-1094))) (|has| |#4| (-965))) (-12 (|has| |#4| (-815 (-1094))) (|has| |#4| (-965))))) +(((|#4|) |has| |#4| (-965))) +(OR (-12 (|has| |#4| (-192)) (|has| |#4| (-965))) (-12 (|has| |#4| (-191)) (|has| |#4| (-965)))) +((($) OR (-12 (|has| |#4| (-192)) (|has| |#4| (-965))) (-12 (|has| |#4| (-191)) (|has| |#4| (-965))))) +(|has| |#4| (-965)) +(|has| |#4| (-965)) +(|has| |#4| (-965)) +(|has| |#4| (-965)) +(|has| |#4| (-965)) +(((|#3|) . T) ((|#2|) . T) (((-488)) . T) ((|#4|) OR (|has| |#4| (-148)) (|has| |#4| (-314)) (|has| |#4| (-667)) (|has| |#4| (-965))) (($) |has| |#4| (-965))) +(-12 (|has| |#4| (-192)) (|has| |#4| (-965))) +(|has| |#4| (-322)) (((|#4|) . T)) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +(((|#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017)))) +(((|#4| |#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017)))) (((|#4|) . T)) (((|#4|) . T)) -(((|#4|) |has| |#4| (-963))) -(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-963))) (($) |has| |#4| (-963)) (((-486)) -12 (|has| |#4| (-582 (-486))) (|has| |#4| (-963)))) -(((|#4|) |has| |#4| (-963)) (((-486)) -12 (|has| |#4| (-582 (-486))) (|has| |#4| (-963)))) -(((|#4|) |has| |#4| (-1015))) -((((-486)) OR (-12 (|has| |#4| (-952 (-486))) (|has| |#4| (-1015))) (|has| |#4| (-963))) ((|#4|) |has| |#4| (-1015)) (((-350 (-486))) -12 (|has| |#4| (-952 (-350 (-486)))) (|has| |#4| (-1015)))) -(((|#4|) |has| |#4| (-1015)) (((-486)) -12 (|has| |#4| (-952 (-486))) (|has| |#4| (-1015))) (((-350 (-486))) -12 (|has| |#4| (-952 (-350 (-486)))) (|has| |#4| (-1015)))) -((((-486) |#4|) . T)) -((((-486) |#4|) . T)) -((((-486) |#4|) . T)) -(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-665)))) -(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)))) -(|has| |#4| (-719)) -(|has| |#4| (-719)) -(OR (|has| |#4| (-719)) (|has| |#4| (-758))) -(OR (|has| |#4| (-719)) (|has| |#4| (-758))) -(|has| |#4| (-719)) -(|has| |#4| (-719)) -(((|#4|) |has| |#4| (-312))) +(((|#4|) |has| |#4| (-965))) +(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-148)) (|has| |#4| (-314)) (|has| |#4| (-965))) (($) |has| |#4| (-965)) (((-488)) -12 (|has| |#4| (-584 (-488))) (|has| |#4| (-965)))) +(((|#4|) |has| |#4| (-965)) (((-488)) -12 (|has| |#4| (-584 (-488))) (|has| |#4| (-965)))) +(((|#4|) |has| |#4| (-1017))) +((((-488)) OR (-12 (|has| |#4| (-954 (-488))) (|has| |#4| (-1017))) (|has| |#4| (-965))) ((|#4|) |has| |#4| (-1017)) (((-352 (-488))) -12 (|has| |#4| (-954 (-352 (-488)))) (|has| |#4| (-1017)))) +(((|#4|) |has| |#4| (-1017)) (((-488)) -12 (|has| |#4| (-954 (-488))) (|has| |#4| (-1017))) (((-352 (-488))) -12 (|has| |#4| (-954 (-352 (-488)))) (|has| |#4| (-1017)))) +((((-488) |#4|) . T)) +((((-488) |#4|) . T)) +((((-488) |#4|) . T)) +(((|#4|) OR (|has| |#4| (-148)) (|has| |#4| (-314)) (|has| |#4| (-667)))) +(((|#4|) OR (|has| |#4| (-148)) (|has| |#4| (-314)))) +(|has| |#4| (-721)) +(|has| |#4| (-721)) +(OR (|has| |#4| (-721)) (|has| |#4| (-760))) +(OR (|has| |#4| (-721)) (|has| |#4| (-760))) +(|has| |#4| (-721)) +(|has| |#4| (-721)) +(((|#4|) |has| |#4| (-314))) (((|#1| |#4|) . T)) -(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-665)) (|has| |#3| (-963)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963)))) -((((-774)) . T) (((-1181 |#3|)) . T)) -(((|#3|) |has| |#3| (-963))) -((((-1092)) -12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963)))) -((((-1092)) OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))))) -((($ (-1092)) OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))))) -(((|#3|) |has| |#3| (-963))) -(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963)))) -((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963))))) -(|has| |#3| (-963)) -(|has| |#3| (-963)) -(|has| |#3| (-963)) -(|has| |#3| (-963)) -(|has| |#3| (-963)) -(((|#2|) . T) (((-486)) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-665)) (|has| |#3| (-963))) (($) |has| |#3| (-963))) -(-12 (|has| |#3| (-190)) (|has| |#3| (-963))) -(|has| |#3| (-320)) +(((|#3| |#3|) OR (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-965)))) +(((|#3|) OR (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-667)) (|has| |#3| (-965)))) +(((|#3|) OR (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-965)))) +((((-776)) . T) (((-1183 |#3|)) . T)) +(((|#3|) |has| |#3| (-965))) +((((-1094)) -12 (|has| |#3| (-813 (-1094))) (|has| |#3| (-965)))) +((((-1094)) OR (-12 (|has| |#3| (-813 (-1094))) (|has| |#3| (-965))) (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965))))) +((($ (-1094)) OR (-12 (|has| |#3| (-813 (-1094))) (|has| |#3| (-965))) (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965))))) +(((|#3|) |has| |#3| (-965))) +(OR (-12 (|has| |#3| (-192)) (|has| |#3| (-965))) (-12 (|has| |#3| (-191)) (|has| |#3| (-965)))) +((($) OR (-12 (|has| |#3| (-192)) (|has| |#3| (-965))) (-12 (|has| |#3| (-191)) (|has| |#3| (-965))))) +(|has| |#3| (-965)) +(|has| |#3| (-965)) +(|has| |#3| (-965)) +(|has| |#3| (-965)) +(|has| |#3| (-965)) +(((|#2|) . T) (((-488)) . T) ((|#3|) OR (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-667)) (|has| |#3| (-965))) (($) |has| |#3| (-965))) +(-12 (|has| |#3| (-192)) (|has| |#3| (-965))) +(|has| |#3| (-322)) (((|#3|) . T)) -(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015)))) -(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015)))) +(((|#3|) -12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017)))) +(((|#3| |#3|) -12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017)))) (((|#3|) . T)) (((|#3|) . T)) -(((|#3|) |has| |#3| (-963))) -(((|#2|) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963))) (($) |has| |#3| (-963)) (((-486)) -12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963)))) -(((|#3|) |has| |#3| (-963)) (((-486)) -12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963)))) -(((|#3|) |has| |#3| (-1015))) -((((-486)) OR (-12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) (|has| |#3| (-963))) ((|#3|) |has| |#3| (-1015)) (((-350 (-486))) -12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015)))) -(((|#3|) |has| |#3| (-1015)) (((-486)) -12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) (((-350 (-486))) -12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015)))) -((((-486) |#3|) . T)) -((((-486) |#3|) . T)) -((((-486) |#3|) . T)) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-665)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) -(|has| |#3| (-719)) -(|has| |#3| (-719)) -(OR (|has| |#3| (-719)) (|has| |#3| (-758))) -(OR (|has| |#3| (-719)) (|has| |#3| (-758))) -(|has| |#3| (-719)) -(|has| |#3| (-719)) -(((|#3|) |has| |#3| (-312))) +(((|#3|) |has| |#3| (-965))) +(((|#2|) . T) ((|#3|) OR (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-965))) (($) |has| |#3| (-965)) (((-488)) -12 (|has| |#3| (-584 (-488))) (|has| |#3| (-965)))) +(((|#3|) |has| |#3| (-965)) (((-488)) -12 (|has| |#3| (-584 (-488))) (|has| |#3| (-965)))) +(((|#3|) |has| |#3| (-1017))) +((((-488)) OR (-12 (|has| |#3| (-954 (-488))) (|has| |#3| (-1017))) (|has| |#3| (-965))) ((|#3|) |has| |#3| (-1017)) (((-352 (-488))) -12 (|has| |#3| (-954 (-352 (-488)))) (|has| |#3| (-1017)))) +(((|#3|) |has| |#3| (-1017)) (((-488)) -12 (|has| |#3| (-954 (-488))) (|has| |#3| (-1017))) (((-352 (-488))) -12 (|has| |#3| (-954 (-352 (-488)))) (|has| |#3| (-1017)))) +((((-488) |#3|) . T)) +((((-488) |#3|) . T)) +((((-488) |#3|) . T)) +(((|#3|) OR (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-667)))) +(((|#3|) OR (|has| |#3| (-148)) (|has| |#3| (-314)))) +(|has| |#3| (-721)) +(|has| |#3| (-721)) +(OR (|has| |#3| (-721)) (|has| |#3| (-760))) +(OR (|has| |#3| (-721)) (|has| |#3| (-760))) +(|has| |#3| (-721)) +(|has| |#3| (-721)) +(((|#3|) |has| |#3| (-314))) (((|#1| |#3|) . T)) -((((-774)) . T)) +((((-776)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-190)) (|has| |#1| (-189))) -((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) -((((-774)) . T)) -(|has| |#1| (-190)) +(OR (|has| |#1| (-192)) (|has| |#1| (-191))) +((($) OR (|has| |#1| (-192)) (|has| |#1| (-191)))) +((((-776)) . T)) +(|has| |#1| (-192)) ((($) . T)) -(((|#1| (-471 |#3|) |#3|) . T)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -((((-486)) -12 (|has| |#1| (-798 (-486))) (|has| |#3| (-798 (-486)))) (((-330)) -12 (|has| |#1| (-798 (-330))) (|has| |#3| (-798 (-330))))) -((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) ((|#3|) . T)) -((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (($ |#3|) . T)) -((((-1092)) |has| |#1| (-811 (-1092))) ((|#3|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-190)) ((|#2| |#1|) |has| |#1| (-190)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(OR (|has| |#1| (-393)) (|has| |#1| (-823))) -((((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-471 |#3|)) . T)) -(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -(((|#1|) . T)) -(OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(((|#1| (-473 |#3|) |#3|) . T)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +((((-488)) -12 (|has| |#1| (-800 (-488))) (|has| |#3| (-800 (-488)))) (((-332)) -12 (|has| |#1| (-800 (-332))) (|has| |#3| (-800 (-332))))) +((((-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094)))) ((|#3|) . T)) +((($ (-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094)))) (($ |#3|) . T)) +((((-1094)) |has| |#1| (-813 (-1094))) ((|#3|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-192)) ((|#2| |#1|) |has| |#1| (-192)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(OR (|has| |#1| (-395)) (|has| |#1| (-825))) +((((-488)) |has| |#1| (-584 (-488))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-473 |#3|)) . T)) +(OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +(OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +(((|#1|) . T)) +(OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) . T) (((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((((-486)) . T) (($) . T) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -(((|#1|) . T)) -(((|#1| (-471 |#3|)) . T)) -((((-802 (-486))) -12 (|has| |#1| (-555 (-802 (-486)))) (|has| |#3| (-555 (-802 (-486))))) (((-802 (-330))) -12 (|has| |#1| (-555 (-802 (-330)))) (|has| |#3| (-555 (-802 (-330))))) (((-475)) -12 (|has| |#1| (-555 (-475))) (|has| |#3| (-555 (-475))))) -((((-1041 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((|#2|) . T)) -((((-1041 |#1| |#2|)) . T) (((-486)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ((|#2|) . T)) -(((|#1| |#2| |#3| (-471 |#3|)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) +((($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) . T) (((-488)) |has| |#1| (-584 (-488))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((((-488)) . T) (($) . T) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($ $) OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1| |#1|) . T) (((-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +(((|#1|) . T)) +(((|#1| (-473 |#3|)) . T)) +((((-804 (-488))) -12 (|has| |#1| (-557 (-804 (-488)))) (|has| |#3| (-557 (-804 (-488))))) (((-804 (-332))) -12 (|has| |#1| (-557 (-804 (-332)))) (|has| |#3| (-557 (-804 (-332))))) (((-477)) -12 (|has| |#1| (-557 (-477))) (|has| |#3| (-557 (-477))))) +((((-1043 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-488)) |has| |#1| (-954 (-488))) (((-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((|#2|) . T)) +((((-1043 |#1| |#2|)) . T) (((-488)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) ((|#2|) . T)) +(((|#1| |#2| |#3| (-473 |#3|)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) (((|#2| |#2|) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T)) +((((-776)) . T)) +((($) . T) (((-488)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) -((($) . T) (((-486)) . T)) +((($) . T) (((-488)) . T)) ((($) . T)) -((((-774)) . T)) -(((|#1|) |has| |#1| (-312))) -((((-1092)) |has| |#1| (-811 (-1092)))) -((($ (-1092)) |has| |#1| (-811 (-1092)))) -((((-1092)) |has| |#1| (-811 (-1092)))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-963)))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-963)))) -(((|#1| |#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-963)))) -((((-486)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-963)))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-963))) (($) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-963)))) -(OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-963))) -(OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-963))) -(OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-963))) -(|has| |#1| (-414)) -(OR (|has| |#1| (-414)) (|has| |#1| (-665)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963))) -(OR (|has| |#1| (-414)) (|has| |#1| (-665)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963)) (|has| |#1| (-1027))) -(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963))) -(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-963))) (($) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-963))) (((-486)) OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-414)) (|has| |#1| (-665)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963)) (|has| |#1| (-1027)) (|has| |#1| (-1015))) -((((-85)) |has| |#1| (-1015)) (((-774)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-414)) (|has| |#1| (-665)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963)) (|has| |#1| (-1027)) (|has| |#1| (-1015)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-414)) (|has| |#1| (-665)) (|has| |#1| (-811 (-1092))) (|has| |#1| (-963)) (|has| |#1| (-1027)) (|has| |#1| (-1015))) -((((-1092) |#1|) |has| |#1| (-457 (-1092) |#1|))) -(((|#1|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-774)) . T)) +((((-776)) . T)) +(((|#1|) |has| |#1| (-314))) +((((-1094)) |has| |#1| (-813 (-1094)))) +((($ (-1094)) |has| |#1| (-813 (-1094)))) +((((-1094)) |has| |#1| (-813 (-1094)))) +(((|#1|) OR (|has| |#1| (-148)) (|has| |#1| (-314)))) +(((|#1|) OR (|has| |#1| (-148)) (|has| |#1| (-314)))) +(((|#1|) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-965)))) +(((|#1|) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-965)))) +(((|#1| |#1|) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-965)))) +((((-488)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-965)))) +(((|#1|) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-965))) (($) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-965)))) +(OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-965))) +(OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-965))) +(OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-965))) +(|has| |#1| (-416)) +(OR (|has| |#1| (-416)) (|has| |#1| (-667)) (|has| |#1| (-813 (-1094))) (|has| |#1| (-965))) +(OR (|has| |#1| (-416)) (|has| |#1| (-667)) (|has| |#1| (-813 (-1094))) (|has| |#1| (-965)) (|has| |#1| (-1029))) +(OR (|has| |#1| (-21)) (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-813 (-1094))) (|has| |#1| (-965))) +(OR (|has| |#1| (-21)) (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-813 (-1094))) (|has| |#1| (-965))) +(((|#1|) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-965))) (($) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-965))) (((-488)) OR (|has| |#1| (-21)) (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-813 (-1094))) (|has| |#1| (-965)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-813 (-1094))) (|has| |#1| (-965))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-813 (-1094))) (|has| |#1| (-965))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-416)) (|has| |#1| (-667)) (|has| |#1| (-813 (-1094))) (|has| |#1| (-965)) (|has| |#1| (-1029)) (|has| |#1| (-1017))) +((((-85)) |has| |#1| (-1017)) (((-776)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-416)) (|has| |#1| (-667)) (|has| |#1| (-813 (-1094))) (|has| |#1| (-965)) (|has| |#1| (-1029)) (|has| |#1| (-1017)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-416)) (|has| |#1| (-667)) (|has| |#1| (-813 (-1094))) (|has| |#1| (-965)) (|has| |#1| (-1029)) (|has| |#1| (-1017))) +((((-1094) |#1|) |has| |#1| (-459 (-1094) |#1|))) +(((|#1|) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-776)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) (((|#1| |#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-774)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-774)) . T)) -(|has| (-1168 |#1| |#2| |#3| |#4|) (-118)) -(|has| (-1168 |#1| |#2| |#3| |#4|) (-120)) -((((-1168 |#1| |#2| |#3| |#4|)) . T)) -((((-1168 |#1| |#2| |#3| |#4|)) . T)) -((((-1168 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-486))) . T)) -((($) . T) (((-486)) . T) (((-1168 |#1| |#2| |#3| |#4|)) . T) (((-350 (-486))) . T)) -((((-1168 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-486))) . T)) -((((-1168 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-486))) . T)) -((((-1168 |#1| |#2| |#3| |#4|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-1168 |#1| |#2| |#3| |#4|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|)) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) -((((-1168 |#1| |#2| |#3| |#4|)) . T)) -((((-1168 |#1| |#2| |#3| |#4|)) . T)) -((((-1092) (-1168 |#1| |#2| |#3| |#4|)) |has| (-1168 |#1| |#2| |#3| |#4|) (-457 (-1092) (-1168 |#1| |#2| |#3| |#4|))) (((-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|)) |has| (-1168 |#1| |#2| |#3| |#4|) (-260 (-1168 |#1| |#2| |#3| |#4|)))) -((((-1168 |#1| |#2| |#3| |#4|)) |has| (-1168 |#1| |#2| |#3| |#4|) (-260 (-1168 |#1| |#2| |#3| |#4|)))) -((((-1168 |#1| |#2| |#3| |#4|) $) |has| (-1168 |#1| |#2| |#3| |#4|) (-241 (-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|)))) -((((-1168 |#1| |#2| |#3| |#4|)) . T)) -((($) . T) (((-1168 |#1| |#2| |#3| |#4|)) . T) (((-350 (-486))) . T)) -((((-1168 |#1| |#2| |#3| |#4|)) . T)) -((((-1168 |#1| |#2| |#3| |#4|)) . T)) -((((-1168 |#1| |#2| |#3| |#4|)) . T)) -((((-1162 |#2| |#3| |#4|)) . T) (((-486)) . T) (((-1168 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-486))) . T)) -((((-1162 |#2| |#3| |#4|)) . T) (((-1168 |#1| |#2| |#3| |#4|)) . T)) -((((-1168 |#1| |#2| |#3| |#4|)) . T)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(((|#1|) |has| |#1| (-497))) -(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) -((((-774)) . T)) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) -(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-414)) (|has| |#1| (-497)) (|has| |#1| (-963)) (|has| |#1| (-1027))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-414)) (|has| |#1| (-497)) (|has| |#1| (-963)) (|has| |#1| (-1027))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) +((((-776)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-776)) . T)) +(|has| (-1170 |#1| |#2| |#3| |#4|) (-118)) +(|has| (-1170 |#1| |#2| |#3| |#4|) (-120)) +((((-1170 |#1| |#2| |#3| |#4|)) . T)) +((((-1170 |#1| |#2| |#3| |#4|)) . T)) +((((-1170 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-352 (-488))) . T)) +((($) . T) (((-488)) . T) (((-1170 |#1| |#2| |#3| |#4|)) . T) (((-352 (-488))) . T)) +((((-1170 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-352 (-488))) . T)) +((((-1170 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-352 (-488))) . T)) +((((-1170 |#1| |#2| |#3| |#4|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-1170 |#1| |#2| |#3| |#4|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|)) . T) (((-352 (-488)) (-352 (-488))) . T) (($ $) . T)) +((((-1170 |#1| |#2| |#3| |#4|)) . T)) +((((-1170 |#1| |#2| |#3| |#4|)) . T)) +((((-1094) (-1170 |#1| |#2| |#3| |#4|)) |has| (-1170 |#1| |#2| |#3| |#4|) (-459 (-1094) (-1170 |#1| |#2| |#3| |#4|))) (((-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|)) |has| (-1170 |#1| |#2| |#3| |#4|) (-262 (-1170 |#1| |#2| |#3| |#4|)))) +((((-1170 |#1| |#2| |#3| |#4|)) |has| (-1170 |#1| |#2| |#3| |#4|) (-262 (-1170 |#1| |#2| |#3| |#4|)))) +((((-1170 |#1| |#2| |#3| |#4|) $) |has| (-1170 |#1| |#2| |#3| |#4|) (-243 (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|)))) +((((-1170 |#1| |#2| |#3| |#4|)) . T)) +((($) . T) (((-1170 |#1| |#2| |#3| |#4|)) . T) (((-352 (-488))) . T)) +((((-1170 |#1| |#2| |#3| |#4|)) . T)) +((((-1170 |#1| |#2| |#3| |#4|)) . T)) +((((-1170 |#1| |#2| |#3| |#4|)) . T)) +((((-1164 |#2| |#3| |#4|)) . T) (((-488)) . T) (((-1170 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-352 (-488))) . T)) +((((-1164 |#2| |#3| |#4|)) . T) (((-1170 |#1| |#2| |#3| |#4|)) . T)) +((((-1170 |#1| |#2| |#3| |#4|)) . T)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(((|#1|) |has| |#1| (-499))) +(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-148)) (|has| |#1| (-499)) (|has| |#1| (-965))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-148)) (|has| |#1| (-499)) (|has| |#1| (-965))) +((((-776)) . T)) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-148)) (|has| |#1| (-499)) (|has| |#1| (-965))) +(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-148)) (|has| |#1| (-499)) (|has| |#1| (-965))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-148)) (|has| |#1| (-499)) (|has| |#1| (-965))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-148)) (|has| |#1| (-416)) (|has| |#1| (-499)) (|has| |#1| (-965)) (|has| |#1| (-1029))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-148)) (|has| |#1| (-499)) (|has| |#1| (-965))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-148)) (|has| |#1| (-416)) (|has| |#1| (-499)) (|has| |#1| (-965)) (|has| |#1| (-1029))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-148)) (|has| |#1| (-499)) (|has| |#1| (-965))) (|has| |#1| (-118)) (|has| |#1| (-120)) -((((-552 $) $) . T) (($ $) . T)) +((((-554 $) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497)) (((-350 (-486))) |has| |#1| (-497))) -((((-486)) OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) (($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-963))) (((-350 (-486))) |has| |#1| (-497))) -(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497)) (((-350 (-486))) |has| |#1| (-497))) -(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497)) (((-350 (-486))) |has| |#1| (-497))) -(|has| |#1| (-497)) -(((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-497)) (($) |has| |#1| (-497))) -(((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-497)) (($) |has| |#1| (-497))) -(((|#1| |#1|) |has| |#1| (-146)) (((-350 (-486)) (-350 (-486))) |has| |#1| (-497)) (($ $) |has| |#1| (-497))) -(|has| |#1| (-497)) -(((|#1|) |has| |#1| (-963))) -((($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-963))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-963))) (((-350 (-486))) |has| |#1| (-497)) (((-486)) -12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) -(((|#1|) |has| |#1| (-963)) (((-486)) -12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) -(((|#1|) . T)) -((((-486)) |has| |#1| (-798 (-486))) (((-330)) |has| |#1| (-798 (-330)))) -(((|#1|) . T)) -(|has| |#1| (-414)) -((((-1092)) |has| |#1| (-963))) -((($ (-1092)) |has| |#1| (-963))) -((((-1092)) |has| |#1| (-963))) -(((|#1|) . T)) -((((-475)) |has| |#1| (-555 (-475))) (((-802 (-486))) |has| |#1| (-555 (-802 (-486)))) (((-802 (-330))) |has| |#1| (-555 (-802 (-330))))) -((((-48)) -12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486)))) (((-552 $)) . T) ((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) OR (-12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486)))) (|has| |#1| (-952 (-350 (-486))))) (((-350 (-859 |#1|))) |has| |#1| (-497)) (((-859 |#1|)) |has| |#1| (-963)) (((-1092)) . T)) -((((-48)) -12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486)))) (((-486)) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-497)) (|has| |#1| (-952 (-486))) (|has| |#1| (-963))) ((|#1|) . T) (((-552 $)) . T) (($) |has| |#1| (-497)) (((-350 (-486))) OR (|has| |#1| (-497)) (|has| |#1| (-952 (-350 (-486))))) (((-350 (-859 |#1|))) |has| |#1| (-497)) (((-859 |#1|)) |has| |#1| (-963)) (((-1092)) . T)) -(((|#1|) . T)) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-497))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -((((-774)) . T)) -(OR (|has| |#1| (-312)) (|has| |#1| (-497))) -(|has| |#1| (-312)) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(((|#1| (-350 (-486))) . T)) -(((|#1| (-350 (-486))) . T)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(((|#1|) |has| |#1| (-148)) (($) |has| |#1| (-499)) (((-352 (-488))) |has| |#1| (-499))) +((((-488)) OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-148)) (|has| |#1| (-499)) (|has| |#1| (-965))) (($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-148)) (|has| |#1| (-499)) (|has| |#1| (-965))) ((|#1|) OR (|has| |#1| (-148)) (|has| |#1| (-965))) (((-352 (-488))) |has| |#1| (-499))) +(((|#1|) |has| |#1| (-148)) (($) |has| |#1| (-499)) (((-352 (-488))) |has| |#1| (-499))) +(((|#1|) |has| |#1| (-148)) (($) |has| |#1| (-499)) (((-352 (-488))) |has| |#1| (-499))) +(|has| |#1| (-499)) +(((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-499)) (($) |has| |#1| (-499))) +(((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-499)) (($) |has| |#1| (-499))) +(((|#1| |#1|) |has| |#1| (-148)) (((-352 (-488)) (-352 (-488))) |has| |#1| (-499)) (($ $) |has| |#1| (-499))) +(|has| |#1| (-499)) +(((|#1|) |has| |#1| (-965))) +((($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-148)) (|has| |#1| (-499)) (|has| |#1| (-965))) ((|#1|) OR (|has| |#1| (-148)) (|has| |#1| (-965))) (((-352 (-488))) |has| |#1| (-499)) (((-488)) -12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965)))) +(((|#1|) |has| |#1| (-965)) (((-488)) -12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965)))) +(((|#1|) . T)) +((((-488)) |has| |#1| (-800 (-488))) (((-332)) |has| |#1| (-800 (-332)))) +(((|#1|) . T)) +(|has| |#1| (-416)) +((((-1094)) |has| |#1| (-965))) +((($ (-1094)) |has| |#1| (-965))) +((((-1094)) |has| |#1| (-965))) +(((|#1|) . T)) +((((-477)) |has| |#1| (-557 (-477))) (((-804 (-488))) |has| |#1| (-557 (-804 (-488)))) (((-804 (-332))) |has| |#1| (-557 (-804 (-332))))) +((((-48)) -12 (|has| |#1| (-499)) (|has| |#1| (-954 (-488)))) (((-554 $)) . T) ((|#1|) . T) (((-488)) |has| |#1| (-954 (-488))) (((-352 (-488))) OR (-12 (|has| |#1| (-499)) (|has| |#1| (-954 (-488)))) (|has| |#1| (-954 (-352 (-488))))) (((-352 (-861 |#1|))) |has| |#1| (-499)) (((-861 |#1|)) |has| |#1| (-965)) (((-1094)) . T)) +((((-48)) -12 (|has| |#1| (-499)) (|has| |#1| (-954 (-488)))) (((-488)) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-148)) (|has| |#1| (-499)) (|has| |#1| (-954 (-488))) (|has| |#1| (-965))) ((|#1|) . T) (((-554 $)) . T) (($) |has| |#1| (-499)) (((-352 (-488))) OR (|has| |#1| (-499)) (|has| |#1| (-954 (-352 (-488))))) (((-352 (-861 |#1|))) |has| |#1| (-499)) (((-861 |#1|)) |has| |#1| (-965)) (((-1094)) . T)) +(((|#1|) . T)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(OR (|has| |#1| (-314)) (|has| |#1| (-499))) +(OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +((((-776)) . T)) +(OR (|has| |#1| (-314)) (|has| |#1| (-499))) +(|has| |#1| (-314)) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(((|#1| (-352 (-488))) . T)) +(((|#1| (-352 (-488))) . T)) (((|#1|) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-486)) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) . T)) -((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) ((|#1|) . T)) -((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) ((|#1|) . T)) -((((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -(((|#1| (-350 (-486)) (-996)) . T)) -((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) -((($ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) -((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) -((((-350 (-486)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) (((-488)) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) ((|#1|) |has| |#1| (-148))) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) ((|#1|) |has| |#1| (-148))) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) ((|#1|) |has| |#1| (-148))) +((($) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) ((|#1|) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) ((|#1|) . T)) +((((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) ((|#1|) . T)) +((((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) ((|#1|) . T)) +((((-352 (-488)) (-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($ $) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) ((|#1|) |has| |#1| (-148))) +(((|#1| (-352 (-488)) (-998)) . T)) +((((-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))))) +((($ (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))))) +((((-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))))) +((((-352 (-488)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) (((|#1|) . T)) -(|has| |#1| (-758)) -(|has| |#1| (-758)) +(|has| |#1| (-760)) +(|has| |#1| (-760)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-486)) . T)) -((((-486) (-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-774)) . T)) -((((-486)) . T)) -((((-774)) . T)) +(((|#1| (-488)) . T)) +((((-488) (-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-776)) . T)) +((((-488)) . T)) +((((-776)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-696)) . T)) +(((|#1| (-698)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-758)) -(|has| |#1| (-758)) +(|has| |#1| (-760)) +(|has| |#1| (-760)) (((|#1|) . T)) -((((-475)) |has| |#1| (-555 (-475)))) -((((-486) |#1|) . T)) -((((-1148 (-486)) $) . T) (((-486) |#1|) . T)) -((((-486) |#1|) . T)) +((((-477)) |has| |#1| (-557 (-477)))) +((((-488) |#1|) . T)) +((((-1150 (-488)) $) . T) (((-488) |#1|) . T)) +((((-488) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) +(OR (|has| |#1| (-760)) (|has| |#1| (-1017))) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-760)) (|has| |#1| (-1017)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-760)) (|has| |#1| (-1017))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-486)) . T)) -((((-774)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-488)) . T)) +((((-776)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-819 |#1|)) . T)) -((((-819 |#1|)) . T)) -((((-819 |#1|)) . T)) -((((-819 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) -((((-819 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) -((((-819 |#1|) (-819 |#1|)) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-774)) . T)) -((((-819 |#1|)) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) -((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) +((((-821 |#1|)) . T)) +((((-821 |#1|)) . T)) +((((-821 |#1|)) . T)) +((((-821 |#1|)) . T) (($) . T) (((-352 (-488))) . T)) +((((-821 |#1|)) . T) (($) . T) (((-352 (-488))) . T)) +((((-821 |#1|) (-821 |#1|)) . T) (($ $) . T) (((-352 (-488)) (-352 (-488))) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-821 |#1|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-821 |#1|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-776)) . T)) +((((-821 |#1|)) . T) (((-352 (-488))) . T) (((-488)) . T) (($) . T)) +((((-821 |#1|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-821 |#1|)) . T) (((-352 (-488))) . T) (($) . T) (((-488)) . T)) (|has| $ (-120)) ((($) . T)) -((((-819 |#1|)) . T)) -((((-819 |#1|)) . T)) -((((-819 |#1|)) . T)) -((((-819 |#1|)) . T)) -((((-819 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) -((((-819 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) -((((-819 |#1|) (-819 |#1|)) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-774)) . T)) -((((-819 |#1|)) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) -((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) +((((-821 |#1|)) . T)) +((((-821 |#1|)) . T)) +((((-821 |#1|)) . T)) +((((-821 |#1|)) . T)) +((((-821 |#1|)) . T) (($) . T) (((-352 (-488))) . T)) +((((-821 |#1|)) . T) (($) . T) (((-352 (-488))) . T)) +((((-821 |#1|) (-821 |#1|)) . T) (($ $) . T) (((-352 (-488)) (-352 (-488))) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-821 |#1|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-821 |#1|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-776)) . T)) +((((-821 |#1|)) . T) (((-352 (-488))) . T) (((-488)) . T) (($) . T)) +((((-821 |#1|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-821 |#1|)) . T) (((-352 (-488))) . T) (($) . T) (((-488)) . T)) (|has| $ (-120)) ((($) . T)) -((((-819 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) -((((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -((((-774)) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) +((((-821 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-322))) +(OR (|has| |#1| (-118)) (|has| |#1| (-322))) +(((|#1|) . T) (($) . T) (((-352 (-488))) . T)) +(((|#1|) . T) (($) . T) (((-352 (-488))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-352 (-488)) (-352 (-488))) . T)) +((((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +((((-776)) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (((-488)) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T) (((-488)) . T)) (|has| |#1| (-120)) -(|has| |#1| (-320)) -(|has| |#1| (-320)) -(|has| |#1| (-320)) -(|has| |#1| (-320)) -((($) |has| |#1| (-320))) -(|has| |#1| (-320)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) -((((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -((((-774)) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) +(|has| |#1| (-322)) +(|has| |#1| (-322)) +(|has| |#1| (-322)) +(|has| |#1| (-322)) +((($) |has| |#1| (-322))) +(|has| |#1| (-322)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-322))) +(OR (|has| |#1| (-118)) (|has| |#1| (-322))) +(((|#1|) . T) (($) . T) (((-352 (-488))) . T)) +(((|#1|) . T) (($) . T) (((-352 (-488))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-352 (-488)) (-352 (-488))) . T)) +((((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +((((-776)) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (((-488)) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T) (((-488)) . T)) (|has| |#1| (-120)) -(|has| |#1| (-320)) -(|has| |#1| (-320)) -(|has| |#1| (-320)) -(|has| |#1| (-320)) -((($) |has| |#1| (-320))) -(|has| |#1| (-320)) -(((|#1|) . T)) -((((-819 |#1|)) . T)) -((((-819 |#1|)) . T)) -((((-819 |#1|)) . T)) -((((-819 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) -((((-819 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) -((((-819 |#1|) (-819 |#1|)) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-774)) . T)) -((((-819 |#1|)) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) -((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-819 |#1|)) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) +(|has| |#1| (-322)) +(|has| |#1| (-322)) +(|has| |#1| (-322)) +(|has| |#1| (-322)) +((($) |has| |#1| (-322))) +(|has| |#1| (-322)) +(((|#1|) . T)) +((((-821 |#1|)) . T)) +((((-821 |#1|)) . T)) +((((-821 |#1|)) . T)) +((((-821 |#1|)) . T) (($) . T) (((-352 (-488))) . T)) +((((-821 |#1|)) . T) (($) . T) (((-352 (-488))) . T)) +((((-821 |#1|) (-821 |#1|)) . T) (($ $) . T) (((-352 (-488)) (-352 (-488))) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-821 |#1|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-821 |#1|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-776)) . T)) +((((-821 |#1|)) . T) (((-352 (-488))) . T) (((-488)) . T) (($) . T)) +((((-821 |#1|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-821 |#1|)) . T) (((-352 (-488))) . T) (($) . T) (((-488)) . T)) (|has| $ (-120)) ((($) . T)) -((((-819 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) -((((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -((((-774)) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) +((((-821 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-322))) +(OR (|has| |#1| (-118)) (|has| |#1| (-322))) +(((|#1|) . T) (($) . T) (((-352 (-488))) . T)) +(((|#1|) . T) (($) . T) (((-352 (-488))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-352 (-488)) (-352 (-488))) . T)) +((((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +((((-776)) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (((-488)) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T) (((-488)) . T)) (|has| |#1| (-120)) -(|has| |#1| (-320)) -(|has| |#1| (-320)) -(|has| |#1| (-320)) -(|has| |#1| (-320)) -((($) |has| |#1| (-320))) -(|has| |#1| (-320)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) -((((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -((((-774)) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) +(|has| |#1| (-322)) +(|has| |#1| (-322)) +(|has| |#1| (-322)) +(|has| |#1| (-322)) +((($) |has| |#1| (-322))) +(|has| |#1| (-322)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-322))) +(OR (|has| |#1| (-118)) (|has| |#1| (-322))) +(((|#1|) . T) (($) . T) (((-352 (-488))) . T)) +(((|#1|) . T) (($) . T) (((-352 (-488))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-352 (-488)) (-352 (-488))) . T)) +((((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +((((-776)) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (((-488)) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T) (((-488)) . T)) (|has| |#1| (-120)) -(|has| |#1| (-320)) -(|has| |#1| (-320)) -(|has| |#1| (-320)) -(|has| |#1| (-320)) -((($) |has| |#1| (-320))) -(|has| |#1| (-320)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) -((((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -((((-774)) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) +(|has| |#1| (-322)) +(|has| |#1| (-322)) +(|has| |#1| (-322)) +(|has| |#1| (-322)) +((($) |has| |#1| (-322))) +(|has| |#1| (-322)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-322))) +(OR (|has| |#1| (-118)) (|has| |#1| (-322))) +(((|#1|) . T) (($) . T) (((-352 (-488))) . T)) +(((|#1|) . T) (($) . T) (((-352 (-488))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-352 (-488)) (-352 (-488))) . T)) +((((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +((((-776)) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (((-488)) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T) (((-488)) . T)) (|has| |#1| (-120)) -(|has| |#1| (-320)) -(|has| |#1| (-320)) -(|has| |#1| (-320)) -(|has| |#1| (-320)) -((($) |has| |#1| (-320))) -(|has| |#1| (-320)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) -((((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -((((-774)) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) +(|has| |#1| (-322)) +(|has| |#1| (-322)) +(|has| |#1| (-322)) +(|has| |#1| (-322)) +((($) |has| |#1| (-322))) +(|has| |#1| (-322)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-322))) +(OR (|has| |#1| (-118)) (|has| |#1| (-322))) +(((|#1|) . T) (($) . T) (((-352 (-488))) . T)) +(((|#1|) . T) (($) . T) (((-352 (-488))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-352 (-488)) (-352 (-488))) . T)) +((((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +((((-776)) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (((-488)) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T) (((-488)) . T)) (|has| |#1| (-120)) -(|has| |#1| (-320)) -(|has| |#1| (-320)) -(|has| |#1| (-320)) -(|has| |#1| (-320)) -((($) |has| |#1| (-320))) -(|has| |#1| (-320)) +(|has| |#1| (-322)) +(|has| |#1| (-322)) +(|has| |#1| (-322)) +(|has| |#1| (-322)) +((($) |has| |#1| (-322))) +(|has| |#1| (-322)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-338) |#1|) . T)) -((((-179)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-340) |#1|) . T)) +((((-181)) . T)) ((($) . T)) -((((-486)) . T) (((-350 (-486))) . T)) -((((-330)) . T)) -((($) . T) (((-350 (-486))) . T)) -((($) . T) (((-350 (-486))) . T)) -((($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-475)) . T) (((-1075)) . T) (((-179)) . T) (((-330)) . T) (((-802 (-330))) . T)) -((((-179)) . T) (((-774)) . T)) -((((-350 (-486))) . T) (((-486)) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T) (((-486)) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -((((-585 (-455 |#1| |#2|))) . T)) +((((-488)) . T) (((-352 (-488))) . T)) +((((-332)) . T)) +((($) . T) (((-352 (-488))) . T)) +((($) . T) (((-352 (-488))) . T)) +((($ $) . T) (((-352 (-488)) (-352 (-488))) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-477)) . T) (((-1077)) . T) (((-181)) . T) (((-332)) . T) (((-804 (-332))) . T)) +((((-181)) . T) (((-776)) . T)) +((((-352 (-488))) . T) (((-488)) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T) (((-488)) . T)) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +((((-587 (-457 |#1| |#2|))) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-774)) . T)) -(((|#1|) . T) (((-486)) . T)) +((((-776)) . T)) +(((|#1|) . T) (((-488)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-774)) . T)) -((((-486)) . T) ((|#1|) . T)) +((((-776)) . T)) +((((-488)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-774)) . T)) -(|has| |#1| (-758)) -(|has| |#1| (-758)) +((((-776)) . T)) +(|has| |#1| (-760)) +(|has| |#1| (-760)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1075)) . T)) -((((-1075)) . T)) -((((-1075)) . T) (((-774)) . T)) +((((-1077)) . T)) +((((-1077)) . T)) +((((-1077)) . T) (((-776)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-774)) . T)) -(((|#3|) . T) (((-486)) . T)) +((((-776)) . T)) +(((|#3|) . T) (((-488)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3| |#3|) . T)) (((|#3|) . T)) -((((-350 |#2|)) . T)) +((((-352 |#2|)) . T)) ((($) . T)) -((((-774)) . T)) -(|has| |#1| (-1136)) -((((-475)) |has| |#1| (-555 (-475))) (((-179)) |has| |#1| (-935)) (((-330)) |has| |#1| (-935))) -(|has| |#1| (-935)) -(OR (|has| |#1| (-393)) (|has| |#1| (-1136))) -((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) |has| |#1| (-952 (-486))) ((|#1|) . T)) +((((-776)) . T)) +(|has| |#1| (-1138)) +((((-477)) |has| |#1| (-557 (-477))) (((-181)) |has| |#1| (-937)) (((-332)) |has| |#1| (-937))) +(|has| |#1| (-937)) +(OR (|has| |#1| (-395)) (|has| |#1| (-1138))) +((((-352 (-488))) |has| |#1| (-954 (-352 (-488)))) (((-488)) |has| |#1| (-954 (-488))) ((|#1|) . T)) (((|#1|) . T)) -((($ $) |has| |#1| (-241 $ $)) ((|#1| $) |has| |#1| (-241 |#1| |#1|))) -((($) |has| |#1| (-260 $)) ((|#1|) |has| |#1| (-260 |#1|))) +((($ $) |has| |#1| (-243 $ $)) ((|#1| $) |has| |#1| (-243 |#1| |#1|))) +((($) |has| |#1| (-262 $)) ((|#1|) |has| |#1| (-262 |#1|))) (((|#1|) . T)) -((((-1092) $) |has| |#1| (-457 (-1092) $)) (($ $) |has| |#1| (-260 $)) ((|#1| |#1|) |has| |#1| (-260 |#1|)) (((-1092) |#1|) |has| |#1| (-457 (-1092) |#1|))) +((((-1094) $) |has| |#1| (-459 (-1094) $)) (($ $) |has| |#1| (-262 $)) ((|#1| |#1|) |has| |#1| (-262 |#1|)) (((-1094) |#1|) |has| |#1| (-459 (-1094) |#1|))) (((|#1|) . T)) -(|has| |#1| (-190)) -((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) -(OR (|has| |#1| (-190)) (|has| |#1| (-189))) +(|has| |#1| (-192)) +((($) OR (|has| |#1| (-192)) (|has| |#1| (-191)))) +(OR (|has| |#1| (-192)) (|has| |#1| (-191))) (((|#1|) . T)) -((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092))))) -((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092))))) -((((-1092)) |has| |#1| (-811 (-1092)))) +((($ (-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094))))) +((((-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094))))) +((((-1094)) |has| |#1| (-813 (-1094)))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-774)) . T)) -(((|#1|) . T) (((-486)) . T) (($) . T)) +((((-776)) . T)) +(((|#1|) . T) (((-488)) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((|#1|) . T) (((-486)) . T) (($) . T)) -((((-774)) . T)) +((((-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((|#1|) . T) (((-488)) . T) (($) . T)) +((((-776)) . T)) (|has| |#1| (-118)) -(OR (|has| |#1| (-120)) (|has| |#1| (-742))) +(OR (|has| |#1| (-120)) (|has| |#1| (-744))) (((|#1|) . T)) -((((-1092)) |has| |#1| (-811 (-1092)))) -((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092))))) -((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092))))) +((((-1094)) |has| |#1| (-813 (-1094)))) +((((-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094))))) +((($ (-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094))))) (((|#1|) . T)) -(OR (|has| |#1| (-190)) (|has| |#1| (-189))) -((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) -(|has| |#1| (-190)) -(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) -((($) . T) (((-486)) . T) ((|#1|) . T) (((-350 (-486))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) +(OR (|has| |#1| (-192)) (|has| |#1| (-191))) +((($) OR (|has| |#1| (-192)) (|has| |#1| (-191)))) +(|has| |#1| (-192)) +(((|#1|) . T) (($) . T) (((-352 (-488))) . T)) +((($) . T) (((-488)) . T) ((|#1|) . T) (((-352 (-488))) . T)) +(((|#1|) . T) (($) . T) (((-352 (-488))) . T)) +(((|#1|) . T) (($) . T) (((-352 (-488))) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1| |#1|) . T) (((-352 (-488)) (-352 (-488))) . T) (($ $) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1092) |#1|) |has| |#1| (-457 (-1092) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) -(((|#1|) |has| |#1| (-260 |#1|))) -(((|#1| $) |has| |#1| (-241 |#1| |#1|))) +((((-1094) |#1|) |has| |#1| (-459 (-1094) |#1|)) ((|#1| |#1|) |has| |#1| (-262 |#1|))) +(((|#1|) |has| |#1| (-262 |#1|))) +(((|#1| $) |has| |#1| (-243 |#1| |#1|))) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-350 (-486))) . T) (((-486)) |has| |#1| (-582 (-486)))) -(((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) +((($) . T) ((|#1|) . T) (((-352 (-488))) . T) (((-488)) |has| |#1| (-584 (-488)))) +(((|#1|) . T) (((-488)) |has| |#1| (-584 (-488)))) (((|#1|) . T)) -((((-486)) |has| |#1| (-798 (-486))) (((-330)) |has| |#1| (-798 (-330)))) -(|has| |#1| (-742)) -(|has| |#1| (-742)) -(|has| |#1| (-742)) -(OR (|has| |#1| (-742)) (|has| |#1| (-758))) -(OR (|has| |#1| (-742)) (|has| |#1| (-758))) -(|has| |#1| (-742)) -(|has| |#1| (-742)) -(|has| |#1| (-742)) +((((-488)) |has| |#1| (-800 (-488))) (((-332)) |has| |#1| (-800 (-332)))) +(|has| |#1| (-744)) +(|has| |#1| (-744)) +(|has| |#1| (-744)) +(OR (|has| |#1| (-744)) (|has| |#1| (-760))) +(OR (|has| |#1| (-744)) (|has| |#1| (-760))) +(|has| |#1| (-744)) +(|has| |#1| (-744)) +(|has| |#1| (-744)) (((|#1|) . T)) -(|has| |#1| (-823)) -(|has| |#1| (-935)) -((((-475)) |has| |#1| (-555 (-475))) (((-802 (-486))) |has| |#1| (-555 (-802 (-486)))) (((-802 (-330))) |has| |#1| (-555 (-802 (-330)))) (((-330)) |has| |#1| (-935)) (((-179)) |has| |#1| (-935))) -((((-486)) . T) ((|#1|) . T) (($) . T) (((-350 (-486))) . T) (((-1092)) |has| |#1| (-952 (-1092)))) -((((-350 (-486))) |has| |#1| (-952 (-486))) (((-486)) |has| |#1| (-952 (-486))) (((-1092)) |has| |#1| (-952 (-1092))) ((|#1|) . T)) -(|has| |#1| (-1068)) +(|has| |#1| (-825)) +(|has| |#1| (-937)) +((((-477)) |has| |#1| (-557 (-477))) (((-804 (-488))) |has| |#1| (-557 (-804 (-488)))) (((-804 (-332))) |has| |#1| (-557 (-804 (-332)))) (((-332)) |has| |#1| (-937)) (((-181)) |has| |#1| (-937))) +((((-488)) . T) ((|#1|) . T) (($) . T) (((-352 (-488))) . T) (((-1094)) |has| |#1| (-954 (-1094)))) +((((-352 (-488))) |has| |#1| (-954 (-488))) (((-488)) |has| |#1| (-954 (-488))) (((-1094)) |has| |#1| (-954 (-1094))) ((|#1|) . T)) +(|has| |#1| (-1070)) (((|#1|) . T)) -((((-774)) . T)) -((((-774)) . T)) +((((-776)) . T)) +((((-776)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-774)) . T)) +((((-776)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-488)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-486)) . T)) -(((|#1|) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-486) (-350 (-859 |#1|))) . T)) -((((-350 (-859 |#1|))) . T)) -((((-350 (-859 |#1|))) . T)) -((((-350 (-859 |#1|))) . T)) -((((-1058 |#2| (-350 (-859 |#1|)))) . T) (((-350 (-859 |#1|))) . T)) -((((-774)) . T)) -((((-1058 |#2| (-350 (-859 |#1|)))) . T) (((-350 (-859 |#1|))) . T) (((-486)) . T)) -((((-350 (-859 |#1|))) . T)) -((((-350 (-859 |#1|))) . T)) -((((-350 (-859 |#1|)) (-350 (-859 |#1|))) . T)) -((((-350 (-859 |#1|))) . T)) -((((-350 (-859 |#1|))) . T)) -((((-475)) |has| |#2| (-555 (-475))) (((-802 (-330))) |has| |#2| (-555 (-802 (-330)))) (((-802 (-486))) |has| |#2| (-555 (-802 (-486))))) +(((|#1|) . T) (((-488)) . T)) +(((|#1|) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-488) (-352 (-861 |#1|))) . T)) +((((-352 (-861 |#1|))) . T)) +((((-352 (-861 |#1|))) . T)) +((((-352 (-861 |#1|))) . T)) +((((-1060 |#2| (-352 (-861 |#1|)))) . T) (((-352 (-861 |#1|))) . T)) +((((-776)) . T)) +((((-1060 |#2| (-352 (-861 |#1|)))) . T) (((-352 (-861 |#1|))) . T) (((-488)) . T)) +((((-352 (-861 |#1|))) . T)) +((((-352 (-861 |#1|))) . T)) +((((-352 (-861 |#1|)) (-352 (-861 |#1|))) . T)) +((((-352 (-861 |#1|))) . T)) +((((-352 (-861 |#1|))) . T)) +((((-477)) |has| |#2| (-557 (-477))) (((-804 (-332))) |has| |#2| (-557 (-804 (-332)))) (((-804 (-488))) |has| |#2| (-557 (-804 (-488))))) ((($) . T)) (((|#2| |#3|) . T)) (((|#2|) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T)) +((((-776)) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) -((((-350 (-486)) (-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +(OR (|has| |#2| (-148)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) . T) (($) OR (|has| |#2| (-148)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) . T) (($) OR (|has| |#2| (-148)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) +((((-352 (-488)) (-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-148)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) (((|#2|) . T)) -(OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) -(OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +(OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) +(OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) |has| |#2| (-148)) (($) OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) |has| |#2| (-148)) (($) OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) |has| |#2| (-148)) (($) OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) (((|#2| |#3|) . T)) (((|#2|) . T)) -((($) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) -(((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) -(OR (|has| |#2| (-393)) (|has| |#2| (-823))) -((($ $) . T) (((-775 |#1|) $) . T) (((-775 |#1|) |#2|) . T)) -((((-775 |#1|)) . T)) -((($ (-775 |#1|)) . T)) -((((-775 |#1|)) . T)) -(|has| |#2| (-823)) -(|has| |#2| (-823)) -((((-350 (-486))) |has| |#2| (-952 (-350 (-486)))) (((-486)) |has| |#2| (-952 (-486))) ((|#2|) . T) (((-775 |#1|)) . T)) -((((-486)) . T) (((-350 (-486))) OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486))))) ((|#2|) . T) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) (((-775 |#1|)) . T)) -(((|#2| |#3| (-775 |#1|)) . T)) +((($) . T) (((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) . T) (((-488)) |has| |#2| (-584 (-488)))) +(((|#2|) . T) (((-488)) |has| |#2| (-584 (-488)))) +(OR (|has| |#2| (-395)) (|has| |#2| (-825))) +((($ $) . T) (((-777 |#1|) $) . T) (((-777 |#1|) |#2|) . T)) +((((-777 |#1|)) . T)) +((($ (-777 |#1|)) . T)) +((((-777 |#1|)) . T)) +(|has| |#2| (-825)) +(|has| |#2| (-825)) +((((-352 (-488))) |has| |#2| (-954 (-352 (-488)))) (((-488)) |has| |#2| (-954 (-488))) ((|#2|) . T) (((-777 |#1|)) . T)) +((((-488)) . T) (((-352 (-488))) OR (|has| |#2| (-38 (-352 (-488)))) (|has| |#2| (-954 (-352 (-488))))) ((|#2|) . T) (($) OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) (((-777 |#1|)) . T)) +(((|#2| |#3| (-777 |#1|)) . T)) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) -((((-774)) . T)) -(((|#2|) . T) (((-486)) . T) ((|#6|) . T)) +((((-776)) . T)) +(((|#2|) . T) (((-488)) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#4|) . T)) (((|#4|) . T)) -((((-585 |#4|)) . T) (((-774)) . T)) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +((((-587 |#4|)) . T) (((-776)) . T)) +(((|#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017)))) +(((|#4| |#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017)))) (((|#4|) . T)) (((|#4|) . T)) -((((-475)) |has| |#4| (-555 (-475)))) +((((-477)) |has| |#4| (-557 (-477)))) (((|#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-774)) . T)) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-497))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -((((-774)) . T)) -(OR (|has| |#1| (-312)) (|has| |#1| (-497))) -(|has| |#1| (-312)) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(((|#1| (-350 (-486))) . T)) -(((|#1| (-350 (-486))) . T)) +((((-776)) . T)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(OR (|has| |#1| (-314)) (|has| |#1| (-499))) +(OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +((((-776)) . T)) +(OR (|has| |#1| (-314)) (|has| |#1| (-499))) +(|has| |#1| (-314)) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(((|#1| (-352 (-488))) . T)) +(((|#1| (-352 (-488))) . T)) (((|#1|) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-486)) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) . T)) -((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) ((|#1|) . T)) -((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) ((|#1|) . T)) -((((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -(((|#1| (-350 (-486)) (-996)) . T)) -((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) -((($ (-1178 |#2|)) . T) (($ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) -((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) -((((-350 (-486)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) -(((|#1|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-774)) . T)) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) (((-488)) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) ((|#1|) |has| |#1| (-148))) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) ((|#1|) |has| |#1| (-148))) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) ((|#1|) |has| |#1| (-148))) +((($) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) ((|#1|) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) ((|#1|) . T)) +((((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) ((|#1|) . T)) +((((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) ((|#1|) . T)) +((((-352 (-488)) (-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($ $) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) ((|#1|) |has| |#1| (-148))) +(((|#1| (-352 (-488)) (-998)) . T)) +((((-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))))) +((($ (-1180 |#2|)) . T) (($ (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))))) +((((-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))))) +((((-352 (-488)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) +(((|#1|) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-776)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) (((|#1| |#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-475)) |has| |#4| (-555 (-475)))) +((((-477)) |has| |#4| (-557 (-477)))) (((|#4|) . T)) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +(((|#4| |#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017)))) +(((|#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017)))) (((|#4|) . T)) -((((-774)) . T) (((-585 |#4|)) . T)) +((((-776)) . T) (((-587 |#4|)) . T)) (((|#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-475)) . T) (((-350 (-1087 (-486)))) . T) (((-179)) . T) (((-330)) . T)) -((((-350 (-486))) . T) (((-486)) . T)) -((((-330)) . T) (((-179)) . T) (((-774)) . T)) -((($) . T) (((-350 (-486))) . T)) -((($) . T) (((-350 (-486))) . T)) -((($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) -((((-350 (-486))) . T) (((-486)) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (((-486)) . T) (($) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-774)) . T)) +((((-477)) . T) (((-352 (-1089 (-488)))) . T) (((-181)) . T) (((-332)) . T)) +((((-352 (-488))) . T) (((-488)) . T)) +((((-332)) . T) (((-181)) . T) (((-776)) . T)) +((($) . T) (((-352 (-488))) . T)) +((($) . T) (((-352 (-488))) . T)) +((($ $) . T) (((-352 (-488)) (-352 (-488))) . T)) +((((-352 (-488))) . T) (((-488)) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (((-488)) . T) (($) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-776)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) (((|#1| |#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-475)) |has| |#2| (-555 (-475))) (((-802 (-330))) |has| |#2| (-555 (-802 (-330)))) (((-802 (-486))) |has| |#2| (-555 (-802 (-486))))) +((((-477)) |has| |#2| (-557 (-477))) (((-804 (-332))) |has| |#2| (-557 (-804 (-332)))) (((-804 (-488))) |has| |#2| (-557 (-804 (-488))))) ((($) . T)) -(((|#2| (-423 (-3961 |#1|) (-696))) . T)) +(((|#2| (-425 (-3964 |#1|) (-698))) . T)) (((|#2|) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T)) +((((-776)) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) -((((-350 (-486)) (-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +(OR (|has| |#2| (-148)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) . T) (($) OR (|has| |#2| (-148)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) . T) (($) OR (|has| |#2| (-148)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) +((((-352 (-488)) (-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-148)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) (((|#2|) . T)) -(OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) -(OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) -(((|#2| (-423 (-3961 |#1|) (-696))) . T)) +(OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) +(OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) |has| |#2| (-148)) (($) OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) |has| |#2| (-148)) (($) OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) |has| |#2| (-148)) (($) OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) +(((|#2| (-425 (-3964 |#1|) (-698))) . T)) (((|#2|) . T)) -((($) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) -(((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) -(OR (|has| |#2| (-393)) (|has| |#2| (-823))) -((($ $) . T) (((-775 |#1|) $) . T) (((-775 |#1|) |#2|) . T)) -((((-775 |#1|)) . T)) -((($ (-775 |#1|)) . T)) -((((-775 |#1|)) . T)) -(|has| |#2| (-823)) -(|has| |#2| (-823)) -((((-350 (-486))) |has| |#2| (-952 (-350 (-486)))) (((-486)) |has| |#2| (-952 (-486))) ((|#2|) . T) (((-775 |#1|)) . T)) -((((-486)) . T) (((-350 (-486))) OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486))))) ((|#2|) . T) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) (((-775 |#1|)) . T)) -(((|#2| (-423 (-3961 |#1|) (-696)) (-775 |#1|)) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) -(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) -(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)) (|has| |#2| (-963)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963)))) -((((-774)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-554 (-774))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) (((-1181 |#2|)) . T)) -(((|#2|) |has| |#2| (-963))) -((((-1092)) -12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963)))) -((((-1092)) OR (-12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963))) (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))))) -((($ (-1092)) OR (-12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963))) (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))))) -(((|#2|) |has| |#2| (-963))) -(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (-12 (|has| |#2| (-189)) (|has| |#2| (-963)))) -((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (-12 (|has| |#2| (-189)) (|has| |#2| (-963))))) -(|has| |#2| (-963)) -(|has| |#2| (-963)) -(|has| |#2| (-963)) -(|has| |#2| (-963)) -(|has| |#2| (-963)) -((((-486)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)) (|has| |#2| (-963))) (($) |has| |#2| (-963))) -(-12 (|has| |#2| (-190)) (|has| |#2| (-963))) -(|has| |#2| (-320)) +((($) . T) (((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) . T) (((-488)) |has| |#2| (-584 (-488)))) +(((|#2|) . T) (((-488)) |has| |#2| (-584 (-488)))) +(OR (|has| |#2| (-395)) (|has| |#2| (-825))) +((($ $) . T) (((-777 |#1|) $) . T) (((-777 |#1|) |#2|) . T)) +((((-777 |#1|)) . T)) +((($ (-777 |#1|)) . T)) +((((-777 |#1|)) . T)) +(|has| |#2| (-825)) +(|has| |#2| (-825)) +((((-352 (-488))) |has| |#2| (-954 (-352 (-488)))) (((-488)) |has| |#2| (-954 (-488))) ((|#2|) . T) (((-777 |#1|)) . T)) +((((-488)) . T) (((-352 (-488))) OR (|has| |#2| (-38 (-352 (-488)))) (|has| |#2| (-954 (-352 (-488))))) ((|#2|) . T) (($) OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) (((-777 |#1|)) . T)) +(((|#2| (-425 (-3964 |#1|) (-698)) (-777 |#1|)) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-965))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-721)) (|has| |#2| (-965))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-322)) (|has| |#2| (-667)) (|has| |#2| (-721)) (|has| |#2| (-760)) (|has| |#2| (-965)) (|has| |#2| (-1017))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-322)) (|has| |#2| (-667)) (|has| |#2| (-721)) (|has| |#2| (-760)) (|has| |#2| (-965)) (|has| |#2| (-1017))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-721)) (|has| |#2| (-965))) +(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-721)) (|has| |#2| (-965))) +(((|#2| |#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-965)))) +(((|#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-667)) (|has| |#2| (-965)))) +(((|#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-965)))) +((((-776)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-556 (-776))) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-322)) (|has| |#2| (-667)) (|has| |#2| (-721)) (|has| |#2| (-760)) (|has| |#2| (-965)) (|has| |#2| (-1017))) (((-1183 |#2|)) . T)) +(((|#2|) |has| |#2| (-965))) +((((-1094)) -12 (|has| |#2| (-813 (-1094))) (|has| |#2| (-965)))) +((((-1094)) OR (-12 (|has| |#2| (-813 (-1094))) (|has| |#2| (-965))) (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))))) +((($ (-1094)) OR (-12 (|has| |#2| (-813 (-1094))) (|has| |#2| (-965))) (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))))) +(((|#2|) |has| |#2| (-965))) +(OR (-12 (|has| |#2| (-192)) (|has| |#2| (-965))) (-12 (|has| |#2| (-191)) (|has| |#2| (-965)))) +((($) OR (-12 (|has| |#2| (-192)) (|has| |#2| (-965))) (-12 (|has| |#2| (-191)) (|has| |#2| (-965))))) +(|has| |#2| (-965)) +(|has| |#2| (-965)) +(|has| |#2| (-965)) +(|has| |#2| (-965)) +(|has| |#2| (-965)) +((((-488)) OR (|has| |#2| (-21)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-965))) ((|#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-667)) (|has| |#2| (-965))) (($) |has| |#2| (-965))) +(-12 (|has| |#2| (-192)) (|has| |#2| (-965))) +(|has| |#2| (-322)) (((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) +(((|#2| |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-963))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) (($) |has| |#2| (-963)) (((-486)) -12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963)))) -(((|#2|) |has| |#2| (-963)) (((-486)) -12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963)))) -(((|#2|) |has| |#2| (-1015))) -((((-486)) OR (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ((|#2|) |has| |#2| (-1015)) (((-350 (-486))) -12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015)))) -(((|#2|) |has| |#2| (-1015)) (((-486)) -12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (((-350 (-486))) -12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015)))) -((((-486) |#2|) . T)) -((((-486) |#2|) . T)) -((((-486) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)))) -(|has| |#2| (-719)) -(|has| |#2| (-719)) -(OR (|has| |#2| (-719)) (|has| |#2| (-758))) -(OR (|has| |#2| (-719)) (|has| |#2| (-758))) -(|has| |#2| (-719)) -(|has| |#2| (-719)) -(((|#2|) |has| |#2| (-312))) +(((|#2|) |has| |#2| (-965))) +(((|#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-965))) (($) |has| |#2| (-965)) (((-488)) -12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965)))) +(((|#2|) |has| |#2| (-965)) (((-488)) -12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965)))) +(((|#2|) |has| |#2| (-1017))) +((((-488)) OR (-12 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017))) (|has| |#2| (-965))) ((|#2|) |has| |#2| (-1017)) (((-352 (-488))) -12 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017)))) +(((|#2|) |has| |#2| (-1017)) (((-488)) -12 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017))) (((-352 (-488))) -12 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017)))) +((((-488) |#2|) . T)) +((((-488) |#2|) . T)) +((((-488) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-667)))) +(((|#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)))) +(|has| |#2| (-721)) +(|has| |#2| (-721)) +(OR (|has| |#2| (-721)) (|has| |#2| (-760))) +(OR (|has| |#2| (-721)) (|has| |#2| (-760))) +(|has| |#2| (-721)) +(|has| |#2| (-721)) +(((|#2|) |has| |#2| (-314))) (((|#1| |#2|) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1017))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) (((|#1|) . T)) -(|has| |#1| (-1015)) +(|has| |#1| (-1017)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-486)) . T)) -((((-774)) . T)) +((((-488)) . T)) +((((-776)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-919 16)) . T) (((-350 (-486))) . T) (((-774)) . T)) -((((-486)) . T)) -((((-486)) . T)) +((((-921 16)) . T) (((-352 (-488))) . T) (((-776)) . T)) +((((-488)) . T)) +((((-488)) . T)) ((($) . T)) -((((-486)) . T) (($) . T) (((-350 (-486))) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) . T)) -((((-486)) . T) (($) . T) (((-350 (-486))) . T)) -((((-486)) . T) (($) . T) (((-350 (-486))) . T)) -((((-486)) . T) (((-350 (-486))) . T) (($) . T)) -((((-486)) . T) (((-350 (-486))) . T) (($) . T)) -((((-486) (-486)) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-475)) . T) (((-802 (-486))) . T) (((-330)) . T) (((-179)) . T)) -((((-350 (-486))) . T) (((-486)) . T)) -((((-486)) . T) (($) . T) (((-350 (-486))) . T)) -((((-486)) . T)) -((((-1075)) . T) (((-774)) . T)) +((((-488)) . T) (($) . T) (((-352 (-488))) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) . T)) +((((-488)) . T) (($) . T) (((-352 (-488))) . T)) +((((-488)) . T) (($) . T) (((-352 (-488))) . T)) +((((-488)) . T) (((-352 (-488))) . T) (($) . T)) +((((-488)) . T) (((-352 (-488))) . T) (($) . T)) +((((-488) (-488)) . T) (((-352 (-488)) (-352 (-488))) . T) (($ $) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-477)) . T) (((-804 (-488))) . T) (((-332)) . T) (((-181)) . T)) +((((-352 (-488))) . T) (((-488)) . T)) +((((-488)) . T) (($) . T) (((-352 (-488))) . T)) +((((-488)) . T)) +((((-1077)) . T) (((-776)) . T)) ((($) . T)) -((((-142 (-330))) . T) (((-179)) . T) (((-330)) . T)) -((((-350 (-486))) . T) (((-486)) . T)) -((($) . T) (((-350 (-486))) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) . T)) -((((-486)) . T) (($) . T) (((-350 (-486))) . T)) -((($) . T) (((-350 (-486))) . T)) -((($) . T) (((-350 (-486))) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) +((((-144 (-332))) . T) (((-181)) . T) (((-332)) . T)) +((((-352 (-488))) . T) (((-488)) . T)) +((($) . T) (((-352 (-488))) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) . T)) +((((-488)) . T) (($) . T) (((-352 (-488))) . T)) +((($) . T) (((-352 (-488))) . T)) +((($) . T) (((-352 (-488))) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488)) (-352 (-488))) . T) (($ $) . T)) ((($) . T)) -((($ $) . T) (((-552 $) $) . T)) -((((-350 (-486))) . T) (((-486)) . T) (((-552 $)) . T)) -((((-1041 (-486) (-552 $))) . T) (($) . T) (((-486)) . T) (((-350 (-486))) . T) (((-552 $)) . T)) -((((-774)) . T)) +((($ $) . T) (((-554 $) $) . T)) +((((-352 (-488))) . T) (((-488)) . T) (((-554 $)) . T)) +((((-1043 (-488) (-554 $))) . T) (($) . T) (((-488)) . T) (((-352 (-488))) . T) (((-554 $)) . T)) +((((-776)) . T)) (((|#1|) . T)) -(|has| |#1| (-758)) -(|has| |#1| (-758)) +(|has| |#1| (-760)) +(|has| |#1| (-760)) (((|#1|) . T)) -((((-475)) |has| |#1| (-555 (-475)))) -((((-486) |#1|) . T)) -((((-1148 (-486)) $) . T) (((-486) |#1|) . T)) -((((-486) |#1|) . T)) +((((-477)) |has| |#1| (-557 (-477)))) +((((-488) |#1|) . T)) +((((-1150 (-488)) $) . T) (((-488) |#1|) . T)) +((((-488) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) +(OR (|has| |#1| (-760)) (|has| |#1| (-1017))) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-760)) (|has| |#1| (-1017)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-760)) (|has| |#1| (-1017))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1017))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) (((|#1|) . T)) -(|has| |#1| (-1015)) +(|has| |#1| (-1017)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2| |#3|) . T)) ((((-85)) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-774)) . T)) +((((-776)) . T)) ((((-85)) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-486) (-85)) . T)) -((((-486) (-85)) . T)) -((((-486) (-85)) . T) (((-1148 (-486)) $) . T)) -((((-475)) . T)) +((((-488) (-85)) . T)) +((((-488) (-85)) . T)) +((((-488) (-85)) . T) (((-1150 (-488)) $) . T)) +((((-477)) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-1075)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-585 (-455 |#1| |#2|))) . T)) +((((-1077)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-587 (-457 |#1| |#2|))) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-774)) . T)) -((((-486)) . T)) -((((-585 (-455 |#1| |#2|))) . T)) +((((-776)) . T)) +((((-488)) . T)) +((((-587 (-457 |#1| |#2|))) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-774)) . T)) -((((-585 (-455 |#1| |#2|))) . T)) +((((-776)) . T)) +((((-587 (-457 |#1| |#2|))) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) -((((-774)) -12 (|has| |#1| (-1015)) (|has| |#2| (-1015)))) +(-12 (|has| |#1| (-1017)) (|has| |#2| (-1017))) +((((-776)) -12 (|has| |#1| (-1017)) (|has| |#2| (-1017)))) (((|#1| |#2|) . T)) -((((-585 (-455 |#1| |#2|))) . T)) +((((-587 (-457 |#1| |#2|))) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-774)) . T)) -((((-585 (-455 |#1| |#2|))) . T)) +((((-776)) . T)) +((((-587 (-457 |#1| |#2|))) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-774)) . T)) -((((-784 |#2| |#1|)) . T)) -((((-774)) . T)) +((((-776)) . T)) +((((-786 |#2| |#1|)) . T)) +((((-776)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-758)) -(|has| |#1| (-758)) +(|has| |#1| (-760)) +(|has| |#1| (-760)) (((|#1|) . T)) -((((-475)) |has| |#1| (-555 (-475)))) -((((-486) |#1|) . T)) -((((-1148 (-486)) $) . T) (((-486) |#1|) . T)) -((((-486) |#1|) . T)) +((((-477)) |has| |#1| (-557 (-477)))) +((((-488) |#1|) . T)) +((((-1150 (-488)) $) . T) (((-488) |#1|) . T)) +((((-488) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) +(OR (|has| |#1| (-760)) (|has| |#1| (-1017))) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-760)) (|has| |#1| (-1017)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-760)) (|has| |#1| (-1017))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-519 |#1|)) . T)) -((((-519 |#1|)) . T)) -((((-519 |#1|)) . T)) -((((-519 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) -((((-519 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) -((((-519 |#1|) (-519 |#1|)) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-519 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-519 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-774)) . T)) -((((-519 |#1|)) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) -((((-519 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-519 |#1|)) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-521 |#1|)) . T)) +((((-521 |#1|)) . T)) +((((-521 |#1|)) . T)) +((((-521 |#1|)) . T) (($) . T) (((-352 (-488))) . T)) +((((-521 |#1|)) . T) (($) . T) (((-352 (-488))) . T)) +((((-521 |#1|) (-521 |#1|)) . T) (($ $) . T) (((-352 (-488)) (-352 (-488))) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-521 |#1|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-521 |#1|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-776)) . T)) +((((-521 |#1|)) . T) (((-352 (-488))) . T) (((-488)) . T) (($) . T)) +((((-521 |#1|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-521 |#1|)) . T) (((-352 (-488))) . T) (($) . T) (((-488)) . T)) (|has| $ (-120)) ((($) . T)) -((((-519 |#1|)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-774)) . T)) -((((-585 (-455 (-696) |#1|))) . T)) -((((-696)) . T)) -((((-696) |#1|) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-517)) . T)) -((((-1017)) . T)) -((((-585 $)) . T) (((-1075)) . T) (((-1092)) . T) (((-486)) . T) (((-179)) . T) (((-774)) . T)) -((((-486) $) . T) (((-585 (-486)) $) . T)) -((((-774)) . T)) -((((-1075) (-1092) (-486) (-179) (-774)) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T)) +((((-521 |#1|)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-776)) . T)) +((((-587 (-457 (-698) |#1|))) . T)) +((((-698)) . T)) +((((-698) |#1|) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-519)) . T)) +((((-1019)) . T)) +((((-587 $)) . T) (((-1077)) . T) (((-1094)) . T) (((-488)) . T) (((-181)) . T) (((-776)) . T)) +((((-488) $) . T) (((-587 (-488)) $) . T)) +((((-776)) . T)) +((((-1077) (-1094) (-488) (-181) (-776)) . T)) +((((-776)) . T)) +((($) . T) (((-488)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -1735,278 +1739,278 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-486)) . T) (($) . T)) -((((-486)) . T)) -((($) . T) (((-486)) . T)) -((((-486)) . T)) -((((-475)) . T) (((-486)) . T) (((-802 (-486))) . T) (((-330)) . T) (((-179)) . T)) -((((-486)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-774)) . T)) +((((-488)) . T) (($) . T)) +((((-488)) . T)) +((($) . T) (((-488)) . T)) +((((-488)) . T)) +((((-477)) . T) (((-488)) . T) (((-804 (-488))) . T) (((-332)) . T) (((-181)) . T)) +((((-488)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-776)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) (((|#1| |#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-774)) . T)) -((((-486)) . T) (($) . T)) +((((-776)) . T)) +((((-488)) . T) (($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-486)) . T) (($) . T)) -((((-486)) . T)) +((((-488)) . T) (($) . T)) +((((-488)) . T)) (((|#1|) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) ((($) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T)) +((((-776)) . T)) +((($) . T) (((-488)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-486)) . T) (($) . T)) +((((-488)) . T) (($) . T)) (((|#1|) . T)) -((((-486)) . T)) +((((-488)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) (|has| $ (-120)) ((($) . T)) -((((-774)) . T)) +((((-776)) . T)) ((($) . T)) -((($) . T) (((-350 (-486))) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) . T)) -((($) . T) (((-350 (-486))) . T)) -((($) . T) (((-350 (-486))) . T)) -((($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-486)) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-350 (-486)) (-350 (-486))) . T)) -((((-350 (-486))) . T)) -((((-350 (-486))) . T)) -((((-774)) . T)) -((((-486)) . T) (((-350 (-486))) . T)) -((((-350 (-486))) . T)) -((((-350 (-486))) . T)) -((((-350 (-486))) . T)) -((((-1097)) . T)) -((((-1097)) . T)) -((((-1097)) . T) (((-774)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -(|has| |#1| (-15 * (|#1| (-486) |#1|))) -((((-774)) . T)) -((($) |has| |#1| (-15 * (|#1| (-486) |#1|)))) -(|has| |#1| (-15 * (|#1| (-486) |#1|))) -((($ $) . T) (((-486) |#1|) . T)) -((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) -((($ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) -((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) -(((|#1| (-486) (-996)) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T)) -((($) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T)) +((($) . T) (((-352 (-488))) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) . T)) +((($) . T) (((-352 (-488))) . T)) +((($) . T) (((-352 (-488))) . T)) +((($ $) . T) (((-352 (-488)) (-352 (-488))) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-488)) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-352 (-488)) (-352 (-488))) . T)) +((((-352 (-488))) . T)) +((((-352 (-488))) . T)) +((((-776)) . T)) +((((-488)) . T) (((-352 (-488))) . T)) +((((-352 (-488))) . T)) +((((-352 (-488))) . T)) +((((-352 (-488))) . T)) +((((-1099)) . T)) +((((-1099)) . T)) +((((-1099)) . T) (((-776)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +(|has| |#1| (-15 * (|#1| (-488) |#1|))) +((((-776)) . T)) +((($) |has| |#1| (-15 * (|#1| (-488) |#1|)))) +(|has| |#1| (-15 * (|#1| (-488) |#1|))) +((($ $) . T) (((-488) |#1|) . T)) +((((-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) +((($ (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) +((((-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) +(((|#1| (-488) (-998)) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T)) +((($) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-497))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-497)))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-497)))) -((((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-497)))) -(((|#1|) . T)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -((((-486)) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) -(((|#1| (-486)) . T)) -(((|#1| (-486)) . T)) -((($) |has| |#1| (-497))) -((($) |has| |#1| (-497))) -((($) |has| |#1| (-497))) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -((($) |has| |#1| (-497)) ((|#1|) . T)) -((($) |has| |#1| (-497)) ((|#1|) . T)) -((($ $) |has| |#1| (-497)) ((|#1| |#1|) . T)) -((($) |has| |#1| (-497)) (((-486)) . T)) +(OR (|has| |#1| (-148)) (|has| |#1| (-499))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T) (($) OR (|has| |#1| (-148)) (|has| |#1| (-499)))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T) (($) OR (|has| |#1| (-148)) (|has| |#1| (-499)))) +((((-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-148)) (|has| |#1| (-499)))) +(((|#1|) . T)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +((((-488)) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) |has| |#1| (-148)) (($) |has| |#1| (-499))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) |has| |#1| (-148)) (($) |has| |#1| (-499))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) |has| |#1| (-148)) (($) |has| |#1| (-499))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) |has| |#1| (-148)) (($) |has| |#1| (-499))) +(((|#1| (-488)) . T)) +(((|#1| (-488)) . T)) +((($) |has| |#1| (-499))) +((($) |has| |#1| (-499))) +((($) |has| |#1| (-499))) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +((($) |has| |#1| (-499)) ((|#1|) . T)) +((($) |has| |#1| (-499)) ((|#1|) . T)) +((($ $) |has| |#1| (-499)) ((|#1| |#1|) . T)) +((($) |has| |#1| (-499)) (((-488)) . T)) (((|#1|) . T) (($) . T)) -((((-774)) . T)) -(((|#1|) . T) (($) . T) (((-486)) . T)) -((((-1097)) . T)) -((((-1097)) . T)) -((((-1097)) . T) (((-774)) . T)) -((((-774)) . T)) +((((-776)) . T)) +(((|#1|) . T) (($) . T) (((-488)) . T)) +((((-1099)) . T)) +((((-1099)) . T)) +((((-1099)) . T) (((-776)) . T)) +((((-776)) . T)) (((|#1|) . T)) -((((-1097)) . T)) -((((-1132)) . T) (((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-486) |#1|) |has| |#2| (-361 |#1|))) -(((|#1|) OR (|has| |#2| (-316 |#1|)) (|has| |#2| (-361 |#1|)))) -(((|#1|) |has| |#2| (-361 |#1|))) +((((-1099)) . T)) +((((-1134)) . T) (((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-488) |#1|) |has| |#2| (-363 |#1|))) +(((|#1|) OR (|has| |#2| (-318 |#1|)) (|has| |#2| (-363 |#1|)))) +(((|#1|) |has| |#2| (-363 |#1|))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-774)) . T)) -(((|#1|) . T) (((-486)) . T)) +(((|#2|) . T) (((-776)) . T)) +(((|#1|) . T) (((-488)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) ((((-101)) . T)) ((((-101)) . T)) -((((-101)) . T) (((-774)) . T)) -((((-774)) . T)) -((((-101)) . T) (((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-101)) . T) (((-543)) . T)) -((((-101)) . T) (((-543)) . T)) -((((-101)) . T) (((-543)) . T) (((-774)) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) . T)) -((((-1075) |#1|) . T)) -((((-1075) |#1|) . T)) -((((-1075) |#1|) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) . T) ((|#1|) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) . T) ((|#1|) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) |has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -((((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) |has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -((((-1075) |#1|) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) . T)) -((((-1075) |#1|) . T)) -((((-774)) . T)) -((((-338) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) . T)) -((((-475)) |has| |#1| (-555 (-475))) (((-802 (-330))) |has| |#1| (-555 (-802 (-330)))) (((-802 (-486))) |has| |#1| (-555 (-802 (-486))))) -(((|#1|) . T)) -((((-774)) . T)) -((((-774)) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) +((((-101)) . T) (((-776)) . T)) +((((-776)) . T)) +((((-101)) . T) (((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-101)) . T) (((-545)) . T)) +((((-101)) . T) (((-545)) . T)) +((((-101)) . T) (((-545)) . T) (((-776)) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) . T)) +((((-1077) |#1|) . T)) +((((-1077) |#1|) . T)) +((((-1077) |#1|) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) . T) ((|#1|) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) . T) ((|#1|) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) |has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +((((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) |has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +((((-1077) |#1|) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) . T)) +((((-1077) |#1|) . T)) +((((-776)) . T)) +((((-340) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) . T)) +((((-477)) |has| |#1| (-557 (-477))) (((-804 (-332))) |has| |#1| (-557 (-804 (-332)))) (((-804 (-488))) |has| |#1| (-557 (-804 (-488))))) +(((|#1|) . T)) +((((-776)) . T)) +((((-776)) . T)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) (((|#2|) . T)) (((|#2|) . T)) -((((-774)) . T)) +((((-776)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) -(((|#2|) . T) (((-486)) . T) (($) . T)) +(((|#2|) . T) (((-488)) . T) (($) . T)) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-486)) . T)) +(((|#2|) . T) (((-488)) . T)) (((|#2|) . T)) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(|has| |#1| (-312)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(((|#2|) . T) (((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) |has| |#1| (-952 (-486))) ((|#1|) . T)) +(((|#2|) . T) (((-352 (-488))) |has| |#1| (-954 (-352 (-488)))) (((-488)) |has| |#1| (-954 (-488))) ((|#1|) . T)) (((|#1|) . T)) -((((-350 |#2|)) . T)) +((((-352 |#2|)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -(|has| |#2| (-190)) -(((|#2|) . T) (((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((|#1|) . T) (($) . T) (((-486)) . T)) +(|has| |#2| (-192)) +(((|#2|) . T) (((-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((|#1|) . T) (($) . T) (((-488)) . T)) ((($) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T)) -((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) -(OR (|has| |#2| (-190)) (|has| |#2| (-189))) +((((-776)) . T)) +((($) . T) (((-488)) . T)) +((($) OR (|has| |#2| (-192)) (|has| |#2| (-191)))) +(OR (|has| |#2| (-192)) (|has| |#2| (-191))) (((|#2|) . T)) -((($ (-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092))))) -((((-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092))))) -((((-1092)) |has| |#2| (-811 (-1092)))) +((($ (-1094)) OR (|has| |#2| (-813 (-1094))) (|has| |#2| (-815 (-1094))))) +((((-1094)) OR (|has| |#2| (-813 (-1094))) (|has| |#2| (-815 (-1094))))) +((((-1094)) |has| |#2| (-813 (-1094)))) (((|#2|) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-774)) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) . T)) -((((-774)) . T)) -((((-1075) (-51)) . T)) -((((-1075) (-51)) . T)) -((((-1092) (-51)) . T) (((-1075) (-51)) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) . T) (((-51)) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) . T) (((-51)) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) |has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))))) -((((-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) |has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))))) -((((-1075) (-51)) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) . T)) -((((-51)) . T) (((-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) . T)) -((((-1075) (-51)) . T)) -((((-486) |#1|) |has| |#2| (-361 |#1|))) -(((|#1|) OR (|has| |#2| (-316 |#1|)) (|has| |#2| (-361 |#1|)))) -(((|#1|) |has| |#2| (-361 |#1|))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-774)) . T)) -(((|#1|) . T) (((-486)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-776)) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) . T)) +((((-776)) . T)) +((((-1077) (-51)) . T)) +((((-1077) (-51)) . T)) +((((-1094) (-51)) . T) (((-1077) (-51)) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) . T) (((-51)) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) . T) (((-51)) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) |has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))))) +((((-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) |has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))))) +((((-1077) (-51)) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) . T)) +((((-51)) . T) (((-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) . T)) +((((-1077) (-51)) . T)) +((((-488) |#1|) |has| |#2| (-363 |#1|))) +(((|#1|) OR (|has| |#2| (-318 |#1|)) (|has| |#2| (-363 |#1|)))) +(((|#1|) |has| |#2| (-363 |#1|))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-776)) . T)) +(((|#1|) . T) (((-488)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-775 |#1|)) . T)) -((((-774)) . T)) -((((-585 (-455 |#1| (-579 |#2|)))) . T)) +((((-777 |#1|)) . T)) +((((-776)) . T)) +((((-587 (-457 |#1| (-581 |#2|)))) . T)) (((|#1|) . T)) -(((|#1| (-579 |#2|)) . T)) -((((-579 |#2|)) . T)) +(((|#1| (-581 |#2|)) . T)) +((((-581 |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-774)) . T)) -(((|#1|) . T) (((-486)) . T)) +((((-776)) . T)) +(((|#1|) . T) (((-488)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-581 |#1| |#2|) |#1|) . T)) +((((-583 |#1| |#2|) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-774)) . T)) -(((|#1|) . T) (((-486)) . T)) +((((-776)) . T)) +(((|#1|) . T) (((-488)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) @@ -2014,1046 +2018,1046 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-760)) (|has| |#1| (-1017))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-760)) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) (((|#1|) . T)) -(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) +(OR (|has| |#1| (-760)) (|has| |#1| (-1017))) (((|#1|) . T)) -((((-475)) |has| |#1| (-555 (-475)))) -((((-486) |#1|) . T)) -((((-1148 (-486)) $) . T) (((-486) |#1|) . T)) -((((-486) |#1|) . T)) +((((-477)) |has| |#1| (-557 (-477)))) +((((-488) |#1|) . T)) +((((-1150 (-488)) $) . T) (((-488) |#1|) . T)) +((((-488) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-758)) -(|has| |#1| (-758)) +(|has| |#1| (-760)) +(|has| |#1| (-760)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1097)) . T)) -(((|#1|) . T) (((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) +((((-1099)) . T)) +(((|#1|) . T) (((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-475)) |has| |#1| (-555 (-475)))) +((((-477)) |has| |#1| (-557 (-477)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1015)) +(|has| |#1| (-1017)) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-1017)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1017))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-774)) . T)) -(|has| |#1| (-716)) -(|has| |#1| (-716)) -(|has| |#1| (-716)) -(|has| |#1| (-716)) -(|has| |#1| (-716)) -(|has| |#1| (-716)) +((((-776)) . T)) +(|has| |#1| (-718)) +(|has| |#1| (-718)) +(|has| |#1| (-718)) +(|has| |#1| (-718)) +(|has| |#1| (-718)) +(|has| |#1| (-718)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-774)) . T)) -((((-486)) . T) ((|#2|) . T)) +((((-776)) . T)) +((((-488)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) |has| |#1| (-952 (-486))) ((|#1|) . T)) +((((-352 (-488))) |has| |#1| (-954 (-352 (-488)))) (((-488)) |has| |#1| (-954 (-488))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -((((-774)) . T)) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +((((-776)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-488)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((|#1|) . T) (((-486)) . T)) -(((|#1|) |has| |#1| (-146))) +((((-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((|#1|) . T) (((-488)) . T)) +(((|#1|) |has| |#1| (-148))) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) |has| |#1| (-952 (-486))) ((|#1|) . T)) +((((-352 (-488))) |has| |#1| (-954 (-352 (-488)))) (((-488)) |has| |#1| (-954 (-488))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -((((-774)) . T)) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +((((-776)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-488)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((|#1|) . T) (((-486)) . T)) -(((|#1|) |has| |#1| (-146))) +((((-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((|#1|) . T) (((-488)) . T)) +(((|#1|) |has| |#1| (-148))) (((|#1|) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) (((|#1|) . T)) -((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) |has| |#1| (-952 (-486))) ((|#1|) . T)) +((((-352 (-488))) |has| |#1| (-954 (-352 (-488)))) (((-488)) |has| |#1| (-954 (-488))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -((((-774)) . T)) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +((((-776)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-486)) . T) (($) . T)) +(((|#1|) . T) (((-488)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((|#1|) . T) (((-486)) . T)) -(((|#1|) |has| |#1| (-146))) +((((-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((|#1|) . T) (((-488)) . T)) +(((|#1|) |has| |#1| (-148))) (((|#1|) . T)) (((|#2|) . T)) -((((-616 |#1|)) . T)) -((((-616 |#1|)) . T)) -(((|#2| (-616 |#1|)) . T)) +((((-618 |#1|)) . T)) +((((-618 |#1|)) . T)) +(((|#2| (-618 |#1|)) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-774)) . T)) -((((-486)) . T) ((|#2|) . T)) +((((-776)) . T)) +((((-488)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-486) |#2|) . T)) +((((-488) |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-6 (-4000 "*")))) +(((|#2|) |has| |#2| (-6 (-4003 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-632 |#2|)) . T) (((-774)) . T)) -((($) . T) (((-486)) . T) ((|#2|) . T)) +((((-634 |#2|)) . T) (((-776)) . T)) +((($) . T) (((-488)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1092)) |has| |#2| (-811 (-1092)))) -((((-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092))))) -((($ (-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092))))) +((((-1094)) |has| |#2| (-813 (-1094)))) +((((-1094)) OR (|has| |#2| (-813 (-1094))) (|has| |#2| (-815 (-1094))))) +((($ (-1094)) OR (|has| |#2| (-813 (-1094))) (|has| |#2| (-815 (-1094))))) (((|#2|) . T)) -(OR (|has| |#2| (-190)) (|has| |#2| (-189))) -((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) -(|has| |#2| (-190)) +(OR (|has| |#2| (-192)) (|has| |#2| (-191))) +((($) OR (|has| |#2| (-192)) (|has| |#2| (-191)))) +(|has| |#2| (-192)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) -(((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) +((($) . T) ((|#2|) . T) (((-488)) |has| |#2| (-584 (-488)))) +(((|#2|) . T) (((-488)) |has| |#2| (-584 (-488)))) (((|#2|) . T)) -((((-486)) . T) ((|#2|) . T) (((-350 (-486))) |has| |#2| (-952 (-350 (-486))))) -(((|#2|) . T) (((-486)) |has| |#2| (-952 (-486))) (((-350 (-486))) |has| |#2| (-952 (-350 (-486))))) -(((|#1| |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) +((((-488)) . T) ((|#2|) . T) (((-352 (-488))) |has| |#2| (-954 (-352 (-488))))) +(((|#2|) . T) (((-488)) |has| |#2| (-954 (-488))) (((-352 (-488))) |has| |#2| (-954 (-352 (-488))))) +(((|#1| |#1| |#2| (-199 |#1| |#2|) (-199 |#1| |#2|)) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2| |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) +(((|#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) (((|#2|) . T)) -(((|#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) +(((|#1| |#2| (-199 |#1| |#2|) (-199 |#1| |#2|)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-774)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) +((((-776)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-774)) . T)) -((((-1097)) . T)) -((((-1132)) . T) (((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-475)) |has| |#1| (-555 (-475)))) -(((|#1| (-1181 |#1|) (-1181 |#1|)) . T)) +((((-776)) . T)) +((((-1099)) . T)) +((((-1134)) . T) (((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-477)) |has| |#1| (-557 (-477)))) +(((|#1| (-1183 |#1|) (-1183 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1015)) +(|has| |#1| (-1017)) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-1017)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1017))) (((|#1|) . T)) -(((|#1| (-1181 |#1|) (-1181 |#1|)) . T)) -((((-774)) . T)) +(((|#1| (-1183 |#1|) (-1183 |#1|)) . T)) +((((-776)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-774)) . T)) -((((-774)) . T)) -((($) . T) (((-350 (-486))) . T)) -((($) . T) (((-350 (-486))) . T)) -((($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) -((((-350 (-486))) . T) (((-486)) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (((-486)) . T) (($) . T)) -(|has| |#1| (-320)) +((((-776)) . T)) +((((-776)) . T)) +((($) . T) (((-352 (-488))) . T)) +((($) . T) (((-352 (-488))) . T)) +((($ $) . T) (((-352 (-488)) (-352 (-488))) . T)) +((((-352 (-488))) . T) (((-488)) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (((-488)) . T) (($) . T)) +(|has| |#1| (-322)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-774)) . T)) -((((-350 $) (-350 $)) |has| |#1| (-497)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-823))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -(OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -(OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -(|has| |#1| (-312)) -(((|#1| (-696) (-996)) . T)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (((-996)) . T)) -((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (($ (-996)) . T)) -((((-1092)) |has| |#1| (-811 (-1092))) (((-996)) . T)) -((((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-696)) . T)) +((((-776)) . T)) +((((-352 $) (-352 $)) |has| |#1| (-499)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-314)) +(OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-825))) +(OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +(OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +(OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +(|has| |#1| (-314)) +(((|#1| (-698) (-998)) . T)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +((((-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094)))) (((-998)) . T)) +((($ (-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094)))) (($ (-998)) . T)) +((((-1094)) |has| |#1| (-813 (-1094))) (((-998)) . T)) +((((-488)) |has| |#1| (-584 (-488))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-698)) . T)) (((|#1|) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -(((|#2|) . T) (((-486)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) (((-996)) . T) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486)))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) . T) (((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((((-486)) . T) (($) . T) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -(((|#1|) . T)) -((((-996)) . T) ((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) -(((|#1| (-696)) . T)) -((((-996) |#1|) . T) (((-996) $) . T) (($ $) . T)) +(((|#2|) . T) (((-488)) . T) (($) OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) (((-998)) . T) ((|#1|) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488)))))) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) . T) (((-488)) |has| |#1| (-584 (-488))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((((-488)) . T) (($) . T) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($ $) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1| |#1|) . T) (((-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +(((|#1|) . T)) +((((-998)) . T) ((|#1|) . T) (((-488)) |has| |#1| (-954 (-488))) (((-352 (-488))) |has| |#1| (-954 (-352 (-488))))) +(((|#1| (-698)) . T)) +((((-998) |#1|) . T) (((-998) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1068)) -(((|#1|) . T)) -((((-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) . T)) -((((-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) . T)) -((((-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) . T) (((-774)) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1| |#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) +(|has| |#1| (-1070)) +(((|#1|) . T)) +((((-2 (|:| -2405 |#1|) (|:| -2406 |#2|))) . T)) +((((-2 (|:| -2405 |#1|) (|:| -2406 |#2|))) . T)) +((((-2 (|:| -2405 |#1|) (|:| -2406 |#2|))) . T) (((-776)) . T)) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +(((|#1| |#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) (|has| |#1| (-118)) (|has| |#1| (-120)) (((|#2| |#2|) . T)) ((((-86)) . T) ((|#1|) . T)) -((((-86)) . T) ((|#1|) . T) (((-486)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T)) -((((-774)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-486)) . T)) -((((-486)) . T)) +((((-86)) . T) ((|#1|) . T) (((-488)) . T)) +(((|#1|) |has| |#1| (-148)) (($) . T)) +((((-776)) . T)) +(((|#1|) |has| |#1| (-148)) (($) . T) (((-488)) . T)) +((((-488)) . T)) ((($) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T)) -((((-774)) . T)) -((((-1024 |#1|)) . T) (((-774)) . T)) +((((-776)) . T)) +((($) . T) (((-488)) . T)) +((((-776)) . T)) +((((-1026 |#1|)) . T) (((-776)) . T)) (((|#1|) . T)) (((|#1| |#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-475)) |has| |#2| (-555 (-475))) (((-802 (-330))) |has| |#2| (-555 (-802 (-330)))) (((-802 (-486))) |has| |#2| (-555 (-802 (-486))))) +((((-477)) |has| |#2| (-557 (-477))) (((-804 (-332))) |has| |#2| (-557 (-804 (-332)))) (((-804 (-488))) |has| |#2| (-557 (-804 (-488))))) ((($) . T)) -(((|#2| (-471 (-775 |#1|))) . T)) +(((|#2| (-473 (-777 |#1|))) . T)) (((|#2|) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T)) +((((-776)) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) -((((-350 (-486)) (-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) +(OR (|has| |#2| (-148)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) . T) (($) OR (|has| |#2| (-148)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) . T) (($) OR (|has| |#2| (-148)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) +((((-352 (-488)) (-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-148)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) (((|#2|) . T)) -(OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) -(OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) -((((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823)))) -(((|#2| (-471 (-775 |#1|))) . T)) +(OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) +(OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) |has| |#2| (-148)) (($) OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) |has| |#2| (-148)) (($) OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) +((((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) |has| |#2| (-148)) (($) OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825)))) +(((|#2| (-473 (-777 |#1|))) . T)) (((|#2|) . T)) -((($) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486)))) ((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) -(((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) -(OR (|has| |#2| (-393)) (|has| |#2| (-823))) -((($ $) . T) (((-775 |#1|) $) . T) (((-775 |#1|) |#2|) . T)) -((((-775 |#1|)) . T)) -((($ (-775 |#1|)) . T)) -((((-775 |#1|)) . T)) -(|has| |#2| (-823)) -(|has| |#2| (-823)) -((((-350 (-486))) |has| |#2| (-952 (-350 (-486)))) (((-486)) |has| |#2| (-952 (-486))) ((|#2|) . T) (((-775 |#1|)) . T)) -((((-486)) . T) (((-350 (-486))) OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486))))) ((|#2|) . T) (($) OR (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) (((-775 |#1|)) . T)) -(((|#2| (-471 (-775 |#1|)) (-775 |#1|)) . T)) -(-12 (|has| |#1| (-320)) (|has| |#2| (-320))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1| |#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) +((($) . T) (((-352 (-488))) |has| |#2| (-38 (-352 (-488)))) ((|#2|) . T) (((-488)) |has| |#2| (-584 (-488)))) +(((|#2|) . T) (((-488)) |has| |#2| (-584 (-488)))) +(OR (|has| |#2| (-395)) (|has| |#2| (-825))) +((($ $) . T) (((-777 |#1|) $) . T) (((-777 |#1|) |#2|) . T)) +((((-777 |#1|)) . T)) +((($ (-777 |#1|)) . T)) +((((-777 |#1|)) . T)) +(|has| |#2| (-825)) +(|has| |#2| (-825)) +((((-352 (-488))) |has| |#2| (-954 (-352 (-488)))) (((-488)) |has| |#2| (-954 (-488))) ((|#2|) . T) (((-777 |#1|)) . T)) +((((-488)) . T) (((-352 (-488))) OR (|has| |#2| (-38 (-352 (-488)))) (|has| |#2| (-954 (-352 (-488))))) ((|#2|) . T) (($) OR (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) (((-777 |#1|)) . T)) +(((|#2| (-473 (-777 |#1|)) (-777 |#1|)) . T)) +(-12 (|has| |#1| (-322)) (|has| |#2| (-322))) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +(((|#1| |#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) (|has| |#1| (-118)) (|has| |#1| (-120)) (((|#1|) . T)) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) ((|#2|) . T) (((-486)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T)) -((((-774)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-486)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-488)) . T)) +(((|#1|) |has| |#1| (-148)) (($) . T)) +((((-776)) . T)) +(((|#1|) |has| |#1| (-148)) (($) . T) (((-488)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-774)) . T)) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-776)) . T)) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-475)) |has| |#1| (-555 (-475)))) +((((-477)) |has| |#1| (-557 (-477)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-774)) . T)) -((((-774)) . T)) -(((|#1| (-471 |#2|) |#2|) . T)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -((((-486)) -12 (|has| |#1| (-798 (-486))) (|has| |#2| (-798 (-486)))) (((-330)) -12 (|has| |#1| (-798 (-330))) (|has| |#2| (-798 (-330))))) +((((-776)) . T)) +((((-776)) . T)) +(((|#1| (-473 |#2|) |#2|) . T)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +((((-488)) -12 (|has| |#1| (-800 (-488))) (|has| |#2| (-800 (-488)))) (((-332)) -12 (|has| |#1| (-800 (-332))) (|has| |#2| (-800 (-332))))) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(OR (|has| |#1| (-393)) (|has| |#1| (-823))) -((((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T)) +(OR (|has| |#1| (-395)) (|has| |#1| (-825))) +((((-488)) |has| |#1| (-584 (-488))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-471 |#2|)) . T)) -(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(((|#1| (-473 |#2|)) . T)) +(OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +(OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) (((|#1|) . T)) -(OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((((-1041 |#1| |#2|)) . T) (((-859 |#1|)) |has| |#2| (-555 (-1092))) (((-774)) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -(((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (((-486)) . T) (($) . T)) -((((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (($) . T)) -((((-1041 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) (((-486)) . T)) -((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -(((|#1|) . T)) -((((-1041 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) -(((|#1| (-471 |#2|)) . T)) +((($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((((-1043 |#1| |#2|)) . T) (((-861 |#1|)) |has| |#2| (-557 (-1094))) (((-776)) . T)) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($ $) OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1| |#1|) . T) (((-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +(((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) (((-488)) . T) (($) . T)) +((((-488)) |has| |#1| (-584 (-488))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) (($) . T)) +((((-1043 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) (((-488)) . T)) +((($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +(((|#1|) . T)) +((((-1043 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-488)) |has| |#1| (-954 (-488))) (((-352 (-488))) |has| |#1| (-954 (-352 (-488))))) +(((|#1| (-473 |#2|)) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) ((($) . T)) -((((-859 |#1|)) |has| |#2| (-555 (-1092))) (((-1075)) -12 (|has| |#1| (-952 (-486))) (|has| |#2| (-555 (-1092)))) (((-802 (-486))) -12 (|has| |#1| (-555 (-802 (-486)))) (|has| |#2| (-555 (-802 (-486))))) (((-802 (-330))) -12 (|has| |#1| (-555 (-802 (-330)))) (|has| |#2| (-555 (-802 (-330))))) (((-475)) -12 (|has| |#1| (-555 (-475))) (|has| |#2| (-555 (-475))))) -(((|#1| (-471 |#2|) |#2|) . T)) +((((-861 |#1|)) |has| |#2| (-557 (-1094))) (((-1077)) -12 (|has| |#1| (-954 (-488))) (|has| |#2| (-557 (-1094)))) (((-804 (-488))) -12 (|has| |#1| (-557 (-804 (-488)))) (|has| |#2| (-557 (-804 (-488))))) (((-804 (-332))) -12 (|has| |#1| (-557 (-804 (-332)))) (|has| |#2| (-557 (-804 (-332))))) (((-477)) -12 (|has| |#1| (-557 (-477))) (|has| |#2| (-557 (-477))))) +(((|#1| (-473 |#2|) |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-1087 |#1|)) . T) (((-774)) . T)) -((((-350 $) (-350 $)) |has| |#1| (-497)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-823))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -(OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -(OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -(|has| |#1| (-312)) -(((|#1| (-696) (-996)) . T)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (((-996)) . T)) -((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (($ (-996)) . T)) -((((-1092)) |has| |#1| (-811 (-1092))) (((-996)) . T)) -((((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-696)) . T)) +((((-1089 |#1|)) . T) (((-776)) . T)) +((((-352 $) (-352 $)) |has| |#1| (-499)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-314)) +(OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-825))) +(OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +(OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +(OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +(|has| |#1| (-314)) +(((|#1| (-698) (-998)) . T)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +((((-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094)))) (((-998)) . T)) +((($ (-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094)))) (($ (-998)) . T)) +((((-1094)) |has| |#1| (-813 (-1094))) (((-998)) . T)) +((((-488)) |has| |#1| (-584 (-488))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-698)) . T)) (((|#1|) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((((-1087 |#1|)) . T) (((-486)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) (((-996)) . T) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486)))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) . T) (((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((((-486)) . T) (($) . T) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -(((|#1|) . T)) -((((-1087 |#1|)) . T) (((-996)) . T) ((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) -(((|#1| (-696)) . T)) -((((-996) |#1|) . T) (((-996) $) . T) (($ $) . T)) +((((-1089 |#1|)) . T) (((-488)) . T) (($) OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) (((-998)) . T) ((|#1|) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488)))))) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) . T) (((-488)) |has| |#1| (-584 (-488))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((((-488)) . T) (($) . T) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($ $) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1| |#1|) . T) (((-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +(((|#1|) . T)) +((((-1089 |#1|)) . T) (((-998)) . T) ((|#1|) . T) (((-488)) |has| |#1| (-954 (-488))) (((-352 (-488))) |has| |#1| (-954 (-352 (-488))))) +(((|#1| (-698)) . T)) +((((-998) |#1|) . T) (((-998) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1068)) +(|has| |#1| (-1070)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T) ((|#1|) . T)) +((((-776)) . T)) +((($) . T) (((-488)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -((((-475)) |has| |#1| (-555 (-475)))) -(|has| |#1| (-320)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1092) |#1|) |has| |#1| (-457 (-1092) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) -(((|#1|) |has| |#1| (-260 |#1|))) -(((|#1| $) |has| |#1| (-241 |#1| |#1|))) -((((-911 |#1|)) . T) ((|#1|) . T)) -((((-911 |#1|)) . T) (((-486)) . T) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| (-911 |#1|) (-952 (-350 (-486)))))) -((((-911 |#1|)) . T) ((|#1|) . T) (((-486)) OR (|has| |#1| (-952 (-486))) (|has| (-911 |#1|) (-952 (-486)))) (((-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| (-911 |#1|) (-952 (-350 (-486)))))) -(|has| |#1| (-758)) -(|has| |#1| (-758)) -(((|#1|) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) -(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) -(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)) (|has| |#2| (-963)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963)))) -((((-774)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-554 (-774))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) (((-1181 |#2|)) . T)) -(((|#2|) |has| |#2| (-963))) -((((-1092)) -12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963)))) -((((-1092)) OR (-12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963))) (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))))) -((($ (-1092)) OR (-12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963))) (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))))) -(((|#2|) |has| |#2| (-963))) -(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (-12 (|has| |#2| (-189)) (|has| |#2| (-963)))) -((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (-12 (|has| |#2| (-189)) (|has| |#2| (-963))))) -(|has| |#2| (-963)) -(|has| |#2| (-963)) -(|has| |#2| (-963)) -(|has| |#2| (-963)) -(|has| |#2| (-963)) -((((-486)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)) (|has| |#2| (-963))) (($) |has| |#2| (-963))) -(-12 (|has| |#2| (-190)) (|has| |#2| (-963))) -(|has| |#2| (-320)) +((((-477)) |has| |#1| (-557 (-477)))) +(|has| |#1| (-322)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1094) |#1|) |has| |#1| (-459 (-1094) |#1|)) ((|#1| |#1|) |has| |#1| (-262 |#1|))) +(((|#1|) |has| |#1| (-262 |#1|))) +(((|#1| $) |has| |#1| (-243 |#1| |#1|))) +((((-913 |#1|)) . T) ((|#1|) . T)) +((((-913 |#1|)) . T) (((-488)) . T) ((|#1|) . T) (((-352 (-488))) OR (|has| |#1| (-954 (-352 (-488)))) (|has| (-913 |#1|) (-954 (-352 (-488)))))) +((((-913 |#1|)) . T) ((|#1|) . T) (((-488)) OR (|has| |#1| (-954 (-488))) (|has| (-913 |#1|) (-954 (-488)))) (((-352 (-488))) OR (|has| |#1| (-954 (-352 (-488)))) (|has| (-913 |#1|) (-954 (-352 (-488)))))) +(|has| |#1| (-760)) +(|has| |#1| (-760)) +(((|#1|) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-965))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-721)) (|has| |#2| (-965))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-322)) (|has| |#2| (-667)) (|has| |#2| (-721)) (|has| |#2| (-760)) (|has| |#2| (-965)) (|has| |#2| (-1017))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-322)) (|has| |#2| (-667)) (|has| |#2| (-721)) (|has| |#2| (-760)) (|has| |#2| (-965)) (|has| |#2| (-1017))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-721)) (|has| |#2| (-965))) +(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-721)) (|has| |#2| (-965))) +(((|#2| |#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-965)))) +(((|#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-667)) (|has| |#2| (-965)))) +(((|#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-965)))) +((((-776)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-556 (-776))) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-322)) (|has| |#2| (-667)) (|has| |#2| (-721)) (|has| |#2| (-760)) (|has| |#2| (-965)) (|has| |#2| (-1017))) (((-1183 |#2|)) . T)) +(((|#2|) |has| |#2| (-965))) +((((-1094)) -12 (|has| |#2| (-813 (-1094))) (|has| |#2| (-965)))) +((((-1094)) OR (-12 (|has| |#2| (-813 (-1094))) (|has| |#2| (-965))) (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))))) +((($ (-1094)) OR (-12 (|has| |#2| (-813 (-1094))) (|has| |#2| (-965))) (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))))) +(((|#2|) |has| |#2| (-965))) +(OR (-12 (|has| |#2| (-192)) (|has| |#2| (-965))) (-12 (|has| |#2| (-191)) (|has| |#2| (-965)))) +((($) OR (-12 (|has| |#2| (-192)) (|has| |#2| (-965))) (-12 (|has| |#2| (-191)) (|has| |#2| (-965))))) +(|has| |#2| (-965)) +(|has| |#2| (-965)) +(|has| |#2| (-965)) +(|has| |#2| (-965)) +(|has| |#2| (-965)) +((((-488)) OR (|has| |#2| (-21)) (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-965))) ((|#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-667)) (|has| |#2| (-965))) (($) |has| |#2| (-965))) +(-12 (|has| |#2| (-192)) (|has| |#2| (-965))) +(|has| |#2| (-322)) (((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) +(((|#2| |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-963))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) (($) |has| |#2| (-963)) (((-486)) -12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963)))) -(((|#2|) |has| |#2| (-963)) (((-486)) -12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963)))) -(((|#2|) |has| |#2| (-1015))) -((((-486)) OR (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ((|#2|) |has| |#2| (-1015)) (((-350 (-486))) -12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015)))) -(((|#2|) |has| |#2| (-1015)) (((-486)) -12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (((-350 (-486))) -12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015)))) -((((-486) |#2|) . T)) -((((-486) |#2|) . T)) -((((-486) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)))) -(|has| |#2| (-719)) -(|has| |#2| (-719)) -(OR (|has| |#2| (-719)) (|has| |#2| (-758))) -(OR (|has| |#2| (-719)) (|has| |#2| (-758))) -(|has| |#2| (-719)) -(|has| |#2| (-719)) -(((|#2|) |has| |#2| (-312))) +(((|#2|) |has| |#2| (-965))) +(((|#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-965))) (($) |has| |#2| (-965)) (((-488)) -12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965)))) +(((|#2|) |has| |#2| (-965)) (((-488)) -12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965)))) +(((|#2|) |has| |#2| (-1017))) +((((-488)) OR (-12 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017))) (|has| |#2| (-965))) ((|#2|) |has| |#2| (-1017)) (((-352 (-488))) -12 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017)))) +(((|#2|) |has| |#2| (-1017)) (((-488)) -12 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017))) (((-352 (-488))) -12 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017)))) +((((-488) |#2|) . T)) +((((-488) |#2|) . T)) +((((-488) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-667)))) +(((|#2|) OR (|has| |#2| (-148)) (|has| |#2| (-314)))) +(|has| |#2| (-721)) +(|has| |#2| (-721)) +(OR (|has| |#2| (-721)) (|has| |#2| (-760))) +(OR (|has| |#2| (-721)) (|has| |#2| (-760))) +(|has| |#2| (-721)) +(|has| |#2| (-721)) +(((|#2|) |has| |#2| (-314))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-190)) (|has| |#1| (-189))) -((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) -((((-774)) . T)) -(|has| |#1| (-190)) +(OR (|has| |#1| (-192)) (|has| |#1| (-191))) +((($) OR (|has| |#1| (-192)) (|has| |#1| (-191)))) +((((-776)) . T)) +(|has| |#1| (-192)) ((($) . T)) -(((|#1| (-471 (-740 (-1092))) (-740 (-1092))) . T)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (((-740 (-1092))) . T)) -((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (($ (-740 (-1092))) . T)) -((((-1092)) |has| |#1| (-811 (-1092))) (((-740 (-1092))) . T)) -((($ $) . T) (((-1092) $) |has| |#1| (-190)) (((-1092) |#1|) |has| |#1| (-190)) (((-740 (-1092)) |#1|) . T) (((-740 (-1092)) $) . T)) -(OR (|has| |#1| (-393)) (|has| |#1| (-823))) -((((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-471 (-740 (-1092)))) . T)) -(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -(((|#1|) . T)) -(OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(((|#1| (-473 (-742 (-1094))) (-742 (-1094))) . T)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +((((-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094)))) (((-742 (-1094))) . T)) +((($ (-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094)))) (($ (-742 (-1094))) . T)) +((((-1094)) |has| |#1| (-813 (-1094))) (((-742 (-1094))) . T)) +((($ $) . T) (((-1094) $) |has| |#1| (-192)) (((-1094) |#1|) |has| |#1| (-192)) (((-742 (-1094)) |#1|) . T) (((-742 (-1094)) $) . T)) +(OR (|has| |#1| (-395)) (|has| |#1| (-825))) +((((-488)) |has| |#1| (-584 (-488))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-473 (-742 (-1094)))) . T)) +(OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +(OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +(((|#1|) . T)) +(OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) . T) (((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((((-486)) . T) (($) . T) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -(((|#1|) . T)) -(((|#1| (-471 (-740 (-1092)))) . T)) -((((-1041 |#1| (-1092))) . T) (((-740 (-1092))) . T) ((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-1092)) . T)) -((((-1041 |#1| (-1092))) . T) (((-486)) . T) (((-740 (-1092))) . T) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) (((-1092)) . T)) -(((|#1| (-1092) (-740 (-1092)) (-471 (-740 (-1092)))) . T)) -(|has| |#2| (-312)) -(|has| |#2| (-312)) -(|has| |#2| (-312)) -(|has| |#2| (-312)) -((((-350 (-486))) |has| |#2| (-312)) (($) |has| |#2| (-312))) -((((-350 (-486))) |has| |#2| (-312)) (($) |has| |#2| (-312))) -((((-350 (-486))) |has| |#2| (-312)) (($) |has| |#2| (-312))) -(|has| |#2| (-312)) -(|has| |#2| (-312)) -(|has| |#2| (-312)) -(|has| |#2| (-312)) -(|has| |#2| (-312)) +((($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) . T) (((-488)) |has| |#1| (-584 (-488))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((((-488)) . T) (($) . T) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($ $) OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1| |#1|) . T) (((-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +(((|#1|) . T)) +(((|#1| (-473 (-742 (-1094)))) . T)) +((((-1043 |#1| (-1094))) . T) (((-742 (-1094))) . T) ((|#1|) . T) (((-488)) |has| |#1| (-954 (-488))) (((-352 (-488))) |has| |#1| (-954 (-352 (-488)))) (((-1094)) . T)) +((((-1043 |#1| (-1094))) . T) (((-488)) . T) (((-742 (-1094))) . T) (($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) (((-1094)) . T)) +(((|#1| (-1094) (-742 (-1094)) (-473 (-742 (-1094)))) . T)) +(|has| |#2| (-314)) +(|has| |#2| (-314)) +(|has| |#2| (-314)) +(|has| |#2| (-314)) +((((-352 (-488))) |has| |#2| (-314)) (($) |has| |#2| (-314))) +((((-352 (-488))) |has| |#2| (-314)) (($) |has| |#2| (-314))) +((((-352 (-488))) |has| |#2| (-314)) (($) |has| |#2| (-314))) +(|has| |#2| (-314)) +(|has| |#2| (-314)) +(|has| |#2| (-314)) +(|has| |#2| (-314)) +(|has| |#2| (-314)) (((|#2|) . T)) ((($) . T)) -((((-350 (-486))) |has| |#2| (-312)) (($) |has| |#2| (-312)) ((|#2|) . T) (((-486)) . T)) -((((-350 (-486))) |has| |#2| (-312)) (($) . T)) -(((|#2|) . T) (((-774)) . T)) -((((-350 (-486))) |has| |#2| (-312)) (($) . T) (((-486)) . T)) -((((-350 (-486))) |has| |#2| (-312)) (($) . T)) -((((-350 (-486))) |has| |#2| (-312)) (($) . T)) -((((-350 (-486)) (-350 (-486))) |has| |#2| (-312)) (($ $) . T)) +((((-352 (-488))) |has| |#2| (-314)) (($) |has| |#2| (-314)) ((|#2|) . T) (((-488)) . T)) +((((-352 (-488))) |has| |#2| (-314)) (($) . T)) +(((|#2|) . T) (((-776)) . T)) +((((-352 (-488))) |has| |#2| (-314)) (($) . T) (((-488)) . T)) +((((-352 (-488))) |has| |#2| (-314)) (($) . T)) +((((-352 (-488))) |has| |#2| (-314)) (($) . T)) +((((-352 (-488)) (-352 (-488))) |has| |#2| (-314)) (($ $) . T)) ((($) . T)) -((((-774)) . T)) +((((-776)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-774)) . T)) +((((-776)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-190)) -((($) |has| |#1| (-190))) -(|has| |#1| (-190)) -(((|#2|) |has| |#2| (-146))) +(|has| |#1| (-192)) +((($) |has| |#1| (-192))) +(|has| |#1| (-192)) +(((|#2|) |has| |#2| (-148))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T) ((|#2|) . T)) +((((-776)) . T)) +((($) . T) (((-488)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-146))) -(((|#2|) |has| |#2| (-146))) -((((-486)) . T) ((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-148))) +(((|#2|) |has| |#2| (-148))) +((((-488)) . T) ((|#2|) |has| |#2| (-148))) (((|#2|) . T)) -(|has| |#1| (-757)) -((($) |has| |#1| (-757))) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(OR (|has| |#1| (-21)) (|has| |#1| (-757))) -(OR (|has| |#1| (-21)) (|has| |#1| (-757))) -(OR (|has| |#1| (-21)) (|has| |#1| (-757))) -((($) |has| |#1| (-757)) (((-486)) OR (|has| |#1| (-21)) (|has| |#1| (-757)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-757))) -((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) |has| |#1| (-952 (-486))) ((|#1|) . T)) -((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) OR (|has| |#1| (-757)) (|has| |#1| (-952 (-486)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-774)) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1| |#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) +(|has| |#1| (-759)) +((($) |has| |#1| (-759))) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(OR (|has| |#1| (-21)) (|has| |#1| (-759))) +(OR (|has| |#1| (-21)) (|has| |#1| (-759))) +(OR (|has| |#1| (-21)) (|has| |#1| (-759))) +((($) |has| |#1| (-759)) (((-488)) OR (|has| |#1| (-21)) (|has| |#1| (-759)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-759))) +((((-352 (-488))) |has| |#1| (-954 (-352 (-488)))) (((-488)) |has| |#1| (-954 (-488))) ((|#1|) . T)) +((((-352 (-488))) |has| |#1| (-954 (-352 (-488)))) (((-488)) OR (|has| |#1| (-759)) (|has| |#1| (-954 (-488)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-776)) . T)) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +(((|#1| |#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) (|has| |#1| (-118)) (|has| |#1| (-120)) (((|#1| |#1|) . T)) ((((-86)) . T) ((|#1|) . T)) -((((-86)) . T) ((|#1|) . T) (((-486)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T)) -((((-774)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-486)) . T)) -((((-774)) . T)) -((((-448)) . T)) -(|has| |#1| (-757)) -((($) |has| |#1| (-757))) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(OR (|has| |#1| (-21)) (|has| |#1| (-757))) -(OR (|has| |#1| (-21)) (|has| |#1| (-757))) -(OR (|has| |#1| (-21)) (|has| |#1| (-757))) -((($) |has| |#1| (-757)) (((-486)) OR (|has| |#1| (-21)) (|has| |#1| (-757)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-757))) -((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) |has| |#1| (-952 (-486))) ((|#1|) . T)) -((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) OR (|has| |#1| (-757)) (|has| |#1| (-952 (-486)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-774)) . T)) -(((|#1|) . T)) -((((-774)) |has| |#1| (-554 (-774))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-146))) +((((-86)) . T) ((|#1|) . T) (((-488)) . T)) +(((|#1|) |has| |#1| (-148)) (($) . T)) +((((-776)) . T)) +(((|#1|) |has| |#1| (-148)) (($) . T) (((-488)) . T)) +((((-776)) . T)) +((((-450)) . T)) +(|has| |#1| (-759)) +((($) |has| |#1| (-759))) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(OR (|has| |#1| (-21)) (|has| |#1| (-759))) +(OR (|has| |#1| (-21)) (|has| |#1| (-759))) +(OR (|has| |#1| (-21)) (|has| |#1| (-759))) +((($) |has| |#1| (-759)) (((-488)) OR (|has| |#1| (-21)) (|has| |#1| (-759)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-759))) +((((-352 (-488))) |has| |#1| (-954 (-352 (-488)))) (((-488)) |has| |#1| (-954 (-488))) ((|#1|) . T)) +((((-352 (-488))) |has| |#1| (-954 (-352 (-488)))) (((-488)) OR (|has| |#1| (-759)) (|has| |#1| (-954 (-488)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-776)) . T)) +(((|#1|) . T)) +((((-776)) |has| |#1| (-556 (-776))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-148))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T) ((|#1|) . T)) +((((-776)) . T)) +((($) . T) (((-488)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) (((|#1|) . T)) -((((-486)) . T) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) -(((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) +((((-488)) . T) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-954 (-352 (-488))))) +(((|#1|) . T) (((-488)) |has| |#1| (-954 (-488))) (((-352 (-488))) |has| |#1| (-954 (-352 (-488))))) (((|#1|) . T)) -(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-148))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T) ((|#2|) . T)) +((((-776)) . T)) +((($) . T) (((-488)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-146))) -(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-148))) +(((|#2|) |has| |#2| (-148))) (((|#2|) . T)) -((((-1178 |#1|)) . T) (((-486)) . T) ((|#2|) . T) (((-350 (-486))) |has| |#2| (-952 (-350 (-486))))) -(((|#2|) . T) (((-486)) |has| |#2| (-952 (-486))) (((-350 (-486))) |has| |#2| (-952 (-350 (-486))))) +((((-1180 |#1|)) . T) (((-488)) . T) ((|#2|) . T) (((-352 (-488))) |has| |#2| (-954 (-352 (-488))))) +(((|#2|) . T) (((-488)) |has| |#2| (-954 (-488))) (((-352 (-488))) |has| |#2| (-954 (-352 (-488))))) (((|#2|) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-802 (-486))) . T) (((-802 (-330))) . T) (((-475)) . T) (((-1092)) . T)) -((((-774)) . T)) -((((-774)) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1| |#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -((((-859 |#1|)) . T)) -(((|#1|) |has| |#1| (-146)) (((-859 |#1|)) . T) (((-486)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T)) -((((-859 |#1|)) . T) (((-774)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-486)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-804 (-488))) . T) (((-804 (-332))) . T) (((-477)) . T) (((-1094)) . T)) +((((-776)) . T)) +((((-776)) . T)) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +(((|#1| |#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +((((-861 |#1|)) . T)) +(((|#1|) |has| |#1| (-148)) (((-861 |#1|)) . T) (((-488)) . T)) +(((|#1|) |has| |#1| (-148)) (($) . T)) +((((-861 |#1|)) . T) (((-776)) . T)) +(((|#1|) |has| |#1| (-148)) (($) . T) (((-488)) . T)) ((($) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T)) +((((-776)) . T)) +((($) . T) (((-488)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-486)) . T) (($) . T)) -(((|#1|) . T)) -((((-774)) . T)) -((((-780 |#1|)) . T)) -((((-780 |#1|)) . T)) -((((-780 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) -((($) . T) (((-486)) . T) (((-780 |#1|)) . T) (((-350 (-486))) . T)) -((((-780 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) -((((-780 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) -((((-780 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-780 |#1|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-780 |#1|) (-780 |#1|)) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) -((((-780 |#1|)) . T)) -((((-780 |#1|)) . T)) -((((-1092) (-780 |#1|)) |has| (-780 |#1|) (-457 (-1092) (-780 |#1|))) (((-780 |#1|) (-780 |#1|)) |has| (-780 |#1|) (-260 (-780 |#1|)))) -((((-780 |#1|)) |has| (-780 |#1|) (-260 (-780 |#1|)))) -((((-780 |#1|) $) |has| (-780 |#1|) (-241 (-780 |#1|) (-780 |#1|)))) -((((-780 |#1|)) . T)) -((($) . T) (((-780 |#1|)) . T) (((-350 (-486))) . T)) -((((-780 |#1|)) . T)) -((((-780 |#1|)) . T)) -((((-780 |#1|)) . T)) -((((-486)) . T) (((-780 |#1|)) . T) (($) . T) (((-350 (-486))) . T)) -((((-780 |#1|)) . T)) -((((-780 |#1|)) . T)) -((((-774)) . T)) +((((-488)) . T) (($) . T)) +(((|#1|) . T)) +((((-776)) . T)) +((((-782 |#1|)) . T)) +((((-782 |#1|)) . T)) +((((-782 |#1|)) . T) (($) . T) (((-352 (-488))) . T)) +((($) . T) (((-488)) . T) (((-782 |#1|)) . T) (((-352 (-488))) . T)) +((((-782 |#1|)) . T) (($) . T) (((-352 (-488))) . T)) +((((-782 |#1|)) . T) (($) . T) (((-352 (-488))) . T)) +((((-782 |#1|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-782 |#1|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-782 |#1|) (-782 |#1|)) . T) (((-352 (-488)) (-352 (-488))) . T) (($ $) . T)) +((((-782 |#1|)) . T)) +((((-782 |#1|)) . T)) +((((-1094) (-782 |#1|)) |has| (-782 |#1|) (-459 (-1094) (-782 |#1|))) (((-782 |#1|) (-782 |#1|)) |has| (-782 |#1|) (-262 (-782 |#1|)))) +((((-782 |#1|)) |has| (-782 |#1|) (-262 (-782 |#1|)))) +((((-782 |#1|) $) |has| (-782 |#1|) (-243 (-782 |#1|) (-782 |#1|)))) +((((-782 |#1|)) . T)) +((($) . T) (((-782 |#1|)) . T) (((-352 (-488))) . T)) +((((-782 |#1|)) . T)) +((((-782 |#1|)) . T)) +((((-782 |#1|)) . T)) +((((-488)) . T) (((-782 |#1|)) . T) (($) . T) (((-352 (-488))) . T)) +((((-782 |#1|)) . T)) +((((-782 |#1|)) . T)) +((((-776)) . T)) (|has| |#2| (-118)) -(OR (|has| |#2| (-120)) (|has| |#2| (-742))) +(OR (|has| |#2| (-120)) (|has| |#2| (-744))) (((|#2|) . T)) -((((-1092)) |has| |#2| (-811 (-1092)))) -((((-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092))))) -((($ (-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092))))) +((((-1094)) |has| |#2| (-813 (-1094)))) +((((-1094)) OR (|has| |#2| (-813 (-1094))) (|has| |#2| (-815 (-1094))))) +((($ (-1094)) OR (|has| |#2| (-813 (-1094))) (|has| |#2| (-815 (-1094))))) (((|#2|) . T)) -(OR (|has| |#2| (-190)) (|has| |#2| (-189))) -((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) -(|has| |#2| (-190)) -(((|#2|) . T) (($) . T) (((-350 (-486))) . T)) -((($) . T) (((-486)) . T) ((|#2|) . T) (((-350 (-486))) . T)) -(((|#2|) . T) (($) . T) (((-350 (-486))) . T)) -(((|#2|) . T) (($) . T) (((-350 (-486))) . T)) -(((|#2|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#2|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#2| |#2|) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) +(OR (|has| |#2| (-192)) (|has| |#2| (-191))) +((($) OR (|has| |#2| (-192)) (|has| |#2| (-191)))) +(|has| |#2| (-192)) +(((|#2|) . T) (($) . T) (((-352 (-488))) . T)) +((($) . T) (((-488)) . T) ((|#2|) . T) (((-352 (-488))) . T)) +(((|#2|) . T) (($) . T) (((-352 (-488))) . T)) +(((|#2|) . T) (($) . T) (((-352 (-488))) . T)) +(((|#2|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#2|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#2| |#2|) . T) (((-352 (-488)) (-352 (-488))) . T) (($ $) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1092) |#2|) |has| |#2| (-457 (-1092) |#2|)) ((|#2| |#2|) |has| |#2| (-260 |#2|))) -(((|#2|) |has| |#2| (-260 |#2|))) -(((|#2| $) |has| |#2| (-241 |#2| |#2|))) +((((-1094) |#2|) |has| |#2| (-459 (-1094) |#2|)) ((|#2| |#2|) |has| |#2| (-262 |#2|))) +(((|#2|) |has| |#2| (-262 |#2|))) +(((|#2| $) |has| |#2| (-243 |#2| |#2|))) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-350 (-486))) . T) (((-486)) |has| |#2| (-582 (-486)))) -(((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) +((($) . T) ((|#2|) . T) (((-352 (-488))) . T) (((-488)) |has| |#2| (-584 (-488)))) +(((|#2|) . T) (((-488)) |has| |#2| (-584 (-488)))) (((|#2|) . T)) -((((-486)) |has| |#2| (-798 (-486))) (((-330)) |has| |#2| (-798 (-330)))) -(|has| |#2| (-742)) -(|has| |#2| (-742)) -(|has| |#2| (-742)) -(OR (|has| |#2| (-742)) (|has| |#2| (-758))) -(OR (|has| |#2| (-742)) (|has| |#2| (-758))) -(|has| |#2| (-742)) -(|has| |#2| (-742)) -(|has| |#2| (-742)) +((((-488)) |has| |#2| (-800 (-488))) (((-332)) |has| |#2| (-800 (-332)))) +(|has| |#2| (-744)) +(|has| |#2| (-744)) +(|has| |#2| (-744)) +(OR (|has| |#2| (-744)) (|has| |#2| (-760))) +(OR (|has| |#2| (-744)) (|has| |#2| (-760))) +(|has| |#2| (-744)) +(|has| |#2| (-744)) +(|has| |#2| (-744)) (((|#2|) . T)) -(|has| |#2| (-823)) -(|has| |#2| (-935)) -((((-475)) |has| |#2| (-555 (-475))) (((-802 (-486))) |has| |#2| (-555 (-802 (-486)))) (((-802 (-330))) |has| |#2| (-555 (-802 (-330)))) (((-330)) |has| |#2| (-935)) (((-179)) |has| |#2| (-935))) -((((-486)) . T) ((|#2|) . T) (($) . T) (((-350 (-486))) . T) (((-1092)) |has| |#2| (-952 (-1092)))) -((((-350 (-486))) |has| |#2| (-952 (-486))) (((-486)) |has| |#2| (-952 (-486))) (((-1092)) |has| |#2| (-952 (-1092))) ((|#2|) . T)) -(|has| |#2| (-1068)) +(|has| |#2| (-825)) +(|has| |#2| (-937)) +((((-477)) |has| |#2| (-557 (-477))) (((-804 (-488))) |has| |#2| (-557 (-804 (-488)))) (((-804 (-332))) |has| |#2| (-557 (-804 (-332)))) (((-332)) |has| |#2| (-937)) (((-181)) |has| |#2| (-937))) +((((-488)) . T) ((|#2|) . T) (($) . T) (((-352 (-488))) . T) (((-1094)) |has| |#2| (-954 (-1094)))) +((((-352 (-488))) |has| |#2| (-954 (-488))) (((-488)) |has| |#2| (-954 (-488))) (((-1094)) |has| |#2| (-954 (-1094))) ((|#2|) . T)) +(|has| |#2| (-1070)) (((|#2|) . T)) -(-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) -(-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) -((((-774)) OR (-12 (|has| |#1| (-554 (-774))) (|has| |#2| (-554 (-774)))) (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))))) +(-12 (|has| |#1| (-1017)) (|has| |#2| (-1017))) +(-12 (|has| |#1| (-1017)) (|has| |#2| (-1017))) +((((-776)) OR (-12 (|has| |#1| (-556 (-776))) (|has| |#2| (-556 (-776)))) (-12 (|has| |#1| (-1017)) (|has| |#2| (-1017))))) ((((-130)) . T)) -((((-774)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-1092)) . T) ((|#1|) . T)) -((((-1092)) . T) ((|#1|) . T)) -((((-774)) . T)) -((((-616 |#1|)) . T)) -((((-616 |#1|)) . T)) -((((-774)) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) -((((-1118 |#1|)) . T) (((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1|) . T)) -(|has| |#1| (-1015)) +((((-776)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-1094)) . T) ((|#1|) . T)) +((((-1094)) . T) ((|#1|) . T)) +((((-776)) . T)) +((((-618 |#1|)) . T)) +((((-618 |#1|)) . T)) +((((-776)) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1017))) +((((-1120 |#1|)) . T) (((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1|) . T)) +(|has| |#1| (-1017)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -((((-774)) . T)) -(OR (|has| |#1| (-320)) (|has| |#1| (-758))) -(OR (|has| |#1| (-320)) (|has| |#1| (-758))) +((((-776)) . T)) +(OR (|has| |#1| (-322)) (|has| |#1| (-760))) +(OR (|has| |#1| (-322)) (|has| |#1| (-760))) (((|#1|) . T)) -((((-774)) . T)) -((((-486)) . T)) +((((-776)) . T)) +((((-488)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) (|has| $ (-120)) ((($) . T)) -((((-774)) . T)) +((((-776)) . T)) ((($) . T)) -((($) . T) (((-350 (-486))) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) . T)) -((($) . T) (((-350 (-486))) . T)) -((($) . T) (((-350 (-486))) . T)) -((($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-350 (-486))) . T) (($) . T)) -((((-486)) . T) (((-350 (-486))) . T) (($) . T)) -((((-774)) . T)) -(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-486))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-486)) (-350 (-486))) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-585 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-758)) -(|has| |#1| (-758)) -(((|#1|) . T)) -((((-475)) |has| |#1| (-555 (-475)))) -((((-486) |#1|) . T)) -((((-1148 (-486)) $) . T) (((-486) |#1|) . T)) -((((-486) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) -(((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-475)) |has| |#1| (-555 (-475))) (((-802 (-330))) |has| |#1| (-555 (-802 (-330)))) (((-802 (-486))) |has| |#1| (-555 (-802 (-486))))) +((($) . T) (((-352 (-488))) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) . T)) +((($) . T) (((-352 (-488))) . T)) +((($) . T) (((-352 (-488))) . T)) +((($ $) . T) (((-352 (-488)) (-352 (-488))) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-352 (-488))) . T) (($) . T)) +((((-488)) . T) (((-352 (-488))) . T) (($) . T)) +((((-776)) . T)) +(((|#1|) . T) (($) . T) (((-352 (-488))) . T)) +(((|#1|) . T) (($) . T) (((-352 (-488))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-352 (-488)) (-352 (-488))) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (((-488)) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (((-488)) . T) (($) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-587 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-760)) +(|has| |#1| (-760)) +(((|#1|) . T)) +((((-477)) |has| |#1| (-557 (-477)))) +((((-488) |#1|) . T)) +((((-1150 (-488)) $) . T) (((-488) |#1|) . T)) +((((-488) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-760)) (|has| |#1| (-1017))) +(((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-760)) (|has| |#1| (-1017)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-760)) (|has| |#1| (-1017))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-477)) |has| |#1| (-557 (-477))) (((-804 (-332))) |has| |#1| (-557 (-804 (-332)))) (((-804 (-488))) |has| |#1| (-557 (-804 (-488))))) ((($) . T)) -(((|#1| (-471 (-1092))) . T)) +(((|#1| (-473 (-1094))) . T)) (((|#1|) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T)) +((((-776)) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) -((((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) -(((|#1|) . T)) -(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) -(((|#1| (-471 (-1092))) . T)) -(((|#1|) . T)) -((($) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) -(((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) -(OR (|has| |#1| (-393)) (|has| |#1| (-823))) -((($ $) . T) (((-1092) $) . T) (((-1092) |#1|) . T)) -((((-1092)) . T)) -((($ (-1092)) . T)) -((((-1092)) . T)) -((((-330)) |has| |#1| (-798 (-330))) (((-486)) |has| |#1| (-798 (-486)))) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) |has| |#1| (-952 (-486))) ((|#1|) . T) (((-1092)) . T)) -((((-486)) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ((|#1|) . T) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) (((-1092)) . T)) -(((|#1| (-471 (-1092)) (-1092)) . T)) -((((-1035)) . T) (((-774)) . T)) +(OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T) (($) OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825)))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T) (($) OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825)))) +((((-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825)))) +(((|#1|) . T)) +(OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +(OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) |has| |#1| (-148)) (($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825)))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) |has| |#1| (-148)) (($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825)))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) |has| |#1| (-148)) (($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825)))) +(((|#1| (-473 (-1094))) . T)) +(((|#1|) . T)) +((($) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T) (((-488)) |has| |#1| (-584 (-488)))) +(((|#1|) . T) (((-488)) |has| |#1| (-584 (-488)))) +(OR (|has| |#1| (-395)) (|has| |#1| (-825))) +((($ $) . T) (((-1094) $) . T) (((-1094) |#1|) . T)) +((((-1094)) . T)) +((($ (-1094)) . T)) +((((-1094)) . T)) +((((-332)) |has| |#1| (-800 (-332))) (((-488)) |has| |#1| (-800 (-488)))) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +((((-352 (-488))) |has| |#1| (-954 (-352 (-488)))) (((-488)) |has| |#1| (-954 (-488))) ((|#1|) . T) (((-1094)) . T)) +((((-488)) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) ((|#1|) . T) (($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) (((-1094)) . T)) +(((|#1| (-473 (-1094)) (-1094)) . T)) +((((-1037)) . T) (((-776)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) (((|#1|) . T)) -(OR (|has| |#1| (-146)) (|has| |#1| (-497))) +(OR (|has| |#1| (-148)) (|has| |#1| (-499))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((((-774)) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -(((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (((-486)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (($) . T)) -((($) |has| |#1| (-497)) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) (((-486)) . T)) -((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -(((|#1|) . T)) -(((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) +((($) |has| |#1| (-499)) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) |has| |#1| (-499)) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((((-776)) . T)) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-499))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-499))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($ $) OR (|has| |#1| (-148)) (|has| |#1| (-499))) ((|#1| |#1|) . T) (((-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +(((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) (((-488)) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) (($) . T)) +((($) |has| |#1| (-499)) ((|#1|) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) (((-488)) . T)) +((($) |has| |#1| (-499)) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +(((|#1|) . T)) +(((|#1|) . T) (((-488)) |has| |#1| (-954 (-488))) (((-352 (-488))) |has| |#1| (-954 (-352 (-488))))) (((|#1| |#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-758)) -(|has| |#1| (-758)) +(|has| |#1| (-760)) +(|has| |#1| (-760)) (((|#1|) . T)) -((((-475)) |has| |#1| (-555 (-475)))) -((((-486) |#1|) . T)) -((((-1148 (-486)) $) . T) (((-486) |#1|) . T)) -((((-486) |#1|) . T)) +((((-477)) |has| |#1| (-557 (-477)))) +((((-488) |#1|) . T)) +((((-1150 (-488)) $) . T) (((-488) |#1|) . T)) +((((-488) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) +(OR (|has| |#1| (-760)) (|has| |#1| (-1017))) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-760)) (|has| |#1| (-1017)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-760)) (|has| |#1| (-1017))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-719)) (|has| |#2| (-719))) -(-12 (|has| |#1| (-719)) (|has| |#2| (-719))) -(OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) -(OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) -(-12 (|has| |#1| (-719)) (|has| |#2| (-719))) -(-12 (|has| |#1| (-719)) (|has| |#2| (-719))) -((((-486)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) +(-12 (|has| |#1| (-721)) (|has| |#2| (-721))) +(-12 (|has| |#1| (-721)) (|has| |#2| (-721))) +(OR (-12 (|has| |#1| (-721)) (|has| |#2| (-721))) (-12 (|has| |#1| (-760)) (|has| |#2| (-760)))) +(OR (-12 (|has| |#1| (-721)) (|has| |#2| (-721))) (-12 (|has| |#1| (-760)) (|has| |#2| (-760)))) +(-12 (|has| |#1| (-721)) (|has| |#2| (-721))) +(-12 (|has| |#1| (-721)) (|has| |#2| (-721))) +((((-488)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -(-12 (|has| |#1| (-414)) (|has| |#2| (-414))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) -(OR (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) -(OR (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) -(-12 (|has| |#1| (-320)) (|has| |#2| (-320))) -((((-774)) . T)) -((((-774)) . T)) -(((|#1|) . T)) -((((-774)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-585 (-832))) . T) (((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-197 |#1| |#2|) |#2|) . T)) -((((-774)) . T)) -((((-486)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-774)) . T)) +(-12 (|has| |#1| (-416)) (|has| |#2| (-416))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))) +(OR (-12 (|has| |#1| (-416)) (|has| |#2| (-416))) (-12 (|has| |#1| (-667)) (|has| |#2| (-667)))) +(OR (-12 (|has| |#1| (-416)) (|has| |#2| (-416))) (-12 (|has| |#1| (-667)) (|has| |#2| (-667)))) +(-12 (|has| |#1| (-322)) (|has| |#2| (-322))) +((((-776)) . T)) +((((-776)) . T)) +(((|#1|) . T)) +((((-776)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-587 (-834))) . T) (((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-199 |#1| |#2|) |#2|) . T)) +((((-776)) . T)) +((((-488)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-776)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -((((-475)) |has| |#1| (-555 (-475)))) -(((|#1|) . T)) -((((-1092)) |has| |#1| (-811 (-1092)))) -((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092))))) -((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092))))) -(((|#1|) . T)) -(OR (|has| |#1| (-190)) (|has| |#1| (-189))) -((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) -(|has| |#1| (-190)) -(|has| |#1| (-312)) -(OR (|has| |#1| (-246)) (|has| |#1| (-312))) -((((-486)) . T) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-952 (-350 (-486)))))) -(((|#1|) . T) (((-350 (-486))) |has| |#1| (-312))) -(((|#1|) . T) (((-350 (-486))) |has| |#1| (-312))) -((($) . T) (((-486)) . T) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-312))) -(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-486))) |has| |#1| (-312))) -(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-486))) |has| |#1| (-312))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-486)) (-350 (-486))) |has| |#1| (-312))) -(((|#1|) . T) (((-350 (-486))) |has| |#1| (-312))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1092) |#1|) |has| |#1| (-457 (-1092) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) -(((|#1|) |has| |#1| (-260 |#1|))) -(((|#1| $) |has| |#1| (-241 |#1| |#1|))) -(((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-312)) (((-486)) |has| |#1| (-582 (-486)))) -(((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) -(((|#1|) . T)) -(((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) -(|has| |#1| (-758)) -(|has| |#1| (-758)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1|) . T)) -(|has| |#1| (-1015)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-350 |#2|) |#3|) . T)) -((((-350 (-486))) |has| (-350 |#2|) (-952 (-350 (-486)))) (((-486)) |has| (-350 |#2|) (-952 (-486))) (((-350 |#2|)) . T)) -((((-350 |#2|)) . T)) -((((-486)) |has| (-350 |#2|) (-582 (-486))) (((-350 |#2|)) . T)) -((((-350 |#2|)) . T)) -((((-350 |#2|) |#3|) . T)) -(|has| (-350 |#2|) (-120)) -((((-350 |#2|) |#3|) . T)) -(|has| (-350 |#2|) (-118)) -((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) -(|has| (-350 |#2|) (-190)) -((($) OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189)))) -(OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189))) -((((-350 |#2|)) . T)) -((($ (-1092)) OR (|has| (-350 |#2|) (-811 (-1092))) (|has| (-350 |#2|) (-813 (-1092))))) -((((-1092)) OR (|has| (-350 |#2|) (-811 (-1092))) (|has| (-350 |#2|) (-813 (-1092))))) -((((-1092)) |has| (-350 |#2|) (-811 (-1092)))) -((((-350 |#2|)) . T)) +((((-477)) |has| |#1| (-557 (-477)))) +(((|#1|) . T)) +((((-1094)) |has| |#1| (-813 (-1094)))) +((((-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094))))) +((($ (-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094))))) +(((|#1|) . T)) +(OR (|has| |#1| (-192)) (|has| |#1| (-191))) +((($) OR (|has| |#1| (-192)) (|has| |#1| (-191)))) +(|has| |#1| (-192)) +(|has| |#1| (-314)) +(OR (|has| |#1| (-248)) (|has| |#1| (-314))) +((((-488)) . T) ((|#1|) . T) (((-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-954 (-352 (-488)))))) +(((|#1|) . T) (((-352 (-488))) |has| |#1| (-314))) +(((|#1|) . T) (((-352 (-488))) |has| |#1| (-314))) +((($) . T) (((-488)) . T) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-314))) +(((|#1|) . T) (($) OR (|has| |#1| (-248)) (|has| |#1| (-314))) (((-352 (-488))) |has| |#1| (-314))) +(((|#1|) . T) (($) OR (|has| |#1| (-248)) (|has| |#1| (-314))) (((-352 (-488))) |has| |#1| (-314))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-248)) (|has| |#1| (-314))) (((-352 (-488)) (-352 (-488))) |has| |#1| (-314))) +(((|#1|) . T) (((-352 (-488))) |has| |#1| (-314))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1094) |#1|) |has| |#1| (-459 (-1094) |#1|)) ((|#1| |#1|) |has| |#1| (-262 |#1|))) +(((|#1|) |has| |#1| (-262 |#1|))) +(((|#1| $) |has| |#1| (-243 |#1| |#1|))) +(((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-314)) (((-488)) |has| |#1| (-584 (-488)))) +(((|#1|) . T) (((-488)) |has| |#1| (-584 (-488)))) +(((|#1|) . T)) +(((|#1|) . T) (((-488)) |has| |#1| (-954 (-488))) (((-352 (-488))) |has| |#1| (-954 (-352 (-488))))) +(|has| |#1| (-760)) +(|has| |#1| (-760)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1017))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1|) . T)) +(|has| |#1| (-1017)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-352 |#2|) |#3|) . T)) +((((-352 (-488))) |has| (-352 |#2|) (-954 (-352 (-488)))) (((-488)) |has| (-352 |#2|) (-954 (-488))) (((-352 |#2|)) . T)) +((((-352 |#2|)) . T)) +((((-488)) |has| (-352 |#2|) (-584 (-488))) (((-352 |#2|)) . T)) +((((-352 |#2|)) . T)) +((((-352 |#2|) |#3|) . T)) +(|has| (-352 |#2|) (-120)) +((((-352 |#2|) |#3|) . T)) +(|has| (-352 |#2|) (-118)) +((((-352 |#2|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-352 |#2|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-352 |#2|)) . T) (((-352 (-488))) . T) (($) . T)) +(|has| (-352 |#2|) (-192)) +((($) OR (|has| (-352 |#2|) (-192)) (|has| (-352 |#2|) (-191)))) +(OR (|has| (-352 |#2|) (-192)) (|has| (-352 |#2|) (-191))) +((((-352 |#2|)) . T)) +((($ (-1094)) OR (|has| (-352 |#2|) (-813 (-1094))) (|has| (-352 |#2|) (-815 (-1094))))) +((((-1094)) OR (|has| (-352 |#2|) (-813 (-1094))) (|has| (-352 |#2|) (-815 (-1094))))) +((((-1094)) |has| (-352 |#2|) (-813 (-1094)))) +((((-352 |#2|)) . T)) (((|#3|) . T)) -((((-350 |#2|) (-350 |#2|)) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) -((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-774)) . T)) -((((-350 |#2|)) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) -((((-486)) |has| (-350 |#2|) (-582 (-486))) (((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-486))) . T) (($) . T) (((-486)) . T)) +((((-352 |#2|) (-352 |#2|)) . T) (((-352 (-488)) (-352 (-488))) . T) (($ $) . T)) +((((-352 |#2|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-352 |#2|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-776)) . T)) +((((-352 |#2|)) . T) (((-352 (-488))) . T) (((-488)) . T) (($) . T)) +((((-488)) |has| (-352 |#2|) (-584 (-488))) (((-352 |#2|)) . T) (((-352 (-488))) . T) (($) . T)) +((((-352 |#2|)) . T) (((-352 (-488))) . T) (($) . T) (((-488)) . T)) (((|#1| |#2| |#3|) . T)) -((((-350 (-486))) . T) (((-774)) . T)) -((((-486)) . T)) -((((-486)) . T)) +((((-352 (-488))) . T) (((-776)) . T)) +((((-488)) . T)) +((((-488)) . T)) ((($) . T)) -((((-486)) . T) (($) . T) (((-350 (-486))) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) . T)) -((((-486)) . T) (($) . T) (((-350 (-486))) . T)) -((((-486)) . T) (($) . T) (((-350 (-486))) . T)) -((((-486)) . T) (((-350 (-486))) . T) (($) . T)) -((((-486)) . T) (((-350 (-486))) . T) (($) . T)) -((((-486) (-486)) . T) (((-350 (-486)) (-350 (-486))) . T) (($ $) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-486)) . T)) -((((-475)) . T) (((-802 (-486))) . T) (((-330)) . T) (((-179)) . T)) -((((-350 (-486))) . T) (((-486)) . T)) -((((-486)) . T) (($) . T) (((-350 (-486))) . T)) -((((-486)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-774)) . T)) -(((|#1|) . T) (($) . T) (((-486)) . T) (((-350 (-486))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-486))) . T) (((-486)) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) -(((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) . T) (((-486) (-486)) . T) (($ $) . T)) -(((|#1|) . T) (((-486)) . T) (((-350 (-486))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T) (((-486)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) . T)) -(((|#1|) . T) (((-486)) OR (|has| |#1| (-952 (-486))) (|has| (-350 (-486)) (-952 (-486)))) (((-350 (-486))) . T)) -((((-774)) . T)) +((((-488)) . T) (($) . T) (((-352 (-488))) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) . T)) +((((-488)) . T) (($) . T) (((-352 (-488))) . T)) +((((-488)) . T) (($) . T) (((-352 (-488))) . T)) +((((-488)) . T) (((-352 (-488))) . T) (($) . T)) +((((-488)) . T) (((-352 (-488))) . T) (($) . T)) +((((-488) (-488)) . T) (((-352 (-488)) (-352 (-488))) . T) (($ $) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-488)) . T)) +((((-477)) . T) (((-804 (-488))) . T) (((-332)) . T) (((-181)) . T)) +((((-352 (-488))) . T) (((-488)) . T)) +((((-488)) . T) (($) . T) (((-352 (-488))) . T)) +((((-488)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-776)) . T)) +(((|#1|) . T) (($) . T) (((-488)) . T) (((-352 (-488))) . T)) +(((|#1|) . T) (($) . T) (((-352 (-488))) . T) (((-488)) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (((-488)) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (((-488)) . T) (($) . T)) +(((|#1| |#1|) . T) (((-352 (-488)) (-352 (-488))) . T) (((-488) (-488)) . T) (($ $) . T)) +(((|#1|) . T) (((-488)) . T) (((-352 (-488))) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (((-488)) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (((-488)) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T) (((-488)) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) . T)) +(((|#1|) . T) (((-488)) OR (|has| |#1| (-954 (-488))) (|has| (-352 (-488)) (-954 (-488)))) (((-352 (-488))) . T)) +((((-776)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) (((|#4|) . T)) -((((-585 |#4|)) . T) (((-774)) . T)) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +((((-587 |#4|)) . T) (((-776)) . T)) +(((|#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017)))) +(((|#4| |#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017)))) (((|#4|) . T)) (((|#4|) . T)) -((((-475)) |has| |#4| (-555 (-475)))) +((((-477)) |has| |#4| (-557 (-477)))) (((|#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) @@ -3063,49 +3067,49 @@ (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-774)) . T)) -(((|#1|) . T) (((-486)) . T) (($) . T)) +((((-776)) . T)) +(((|#1|) . T) (((-488)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-486)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -(((|#1| (-471 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|))) . T)) -((((-705 |#1| (-775 |#2|))) . T)) -((((-705 |#1| (-775 |#2|))) . T)) -((((-585 (-705 |#1| (-775 |#2|)))) . T) (((-774)) . T)) -((((-705 |#1| (-775 |#2|))) |has| (-705 |#1| (-775 |#2|)) (-260 (-705 |#1| (-775 |#2|))))) -((((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) |has| (-705 |#1| (-775 |#2|)) (-260 (-705 |#1| (-775 |#2|))))) -((((-705 |#1| (-775 |#2|))) . T)) -((((-705 |#1| (-775 |#2|))) . T)) -((((-475)) |has| (-705 |#1| (-775 |#2|)) (-555 (-475)))) -((((-705 |#1| (-775 |#2|))) . T)) -(((|#1| (-471 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|))) . T)) -(((|#1| (-471 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|))) . T)) -((((-475)) |has| |#3| (-555 (-475)))) -(((|#3|) |has| |#3| (-312))) +(((|#1|) . T) (((-488)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +(((|#1| (-473 (-777 |#2|)) (-777 |#2|) (-707 |#1| (-777 |#2|))) . T)) +((((-707 |#1| (-777 |#2|))) . T)) +((((-707 |#1| (-777 |#2|))) . T)) +((((-587 (-707 |#1| (-777 |#2|)))) . T) (((-776)) . T)) +((((-707 |#1| (-777 |#2|))) |has| (-707 |#1| (-777 |#2|)) (-262 (-707 |#1| (-777 |#2|))))) +((((-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|))) |has| (-707 |#1| (-777 |#2|)) (-262 (-707 |#1| (-777 |#2|))))) +((((-707 |#1| (-777 |#2|))) . T)) +((((-707 |#1| (-777 |#2|))) . T)) +((((-477)) |has| (-707 |#1| (-777 |#2|)) (-557 (-477)))) +((((-707 |#1| (-777 |#2|))) . T)) +(((|#1| (-473 (-777 |#2|)) (-777 |#2|) (-707 |#1| (-777 |#2|))) . T)) +(((|#1| (-473 (-777 |#2|)) (-777 |#2|) (-707 |#1| (-777 |#2|))) . T)) +((((-477)) |has| |#3| (-557 (-477)))) +(((|#3|) |has| |#3| (-314))) (((|#3| |#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-632 |#3|)) . T) (((-774)) . T)) -((((-486)) . T) ((|#3|) . T)) +((((-634 |#3|)) . T) (((-776)) . T)) +((((-488)) . T) ((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015)))) -(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015)))) +(((|#3|) -12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017)))) +(((|#3| |#3|) -12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017)))) (((|#3|) . T)) (((|#3|) . T)) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) -(((|#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) . T)) -(|has| |#1| (-1015)) -((((-774)) |has| |#1| (-1015))) -(|has| |#1| (-1015)) -((((-774)) . T)) +(((|#3|) OR (|has| |#3| (-148)) (|has| |#3| (-314)))) +(((|#3|) OR (|has| |#3| (-148)) (|has| |#3| (-314)))) +(((|#1| |#2| |#3| (-199 |#2| |#3|) (-199 |#1| |#3|)) . T)) +(|has| |#1| (-1017)) +((((-776)) |has| |#1| (-1017))) +(|has| |#1| (-1017)) +((((-776)) . T)) (((|#1| |#2|) . T)) -((((-1092)) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T)) +((((-1094)) . T)) +((((-776)) . T)) +((($) . T) (((-488)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -3113,210 +3117,210 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-486)) . T) (($) . T)) -((((-486)) . T)) -((($) . T) (((-486)) . T)) -((((-486)) . T)) -((((-475)) . T) (((-486)) . T) (((-802 (-486))) . T) (((-330)) . T) (((-179)) . T)) -((((-486)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-249 |#3|)) . T)) -((((-249 |#3|)) . T)) +((((-488)) . T) (($) . T)) +((((-488)) . T)) +((($) . T) (((-488)) . T)) +((((-488)) . T)) +((((-477)) . T) (((-488)) . T) (((-804 (-488))) . T) (((-332)) . T) (((-181)) . T)) +((((-488)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-251 |#3|)) . T)) +((((-251 |#3|)) . T)) (((|#3| |#3|) . T)) -((((-774)) . T)) -((((-774)) . T)) +((((-776)) . T)) +((((-776)) . T)) (((|#3| |#3|) . T)) -((((-774)) . T)) -((((-774)) . T)) +((((-776)) . T)) +((((-776)) . T)) (((|#2|) . T)) -(((|#1|) |has| |#1| (-312))) -((((-1092)) -12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092))))) -((((-1092)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))))) -((($ (-1092)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))))) -(((|#1|) |has| |#1| (-312))) -(OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) -((($) OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299)))) -(OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-299))) -(OR (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (|has| |#1| (-320)) (|has| |#1| (-299))) -(|has| |#1| (-299)) -(|has| |#1| (-299)) -(OR (|has| |#1| (-118)) (|has| |#1| (-299))) -(|has| |#1| (-299)) +(((|#1|) |has| |#1| (-314))) +((((-1094)) -12 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094))))) +((((-1094)) OR (-12 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094)))) (-12 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))))) +((($ (-1094)) OR (-12 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094)))) (-12 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))))) +(((|#1|) |has| |#1| (-314))) +(OR (-12 (|has| |#1| (-192)) (|has| |#1| (-314))) (-12 (|has| |#1| (-191)) (|has| |#1| (-314))) (|has| |#1| (-301))) +((($) OR (-12 (|has| |#1| (-192)) (|has| |#1| (-314))) (-12 (|has| |#1| (-191)) (|has| |#1| (-314))) (|has| |#1| (-301)))) +(OR (-12 (|has| |#1| (-192)) (|has| |#1| (-314))) (|has| |#1| (-301))) +(OR (|has| |#1| (-314)) (|has| |#1| (-301))) +(OR (|has| |#1| (-314)) (|has| |#1| (-301))) +(OR (|has| |#1| (-314)) (|has| |#1| (-301))) +(OR (|has| |#1| (-314)) (|has| |#1| (-301))) +(OR (|has| |#1| (-314)) (|has| |#1| (-301))) +(OR (|has| |#1| (-314)) (|has| |#1| (-301))) +(OR (|has| |#1| (-314)) (|has| |#1| (-301))) +(OR (|has| |#1| (-314)) (|has| |#1| (-301))) +(OR (|has| |#1| (-322)) (|has| |#1| (-301))) +(|has| |#1| (-301)) +(|has| |#1| (-301)) +(OR (|has| |#1| (-118)) (|has| |#1| (-301))) +(|has| |#1| (-301)) (((|#1| |#2|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($ $) . T) (((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T)) -((($) . T) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((((-486)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-952 (-350 (-486))))) ((|#1|) . T)) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-301))) (((-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-301))) ((|#1|) . T)) +((($ $) . T) (((-352 (-488)) (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-301))) ((|#1| |#1|) . T)) +((($) . T) (((-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-301))) ((|#1|) . T)) +((($) . T) (((-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-301))) ((|#1|) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-301))) ((|#1|) . T)) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-301))) (((-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-301))) ((|#1|) . T)) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-301))) (((-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-301))) ((|#1|) . T)) +((((-488)) . T) (($) OR (|has| |#1| (-314)) (|has| |#1| (-301))) (((-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-301)) (|has| |#1| (-954 (-352 (-488))))) ((|#1|) . T)) (|has| |#1| (-120)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((($) . T) (((-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) -(((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) +((($) . T) (((-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-301))) ((|#1|) . T) (((-488)) |has| |#1| (-584 (-488)))) +(((|#1|) . T) (((-488)) |has| |#1| (-584 (-488)))) (((|#1|) . T)) -(((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) +(((|#1|) . T) (((-488)) |has| |#1| (-954 (-488))) (((-352 (-488))) |has| |#1| (-954 (-352 (-488))))) (((|#1| |#2|) . T)) -((((-1092)) . T)) -((((-774)) . T)) -((((-774)) . T)) +((((-1094)) . T)) +((((-776)) . T)) +((((-776)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-190)) (|has| |#1| (-189))) -((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) -((((-774)) . T)) -(|has| |#1| (-190)) +(OR (|has| |#1| (-192)) (|has| |#1| (-191))) +((($) OR (|has| |#1| (-192)) (|has| |#1| (-191)))) +((((-776)) . T)) +(|has| |#1| (-192)) ((($) . T)) -(((|#1| (-471 (-1002 (-1092))) (-1002 (-1092))) . T)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (((-1002 (-1092))) . T)) -((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (($ (-1002 (-1092))) . T)) -((((-1092)) |has| |#1| (-811 (-1092))) (((-1002 (-1092))) . T)) -((($ $) . T) (((-1092) $) |has| |#1| (-190)) (((-1092) |#1|) |has| |#1| (-190)) (((-1002 (-1092)) |#1|) . T) (((-1002 (-1092)) $) . T)) -(OR (|has| |#1| (-393)) (|has| |#1| (-823))) -((((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-471 (-1002 (-1092)))) . T)) -(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -(((|#1|) . T)) -(OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) +(((|#1| (-473 (-1004 (-1094))) (-1004 (-1094))) . T)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +((((-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094)))) (((-1004 (-1094))) . T)) +((($ (-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094)))) (($ (-1004 (-1094))) . T)) +((((-1094)) |has| |#1| (-813 (-1094))) (((-1004 (-1094))) . T)) +((($ $) . T) (((-1094) $) |has| |#1| (-192)) (((-1094) |#1|) |has| |#1| (-192)) (((-1004 (-1094)) |#1|) . T) (((-1004 (-1094)) $) . T)) +(OR (|has| |#1| (-395)) (|has| |#1| (-825))) +((((-488)) |has| |#1| (-584 (-488))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-473 (-1004 (-1094)))) . T)) +(OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +(OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +(((|#1|) . T)) +(OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) . T) (((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((((-486)) . T) (($) . T) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -(((|#1|) . T)) -(((|#1| (-471 (-1002 (-1092)))) . T)) -((((-1041 |#1| (-1092))) . T) (((-1002 (-1092))) . T) ((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-1092)) . T)) -((((-1041 |#1| (-1092))) . T) (((-486)) . T) (((-1002 (-1092))) . T) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) (((-1092)) . T)) -(((|#1| (-1092) (-1002 (-1092)) (-471 (-1002 (-1092)))) . T)) +((($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) . T) (((-488)) |has| |#1| (-584 (-488))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((((-488)) . T) (($) . T) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($ $) OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1| |#1|) . T) (((-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +(((|#1|) . T)) +(((|#1| (-473 (-1004 (-1094)))) . T)) +((((-1043 |#1| (-1094))) . T) (((-1004 (-1094))) . T) ((|#1|) . T) (((-488)) |has| |#1| (-954 (-488))) (((-352 (-488))) |has| |#1| (-954 (-352 (-488)))) (((-1094)) . T)) +((((-1043 |#1| (-1094))) . T) (((-488)) . T) (((-1004 (-1094))) . T) (($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) (((-1094)) . T)) +(((|#1| (-1094) (-1004 (-1094)) (-473 (-1004 (-1094)))) . T)) ((($) . T)) -((((-774)) . T)) +((((-776)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-585 |#1|)) |has| |#1| (-757))) -(|has| |#1| (-1015)) -(|has| |#1| (-1015)) -(|has| |#1| (-1015)) -((((-774)) |has| |#1| (-1015))) -(|has| |#1| (-1015)) +(((|#1| (-587 |#1|)) |has| |#1| (-759))) +(|has| |#1| (-1017)) +(|has| |#1| (-1017)) +(|has| |#1| (-1017)) +((((-776)) |has| |#1| (-1017))) +(|has| |#1| (-1017)) (((|#1|) . T)) (((|#1|) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -(|has| (-1003 |#1|) (-1015)) -((((-774)) |has| (-1003 |#1|) (-1015))) -(|has| (-1003 |#1|) (-1015)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +(|has| (-1005 |#1|) (-1017)) +((((-776)) |has| (-1005 |#1|) (-1017))) +(|has| (-1005 |#1|) (-1017)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-774)) . T)) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-776)) . T)) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-475)) |has| |#1| (-555 (-475)))) +((((-477)) |has| |#1| (-557 (-477)))) (((|#1|) . T)) -(|has| |#1| (-320)) +(|has| |#1| (-322)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-774)) . T)) -((((-585 $)) . T) (((-1075)) . T) (((-1092)) . T) (((-486)) . T) (((-179)) . T) (((-774)) . T)) -((((-486) $) . T) (((-585 (-486)) $) . T)) -((((-774)) . T)) -((((-1075) (-1092) (-486) (-179) (-774)) . T)) -((((-585 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -((((-486) $) . T) (((-585 (-486)) $) . T)) -((((-774)) . T)) +((((-776)) . T)) +((((-587 $)) . T) (((-1077)) . T) (((-1094)) . T) (((-488)) . T) (((-181)) . T) (((-776)) . T)) +((((-488) $) . T) (((-587 (-488)) $) . T)) +((((-776)) . T)) +((((-1077) (-1094) (-488) (-181) (-776)) . T)) +((((-587 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +((((-488) $) . T) (((-587 (-488)) $) . T)) +((((-776)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -((((-774)) . T)) +((((-776)) . T)) (((|#1|) . T)) (((|#1| |#1| |#1|) . T)) (((|#1|) . T)) -(OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-719)) (|has| |#3| (-963))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-665)) (|has| |#3| (-719)) (|has| |#3| (-758)) (|has| |#3| (-963)) (|has| |#3| (-1015))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-665)) (|has| |#3| (-719)) (|has| |#3| (-758)) (|has| |#3| (-963)) (|has| |#3| (-1015))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-719)) (|has| |#3| (-963))) -(OR (|has| |#3| (-21)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-719)) (|has| |#3| (-963))) -(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-665)) (|has| |#3| (-963)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963)))) -((((-774)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-554 (-774))) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-665)) (|has| |#3| (-719)) (|has| |#3| (-758)) (|has| |#3| (-963)) (|has| |#3| (-1015))) (((-1181 |#3|)) . T)) -(((|#3|) |has| |#3| (-963))) -((((-1092)) -12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963)))) -((((-1092)) OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))))) -((($ (-1092)) OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))))) -(((|#3|) |has| |#3| (-963))) -(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963)))) -((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963))))) -(|has| |#3| (-963)) -(|has| |#3| (-963)) -(|has| |#3| (-963)) -(|has| |#3| (-963)) -(|has| |#3| (-963)) -((((-486)) OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963))) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-665)) (|has| |#3| (-963))) (($) |has| |#3| (-963))) -(-12 (|has| |#3| (-190)) (|has| |#3| (-963))) -(|has| |#3| (-320)) +(OR (|has| |#3| (-21)) (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-965))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-104)) (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-721)) (|has| |#3| (-965))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-322)) (|has| |#3| (-667)) (|has| |#3| (-721)) (|has| |#3| (-760)) (|has| |#3| (-965)) (|has| |#3| (-1017))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-104)) (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-322)) (|has| |#3| (-667)) (|has| |#3| (-721)) (|has| |#3| (-760)) (|has| |#3| (-965)) (|has| |#3| (-1017))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-721)) (|has| |#3| (-965))) +(OR (|has| |#3| (-21)) (|has| |#3| (-104)) (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-721)) (|has| |#3| (-965))) +(((|#3| |#3|) OR (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-965)))) +(((|#3|) OR (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-667)) (|has| |#3| (-965)))) +(((|#3|) OR (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-965)))) +((((-776)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-556 (-776))) (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-322)) (|has| |#3| (-667)) (|has| |#3| (-721)) (|has| |#3| (-760)) (|has| |#3| (-965)) (|has| |#3| (-1017))) (((-1183 |#3|)) . T)) +(((|#3|) |has| |#3| (-965))) +((((-1094)) -12 (|has| |#3| (-813 (-1094))) (|has| |#3| (-965)))) +((((-1094)) OR (-12 (|has| |#3| (-813 (-1094))) (|has| |#3| (-965))) (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965))))) +((($ (-1094)) OR (-12 (|has| |#3| (-813 (-1094))) (|has| |#3| (-965))) (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965))))) +(((|#3|) |has| |#3| (-965))) +(OR (-12 (|has| |#3| (-192)) (|has| |#3| (-965))) (-12 (|has| |#3| (-191)) (|has| |#3| (-965)))) +((($) OR (-12 (|has| |#3| (-192)) (|has| |#3| (-965))) (-12 (|has| |#3| (-191)) (|has| |#3| (-965))))) +(|has| |#3| (-965)) +(|has| |#3| (-965)) +(|has| |#3| (-965)) +(|has| |#3| (-965)) +(|has| |#3| (-965)) +((((-488)) OR (|has| |#3| (-21)) (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-965))) ((|#3|) OR (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-667)) (|has| |#3| (-965))) (($) |has| |#3| (-965))) +(-12 (|has| |#3| (-192)) (|has| |#3| (-965))) +(|has| |#3| (-322)) (((|#3|) . T)) -(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015)))) -(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015)))) +(((|#3|) -12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017)))) +(((|#3| |#3|) -12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017)))) (((|#3|) . T)) (((|#3|) . T)) -(((|#3|) |has| |#3| (-963))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963))) (($) |has| |#3| (-963)) (((-486)) -12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963)))) -(((|#3|) |has| |#3| (-963)) (((-486)) -12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963)))) -(((|#3|) |has| |#3| (-1015))) -((((-486)) OR (-12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) (|has| |#3| (-963))) ((|#3|) |has| |#3| (-1015)) (((-350 (-486))) -12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015)))) -(((|#3|) |has| |#3| (-1015)) (((-486)) -12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) (((-350 (-486))) -12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015)))) -((((-486) |#3|) . T)) -((((-486) |#3|) . T)) -((((-486) |#3|) . T)) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-665)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) -(|has| |#3| (-719)) -(|has| |#3| (-719)) -(OR (|has| |#3| (-719)) (|has| |#3| (-758))) -(OR (|has| |#3| (-719)) (|has| |#3| (-758))) -(|has| |#3| (-719)) -(|has| |#3| (-719)) -(((|#3|) |has| |#3| (-312))) +(((|#3|) |has| |#3| (-965))) +(((|#3|) OR (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-965))) (($) |has| |#3| (-965)) (((-488)) -12 (|has| |#3| (-584 (-488))) (|has| |#3| (-965)))) +(((|#3|) |has| |#3| (-965)) (((-488)) -12 (|has| |#3| (-584 (-488))) (|has| |#3| (-965)))) +(((|#3|) |has| |#3| (-1017))) +((((-488)) OR (-12 (|has| |#3| (-954 (-488))) (|has| |#3| (-1017))) (|has| |#3| (-965))) ((|#3|) |has| |#3| (-1017)) (((-352 (-488))) -12 (|has| |#3| (-954 (-352 (-488)))) (|has| |#3| (-1017)))) +(((|#3|) |has| |#3| (-1017)) (((-488)) -12 (|has| |#3| (-954 (-488))) (|has| |#3| (-1017))) (((-352 (-488))) -12 (|has| |#3| (-954 (-352 (-488)))) (|has| |#3| (-1017)))) +((((-488) |#3|) . T)) +((((-488) |#3|) . T)) +((((-488) |#3|) . T)) +(((|#3|) OR (|has| |#3| (-148)) (|has| |#3| (-314)) (|has| |#3| (-667)))) +(((|#3|) OR (|has| |#3| (-148)) (|has| |#3| (-314)))) +(|has| |#3| (-721)) +(|has| |#3| (-721)) +(OR (|has| |#3| (-721)) (|has| |#3| (-760))) +(OR (|has| |#3| (-721)) (|has| |#3| (-760))) +(|has| |#3| (-721)) +(|has| |#3| (-721)) +(((|#3|) |has| |#3| (-314))) (((|#1| |#3|) . T)) -((((-774)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T)) +((((-776)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-776)) . T)) +((($) . T) (((-488)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -3324,928 +3328,928 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-486)) . T) (($) . T)) -((((-486)) . T)) -((($) . T) (((-486)) . T)) -((((-486)) . T)) -((((-475)) . T) (((-486)) . T) (((-802 (-486))) . T) (((-330)) . T) (((-179)) . T)) -((((-486)) . T)) -((((-475)) -12 (|has| |#1| (-555 (-475))) (|has| |#2| (-555 (-475)))) (((-802 (-330))) -12 (|has| |#1| (-555 (-802 (-330)))) (|has| |#2| (-555 (-802 (-330))))) (((-802 (-486))) -12 (|has| |#1| (-555 (-802 (-486)))) (|has| |#2| (-555 (-802 (-486)))))) +((((-488)) . T) (($) . T)) +((((-488)) . T)) +((($) . T) (((-488)) . T)) +((((-488)) . T)) +((((-477)) . T) (((-488)) . T) (((-804 (-488))) . T) (((-332)) . T) (((-181)) . T)) +((((-488)) . T)) +((((-477)) -12 (|has| |#1| (-557 (-477))) (|has| |#2| (-557 (-477)))) (((-804 (-332))) -12 (|has| |#1| (-557 (-804 (-332)))) (|has| |#2| (-557 (-804 (-332))))) (((-804 (-488))) -12 (|has| |#1| (-557 (-804 (-488)))) (|has| |#2| (-557 (-804 (-488)))))) ((($) . T)) -(((|#1| (-471 |#2|)) . T)) +(((|#1| (-473 |#2|)) . T)) (((|#1|) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T)) +((((-776)) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) -((((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) -(((|#1|) . T)) -(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -(OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823)))) -(((|#1| (-471 |#2|)) . T)) -(((|#1|) . T)) -((($) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) -(((|#1|) . T) (((-486)) |has| |#1| (-582 (-486)))) -(OR (|has| |#1| (-393)) (|has| |#1| (-823))) +(OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T) (($) OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825)))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T) (($) OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825)))) +((((-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-148)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825)))) +(((|#1|) . T)) +(OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +(OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) |has| |#1| (-148)) (($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825)))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) |has| |#1| (-148)) (($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825)))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) |has| |#1| (-148)) (($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825)))) +(((|#1| (-473 |#2|)) . T)) +(((|#1|) . T)) +((($) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T) (((-488)) |has| |#1| (-584 (-488)))) +(((|#1|) . T) (((-488)) |has| |#1| (-584 (-488)))) +(OR (|has| |#1| (-395)) (|has| |#1| (-825))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -((((-330)) -12 (|has| |#1| (-798 (-330))) (|has| |#2| (-798 (-330)))) (((-486)) -12 (|has| |#1| (-798 (-486))) (|has| |#2| (-798 (-486))))) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -((((-350 (-486))) |has| |#1| (-952 (-350 (-486)))) (((-486)) |has| |#1| (-952 (-486))) ((|#1|) . T) ((|#2|) . T)) -((((-486)) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ((|#1|) . T) (($) OR (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#2|) . T)) -(((|#1| (-471 |#2|) |#2|) . T)) +((((-332)) -12 (|has| |#1| (-800 (-332))) (|has| |#2| (-800 (-332)))) (((-488)) -12 (|has| |#1| (-800 (-488))) (|has| |#2| (-800 (-488))))) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +((((-352 (-488))) |has| |#1| (-954 (-352 (-488)))) (((-488)) |has| |#1| (-954 (-488))) ((|#1|) . T) ((|#2|) . T)) +((((-488)) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) ((|#1|) . T) (($) OR (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#2|) . T)) +(((|#1| (-473 |#2|) |#2|) . T)) ((($) . T)) ((($ $) . T) ((|#2| $) . T)) (((|#2|) . T)) -((((-774)) . T)) +((((-776)) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(((|#1| (-471 |#2|) |#2|) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T)) -((($) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T)) +(((|#1| (-473 |#2|) |#2|) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T)) +((($) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-497))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-497)))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-497)))) -((((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-497)))) -(((|#1|) . T)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -((((-486)) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) -(((|#1| (-471 |#2|)) . T)) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) +(OR (|has| |#1| (-148)) (|has| |#1| (-499))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T) (($) OR (|has| |#1| (-148)) (|has| |#1| (-499)))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T) (($) OR (|has| |#1| (-148)) (|has| |#1| (-499)))) +((((-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-148)) (|has| |#1| (-499)))) +(((|#1|) . T)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +((((-488)) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) |has| |#1| (-148)) (($) |has| |#1| (-499))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) |has| |#1| (-148)) (($) |has| |#1| (-499))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) |has| |#1| (-148)) (($) |has| |#1| (-499))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) |has| |#1| (-148)) (($) |has| |#1| (-499))) +(((|#1| (-473 |#2|)) . T)) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) (((|#1| |#2|) . T)) -((((-774)) . T)) -(((|#1|) . T)) -((((-1097)) . T)) -((((-1097)) . T)) -((((-1097)) . T) (((-774)) . T)) -((((-774)) . T)) -((((-1056 |#1| |#2|)) . T)) -((((-1056 |#1| |#2|)) . T)) -((((-1056 |#1| |#2|)) . T)) -((((-1056 |#1| |#2|)) . T)) -((((-1056 |#1| |#2|) (-1056 |#1| |#2|)) |has| (-1056 |#1| |#2|) (-260 (-1056 |#1| |#2|)))) -((((-1056 |#1| |#2|)) |has| (-1056 |#1| |#2|) (-260 (-1056 |#1| |#2|)))) -((((-774)) . T)) -((((-1056 |#1| |#2|)) . T)) -((((-475)) |has| |#2| (-555 (-475)))) -(((|#2|) |has| |#2| (-6 (-4000 "*")))) +((((-776)) . T)) +(((|#1|) . T)) +((((-1099)) . T)) +((((-1099)) . T)) +((((-1099)) . T) (((-776)) . T)) +((((-776)) . T)) +((((-1058 |#1| |#2|)) . T)) +((((-1058 |#1| |#2|)) . T)) +((((-1058 |#1| |#2|)) . T)) +((((-1058 |#1| |#2|)) . T)) +((((-1058 |#1| |#2|) (-1058 |#1| |#2|)) |has| (-1058 |#1| |#2|) (-262 (-1058 |#1| |#2|)))) +((((-1058 |#1| |#2|)) |has| (-1058 |#1| |#2|) (-262 (-1058 |#1| |#2|)))) +((((-776)) . T)) +((((-1058 |#1| |#2|)) . T)) +((((-477)) |has| |#2| (-557 (-477)))) +(((|#2|) |has| |#2| (-6 (-4003 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-632 |#2|)) . T) (((-774)) . T)) -((($) . T) (((-486)) . T) ((|#2|) . T)) -(((|#2|) OR (|has| |#2| (-6 (-4000 "*"))) (|has| |#2| (-146)))) -(((|#2|) OR (|has| |#2| (-6 (-4000 "*"))) (|has| |#2| (-146)))) +((((-634 |#2|)) . T) (((-776)) . T)) +((($) . T) (((-488)) . T) ((|#2|) . T)) +(((|#2|) OR (|has| |#2| (-6 (-4003 "*"))) (|has| |#2| (-148)))) +(((|#2|) OR (|has| |#2| (-6 (-4003 "*"))) (|has| |#2| (-148)))) (((|#2|) . T)) -((((-1092)) |has| |#2| (-811 (-1092)))) -((((-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092))))) -((($ (-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092))))) +((((-1094)) |has| |#2| (-813 (-1094)))) +((((-1094)) OR (|has| |#2| (-813 (-1094))) (|has| |#2| (-815 (-1094))))) +((($ (-1094)) OR (|has| |#2| (-813 (-1094))) (|has| |#2| (-815 (-1094))))) (((|#2|) . T)) -(OR (|has| |#2| (-190)) (|has| |#2| (-189))) -((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) -(|has| |#2| (-190)) +(OR (|has| |#2| (-192)) (|has| |#2| (-191))) +((($) OR (|has| |#2| (-192)) (|has| |#2| (-191)))) +(|has| |#2| (-192)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) -(((|#2|) . T) (((-486)) |has| |#2| (-582 (-486)))) +((($) . T) ((|#2|) . T) (((-488)) |has| |#2| (-584 (-488)))) +(((|#2|) . T) (((-488)) |has| |#2| (-584 (-488)))) (((|#2|) . T)) -((((-486)) . T) ((|#2|) . T) (((-350 (-486))) |has| |#2| (-952 (-350 (-486))))) -(((|#2|) . T) (((-486)) |has| |#2| (-952 (-486))) (((-350 (-486))) |has| |#2| (-952 (-350 (-486))))) -(((|#1| |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) +((((-488)) . T) ((|#2|) . T) (((-352 (-488))) |has| |#2| (-954 (-352 (-488))))) +(((|#2|) . T) (((-488)) |has| |#2| (-954 (-488))) (((-352 (-488))) |has| |#2| (-954 (-352 (-488))))) +(((|#1| |#1| |#2| (-199 |#1| |#2|) (-199 |#1| |#2|)) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2| |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) +(((|#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) (((|#2|) . T)) -(((|#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) +(((|#1| |#2| (-199 |#1| |#2|) (-199 |#1| |#2|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-475)) |has| |#4| (-555 (-475)))) +((((-477)) |has| |#4| (-557 (-477)))) (((|#4|) . T)) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +(((|#4| |#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017)))) +(((|#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017)))) (((|#4|) . T)) -((((-774)) . T) (((-585 |#4|)) . T)) +((((-776)) . T) (((-587 |#4|)) . T)) (((|#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1017))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) (((|#1|) . T)) -(|has| |#1| (-1015)) +(|has| |#1| (-1017)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-774)) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-776)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) (((|#1| |#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) (((|#1|) . T)) -((((-585 |#1|)) . T)) +((((-587 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1017))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) (((|#1|) . T)) -(|has| |#1| (-1015)) +(|has| |#1| (-1017)) (((|#1|) . T)) -((((-475)) |has| |#1| (-555 (-475)))) -((((-486) |#1|) . T)) -((((-1148 (-486)) $) . T) (((-486) |#1|) . T)) -((((-486) |#1|) . T)) +((((-477)) |has| |#1| (-557 (-477)))) +((((-488) |#1|) . T)) +((((-1150 (-488)) $) . T) (((-488) |#1|) . T)) +((((-488) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-117)) . T)) ((((-117)) . T)) ((((-117)) . T)) -((((-774)) . T)) +((((-776)) . T)) ((((-117)) . T)) ((((-117)) . T)) ((((-117)) . T)) -((((-486) (-117)) . T)) -((((-486) (-117)) . T)) -((((-486) (-117)) . T) (((-1148 (-486)) $) . T)) +((((-488) (-117)) . T)) +((((-488) (-117)) . T)) +((((-488) (-117)) . T) (((-1150 (-488)) $) . T)) ((((-117)) . T)) ((((-117)) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) . T)) -((((-774)) . T)) -((((-1075) |#1|) . T)) -((((-1075) |#1|) . T)) -((((-1075) |#1|) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) . T) ((|#1|) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) . T) ((|#1|) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) |has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -((((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) |has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -((((-1075) |#1|) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) . T)) -((((-1075) |#1|) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-1091 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1091 |#1| |#2| |#3|)) . T)) -((((-1091 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1091 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1091 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1091 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1091 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-260 (-1091 |#1| |#2| |#3|))))) -((((-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-260 (-1091 |#1| |#2| |#3|)))) (((-1092) (-1091 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-457 (-1092) (-1091 |#1| |#2| |#3|))))) -((((-1091 |#1| |#2| |#3|)) |has| |#1| (-312))) -(|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-497))) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) -(OR (|has| |#1| (-312)) (|has| |#1| (-497))) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(OR (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) -((($) OR (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) -(OR (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) -((((-1091 |#1| |#2| |#3|)) |has| |#1| (-312))) -((($ (-1178 |#2|)) . T) (($ (-1092)) OR (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092)))) (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092)))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))))) -((((-1092)) OR (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092)))) (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092)))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))))) -((((-1092)) OR (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092)))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))))) -((((-1091 |#1| |#2| |#3|)) |has| |#1| (-312))) -(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-120)))) -(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-118)))) -((((-774)) . T)) -(((|#1|) . T)) -((((-1091 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1091 |#1| |#2| |#3|) (-241 (-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|)))) (($ $) . T) (((-486) |#1|) . T)) -(((|#1| (-486) (-996)) . T)) -((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-1091 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1091 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1091 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) -((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1091 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-486)) . T) (($) . T) ((|#1|) . T)) -((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1091 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) -((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-1091 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-1091 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-1091 |#1| |#2| |#3|)) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-486)) . T) ((|#1|) |has| |#1| (-146))) -((((-1091 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) -(((|#1| (-486)) . T)) -(((|#1| (-486)) . T)) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(((|#1| (-1091 |#1| |#2| |#3|)) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) . T)) +((((-776)) . T)) +((((-1077) |#1|) . T)) +((((-1077) |#1|) . T)) +((((-1077) |#1|) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) . T) ((|#1|) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) . T) ((|#1|) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) |has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +((((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) |has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +((((-1077) |#1|) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) . T)) +((((-1077) |#1|) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-1093 |#1| |#2| |#3|)) |has| |#1| (-314))) +((((-1093 |#1| |#2| |#3|)) . T)) +((((-1093 |#1| |#2| |#3|)) |has| |#1| (-314))) +((((-1093 |#1| |#2| |#3|)) |has| |#1| (-314))) +((((-1093 |#1| |#2| |#3|)) |has| |#1| (-314))) +((((-1093 |#1| |#2| |#3|)) |has| |#1| (-314))) +((((-1093 |#1| |#2| |#3|)) -12 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-262 (-1093 |#1| |#2| |#3|))))) +((((-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|)) -12 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-262 (-1093 |#1| |#2| |#3|)))) (((-1094) (-1093 |#1| |#2| |#3|)) -12 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-459 (-1094) (-1093 |#1| |#2| |#3|))))) +((((-1093 |#1| |#2| |#3|)) |has| |#1| (-314))) +(|has| |#1| (-314)) +(OR (|has| |#1| (-314)) (|has| |#1| (-499))) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) +(OR (|has| |#1| (-314)) (|has| |#1| (-499))) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(OR (-12 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-192))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) +((($) OR (-12 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-192))) (-12 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-191))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) +(OR (-12 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-192))) (-12 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-191))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) +((((-1093 |#1| |#2| |#3|)) |has| |#1| (-314))) +((($ (-1180 |#2|)) . T) (($ (-1094)) OR (-12 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-813 (-1094)))) (-12 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-815 (-1094)))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))))) +((((-1094)) OR (-12 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-813 (-1094)))) (-12 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-815 (-1094)))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))))) +((((-1094)) OR (-12 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-813 (-1094)))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))))) +((((-1093 |#1| |#2| |#3|)) |has| |#1| (-314))) +(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-120)))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-118)))) +((((-776)) . T)) +(((|#1|) . T)) +((((-1093 |#1| |#2| |#3|) $) -12 (|has| |#1| (-314)) (|has| (-1093 |#1| |#2| |#3|) (-243 (-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|)))) (($ $) . T) (((-488) |#1|) . T)) +(((|#1| (-488) (-998)) . T)) +((((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) (((-1093 |#1| |#2| |#3|)) |has| |#1| (-314)) ((|#1|) |has| |#1| (-148))) +((($ $) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488)) (-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (((-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|)) |has| |#1| (-314)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (((-1093 |#1| |#2| |#3|)) |has| |#1| (-314)) ((|#1|) . T)) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (((-1093 |#1| |#2| |#3|)) |has| |#1| (-314)) ((|#1|) . T)) +((((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (((-1093 |#1| |#2| |#3|)) |has| |#1| (-314)) (((-488)) . T) (($) . T) ((|#1|) . T)) +((((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (((-1093 |#1| |#2| |#3|)) |has| |#1| (-314)) (($) . T) ((|#1|) . T)) +((((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) (((-1093 |#1| |#2| |#3|)) |has| |#1| (-314)) ((|#1|) |has| |#1| (-148))) +((((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) (((-1093 |#1| |#2| |#3|)) |has| |#1| (-314)) ((|#1|) |has| |#1| (-148))) +((((-1093 |#1| |#2| |#3|)) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) (((-488)) . T) ((|#1|) |has| |#1| (-148))) +((((-1093 |#1| |#2| |#3|)) |has| |#1| (-314)) ((|#1|) . T)) +(((|#1| (-488)) . T)) +(((|#1| (-488)) . T)) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(((|#1| (-1093 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-774)) . T)) -((((-350 $) (-350 $)) |has| |#1| (-497)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-823))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -(OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -(OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) -(|has| |#1| (-312)) -(((|#1| (-696) (-996)) . T)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -((((-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (((-996)) . T)) -((($ (-1092)) OR (|has| |#1| (-811 (-1092))) (|has| |#1| (-813 (-1092)))) (($ (-996)) . T)) -((((-1092)) |has| |#1| (-811 (-1092))) (((-996)) . T)) -((((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-696)) . T)) +((((-776)) . T)) +((((-352 $) (-352 $)) |has| |#1| (-499)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-314)) +(OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-825))) +(OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +(OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +(OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) +(|has| |#1| (-314)) +(((|#1| (-698) (-998)) . T)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +((((-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094)))) (((-998)) . T)) +((($ (-1094)) OR (|has| |#1| (-813 (-1094))) (|has| |#1| (-815 (-1094)))) (($ (-998)) . T)) +((((-1094)) |has| |#1| (-813 (-1094))) (((-998)) . T)) +((((-488)) |has| |#1| (-584 (-488))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-698)) . T)) (((|#1|) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((((-486)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) (((-996)) . T) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486)))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) . T) (((-486)) |has| |#1| (-582 (-486))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((((-486)) . T) (($) . T) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-393)) (|has| |#1| (-497)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -(((|#1|) . T)) -((((-996)) . T) ((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) -(((|#1| (-696)) . T)) -((((-996) |#1|) . T) (((-996) $) . T) (($ $) . T)) +((((-488)) . T) (($) OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) (((-998)) . T) ((|#1|) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488)))))) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) . T) (((-488)) |has| |#1| (-584 (-488))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((((-488)) . T) (($) . T) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($ $) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1| |#1|) . T) (((-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-314)) (|has| |#1| (-395)) (|has| |#1| (-499)) (|has| |#1| (-825))) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +(((|#1|) . T)) +((((-998)) . T) ((|#1|) . T) (((-488)) |has| |#1| (-954 (-488))) (((-352 (-488))) |has| |#1| (-954 (-352 (-488))))) +(((|#1| (-698)) . T)) +((((-998) |#1|) . T) (((-998) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1068)) -(((|#1|) . T)) -((((-1091 |#1| |#2| |#3|)) . T) (((-1084 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) -((($ $) . T) (((-350 (-486)) |#1|) . T)) -((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) -((($ (-1178 |#2|)) . T) (($ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) -((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) -(((|#1| (-350 (-486)) (-996)) . T)) +(|has| |#1| (-1070)) +(((|#1|) . T)) +((((-1093 |#1| |#2| |#3|)) . T) (((-1086 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) +((($ $) . T) (((-352 (-488)) |#1|) . T)) +((((-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))))) +((($ (-1180 |#2|)) . T) (($ (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))))) +((((-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))))) +(((|#1| (-352 (-488)) (-998)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) (((|#1|) . T)) -(((|#1| (-350 (-486))) . T)) -(((|#1| (-350 (-486))) . T)) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-497))) -((((-774)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)))) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)))) -(((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-486)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) . T)) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) -(((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) -(((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) -((((-1178 |#2|)) . T) (((-1091 |#1| |#2| |#3|)) . T) (((-1084 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-486)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) -(OR (|has| |#1| (-312)) (|has| |#1| (-497))) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(((|#1| (-1084 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(((|#1| (-696)) . T)) -(((|#1| (-696)) . T)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(((|#1|) . T)) -(OR (|has| |#1| (-146)) (|has| |#1| (-497))) +(((|#1| (-352 (-488))) . T)) +(((|#1| (-352 (-488))) . T)) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-314)) +(OR (|has| |#1| (-314)) (|has| |#1| (-499))) +((((-776)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314)))) +(((|#1|) . T) (($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488)) (-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314)))) +(((|#1|) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (((-488)) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) . T)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(((|#1|) |has| |#1| (-148)) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499)))) +(((|#1|) |has| |#1| (-148)) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499)))) +(((|#1|) |has| |#1| (-148)) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499)))) +((((-1180 |#2|)) . T) (((-1093 |#1| |#2| |#3|)) . T) (((-1086 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (((-488)) . T) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499)))) +(OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) +(OR (|has| |#1| (-314)) (|has| |#1| (-499))) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(((|#1| (-1086 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(((|#1| (-698)) . T)) +(((|#1| (-698)) . T)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(((|#1|) . T)) +(OR (|has| |#1| (-148)) (|has| |#1| (-499))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -(((|#1| (-696) (-996)) . T)) -((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|))))) -((($ (-1178 |#2|)) . T) (($ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|))))) -((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|))))) -((((-696) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-696) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-696) |#1|)))) -((((-774)) . T)) -(((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (((-486)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (($) . T)) -((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (((-486)) . T)) -(|has| |#1| (-15 * (|#1| (-696) |#1|))) -(((|#1|) . T)) -((((-330)) . T) (((-486)) . T)) -((((-448)) . T)) -((((-448)) . T) (((-1075)) . T)) -((((-802 (-330))) . T) (((-802 (-486))) . T) (((-1092)) . T) (((-475)) . T)) -((((-774)) . T)) -(((|#1| (-886)) . T)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(((|#1|) . T)) -(OR (|has| |#1| (-146)) (|has| |#1| (-497))) +((($) |has| |#1| (-499)) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) |has| |#1| (-499)) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-499))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-499))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($ $) OR (|has| |#1| (-148)) (|has| |#1| (-499))) ((|#1| |#1|) . T) (((-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) |has| |#1| (-499)) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +(((|#1| (-698) (-998)) . T)) +((((-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|))))) +((($ (-1180 |#2|)) . T) (($ (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|))))) +((((-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|))))) +((((-698) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-698) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-698) |#1|)))) +((((-776)) . T)) +(((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) (((-488)) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) (($) . T)) +((($) |has| |#1| (-499)) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) (((-488)) . T)) +(|has| |#1| (-15 * (|#1| (-698) |#1|))) +(((|#1|) . T)) +((((-332)) . T) (((-488)) . T)) +((((-450)) . T)) +((((-450)) . T) (((-1077)) . T)) +((((-804 (-332))) . T) (((-804 (-488))) . T) (((-1094)) . T) (((-477)) . T)) +((((-776)) . T)) +(((|#1| (-888)) . T)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(((|#1|) . T)) +(OR (|has| |#1| (-148)) (|has| |#1| (-499))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((((-774)) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -(((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (((-486)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (($) . T)) -((($) |has| |#1| (-497)) ((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) (((-486)) . T)) -((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -(((|#1|) . T)) -(((|#1|) . T) (((-486)) |has| |#1| (-952 (-486))) (((-350 (-486))) |has| |#1| (-952 (-350 (-486))))) -(((|#1| (-886)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-1075)) . T) (((-448)) . T) (((-179)) . T) (((-486)) . T)) -((((-1075)) . T) (((-448)) . T) (((-179)) . T) (((-486)) . T)) -((((-475)) . T) (((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-774)) . T)) +((($) |has| |#1| (-499)) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) |has| |#1| (-499)) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((((-776)) . T)) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-499))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-499))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($ $) OR (|has| |#1| (-148)) (|has| |#1| (-499))) ((|#1| |#1|) . T) (((-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +(((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) (((-488)) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) (($) . T)) +((($) |has| |#1| (-499)) ((|#1|) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) (((-488)) . T)) +((($) |has| |#1| (-499)) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +(((|#1|) . T)) +(((|#1|) . T) (((-488)) |has| |#1| (-954 (-488))) (((-352 (-488))) |has| |#1| (-954 (-352 (-488))))) +(((|#1| (-888)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-1077)) . T) (((-450)) . T) (((-181)) . T) (((-488)) . T)) +((((-1077)) . T) (((-450)) . T) (((-181)) . T) (((-488)) . T)) +((((-477)) . T) (((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-776)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017)))) (((|#1| |#2|) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-774)) . T)) +((((-776)) . T)) (((|#1|) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-338) (-1075)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-340) (-1077)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1015)) +(|has| |#1| (-1017)) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-1017)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1017))) (((|#1|) . T)) ((($) . T)) -((($ $) . T) (((-1092) $) . T)) -((((-1092)) . T)) -((((-774)) . T)) -((($ (-1092)) . T)) -((((-1092)) . T)) -(((|#1| (-471 (-1092)) (-1092)) . T)) -((($) . T) (((-486)) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T)) -((($) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T)) +((($ $) . T) (((-1094) $) . T)) +((((-1094)) . T)) +((((-776)) . T)) +((($ (-1094)) . T)) +((((-1094)) . T)) +(((|#1| (-473 (-1094)) (-1094)) . T)) +((($) . T) (((-488)) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T)) +((($) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-497))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-497)))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-497)))) -((((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-497)))) -(((|#1|) . T)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -((((-486)) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) -((((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-497))) -(((|#1| (-471 (-1092))) . T)) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(((|#1| (-1092)) . T)) -(|has| |#1| (-1015)) -(|has| |#1| (-1015)) -(|has| |#1| (-1015)) -(|has| |#1| (-1015)) -((((-871 |#1|)) . T)) -((((-774)) |has| |#1| (-554 (-774))) (((-871 |#1|)) . T)) -((((-871 |#1|)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-1171 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1171 |#1| |#2| |#3|)) . T)) -((((-1171 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1171 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1171 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1171 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1171 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-260 (-1171 |#1| |#2| |#3|))))) -((((-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-260 (-1171 |#1| |#2| |#3|)))) (((-1092) (-1171 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-457 (-1092) (-1171 |#1| |#2| |#3|))))) -((((-1171 |#1| |#2| |#3|)) |has| |#1| (-312))) -(|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-497))) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) -(OR (|has| |#1| (-312)) (|has| |#1| (-497))) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(OR (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) -((($) OR (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) -(OR (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) -((((-1171 |#1| |#2| |#3|)) |has| |#1| (-312))) -((($ (-1178 |#2|)) . T) (($ (-1092)) OR (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092)))) (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092)))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))))) -((((-1092)) OR (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092)))) (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092)))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))))) -((((-1092)) OR (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092)))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))))) -((((-1171 |#1| |#2| |#3|)) |has| |#1| (-312))) -(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-120)))) -(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-118)))) -((((-774)) . T)) -(((|#1|) . T)) -((((-1171 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1171 |#1| |#2| |#3|) (-241 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)))) (($ $) . T) (((-486) |#1|) . T)) -(((|#1| (-486) (-996)) . T)) -((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) -((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-486)) . T) (($) . T) ((|#1|) . T)) -((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) -((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-1171 |#1| |#2| |#3|)) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-486)) . T) ((|#1|) |has| |#1| (-146))) -((((-1171 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) -(((|#1| (-486)) . T)) -(((|#1| (-486)) . T)) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(((|#1| (-1171 |#1| |#2| |#3|)) . T)) -(((|#2|) |has| |#1| (-312))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-1068))) -(((|#2|) . T) (((-1092)) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1092)))) (((-486)) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-486)))) (((-350 (-486))) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-486))))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-935))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-823))) -(((|#2|) |has| |#1| (-312))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-742))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-742))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-742))) -(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) (-12 (|has| |#1| (-312)) (|has| |#2| (-758)))) -(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) (-12 (|has| |#1| (-312)) (|has| |#2| (-758)))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-742))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-742))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-742))) -((((-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-798 (-330)))) (((-486)) -12 (|has| |#1| (-312)) (|has| |#2| (-798 (-486))))) -(((|#2|) |has| |#1| (-312))) -((((-486)) -12 (|has| |#1| (-312)) (|has| |#2| (-582 (-486)))) ((|#2|) |has| |#1| (-312))) -(((|#2|) |has| |#1| (-312))) -(((|#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|)))) -(((|#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) (((-1092) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-457 (-1092) |#2|)))) -(((|#2|) |has| |#1| (-312))) -(|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-497))) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) -(OR (|has| |#1| (-312)) (|has| |#1| (-497))) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) -((($) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) -(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) -(((|#2|) |has| |#1| (-312))) -((($ (-1092)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1092)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092)))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))))) -((((-1092)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1092)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092)))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))))) -((((-1092)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1092)))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))))) -(((|#2|) |has| |#1| (-312))) -((((-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-935))) (((-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-935))) (((-802 (-330))) -12 (|has| |#1| (-312)) (|has| |#2| (-555 (-802 (-330))))) (((-802 (-486))) -12 (|has| |#1| (-312)) (|has| |#2| (-555 (-802 (-486))))) (((-475)) -12 (|has| |#1| (-312)) (|has| |#2| (-555 (-475))))) -(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (-12 (|has| |#1| (-312)) (|has| |#2| (-742)))) -(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| |#2| (-118)))) -((((-774)) . T)) -(((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) (($ $) . T) (((-486) |#1|) . T)) -(((|#1| (-486) (-996)) . T)) -((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#2| |#2|) |has| |#1| (-312)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T)) -((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (((-486)) . T) (($) . T) ((|#1|) . T)) -((((-486)) -12 (|has| |#1| (-312)) (|has| |#2| (-582 (-486)))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) -((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -(((|#2|) . T) (((-1092)) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1092)))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497))) (((-486)) . T) ((|#1|) |has| |#1| (-146))) -(((|#2|) |has| |#1| (-312)) ((|#1|) . T)) -(((|#1| (-486)) . T)) -(((|#1| (-486)) . T)) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) +(OR (|has| |#1| (-148)) (|has| |#1| (-499))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T) (($) OR (|has| |#1| (-148)) (|has| |#1| (-499)))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) . T) (($) OR (|has| |#1| (-148)) (|has| |#1| (-499)))) +((((-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-148)) (|has| |#1| (-499)))) +(((|#1|) . T)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +((((-488)) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) |has| |#1| (-148)) (($) |has| |#1| (-499))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) |has| |#1| (-148)) (($) |has| |#1| (-499))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) |has| |#1| (-148)) (($) |has| |#1| (-499))) +((((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((|#1|) |has| |#1| (-148)) (($) |has| |#1| (-499))) +(((|#1| (-473 (-1094))) . T)) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(((|#1| (-1094)) . T)) +(|has| |#1| (-1017)) +(|has| |#1| (-1017)) +(|has| |#1| (-1017)) +(|has| |#1| (-1017)) +((((-873 |#1|)) . T)) +((((-776)) |has| |#1| (-556 (-776))) (((-873 |#1|)) . T)) +((((-873 |#1|)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-1173 |#1| |#2| |#3|)) |has| |#1| (-314))) +((((-1173 |#1| |#2| |#3|)) . T)) +((((-1173 |#1| |#2| |#3|)) |has| |#1| (-314))) +((((-1173 |#1| |#2| |#3|)) |has| |#1| (-314))) +((((-1173 |#1| |#2| |#3|)) |has| |#1| (-314))) +((((-1173 |#1| |#2| |#3|)) |has| |#1| (-314))) +((((-1173 |#1| |#2| |#3|)) -12 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-262 (-1173 |#1| |#2| |#3|))))) +((((-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) -12 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-262 (-1173 |#1| |#2| |#3|)))) (((-1094) (-1173 |#1| |#2| |#3|)) -12 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-459 (-1094) (-1173 |#1| |#2| |#3|))))) +((((-1173 |#1| |#2| |#3|)) |has| |#1| (-314))) +(|has| |#1| (-314)) +(OR (|has| |#1| (-314)) (|has| |#1| (-499))) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) +(OR (|has| |#1| (-314)) (|has| |#1| (-499))) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(OR (-12 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-192))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) +((($) OR (-12 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-192))) (-12 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-191))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) +(OR (-12 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-192))) (-12 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-191))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) +((((-1173 |#1| |#2| |#3|)) |has| |#1| (-314))) +((($ (-1180 |#2|)) . T) (($ (-1094)) OR (-12 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-813 (-1094)))) (-12 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-815 (-1094)))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))))) +((((-1094)) OR (-12 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-813 (-1094)))) (-12 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-815 (-1094)))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))))) +((((-1094)) OR (-12 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-813 (-1094)))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))))) +((((-1173 |#1| |#2| |#3|)) |has| |#1| (-314))) +(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-120)))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-118)))) +((((-776)) . T)) +(((|#1|) . T)) +((((-1173 |#1| |#2| |#3|) $) -12 (|has| |#1| (-314)) (|has| (-1173 |#1| |#2| |#3|) (-243 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)))) (($ $) . T) (((-488) |#1|) . T)) +(((|#1| (-488) (-998)) . T)) +((((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-314)) ((|#1|) |has| |#1| (-148))) +((($ $) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488)) (-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (((-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) |has| |#1| (-314)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-314)) ((|#1|) . T)) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-314)) ((|#1|) . T)) +((((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-314)) (((-488)) . T) (($) . T) ((|#1|) . T)) +((((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-314)) (($) . T) ((|#1|) . T)) +((((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-314)) ((|#1|) |has| |#1| (-148))) +((((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-314)) ((|#1|) |has| |#1| (-148))) +((((-1173 |#1| |#2| |#3|)) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) (((-488)) . T) ((|#1|) |has| |#1| (-148))) +((((-1173 |#1| |#2| |#3|)) |has| |#1| (-314)) ((|#1|) . T)) +(((|#1| (-488)) . T)) +(((|#1| (-488)) . T)) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(((|#1| (-1173 |#1| |#2| |#3|)) . T)) +(((|#2|) |has| |#1| (-314))) +(-12 (|has| |#1| (-314)) (|has| |#2| (-1070))) +(((|#2|) . T) (((-1094)) -12 (|has| |#1| (-314)) (|has| |#2| (-954 (-1094)))) (((-488)) -12 (|has| |#1| (-314)) (|has| |#2| (-954 (-488)))) (((-352 (-488))) -12 (|has| |#1| (-314)) (|has| |#2| (-954 (-488))))) +(-12 (|has| |#1| (-314)) (|has| |#2| (-937))) +(-12 (|has| |#1| (-314)) (|has| |#2| (-825))) +(((|#2|) |has| |#1| (-314))) +(-12 (|has| |#1| (-314)) (|has| |#2| (-744))) +(-12 (|has| |#1| (-314)) (|has| |#2| (-744))) +(-12 (|has| |#1| (-314)) (|has| |#2| (-744))) +(OR (-12 (|has| |#1| (-314)) (|has| |#2| (-744))) (-12 (|has| |#1| (-314)) (|has| |#2| (-760)))) +(OR (-12 (|has| |#1| (-314)) (|has| |#2| (-744))) (-12 (|has| |#1| (-314)) (|has| |#2| (-760)))) +(-12 (|has| |#1| (-314)) (|has| |#2| (-744))) +(-12 (|has| |#1| (-314)) (|has| |#2| (-744))) +(-12 (|has| |#1| (-314)) (|has| |#2| (-744))) +((((-332)) -12 (|has| |#1| (-314)) (|has| |#2| (-800 (-332)))) (((-488)) -12 (|has| |#1| (-314)) (|has| |#2| (-800 (-488))))) +(((|#2|) |has| |#1| (-314))) +((((-488)) -12 (|has| |#1| (-314)) (|has| |#2| (-584 (-488)))) ((|#2|) |has| |#1| (-314))) +(((|#2|) |has| |#1| (-314))) +(((|#2|) -12 (|has| |#1| (-314)) (|has| |#2| (-262 |#2|)))) +(((|#2| |#2|) -12 (|has| |#1| (-314)) (|has| |#2| (-262 |#2|))) (((-1094) |#2|) -12 (|has| |#1| (-314)) (|has| |#2| (-459 (-1094) |#2|)))) +(((|#2|) |has| |#1| (-314))) +(|has| |#1| (-314)) +(OR (|has| |#1| (-314)) (|has| |#1| (-499))) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) +(OR (|has| |#1| (-314)) (|has| |#1| (-499))) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(OR (-12 (|has| |#1| (-314)) (|has| |#2| (-192))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) +((($) OR (-12 (|has| |#1| (-314)) (|has| |#2| (-192))) (-12 (|has| |#1| (-314)) (|has| |#2| (-191))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) +(OR (-12 (|has| |#1| (-314)) (|has| |#2| (-192))) (-12 (|has| |#1| (-314)) (|has| |#2| (-191))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) +(((|#2|) |has| |#1| (-314))) +((($ (-1094)) OR (-12 (|has| |#1| (-314)) (|has| |#2| (-813 (-1094)))) (-12 (|has| |#1| (-314)) (|has| |#2| (-815 (-1094)))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))))) +((((-1094)) OR (-12 (|has| |#1| (-314)) (|has| |#2| (-813 (-1094)))) (-12 (|has| |#1| (-314)) (|has| |#2| (-815 (-1094)))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))))) +((((-1094)) OR (-12 (|has| |#1| (-314)) (|has| |#2| (-813 (-1094)))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))))) +(((|#2|) |has| |#1| (-314))) +((((-181)) -12 (|has| |#1| (-314)) (|has| |#2| (-937))) (((-332)) -12 (|has| |#1| (-314)) (|has| |#2| (-937))) (((-804 (-332))) -12 (|has| |#1| (-314)) (|has| |#2| (-557 (-804 (-332))))) (((-804 (-488))) -12 (|has| |#1| (-314)) (|has| |#2| (-557 (-804 (-488))))) (((-477)) -12 (|has| |#1| (-314)) (|has| |#2| (-557 (-477))))) +(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-314)) (|has| |#2| (-120))) (-12 (|has| |#1| (-314)) (|has| |#2| (-744)))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-314)) (|has| |#2| (-118)))) +((((-776)) . T)) +(((|#1|) . T)) +(((|#2| $) -12 (|has| |#1| (-314)) (|has| |#2| (-243 |#2| |#2|))) (($ $) . T) (((-488) |#1|) . T)) +(((|#1| (-488) (-998)) . T)) +((((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) ((|#2|) |has| |#1| (-314)) ((|#1|) |has| |#1| (-148))) +((($ $) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488)) (-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) ((|#2| |#2|) |has| |#1| (-314)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) ((|#2|) |has| |#1| (-314)) ((|#1|) . T)) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) ((|#2|) |has| |#1| (-314)) ((|#1|) . T)) +((((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) ((|#2|) |has| |#1| (-314)) (((-488)) . T) (($) . T) ((|#1|) . T)) +((((-488)) -12 (|has| |#1| (-314)) (|has| |#2| (-584 (-488)))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) ((|#2|) |has| |#1| (-314)) (($) . T) ((|#1|) . T)) +((((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) ((|#2|) |has| |#1| (-314)) ((|#1|) |has| |#1| (-148))) +((((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) ((|#2|) |has| |#1| (-314)) ((|#1|) |has| |#1| (-148))) +(((|#2|) . T) (((-1094)) -12 (|has| |#1| (-314)) (|has| |#2| (-954 (-1094)))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499))) (((-488)) . T) ((|#1|) |has| |#1| (-148))) +(((|#2|) |has| |#1| (-314)) ((|#1|) . T)) +(((|#1| (-488)) . T)) +(((|#1| (-488)) . T)) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) (((|#1| |#2|) . T)) -(((|#1| (-1071 |#1|)) |has| |#1| (-757))) -(|has| |#1| (-1015)) -(|has| |#1| (-1015)) -(|has| |#1| (-1015)) -((((-774)) |has| |#1| (-1015))) -(|has| |#1| (-1015)) +(((|#1| (-1073 |#1|)) |has| |#1| (-759))) +(|has| |#1| (-1017)) +(|has| |#1| (-1017)) +(|has| |#1| (-1017)) +((((-776)) |has| |#1| (-1017))) +(|has| |#1| (-1017)) (((|#1|) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) ((($) . T)) -((((-774)) . T)) -((((-350 $) (-350 $)) |has| |#2| (-497)) (($ $) . T) ((|#2| |#2|) . T)) -(|has| |#2| (-312)) -(OR (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-823))) -(OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) -(OR (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) -(OR (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) -(|has| |#2| (-312)) -(((|#2| (-696) (-996)) . T)) -(|has| |#2| (-823)) -(|has| |#2| (-823)) -((((-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092)))) (((-996)) . T)) -((($ (-1092)) OR (|has| |#2| (-811 (-1092))) (|has| |#2| (-813 (-1092)))) (($ (-996)) . T)) -((((-1092)) |has| |#2| (-811 (-1092))) (((-996)) . T)) -((((-486)) |has| |#2| (-582 (-486))) ((|#2|) . T)) +((((-776)) . T)) +((((-352 $) (-352 $)) |has| |#2| (-499)) (($ $) . T) ((|#2| |#2|) . T)) +(|has| |#2| (-314)) +(OR (|has| |#2| (-314)) (|has| |#2| (-395)) (|has| |#2| (-825))) +(OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) +(OR (|has| |#2| (-314)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) +(OR (|has| |#2| (-314)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) +(|has| |#2| (-314)) +(((|#2| (-698) (-998)) . T)) +(|has| |#2| (-825)) +(|has| |#2| (-825)) +((((-1094)) OR (|has| |#2| (-813 (-1094))) (|has| |#2| (-815 (-1094)))) (((-998)) . T)) +((($ (-1094)) OR (|has| |#2| (-813 (-1094))) (|has| |#2| (-815 (-1094)))) (($ (-998)) . T)) +((((-1094)) |has| |#2| (-813 (-1094))) (((-998)) . T)) +((((-488)) |has| |#2| (-584 (-488))) ((|#2|) . T)) (((|#2|) . T)) -(((|#2| (-696)) . T)) +(((|#2| (-698)) . T)) (((|#2|) . T)) (|has| |#2| (-120)) (|has| |#2| (-118)) -((((-1178 |#1|)) . T) (((-486)) . T) (($) OR (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) (((-996)) . T) ((|#2|) . T) (((-350 (-486))) OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486)))))) -((($) OR (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) ((|#2|) |has| |#2| (-146)) (((-350 (-486))) |has| |#2| (-38 (-350 (-486))))) -((($) OR (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) ((|#2|) |has| |#2| (-146)) (((-350 (-486))) |has| |#2| (-38 (-350 (-486))))) -((($) . T) (((-486)) |has| |#2| (-582 (-486))) ((|#2|) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486))))) -((((-486)) . T) (($) . T) ((|#2|) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486))))) -((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) ((|#2|) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486))))) -((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) ((|#2|) . T) (((-350 (-486))) |has| |#2| (-38 (-350 (-486))))) -((($ $) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) ((|#2| |#2|) . T) (((-350 (-486)) (-350 (-486))) |has| |#2| (-38 (-350 (-486))))) -((($) OR (|has| |#2| (-312)) (|has| |#2| (-393)) (|has| |#2| (-497)) (|has| |#2| (-823))) ((|#2|) |has| |#2| (-146)) (((-350 (-486))) |has| |#2| (-38 (-350 (-486))))) +((((-1180 |#1|)) . T) (((-488)) . T) (($) OR (|has| |#2| (-314)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) (((-998)) . T) ((|#2|) . T) (((-352 (-488))) OR (|has| |#2| (-38 (-352 (-488)))) (|has| |#2| (-954 (-352 (-488)))))) +((($) OR (|has| |#2| (-314)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) ((|#2|) |has| |#2| (-148)) (((-352 (-488))) |has| |#2| (-38 (-352 (-488))))) +((($) OR (|has| |#2| (-314)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) ((|#2|) |has| |#2| (-148)) (((-352 (-488))) |has| |#2| (-38 (-352 (-488))))) +((($) . T) (((-488)) |has| |#2| (-584 (-488))) ((|#2|) . T) (((-352 (-488))) |has| |#2| (-38 (-352 (-488))))) +((((-488)) . T) (($) . T) ((|#2|) . T) (((-352 (-488))) |has| |#2| (-38 (-352 (-488))))) +((($) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) ((|#2|) . T) (((-352 (-488))) |has| |#2| (-38 (-352 (-488))))) +((($) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) ((|#2|) . T) (((-352 (-488))) |has| |#2| (-38 (-352 (-488))))) +((($ $) OR (|has| |#2| (-148)) (|has| |#2| (-314)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) ((|#2| |#2|) . T) (((-352 (-488)) (-352 (-488))) |has| |#2| (-38 (-352 (-488))))) +((($) OR (|has| |#2| (-314)) (|has| |#2| (-395)) (|has| |#2| (-499)) (|has| |#2| (-825))) ((|#2|) |has| |#2| (-148)) (((-352 (-488))) |has| |#2| (-38 (-352 (-488))))) (((|#2|) . T)) -((((-996)) . T) ((|#2|) . T) (((-486)) |has| |#2| (-952 (-486))) (((-350 (-486))) |has| |#2| (-952 (-350 (-486))))) -(((|#2| (-696)) . T)) -((((-996) |#2|) . T) (((-996) $) . T) (($ $) . T)) +((((-998)) . T) ((|#2|) . T) (((-488)) |has| |#2| (-954 (-488))) (((-352 (-488))) |has| |#2| (-954 (-352 (-488))))) +(((|#2| (-698)) . T)) +((((-998) |#2|) . T) (((-998) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#2| (-1068)) +(|has| |#2| (-1070)) (((|#2|) . T)) -((((-1171 |#1| |#2| |#3|)) . T) (((-1141 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) -((($ $) . T) (((-350 (-486)) |#1|) . T)) -((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) -((($ (-1178 |#2|)) . T) (($ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) -((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) -(((|#1| (-350 (-486)) (-996)) . T)) +((((-1173 |#1| |#2| |#3|)) . T) (((-1143 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) +((($ $) . T) (((-352 (-488)) |#1|) . T)) +((((-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))))) +((($ (-1180 |#2|)) . T) (($ (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))))) +((((-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))))) +(((|#1| (-352 (-488)) (-998)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) (((|#1|) . T)) -(((|#1| (-350 (-486))) . T)) -(((|#1| (-350 (-486))) . T)) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-497))) -((((-774)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)))) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)))) -(((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-486)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) . T)) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) -(((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) -(((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) -((((-1178 |#2|)) . T) (((-1171 |#1| |#2| |#3|)) . T) (((-1141 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-486)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) -(OR (|has| |#1| (-312)) (|has| |#1| (-497))) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(((|#1| (-1141 |#1| |#2| |#3|)) . T)) +(((|#1| (-352 (-488))) . T)) +(((|#1| (-352 (-488))) . T)) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-314)) +(OR (|has| |#1| (-314)) (|has| |#1| (-499))) +((((-776)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314)))) +(((|#1|) . T) (($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488)) (-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314)))) +(((|#1|) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (((-488)) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) . T)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(((|#1|) |has| |#1| (-148)) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499)))) +(((|#1|) |has| |#1| (-148)) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499)))) +(((|#1|) |has| |#1| (-148)) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499)))) +((((-1180 |#2|)) . T) (((-1173 |#1| |#2| |#3|)) . T) (((-1143 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (((-488)) . T) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499)))) +(OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) +(OR (|has| |#1| (-314)) (|has| |#1| (-499))) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(((|#1| (-1143 |#1| |#2| |#3|)) . T)) (((|#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) -((($ $) . T) (((-350 (-486)) |#1|) . T)) -((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) -((($ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) -((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))))) -(((|#1| (-350 (-486)) (-996)) . T)) +(|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) +((($ $) . T) (((-352 (-488)) |#1|) . T)) +((((-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))))) +((($ (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))))) +((((-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))))) +(((|#1| (-352 (-488)) (-998)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) (((|#1|) . T)) -(((|#1| (-350 (-486))) . T)) -(((|#1| (-350 (-486))) . T)) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-497))) -((((-774)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)))) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) (((-350 (-486)) (-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312)))) -(((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-486)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) . T)) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) -(((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) -(((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) -(((|#2|) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-312))) (((-486)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-497)))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-497))) -(OR (|has| |#1| (-312)) (|has| |#1| (-497))) -(|has| |#1| (-312)) -(|has| |#1| (-312)) -(|has| |#1| (-312)) +(((|#1| (-352 (-488))) . T)) +(((|#1| (-352 (-488))) . T)) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-314)) +(OR (|has| |#1| (-314)) (|has| |#1| (-499))) +((((-776)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314)))) +(((|#1|) . T) (($) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) (((-352 (-488)) (-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314)))) +(((|#1|) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (((-488)) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) . T)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(((|#1|) |has| |#1| (-148)) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499)))) +(((|#1|) |has| |#1| (-148)) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499)))) +(((|#1|) |has| |#1| (-148)) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499)))) +(((|#2|) . T) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-314))) (((-488)) . T) (($) OR (|has| |#1| (-314)) (|has| |#1| (-499)))) +(OR (|has| |#1| (-148)) (|has| |#1| (-314)) (|has| |#1| (-499))) +(OR (|has| |#1| (-314)) (|has| |#1| (-499))) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) (((|#1| |#2|) . T)) -((((-1162 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T)) -((((-1162 |#2| |#3| |#4|)) . T)) -(|has| (-1162 |#2| |#3| |#4|) (-120)) -(|has| (-1162 |#2| |#3| |#4|) (-118)) -((($) . T) (((-1162 |#2| |#3| |#4|)) |has| (-1162 |#2| |#3| |#4|) (-146)) (((-350 (-486))) |has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486))))) -((($) . T) (((-1162 |#2| |#3| |#4|)) |has| (-1162 |#2| |#3| |#4|) (-146)) (((-350 (-486))) |has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486))))) -((((-774)) . T)) -((($) . T) (((-1162 |#2| |#3| |#4|)) . T) (((-350 (-486))) |has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486))))) -((($) . T) (((-1162 |#2| |#3| |#4|)) . T) (((-350 (-486))) |has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486))))) -((($ $) . T) (((-1162 |#2| |#3| |#4|) (-1162 |#2| |#3| |#4|)) . T) (((-350 (-486)) (-350 (-486))) |has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486))))) -((((-1162 |#2| |#3| |#4|)) . T) (((-350 (-486))) |has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486)))) (((-486)) . T) (($) . T)) -((((-1162 |#2| |#3| |#4|)) . T) (((-350 (-486))) |has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486)))) (($) . T)) -((($) . T) (((-1162 |#2| |#3| |#4|)) . T) (((-350 (-486))) |has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486)))) (((-486)) . T)) -((($) . T) (((-1162 |#2| |#3| |#4|)) |has| (-1162 |#2| |#3| |#4|) (-146)) (((-350 (-486))) |has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486))))) -((((-1162 |#2| |#3| |#4|)) . T)) -((((-1162 |#2| |#3| |#4|)) . T)) -((((-1162 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T)) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(|has| |#1| (-38 (-350 (-486)))) -(((|#1| (-696)) . T)) -(((|#1| (-696)) . T)) -(|has| |#1| (-497)) -(|has| |#1| (-497)) -(((|#1|) . T)) -(OR (|has| |#1| (-146)) (|has| |#1| (-497))) +((((-1164 |#2| |#3| |#4|) (-272 |#2| |#3| |#4|)) . T)) +((((-1164 |#2| |#3| |#4|)) . T)) +(|has| (-1164 |#2| |#3| |#4|) (-120)) +(|has| (-1164 |#2| |#3| |#4|) (-118)) +((($) . T) (((-1164 |#2| |#3| |#4|)) |has| (-1164 |#2| |#3| |#4|) (-148)) (((-352 (-488))) |has| (-1164 |#2| |#3| |#4|) (-38 (-352 (-488))))) +((($) . T) (((-1164 |#2| |#3| |#4|)) |has| (-1164 |#2| |#3| |#4|) (-148)) (((-352 (-488))) |has| (-1164 |#2| |#3| |#4|) (-38 (-352 (-488))))) +((((-776)) . T)) +((($) . T) (((-1164 |#2| |#3| |#4|)) . T) (((-352 (-488))) |has| (-1164 |#2| |#3| |#4|) (-38 (-352 (-488))))) +((($) . T) (((-1164 |#2| |#3| |#4|)) . T) (((-352 (-488))) |has| (-1164 |#2| |#3| |#4|) (-38 (-352 (-488))))) +((($ $) . T) (((-1164 |#2| |#3| |#4|) (-1164 |#2| |#3| |#4|)) . T) (((-352 (-488)) (-352 (-488))) |has| (-1164 |#2| |#3| |#4|) (-38 (-352 (-488))))) +((((-1164 |#2| |#3| |#4|)) . T) (((-352 (-488))) |has| (-1164 |#2| |#3| |#4|) (-38 (-352 (-488)))) (((-488)) . T) (($) . T)) +((((-1164 |#2| |#3| |#4|)) . T) (((-352 (-488))) |has| (-1164 |#2| |#3| |#4|) (-38 (-352 (-488)))) (($) . T)) +((($) . T) (((-1164 |#2| |#3| |#4|)) . T) (((-352 (-488))) |has| (-1164 |#2| |#3| |#4|) (-38 (-352 (-488)))) (((-488)) . T)) +((($) . T) (((-1164 |#2| |#3| |#4|)) |has| (-1164 |#2| |#3| |#4|) (-148)) (((-352 (-488))) |has| (-1164 |#2| |#3| |#4|) (-38 (-352 (-488))))) +((((-1164 |#2| |#3| |#4|)) . T)) +((((-1164 |#2| |#3| |#4|)) . T)) +((((-1164 |#2| |#3| |#4|) (-272 |#2| |#3| |#4|)) . T)) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(|has| |#1| (-38 (-352 (-488)))) +(((|#1| (-698)) . T)) +(((|#1| (-698)) . T)) +(|has| |#1| (-499)) +(|has| |#1| (-499)) +(((|#1|) . T)) +(OR (|has| |#1| (-148)) (|has| |#1| (-499))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-497))) ((|#1| |#1|) . T) (((-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486))))) -(((|#1| (-696) (-996)) . T)) -((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|))))) -((($ (-1178 |#2|)) . T) (($ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|))))) -((((-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|))))) -((((-696) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-696) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-696) |#1|)))) -((((-774)) . T)) -(((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (((-486)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (($) . T)) -((($) |has| |#1| (-497)) ((|#1|) |has| |#1| (-146)) (((-350 (-486))) |has| |#1| (-38 (-350 (-486)))) (((-486)) . T)) -(|has| |#1| (-15 * (|#1| (-696) |#1|))) -(((|#1|) . T)) -((((-1092)) . T) (((-774)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) -((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) -(((|#1|) . T)) -(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-486) |#1|) . T)) -((((-486) |#1|) . T)) -((((-486) |#1|) . T) (((-1148 (-486)) $) . T)) -((((-475)) |has| |#1| (-555 (-475)))) -(((|#1|) . T)) -(|has| |#1| (-758)) -(|has| |#1| (-758)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-774)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -((((-1097)) . T)) -((((-774)) . T) (((-1097)) . T)) -((((-1097)) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) -(((|#1| |#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) +((($) |has| |#1| (-499)) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) |has| |#1| (-499)) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-499))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) OR (|has| |#1| (-148)) (|has| |#1| (-499))) ((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($ $) OR (|has| |#1| (-148)) (|has| |#1| (-499))) ((|#1| |#1|) . T) (((-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +((($) |has| |#1| (-499)) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488))))) +(((|#1| (-698) (-998)) . T)) +((((-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|))))) +((($ (-1180 |#2|)) . T) (($ (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|))))) +((((-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|))))) +((((-698) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-698) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-698) |#1|)))) +((((-776)) . T)) +(((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) (((-488)) . T) (($) . T)) +(((|#1|) . T) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) (($) . T)) +((($) |has| |#1| (-499)) ((|#1|) |has| |#1| (-148)) (((-352 (-488))) |has| |#1| (-38 (-352 (-488)))) (((-488)) . T)) +(|has| |#1| (-15 * (|#1| (-698) |#1|))) +(((|#1|) . T)) +((((-1094)) . T) (((-776)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-760)) (|has| |#1| (-1017))) +((((-776)) OR (|has| |#1| (-556 (-776))) (|has| |#1| (-760)) (|has| |#1| (-1017)))) +(((|#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017)))) +(((|#1|) . T)) +(OR (|has| |#1| (-760)) (|has| |#1| (-1017))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-488) |#1|) . T)) +((((-488) |#1|) . T)) +((((-488) |#1|) . T) (((-1150 (-488)) $) . T)) +((((-477)) |has| |#1| (-557 (-477)))) +(((|#1|) . T)) +(|has| |#1| (-760)) +(|has| |#1| (-760)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-776)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +((((-1099)) . T)) +((((-776)) . T) (((-1099)) . T)) +((((-1099)) . T)) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) +(((|#1| |#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) (((|#4|) . T)) -(((|#1|) |has| |#1| (-146)) ((|#4|) . T) (((-486)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T)) -(((|#4|) . T) (((-774)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-486)) . T)) +(((|#1|) |has| |#1| (-148)) ((|#4|) . T) (((-488)) . T)) +(((|#1|) |has| |#1| (-148)) (($) . T)) +(((|#4|) . T) (((-776)) . T)) +(((|#1|) |has| |#1| (-148)) (($) . T) (((-488)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-475)) |has| |#4| (-555 (-475)))) +((((-477)) |has| |#4| (-557 (-477)))) (((|#4|) . T)) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +(((|#4| |#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017)))) +(((|#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017)))) (((|#4|) . T)) -((((-774)) . T) (((-585 |#4|)) . T)) +((((-776)) . T) (((-587 |#4|)) . T)) (((|#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-148))) (((|#2|) . T)) (((|#1| |#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-774)) . T)) -((($) . T) (((-486)) . T) ((|#2|) . T)) +((((-776)) . T)) +((($) . T) (((-488)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-146))) -(((|#2|) |has| |#2| (-146))) -((((-741 |#1|)) . T)) -(((|#2|) . T) (((-486)) . T) (((-741 |#1|)) . T)) -(((|#2| (-741 |#1|)) . T)) -(((|#2| (-805 |#1|)) . T)) +(((|#2|) |has| |#2| (-148))) +(((|#2|) |has| |#2| (-148))) +((((-743 |#1|)) . T)) +(((|#2|) . T) (((-488)) . T) (((-743 |#1|)) . T)) +(((|#2| (-743 |#1|)) . T)) +(((|#2| (-807 |#1|)) . T)) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-148))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-146))) -(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-148))) +(((|#2|) |has| |#2| (-148))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-774)) . T)) -(((|#2|) . T) (($) . T) (((-486)) . T)) -((((-805 |#1|)) . T) ((|#2|) . T) (((-486)) . T) (((-741 |#1|)) . T)) -((((-805 |#1|)) . T) (((-741 |#1|)) . T)) +((((-776)) . T)) +(((|#2|) . T) (($) . T) (((-488)) . T)) +((((-807 |#1|)) . T) ((|#2|) . T) (((-488)) . T) (((-743 |#1|)) . T)) +((((-807 |#1|)) . T) (((-743 |#1|)) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-1092) |#1|) . T)) -(((|#1|) |has| |#1| (-146))) +((((-1094) |#1|) . T)) +(((|#1|) |has| |#1| (-148))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-774)) . T)) -(((|#1|) . T) (($) . T) (((-486)) . T)) -(((|#1|) . T) (((-486)) . T) (((-741 (-1092))) . T)) -((((-741 (-1092))) . T)) +((((-776)) . T)) +(((|#1|) . T) (($) . T) (((-488)) . T)) +(((|#1|) . T) (((-488)) . T) (((-743 (-1094))) . T)) +((((-743 (-1094))) . T)) (((|#1|) . T)) -((((-1092) |#1|) . T)) +((((-1094) |#1|) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-148))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-146))) -(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-148))) +(((|#1|) |has| |#1| (-148))) (((|#1|) . T)) -(((|#2|) . T) ((|#1|) . T) (((-486)) . T)) +(((|#2|) . T) ((|#1|) . T) (((-488)) . T)) (((|#1|) . T) (($) . T)) -((((-774)) . T)) -(((|#1|) . T) (($) . T) (((-486)) . T)) +((((-776)) . T)) +(((|#1|) . T) (($) . T) (((-488)) . T)) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-148))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-146))) -(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-148))) +(((|#2|) |has| |#2| (-148))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-774)) . T)) -(((|#2|) . T) (($) . T) (((-486)) . T)) -(((|#2|) . T) (((-486)) . T) (((-741 |#1|)) . T)) -((((-741 |#1|)) . T)) +((((-776)) . T)) +(((|#2|) . T) (($) . T) (((-488)) . T)) +(((|#2|) . T) (((-488)) . T) (((-743 |#1|)) . T)) +((((-743 |#1|)) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-886)) . T)) -((((-886)) . T)) -((((-886)) . T) (((-774)) . T)) -((((-486)) . T)) +((((-888)) . T)) +((((-888)) . T)) +((((-888)) . T) (((-776)) . T)) +((((-488)) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-774)) . T)) -((((-486)) . T) (($) . T)) +((((-776)) . T)) +((((-488)) . T) (($) . T)) ((($) . T)) -((((-486)) . T)) -(((-1211 . -146) T) ((-1211 . -557) 203775) ((-1211 . -972) T) ((-1211 . -1027) T) ((-1211 . -1063) T) ((-1211 . -665) T) ((-1211 . -963) T) ((-1211 . -592) 203762) ((-1211 . -590) 203734) ((-1211 . -104) T) ((-1211 . -25) T) ((-1211 . -72) T) ((-1211 . -13) T) ((-1211 . -1131) T) ((-1211 . -554) 203716) ((-1211 . -1015) T) ((-1211 . -23) T) ((-1211 . -21) T) ((-1211 . -970) 203703) ((-1211 . -965) 203690) ((-1211 . -82) 203675) ((-1211 . -320) T) ((-1211 . -555) 203657) ((-1211 . -1068) T) ((-1207 . -1015) T) ((-1207 . -554) 203624) ((-1207 . -1131) T) ((-1207 . -13) T) ((-1207 . -72) T) ((-1207 . -431) 203606) ((-1207 . -557) 203588) ((-1206 . -1204) 203567) ((-1206 . -381) 203551) ((-1206 . -13) T) ((-1206 . -1131) T) ((-1206 . -952) 203528) ((-1206 . -557) 203477) ((-1206 . -963) T) ((-1206 . -665) T) ((-1206 . -1063) T) ((-1206 . -1027) T) ((-1206 . -972) T) ((-1206 . -21) T) ((-1206 . -590) 203436) ((-1206 . -23) T) ((-1206 . -1015) T) ((-1206 . -554) 203418) ((-1206 . -72) T) ((-1206 . -25) T) ((-1206 . -104) T) ((-1206 . -592) 203392) ((-1206 . -1196) 203376) ((-1206 . -656) 203346) ((-1206 . -584) 203316) ((-1206 . -970) 203300) ((-1206 . -965) 203284) ((-1206 . -82) 203263) ((-1206 . -38) 203233) ((-1206 . -1201) 203212) ((-1205 . -963) T) ((-1205 . -665) T) ((-1205 . -1063) T) ((-1205 . -1027) T) ((-1205 . -972) T) ((-1205 . -21) T) ((-1205 . -590) 203171) ((-1205 . -23) T) ((-1205 . -1015) T) ((-1205 . -554) 203153) ((-1205 . -1131) T) ((-1205 . -13) T) ((-1205 . -72) T) ((-1205 . -25) T) ((-1205 . -104) T) ((-1205 . -592) 203127) ((-1205 . -557) 203083) ((-1205 . -1196) 203067) ((-1205 . -656) 203037) ((-1205 . -584) 203007) ((-1205 . -970) 202991) ((-1205 . -965) 202975) ((-1205 . -82) 202954) ((-1205 . -38) 202924) ((-1205 . -335) 202903) ((-1205 . -952) 202887) ((-1205 . -381) 202871) ((-1203 . -1204) 202847) ((-1203 . -381) 202831) ((-1203 . -13) T) ((-1203 . -1131) T) ((-1203 . -952) 202805) ((-1203 . -557) 202751) ((-1203 . -963) T) ((-1203 . -665) T) ((-1203 . -1063) T) ((-1203 . -1027) T) ((-1203 . -972) T) ((-1203 . -21) T) ((-1203 . -590) 202710) ((-1203 . -23) T) ((-1203 . -1015) T) ((-1203 . -554) 202692) ((-1203 . -72) T) ((-1203 . -25) T) ((-1203 . -104) T) ((-1203 . -592) 202666) ((-1203 . -1196) 202650) ((-1203 . -656) 202620) ((-1203 . -584) 202590) ((-1203 . -970) 202574) ((-1203 . -965) 202558) ((-1203 . -82) 202537) ((-1203 . -38) 202507) ((-1203 . -1201) 202483) ((-1202 . -1204) 202462) ((-1202 . -381) 202446) ((-1202 . -13) T) ((-1202 . -1131) T) ((-1202 . -952) 202403) ((-1202 . -557) 202332) ((-1202 . -963) T) ((-1202 . -665) T) ((-1202 . -1063) T) ((-1202 . -1027) T) ((-1202 . -972) T) ((-1202 . -21) T) ((-1202 . -590) 202291) ((-1202 . -23) T) ((-1202 . -1015) T) ((-1202 . -554) 202273) ((-1202 . -72) T) ((-1202 . -25) T) ((-1202 . -104) T) ((-1202 . -592) 202247) ((-1202 . -1196) 202231) ((-1202 . -656) 202201) ((-1202 . -584) 202171) ((-1202 . -970) 202155) ((-1202 . -965) 202139) ((-1202 . -82) 202118) ((-1202 . -38) 202088) ((-1202 . -1201) 202067) ((-1202 . -335) 202039) ((-1197 . -335) 202011) ((-1197 . -557) 201960) ((-1197 . -952) 201937) ((-1197 . -584) 201907) ((-1197 . -656) 201877) ((-1197 . -381) 201861) ((-1197 . -592) 201835) ((-1197 . -590) 201794) ((-1197 . -104) T) ((-1197 . -25) T) ((-1197 . -72) T) ((-1197 . -13) T) ((-1197 . -1131) T) ((-1197 . -554) 201776) ((-1197 . -1015) T) ((-1197 . -23) T) ((-1197 . -21) T) ((-1197 . -970) 201760) ((-1197 . -965) 201744) ((-1197 . -82) 201723) ((-1197 . -1204) 201702) ((-1197 . -963) T) ((-1197 . -665) T) ((-1197 . -1063) T) ((-1197 . -1027) T) ((-1197 . -972) T) ((-1197 . -1196) 201686) ((-1197 . -38) 201656) ((-1197 . -1201) 201635) ((-1195 . -1126) 201604) ((-1195 . -1037) 201588) ((-1195 . -554) 201550) ((-1195 . -124) 201534) ((-1195 . -34) T) ((-1195 . -13) T) ((-1195 . -1131) T) ((-1195 . -72) T) ((-1195 . -260) 201472) ((-1195 . -457) 201405) ((-1195 . -381) 201389) ((-1195 . -1015) T) ((-1195 . -430) 201373) ((-1195 . -555) 201334) ((-1195 . -318) 201318) ((-1195 . -891) 201287) ((-1194 . -963) T) ((-1194 . -665) T) ((-1194 . -1063) T) ((-1194 . -1027) T) ((-1194 . -972) T) ((-1194 . -21) T) ((-1194 . -590) 201232) ((-1194 . -23) T) ((-1194 . -1015) T) ((-1194 . -554) 201201) ((-1194 . -1131) T) ((-1194 . -13) T) ((-1194 . -72) T) ((-1194 . -25) T) ((-1194 . -104) T) ((-1194 . -592) 201161) ((-1194 . -557) 201103) ((-1194 . -431) 201087) ((-1194 . -38) 201057) ((-1194 . -82) 201022) ((-1194 . -965) 200992) ((-1194 . -970) 200962) ((-1194 . -584) 200932) ((-1194 . -656) 200902) ((-1193 . -997) T) ((-1193 . -431) 200883) ((-1193 . -554) 200849) ((-1193 . -557) 200830) ((-1193 . -1015) T) ((-1193 . -1131) T) ((-1193 . -13) T) ((-1193 . -72) T) ((-1193 . -64) T) ((-1192 . -997) T) ((-1192 . -431) 200811) ((-1192 . -554) 200777) ((-1192 . -557) 200758) ((-1192 . -1015) T) ((-1192 . -1131) T) ((-1192 . -13) T) ((-1192 . -72) T) ((-1192 . -64) T) ((-1187 . -554) 200740) ((-1185 . -1015) T) ((-1185 . -554) 200722) ((-1185 . -1131) T) ((-1185 . -13) T) ((-1185 . -72) T) ((-1184 . -1015) T) ((-1184 . -554) 200704) ((-1184 . -1131) T) ((-1184 . -13) T) ((-1184 . -72) T) ((-1181 . -1180) 200688) ((-1181 . -324) 200672) ((-1181 . -761) 200651) ((-1181 . -758) 200630) ((-1181 . -124) 200614) ((-1181 . -555) 200575) ((-1181 . -241) 200527) ((-1181 . -540) 200504) ((-1181 . -243) 200481) ((-1181 . -595) 200465) ((-1181 . -430) 200449) ((-1181 . -1015) 200402) ((-1181 . -381) 200386) ((-1181 . -457) 200319) ((-1181 . -260) 200257) ((-1181 . -554) 200172) ((-1181 . -72) 200106) ((-1181 . -1131) T) ((-1181 . -13) T) ((-1181 . -34) T) ((-1181 . -318) 200090) ((-1181 . -1037) 200074) ((-1181 . -19) 200058) ((-1178 . -1015) T) ((-1178 . -554) 200024) ((-1178 . -1131) T) ((-1178 . -13) T) ((-1178 . -72) T) ((-1171 . -1174) 200008) ((-1171 . -190) 199967) ((-1171 . -557) 199849) ((-1171 . -592) 199774) ((-1171 . -590) 199684) ((-1171 . -104) T) ((-1171 . -25) T) ((-1171 . -72) T) ((-1171 . -554) 199666) ((-1171 . -1015) T) ((-1171 . -23) T) ((-1171 . -21) T) ((-1171 . -972) T) ((-1171 . -1027) T) ((-1171 . -1063) T) ((-1171 . -665) T) ((-1171 . -963) T) ((-1171 . -186) 199619) ((-1171 . -13) T) ((-1171 . -1131) T) ((-1171 . -189) 199578) ((-1171 . -241) 199543) ((-1171 . -811) 199456) ((-1171 . -808) 199344) ((-1171 . -813) 199257) ((-1171 . -888) 199227) ((-1171 . -38) 199124) ((-1171 . -82) 198989) ((-1171 . -965) 198875) ((-1171 . -970) 198761) ((-1171 . -584) 198658) ((-1171 . -656) 198555) ((-1171 . -118) 198534) ((-1171 . -120) 198513) ((-1171 . -146) 198467) ((-1171 . -381) 198451) ((-1171 . -497) 198430) ((-1171 . -246) 198409) ((-1171 . -47) 198386) ((-1171 . -1160) 198363) ((-1171 . -35) 198329) ((-1171 . -66) 198295) ((-1171 . -239) 198261) ((-1171 . -434) 198227) ((-1171 . -1120) 198193) ((-1171 . -1117) 198159) ((-1171 . -917) 198125) ((-1168 . -277) 198069) ((-1168 . -952) 198035) ((-1168 . -355) 198001) ((-1168 . -38) 197858) ((-1168 . -557) 197732) ((-1168 . -592) 197621) ((-1168 . -590) 197495) ((-1168 . -972) T) ((-1168 . -1027) T) ((-1168 . -1063) T) ((-1168 . -665) T) ((-1168 . -963) T) ((-1168 . -82) 197345) ((-1168 . -965) 197234) ((-1168 . -970) 197123) ((-1168 . -21) T) ((-1168 . -23) T) ((-1168 . -1015) T) ((-1168 . -554) 197105) ((-1168 . -1131) T) ((-1168 . -13) T) ((-1168 . -72) T) ((-1168 . -25) T) ((-1168 . -104) T) ((-1168 . -584) 196962) ((-1168 . -656) 196819) ((-1168 . -118) 196780) ((-1168 . -120) 196741) ((-1168 . -146) T) ((-1168 . -381) 196707) ((-1168 . -497) T) ((-1168 . -246) T) ((-1168 . -47) 196651) ((-1167 . -1166) 196630) ((-1167 . -312) 196609) ((-1167 . -1136) 196588) ((-1167 . -834) 196567) ((-1167 . -497) 196521) ((-1167 . -146) 196455) ((-1167 . -557) 196274) ((-1167 . -656) 196121) ((-1167 . -584) 195968) ((-1167 . -38) 195815) ((-1167 . -393) 195794) ((-1167 . -258) 195773) ((-1167 . -592) 195673) ((-1167 . -590) 195558) ((-1167 . -972) T) ((-1167 . -1027) T) ((-1167 . -1063) T) ((-1167 . -665) T) ((-1167 . -963) T) ((-1167 . -82) 195378) ((-1167 . -965) 195219) ((-1167 . -970) 195060) ((-1167 . -21) T) ((-1167 . -23) T) ((-1167 . -1015) T) ((-1167 . -554) 195042) ((-1167 . -1131) T) ((-1167 . -13) T) ((-1167 . -72) T) ((-1167 . -25) T) ((-1167 . -104) T) ((-1167 . -246) 194996) ((-1167 . -201) 194975) ((-1167 . -917) 194941) ((-1167 . -1117) 194907) ((-1167 . -1120) 194873) ((-1167 . -434) 194839) ((-1167 . -239) 194805) ((-1167 . -66) 194771) ((-1167 . -35) 194737) ((-1167 . -1160) 194707) ((-1167 . -47) 194677) ((-1167 . -381) 194661) ((-1167 . -120) 194640) ((-1167 . -118) 194619) ((-1167 . -888) 194582) ((-1167 . -813) 194488) ((-1167 . -808) 194392) ((-1167 . -811) 194298) ((-1167 . -241) 194256) ((-1167 . -189) 194208) ((-1167 . -186) 194154) ((-1167 . -190) 194106) ((-1167 . -1164) 194090) ((-1167 . -952) 194074) ((-1162 . -1166) 194035) ((-1162 . -312) 194014) ((-1162 . -1136) 193993) ((-1162 . -834) 193972) ((-1162 . -497) 193926) ((-1162 . -146) 193860) ((-1162 . -557) 193609) ((-1162 . -656) 193456) ((-1162 . -584) 193303) ((-1162 . -38) 193150) ((-1162 . -393) 193129) ((-1162 . -258) 193108) ((-1162 . -592) 193008) ((-1162 . -590) 192893) ((-1162 . -972) T) ((-1162 . -1027) T) ((-1162 . -1063) T) ((-1162 . -665) T) ((-1162 . -963) T) ((-1162 . -82) 192713) ((-1162 . -965) 192554) ((-1162 . -970) 192395) ((-1162 . -21) T) ((-1162 . -23) T) ((-1162 . -1015) T) ((-1162 . -554) 192377) ((-1162 . -1131) T) ((-1162 . -13) T) ((-1162 . -72) T) ((-1162 . -25) T) ((-1162 . -104) T) ((-1162 . -246) 192331) ((-1162 . -201) 192310) ((-1162 . -917) 192276) ((-1162 . -1117) 192242) ((-1162 . -1120) 192208) ((-1162 . -434) 192174) ((-1162 . -239) 192140) ((-1162 . -66) 192106) ((-1162 . -35) 192072) ((-1162 . -1160) 192042) ((-1162 . -47) 192012) ((-1162 . -381) 191996) ((-1162 . -120) 191975) ((-1162 . -118) 191954) ((-1162 . -888) 191917) ((-1162 . -813) 191823) ((-1162 . -808) 191704) ((-1162 . -811) 191610) ((-1162 . -241) 191568) ((-1162 . -189) 191520) ((-1162 . -186) 191466) ((-1162 . -190) 191418) ((-1162 . -1164) 191402) ((-1162 . -952) 191337) ((-1150 . -1157) 191321) ((-1150 . -1068) 191299) ((-1150 . -555) NIL) ((-1150 . -260) 191286) ((-1150 . -457) 191234) ((-1150 . -277) 191211) ((-1150 . -952) 191094) ((-1150 . -355) 191078) ((-1150 . -38) 190910) ((-1150 . -82) 190715) ((-1150 . -965) 190541) ((-1150 . -970) 190367) ((-1150 . -590) 190277) ((-1150 . -592) 190166) ((-1150 . -584) 189998) ((-1150 . -656) 189830) ((-1150 . -557) 189586) ((-1150 . -118) 189565) ((-1150 . -120) 189544) ((-1150 . -381) 189528) ((-1150 . -47) 189505) ((-1150 . -329) 189489) ((-1150 . -582) 189437) ((-1150 . -811) 189381) ((-1150 . -808) 189288) ((-1150 . -813) 189199) ((-1150 . -798) NIL) ((-1150 . -823) 189178) ((-1150 . -1136) 189157) ((-1150 . -863) 189127) ((-1150 . -834) 189106) ((-1150 . -497) 189020) ((-1150 . -246) 188934) ((-1150 . -146) 188828) ((-1150 . -393) 188762) ((-1150 . -258) 188741) ((-1150 . -241) 188668) ((-1150 . -190) T) ((-1150 . -104) T) ((-1150 . -25) T) ((-1150 . -72) T) ((-1150 . -554) 188650) ((-1150 . -1015) T) ((-1150 . -23) T) ((-1150 . -21) T) ((-1150 . -972) T) ((-1150 . -1027) T) ((-1150 . -1063) T) ((-1150 . -665) T) ((-1150 . -963) T) ((-1150 . -186) 188637) ((-1150 . -13) T) ((-1150 . -1131) T) ((-1150 . -189) T) ((-1150 . -225) 188621) ((-1150 . -184) 188605) ((-1148 . -1008) 188589) ((-1148 . -559) 188573) ((-1148 . -1015) 188551) ((-1148 . -554) 188518) ((-1148 . -1131) 188496) ((-1148 . -13) 188474) ((-1148 . -72) 188452) ((-1148 . -1009) 188409) ((-1146 . -1145) 188388) ((-1146 . -917) 188354) ((-1146 . -1117) 188320) ((-1146 . -1120) 188286) ((-1146 . -434) 188252) ((-1146 . -239) 188218) ((-1146 . -66) 188184) ((-1146 . -35) 188150) ((-1146 . -1160) 188127) ((-1146 . -47) 188104) ((-1146 . -381) 188061) ((-1146 . -557) 187816) ((-1146 . -656) 187636) ((-1146 . -584) 187456) ((-1146 . -592) 187267) ((-1146 . -590) 187125) ((-1146 . -970) 186939) ((-1146 . -965) 186753) ((-1146 . -82) 186541) ((-1146 . -38) 186361) ((-1146 . -888) 186331) ((-1146 . -241) 186231) ((-1146 . -1143) 186215) ((-1146 . -972) T) ((-1146 . -1027) T) ((-1146 . -1063) T) ((-1146 . -665) T) ((-1146 . -963) T) ((-1146 . -21) T) ((-1146 . -23) T) ((-1146 . -1015) T) ((-1146 . -554) 186197) ((-1146 . -1131) T) ((-1146 . -13) T) ((-1146 . -72) T) ((-1146 . -25) T) ((-1146 . -104) T) ((-1146 . -118) 186125) ((-1146 . -120) 186007) ((-1146 . -555) 185680) ((-1146 . -184) 185650) ((-1146 . -811) 185504) ((-1146 . -813) 185304) ((-1146 . -808) 185102) ((-1146 . -225) 185072) ((-1146 . -189) 184934) ((-1146 . -186) 184790) ((-1146 . -190) 184698) ((-1146 . -312) 184677) ((-1146 . -1136) 184656) ((-1146 . -834) 184635) ((-1146 . -497) 184589) ((-1146 . -146) 184523) ((-1146 . -393) 184502) ((-1146 . -258) 184481) ((-1146 . -246) 184435) ((-1146 . -201) 184414) ((-1146 . -288) 184384) ((-1146 . -457) 184244) ((-1146 . -260) 184183) ((-1146 . -329) 184153) ((-1146 . -582) 184061) ((-1146 . -343) 184031) ((-1146 . -798) 183904) ((-1146 . -742) 183857) ((-1146 . -716) 183810) ((-1146 . -718) 183763) ((-1146 . -758) 183665) ((-1146 . -761) 183567) ((-1146 . -720) 183520) ((-1146 . -723) 183473) ((-1146 . -757) 183426) ((-1146 . -796) 183396) ((-1146 . -823) 183349) ((-1146 . -935) 183302) ((-1146 . -952) 183091) ((-1146 . -1068) 183043) ((-1146 . -906) 183013) ((-1141 . -1145) 182974) ((-1141 . -917) 182940) ((-1141 . -1117) 182906) ((-1141 . -1120) 182872) ((-1141 . -434) 182838) ((-1141 . -239) 182804) ((-1141 . -66) 182770) ((-1141 . -35) 182736) ((-1141 . -1160) 182713) ((-1141 . -47) 182690) ((-1141 . -381) 182629) ((-1141 . -557) 182430) ((-1141 . -656) 182232) ((-1141 . -584) 182034) ((-1141 . -592) 181889) ((-1141 . -590) 181729) ((-1141 . -970) 181525) ((-1141 . -965) 181321) ((-1141 . -82) 181073) ((-1141 . -38) 180875) ((-1141 . -888) 180845) ((-1141 . -241) 180673) ((-1141 . -1143) 180657) ((-1141 . -972) T) ((-1141 . -1027) T) ((-1141 . -1063) T) ((-1141 . -665) T) ((-1141 . -963) T) ((-1141 . -21) T) ((-1141 . -23) T) ((-1141 . -1015) T) ((-1141 . -554) 180639) ((-1141 . -1131) T) ((-1141 . -13) T) ((-1141 . -72) T) ((-1141 . -25) T) ((-1141 . -104) T) ((-1141 . -118) 180549) ((-1141 . -120) 180459) ((-1141 . -555) NIL) ((-1141 . -184) 180411) ((-1141 . -811) 180247) ((-1141 . -813) 180011) ((-1141 . -808) 179750) ((-1141 . -225) 179702) ((-1141 . -189) 179528) ((-1141 . -186) 179348) ((-1141 . -190) 179238) ((-1141 . -312) 179217) ((-1141 . -1136) 179196) ((-1141 . -834) 179175) ((-1141 . -497) 179129) ((-1141 . -146) 179063) ((-1141 . -393) 179042) ((-1141 . -258) 179021) ((-1141 . -246) 178975) ((-1141 . -201) 178954) ((-1141 . -288) 178906) ((-1141 . -457) 178640) ((-1141 . -260) 178525) ((-1141 . -329) 178477) ((-1141 . -582) 178429) ((-1141 . -343) 178381) ((-1141 . -798) NIL) ((-1141 . -742) NIL) ((-1141 . -716) NIL) ((-1141 . -718) NIL) ((-1141 . -758) NIL) ((-1141 . -761) NIL) ((-1141 . -720) NIL) ((-1141 . -723) NIL) ((-1141 . -757) NIL) ((-1141 . -796) 178333) ((-1141 . -823) NIL) ((-1141 . -935) NIL) ((-1141 . -952) 178299) ((-1141 . -1068) NIL) ((-1141 . -906) 178251) ((-1140 . -754) T) ((-1140 . -761) T) ((-1140 . -758) T) ((-1140 . -1015) T) ((-1140 . -554) 178233) ((-1140 . -1131) T) ((-1140 . -13) T) ((-1140 . -72) T) ((-1140 . -320) T) ((-1140 . -606) T) ((-1139 . -754) T) ((-1139 . -761) T) ((-1139 . -758) T) ((-1139 . -1015) T) ((-1139 . -554) 178215) ((-1139 . -1131) T) ((-1139 . -13) T) ((-1139 . -72) T) ((-1139 . -320) T) ((-1139 . -606) T) ((-1138 . -754) T) ((-1138 . -761) T) ((-1138 . -758) T) ((-1138 . -1015) T) ((-1138 . -554) 178197) ((-1138 . -1131) T) ((-1138 . -13) T) ((-1138 . -72) T) ((-1138 . -320) T) ((-1138 . -606) T) ((-1137 . -754) T) ((-1137 . -761) T) ((-1137 . -758) T) ((-1137 . -1015) T) ((-1137 . -554) 178179) ((-1137 . -1131) T) ((-1137 . -13) T) ((-1137 . -72) T) ((-1137 . -320) T) ((-1137 . -606) T) ((-1132 . -997) T) ((-1132 . -431) 178160) ((-1132 . -554) 178126) ((-1132 . -557) 178107) ((-1132 . -1015) T) ((-1132 . -1131) T) ((-1132 . -13) T) ((-1132 . -72) T) ((-1132 . -64) T) ((-1129 . -431) 178084) ((-1129 . -554) 178025) ((-1129 . -557) 178002) ((-1129 . -1015) 177980) ((-1129 . -1131) 177958) ((-1129 . -13) 177936) ((-1129 . -72) 177914) ((-1124 . -681) 177890) ((-1124 . -35) 177856) ((-1124 . -66) 177822) ((-1124 . -239) 177788) ((-1124 . -434) 177754) ((-1124 . -1120) 177720) ((-1124 . -1117) 177686) ((-1124 . -917) 177652) ((-1124 . -47) 177621) ((-1124 . -38) 177518) ((-1124 . -584) 177415) ((-1124 . -656) 177312) ((-1124 . -557) 177194) ((-1124 . -246) 177173) ((-1124 . -497) 177152) ((-1124 . -381) 177136) ((-1124 . -82) 177001) ((-1124 . -965) 176887) ((-1124 . -970) 176773) ((-1124 . -146) 176727) ((-1124 . -120) 176706) ((-1124 . -118) 176685) ((-1124 . -592) 176610) ((-1124 . -590) 176520) ((-1124 . -888) 176481) ((-1124 . -813) 176462) ((-1124 . -1131) T) ((-1124 . -13) T) ((-1124 . -808) 176441) ((-1124 . -963) T) ((-1124 . -665) T) ((-1124 . -1063) T) ((-1124 . -1027) T) ((-1124 . -972) T) ((-1124 . -21) T) ((-1124 . -23) T) ((-1124 . -1015) T) ((-1124 . -554) 176423) ((-1124 . -72) T) ((-1124 . -25) T) ((-1124 . -104) T) ((-1124 . -811) 176404) ((-1124 . -457) 176371) ((-1124 . -260) 176358) ((-1118 . -925) 176342) ((-1118 . -34) T) ((-1118 . -13) T) ((-1118 . -1131) T) ((-1118 . -72) 176296) ((-1118 . -554) 176231) ((-1118 . -260) 176169) ((-1118 . -457) 176102) ((-1118 . -381) 176086) ((-1118 . -1015) 176064) ((-1118 . -430) 176048) ((-1118 . -318) 176032) ((-1118 . -1037) 176016) ((-1113 . -314) 175990) ((-1113 . -72) T) ((-1113 . -13) T) ((-1113 . -1131) T) ((-1113 . -554) 175972) ((-1113 . -1015) T) ((-1111 . -1015) T) ((-1111 . -554) 175954) ((-1111 . -1131) T) ((-1111 . -13) T) ((-1111 . -72) T) ((-1111 . -557) 175936) ((-1106 . -749) 175920) ((-1106 . -72) T) ((-1106 . -13) T) ((-1106 . -1131) T) ((-1106 . -554) 175902) ((-1106 . -1015) T) ((-1104 . -1109) 175881) ((-1104 . -183) 175829) ((-1104 . -76) 175777) ((-1104 . -1037) 175712) ((-1104 . -124) 175660) ((-1104 . -555) NIL) ((-1104 . -193) 175608) ((-1104 . -540) 175587) ((-1104 . -260) 175385) ((-1104 . -457) 175137) ((-1104 . -381) 175072) ((-1104 . -430) 175007) ((-1104 . -241) 174986) ((-1104 . -243) 174965) ((-1104 . -551) 174944) ((-1104 . -1015) T) ((-1104 . -554) 174926) ((-1104 . -72) T) ((-1104 . -1131) T) ((-1104 . -13) T) ((-1104 . -34) T) ((-1104 . -318) 174874) ((-1100 . -1015) T) ((-1100 . -554) 174856) ((-1100 . -1131) T) ((-1100 . -13) T) ((-1100 . -72) T) ((-1099 . -754) T) ((-1099 . -761) T) ((-1099 . -758) T) ((-1099 . -1015) T) ((-1099 . -554) 174838) ((-1099 . -1131) T) ((-1099 . -13) T) ((-1099 . -72) T) ((-1099 . -320) T) ((-1099 . -606) T) ((-1098 . -754) T) ((-1098 . -761) T) ((-1098 . -758) T) ((-1098 . -1015) T) ((-1098 . -554) 174820) ((-1098 . -1131) T) ((-1098 . -13) T) ((-1098 . -72) T) ((-1098 . -320) T) ((-1097 . -1177) T) ((-1097 . -1015) T) ((-1097 . -554) 174787) ((-1097 . -1131) T) ((-1097 . -13) T) ((-1097 . -72) T) ((-1097 . -952) 174723) ((-1097 . -557) 174659) ((-1096 . -554) 174641) ((-1095 . -554) 174623) ((-1094 . -277) 174600) ((-1094 . -952) 174498) ((-1094 . -355) 174482) ((-1094 . -38) 174379) ((-1094 . -557) 174236) ((-1094 . -592) 174161) ((-1094 . -590) 174071) ((-1094 . -972) T) ((-1094 . -1027) T) ((-1094 . -1063) T) ((-1094 . -665) T) ((-1094 . -963) T) ((-1094 . -82) 173936) ((-1094 . -965) 173822) ((-1094 . -970) 173708) ((-1094 . -21) T) ((-1094 . -23) T) ((-1094 . -1015) T) ((-1094 . -554) 173690) ((-1094 . -1131) T) ((-1094 . -13) T) ((-1094 . -72) T) ((-1094 . -25) T) ((-1094 . -104) T) ((-1094 . -584) 173587) ((-1094 . -656) 173484) ((-1094 . -118) 173463) ((-1094 . -120) 173442) ((-1094 . -146) 173396) ((-1094 . -381) 173380) ((-1094 . -497) 173359) ((-1094 . -246) 173338) ((-1094 . -47) 173315) ((-1092 . -758) T) ((-1092 . -554) 173297) ((-1092 . -1015) T) ((-1092 . -72) T) ((-1092 . -13) T) ((-1092 . -1131) T) ((-1092 . -761) T) ((-1092 . -555) 173219) ((-1092 . -557) 173185) ((-1092 . -952) 173167) ((-1092 . -798) 173134) ((-1091 . -1174) 173118) ((-1091 . -190) 173077) ((-1091 . -557) 172959) ((-1091 . -592) 172884) ((-1091 . -590) 172794) ((-1091 . -104) T) ((-1091 . -25) T) ((-1091 . -72) T) ((-1091 . -554) 172776) ((-1091 . -1015) T) ((-1091 . -23) T) ((-1091 . -21) T) ((-1091 . -972) T) ((-1091 . -1027) T) ((-1091 . -1063) T) ((-1091 . -665) T) ((-1091 . -963) T) ((-1091 . -186) 172729) ((-1091 . -13) T) ((-1091 . -1131) T) ((-1091 . -189) 172688) ((-1091 . -241) 172653) ((-1091 . -811) 172566) ((-1091 . -808) 172454) ((-1091 . -813) 172367) ((-1091 . -888) 172337) ((-1091 . -38) 172234) ((-1091 . -82) 172099) ((-1091 . -965) 171985) ((-1091 . -970) 171871) ((-1091 . -584) 171768) ((-1091 . -656) 171665) ((-1091 . -118) 171644) ((-1091 . -120) 171623) ((-1091 . -146) 171577) ((-1091 . -381) 171561) ((-1091 . -497) 171540) ((-1091 . -246) 171519) ((-1091 . -47) 171496) ((-1091 . -1160) 171473) ((-1091 . -35) 171439) ((-1091 . -66) 171405) ((-1091 . -239) 171371) ((-1091 . -434) 171337) ((-1091 . -1120) 171303) ((-1091 . -1117) 171269) ((-1091 . -917) 171235) ((-1090 . -1166) 171196) ((-1090 . -312) 171175) ((-1090 . -1136) 171154) ((-1090 . -834) 171133) ((-1090 . -497) 171087) ((-1090 . -146) 171021) ((-1090 . -557) 170770) ((-1090 . -656) 170617) ((-1090 . -584) 170464) ((-1090 . -38) 170311) ((-1090 . -393) 170290) ((-1090 . -258) 170269) ((-1090 . -592) 170169) ((-1090 . -590) 170054) ((-1090 . -972) T) ((-1090 . -1027) T) ((-1090 . -1063) T) ((-1090 . -665) T) ((-1090 . -963) T) ((-1090 . -82) 169874) ((-1090 . -965) 169715) ((-1090 . -970) 169556) ((-1090 . -21) T) ((-1090 . -23) T) ((-1090 . -1015) T) ((-1090 . -554) 169538) ((-1090 . -1131) T) ((-1090 . -13) T) ((-1090 . -72) T) ((-1090 . -25) T) ((-1090 . -104) T) ((-1090 . -246) 169492) ((-1090 . -201) 169471) ((-1090 . -917) 169437) ((-1090 . -1117) 169403) ((-1090 . -1120) 169369) ((-1090 . -434) 169335) ((-1090 . -239) 169301) ((-1090 . -66) 169267) ((-1090 . -35) 169233) ((-1090 . -1160) 169203) ((-1090 . -47) 169173) ((-1090 . -381) 169157) ((-1090 . -120) 169136) ((-1090 . -118) 169115) ((-1090 . -888) 169078) ((-1090 . -813) 168984) ((-1090 . -808) 168865) ((-1090 . -811) 168771) ((-1090 . -241) 168729) ((-1090 . -189) 168681) ((-1090 . -186) 168627) ((-1090 . -190) 168579) ((-1090 . -1164) 168563) ((-1090 . -952) 168498) ((-1087 . -1157) 168482) ((-1087 . -1068) 168460) ((-1087 . -555) NIL) ((-1087 . -260) 168447) ((-1087 . -457) 168395) ((-1087 . -277) 168372) ((-1087 . -952) 168255) ((-1087 . -355) 168239) ((-1087 . -38) 168071) ((-1087 . -82) 167876) ((-1087 . -965) 167702) ((-1087 . -970) 167528) ((-1087 . -590) 167438) ((-1087 . -592) 167327) ((-1087 . -584) 167159) ((-1087 . -656) 166991) ((-1087 . -557) 166768) ((-1087 . -118) 166747) ((-1087 . -120) 166726) ((-1087 . -381) 166710) ((-1087 . -47) 166687) ((-1087 . -329) 166671) ((-1087 . -582) 166619) ((-1087 . -811) 166563) ((-1087 . -808) 166470) ((-1087 . -813) 166381) ((-1087 . -798) NIL) ((-1087 . -823) 166360) ((-1087 . -1136) 166339) ((-1087 . -863) 166309) ((-1087 . -834) 166288) ((-1087 . -497) 166202) ((-1087 . -246) 166116) ((-1087 . -146) 166010) ((-1087 . -393) 165944) ((-1087 . -258) 165923) ((-1087 . -241) 165850) ((-1087 . -190) T) ((-1087 . -104) T) ((-1087 . -25) T) ((-1087 . -72) T) ((-1087 . -554) 165832) ((-1087 . -1015) T) ((-1087 . -23) T) ((-1087 . -21) T) ((-1087 . -972) T) ((-1087 . -1027) T) ((-1087 . -1063) T) ((-1087 . -665) T) ((-1087 . -963) T) ((-1087 . -186) 165819) ((-1087 . -13) T) ((-1087 . -1131) T) ((-1087 . -189) T) ((-1087 . -225) 165803) ((-1087 . -184) 165787) ((-1084 . -1145) 165748) ((-1084 . -917) 165714) ((-1084 . -1117) 165680) ((-1084 . -1120) 165646) ((-1084 . -434) 165612) ((-1084 . -239) 165578) ((-1084 . -66) 165544) ((-1084 . -35) 165510) ((-1084 . -1160) 165487) ((-1084 . -47) 165464) ((-1084 . -381) 165403) ((-1084 . -557) 165204) ((-1084 . -656) 165006) ((-1084 . -584) 164808) ((-1084 . -592) 164663) ((-1084 . -590) 164503) ((-1084 . -970) 164299) ((-1084 . -965) 164095) ((-1084 . -82) 163847) ((-1084 . -38) 163649) ((-1084 . -888) 163619) ((-1084 . -241) 163447) ((-1084 . -1143) 163431) ((-1084 . -972) T) ((-1084 . -1027) T) ((-1084 . -1063) T) ((-1084 . -665) T) ((-1084 . -963) T) ((-1084 . -21) T) ((-1084 . -23) T) ((-1084 . -1015) T) ((-1084 . -554) 163413) ((-1084 . -1131) T) ((-1084 . -13) T) ((-1084 . -72) T) ((-1084 . -25) T) ((-1084 . -104) T) ((-1084 . -118) 163323) ((-1084 . -120) 163233) ((-1084 . -555) NIL) ((-1084 . -184) 163185) ((-1084 . -811) 163021) ((-1084 . -813) 162785) ((-1084 . -808) 162524) ((-1084 . -225) 162476) ((-1084 . -189) 162302) ((-1084 . -186) 162122) ((-1084 . -190) 162012) ((-1084 . -312) 161991) ((-1084 . -1136) 161970) ((-1084 . -834) 161949) ((-1084 . -497) 161903) ((-1084 . -146) 161837) ((-1084 . -393) 161816) ((-1084 . -258) 161795) ((-1084 . -246) 161749) ((-1084 . -201) 161728) ((-1084 . -288) 161680) ((-1084 . -457) 161414) ((-1084 . -260) 161299) ((-1084 . -329) 161251) ((-1084 . -582) 161203) ((-1084 . -343) 161155) ((-1084 . -798) NIL) ((-1084 . -742) NIL) ((-1084 . -716) NIL) ((-1084 . -718) NIL) ((-1084 . -758) NIL) ((-1084 . -761) NIL) ((-1084 . -720) NIL) ((-1084 . -723) NIL) ((-1084 . -757) NIL) ((-1084 . -796) 161107) ((-1084 . -823) NIL) ((-1084 . -935) NIL) ((-1084 . -952) 161073) ((-1084 . -1068) NIL) ((-1084 . -906) 161025) ((-1083 . -997) T) ((-1083 . -431) 161006) ((-1083 . -554) 160972) ((-1083 . -557) 160953) ((-1083 . -1015) T) ((-1083 . -1131) T) ((-1083 . -13) T) ((-1083 . -72) T) ((-1083 . -64) T) ((-1082 . -1015) T) ((-1082 . -554) 160935) ((-1082 . -1131) T) ((-1082 . -13) T) ((-1082 . -72) T) ((-1081 . -1015) T) ((-1081 . -554) 160917) ((-1081 . -1131) T) ((-1081 . -13) T) ((-1081 . -72) T) ((-1076 . -1109) 160893) ((-1076 . -183) 160838) ((-1076 . -76) 160783) ((-1076 . -1037) 160715) ((-1076 . -124) 160660) ((-1076 . -555) NIL) ((-1076 . -193) 160605) ((-1076 . -540) 160581) ((-1076 . -260) 160370) ((-1076 . -457) 160110) ((-1076 . -381) 160042) ((-1076 . -430) 159974) ((-1076 . -241) 159950) ((-1076 . -243) 159926) ((-1076 . -551) 159902) ((-1076 . -1015) T) ((-1076 . -554) 159884) ((-1076 . -72) T) ((-1076 . -1131) T) ((-1076 . -13) T) ((-1076 . -34) T) ((-1076 . -318) 159829) ((-1075 . -1060) T) ((-1075 . -324) 159811) ((-1075 . -761) T) ((-1075 . -758) T) ((-1075 . -124) 159793) ((-1075 . -555) NIL) ((-1075 . -241) 159743) ((-1075 . -540) 159718) ((-1075 . -243) 159693) ((-1075 . -595) 159675) ((-1075 . -430) 159657) ((-1075 . -1015) T) ((-1075 . -381) 159639) ((-1075 . -457) NIL) ((-1075 . -260) NIL) ((-1075 . -554) 159621) ((-1075 . -72) T) ((-1075 . -1131) T) ((-1075 . -13) T) ((-1075 . -34) T) ((-1075 . -318) 159603) ((-1075 . -1037) 159585) ((-1075 . -19) 159567) ((-1071 . -618) 159551) ((-1071 . -595) 159535) ((-1071 . -243) 159512) ((-1071 . -241) 159464) ((-1071 . -540) 159441) ((-1071 . -555) 159402) ((-1071 . -430) 159386) ((-1071 . -1015) 159364) ((-1071 . -381) 159348) ((-1071 . -457) 159281) ((-1071 . -260) 159219) ((-1071 . -554) 159154) ((-1071 . -72) 159108) ((-1071 . -1131) T) ((-1071 . -13) T) ((-1071 . -34) T) ((-1071 . -124) 159092) ((-1071 . -1170) 159076) ((-1071 . -925) 159060) ((-1071 . -1066) 159044) ((-1071 . -557) 159021) ((-1071 . -1037) 159005) ((-1069 . -997) T) ((-1069 . -431) 158986) ((-1069 . -554) 158952) ((-1069 . -557) 158933) ((-1069 . -1015) T) ((-1069 . -1131) T) ((-1069 . -13) T) ((-1069 . -72) T) ((-1069 . -64) T) ((-1067 . -1109) 158912) ((-1067 . -183) 158860) ((-1067 . -76) 158808) ((-1067 . -1037) 158743) ((-1067 . -124) 158691) ((-1067 . -555) NIL) ((-1067 . -193) 158639) ((-1067 . -540) 158618) ((-1067 . -260) 158416) ((-1067 . -457) 158168) ((-1067 . -381) 158103) ((-1067 . -430) 158038) ((-1067 . -241) 158017) ((-1067 . -243) 157996) ((-1067 . -551) 157975) ((-1067 . -1015) T) ((-1067 . -554) 157957) ((-1067 . -72) T) ((-1067 . -1131) T) ((-1067 . -13) T) ((-1067 . -34) T) ((-1067 . -318) 157905) ((-1064 . -1036) 157889) ((-1064 . -318) 157873) ((-1064 . -430) 157857) ((-1064 . -1015) 157835) ((-1064 . -381) 157819) ((-1064 . -457) 157752) ((-1064 . -260) 157690) ((-1064 . -554) 157625) ((-1064 . -72) 157579) ((-1064 . -1131) T) ((-1064 . -13) T) ((-1064 . -34) T) ((-1064 . -1037) 157563) ((-1064 . -76) 157547) ((-1062 . -1022) 157516) ((-1062 . -1126) 157485) ((-1062 . -1037) 157469) ((-1062 . -554) 157431) ((-1062 . -124) 157415) ((-1062 . -34) T) ((-1062 . -13) T) ((-1062 . -1131) T) ((-1062 . -72) T) ((-1062 . -260) 157353) ((-1062 . -457) 157286) ((-1062 . -381) 157270) ((-1062 . -1015) T) ((-1062 . -430) 157254) ((-1062 . -555) 157215) ((-1062 . -318) 157199) ((-1062 . -891) 157168) ((-1062 . -985) 157137) ((-1058 . -1039) 157082) ((-1058 . -318) 157066) ((-1058 . -34) T) ((-1058 . -260) 157004) ((-1058 . -457) 156937) ((-1058 . -381) 156921) ((-1058 . -430) 156905) ((-1058 . -967) 156845) ((-1058 . -952) 156743) ((-1058 . -557) 156662) ((-1058 . -355) 156646) ((-1058 . -582) 156594) ((-1058 . -592) 156532) ((-1058 . -329) 156516) ((-1058 . -190) 156495) ((-1058 . -186) 156443) ((-1058 . -189) 156397) ((-1058 . -225) 156381) ((-1058 . -808) 156305) ((-1058 . -813) 156231) ((-1058 . -811) 156190) ((-1058 . -184) 156174) ((-1058 . -656) 156109) ((-1058 . -584) 156044) ((-1058 . -590) 156003) ((-1058 . -104) T) ((-1058 . -25) T) ((-1058 . -72) T) ((-1058 . -13) T) ((-1058 . -1131) T) ((-1058 . -554) 155965) ((-1058 . -1015) T) ((-1058 . -23) T) ((-1058 . -21) T) ((-1058 . -970) 155949) ((-1058 . -965) 155933) ((-1058 . -82) 155912) ((-1058 . -963) T) ((-1058 . -665) T) ((-1058 . -1063) T) ((-1058 . -1027) T) ((-1058 . -972) T) ((-1058 . -38) 155872) ((-1058 . -555) 155833) ((-1057 . -925) 155804) ((-1057 . -34) T) ((-1057 . -13) T) ((-1057 . -1131) T) ((-1057 . -72) T) ((-1057 . -554) 155786) ((-1057 . -260) 155712) ((-1057 . -457) 155620) ((-1057 . -381) 155591) ((-1057 . -1015) T) ((-1057 . -430) 155562) ((-1057 . -318) 155533) ((-1057 . -1037) 155504) ((-1056 . -1015) T) ((-1056 . -554) 155486) ((-1056 . -1131) T) ((-1056 . -13) T) ((-1056 . -72) T) ((-1051 . -1053) T) ((-1051 . -1177) T) ((-1051 . -64) T) ((-1051 . -72) T) ((-1051 . -13) T) ((-1051 . -1131) T) ((-1051 . -554) 155452) ((-1051 . -1015) T) ((-1051 . -557) 155433) ((-1051 . -431) 155414) ((-1051 . -997) T) ((-1049 . -1050) 155398) ((-1049 . -72) T) ((-1049 . -13) T) ((-1049 . -1131) T) ((-1049 . -554) 155380) ((-1049 . -1015) T) ((-1042 . -681) 155359) ((-1042 . -35) 155325) ((-1042 . -66) 155291) ((-1042 . -239) 155257) ((-1042 . -434) 155223) ((-1042 . -1120) 155189) ((-1042 . -1117) 155155) ((-1042 . -917) 155121) ((-1042 . -47) 155093) ((-1042 . -38) 154990) ((-1042 . -584) 154887) ((-1042 . -656) 154784) ((-1042 . -557) 154666) ((-1042 . -246) 154645) ((-1042 . -497) 154624) ((-1042 . -381) 154608) ((-1042 . -82) 154473) ((-1042 . -965) 154359) ((-1042 . -970) 154245) ((-1042 . -146) 154199) ((-1042 . -120) 154178) ((-1042 . -118) 154157) ((-1042 . -592) 154082) ((-1042 . -590) 153992) ((-1042 . -888) 153959) ((-1042 . -813) 153943) ((-1042 . -1131) T) ((-1042 . -13) T) ((-1042 . -808) 153925) ((-1042 . -963) T) ((-1042 . -665) T) ((-1042 . -1063) T) ((-1042 . -1027) T) ((-1042 . -972) T) ((-1042 . -21) T) ((-1042 . -23) T) ((-1042 . -1015) T) ((-1042 . -554) 153907) ((-1042 . -72) T) ((-1042 . -25) T) ((-1042 . -104) T) ((-1042 . -811) 153891) ((-1042 . -457) 153861) ((-1042 . -260) 153848) ((-1041 . -863) 153815) ((-1041 . -557) 153614) ((-1041 . -952) 153499) ((-1041 . -1136) 153478) ((-1041 . -823) 153457) ((-1041 . -798) 153316) ((-1041 . -813) 153300) ((-1041 . -808) 153282) ((-1041 . -811) 153266) ((-1041 . -457) 153218) ((-1041 . -393) 153172) ((-1041 . -582) 153120) ((-1041 . -592) 153009) ((-1041 . -329) 152993) ((-1041 . -47) 152965) ((-1041 . -38) 152817) ((-1041 . -584) 152669) ((-1041 . -656) 152521) ((-1041 . -246) 152455) ((-1041 . -497) 152389) ((-1041 . -381) 152373) ((-1041 . -82) 152198) ((-1041 . -965) 152044) ((-1041 . -970) 151890) ((-1041 . -146) 151804) ((-1041 . -120) 151783) ((-1041 . -118) 151762) ((-1041 . -590) 151672) ((-1041 . -104) T) ((-1041 . -25) T) ((-1041 . -72) T) ((-1041 . -13) T) ((-1041 . -1131) T) ((-1041 . -554) 151654) ((-1041 . -1015) T) ((-1041 . -23) T) ((-1041 . -21) T) ((-1041 . -963) T) ((-1041 . -665) T) ((-1041 . -1063) T) ((-1041 . -1027) T) ((-1041 . -972) T) ((-1041 . -355) 151638) ((-1041 . -277) 151610) ((-1041 . -260) 151597) ((-1041 . -555) 151345) ((-1035 . -485) T) ((-1035 . -1136) T) ((-1035 . -1068) T) ((-1035 . -952) 151327) ((-1035 . -555) 151242) ((-1035 . -935) T) ((-1035 . -798) 151224) ((-1035 . -757) T) ((-1035 . -723) T) ((-1035 . -720) T) ((-1035 . -761) T) ((-1035 . -758) T) ((-1035 . -718) T) ((-1035 . -716) T) ((-1035 . -742) T) ((-1035 . -592) 151196) ((-1035 . -582) 151178) ((-1035 . -834) T) ((-1035 . -497) T) ((-1035 . -246) T) ((-1035 . -146) T) ((-1035 . -557) 151150) ((-1035 . -656) 151137) ((-1035 . -584) 151124) ((-1035 . -970) 151111) ((-1035 . -965) 151098) ((-1035 . -82) 151083) ((-1035 . -38) 151070) ((-1035 . -393) T) ((-1035 . -258) T) ((-1035 . -189) T) ((-1035 . -186) 151057) ((-1035 . -190) T) ((-1035 . -116) T) ((-1035 . -963) T) ((-1035 . -665) T) ((-1035 . -1063) T) ((-1035 . -1027) T) ((-1035 . -972) T) ((-1035 . -21) T) ((-1035 . -590) 151029) ((-1035 . -23) T) ((-1035 . -1015) T) ((-1035 . -554) 151011) ((-1035 . -1131) T) ((-1035 . -13) T) ((-1035 . -72) T) ((-1035 . -25) T) ((-1035 . -104) T) ((-1035 . -120) T) ((-1035 . -754) T) ((-1035 . -320) T) ((-1035 . -84) T) ((-1035 . -606) T) ((-1031 . -997) T) ((-1031 . -431) 150992) ((-1031 . -554) 150958) ((-1031 . -557) 150939) ((-1031 . -1015) T) ((-1031 . -1131) T) ((-1031 . -13) T) ((-1031 . -72) T) ((-1031 . -64) T) ((-1030 . -1015) T) ((-1030 . -554) 150921) ((-1030 . -1131) T) ((-1030 . -13) T) ((-1030 . -72) T) ((-1028 . -196) 150900) ((-1028 . -1189) 150870) ((-1028 . -723) 150849) ((-1028 . -720) 150828) ((-1028 . -761) 150782) ((-1028 . -758) 150736) ((-1028 . -718) 150715) ((-1028 . -719) 150694) ((-1028 . -656) 150639) ((-1028 . -584) 150564) ((-1028 . -243) 150541) ((-1028 . -241) 150518) ((-1028 . -540) 150495) ((-1028 . -952) 150324) ((-1028 . -557) 150128) ((-1028 . -355) 150097) ((-1028 . -582) 150005) ((-1028 . -592) 149844) ((-1028 . -329) 149814) ((-1028 . -430) 149798) ((-1028 . -381) 149782) ((-1028 . -457) 149715) ((-1028 . -260) 149653) ((-1028 . -34) T) ((-1028 . -318) 149637) ((-1028 . -320) 149616) ((-1028 . -190) 149569) ((-1028 . -590) 149357) ((-1028 . -972) 149336) ((-1028 . -1027) 149315) ((-1028 . -1063) 149294) ((-1028 . -665) 149273) ((-1028 . -963) 149252) ((-1028 . -186) 149148) ((-1028 . -189) 149050) ((-1028 . -225) 149020) ((-1028 . -808) 148892) ((-1028 . -813) 148766) ((-1028 . -811) 148699) ((-1028 . -184) 148669) ((-1028 . -554) 148366) ((-1028 . -970) 148291) ((-1028 . -965) 148196) ((-1028 . -82) 148116) ((-1028 . -104) 147991) ((-1028 . -25) 147828) ((-1028 . -72) 147565) ((-1028 . -13) T) ((-1028 . -1131) T) ((-1028 . -1015) 147321) ((-1028 . -23) 147177) ((-1028 . -21) 147092) ((-1024 . -1025) 147076) ((-1024 . |MappingCategory|) 147050) ((-1024 . -1131) T) ((-1024 . -80) 147034) ((-1024 . -1015) T) ((-1024 . -554) 147016) ((-1024 . -13) T) ((-1024 . -72) T) ((-1019 . -1018) 146980) ((-1019 . -72) T) ((-1019 . -554) 146962) ((-1019 . -1015) T) ((-1019 . -241) 146918) ((-1019 . -1131) T) ((-1019 . -13) T) ((-1019 . -559) 146833) ((-1017 . -1018) 146785) ((-1017 . -72) T) ((-1017 . -554) 146767) ((-1017 . -1015) T) ((-1017 . -241) 146723) ((-1017 . -1131) T) ((-1017 . -13) T) ((-1017 . -559) 146626) ((-1016 . -320) T) ((-1016 . -72) T) ((-1016 . -13) T) ((-1016 . -1131) T) ((-1016 . -554) 146608) ((-1016 . -1015) T) ((-1011 . -369) 146592) ((-1011 . -1013) 146576) ((-1011 . -318) 146560) ((-1011 . -320) 146539) ((-1011 . -193) 146523) ((-1011 . -555) 146484) ((-1011 . -124) 146468) ((-1011 . -430) 146452) ((-1011 . -1015) T) ((-1011 . -381) 146436) ((-1011 . -457) 146369) ((-1011 . -260) 146307) ((-1011 . -554) 146289) ((-1011 . -72) T) ((-1011 . -1131) T) ((-1011 . -13) T) ((-1011 . -34) T) ((-1011 . -1037) 146273) ((-1011 . -76) 146257) ((-1011 . -183) 146241) ((-1010 . -997) T) ((-1010 . -431) 146222) ((-1010 . -554) 146188) ((-1010 . -557) 146169) ((-1010 . -1015) T) ((-1010 . -1131) T) ((-1010 . -13) T) ((-1010 . -72) T) ((-1010 . -64) T) ((-1006 . -1131) T) ((-1006 . -13) T) ((-1006 . -1015) 146139) ((-1006 . -554) 146098) ((-1006 . -72) 146068) ((-1005 . -997) T) ((-1005 . -431) 146049) ((-1005 . -554) 146015) ((-1005 . -557) 145996) ((-1005 . -1015) T) ((-1005 . -1131) T) ((-1005 . -13) T) ((-1005 . -72) T) ((-1005 . -64) T) ((-1003 . -1008) 145980) ((-1003 . -559) 145964) ((-1003 . -1015) 145942) ((-1003 . -554) 145909) ((-1003 . -1131) 145887) ((-1003 . -13) 145865) ((-1003 . -72) 145843) ((-1003 . -1009) 145801) ((-1002 . -228) 145785) ((-1002 . -557) 145769) ((-1002 . -952) 145753) ((-1002 . -761) T) ((-1002 . -72) T) ((-1002 . -1015) T) ((-1002 . -554) 145735) ((-1002 . -758) T) ((-1002 . -186) 145722) ((-1002 . -13) T) ((-1002 . -1131) T) ((-1002 . -189) T) ((-1001 . -213) 145659) ((-1001 . -557) 145402) ((-1001 . -952) 145231) ((-1001 . -555) NIL) ((-1001 . -277) 145192) ((-1001 . -355) 145176) ((-1001 . -38) 145028) ((-1001 . -82) 144853) ((-1001 . -965) 144699) ((-1001 . -970) 144545) ((-1001 . -590) 144455) ((-1001 . -592) 144344) ((-1001 . -584) 144196) ((-1001 . -656) 144048) ((-1001 . -118) 144027) ((-1001 . -120) 144006) ((-1001 . -146) 143920) ((-1001 . -381) 143904) ((-1001 . -497) 143838) ((-1001 . -246) 143772) ((-1001 . -47) 143733) ((-1001 . -329) 143717) ((-1001 . -582) 143665) ((-1001 . -393) 143619) ((-1001 . -457) 143482) ((-1001 . -811) 143417) ((-1001 . -808) 143315) ((-1001 . -813) 143217) ((-1001 . -798) NIL) ((-1001 . -823) 143196) ((-1001 . -1136) 143175) ((-1001 . -863) 143120) ((-1001 . -260) 143107) ((-1001 . -190) 143086) ((-1001 . -104) T) ((-1001 . -25) T) ((-1001 . -72) T) ((-1001 . -554) 143068) ((-1001 . -1015) T) ((-1001 . -23) T) ((-1001 . -21) T) ((-1001 . -972) T) ((-1001 . -1027) T) ((-1001 . -1063) T) ((-1001 . -665) T) ((-1001 . -963) T) ((-1001 . -186) 143016) ((-1001 . -13) T) ((-1001 . -1131) T) ((-1001 . -189) 142970) ((-1001 . -225) 142954) ((-1001 . -184) 142938) ((-999 . -554) 142920) ((-996 . -758) T) ((-996 . -554) 142902) ((-996 . -1015) T) ((-996 . -72) T) ((-996 . -13) T) ((-996 . -1131) T) ((-996 . -761) T) ((-996 . -555) 142883) ((-993 . -663) 142862) ((-993 . -952) 142760) ((-993 . -355) 142744) ((-993 . -582) 142692) ((-993 . -592) 142569) ((-993 . -329) 142553) ((-993 . -322) 142532) ((-993 . -120) 142511) ((-993 . -557) 142336) ((-993 . -656) 142210) ((-993 . -584) 142084) ((-993 . -590) 141982) ((-993 . -970) 141895) ((-993 . -965) 141808) ((-993 . -82) 141700) ((-993 . -38) 141574) ((-993 . -353) 141553) ((-993 . -345) 141532) ((-993 . -118) 141486) ((-993 . -1068) 141465) ((-993 . -299) 141444) ((-993 . -320) 141398) ((-993 . -201) 141352) ((-993 . -246) 141306) ((-993 . -258) 141260) ((-993 . -393) 141214) ((-993 . -497) 141168) ((-993 . -834) 141122) ((-993 . -1136) 141076) ((-993 . -312) 141030) ((-993 . -190) 140958) ((-993 . -186) 140834) ((-993 . -189) 140716) ((-993 . -225) 140686) ((-993 . -808) 140558) ((-993 . -813) 140432) ((-993 . -811) 140365) ((-993 . -184) 140335) ((-993 . -555) 140319) ((-993 . -21) T) ((-993 . -23) T) ((-993 . -1015) T) ((-993 . -554) 140301) ((-993 . -1131) T) ((-993 . -13) T) ((-993 . -72) T) ((-993 . -25) T) ((-993 . -104) T) ((-993 . -963) T) ((-993 . -665) T) ((-993 . -1063) T) ((-993 . -1027) T) ((-993 . -972) T) ((-993 . -146) T) ((-991 . -1015) T) ((-991 . -554) 140283) ((-991 . -1131) T) ((-991 . -13) T) ((-991 . -72) T) ((-991 . -241) 140262) ((-990 . -1015) T) ((-990 . -554) 140244) ((-990 . -1131) T) ((-990 . -13) T) ((-990 . -72) T) ((-989 . -1015) T) ((-989 . -554) 140226) ((-989 . -1131) T) ((-989 . -13) T) ((-989 . -72) T) ((-989 . -241) 140205) ((-989 . -952) 140182) ((-989 . -557) 140159) ((-988 . -1131) T) ((-988 . -13) T) ((-987 . -997) T) ((-987 . -431) 140140) ((-987 . -554) 140106) ((-987 . -557) 140087) ((-987 . -1015) T) ((-987 . -1131) T) ((-987 . -13) T) ((-987 . -72) T) ((-987 . -64) T) ((-980 . -997) T) ((-980 . -431) 140068) ((-980 . -554) 140034) ((-980 . -557) 140015) ((-980 . -1015) T) ((-980 . -1131) T) ((-980 . -13) T) ((-980 . -72) T) ((-980 . -64) T) ((-977 . -485) T) ((-977 . -1136) T) ((-977 . -1068) T) ((-977 . -952) 139997) ((-977 . -555) 139912) ((-977 . -935) T) ((-977 . -798) 139894) ((-977 . -757) T) ((-977 . -723) T) ((-977 . -720) T) ((-977 . -761) T) ((-977 . -758) T) ((-977 . -718) T) ((-977 . -716) T) ((-977 . -742) T) ((-977 . -592) 139866) ((-977 . -582) 139848) ((-977 . -834) T) ((-977 . -497) T) ((-977 . -246) T) ((-977 . -146) T) ((-977 . -557) 139820) ((-977 . -656) 139807) ((-977 . -584) 139794) ((-977 . -970) 139781) ((-977 . -965) 139768) ((-977 . -82) 139753) ((-977 . -38) 139740) ((-977 . -393) T) ((-977 . -258) T) ((-977 . -189) T) ((-977 . -186) 139727) ((-977 . -190) T) ((-977 . -116) T) ((-977 . -963) T) ((-977 . -665) T) ((-977 . -1063) T) ((-977 . -1027) T) ((-977 . -972) T) ((-977 . -21) T) ((-977 . -590) 139699) ((-977 . -23) T) ((-977 . -1015) T) ((-977 . -554) 139681) ((-977 . -1131) T) ((-977 . -13) T) ((-977 . -72) T) ((-977 . -25) T) ((-977 . -104) T) ((-977 . -120) T) ((-977 . -559) 139662) ((-976 . -982) 139641) ((-976 . -72) T) ((-976 . -13) T) ((-976 . -1131) T) ((-976 . -554) 139623) ((-976 . -1015) T) ((-973 . -1131) T) ((-973 . -13) T) ((-973 . -1015) 139601) ((-973 . -554) 139568) ((-973 . -72) 139546) ((-968 . -967) 139486) ((-968 . -584) 139431) ((-968 . -656) 139376) ((-968 . -430) 139360) ((-968 . -381) 139344) ((-968 . -457) 139277) ((-968 . -260) 139215) ((-968 . -34) T) ((-968 . -318) 139199) ((-968 . -592) 139183) ((-968 . -590) 139152) ((-968 . -104) T) ((-968 . -25) T) ((-968 . -72) T) ((-968 . -13) T) ((-968 . -1131) T) ((-968 . -554) 139114) ((-968 . -1015) T) ((-968 . -23) T) ((-968 . -21) T) ((-968 . -970) 139098) ((-968 . -965) 139082) ((-968 . -82) 139061) ((-968 . -1189) 139031) ((-968 . -555) 138992) ((-960 . -985) 138921) ((-960 . -891) 138850) ((-960 . -318) 138815) ((-960 . -555) 138757) ((-960 . -430) 138722) ((-960 . -1015) T) ((-960 . -381) 138687) ((-960 . -457) 138571) ((-960 . -260) 138479) ((-960 . -554) 138422) ((-960 . -72) T) ((-960 . -1131) T) ((-960 . -13) T) ((-960 . -34) T) ((-960 . -124) 138387) ((-960 . -1037) 138352) ((-960 . -1126) 138281) ((-950 . -997) T) ((-950 . -431) 138262) ((-950 . -554) 138228) ((-950 . -557) 138209) ((-950 . -1015) T) ((-950 . -1131) T) ((-950 . -13) T) ((-950 . -72) T) ((-950 . -64) T) ((-949 . -146) T) ((-949 . -557) 138178) ((-949 . -972) T) ((-949 . -1027) T) ((-949 . -1063) T) ((-949 . -665) T) ((-949 . -963) T) ((-949 . -592) 138152) ((-949 . -590) 138111) ((-949 . -104) T) ((-949 . -25) T) ((-949 . -72) T) ((-949 . -13) T) ((-949 . -1131) T) ((-949 . -554) 138093) ((-949 . -1015) T) ((-949 . -23) T) ((-949 . -21) T) ((-949 . -970) 138067) ((-949 . -965) 138041) ((-949 . -82) 138008) ((-949 . -38) 137992) ((-949 . -584) 137976) ((-949 . -656) 137960) ((-942 . -985) 137929) ((-942 . -891) 137898) ((-942 . -318) 137882) ((-942 . -555) 137843) ((-942 . -430) 137827) ((-942 . -1015) T) ((-942 . -381) 137811) ((-942 . -457) 137744) ((-942 . -260) 137682) ((-942 . -554) 137644) ((-942 . -72) T) ((-942 . -1131) T) ((-942 . -13) T) ((-942 . -34) T) ((-942 . -124) 137628) ((-942 . -1037) 137612) ((-942 . -1126) 137581) ((-941 . -1015) T) ((-941 . -554) 137563) ((-941 . -1131) T) ((-941 . -13) T) ((-941 . -72) T) ((-939 . -927) T) ((-939 . -917) T) ((-939 . -716) T) ((-939 . -718) T) ((-939 . -758) T) ((-939 . -761) T) ((-939 . -720) T) ((-939 . -723) T) ((-939 . -757) T) ((-939 . -952) 137448) ((-939 . -355) 137410) ((-939 . -201) T) ((-939 . -246) T) ((-939 . -258) T) ((-939 . -393) T) ((-939 . -38) 137347) ((-939 . -584) 137284) ((-939 . -656) 137221) ((-939 . -557) 137158) ((-939 . -497) T) ((-939 . -834) T) ((-939 . -1136) T) ((-939 . -312) T) ((-939 . -82) 137067) ((-939 . -965) 137004) ((-939 . -970) 136941) ((-939 . -146) T) ((-939 . -120) T) ((-939 . -592) 136878) ((-939 . -590) 136815) ((-939 . -104) T) ((-939 . -25) T) ((-939 . -72) T) ((-939 . -13) T) ((-939 . -1131) T) ((-939 . -554) 136797) ((-939 . -1015) T) ((-939 . -23) T) ((-939 . -21) T) ((-939 . -963) T) ((-939 . -665) T) ((-939 . -1063) T) ((-939 . -1027) T) ((-939 . -972) T) ((-934 . -997) T) ((-934 . -431) 136778) ((-934 . -554) 136744) ((-934 . -557) 136725) ((-934 . -1015) T) ((-934 . -1131) T) ((-934 . -13) T) ((-934 . -72) T) ((-934 . -64) T) ((-919 . -906) 136707) ((-919 . -1068) T) ((-919 . -557) 136657) ((-919 . -952) 136617) ((-919 . -555) 136547) ((-919 . -935) T) ((-919 . -823) NIL) ((-919 . -796) 136529) ((-919 . -757) T) ((-919 . -723) T) ((-919 . -720) T) ((-919 . -761) T) ((-919 . -758) T) ((-919 . -718) T) ((-919 . -716) T) ((-919 . -742) T) ((-919 . -798) 136511) ((-919 . -343) 136493) ((-919 . -582) 136475) ((-919 . -329) 136457) ((-919 . -241) NIL) ((-919 . -260) NIL) ((-919 . -457) NIL) ((-919 . -381) 136439) ((-919 . -288) 136421) ((-919 . -201) T) ((-919 . -82) 136348) ((-919 . -965) 136298) ((-919 . -970) 136248) ((-919 . -246) T) ((-919 . -656) 136198) ((-919 . -584) 136148) ((-919 . -592) 136098) ((-919 . -590) 136048) ((-919 . -38) 135998) ((-919 . -258) T) ((-919 . -393) T) ((-919 . -146) T) ((-919 . -497) T) ((-919 . -834) T) ((-919 . -1136) T) ((-919 . -312) T) ((-919 . -190) T) ((-919 . -186) 135985) ((-919 . -189) T) ((-919 . -225) 135967) ((-919 . -808) NIL) ((-919 . -813) NIL) ((-919 . -811) NIL) ((-919 . -184) 135949) ((-919 . -120) T) ((-919 . -118) NIL) ((-919 . -104) T) ((-919 . -25) T) ((-919 . -72) T) ((-919 . -13) T) ((-919 . -1131) T) ((-919 . -554) 135909) ((-919 . -1015) T) ((-919 . -23) T) ((-919 . -21) T) ((-919 . -963) T) ((-919 . -665) T) ((-919 . -1063) T) ((-919 . -1027) T) ((-919 . -972) T) ((-918 . -291) 135883) ((-918 . -146) T) ((-918 . -557) 135813) ((-918 . -972) T) ((-918 . -1027) T) ((-918 . -1063) T) ((-918 . -665) T) ((-918 . -963) T) ((-918 . -592) 135715) ((-918 . -590) 135645) ((-918 . -104) T) ((-918 . -25) T) ((-918 . -72) T) ((-918 . -13) T) ((-918 . -1131) T) ((-918 . -554) 135627) ((-918 . -1015) T) ((-918 . -23) T) ((-918 . -21) T) ((-918 . -970) 135572) ((-918 . -965) 135517) ((-918 . -82) 135434) ((-918 . -555) 135418) ((-918 . -184) 135395) ((-918 . -811) 135347) ((-918 . -813) 135259) ((-918 . -808) 135169) ((-918 . -225) 135146) ((-918 . -189) 135086) ((-918 . -186) 135020) ((-918 . -190) 134992) ((-918 . -312) T) ((-918 . -1136) T) ((-918 . -834) T) ((-918 . -497) T) ((-918 . -656) 134937) ((-918 . -584) 134882) ((-918 . -38) 134827) ((-918 . -393) T) ((-918 . -258) T) ((-918 . -246) T) ((-918 . -201) T) ((-918 . -320) NIL) ((-918 . -299) NIL) ((-918 . -1068) NIL) ((-918 . -118) 134799) ((-918 . -345) NIL) ((-918 . -353) 134771) ((-918 . -120) 134743) ((-918 . -322) 134715) ((-918 . -329) 134692) ((-918 . -582) 134626) ((-918 . -355) 134603) ((-918 . -952) 134480) ((-918 . -663) 134452) ((-915 . -910) 134436) ((-915 . -318) 134420) ((-915 . -430) 134404) ((-915 . -1015) 134382) ((-915 . -381) 134366) ((-915 . -457) 134299) ((-915 . -260) 134237) ((-915 . -554) 134172) ((-915 . -72) 134126) ((-915 . -1131) T) ((-915 . -13) T) ((-915 . -34) T) ((-915 . -1037) 134110) ((-915 . -76) 134094) ((-911 . -913) 134078) ((-911 . -761) 134057) ((-911 . -758) 134036) ((-911 . -952) 133934) ((-911 . -355) 133918) ((-911 . -582) 133866) ((-911 . -592) 133768) ((-911 . -329) 133752) ((-911 . -241) 133710) ((-911 . -260) 133675) ((-911 . -457) 133587) ((-911 . -381) 133571) ((-911 . -288) 133555) ((-911 . -38) 133503) ((-911 . -82) 133381) ((-911 . -965) 133280) ((-911 . -970) 133179) ((-911 . -590) 133102) ((-911 . -584) 133050) ((-911 . -656) 132998) ((-911 . -557) 132892) ((-911 . -246) 132846) ((-911 . -201) 132825) ((-911 . -190) 132804) ((-911 . -186) 132752) ((-911 . -189) 132706) ((-911 . -225) 132690) ((-911 . -808) 132614) ((-911 . -813) 132540) ((-911 . -811) 132499) ((-911 . -184) 132483) ((-911 . -555) 132444) ((-911 . -120) 132423) ((-911 . -118) 132402) ((-911 . -104) T) ((-911 . -25) T) ((-911 . -72) T) ((-911 . -13) T) ((-911 . -1131) T) ((-911 . -554) 132384) ((-911 . -1015) T) ((-911 . -23) T) ((-911 . -21) T) ((-911 . -963) T) ((-911 . -665) T) ((-911 . -1063) T) ((-911 . -1027) T) ((-911 . -972) T) ((-909 . -997) T) ((-909 . -431) 132365) ((-909 . -554) 132331) ((-909 . -557) 132312) ((-909 . -1015) T) ((-909 . -1131) T) ((-909 . -13) T) ((-909 . -72) T) ((-909 . -64) T) ((-908 . -21) T) ((-908 . -590) 132294) ((-908 . -23) T) ((-908 . -1015) T) ((-908 . -554) 132276) ((-908 . -1131) T) ((-908 . -13) T) ((-908 . -72) T) ((-908 . -25) T) ((-908 . -104) T) ((-908 . -241) 132243) ((-904 . -554) 132225) ((-901 . -1015) T) ((-901 . -554) 132207) ((-901 . -1131) T) ((-901 . -13) T) ((-901 . -72) T) ((-886 . -723) T) ((-886 . -720) T) ((-886 . -761) T) ((-886 . -758) T) ((-886 . -718) T) ((-886 . -23) T) ((-886 . -1015) T) ((-886 . -554) 132167) ((-886 . -1131) T) ((-886 . -13) T) ((-886 . -72) T) ((-886 . -25) T) ((-886 . -104) T) ((-885 . -997) T) ((-885 . -431) 132148) ((-885 . -554) 132114) ((-885 . -557) 132095) ((-885 . -1015) T) ((-885 . -1131) T) ((-885 . -13) T) ((-885 . -72) T) ((-885 . -64) T) ((-879 . -882) T) ((-879 . -72) T) ((-879 . -554) 132077) ((-879 . -1015) T) ((-879 . -606) T) ((-879 . -13) T) ((-879 . -1131) T) ((-879 . -84) T) ((-879 . -557) 132061) ((-878 . -554) 132043) ((-877 . -1015) T) ((-877 . -554) 132025) ((-877 . -1131) T) ((-877 . -13) T) ((-877 . -72) T) ((-877 . -320) 131978) ((-877 . -665) 131880) ((-877 . -1027) 131782) ((-877 . -23) 131596) ((-877 . -25) 131410) ((-877 . -104) 131268) ((-877 . -414) 131221) ((-877 . -21) 131176) ((-877 . -590) 131120) ((-877 . -719) 131073) ((-877 . -718) 131026) ((-877 . -758) 130928) ((-877 . -761) 130830) ((-877 . -720) 130783) ((-877 . -723) 130736) ((-871 . -19) 130720) ((-871 . -1037) 130704) ((-871 . -318) 130688) ((-871 . -34) T) ((-871 . -13) T) ((-871 . -1131) T) ((-871 . -72) 130622) ((-871 . -554) 130537) ((-871 . -260) 130475) ((-871 . -457) 130408) ((-871 . -381) 130392) ((-871 . -1015) 130345) ((-871 . -430) 130329) ((-871 . -595) 130313) ((-871 . -243) 130290) ((-871 . -241) 130242) ((-871 . -540) 130219) ((-871 . -555) 130180) ((-871 . -124) 130164) ((-871 . -758) 130143) ((-871 . -761) 130122) ((-871 . -324) 130106) ((-869 . -277) 130085) ((-869 . -952) 129983) ((-869 . -355) 129967) ((-869 . -38) 129864) ((-869 . -557) 129721) ((-869 . -592) 129646) ((-869 . -590) 129556) ((-869 . -972) T) ((-869 . -1027) T) ((-869 . -1063) T) ((-869 . -665) T) ((-869 . -963) T) ((-869 . -82) 129421) ((-869 . -965) 129307) ((-869 . -970) 129193) ((-869 . -21) T) ((-869 . -23) T) ((-869 . -1015) T) ((-869 . -554) 129175) ((-869 . -1131) T) ((-869 . -13) T) ((-869 . -72) T) ((-869 . -25) T) ((-869 . -104) T) ((-869 . -584) 129072) ((-869 . -656) 128969) ((-869 . -118) 128948) ((-869 . -120) 128927) ((-869 . -146) 128881) ((-869 . -381) 128865) ((-869 . -497) 128844) ((-869 . -246) 128823) ((-869 . -47) 128802) ((-867 . -1015) T) ((-867 . -554) 128768) ((-867 . -1131) T) ((-867 . -13) T) ((-867 . -72) T) ((-859 . -863) 128729) ((-859 . -557) 128525) ((-859 . -952) 128407) ((-859 . -1136) 128386) ((-859 . -823) 128365) ((-859 . -798) 128290) ((-859 . -813) 128271) ((-859 . -808) 128250) ((-859 . -811) 128231) ((-859 . -457) 128177) ((-859 . -393) 128131) ((-859 . -582) 128079) ((-859 . -592) 127968) ((-859 . -329) 127952) ((-859 . -47) 127921) ((-859 . -38) 127773) ((-859 . -584) 127625) ((-859 . -656) 127477) ((-859 . -246) 127411) ((-859 . -497) 127345) ((-859 . -381) 127329) ((-859 . -82) 127154) ((-859 . -965) 127000) ((-859 . -970) 126846) ((-859 . -146) 126760) ((-859 . -120) 126739) ((-859 . -118) 126718) ((-859 . -590) 126628) ((-859 . -104) T) ((-859 . -25) T) ((-859 . -72) T) ((-859 . -13) T) ((-859 . -1131) T) ((-859 . -554) 126610) ((-859 . -1015) T) ((-859 . -23) T) ((-859 . -21) T) ((-859 . -963) T) ((-859 . -665) T) ((-859 . -1063) T) ((-859 . -1027) T) ((-859 . -972) T) ((-859 . -355) 126594) ((-859 . -277) 126563) ((-859 . -260) 126550) ((-859 . -555) 126411) ((-856 . -895) 126395) ((-856 . -19) 126379) ((-856 . -1037) 126363) ((-856 . -318) 126347) ((-856 . -34) T) ((-856 . -13) T) ((-856 . -1131) T) ((-856 . -72) 126281) ((-856 . -554) 126196) ((-856 . -260) 126134) ((-856 . -457) 126067) ((-856 . -381) 126051) ((-856 . -1015) 126004) ((-856 . -430) 125988) ((-856 . -595) 125972) ((-856 . -243) 125949) ((-856 . -241) 125901) ((-856 . -540) 125878) ((-856 . -555) 125839) ((-856 . -124) 125823) ((-856 . -758) 125802) ((-856 . -761) 125781) ((-856 . -324) 125765) ((-856 . -1180) 125749) ((-856 . -559) 125726) ((-840 . -889) T) ((-840 . -554) 125708) ((-838 . -868) T) ((-838 . -554) 125690) ((-832 . -720) T) ((-832 . -761) T) ((-832 . -758) T) ((-832 . -1015) T) ((-832 . -554) 125672) ((-832 . -1131) T) ((-832 . -13) T) ((-832 . -72) T) ((-832 . -25) T) ((-832 . -665) T) ((-832 . -1027) T) ((-827 . -312) T) ((-827 . -1136) T) ((-827 . -834) T) ((-827 . -497) T) ((-827 . -146) T) ((-827 . -557) 125609) ((-827 . -656) 125561) ((-827 . -584) 125513) ((-827 . -38) 125465) ((-827 . -393) T) ((-827 . -258) T) ((-827 . -592) 125417) ((-827 . -590) 125354) ((-827 . -972) T) ((-827 . -1027) T) ((-827 . -1063) T) ((-827 . -665) T) ((-827 . -963) T) ((-827 . -82) 125285) ((-827 . -965) 125237) ((-827 . -970) 125189) ((-827 . -21) T) ((-827 . -23) T) ((-827 . -1015) T) ((-827 . -554) 125171) ((-827 . -1131) T) ((-827 . -13) T) ((-827 . -72) T) ((-827 . -25) T) ((-827 . -104) T) ((-827 . -246) T) ((-827 . -201) T) ((-819 . -299) T) ((-819 . -1068) T) ((-819 . -320) T) ((-819 . -118) T) ((-819 . -312) T) ((-819 . -1136) T) ((-819 . -834) T) ((-819 . -497) T) ((-819 . -146) T) ((-819 . -557) 125121) ((-819 . -656) 125086) ((-819 . -584) 125051) ((-819 . -38) 125016) ((-819 . -393) T) ((-819 . -258) T) ((-819 . -82) 124965) ((-819 . -965) 124930) ((-819 . -970) 124895) ((-819 . -590) 124845) ((-819 . -592) 124810) ((-819 . -246) T) ((-819 . -201) T) ((-819 . -345) T) ((-819 . -189) T) ((-819 . -1131) T) ((-819 . -13) T) ((-819 . -186) 124797) ((-819 . -963) T) ((-819 . -665) T) ((-819 . -1063) T) ((-819 . -1027) T) ((-819 . -972) T) ((-819 . -21) T) ((-819 . -23) T) ((-819 . -1015) T) ((-819 . -554) 124779) ((-819 . -72) T) ((-819 . -25) T) ((-819 . -104) T) ((-819 . -190) T) ((-819 . -280) 124766) ((-819 . -120) 124748) ((-819 . -952) 124735) ((-819 . -1189) 124722) ((-819 . -1200) 124709) ((-819 . -555) 124691) ((-818 . -1015) T) ((-818 . -554) 124673) ((-818 . -1131) T) ((-818 . -13) T) ((-818 . -72) T) ((-815 . -817) 124657) ((-815 . -761) 124611) ((-815 . -758) 124565) ((-815 . -665) T) ((-815 . -1015) T) ((-815 . -554) 124547) ((-815 . -72) T) ((-815 . -1027) T) ((-815 . -414) T) ((-815 . -1131) T) ((-815 . -13) T) ((-815 . -241) 124526) ((-814 . -92) 124510) ((-814 . -430) 124494) ((-814 . -1015) 124472) ((-814 . -381) 124456) ((-814 . -457) 124389) ((-814 . -260) 124327) ((-814 . -554) 124241) ((-814 . -72) 124195) ((-814 . -1131) T) ((-814 . -13) T) ((-814 . -34) T) ((-814 . -925) 124179) ((-805 . -758) T) ((-805 . -554) 124161) ((-805 . -1015) T) ((-805 . -72) T) ((-805 . -13) T) ((-805 . -1131) T) ((-805 . -761) T) ((-805 . -952) 124138) ((-805 . -557) 124115) ((-802 . -1015) T) ((-802 . -554) 124097) ((-802 . -1131) T) ((-802 . -13) T) ((-802 . -72) T) ((-802 . -952) 124065) ((-802 . -557) 124033) ((-800 . -1015) T) ((-800 . -554) 124015) ((-800 . -1131) T) ((-800 . -13) T) ((-800 . -72) T) ((-797 . -1015) T) ((-797 . -554) 123997) ((-797 . -1131) T) ((-797 . -13) T) ((-797 . -72) T) ((-787 . -997) T) ((-787 . -431) 123978) ((-787 . -554) 123944) ((-787 . -557) 123925) ((-787 . -1015) T) ((-787 . -1131) T) ((-787 . -13) T) ((-787 . -72) T) ((-787 . -64) T) ((-787 . -1177) T) ((-785 . -1015) T) ((-785 . -554) 123907) ((-785 . -1131) T) ((-785 . -13) T) ((-785 . -72) T) ((-785 . -557) 123889) ((-784 . -1131) T) ((-784 . -13) T) ((-784 . -554) 123764) ((-784 . -1015) 123715) ((-784 . -72) 123666) ((-783 . -906) 123650) ((-783 . -1068) 123628) ((-783 . -952) 123495) ((-783 . -557) 123394) ((-783 . -555) 123197) ((-783 . -935) 123176) ((-783 . -823) 123155) ((-783 . -796) 123139) ((-783 . -757) 123118) ((-783 . -723) 123097) ((-783 . -720) 123076) ((-783 . -761) 123030) ((-783 . -758) 122984) ((-783 . -718) 122963) ((-783 . -716) 122942) ((-783 . -742) 122921) ((-783 . -798) 122846) ((-783 . -343) 122830) ((-783 . -582) 122778) ((-783 . -592) 122694) ((-783 . -329) 122678) ((-783 . -241) 122636) ((-783 . -260) 122601) ((-783 . -457) 122513) ((-783 . -381) 122497) ((-783 . -288) 122481) ((-783 . -201) T) ((-783 . -82) 122412) ((-783 . -965) 122364) ((-783 . -970) 122316) ((-783 . -246) T) ((-783 . -656) 122268) ((-783 . -584) 122220) ((-783 . -590) 122157) ((-783 . -38) 122109) ((-783 . -258) T) ((-783 . -393) T) ((-783 . -146) T) ((-783 . -497) T) ((-783 . -834) T) ((-783 . -1136) T) ((-783 . -312) T) ((-783 . -190) 122088) ((-783 . -186) 122036) ((-783 . -189) 121990) ((-783 . -225) 121974) ((-783 . -808) 121898) ((-783 . -813) 121824) ((-783 . -811) 121783) ((-783 . -184) 121767) ((-783 . -120) 121721) ((-783 . -118) 121700) ((-783 . -104) T) ((-783 . -25) T) ((-783 . -72) T) ((-783 . -13) T) ((-783 . -1131) T) ((-783 . -554) 121682) ((-783 . -1015) T) ((-783 . -23) T) ((-783 . -21) T) ((-783 . -963) T) ((-783 . -665) T) ((-783 . -1063) T) ((-783 . -1027) T) ((-783 . -972) T) ((-782 . -906) 121659) ((-782 . -1068) NIL) ((-782 . -952) 121636) ((-782 . -557) 121566) ((-782 . -555) NIL) ((-782 . -935) NIL) ((-782 . -823) NIL) ((-782 . -796) 121543) ((-782 . -757) NIL) ((-782 . -723) NIL) ((-782 . -720) NIL) ((-782 . -761) NIL) ((-782 . -758) NIL) ((-782 . -718) NIL) ((-782 . -716) NIL) ((-782 . -742) NIL) ((-782 . -798) NIL) ((-782 . -343) 121520) ((-782 . -582) 121497) ((-782 . -592) 121442) ((-782 . -329) 121419) ((-782 . -241) 121349) ((-782 . -260) 121293) ((-782 . -457) 121156) ((-782 . -381) 121133) ((-782 . -288) 121110) ((-782 . -201) T) ((-782 . -82) 121027) ((-782 . -965) 120972) ((-782 . -970) 120917) ((-782 . -246) T) ((-782 . -656) 120862) ((-782 . -584) 120807) ((-782 . -590) 120737) ((-782 . -38) 120682) ((-782 . -258) T) ((-782 . -393) T) ((-782 . -146) T) ((-782 . -497) T) ((-782 . -834) T) ((-782 . -1136) T) ((-782 . -312) T) ((-782 . -190) NIL) ((-782 . -186) NIL) ((-782 . -189) NIL) ((-782 . -225) 120659) ((-782 . -808) NIL) ((-782 . -813) NIL) ((-782 . -811) NIL) ((-782 . -184) 120636) ((-782 . -120) T) ((-782 . -118) NIL) ((-782 . -104) T) ((-782 . -25) T) ((-782 . -72) T) ((-782 . -13) T) ((-782 . -1131) T) ((-782 . -554) 120618) ((-782 . -1015) T) ((-782 . -23) T) ((-782 . -21) T) ((-782 . -963) T) ((-782 . -665) T) ((-782 . -1063) T) ((-782 . -1027) T) ((-782 . -972) T) ((-780 . -781) 120602) ((-780 . -834) T) ((-780 . -497) T) ((-780 . -246) T) ((-780 . -146) T) ((-780 . -557) 120574) ((-780 . -656) 120561) ((-780 . -584) 120548) ((-780 . -970) 120535) ((-780 . -965) 120522) ((-780 . -82) 120507) ((-780 . -38) 120494) ((-780 . -393) T) ((-780 . -258) T) ((-780 . -963) T) ((-780 . -665) T) ((-780 . -1063) T) ((-780 . -1027) T) ((-780 . -972) T) ((-780 . -21) T) ((-780 . -590) 120466) ((-780 . -23) T) ((-780 . -1015) T) ((-780 . -554) 120448) ((-780 . -1131) T) ((-780 . -13) T) ((-780 . -72) T) ((-780 . -25) T) ((-780 . -104) T) ((-780 . -592) 120435) ((-780 . -120) T) ((-777 . -963) T) ((-777 . -665) T) ((-777 . -1063) T) ((-777 . -1027) T) ((-777 . -972) T) ((-777 . -21) T) ((-777 . -590) 120380) ((-777 . -23) T) ((-777 . -1015) T) ((-777 . -554) 120342) ((-777 . -1131) T) ((-777 . -13) T) ((-777 . -72) T) ((-777 . -25) T) ((-777 . -104) T) ((-777 . -592) 120302) ((-777 . -557) 120237) ((-777 . -431) 120214) ((-777 . -38) 120184) ((-777 . -82) 120149) ((-777 . -965) 120119) ((-777 . -970) 120089) ((-777 . -584) 120059) ((-777 . -656) 120029) ((-776 . -1015) T) ((-776 . -554) 120011) ((-776 . -1131) T) ((-776 . -13) T) ((-776 . -72) T) ((-775 . -754) T) ((-775 . -761) T) ((-775 . -758) T) ((-775 . -1015) T) ((-775 . -554) 119993) ((-775 . -1131) T) ((-775 . -13) T) ((-775 . -72) T) ((-775 . -320) T) ((-775 . -555) 119915) ((-774 . -1015) T) ((-774 . -554) 119897) ((-774 . -1131) T) ((-774 . -13) T) ((-774 . -72) T) ((-773 . -772) T) ((-773 . -147) T) ((-773 . -554) 119879) ((-769 . -758) T) ((-769 . -554) 119861) ((-769 . -1015) T) ((-769 . -72) T) ((-769 . -13) T) ((-769 . -1131) T) ((-769 . -761) T) ((-766 . -763) 119845) ((-766 . -952) 119743) ((-766 . -557) 119641) ((-766 . -355) 119625) ((-766 . -656) 119595) ((-766 . -584) 119565) ((-766 . -592) 119539) ((-766 . -590) 119498) ((-766 . -104) T) ((-766 . -25) T) ((-766 . -72) T) ((-766 . -13) T) ((-766 . -1131) T) ((-766 . -554) 119480) ((-766 . -1015) T) ((-766 . -23) T) ((-766 . -21) T) ((-766 . -970) 119464) ((-766 . -965) 119448) ((-766 . -82) 119427) ((-766 . -963) T) ((-766 . -665) T) ((-766 . -1063) T) ((-766 . -1027) T) ((-766 . -972) T) ((-766 . -38) 119397) ((-765 . -763) 119381) ((-765 . -952) 119279) ((-765 . -557) 119198) ((-765 . -355) 119182) ((-765 . -656) 119152) ((-765 . -584) 119122) ((-765 . -592) 119096) ((-765 . -590) 119055) ((-765 . -104) T) ((-765 . -25) T) ((-765 . -72) T) ((-765 . -13) T) ((-765 . -1131) T) ((-765 . -554) 119037) ((-765 . -1015) T) ((-765 . -23) T) ((-765 . -21) T) ((-765 . -970) 119021) ((-765 . -965) 119005) ((-765 . -82) 118984) ((-765 . -963) T) ((-765 . -665) T) ((-765 . -1063) T) ((-765 . -1027) T) ((-765 . -972) T) ((-765 . -38) 118954) ((-759 . -761) T) ((-759 . -1131) T) ((-759 . -13) T) ((-759 . -72) T) ((-759 . -431) 118938) ((-759 . -554) 118886) ((-759 . -557) 118870) ((-752 . -1015) T) ((-752 . -554) 118852) ((-752 . -1131) T) ((-752 . -13) T) ((-752 . -72) T) ((-752 . -355) 118836) ((-752 . -557) 118709) ((-752 . -952) 118607) ((-752 . -21) 118562) ((-752 . -590) 118482) ((-752 . -23) 118437) ((-752 . -25) 118392) ((-752 . -104) 118347) ((-752 . -757) 118326) ((-752 . -723) 118305) ((-752 . -720) 118284) ((-752 . -761) 118263) ((-752 . -758) 118242) ((-752 . -718) 118221) ((-752 . -716) 118200) ((-752 . -963) 118179) ((-752 . -665) 118158) ((-752 . -1063) 118137) ((-752 . -1027) 118116) ((-752 . -972) 118095) ((-752 . -592) 118068) ((-752 . -120) 118047) ((-751 . -749) 118029) ((-751 . -72) T) ((-751 . -13) T) ((-751 . -1131) T) ((-751 . -554) 118011) ((-751 . -1015) T) ((-747 . -963) T) ((-747 . -665) T) ((-747 . -1063) T) ((-747 . -1027) T) ((-747 . -972) T) ((-747 . -21) T) ((-747 . -590) 117956) ((-747 . -23) T) ((-747 . -1015) T) ((-747 . -554) 117938) ((-747 . -1131) T) ((-747 . -13) T) ((-747 . -72) T) ((-747 . -25) T) ((-747 . -104) T) ((-747 . -592) 117898) ((-747 . -557) 117853) ((-747 . -952) 117823) ((-747 . -241) 117802) ((-747 . -120) 117781) ((-747 . -118) 117760) ((-747 . -38) 117730) ((-747 . -82) 117695) ((-747 . -965) 117665) ((-747 . -970) 117635) ((-747 . -584) 117605) ((-747 . -656) 117575) ((-745 . -1015) T) ((-745 . -554) 117557) ((-745 . -1131) T) ((-745 . -13) T) ((-745 . -72) T) ((-745 . -355) 117541) ((-745 . -557) 117414) ((-745 . -952) 117312) ((-745 . -21) 117267) ((-745 . -590) 117187) ((-745 . -23) 117142) ((-745 . -25) 117097) ((-745 . -104) 117052) ((-745 . -757) 117031) ((-745 . -723) 117010) ((-745 . -720) 116989) ((-745 . -761) 116968) ((-745 . -758) 116947) ((-745 . -718) 116926) ((-745 . -716) 116905) ((-745 . -963) 116884) ((-745 . -665) 116863) ((-745 . -1063) 116842) ((-745 . -1027) 116821) ((-745 . -972) 116800) ((-745 . -592) 116773) ((-745 . -120) 116752) ((-743 . -647) 116736) ((-743 . -557) 116691) ((-743 . -656) 116661) ((-743 . -584) 116631) ((-743 . -592) 116605) ((-743 . -590) 116564) ((-743 . -104) T) ((-743 . -25) T) ((-743 . -72) T) ((-743 . -13) T) ((-743 . -1131) T) ((-743 . -554) 116546) ((-743 . -1015) T) ((-743 . -23) T) ((-743 . -21) T) ((-743 . -970) 116530) ((-743 . -965) 116514) ((-743 . -82) 116493) ((-743 . -963) T) ((-743 . -665) T) ((-743 . -1063) T) ((-743 . -1027) T) ((-743 . -972) T) ((-743 . -38) 116463) ((-743 . -190) 116442) ((-743 . -186) 116415) ((-743 . -189) 116394) ((-741 . -336) 116378) ((-741 . -557) 116362) ((-741 . -952) 116346) ((-741 . -761) T) ((-741 . -758) T) ((-741 . -1027) T) ((-741 . -72) T) ((-741 . -13) T) ((-741 . -1131) T) ((-741 . -554) 116328) ((-741 . -1015) T) ((-741 . -665) T) ((-741 . -756) T) ((-741 . -768) T) ((-740 . -228) 116312) ((-740 . -557) 116296) ((-740 . -952) 116280) ((-740 . -761) T) ((-740 . -72) T) ((-740 . -1015) T) ((-740 . -554) 116262) ((-740 . -758) T) ((-740 . -186) 116249) ((-740 . -13) T) ((-740 . -1131) T) ((-740 . -189) T) ((-739 . -82) 116184) ((-739 . -965) 116135) ((-739 . -970) 116086) ((-739 . -21) T) ((-739 . -590) 116022) ((-739 . -23) T) ((-739 . -1015) T) ((-739 . -554) 115991) ((-739 . -1131) T) ((-739 . -13) T) ((-739 . -72) T) ((-739 . -25) T) ((-739 . -104) T) ((-739 . -592) 115942) ((-739 . -190) T) ((-739 . -557) 115851) ((-739 . -972) T) ((-739 . -1027) T) ((-739 . -1063) T) ((-739 . -665) T) ((-739 . -963) T) ((-739 . -186) 115838) ((-739 . -189) T) ((-739 . -431) 115822) ((-739 . -312) 115801) ((-739 . -1136) 115780) ((-739 . -834) 115759) ((-739 . -497) 115738) ((-739 . -146) 115717) ((-739 . -656) 115654) ((-739 . -584) 115591) ((-739 . -38) 115528) ((-739 . -393) 115507) ((-739 . -258) 115486) ((-739 . -246) 115465) ((-739 . -201) 115444) ((-738 . -213) 115383) ((-738 . -557) 115127) ((-738 . -952) 114957) ((-738 . -555) NIL) ((-738 . -277) 114919) ((-738 . -355) 114903) ((-738 . -38) 114755) ((-738 . -82) 114580) ((-738 . -965) 114426) ((-738 . -970) 114272) ((-738 . -590) 114182) ((-738 . -592) 114071) ((-738 . -584) 113923) ((-738 . -656) 113775) ((-738 . -118) 113754) ((-738 . -120) 113733) ((-738 . -146) 113647) ((-738 . -381) 113631) ((-738 . -497) 113565) ((-738 . -246) 113499) ((-738 . -47) 113461) ((-738 . -329) 113445) ((-738 . -582) 113393) ((-738 . -393) 113347) ((-738 . -457) 113212) ((-738 . -811) 113148) ((-738 . -808) 113047) ((-738 . -813) 112950) ((-738 . -798) NIL) ((-738 . -823) 112929) ((-738 . -1136) 112908) ((-738 . -863) 112855) ((-738 . -260) 112842) ((-738 . -190) 112821) ((-738 . -104) T) ((-738 . -25) T) ((-738 . -72) T) ((-738 . -554) 112803) ((-738 . -1015) T) ((-738 . -23) T) ((-738 . -21) T) ((-738 . -972) T) ((-738 . -1027) T) ((-738 . -1063) T) ((-738 . -665) T) ((-738 . -963) T) ((-738 . -186) 112751) ((-738 . -13) T) ((-738 . -1131) T) ((-738 . -189) 112705) ((-738 . -225) 112689) ((-738 . -184) 112673) ((-737 . -196) 112652) ((-737 . -1189) 112622) ((-737 . -723) 112601) ((-737 . -720) 112580) ((-737 . -761) 112534) ((-737 . -758) 112488) ((-737 . -718) 112467) ((-737 . -719) 112446) ((-737 . -656) 112391) ((-737 . -584) 112316) ((-737 . -243) 112293) ((-737 . -241) 112270) ((-737 . -540) 112247) ((-737 . -952) 112076) ((-737 . -557) 111880) ((-737 . -355) 111849) ((-737 . -582) 111757) ((-737 . -592) 111596) ((-737 . -329) 111566) ((-737 . -430) 111550) ((-737 . -381) 111534) ((-737 . -457) 111467) ((-737 . -260) 111405) ((-737 . -34) T) ((-737 . -318) 111389) ((-737 . -320) 111368) ((-737 . -190) 111321) ((-737 . -590) 111109) ((-737 . -972) 111088) ((-737 . -1027) 111067) ((-737 . -1063) 111046) ((-737 . -665) 111025) ((-737 . -963) 111004) ((-737 . -186) 110900) ((-737 . -189) 110802) ((-737 . -225) 110772) ((-737 . -808) 110644) ((-737 . -813) 110518) ((-737 . -811) 110451) ((-737 . -184) 110421) ((-737 . -554) 110118) ((-737 . -970) 110043) ((-737 . -965) 109948) ((-737 . -82) 109868) ((-737 . -104) 109743) ((-737 . -25) 109580) ((-737 . -72) 109317) ((-737 . -13) T) ((-737 . -1131) T) ((-737 . -1015) 109073) ((-737 . -23) 108929) ((-737 . -21) 108844) ((-724 . -722) 108828) ((-724 . -761) 108807) ((-724 . -758) 108786) ((-724 . -952) 108579) ((-724 . -557) 108432) ((-724 . -355) 108396) ((-724 . -241) 108354) ((-724 . -260) 108319) ((-724 . -457) 108231) ((-724 . -381) 108215) ((-724 . -288) 108199) ((-724 . -320) 108178) ((-724 . -555) 108139) ((-724 . -120) 108118) ((-724 . -118) 108097) ((-724 . -656) 108081) ((-724 . -584) 108065) ((-724 . -592) 108039) ((-724 . -590) 107998) ((-724 . -104) T) ((-724 . -25) T) ((-724 . -72) T) ((-724 . -13) T) ((-724 . -1131) T) ((-724 . -554) 107980) ((-724 . -1015) T) ((-724 . -23) T) ((-724 . -21) T) ((-724 . -970) 107964) ((-724 . -965) 107948) ((-724 . -82) 107927) ((-724 . -963) T) ((-724 . -665) T) ((-724 . -1063) T) ((-724 . -1027) T) ((-724 . -972) T) ((-724 . -38) 107911) ((-706 . -1157) 107895) ((-706 . -1068) 107873) ((-706 . -555) NIL) ((-706 . -260) 107860) ((-706 . -457) 107808) ((-706 . -277) 107785) ((-706 . -952) 107647) ((-706 . -355) 107631) ((-706 . -38) 107463) ((-706 . -82) 107268) ((-706 . -965) 107094) ((-706 . -970) 106920) ((-706 . -590) 106830) ((-706 . -592) 106719) ((-706 . -584) 106551) ((-706 . -656) 106383) ((-706 . -557) 106139) ((-706 . -118) 106118) ((-706 . -120) 106097) ((-706 . -381) 106081) ((-706 . -47) 106058) ((-706 . -329) 106042) ((-706 . -582) 105990) ((-706 . -811) 105934) ((-706 . -808) 105841) ((-706 . -813) 105752) ((-706 . -798) NIL) ((-706 . -823) 105731) ((-706 . -1136) 105710) ((-706 . -863) 105680) ((-706 . -834) 105659) ((-706 . -497) 105573) ((-706 . -246) 105487) ((-706 . -146) 105381) ((-706 . -393) 105315) ((-706 . -258) 105294) ((-706 . -241) 105221) ((-706 . -190) T) ((-706 . -104) T) ((-706 . -25) T) ((-706 . -72) T) ((-706 . -554) 105182) ((-706 . -1015) T) ((-706 . -23) T) ((-706 . -21) T) ((-706 . -972) T) ((-706 . -1027) T) ((-706 . -1063) T) ((-706 . -665) T) ((-706 . -963) T) ((-706 . -186) 105169) ((-706 . -13) T) ((-706 . -1131) T) ((-706 . -189) T) ((-706 . -225) 105153) ((-706 . -184) 105137) ((-705 . -979) 105104) ((-705 . -555) 104739) ((-705 . -260) 104726) ((-705 . -457) 104678) ((-705 . -277) 104650) ((-705 . -952) 104509) ((-705 . -355) 104493) ((-705 . -38) 104345) ((-705 . -557) 104118) ((-705 . -592) 104007) ((-705 . -590) 103917) ((-705 . -972) T) ((-705 . -1027) T) ((-705 . -1063) T) ((-705 . -665) T) ((-705 . -963) T) ((-705 . -82) 103742) ((-705 . -965) 103588) ((-705 . -970) 103434) ((-705 . -21) T) ((-705 . -23) T) ((-705 . -1015) T) ((-705 . -554) 103348) ((-705 . -1131) T) ((-705 . -13) T) ((-705 . -72) T) ((-705 . -25) T) ((-705 . -104) T) ((-705 . -584) 103200) ((-705 . -656) 103052) ((-705 . -118) 103031) ((-705 . -120) 103010) ((-705 . -146) 102924) ((-705 . -381) 102908) ((-705 . -497) 102842) ((-705 . -246) 102776) ((-705 . -47) 102748) ((-705 . -329) 102732) ((-705 . -582) 102680) ((-705 . -393) 102634) ((-705 . -811) 102618) ((-705 . -808) 102600) ((-705 . -813) 102584) ((-705 . -798) 102443) ((-705 . -823) 102422) ((-705 . -1136) 102401) ((-705 . -863) 102368) ((-698 . -1015) T) ((-698 . -554) 102350) ((-698 . -1131) T) ((-698 . -13) T) ((-698 . -72) T) ((-696 . -719) T) ((-696 . -104) T) ((-696 . -25) T) ((-696 . -72) T) ((-696 . -13) T) ((-696 . -1131) T) ((-696 . -554) 102332) ((-696 . -1015) T) ((-696 . -23) T) ((-696 . -718) T) ((-696 . -758) T) ((-696 . -761) T) ((-696 . -720) T) ((-696 . -723) T) ((-696 . -665) T) ((-696 . -1027) T) ((-677 . -678) 102316) ((-677 . -1013) 102300) ((-677 . -193) 102284) ((-677 . -555) 102245) ((-677 . -124) 102229) ((-677 . -430) 102213) ((-677 . -1015) T) ((-677 . -381) 102197) ((-677 . -457) 102130) ((-677 . -260) 102068) ((-677 . -554) 102050) ((-677 . -72) T) ((-677 . -1131) T) ((-677 . -13) T) ((-677 . -34) T) ((-677 . -1037) 102034) ((-677 . -76) 102018) ((-677 . -636) 102002) ((-677 . -318) 101986) ((-676 . -963) T) ((-676 . -665) T) ((-676 . -1063) T) ((-676 . -1027) T) ((-676 . -972) T) ((-676 . -21) T) ((-676 . -590) 101931) ((-676 . -23) T) ((-676 . -1015) T) ((-676 . -554) 101913) ((-676 . -1131) T) ((-676 . -13) T) ((-676 . -72) T) ((-676 . -25) T) ((-676 . -104) T) ((-676 . -592) 101873) ((-676 . -557) 101829) ((-676 . -952) 101800) ((-676 . -381) 101784) ((-676 . -120) 101763) ((-676 . -118) 101742) ((-676 . -38) 101712) ((-676 . -82) 101677) ((-676 . -965) 101647) ((-676 . -970) 101617) ((-676 . -584) 101587) ((-676 . -656) 101557) ((-676 . -320) 101510) ((-672 . -863) 101463) ((-672 . -557) 101255) ((-672 . -952) 101133) ((-672 . -1136) 101112) ((-672 . -823) 101091) ((-672 . -798) NIL) ((-672 . -813) 101068) ((-672 . -808) 101043) ((-672 . -811) 101020) ((-672 . -457) 100958) ((-672 . -393) 100912) ((-672 . -582) 100860) ((-672 . -592) 100749) ((-672 . -329) 100733) ((-672 . -47) 100698) ((-672 . -38) 100550) ((-672 . -584) 100402) ((-672 . -656) 100254) ((-672 . -246) 100188) ((-672 . -497) 100122) ((-672 . -381) 100106) ((-672 . -82) 99931) ((-672 . -965) 99777) ((-672 . -970) 99623) ((-672 . -146) 99537) ((-672 . -120) 99516) ((-672 . -118) 99495) ((-672 . -590) 99405) ((-672 . -104) T) ((-672 . -25) T) ((-672 . -72) T) ((-672 . -13) T) ((-672 . -1131) T) ((-672 . -554) 99387) ((-672 . -1015) T) ((-672 . -23) T) ((-672 . -21) T) ((-672 . -963) T) ((-672 . -665) T) ((-672 . -1063) T) ((-672 . -1027) T) ((-672 . -972) T) ((-672 . -355) 99371) ((-672 . -277) 99336) ((-672 . -260) 99323) ((-672 . -555) 99184) ((-666 . -667) 99168) ((-666 . -80) 99152) ((-666 . -1131) T) ((-666 . |MappingCategory|) 99126) ((-666 . -1025) 99110) ((-666 . -1015) T) ((-666 . -554) 99071) ((-666 . -13) T) ((-666 . -72) T) ((-657 . -414) T) ((-657 . -1027) T) ((-657 . -72) T) ((-657 . -13) T) ((-657 . -1131) T) ((-657 . -554) 99053) ((-657 . -1015) T) ((-657 . -665) T) ((-654 . -963) T) ((-654 . -665) T) ((-654 . -1063) T) ((-654 . -1027) T) ((-654 . -972) T) ((-654 . -21) T) ((-654 . -590) 99025) ((-654 . -23) T) ((-654 . -1015) T) ((-654 . -554) 99007) ((-654 . -1131) T) ((-654 . -13) T) ((-654 . -72) T) ((-654 . -25) T) ((-654 . -104) T) ((-654 . -592) 98994) ((-654 . -557) 98976) ((-653 . -963) T) ((-653 . -665) T) ((-653 . -1063) T) ((-653 . -1027) T) ((-653 . -972) T) ((-653 . -21) T) ((-653 . -590) 98921) ((-653 . -23) T) ((-653 . -1015) T) ((-653 . -554) 98903) ((-653 . -1131) T) ((-653 . -13) T) ((-653 . -72) T) ((-653 . -25) T) ((-653 . -104) T) ((-653 . -592) 98863) ((-653 . -557) 98818) ((-653 . -952) 98788) ((-653 . -241) 98767) ((-653 . -120) 98746) ((-653 . -118) 98725) ((-653 . -38) 98695) ((-653 . -82) 98660) ((-653 . -965) 98630) ((-653 . -970) 98600) ((-653 . -584) 98570) ((-653 . -656) 98540) ((-652 . -758) T) ((-652 . -554) 98475) ((-652 . -1015) T) ((-652 . -72) T) ((-652 . -13) T) ((-652 . -1131) T) ((-652 . -761) T) ((-652 . -431) 98425) ((-652 . -557) 98375) ((-651 . -1157) 98359) ((-651 . -1068) 98337) ((-651 . -555) NIL) ((-651 . -260) 98324) ((-651 . -457) 98272) ((-651 . -277) 98249) ((-651 . -952) 98132) ((-651 . -355) 98116) ((-651 . -38) 97948) ((-651 . -82) 97753) ((-651 . -965) 97579) ((-651 . -970) 97405) ((-651 . -590) 97315) ((-651 . -592) 97204) ((-651 . -584) 97036) ((-651 . -656) 96868) ((-651 . -557) 96632) ((-651 . -118) 96611) ((-651 . -120) 96590) ((-651 . -381) 96574) ((-651 . -47) 96551) ((-651 . -329) 96535) ((-651 . -582) 96483) ((-651 . -811) 96427) ((-651 . -808) 96334) ((-651 . -813) 96245) ((-651 . -798) NIL) ((-651 . -823) 96224) ((-651 . -1136) 96203) ((-651 . -863) 96173) ((-651 . -834) 96152) ((-651 . -497) 96066) ((-651 . -246) 95980) ((-651 . -146) 95874) ((-651 . -393) 95808) ((-651 . -258) 95787) ((-651 . -241) 95714) ((-651 . -190) T) ((-651 . -104) T) ((-651 . -25) T) ((-651 . -72) T) ((-651 . -554) 95696) ((-651 . -1015) T) ((-651 . -23) T) ((-651 . -21) T) ((-651 . -972) T) ((-651 . -1027) T) ((-651 . -1063) T) ((-651 . -665) T) ((-651 . -963) T) ((-651 . -186) 95683) ((-651 . -13) T) ((-651 . -1131) T) ((-651 . -189) T) ((-651 . -225) 95667) ((-651 . -184) 95651) ((-651 . -320) 95630) ((-650 . -312) T) ((-650 . -1136) T) ((-650 . -834) T) ((-650 . -497) T) ((-650 . -146) T) ((-650 . -557) 95580) ((-650 . -656) 95545) ((-650 . -584) 95510) ((-650 . -38) 95475) ((-650 . -393) T) ((-650 . -258) T) ((-650 . -592) 95440) ((-650 . -590) 95390) ((-650 . -972) T) ((-650 . -1027) T) ((-650 . -1063) T) ((-650 . -665) T) ((-650 . -963) T) ((-650 . -82) 95339) ((-650 . -965) 95304) ((-650 . -970) 95269) ((-650 . -21) T) ((-650 . -23) T) ((-650 . -1015) T) ((-650 . -554) 95251) ((-650 . -1131) T) ((-650 . -13) T) ((-650 . -72) T) ((-650 . -25) T) ((-650 . -104) T) ((-650 . -246) T) ((-650 . -201) T) ((-649 . -1015) T) ((-649 . -554) 95233) ((-649 . -1131) T) ((-649 . -13) T) ((-649 . -72) T) ((-634 . -1177) T) ((-634 . -952) 95217) ((-634 . -557) 95201) ((-634 . -554) 95183) ((-632 . -629) 95141) ((-632 . -318) 95125) ((-632 . -34) T) ((-632 . -13) T) ((-632 . -1131) T) ((-632 . -72) 95079) ((-632 . -554) 95014) ((-632 . -260) 94952) ((-632 . -457) 94885) ((-632 . -381) 94869) ((-632 . -1015) 94847) ((-632 . -430) 94831) ((-632 . -1037) 94815) ((-632 . -57) 94773) ((-632 . -555) 94734) ((-624 . -997) T) ((-624 . -431) 94715) ((-624 . -554) 94665) ((-624 . -557) 94646) ((-624 . -1015) T) ((-624 . -1131) T) ((-624 . -13) T) ((-624 . -72) T) ((-624 . -64) T) ((-620 . -758) T) ((-620 . -554) 94628) ((-620 . -1015) T) ((-620 . -72) T) ((-620 . -13) T) ((-620 . -1131) T) ((-620 . -761) T) ((-620 . -952) 94612) ((-620 . -557) 94596) ((-619 . -997) T) ((-619 . -431) 94577) ((-619 . -554) 94543) ((-619 . -557) 94524) ((-619 . -1015) T) ((-619 . -1131) T) ((-619 . -13) T) ((-619 . -72) T) ((-619 . -64) T) ((-616 . -758) T) ((-616 . -554) 94506) ((-616 . -1015) T) ((-616 . -72) T) ((-616 . -13) T) ((-616 . -1131) T) ((-616 . -761) T) ((-616 . -952) 94490) ((-616 . -557) 94474) ((-615 . -997) T) ((-615 . -431) 94455) ((-615 . -554) 94421) ((-615 . -557) 94402) ((-615 . -1015) T) ((-615 . -1131) T) ((-615 . -13) T) ((-615 . -72) T) ((-615 . -64) T) ((-614 . -1039) 94347) ((-614 . -318) 94331) ((-614 . -34) T) ((-614 . -260) 94269) ((-614 . -457) 94202) ((-614 . -381) 94186) ((-614 . -430) 94170) ((-614 . -967) 94110) ((-614 . -952) 94008) ((-614 . -557) 93927) ((-614 . -355) 93911) ((-614 . -582) 93859) ((-614 . -592) 93797) ((-614 . -329) 93781) ((-614 . -190) 93760) ((-614 . -186) 93708) ((-614 . -189) 93662) ((-614 . -225) 93646) ((-614 . -808) 93570) ((-614 . -813) 93496) ((-614 . -811) 93455) ((-614 . -184) 93439) ((-614 . -656) 93423) ((-614 . -584) 93407) ((-614 . -590) 93366) ((-614 . -104) T) ((-614 . -25) T) ((-614 . -72) T) ((-614 . -13) T) ((-614 . -1131) T) ((-614 . -554) 93328) ((-614 . -1015) T) ((-614 . -23) T) ((-614 . -21) T) ((-614 . -970) 93312) ((-614 . -965) 93296) ((-614 . -82) 93275) ((-614 . -963) T) ((-614 . -665) T) ((-614 . -1063) T) ((-614 . -1027) T) ((-614 . -972) T) ((-614 . -38) 93235) ((-614 . -361) 93219) ((-614 . -685) 93203) ((-614 . -659) T) ((-614 . -687) T) ((-614 . -316) 93187) ((-614 . -241) 93164) ((-608 . -326) 93143) ((-608 . -656) 93127) ((-608 . -584) 93111) ((-608 . -592) 93095) ((-608 . -590) 93064) ((-608 . -104) T) ((-608 . -25) T) ((-608 . -72) T) ((-608 . -13) T) ((-608 . -1131) T) ((-608 . -554) 93046) ((-608 . -1015) T) ((-608 . -23) T) ((-608 . -21) T) ((-608 . -970) 93030) ((-608 . -965) 93014) ((-608 . -82) 92993) ((-608 . -576) 92977) ((-608 . -335) 92949) ((-608 . -557) 92926) ((-608 . -952) 92903) ((-608 . -381) 92887) ((-600 . -602) 92871) ((-600 . -38) 92841) ((-600 . -557) 92760) ((-600 . -592) 92734) ((-600 . -590) 92693) ((-600 . -972) T) ((-600 . -1027) T) ((-600 . -1063) T) ((-600 . -665) T) ((-600 . -963) T) ((-600 . -82) 92672) ((-600 . -965) 92656) ((-600 . -970) 92640) ((-600 . -21) T) ((-600 . -23) T) ((-600 . -1015) T) ((-600 . -554) 92622) ((-600 . -72) T) ((-600 . -25) T) ((-600 . -104) T) ((-600 . -584) 92592) ((-600 . -656) 92562) ((-600 . -355) 92546) ((-600 . -952) 92444) ((-600 . -763) 92428) ((-600 . -1131) T) ((-600 . -13) T) ((-600 . -241) 92389) ((-599 . -602) 92373) ((-599 . -38) 92343) ((-599 . -557) 92262) ((-599 . -592) 92236) ((-599 . -590) 92195) ((-599 . -972) T) ((-599 . -1027) T) ((-599 . -1063) T) ((-599 . -665) T) ((-599 . -963) T) ((-599 . -82) 92174) ((-599 . -965) 92158) ((-599 . -970) 92142) ((-599 . -21) T) ((-599 . -23) T) ((-599 . -1015) T) ((-599 . -554) 92124) ((-599 . -72) T) ((-599 . -25) T) ((-599 . -104) T) ((-599 . -584) 92094) ((-599 . -656) 92064) ((-599 . -355) 92048) ((-599 . -952) 91946) ((-599 . -763) 91930) ((-599 . -1131) T) ((-599 . -13) T) ((-599 . -241) 91909) ((-598 . -602) 91893) ((-598 . -38) 91863) ((-598 . -557) 91782) ((-598 . -592) 91756) ((-598 . -590) 91715) ((-598 . -972) T) ((-598 . -1027) T) ((-598 . -1063) T) ((-598 . -665) T) ((-598 . -963) T) ((-598 . -82) 91694) ((-598 . -965) 91678) ((-598 . -970) 91662) ((-598 . -21) T) ((-598 . -23) T) ((-598 . -1015) T) ((-598 . -554) 91644) ((-598 . -72) T) ((-598 . -25) T) ((-598 . -104) T) ((-598 . -584) 91614) ((-598 . -656) 91584) ((-598 . -355) 91568) ((-598 . -952) 91466) ((-598 . -763) 91450) ((-598 . -1131) T) ((-598 . -13) T) ((-598 . -241) 91429) ((-596 . -656) 91413) ((-596 . -584) 91397) ((-596 . -592) 91381) ((-596 . -590) 91350) ((-596 . -104) T) ((-596 . -25) T) ((-596 . -72) T) ((-596 . -13) T) ((-596 . -1131) T) ((-596 . -554) 91332) ((-596 . -1015) T) ((-596 . -23) T) ((-596 . -21) T) ((-596 . -970) 91316) ((-596 . -965) 91300) ((-596 . -82) 91279) ((-596 . -716) 91258) ((-596 . -718) 91237) ((-596 . -758) 91216) ((-596 . -761) 91195) ((-596 . -720) 91174) ((-596 . -723) 91153) ((-593 . -1015) T) ((-593 . -554) 91135) ((-593 . -1131) T) ((-593 . -13) T) ((-593 . -72) T) ((-593 . -952) 91119) ((-593 . -557) 91103) ((-591 . -636) 91087) ((-591 . -76) 91071) ((-591 . -1037) 91055) ((-591 . -34) T) ((-591 . -13) T) ((-591 . -1131) T) ((-591 . -72) 91009) ((-591 . -554) 90944) ((-591 . -260) 90882) ((-591 . -457) 90815) ((-591 . -381) 90799) ((-591 . -1015) 90777) ((-591 . -430) 90761) ((-591 . -124) 90745) ((-591 . -555) 90706) ((-591 . -193) 90690) ((-591 . -318) 90674) ((-589 . -997) T) ((-589 . -431) 90655) ((-589 . -554) 90608) ((-589 . -557) 90589) ((-589 . -1015) T) ((-589 . -1131) T) ((-589 . -13) T) ((-589 . -72) T) ((-589 . -64) T) ((-585 . -610) 90573) ((-585 . -1170) 90557) ((-585 . -925) 90541) ((-585 . -1066) 90525) ((-585 . -318) 90509) ((-585 . -758) 90488) ((-585 . -761) 90467) ((-585 . -324) 90451) ((-585 . -595) 90435) ((-585 . -243) 90412) ((-585 . -241) 90364) ((-585 . -540) 90341) ((-585 . -555) 90302) ((-585 . -430) 90286) ((-585 . -1015) 90239) ((-585 . -381) 90223) ((-585 . -457) 90156) ((-585 . -260) 90094) ((-585 . -554) 90009) ((-585 . -72) 89943) ((-585 . -1131) T) ((-585 . -13) T) ((-585 . -34) T) ((-585 . -124) 89927) ((-585 . -1037) 89911) ((-585 . -237) 89895) ((-583 . -1189) 89879) ((-583 . -82) 89858) ((-583 . -965) 89842) ((-583 . -970) 89826) ((-583 . -21) T) ((-583 . -590) 89795) ((-583 . -23) T) ((-583 . -1015) T) ((-583 . -554) 89777) ((-583 . -1131) T) ((-583 . -13) T) ((-583 . -72) T) ((-583 . -25) T) ((-583 . -104) T) ((-583 . -592) 89761) ((-583 . -584) 89745) ((-583 . -656) 89729) ((-583 . -241) 89696) ((-581 . -1189) 89680) ((-581 . -82) 89659) ((-581 . -965) 89643) ((-581 . -970) 89627) ((-581 . -21) T) ((-581 . -590) 89596) ((-581 . -23) T) ((-581 . -1015) T) ((-581 . -554) 89578) ((-581 . -1131) T) ((-581 . -13) T) ((-581 . -72) T) ((-581 . -25) T) ((-581 . -104) T) ((-581 . -592) 89562) ((-581 . -584) 89546) ((-581 . -656) 89530) ((-581 . -557) 89507) ((-581 . -451) 89479) ((-581 . -381) 89463) ((-581 . -559) 89421) ((-579 . -754) T) ((-579 . -761) T) ((-579 . -758) T) ((-579 . -1015) T) ((-579 . -554) 89403) ((-579 . -1131) T) ((-579 . -13) T) ((-579 . -72) T) ((-579 . -320) T) ((-579 . -557) 89380) ((-574 . -685) 89364) ((-574 . -659) T) ((-574 . -687) T) ((-574 . -82) 89343) ((-574 . -965) 89327) ((-574 . -970) 89311) ((-574 . -21) T) ((-574 . -590) 89280) ((-574 . -23) T) ((-574 . -1015) T) ((-574 . -554) 89249) ((-574 . -1131) T) ((-574 . -13) T) ((-574 . -72) T) ((-574 . -25) T) ((-574 . -104) T) ((-574 . -592) 89233) ((-574 . -584) 89217) ((-574 . -656) 89201) ((-574 . -361) 89166) ((-574 . -316) 89101) ((-574 . -241) 89059) ((-573 . -1109) 89034) ((-573 . -183) 88978) ((-573 . -76) 88922) ((-573 . -1037) 88852) ((-573 . -124) 88796) ((-573 . -555) NIL) ((-573 . -193) 88740) ((-573 . -540) 88715) ((-573 . -260) 88560) ((-573 . -457) 88360) ((-573 . -381) 88290) ((-573 . -430) 88220) ((-573 . -241) 88173) ((-573 . -243) 88148) ((-573 . -551) 88123) ((-573 . -1015) T) ((-573 . -554) 88105) ((-573 . -72) T) ((-573 . -1131) T) ((-573 . -13) T) ((-573 . -34) T) ((-573 . -318) 88049) ((-568 . -414) T) ((-568 . -1027) T) ((-568 . -72) T) ((-568 . -13) T) ((-568 . -1131) T) ((-568 . -554) 88031) ((-568 . -1015) T) ((-568 . -665) T) ((-567 . -997) T) ((-567 . -431) 88012) ((-567 . -554) 87978) ((-567 . -557) 87959) ((-567 . -1015) T) ((-567 . -1131) T) ((-567 . -13) T) ((-567 . -72) T) ((-567 . -64) T) ((-564 . -184) 87943) ((-564 . -811) 87902) ((-564 . -813) 87828) ((-564 . -808) 87752) ((-564 . -225) 87736) ((-564 . -189) 87690) ((-564 . -1131) T) ((-564 . -13) T) ((-564 . -186) 87638) ((-564 . -963) T) ((-564 . -665) T) ((-564 . -1063) T) ((-564 . -1027) T) ((-564 . -972) T) ((-564 . -21) T) ((-564 . -590) 87610) ((-564 . -23) T) ((-564 . -1015) T) ((-564 . -554) 87592) ((-564 . -72) T) ((-564 . -25) T) ((-564 . -104) T) ((-564 . -592) 87579) ((-564 . -557) 87475) ((-564 . -190) 87454) ((-564 . -497) T) ((-564 . -246) T) ((-564 . -146) T) ((-564 . -656) 87441) ((-564 . -584) 87428) ((-564 . -970) 87415) ((-564 . -965) 87402) ((-564 . -82) 87387) ((-564 . -38) 87374) ((-564 . -555) 87351) ((-564 . -355) 87335) ((-564 . -952) 87220) ((-564 . -120) 87199) ((-564 . -118) 87178) ((-564 . -258) 87157) ((-564 . -393) 87136) ((-564 . -834) 87115) ((-560 . -38) 87099) ((-560 . -557) 87068) ((-560 . -592) 87042) ((-560 . -590) 87001) ((-560 . -972) T) ((-560 . -1027) T) ((-560 . -1063) T) ((-560 . -665) T) ((-560 . -963) T) ((-560 . -82) 86980) ((-560 . -965) 86964) ((-560 . -970) 86948) ((-560 . -21) T) ((-560 . -23) T) ((-560 . -1015) T) ((-560 . -554) 86930) ((-560 . -1131) T) ((-560 . -13) T) ((-560 . -72) T) ((-560 . -25) T) ((-560 . -104) T) ((-560 . -584) 86914) ((-560 . -656) 86898) ((-560 . -757) 86877) ((-560 . -723) 86856) ((-560 . -720) 86835) ((-560 . -761) 86814) ((-560 . -758) 86793) ((-560 . -718) 86772) ((-560 . -716) 86751) ((-560 . -120) 86730) ((-558 . -882) T) ((-558 . -72) T) ((-558 . -554) 86712) ((-558 . -1015) T) ((-558 . -606) T) ((-558 . -13) T) ((-558 . -1131) T) ((-558 . -84) T) ((-558 . -320) T) ((-552 . -105) T) ((-552 . -72) T) ((-552 . -13) T) ((-552 . -1131) T) ((-552 . -554) 86694) ((-552 . -1015) T) ((-552 . -758) T) ((-552 . -761) T) ((-552 . -796) 86678) ((-552 . -555) 86539) ((-549 . -314) 86477) ((-549 . -72) T) ((-549 . -13) T) ((-549 . -1131) T) ((-549 . -554) 86459) ((-549 . -1015) T) ((-549 . -1109) 86435) ((-549 . -183) 86380) ((-549 . -76) 86325) ((-549 . -1037) 86257) ((-549 . -124) 86202) ((-549 . -555) NIL) ((-549 . -193) 86147) ((-549 . -540) 86123) ((-549 . -260) 85912) ((-549 . -457) 85652) ((-549 . -381) 85584) ((-549 . -430) 85516) ((-549 . -241) 85492) ((-549 . -243) 85468) ((-549 . -551) 85444) ((-549 . -34) T) ((-549 . -318) 85389) ((-548 . -1015) T) ((-548 . -554) 85341) ((-548 . -1131) T) ((-548 . -13) T) ((-548 . -72) T) ((-548 . -431) 85308) ((-548 . -557) 85275) ((-547 . -1015) T) ((-547 . -554) 85257) ((-547 . -1131) T) ((-547 . -13) T) ((-547 . -72) T) ((-547 . -606) T) ((-546 . -1015) T) ((-546 . -554) 85239) ((-546 . -1131) T) ((-546 . -13) T) ((-546 . -72) T) ((-546 . -606) T) ((-545 . -1015) T) ((-545 . -554) 85206) ((-545 . -1131) T) ((-545 . -13) T) ((-545 . -72) T) ((-544 . -1015) T) ((-544 . -554) 85188) ((-544 . -1131) T) ((-544 . -13) T) ((-544 . -72) T) ((-544 . -606) T) ((-543 . -1015) T) ((-543 . -554) 85155) ((-543 . -1131) T) ((-543 . -13) T) ((-543 . -72) T) ((-543 . -431) 85137) ((-543 . -557) 85119) ((-542 . -685) 85103) ((-542 . -659) T) ((-542 . -687) T) ((-542 . -82) 85082) ((-542 . -965) 85066) ((-542 . -970) 85050) ((-542 . -21) T) ((-542 . -590) 85019) ((-542 . -23) T) ((-542 . -1015) T) ((-542 . -554) 84988) ((-542 . -1131) T) ((-542 . -13) T) ((-542 . -72) T) ((-542 . -25) T) ((-542 . -104) T) ((-542 . -592) 84972) ((-542 . -584) 84956) ((-542 . -656) 84940) ((-542 . -361) 84905) ((-542 . -316) 84840) ((-542 . -241) 84798) ((-541 . -997) T) ((-541 . -431) 84779) ((-541 . -554) 84729) ((-541 . -557) 84710) ((-541 . -1015) T) ((-541 . -1131) T) ((-541 . -13) T) ((-541 . -72) T) ((-541 . -64) T) ((-538 . -381) 84694) ((-538 . -13) T) ((-538 . -1131) T) ((-538 . -554) 84676) ((-534 . -1015) T) ((-534 . -554) 84642) ((-534 . -1131) T) ((-534 . -13) T) ((-534 . -72) T) ((-534 . -431) 84623) ((-534 . -557) 84604) ((-533 . -963) T) ((-533 . -665) T) ((-533 . -1063) T) ((-533 . -1027) T) ((-533 . -972) T) ((-533 . -21) T) ((-533 . -590) 84563) ((-533 . -23) T) ((-533 . -1015) T) ((-533 . -554) 84545) ((-533 . -1131) T) ((-533 . -13) T) ((-533 . -72) T) ((-533 . -25) T) ((-533 . -104) T) ((-533 . -592) 84519) ((-533 . -557) 84477) ((-533 . -82) 84430) ((-533 . -965) 84390) ((-533 . -970) 84350) ((-533 . -497) 84329) ((-533 . -246) 84308) ((-533 . -146) 84287) ((-533 . -656) 84260) ((-533 . -584) 84233) ((-533 . -38) 84206) ((-532 . -1160) 84183) ((-532 . -47) 84160) ((-532 . -38) 84057) ((-532 . -584) 83954) ((-532 . -656) 83851) ((-532 . -557) 83733) ((-532 . -246) 83712) ((-532 . -497) 83691) ((-532 . -381) 83675) ((-532 . -82) 83540) ((-532 . -965) 83426) ((-532 . -970) 83312) ((-532 . -146) 83266) ((-532 . -120) 83245) ((-532 . -118) 83224) ((-532 . -592) 83149) ((-532 . -590) 83059) ((-532 . -888) 83029) ((-532 . -813) 82942) ((-532 . -808) 82853) ((-532 . -811) 82766) ((-532 . -241) 82731) ((-532 . -189) 82690) ((-532 . -1131) T) ((-532 . -13) T) ((-532 . -186) 82643) ((-532 . -963) T) ((-532 . -665) T) ((-532 . -1063) T) ((-532 . -1027) T) ((-532 . -972) T) ((-532 . -21) T) ((-532 . -23) T) ((-532 . -1015) T) ((-532 . -554) 82625) ((-532 . -72) T) ((-532 . -25) T) ((-532 . -104) T) ((-532 . -190) 82584) ((-530 . -997) T) ((-530 . -431) 82565) ((-530 . -554) 82531) ((-530 . -557) 82512) ((-530 . -1015) T) ((-530 . -1131) T) ((-530 . -13) T) ((-530 . -72) T) ((-530 . -64) T) ((-524 . -1015) T) ((-524 . -554) 82478) ((-524 . -1131) T) ((-524 . -13) T) ((-524 . -72) T) ((-524 . -431) 82459) ((-524 . -557) 82440) ((-521 . -656) 82415) ((-521 . -584) 82390) ((-521 . -592) 82365) ((-521 . -590) 82325) ((-521 . -104) T) ((-521 . -25) T) ((-521 . -72) T) ((-521 . -13) T) ((-521 . -1131) T) ((-521 . -554) 82307) ((-521 . -1015) T) ((-521 . -23) T) ((-521 . -21) T) ((-521 . -970) 82282) ((-521 . -965) 82257) ((-521 . -82) 82218) ((-521 . -952) 82202) ((-521 . -557) 82186) ((-519 . -299) T) ((-519 . -1068) T) ((-519 . -320) T) ((-519 . -118) T) ((-519 . -312) T) ((-519 . -1136) T) ((-519 . -834) T) ((-519 . -497) T) ((-519 . -146) T) ((-519 . -557) 82136) ((-519 . -656) 82101) ((-519 . -584) 82066) ((-519 . -38) 82031) ((-519 . -393) T) ((-519 . -258) T) ((-519 . -82) 81980) ((-519 . -965) 81945) ((-519 . -970) 81910) ((-519 . -590) 81860) ((-519 . -592) 81825) ((-519 . -246) T) ((-519 . -201) T) ((-519 . -345) T) ((-519 . -189) T) ((-519 . -1131) T) ((-519 . -13) T) ((-519 . -186) 81812) ((-519 . -963) T) ((-519 . -665) T) ((-519 . -1063) T) ((-519 . -1027) T) ((-519 . -972) T) ((-519 . -21) T) ((-519 . -23) T) ((-519 . -1015) T) ((-519 . -554) 81794) ((-519 . -72) T) ((-519 . -25) T) ((-519 . -104) T) ((-519 . -190) T) ((-519 . -280) 81781) ((-519 . -120) 81763) ((-519 . -952) 81750) ((-519 . -1189) 81737) ((-519 . -1200) 81724) ((-519 . -555) 81706) ((-518 . -781) 81690) ((-518 . -834) T) ((-518 . -497) T) ((-518 . -246) T) ((-518 . -146) T) ((-518 . -557) 81662) ((-518 . -656) 81649) ((-518 . -584) 81636) ((-518 . -970) 81623) ((-518 . -965) 81610) ((-518 . -82) 81595) ((-518 . -38) 81582) ((-518 . -393) T) ((-518 . -258) T) ((-518 . -963) T) ((-518 . -665) T) ((-518 . -1063) T) ((-518 . -1027) T) ((-518 . -972) T) ((-518 . -21) T) ((-518 . -590) 81554) ((-518 . -23) T) ((-518 . -1015) T) ((-518 . -554) 81536) ((-518 . -1131) T) ((-518 . -13) T) ((-518 . -72) T) ((-518 . -25) T) ((-518 . -104) T) ((-518 . -592) 81523) ((-518 . -120) T) ((-517 . -1015) T) ((-517 . -554) 81505) ((-517 . -1131) T) ((-517 . -13) T) ((-517 . -72) T) ((-516 . -1015) T) ((-516 . -554) 81487) ((-516 . -1131) T) ((-516 . -13) T) ((-516 . -72) T) ((-515 . -514) T) ((-515 . -772) T) ((-515 . -147) T) ((-515 . -467) T) ((-515 . -554) 81469) ((-509 . -495) 81453) ((-509 . -35) T) ((-509 . -66) T) ((-509 . -239) T) ((-509 . -434) T) ((-509 . -1120) T) ((-509 . -1117) T) ((-509 . -952) 81435) ((-509 . -917) T) ((-509 . -761) T) ((-509 . -758) T) ((-509 . -497) T) ((-509 . -246) T) ((-509 . -146) T) ((-509 . -557) 81407) ((-509 . -656) 81394) ((-509 . -584) 81381) ((-509 . -592) 81368) ((-509 . -590) 81340) ((-509 . -104) T) ((-509 . -25) T) ((-509 . -72) T) ((-509 . -13) T) ((-509 . -1131) T) ((-509 . -554) 81322) ((-509 . -1015) T) ((-509 . -23) T) ((-509 . -21) T) ((-509 . -970) 81309) ((-509 . -965) 81296) ((-509 . -82) 81281) ((-509 . -963) T) ((-509 . -665) T) ((-509 . -1063) T) ((-509 . -1027) T) ((-509 . -972) T) ((-509 . -38) 81268) ((-509 . -393) T) ((-491 . -1109) 81247) ((-491 . -183) 81195) ((-491 . -76) 81143) ((-491 . -1037) 81078) ((-491 . -124) 81026) ((-491 . -555) NIL) ((-491 . -193) 80974) ((-491 . -540) 80953) ((-491 . -260) 80751) ((-491 . -457) 80503) ((-491 . -381) 80438) ((-491 . -430) 80373) ((-491 . -241) 80352) ((-491 . -243) 80331) ((-491 . -551) 80310) ((-491 . -1015) T) ((-491 . -554) 80292) ((-491 . -72) T) ((-491 . -1131) T) ((-491 . -13) T) ((-491 . -34) T) ((-491 . -318) 80240) ((-490 . -754) T) ((-490 . -761) T) ((-490 . -758) T) ((-490 . -1015) T) ((-490 . -554) 80222) ((-490 . -1131) T) ((-490 . -13) T) ((-490 . -72) T) ((-490 . -320) T) ((-489 . -754) T) ((-489 . -761) T) ((-489 . -758) T) ((-489 . -1015) T) ((-489 . -554) 80204) ((-489 . -1131) T) ((-489 . -13) T) ((-489 . -72) T) ((-489 . -320) T) ((-488 . -754) T) ((-488 . -761) T) ((-488 . -758) T) ((-488 . -1015) T) ((-488 . -554) 80186) ((-488 . -1131) T) ((-488 . -13) T) ((-488 . -72) T) ((-488 . -320) T) ((-487 . -754) T) ((-487 . -761) T) ((-487 . -758) T) ((-487 . -1015) T) ((-487 . -554) 80168) ((-487 . -1131) T) ((-487 . -13) T) ((-487 . -72) T) ((-487 . -320) T) ((-486 . -485) T) ((-486 . -1136) T) ((-486 . -1068) T) ((-486 . -952) 80150) ((-486 . -555) 80065) ((-486 . -935) T) ((-486 . -798) 80047) ((-486 . -757) T) ((-486 . -723) T) ((-486 . -720) T) ((-486 . -761) T) ((-486 . -758) T) ((-486 . -718) T) ((-486 . -716) T) ((-486 . -742) T) ((-486 . -592) 80019) ((-486 . -582) 80001) ((-486 . -834) T) ((-486 . -497) T) ((-486 . -246) T) ((-486 . -146) T) ((-486 . -557) 79973) ((-486 . -656) 79960) ((-486 . -584) 79947) ((-486 . -970) 79934) ((-486 . -965) 79921) ((-486 . -82) 79906) ((-486 . -38) 79893) ((-486 . -393) T) ((-486 . -258) T) ((-486 . -189) T) ((-486 . -186) 79880) ((-486 . -190) T) ((-486 . -116) T) ((-486 . -963) T) ((-486 . -665) T) ((-486 . -1063) T) ((-486 . -1027) T) ((-486 . -972) T) ((-486 . -21) T) ((-486 . -590) 79852) ((-486 . -23) T) ((-486 . -1015) T) ((-486 . -554) 79834) ((-486 . -1131) T) ((-486 . -13) T) ((-486 . -72) T) ((-486 . -25) T) ((-486 . -104) T) ((-486 . -120) T) ((-475 . -1018) 79786) ((-475 . -72) T) ((-475 . -554) 79768) ((-475 . -1015) T) ((-475 . -241) 79724) ((-475 . -1131) T) ((-475 . -13) T) ((-475 . -559) 79627) ((-475 . -555) 79608) ((-473 . -693) 79590) ((-473 . -467) T) ((-473 . -147) T) ((-473 . -772) T) ((-473 . -514) T) ((-473 . -554) 79572) ((-471 . -719) T) ((-471 . -104) T) ((-471 . -25) T) ((-471 . -72) T) ((-471 . -13) T) ((-471 . -1131) T) ((-471 . -554) 79554) ((-471 . -1015) T) ((-471 . -23) T) ((-471 . -718) T) ((-471 . -758) T) ((-471 . -761) T) ((-471 . -720) T) ((-471 . -723) T) ((-471 . -451) 79531) ((-471 . -381) 79513) ((-471 . -559) 79476) ((-469 . -467) T) ((-469 . -147) T) ((-469 . -554) 79458) ((-465 . -997) T) ((-465 . -431) 79439) ((-465 . -554) 79405) ((-465 . -557) 79386) ((-465 . -1015) T) ((-465 . -1131) T) ((-465 . -13) T) ((-465 . -72) T) ((-465 . -64) T) ((-464 . -997) T) ((-464 . -431) 79367) ((-464 . -554) 79333) ((-464 . -557) 79314) ((-464 . -1015) T) ((-464 . -1131) T) ((-464 . -13) T) ((-464 . -72) T) ((-464 . -64) T) ((-461 . -280) 79291) ((-461 . -190) T) ((-461 . -186) 79278) ((-461 . -189) T) ((-461 . -320) T) ((-461 . -1068) T) ((-461 . -299) T) ((-461 . -120) 79260) ((-461 . -557) 79190) ((-461 . -592) 79135) ((-461 . -590) 79065) ((-461 . -104) T) ((-461 . -25) T) ((-461 . -72) T) ((-461 . -13) T) ((-461 . -1131) T) ((-461 . -554) 79047) ((-461 . -1015) T) ((-461 . -23) T) ((-461 . -21) T) ((-461 . -972) T) ((-461 . -1027) T) ((-461 . -1063) T) ((-461 . -665) T) ((-461 . -963) T) ((-461 . -312) T) ((-461 . -1136) T) ((-461 . -834) T) ((-461 . -497) T) ((-461 . -146) T) ((-461 . -656) 78992) ((-461 . -584) 78937) ((-461 . -38) 78902) ((-461 . -393) T) ((-461 . -258) T) ((-461 . -82) 78819) ((-461 . -965) 78764) ((-461 . -970) 78709) ((-461 . -246) T) ((-461 . -201) T) ((-461 . -345) T) ((-461 . -118) T) ((-461 . -952) 78686) ((-461 . -1189) 78663) ((-461 . -1200) 78640) ((-460 . -997) T) ((-460 . -431) 78621) ((-460 . -554) 78587) ((-460 . -557) 78568) ((-460 . -1015) T) ((-460 . -1131) T) ((-460 . -13) T) ((-460 . -72) T) ((-460 . -64) T) ((-459 . -19) 78552) ((-459 . -1037) 78536) ((-459 . -318) 78520) ((-459 . -34) T) ((-459 . -13) T) ((-459 . -1131) T) ((-459 . -72) 78454) ((-459 . -554) 78369) ((-459 . -260) 78307) ((-459 . -457) 78240) ((-459 . -381) 78224) ((-459 . -1015) 78177) ((-459 . -430) 78161) ((-459 . -595) 78145) ((-459 . -243) 78122) ((-459 . -241) 78074) ((-459 . -540) 78051) ((-459 . -555) 78012) ((-459 . -124) 77996) ((-459 . -758) 77975) ((-459 . -761) 77954) ((-459 . -324) 77938) ((-459 . -237) 77922) ((-458 . -274) 77901) ((-458 . -557) 77885) ((-458 . -952) 77869) ((-458 . -23) T) ((-458 . -1015) T) ((-458 . -554) 77851) ((-458 . -1131) T) ((-458 . -13) T) ((-458 . -72) T) ((-458 . -25) T) ((-458 . -104) T) ((-455 . -72) T) ((-455 . -13) T) ((-455 . -1131) T) ((-455 . -554) 77823) ((-454 . -719) T) ((-454 . -104) T) ((-454 . -25) T) ((-454 . -72) T) ((-454 . -13) T) ((-454 . -1131) T) ((-454 . -554) 77805) ((-454 . -1015) T) ((-454 . -23) T) ((-454 . -718) T) ((-454 . -758) T) ((-454 . -761) T) ((-454 . -720) T) ((-454 . -723) T) ((-454 . -451) 77784) ((-454 . -381) 77768) ((-454 . -559) 77733) ((-453 . -718) T) ((-453 . -758) T) ((-453 . -761) T) ((-453 . -720) T) ((-453 . -25) T) ((-453 . -72) T) ((-453 . -13) T) ((-453 . -1131) T) ((-453 . -554) 77715) ((-453 . -1015) T) ((-453 . -23) T) ((-453 . -451) 77694) ((-453 . -381) 77678) ((-453 . -559) 77643) ((-452 . -451) 77622) ((-452 . -554) 77562) ((-452 . -1015) 77513) ((-452 . -381) 77497) ((-452 . -559) 77462) ((-452 . -1131) T) ((-452 . -13) T) ((-452 . -72) T) ((-450 . -23) T) ((-450 . -1015) T) ((-450 . -554) 77444) ((-450 . -1131) T) ((-450 . -13) T) ((-450 . -72) T) ((-450 . -25) T) ((-450 . -451) 77423) ((-450 . -381) 77407) ((-450 . -559) 77372) ((-449 . -21) T) ((-449 . -590) 77354) ((-449 . -23) T) ((-449 . -1015) T) ((-449 . -554) 77336) ((-449 . -1131) T) ((-449 . -13) T) ((-449 . -72) T) ((-449 . -25) T) ((-449 . -104) T) ((-449 . -451) 77315) ((-449 . -381) 77299) ((-449 . -559) 77264) ((-448 . -1015) T) ((-448 . -554) 77246) ((-448 . -1131) T) ((-448 . -13) T) ((-448 . -72) T) ((-445 . -1015) T) ((-445 . -554) 77228) ((-445 . -1131) T) ((-445 . -13) T) ((-445 . -72) T) ((-443 . -758) T) ((-443 . -554) 77210) ((-443 . -1015) T) ((-443 . -72) T) ((-443 . -13) T) ((-443 . -1131) T) ((-443 . -761) T) ((-443 . -557) 77191) ((-441 . -96) T) ((-441 . -324) 77174) ((-441 . -761) T) ((-441 . -758) T) ((-441 . -124) 77157) ((-441 . -555) 77139) ((-441 . -241) 77090) ((-441 . -540) 77066) ((-441 . -243) 77042) ((-441 . -595) 77025) ((-441 . -430) 77008) ((-441 . -1015) T) ((-441 . -381) 76991) ((-441 . -457) NIL) ((-441 . -260) NIL) ((-441 . -554) 76973) ((-441 . -72) T) ((-441 . -34) T) ((-441 . -318) 76956) ((-441 . -1037) 76939) ((-441 . -19) 76922) ((-441 . -606) T) ((-441 . -13) T) ((-441 . -1131) T) ((-441 . -84) T) ((-438 . -57) 76896) ((-438 . -1037) 76880) ((-438 . -430) 76864) ((-438 . -1015) 76842) ((-438 . -381) 76826) ((-438 . -457) 76759) ((-438 . -260) 76697) ((-438 . -554) 76632) ((-438 . -72) 76586) ((-438 . -1131) T) ((-438 . -13) T) ((-438 . -34) T) ((-438 . -318) 76570) ((-437 . -19) 76554) ((-437 . -1037) 76538) ((-437 . -318) 76522) ((-437 . -34) T) ((-437 . -13) T) ((-437 . -1131) T) ((-437 . -72) 76456) ((-437 . -554) 76371) ((-437 . -260) 76309) ((-437 . -457) 76242) ((-437 . -381) 76226) ((-437 . -1015) 76179) ((-437 . -430) 76163) ((-437 . -595) 76147) ((-437 . -243) 76124) ((-437 . -241) 76076) ((-437 . -540) 76053) ((-437 . -555) 76014) ((-437 . -124) 75998) ((-437 . -758) 75977) ((-437 . -761) 75956) ((-437 . -324) 75940) ((-436 . -254) T) ((-436 . -72) T) ((-436 . -13) T) ((-436 . -1131) T) ((-436 . -554) 75922) ((-436 . -1015) T) ((-436 . -557) 75823) ((-436 . -952) 75766) ((-436 . -457) 75732) ((-436 . -260) 75719) ((-436 . -27) T) ((-436 . -917) T) ((-436 . -201) T) ((-436 . -82) 75668) ((-436 . -965) 75633) ((-436 . -970) 75598) ((-436 . -246) T) ((-436 . -656) 75563) ((-436 . -584) 75528) ((-436 . -592) 75478) ((-436 . -590) 75428) ((-436 . -104) T) ((-436 . -25) T) ((-436 . -23) T) ((-436 . -21) T) ((-436 . -963) T) ((-436 . -665) T) ((-436 . -1063) T) ((-436 . -1027) T) ((-436 . -972) T) ((-436 . -38) 75393) ((-436 . -258) T) ((-436 . -393) T) ((-436 . -146) T) ((-436 . -497) T) ((-436 . -834) T) ((-436 . -1136) T) ((-436 . -312) T) ((-436 . -582) 75353) ((-436 . -935) T) ((-436 . -555) 75298) ((-436 . -120) T) ((-436 . -190) T) ((-436 . -186) 75285) ((-436 . -189) T) ((-432 . -1015) T) ((-432 . -554) 75251) ((-432 . -1131) T) ((-432 . -13) T) ((-432 . -72) T) ((-428 . -906) 75233) ((-428 . -1068) T) ((-428 . -557) 75183) ((-428 . -952) 75143) ((-428 . -555) 75073) ((-428 . -935) T) ((-428 . -823) NIL) ((-428 . -796) 75055) ((-428 . -757) T) ((-428 . -723) T) ((-428 . -720) T) ((-428 . -761) T) ((-428 . -758) T) ((-428 . -718) T) ((-428 . -716) T) ((-428 . -742) T) ((-428 . -798) 75037) ((-428 . -343) 75019) ((-428 . -582) 75001) ((-428 . -329) 74983) ((-428 . -241) NIL) ((-428 . -260) NIL) ((-428 . -457) NIL) ((-428 . -381) 74965) ((-428 . -288) 74947) ((-428 . -201) T) ((-428 . -82) 74874) ((-428 . -965) 74824) ((-428 . -970) 74774) ((-428 . -246) T) ((-428 . -656) 74724) ((-428 . -584) 74674) ((-428 . -592) 74624) ((-428 . -590) 74574) ((-428 . -38) 74524) ((-428 . -258) T) ((-428 . -393) T) ((-428 . -146) T) ((-428 . -497) T) ((-428 . -834) T) ((-428 . -1136) T) ((-428 . -312) T) ((-428 . -190) T) ((-428 . -186) 74511) ((-428 . -189) T) ((-428 . -225) 74493) ((-428 . -808) NIL) ((-428 . -813) NIL) ((-428 . -811) NIL) ((-428 . -184) 74475) ((-428 . -120) T) ((-428 . -118) NIL) ((-428 . -104) T) ((-428 . -25) T) ((-428 . -72) T) ((-428 . -13) T) ((-428 . -1131) T) ((-428 . -554) 74417) ((-428 . -1015) T) ((-428 . -23) T) ((-428 . -21) T) ((-428 . -963) T) ((-428 . -665) T) ((-428 . -1063) T) ((-428 . -1027) T) ((-428 . -972) T) ((-426 . -286) 74386) ((-426 . -104) T) ((-426 . -25) T) ((-426 . -72) T) ((-426 . -13) T) ((-426 . -1131) T) ((-426 . -554) 74368) ((-426 . -1015) T) ((-426 . -23) T) ((-426 . -590) 74350) ((-426 . -21) T) ((-425 . -883) 74334) ((-425 . -318) 74318) ((-425 . -430) 74302) ((-425 . -1015) 74280) ((-425 . -381) 74264) ((-425 . -457) 74197) ((-425 . -260) 74135) ((-425 . -554) 74070) ((-425 . -72) 74024) ((-425 . -1131) T) ((-425 . -13) T) ((-425 . -34) T) ((-425 . -1037) 74008) ((-425 . -76) 73992) ((-424 . -997) T) ((-424 . -431) 73973) ((-424 . -554) 73939) ((-424 . -557) 73920) ((-424 . -1015) T) ((-424 . -1131) T) ((-424 . -13) T) ((-424 . -72) T) ((-424 . -64) T) ((-423 . -196) 73899) ((-423 . -1189) 73869) ((-423 . -723) 73848) ((-423 . -720) 73827) ((-423 . -761) 73781) ((-423 . -758) 73735) ((-423 . -718) 73714) ((-423 . -719) 73693) ((-423 . -656) 73638) ((-423 . -584) 73563) ((-423 . -243) 73540) ((-423 . -241) 73517) ((-423 . -540) 73494) ((-423 . -952) 73323) ((-423 . -557) 73127) ((-423 . -355) 73096) ((-423 . -582) 73004) ((-423 . -592) 72843) ((-423 . -329) 72813) ((-423 . -430) 72797) ((-423 . -381) 72781) ((-423 . -457) 72714) ((-423 . -260) 72652) ((-423 . -34) T) ((-423 . -318) 72636) ((-423 . -320) 72615) ((-423 . -190) 72568) ((-423 . -590) 72356) ((-423 . -972) 72335) ((-423 . -1027) 72314) ((-423 . -1063) 72293) ((-423 . -665) 72272) ((-423 . -963) 72251) ((-423 . -186) 72147) ((-423 . -189) 72049) ((-423 . -225) 72019) ((-423 . -808) 71891) ((-423 . -813) 71765) ((-423 . -811) 71698) ((-423 . -184) 71668) ((-423 . -554) 71365) ((-423 . -970) 71290) ((-423 . -965) 71195) ((-423 . -82) 71115) ((-423 . -104) 70990) ((-423 . -25) 70827) ((-423 . -72) 70564) ((-423 . -13) T) ((-423 . -1131) T) ((-423 . -1015) 70320) ((-423 . -23) 70176) ((-423 . -21) 70091) ((-422 . -863) 70036) ((-422 . -557) 69828) ((-422 . -952) 69706) ((-422 . -1136) 69685) ((-422 . -823) 69664) ((-422 . -798) NIL) ((-422 . -813) 69641) ((-422 . -808) 69616) ((-422 . -811) 69593) ((-422 . -457) 69531) ((-422 . -393) 69485) ((-422 . -582) 69433) ((-422 . -592) 69322) ((-422 . -329) 69306) ((-422 . -47) 69263) ((-422 . -38) 69115) ((-422 . -584) 68967) ((-422 . -656) 68819) ((-422 . -246) 68753) ((-422 . -497) 68687) ((-422 . -381) 68671) ((-422 . -82) 68496) ((-422 . -965) 68342) ((-422 . -970) 68188) ((-422 . -146) 68102) ((-422 . -120) 68081) ((-422 . -118) 68060) ((-422 . -590) 67970) ((-422 . -104) T) ((-422 . -25) T) ((-422 . -72) T) ((-422 . -13) T) ((-422 . -1131) T) ((-422 . -554) 67952) ((-422 . -1015) T) ((-422 . -23) T) ((-422 . -21) T) ((-422 . -963) T) ((-422 . -665) T) ((-422 . -1063) T) ((-422 . -1027) T) ((-422 . -972) T) ((-422 . -355) 67936) ((-422 . -277) 67893) ((-422 . -260) 67880) ((-422 . -555) 67741) ((-420 . -1109) 67720) ((-420 . -183) 67668) ((-420 . -76) 67616) ((-420 . -1037) 67551) ((-420 . -124) 67499) ((-420 . -555) NIL) ((-420 . -193) 67447) ((-420 . -540) 67426) ((-420 . -260) 67224) ((-420 . -457) 66976) ((-420 . -381) 66911) ((-420 . -430) 66846) ((-420 . -241) 66825) ((-420 . -243) 66804) ((-420 . -551) 66783) ((-420 . -1015) T) ((-420 . -554) 66765) ((-420 . -72) T) ((-420 . -1131) T) ((-420 . -13) T) ((-420 . -34) T) ((-420 . -318) 66713) ((-419 . -997) T) ((-419 . -431) 66694) ((-419 . -554) 66660) ((-419 . -557) 66641) ((-419 . -1015) T) ((-419 . -1131) T) ((-419 . -13) T) ((-419 . -72) T) ((-419 . -64) T) ((-418 . -312) T) ((-418 . -1136) T) ((-418 . -834) T) ((-418 . -497) T) ((-418 . -146) T) ((-418 . -557) 66591) ((-418 . -656) 66556) ((-418 . -584) 66521) ((-418 . -38) 66486) ((-418 . -393) T) ((-418 . -258) T) ((-418 . -592) 66451) ((-418 . -590) 66401) ((-418 . -972) T) ((-418 . -1027) T) ((-418 . -1063) T) ((-418 . -665) T) ((-418 . -963) T) ((-418 . -82) 66350) ((-418 . -965) 66315) ((-418 . -970) 66280) ((-418 . -21) T) ((-418 . -23) T) ((-418 . -1015) T) ((-418 . -554) 66232) ((-418 . -1131) T) ((-418 . -13) T) ((-418 . -72) T) ((-418 . -25) T) ((-418 . -104) T) ((-418 . -246) T) ((-418 . -201) T) ((-418 . -120) T) ((-418 . -952) 66192) ((-418 . -935) T) ((-418 . -555) 66114) ((-417 . -1126) 66083) ((-417 . -1037) 66067) ((-417 . -554) 66029) ((-417 . -124) 66013) ((-417 . -34) T) ((-417 . -13) T) ((-417 . -1131) T) ((-417 . -72) T) ((-417 . -260) 65951) ((-417 . -457) 65884) ((-417 . -381) 65868) ((-417 . -1015) T) ((-417 . -430) 65852) ((-417 . -555) 65813) ((-417 . -318) 65797) ((-417 . -891) 65766) ((-416 . -1109) 65745) ((-416 . -183) 65693) ((-416 . -76) 65641) ((-416 . -1037) 65576) ((-416 . -124) 65524) ((-416 . -555) NIL) ((-416 . -193) 65472) ((-416 . -540) 65451) ((-416 . -260) 65249) ((-416 . -457) 65001) ((-416 . -381) 64936) ((-416 . -430) 64871) ((-416 . -241) 64850) ((-416 . -243) 64829) ((-416 . -551) 64808) ((-416 . -1015) T) ((-416 . -554) 64790) ((-416 . -72) T) ((-416 . -1131) T) ((-416 . -13) T) ((-416 . -34) T) ((-416 . -318) 64738) ((-415 . -1164) 64722) ((-415 . -190) 64674) ((-415 . -186) 64620) ((-415 . -189) 64572) ((-415 . -241) 64530) ((-415 . -811) 64436) ((-415 . -808) 64317) ((-415 . -813) 64223) ((-415 . -888) 64186) ((-415 . -38) 64033) ((-415 . -82) 63853) ((-415 . -965) 63694) ((-415 . -970) 63535) ((-415 . -590) 63420) ((-415 . -592) 63320) ((-415 . -584) 63167) ((-415 . -656) 63014) ((-415 . -557) 62846) ((-415 . -118) 62825) ((-415 . -120) 62804) ((-415 . -381) 62788) ((-415 . -47) 62758) ((-415 . -1160) 62728) ((-415 . -35) 62694) ((-415 . -66) 62660) ((-415 . -239) 62626) ((-415 . -434) 62592) ((-415 . -1120) 62558) ((-415 . -1117) 62524) ((-415 . -917) 62490) ((-415 . -201) 62469) ((-415 . -246) 62423) ((-415 . -104) T) ((-415 . -25) T) ((-415 . -72) T) ((-415 . -13) T) ((-415 . -1131) T) ((-415 . -554) 62405) ((-415 . -1015) T) ((-415 . -23) T) ((-415 . -21) T) ((-415 . -963) T) ((-415 . -665) T) ((-415 . -1063) T) ((-415 . -1027) T) ((-415 . -972) T) ((-415 . -258) 62384) ((-415 . -393) 62363) ((-415 . -146) 62297) ((-415 . -497) 62251) ((-415 . -834) 62230) ((-415 . -1136) 62209) ((-415 . -312) 62188) ((-409 . -1015) T) ((-409 . -554) 62170) ((-409 . -1131) T) ((-409 . -13) T) ((-409 . -72) T) ((-404 . -891) 62139) ((-404 . -318) 62123) ((-404 . -555) 62084) ((-404 . -430) 62068) ((-404 . -1015) T) ((-404 . -381) 62052) ((-404 . -457) 61985) ((-404 . -260) 61923) ((-404 . -554) 61885) ((-404 . -72) T) ((-404 . -1131) T) ((-404 . -13) T) ((-404 . -34) T) ((-404 . -124) 61869) ((-404 . -1037) 61853) ((-402 . -656) 61824) ((-402 . -584) 61795) ((-402 . -592) 61766) ((-402 . -590) 61722) ((-402 . -104) T) ((-402 . -25) T) ((-402 . -72) T) ((-402 . -13) T) ((-402 . -1131) T) ((-402 . -554) 61704) ((-402 . -1015) T) ((-402 . -23) T) ((-402 . -21) T) ((-402 . -970) 61675) ((-402 . -965) 61646) ((-402 . -82) 61607) ((-395 . -863) 61574) ((-395 . -557) 61366) ((-395 . -952) 61244) ((-395 . -1136) 61223) ((-395 . -823) 61202) ((-395 . -798) NIL) ((-395 . -813) 61179) ((-395 . -808) 61154) ((-395 . -811) 61131) ((-395 . -457) 61069) ((-395 . -393) 61023) ((-395 . -582) 60971) ((-395 . -592) 60860) ((-395 . -329) 60844) ((-395 . -47) 60823) ((-395 . -38) 60675) ((-395 . -584) 60527) ((-395 . -656) 60379) ((-395 . -246) 60313) ((-395 . -497) 60247) ((-395 . -381) 60231) ((-395 . -82) 60056) ((-395 . -965) 59902) ((-395 . -970) 59748) ((-395 . -146) 59662) ((-395 . -120) 59641) ((-395 . -118) 59620) ((-395 . -590) 59530) ((-395 . -104) T) ((-395 . -25) T) ((-395 . -72) T) ((-395 . -13) T) ((-395 . -1131) T) ((-395 . -554) 59512) ((-395 . -1015) T) ((-395 . -23) T) ((-395 . -21) T) ((-395 . -963) T) ((-395 . -665) T) ((-395 . -1063) T) ((-395 . -1027) T) ((-395 . -972) T) ((-395 . -355) 59496) ((-395 . -277) 59475) ((-395 . -260) 59462) ((-395 . -555) 59323) ((-394 . -361) 59293) ((-394 . -685) 59263) ((-394 . -659) T) ((-394 . -687) T) ((-394 . -82) 59214) ((-394 . -965) 59184) ((-394 . -970) 59154) ((-394 . -21) T) ((-394 . -590) 59069) ((-394 . -23) T) ((-394 . -1015) T) ((-394 . -554) 59051) ((-394 . -72) T) ((-394 . -25) T) ((-394 . -104) T) ((-394 . -592) 58981) ((-394 . -584) 58951) ((-394 . -656) 58921) ((-394 . -316) 58891) ((-394 . -1131) T) ((-394 . -13) T) ((-394 . -241) 58854) ((-382 . -1015) T) ((-382 . -554) 58836) ((-382 . -1131) T) ((-382 . -13) T) ((-382 . -72) T) ((-380 . -1015) T) ((-380 . -554) 58818) ((-380 . -1131) T) ((-380 . -13) T) ((-380 . -72) T) ((-379 . -1015) T) ((-379 . -554) 58800) ((-379 . -1131) T) ((-379 . -13) T) ((-379 . -72) T) ((-377 . -554) 58782) ((-372 . -38) 58766) ((-372 . -557) 58735) ((-372 . -592) 58709) ((-372 . -590) 58668) ((-372 . -972) T) ((-372 . -1027) T) ((-372 . -1063) T) ((-372 . -665) T) ((-372 . -963) T) ((-372 . -82) 58647) ((-372 . -965) 58631) ((-372 . -970) 58615) ((-372 . -21) T) ((-372 . -23) T) ((-372 . -1015) T) ((-372 . -554) 58597) ((-372 . -1131) T) ((-372 . -13) T) ((-372 . -72) T) ((-372 . -25) T) ((-372 . -104) T) ((-372 . -584) 58581) ((-372 . -656) 58565) ((-358 . -665) T) ((-358 . -1015) T) ((-358 . -554) 58547) ((-358 . -1131) T) ((-358 . -13) T) ((-358 . -72) T) ((-358 . -1027) T) ((-356 . -414) T) ((-356 . -1027) T) ((-356 . -72) T) ((-356 . -13) T) ((-356 . -1131) T) ((-356 . -554) 58529) ((-356 . -1015) T) ((-356 . -665) T) ((-350 . -906) 58513) ((-350 . -1068) 58491) ((-350 . -952) 58358) ((-350 . -557) 58257) ((-350 . -555) 58060) ((-350 . -935) 58039) ((-350 . -823) 58018) ((-350 . -796) 58002) ((-350 . -757) 57981) ((-350 . -723) 57960) ((-350 . -720) 57939) ((-350 . -761) 57893) ((-350 . -758) 57847) ((-350 . -718) 57826) ((-350 . -716) 57805) ((-350 . -742) 57784) ((-350 . -798) 57709) ((-350 . -343) 57693) ((-350 . -582) 57641) ((-350 . -592) 57557) ((-350 . -329) 57541) ((-350 . -241) 57499) ((-350 . -260) 57464) ((-350 . -457) 57376) ((-350 . -381) 57360) ((-350 . -288) 57344) ((-350 . -201) T) ((-350 . -82) 57275) ((-350 . -965) 57227) ((-350 . -970) 57179) ((-350 . -246) T) ((-350 . -656) 57131) ((-350 . -584) 57083) ((-350 . -590) 57020) ((-350 . -38) 56972) ((-350 . -258) T) ((-350 . -393) T) ((-350 . -146) T) ((-350 . -497) T) ((-350 . -834) T) ((-350 . -1136) T) ((-350 . -312) T) ((-350 . -190) 56951) ((-350 . -186) 56899) ((-350 . -189) 56853) ((-350 . -225) 56837) ((-350 . -808) 56761) ((-350 . -813) 56687) ((-350 . -811) 56646) ((-350 . -184) 56630) ((-350 . -120) 56584) ((-350 . -118) 56563) ((-350 . -104) T) ((-350 . -25) T) ((-350 . -72) T) ((-350 . -13) T) ((-350 . -1131) T) ((-350 . -554) 56545) ((-350 . -1015) T) ((-350 . -23) T) ((-350 . -21) T) ((-350 . -963) T) ((-350 . -665) T) ((-350 . -1063) T) ((-350 . -1027) T) ((-350 . -972) T) ((-348 . -497) T) ((-348 . -246) T) ((-348 . -146) T) ((-348 . -557) 56454) ((-348 . -656) 56428) ((-348 . -584) 56402) ((-348 . -592) 56376) ((-348 . -590) 56335) ((-348 . -104) T) ((-348 . -25) T) ((-348 . -72) T) ((-348 . -13) T) ((-348 . -1131) T) ((-348 . -554) 56317) ((-348 . -1015) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -970) 56291) ((-348 . -965) 56265) ((-348 . -82) 56232) ((-348 . -963) T) ((-348 . -665) T) ((-348 . -1063) T) ((-348 . -1027) T) ((-348 . -972) T) ((-348 . -38) 56206) ((-348 . -184) 56190) ((-348 . -811) 56149) ((-348 . -813) 56075) ((-348 . -808) 55999) ((-348 . -225) 55983) ((-348 . -189) 55937) ((-348 . -186) 55885) ((-348 . -190) 55864) ((-348 . -288) 55848) ((-348 . -457) 55690) ((-348 . -381) 55674) ((-348 . -260) 55613) ((-348 . -241) 55541) ((-348 . -355) 55525) ((-348 . -952) 55423) ((-348 . -393) 55376) ((-348 . -935) 55355) ((-348 . -555) 55258) ((-348 . -1136) 55236) ((-342 . -1015) T) ((-342 . -554) 55218) ((-342 . -1131) T) ((-342 . -13) T) ((-342 . -72) T) ((-342 . -189) T) ((-342 . -186) 55205) ((-342 . -555) 55182) ((-340 . -685) 55166) ((-340 . -659) T) ((-340 . -687) T) ((-340 . -82) 55145) ((-340 . -965) 55129) ((-340 . -970) 55113) ((-340 . -21) T) ((-340 . -590) 55082) ((-340 . -23) T) ((-340 . -1015) T) ((-340 . -554) 55064) ((-340 . -1131) T) ((-340 . -13) T) ((-340 . -72) T) ((-340 . -25) T) ((-340 . -104) T) ((-340 . -592) 55048) ((-340 . -584) 55032) ((-340 . -656) 55016) ((-338 . -339) T) ((-338 . -72) T) ((-338 . -13) T) ((-338 . -1131) T) ((-338 . -554) 54982) ((-338 . -1015) T) ((-338 . -557) 54963) ((-338 . -431) 54944) ((-337 . -336) 54928) ((-337 . -557) 54912) ((-337 . -952) 54896) ((-337 . -761) 54875) ((-337 . -758) 54854) ((-337 . -1027) T) ((-337 . -72) T) ((-337 . -13) T) ((-337 . -1131) T) ((-337 . -554) 54836) ((-337 . -1015) T) ((-337 . -665) T) ((-334 . -335) 54815) ((-334 . -557) 54799) ((-334 . -952) 54783) ((-334 . -584) 54753) ((-334 . -656) 54723) ((-334 . -381) 54707) ((-334 . -592) 54691) ((-334 . -590) 54660) ((-334 . -104) T) ((-334 . -25) T) ((-334 . -72) T) ((-334 . -13) T) ((-334 . -1131) T) ((-334 . -554) 54642) ((-334 . -1015) T) ((-334 . -23) T) ((-334 . -21) T) ((-334 . -970) 54626) ((-334 . -965) 54610) ((-334 . -82) 54589) ((-333 . -82) 54568) ((-333 . -965) 54552) ((-333 . -970) 54536) ((-333 . -21) T) ((-333 . -590) 54505) ((-333 . -23) T) ((-333 . -1015) T) ((-333 . -554) 54487) ((-333 . -1131) T) ((-333 . -13) T) ((-333 . -72) T) ((-333 . -25) T) ((-333 . -104) T) ((-333 . -592) 54471) ((-333 . -451) 54450) ((-333 . -381) 54434) ((-333 . -559) 54399) ((-333 . -656) 54369) ((-333 . -584) 54339) ((-330 . -347) T) ((-330 . -120) T) ((-330 . -557) 54289) ((-330 . -592) 54254) ((-330 . -590) 54204) ((-330 . -104) T) ((-330 . -25) T) ((-330 . -72) T) ((-330 . -13) T) ((-330 . -1131) T) ((-330 . -554) 54171) ((-330 . -1015) T) ((-330 . -23) T) ((-330 . -21) T) ((-330 . -972) T) ((-330 . -1027) T) ((-330 . -1063) T) ((-330 . -665) T) ((-330 . -963) T) ((-330 . -555) 54085) ((-330 . -312) T) ((-330 . -1136) T) ((-330 . -834) T) ((-330 . -497) T) ((-330 . -146) T) ((-330 . -656) 54050) ((-330 . -584) 54015) ((-330 . -38) 53980) ((-330 . -393) T) ((-330 . -258) T) ((-330 . -82) 53929) ((-330 . -965) 53894) ((-330 . -970) 53859) ((-330 . -246) T) ((-330 . -201) T) ((-330 . -757) T) ((-330 . -723) T) ((-330 . -720) T) ((-330 . -761) T) ((-330 . -758) T) ((-330 . -718) T) ((-330 . -716) T) ((-330 . -798) 53841) ((-330 . -917) T) ((-330 . -935) T) ((-330 . -952) 53801) ((-330 . -975) T) ((-330 . -190) T) ((-330 . -186) 53788) ((-330 . -189) T) ((-330 . -1117) T) ((-330 . -1120) T) ((-330 . -434) T) ((-330 . -239) T) ((-330 . -66) T) ((-330 . -35) T) ((-330 . -559) 53770) ((-313 . -314) 53747) ((-313 . -72) T) ((-313 . -13) T) ((-313 . -1131) T) ((-313 . -554) 53729) ((-313 . -1015) T) ((-310 . -414) T) ((-310 . -1027) T) ((-310 . -72) T) ((-310 . -13) T) ((-310 . -1131) T) ((-310 . -554) 53711) ((-310 . -1015) T) ((-310 . -665) T) ((-310 . -952) 53695) ((-310 . -557) 53679) ((-308 . -280) 53663) ((-308 . -190) 53642) ((-308 . -186) 53615) ((-308 . -189) 53594) ((-308 . -320) 53573) ((-308 . -1068) 53552) ((-308 . -299) 53531) ((-308 . -120) 53510) ((-308 . -557) 53447) ((-308 . -592) 53399) ((-308 . -590) 53336) ((-308 . -104) T) ((-308 . -25) T) ((-308 . -72) T) ((-308 . -13) T) ((-308 . -1131) T) ((-308 . -554) 53318) ((-308 . -1015) T) ((-308 . -23) T) ((-308 . -21) T) ((-308 . -972) T) ((-308 . -1027) T) ((-308 . -1063) T) ((-308 . -665) T) ((-308 . -963) T) ((-308 . -312) T) ((-308 . -1136) T) ((-308 . -834) T) ((-308 . -497) T) ((-308 . -146) T) ((-308 . -656) 53270) ((-308 . -584) 53222) ((-308 . -38) 53187) ((-308 . -393) T) ((-308 . -258) T) ((-308 . -82) 53118) ((-308 . -965) 53070) ((-308 . -970) 53022) ((-308 . -246) T) ((-308 . -201) T) ((-308 . -345) 52976) ((-308 . -118) 52930) ((-308 . -952) 52914) ((-308 . -1189) 52898) ((-308 . -1200) 52882) ((-304 . -280) 52866) ((-304 . -190) 52845) ((-304 . -186) 52818) ((-304 . -189) 52797) ((-304 . -320) 52776) ((-304 . -1068) 52755) ((-304 . -299) 52734) ((-304 . -120) 52713) ((-304 . -557) 52650) ((-304 . -592) 52602) ((-304 . -590) 52539) ((-304 . -104) T) ((-304 . -25) T) ((-304 . -72) T) ((-304 . -13) T) ((-304 . -1131) T) ((-304 . -554) 52521) ((-304 . -1015) T) ((-304 . -23) T) ((-304 . -21) T) ((-304 . -972) T) ((-304 . -1027) T) ((-304 . -1063) T) ((-304 . -665) T) ((-304 . -963) T) ((-304 . -312) T) ((-304 . -1136) T) ((-304 . -834) T) ((-304 . -497) T) ((-304 . -146) T) ((-304 . -656) 52473) ((-304 . -584) 52425) ((-304 . -38) 52390) ((-304 . -393) T) ((-304 . -258) T) ((-304 . -82) 52321) ((-304 . -965) 52273) ((-304 . -970) 52225) ((-304 . -246) T) ((-304 . -201) T) ((-304 . -345) 52179) ((-304 . -118) 52133) ((-304 . -952) 52117) ((-304 . -1189) 52101) ((-304 . -1200) 52085) ((-303 . -280) 52069) ((-303 . -190) 52048) ((-303 . -186) 52021) ((-303 . -189) 52000) ((-303 . -320) 51979) ((-303 . -1068) 51958) ((-303 . -299) 51937) ((-303 . -120) 51916) ((-303 . -557) 51853) ((-303 . -592) 51805) ((-303 . -590) 51742) ((-303 . -104) T) ((-303 . -25) T) ((-303 . -72) T) ((-303 . -13) T) ((-303 . -1131) T) ((-303 . -554) 51724) ((-303 . -1015) T) ((-303 . -23) T) ((-303 . -21) T) ((-303 . -972) T) ((-303 . -1027) T) ((-303 . -1063) T) ((-303 . -665) T) ((-303 . -963) T) ((-303 . -312) T) ((-303 . -1136) T) ((-303 . -834) T) ((-303 . -497) T) ((-303 . -146) T) ((-303 . -656) 51676) ((-303 . -584) 51628) ((-303 . -38) 51593) ((-303 . -393) T) ((-303 . -258) T) ((-303 . -82) 51524) ((-303 . -965) 51476) ((-303 . -970) 51428) ((-303 . -246) T) ((-303 . -201) T) ((-303 . -345) 51382) ((-303 . -118) 51336) ((-303 . -952) 51320) ((-303 . -1189) 51304) ((-303 . -1200) 51288) ((-302 . -280) 51272) ((-302 . -190) 51251) ((-302 . -186) 51224) ((-302 . -189) 51203) ((-302 . -320) 51182) ((-302 . -1068) 51161) ((-302 . -299) 51140) ((-302 . -120) 51119) ((-302 . -557) 51056) ((-302 . -592) 51008) ((-302 . -590) 50945) ((-302 . -104) T) ((-302 . -25) T) ((-302 . -72) T) ((-302 . -13) T) ((-302 . -1131) T) ((-302 . -554) 50927) ((-302 . -1015) T) ((-302 . -23) T) ((-302 . -21) T) ((-302 . -972) T) ((-302 . -1027) T) ((-302 . -1063) T) ((-302 . -665) T) ((-302 . -963) T) ((-302 . -312) T) ((-302 . -1136) T) ((-302 . -834) T) ((-302 . -497) T) ((-302 . -146) T) ((-302 . -656) 50879) ((-302 . -584) 50831) ((-302 . -38) 50796) ((-302 . -393) T) ((-302 . -258) T) ((-302 . -82) 50727) ((-302 . -965) 50679) ((-302 . -970) 50631) ((-302 . -246) T) ((-302 . -201) T) ((-302 . -345) 50585) ((-302 . -118) 50539) ((-302 . -952) 50523) ((-302 . -1189) 50507) ((-302 . -1200) 50491) ((-301 . -280) 50468) ((-301 . -190) T) ((-301 . -186) 50455) ((-301 . -189) T) ((-301 . -320) T) ((-301 . -1068) T) ((-301 . -299) T) ((-301 . -120) 50437) ((-301 . -557) 50367) ((-301 . -592) 50312) ((-301 . -590) 50242) ((-301 . -104) T) ((-301 . -25) T) ((-301 . -72) T) ((-301 . -13) T) ((-301 . -1131) T) ((-301 . -554) 50224) ((-301 . -1015) T) ((-301 . -23) T) ((-301 . -21) T) ((-301 . -972) T) ((-301 . -1027) T) ((-301 . -1063) T) ((-301 . -665) T) ((-301 . -963) T) ((-301 . -312) T) ((-301 . -1136) T) ((-301 . -834) T) ((-301 . -497) T) ((-301 . -146) T) ((-301 . -656) 50169) ((-301 . -584) 50114) ((-301 . -38) 50079) ((-301 . -393) T) ((-301 . -258) T) ((-301 . -82) 49996) ((-301 . -965) 49941) ((-301 . -970) 49886) ((-301 . -246) T) ((-301 . -201) T) ((-301 . -345) T) ((-301 . -118) T) ((-301 . -952) 49863) ((-301 . -1189) 49840) ((-301 . -1200) 49817) ((-295 . -280) 49801) ((-295 . -190) 49780) ((-295 . -186) 49753) ((-295 . -189) 49732) ((-295 . -320) 49711) ((-295 . -1068) 49690) ((-295 . -299) 49669) ((-295 . -120) 49648) ((-295 . -557) 49585) ((-295 . -592) 49537) ((-295 . -590) 49474) ((-295 . -104) T) ((-295 . -25) T) ((-295 . -72) T) ((-295 . -13) T) ((-295 . -1131) T) ((-295 . -554) 49456) ((-295 . -1015) T) ((-295 . -23) T) ((-295 . -21) T) ((-295 . -972) T) ((-295 . -1027) T) ((-295 . -1063) T) ((-295 . -665) T) ((-295 . -963) T) ((-295 . -312) T) ((-295 . -1136) T) ((-295 . -834) T) ((-295 . -497) T) ((-295 . -146) T) ((-295 . -656) 49408) ((-295 . -584) 49360) ((-295 . -38) 49325) ((-295 . -393) T) ((-295 . -258) T) ((-295 . -82) 49256) ((-295 . -965) 49208) ((-295 . -970) 49160) ((-295 . -246) T) ((-295 . -201) T) ((-295 . -345) 49114) ((-295 . -118) 49068) ((-295 . -952) 49052) ((-295 . -1189) 49036) ((-295 . -1200) 49020) ((-294 . -280) 49004) ((-294 . -190) 48983) ((-294 . -186) 48956) ((-294 . -189) 48935) ((-294 . -320) 48914) ((-294 . -1068) 48893) ((-294 . -299) 48872) ((-294 . -120) 48851) ((-294 . -557) 48788) ((-294 . -592) 48740) ((-294 . -590) 48677) ((-294 . -104) T) ((-294 . -25) T) ((-294 . -72) T) ((-294 . -13) T) ((-294 . -1131) T) ((-294 . -554) 48659) ((-294 . -1015) T) ((-294 . -23) T) ((-294 . -21) T) ((-294 . -972) T) ((-294 . -1027) T) ((-294 . -1063) T) ((-294 . -665) T) ((-294 . -963) T) ((-294 . -312) T) ((-294 . -1136) T) ((-294 . -834) T) ((-294 . -497) T) ((-294 . -146) T) ((-294 . -656) 48611) ((-294 . -584) 48563) ((-294 . -38) 48528) ((-294 . -393) T) ((-294 . -258) T) ((-294 . -82) 48459) ((-294 . -965) 48411) ((-294 . -970) 48363) ((-294 . -246) T) ((-294 . -201) T) ((-294 . -345) 48317) ((-294 . -118) 48271) ((-294 . -952) 48255) ((-294 . -1189) 48239) ((-294 . -1200) 48223) ((-293 . -280) 48200) ((-293 . -190) T) ((-293 . -186) 48187) ((-293 . -189) T) ((-293 . -320) T) ((-293 . -1068) T) ((-293 . -299) T) ((-293 . -120) 48169) ((-293 . -557) 48099) ((-293 . -592) 48044) ((-293 . -590) 47974) ((-293 . -104) T) ((-293 . -25) T) ((-293 . -72) T) ((-293 . -13) T) ((-293 . -1131) T) ((-293 . -554) 47956) ((-293 . -1015) T) ((-293 . -23) T) ((-293 . -21) T) ((-293 . -972) T) ((-293 . -1027) T) ((-293 . -1063) T) ((-293 . -665) T) ((-293 . -963) T) ((-293 . -312) T) ((-293 . -1136) T) ((-293 . -834) T) ((-293 . -497) T) ((-293 . -146) T) ((-293 . -656) 47901) ((-293 . -584) 47846) ((-293 . -38) 47811) ((-293 . -393) T) ((-293 . -258) T) ((-293 . -82) 47728) ((-293 . -965) 47673) ((-293 . -970) 47618) ((-293 . -246) T) ((-293 . -201) T) ((-293 . -345) T) ((-293 . -118) T) ((-293 . -952) 47595) ((-293 . -1189) 47572) ((-293 . -1200) 47549) ((-289 . -280) 47526) ((-289 . -190) T) ((-289 . -186) 47513) ((-289 . -189) T) ((-289 . -320) T) ((-289 . -1068) T) ((-289 . -299) T) ((-289 . -120) 47495) ((-289 . -557) 47425) ((-289 . -592) 47370) ((-289 . -590) 47300) ((-289 . -104) T) ((-289 . -25) T) ((-289 . -72) T) ((-289 . -13) T) ((-289 . -1131) T) ((-289 . -554) 47282) ((-289 . -1015) T) ((-289 . -23) T) ((-289 . -21) T) ((-289 . -972) T) ((-289 . -1027) T) ((-289 . -1063) T) ((-289 . -665) T) ((-289 . -963) T) ((-289 . -312) T) ((-289 . -1136) T) ((-289 . -834) T) ((-289 . -497) T) ((-289 . -146) T) ((-289 . -656) 47227) ((-289 . -584) 47172) ((-289 . -38) 47137) ((-289 . -393) T) ((-289 . -258) T) ((-289 . -82) 47054) ((-289 . -965) 46999) ((-289 . -970) 46944) ((-289 . -246) T) ((-289 . -201) T) ((-289 . -345) T) ((-289 . -118) T) ((-289 . -952) 46921) ((-289 . -1189) 46898) ((-289 . -1200) 46875) ((-283 . -286) 46844) ((-283 . -104) T) ((-283 . -25) T) ((-283 . -72) T) ((-283 . -13) T) ((-283 . -1131) T) ((-283 . -554) 46826) ((-283 . -1015) T) ((-283 . -23) T) ((-283 . -590) 46808) ((-283 . -21) T) ((-282 . -1015) T) ((-282 . -554) 46790) ((-282 . -1131) T) ((-282 . -13) T) ((-282 . -72) T) ((-281 . -758) T) ((-281 . -554) 46772) ((-281 . -1015) T) ((-281 . -72) T) ((-281 . -13) T) ((-281 . -1131) T) ((-281 . -761) T) ((-278 . -19) 46756) ((-278 . -1037) 46740) ((-278 . -318) 46724) ((-278 . -34) T) ((-278 . -13) T) ((-278 . -1131) T) ((-278 . -72) 46658) ((-278 . -554) 46573) ((-278 . -260) 46511) ((-278 . -457) 46444) ((-278 . -381) 46428) ((-278 . -1015) 46381) ((-278 . -430) 46365) ((-278 . -595) 46349) ((-278 . -243) 46326) ((-278 . -241) 46278) ((-278 . -540) 46255) ((-278 . -555) 46216) ((-278 . -124) 46200) ((-278 . -758) 46179) ((-278 . -761) 46158) ((-278 . -324) 46142) ((-278 . -237) 46126) ((-275 . -274) 46103) ((-275 . -557) 46087) ((-275 . -952) 46071) ((-275 . -23) T) ((-275 . -1015) T) ((-275 . -554) 46053) ((-275 . -1131) T) ((-275 . -13) T) ((-275 . -72) T) ((-275 . -25) T) ((-275 . -104) T) ((-273 . -21) T) ((-273 . -590) 46035) ((-273 . -23) T) ((-273 . -1015) T) ((-273 . -554) 46017) ((-273 . -1131) T) ((-273 . -13) T) ((-273 . -72) T) ((-273 . -25) T) ((-273 . -104) T) ((-273 . -656) 45999) ((-273 . -584) 45981) ((-273 . -592) 45963) ((-273 . -970) 45945) ((-273 . -965) 45927) ((-273 . -82) 45902) ((-273 . -274) 45879) ((-273 . -557) 45863) ((-273 . -952) 45847) ((-273 . -758) 45826) ((-273 . -761) 45805) ((-270 . -1164) 45789) ((-270 . -190) 45741) ((-270 . -186) 45687) ((-270 . -189) 45639) ((-270 . -241) 45597) ((-270 . -811) 45503) ((-270 . -808) 45407) ((-270 . -813) 45313) ((-270 . -888) 45276) ((-270 . -38) 45123) ((-270 . -82) 44943) ((-270 . -965) 44784) ((-270 . -970) 44625) ((-270 . -590) 44510) ((-270 . -592) 44410) ((-270 . -584) 44257) ((-270 . -656) 44104) ((-270 . -557) 43936) ((-270 . -118) 43915) ((-270 . -120) 43894) ((-270 . -381) 43878) ((-270 . -47) 43848) ((-270 . -1160) 43818) ((-270 . -35) 43784) ((-270 . -66) 43750) ((-270 . -239) 43716) ((-270 . -434) 43682) ((-270 . -1120) 43648) ((-270 . -1117) 43614) ((-270 . -917) 43580) ((-270 . -201) 43559) ((-270 . -246) 43513) ((-270 . -104) T) ((-270 . -25) T) ((-270 . -72) T) ((-270 . -13) T) ((-270 . -1131) T) ((-270 . -554) 43495) ((-270 . -1015) T) ((-270 . -23) T) ((-270 . -21) T) ((-270 . -963) T) ((-270 . -665) T) ((-270 . -1063) T) ((-270 . -1027) T) ((-270 . -972) T) ((-270 . -258) 43474) ((-270 . -393) 43453) ((-270 . -146) 43387) ((-270 . -497) 43341) ((-270 . -834) 43320) ((-270 . -1136) 43299) ((-270 . -312) 43278) ((-270 . -718) T) ((-270 . -758) T) ((-270 . -761) T) ((-270 . -720) T) ((-265 . -364) 43262) ((-265 . -557) 42837) ((-265 . -952) 42508) ((-265 . -555) 42369) ((-265 . -796) 42353) ((-265 . -813) 42320) ((-265 . -808) 42285) ((-265 . -811) 42252) ((-265 . -414) 42231) ((-265 . -355) 42215) ((-265 . -798) 42140) ((-265 . -343) 42124) ((-265 . -582) 42032) ((-265 . -592) 41770) ((-265 . -329) 41740) ((-265 . -201) 41719) ((-265 . -82) 41608) ((-265 . -965) 41518) ((-265 . -970) 41428) ((-265 . -246) 41407) ((-265 . -656) 41317) ((-265 . -584) 41227) ((-265 . -590) 40894) ((-265 . -38) 40804) ((-265 . -258) 40783) ((-265 . -393) 40762) ((-265 . -146) 40741) ((-265 . -497) 40720) ((-265 . -834) 40699) ((-265 . -1136) 40678) ((-265 . -312) 40657) ((-265 . -260) 40644) ((-265 . -457) 40610) ((-265 . -254) T) ((-265 . -120) 40589) ((-265 . -118) 40568) ((-265 . -963) 40462) ((-265 . -665) 40315) ((-265 . -1063) 40209) ((-265 . -1027) 40062) ((-265 . -972) 39956) ((-265 . -104) 39831) ((-265 . -25) 39687) ((-265 . -72) T) ((-265 . -13) T) ((-265 . -1131) T) ((-265 . -554) 39669) ((-265 . -1015) T) ((-265 . -23) 39525) ((-265 . -21) 39400) ((-265 . -29) 39370) ((-265 . -917) 39349) ((-265 . -27) 39328) ((-265 . -1117) 39307) ((-265 . -1120) 39286) ((-265 . -434) 39265) ((-265 . -239) 39244) ((-265 . -66) 39223) ((-265 . -35) 39202) ((-265 . -133) 39181) ((-265 . -116) 39160) ((-265 . -571) 39139) ((-265 . -873) 39118) ((-265 . -1055) 39097) ((-264 . -906) 39058) ((-264 . -1068) NIL) ((-264 . -952) 38988) ((-264 . -557) 38871) ((-264 . -555) NIL) ((-264 . -935) NIL) ((-264 . -823) NIL) ((-264 . -796) 38832) ((-264 . -757) NIL) ((-264 . -723) NIL) ((-264 . -720) NIL) ((-264 . -761) NIL) ((-264 . -758) NIL) ((-264 . -718) NIL) ((-264 . -716) NIL) ((-264 . -742) NIL) ((-264 . -798) NIL) ((-264 . -343) 38793) ((-264 . -582) 38754) ((-264 . -592) 38683) ((-264 . -329) 38644) ((-264 . -241) 38510) ((-264 . -260) 38406) ((-264 . -457) 38157) ((-264 . -381) 38118) ((-264 . -288) 38079) ((-264 . -201) T) ((-264 . -82) 37964) ((-264 . -965) 37893) ((-264 . -970) 37822) ((-264 . -246) T) ((-264 . -656) 37751) ((-264 . -584) 37680) ((-264 . -590) 37594) ((-264 . -38) 37523) ((-264 . -258) T) ((-264 . -393) T) ((-264 . -146) T) ((-264 . -497) T) ((-264 . -834) T) ((-264 . -1136) T) ((-264 . -312) T) ((-264 . -190) NIL) ((-264 . -186) NIL) ((-264 . -189) NIL) ((-264 . -225) 37484) ((-264 . -808) NIL) ((-264 . -813) NIL) ((-264 . -811) NIL) ((-264 . -184) 37445) ((-264 . -120) 37401) ((-264 . -118) 37357) ((-264 . -104) T) ((-264 . -25) T) ((-264 . -72) T) ((-264 . -13) T) ((-264 . -1131) T) ((-264 . -554) 37339) ((-264 . -1015) T) ((-264 . -23) T) ((-264 . -21) T) ((-264 . -963) T) ((-264 . -665) T) ((-264 . -1063) T) ((-264 . -1027) T) ((-264 . -972) T) ((-263 . -997) T) ((-263 . -431) 37320) ((-263 . -554) 37286) ((-263 . -557) 37267) ((-263 . -1015) T) ((-263 . -1131) T) ((-263 . -13) T) ((-263 . -72) T) ((-263 . -64) T) ((-262 . -1015) T) ((-262 . -554) 37249) ((-262 . -1131) T) ((-262 . -13) T) ((-262 . -72) T) ((-251 . -1109) 37228) ((-251 . -183) 37176) ((-251 . -76) 37124) ((-251 . -1037) 37059) ((-251 . -124) 37007) ((-251 . -555) NIL) ((-251 . -193) 36955) ((-251 . -540) 36934) ((-251 . -260) 36732) ((-251 . -457) 36484) ((-251 . -381) 36419) ((-251 . -430) 36354) ((-251 . -241) 36333) ((-251 . -243) 36312) ((-251 . -551) 36291) ((-251 . -1015) T) ((-251 . -554) 36273) ((-251 . -72) T) ((-251 . -1131) T) ((-251 . -13) T) ((-251 . -34) T) ((-251 . -318) 36221) ((-249 . -381) 36205) ((-249 . -13) T) ((-249 . -1131) T) ((-249 . -457) 36154) ((-249 . -1015) 35940) ((-249 . -554) 35686) ((-249 . -72) 35472) ((-249 . -25) 35340) ((-249 . -21) 35227) ((-249 . -590) 34974) ((-249 . -23) 34861) ((-249 . -104) 34748) ((-249 . -1027) 34633) ((-249 . -665) 34539) ((-249 . -414) 34518) ((-249 . -963) 34464) ((-249 . -1063) 34410) ((-249 . -972) 34356) ((-249 . -592) 34224) ((-249 . -557) 34159) ((-249 . -82) 34079) ((-249 . -965) 34004) ((-249 . -970) 33929) ((-249 . -656) 33874) ((-249 . -584) 33819) ((-249 . -811) 33778) ((-249 . -808) 33735) ((-249 . -813) 33694) ((-249 . -1189) 33664) ((-247 . -554) 33646) ((-244 . -258) T) ((-244 . -393) T) ((-244 . -38) 33633) ((-244 . -557) 33605) ((-244 . -972) T) ((-244 . -1027) T) ((-244 . -1063) T) ((-244 . -665) T) ((-244 . -963) T) ((-244 . -82) 33590) ((-244 . -965) 33577) ((-244 . -970) 33564) ((-244 . -21) T) ((-244 . -590) 33536) ((-244 . -23) T) ((-244 . -1015) T) ((-244 . -554) 33518) ((-244 . -1131) T) ((-244 . -13) T) ((-244 . -72) T) ((-244 . -25) T) ((-244 . -104) T) ((-244 . -592) 33505) ((-244 . -584) 33492) ((-244 . -656) 33479) ((-244 . -146) T) ((-244 . -246) T) ((-244 . -497) T) ((-244 . -834) T) ((-244 . -241) 33458) ((-235 . -554) 33440) ((-234 . -554) 33422) ((-229 . -758) T) ((-229 . -554) 33404) ((-229 . -1015) T) ((-229 . -72) T) ((-229 . -13) T) ((-229 . -1131) T) ((-229 . -761) T) ((-226 . -213) 33366) ((-226 . -557) 33126) ((-226 . -952) 32972) ((-226 . -555) 32720) ((-226 . -277) 32692) ((-226 . -355) 32676) ((-226 . -38) 32528) ((-226 . -82) 32353) ((-226 . -965) 32199) ((-226 . -970) 32045) ((-226 . -590) 31955) ((-226 . -592) 31844) ((-226 . -584) 31696) ((-226 . -656) 31548) ((-226 . -118) 31527) ((-226 . -120) 31506) ((-226 . -146) 31420) ((-226 . -381) 31404) ((-226 . -497) 31338) ((-226 . -246) 31272) ((-226 . -47) 31244) ((-226 . -329) 31228) ((-226 . -582) 31176) ((-226 . -393) 31130) ((-226 . -457) 31021) ((-226 . -811) 30967) ((-226 . -808) 30876) ((-226 . -813) 30789) ((-226 . -798) 30648) ((-226 . -823) 30627) ((-226 . -1136) 30606) ((-226 . -863) 30573) ((-226 . -260) 30560) ((-226 . -190) 30539) ((-226 . -104) T) ((-226 . -25) T) ((-226 . -72) T) ((-226 . -554) 30521) ((-226 . -1015) T) ((-226 . -23) T) ((-226 . -21) T) ((-226 . -972) T) ((-226 . -1027) T) ((-226 . -1063) T) ((-226 . -665) T) ((-226 . -963) T) ((-226 . -186) 30469) ((-226 . -13) T) ((-226 . -1131) T) ((-226 . -189) 30423) ((-226 . -225) 30407) ((-226 . -184) 30391) ((-221 . -1015) T) ((-221 . -554) 30373) ((-221 . -1131) T) ((-221 . -13) T) ((-221 . -72) T) ((-211 . -196) 30352) ((-211 . -1189) 30322) ((-211 . -723) 30301) ((-211 . -720) 30280) ((-211 . -761) 30234) ((-211 . -758) 30188) ((-211 . -718) 30167) ((-211 . -719) 30146) ((-211 . -656) 30091) ((-211 . -584) 30016) ((-211 . -243) 29993) ((-211 . -241) 29970) ((-211 . -540) 29947) ((-211 . -952) 29776) ((-211 . -557) 29580) ((-211 . -355) 29549) ((-211 . -582) 29457) ((-211 . -592) 29283) ((-211 . -329) 29253) ((-211 . -430) 29237) ((-211 . -381) 29221) ((-211 . -457) 29154) ((-211 . -260) 29092) ((-211 . -34) T) ((-211 . -318) 29076) ((-211 . -320) 29055) ((-211 . -190) 29008) ((-211 . -590) 28861) ((-211 . -972) 28840) ((-211 . -1027) 28819) ((-211 . -1063) 28798) ((-211 . -665) 28777) ((-211 . -963) 28756) ((-211 . -186) 28652) ((-211 . -189) 28554) ((-211 . -225) 28524) ((-211 . -808) 28396) ((-211 . -813) 28270) ((-211 . -811) 28203) ((-211 . -184) 28173) ((-211 . -554) 28134) ((-211 . -970) 28059) ((-211 . -965) 27964) ((-211 . -82) 27884) ((-211 . -104) T) ((-211 . -25) T) ((-211 . -72) T) ((-211 . -13) T) ((-211 . -1131) T) ((-211 . -1015) T) ((-211 . -23) T) ((-211 . -21) T) ((-210 . -196) 27863) ((-210 . -1189) 27833) ((-210 . -723) 27812) ((-210 . -720) 27791) ((-210 . -761) 27745) ((-210 . -758) 27699) ((-210 . -718) 27678) ((-210 . -719) 27657) ((-210 . -656) 27602) ((-210 . -584) 27527) ((-210 . -243) 27504) ((-210 . -241) 27481) ((-210 . -540) 27458) ((-210 . -952) 27287) ((-210 . -557) 27091) ((-210 . -355) 27060) ((-210 . -582) 26968) ((-210 . -592) 26781) ((-210 . -329) 26751) ((-210 . -430) 26735) ((-210 . -381) 26719) ((-210 . -457) 26652) ((-210 . -260) 26590) ((-210 . -34) T) ((-210 . -318) 26574) ((-210 . -320) 26553) ((-210 . -190) 26506) ((-210 . -590) 26346) ((-210 . -972) 26325) ((-210 . -1027) 26304) ((-210 . -1063) 26283) ((-210 . -665) 26262) ((-210 . -963) 26241) ((-210 . -186) 26137) ((-210 . -189) 26039) ((-210 . -225) 26009) ((-210 . -808) 25881) ((-210 . -813) 25755) ((-210 . -811) 25688) ((-210 . -184) 25658) ((-210 . -554) 25619) ((-210 . -970) 25544) ((-210 . -965) 25449) ((-210 . -82) 25369) ((-210 . -104) T) ((-210 . -25) T) ((-210 . -72) T) ((-210 . -13) T) ((-210 . -1131) T) ((-210 . -1015) T) ((-210 . -23) T) ((-210 . -21) T) ((-209 . -1015) T) ((-209 . -554) 25351) ((-209 . -1131) T) ((-209 . -13) T) ((-209 . -72) T) ((-209 . -241) 25325) ((-208 . -160) T) ((-208 . -1015) T) ((-208 . -554) 25292) ((-208 . -1131) T) ((-208 . -13) T) ((-208 . -72) T) ((-208 . -749) 25274) ((-207 . -1015) T) ((-207 . -554) 25256) ((-207 . -1131) T) ((-207 . -13) T) ((-207 . -72) T) ((-206 . -863) 25201) ((-206 . -557) 24993) ((-206 . -952) 24871) ((-206 . -1136) 24850) ((-206 . -823) 24829) ((-206 . -798) NIL) ((-206 . -813) 24806) ((-206 . -808) 24781) ((-206 . -811) 24758) ((-206 . -457) 24696) ((-206 . -393) 24650) ((-206 . -582) 24598) ((-206 . -592) 24487) ((-206 . -329) 24471) ((-206 . -47) 24428) ((-206 . -38) 24280) ((-206 . -584) 24132) ((-206 . -656) 23984) ((-206 . -246) 23918) ((-206 . -497) 23852) ((-206 . -381) 23836) ((-206 . -82) 23661) ((-206 . -965) 23507) ((-206 . -970) 23353) ((-206 . -146) 23267) ((-206 . -120) 23246) ((-206 . -118) 23225) ((-206 . -590) 23135) ((-206 . -104) T) ((-206 . -25) T) ((-206 . -72) T) ((-206 . -13) T) ((-206 . -1131) T) ((-206 . -554) 23117) ((-206 . -1015) T) ((-206 . -23) T) ((-206 . -21) T) ((-206 . -963) T) ((-206 . -665) T) ((-206 . -1063) T) ((-206 . -1027) T) ((-206 . -972) T) ((-206 . -355) 23101) ((-206 . -277) 23058) ((-206 . -260) 23045) ((-206 . -555) 22906) ((-203 . -610) 22890) ((-203 . -1170) 22874) ((-203 . -925) 22858) ((-203 . -1066) 22842) ((-203 . -318) 22826) ((-203 . -758) 22805) ((-203 . -761) 22784) ((-203 . -324) 22768) ((-203 . -595) 22752) ((-203 . -243) 22729) ((-203 . -241) 22681) ((-203 . -540) 22658) ((-203 . -555) 22619) ((-203 . -430) 22603) ((-203 . -1015) 22556) ((-203 . -381) 22540) ((-203 . -457) 22473) ((-203 . -260) 22411) ((-203 . -554) 22306) ((-203 . -72) 22240) ((-203 . -1131) T) ((-203 . -13) T) ((-203 . -34) T) ((-203 . -124) 22224) ((-203 . -1037) 22208) ((-203 . -237) 22192) ((-203 . -431) 22169) ((-203 . -557) 22146) ((-197 . -196) 22125) ((-197 . -1189) 22095) ((-197 . -723) 22074) ((-197 . -720) 22053) ((-197 . -761) 22007) ((-197 . -758) 21961) ((-197 . -718) 21940) ((-197 . -719) 21919) ((-197 . -656) 21864) ((-197 . -584) 21789) ((-197 . -243) 21766) ((-197 . -241) 21743) ((-197 . -540) 21720) ((-197 . -952) 21549) ((-197 . -557) 21353) ((-197 . -355) 21322) ((-197 . -582) 21230) ((-197 . -592) 21069) ((-197 . -329) 21039) ((-197 . -430) 21023) ((-197 . -381) 21007) ((-197 . -457) 20940) ((-197 . -260) 20878) ((-197 . -34) T) ((-197 . -318) 20862) ((-197 . -320) 20841) ((-197 . -190) 20794) ((-197 . -590) 20582) ((-197 . -972) 20561) ((-197 . -1027) 20540) ((-197 . -1063) 20519) ((-197 . -665) 20498) ((-197 . -963) 20477) ((-197 . -186) 20373) ((-197 . -189) 20275) ((-197 . -225) 20245) ((-197 . -808) 20117) ((-197 . -813) 19991) ((-197 . -811) 19924) ((-197 . -184) 19894) ((-197 . -554) 19591) ((-197 . -970) 19516) ((-197 . -965) 19421) ((-197 . -82) 19341) ((-197 . -104) 19216) ((-197 . -25) 19053) ((-197 . -72) 18790) ((-197 . -13) T) ((-197 . -1131) T) ((-197 . -1015) 18546) ((-197 . -23) 18402) ((-197 . -21) 18317) ((-181 . -629) 18275) ((-181 . -318) 18259) ((-181 . -34) T) ((-181 . -13) T) ((-181 . -1131) T) ((-181 . -72) 18213) ((-181 . -554) 18148) ((-181 . -260) 18086) ((-181 . -457) 18019) ((-181 . -381) 18003) ((-181 . -1015) 17981) ((-181 . -430) 17965) ((-181 . -1037) 17949) ((-181 . -57) 17907) ((-179 . -347) T) ((-179 . -120) T) ((-179 . -557) 17857) ((-179 . -592) 17822) ((-179 . -590) 17772) ((-179 . -104) T) ((-179 . -25) T) ((-179 . -72) T) ((-179 . -13) T) ((-179 . -1131) T) ((-179 . -554) 17754) ((-179 . -1015) T) ((-179 . -23) T) ((-179 . -21) T) ((-179 . -972) T) ((-179 . -1027) T) ((-179 . -1063) T) ((-179 . -665) T) ((-179 . -963) T) ((-179 . -555) 17684) ((-179 . -312) T) ((-179 . -1136) T) ((-179 . -834) T) ((-179 . -497) T) ((-179 . -146) T) ((-179 . -656) 17649) ((-179 . -584) 17614) ((-179 . -38) 17579) ((-179 . -393) T) ((-179 . -258) T) ((-179 . -82) 17528) ((-179 . -965) 17493) ((-179 . -970) 17458) ((-179 . -246) T) ((-179 . -201) T) ((-179 . -757) T) ((-179 . -723) T) ((-179 . -720) T) ((-179 . -761) T) ((-179 . -758) T) ((-179 . -718) T) ((-179 . -716) T) ((-179 . -798) 17440) ((-179 . -917) T) ((-179 . -935) T) ((-179 . -952) 17400) ((-179 . -975) T) ((-179 . -190) T) ((-179 . -186) 17387) ((-179 . -189) T) ((-179 . -1117) T) ((-179 . -1120) T) ((-179 . -434) T) ((-179 . -239) T) ((-179 . -66) T) ((-179 . -35) T) ((-177 . -562) 17364) ((-177 . -557) 17326) ((-177 . -592) 17293) ((-177 . -590) 17245) ((-177 . -972) T) ((-177 . -1027) T) ((-177 . -1063) T) ((-177 . -665) T) ((-177 . -963) T) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1015) T) ((-177 . -554) 17227) ((-177 . -1131) T) ((-177 . -13) T) ((-177 . -72) T) ((-177 . -25) T) ((-177 . -104) T) ((-177 . -952) 17204) ((-177 . -381) 17181) ((-176 . -214) 17165) ((-176 . -1036) 17149) ((-176 . -76) 17133) ((-176 . -1037) 17117) ((-176 . -34) T) ((-176 . -13) T) ((-176 . -1131) T) ((-176 . -72) 17071) ((-176 . -554) 17006) ((-176 . -260) 16944) ((-176 . -457) 16877) ((-176 . -381) 16861) ((-176 . -1015) 16839) ((-176 . -430) 16823) ((-176 . -318) 16807) ((-176 . -910) 16791) ((-172 . -997) T) ((-172 . -431) 16772) ((-172 . -554) 16738) ((-172 . -557) 16719) ((-172 . -1015) T) ((-172 . -1131) T) ((-172 . -13) T) ((-172 . -72) T) ((-172 . -64) T) ((-171 . -906) 16701) ((-171 . -1068) T) ((-171 . -557) 16651) ((-171 . -952) 16611) ((-171 . -555) 16541) ((-171 . -935) T) ((-171 . -823) NIL) ((-171 . -796) 16523) ((-171 . -757) T) ((-171 . -723) T) ((-171 . -720) T) ((-171 . -761) T) ((-171 . -758) T) ((-171 . -718) T) ((-171 . -716) T) ((-171 . -742) T) ((-171 . -798) 16505) ((-171 . -343) 16487) ((-171 . -582) 16469) ((-171 . -329) 16451) ((-171 . -241) NIL) ((-171 . -260) NIL) ((-171 . -457) NIL) ((-171 . -381) 16433) ((-171 . -288) 16415) ((-171 . -201) T) ((-171 . -82) 16342) ((-171 . -965) 16292) ((-171 . -970) 16242) ((-171 . -246) T) ((-171 . -656) 16192) ((-171 . -584) 16142) ((-171 . -592) 16092) ((-171 . -590) 16042) ((-171 . -38) 15992) ((-171 . -258) T) ((-171 . -393) T) ((-171 . -146) T) ((-171 . -497) T) ((-171 . -834) T) ((-171 . -1136) T) ((-171 . -312) T) ((-171 . -190) T) ((-171 . -186) 15979) ((-171 . -189) T) ((-171 . -225) 15961) ((-171 . -808) NIL) ((-171 . -813) NIL) ((-171 . -811) NIL) ((-171 . -184) 15943) ((-171 . -120) T) ((-171 . -118) NIL) ((-171 . -104) T) ((-171 . -25) T) ((-171 . -72) T) ((-171 . -13) T) ((-171 . -1131) T) ((-171 . -554) 15885) ((-171 . -1015) T) ((-171 . -23) T) ((-171 . -21) T) ((-171 . -963) T) ((-171 . -665) T) ((-171 . -1063) T) ((-171 . -1027) T) ((-171 . -972) T) ((-168 . -754) T) ((-168 . -761) T) ((-168 . -758) T) ((-168 . -1015) T) ((-168 . -554) 15867) ((-168 . -1131) T) ((-168 . -13) T) ((-168 . -72) T) ((-168 . -320) T) ((-167 . -1015) T) ((-167 . -554) 15849) ((-167 . -1131) T) ((-167 . -13) T) ((-167 . -72) T) ((-167 . -557) 15826) ((-166 . -1015) T) ((-166 . -554) 15808) ((-166 . -1131) T) ((-166 . -13) T) ((-166 . -72) T) ((-161 . -1015) T) ((-161 . -554) 15790) ((-161 . -1131) T) ((-161 . -13) T) ((-161 . -72) T) ((-158 . -1015) T) ((-158 . -554) 15772) ((-158 . -1131) T) ((-158 . -13) T) ((-158 . -72) T) ((-157 . -160) T) ((-157 . -1015) T) ((-157 . -554) 15754) ((-157 . -1131) T) ((-157 . -13) T) ((-157 . -72) T) ((-157 . -749) 15736) ((-154 . -997) T) ((-154 . -431) 15717) ((-154 . -554) 15683) ((-154 . -557) 15664) ((-154 . -1015) T) ((-154 . -1131) T) ((-154 . -13) T) ((-154 . -72) T) ((-154 . -64) T) ((-149 . -554) 15646) ((-148 . -38) 15578) ((-148 . -557) 15495) ((-148 . -592) 15427) ((-148 . -590) 15344) ((-148 . -972) T) ((-148 . -1027) T) ((-148 . -1063) T) ((-148 . -665) T) ((-148 . -963) T) ((-148 . -82) 15243) ((-148 . -965) 15175) ((-148 . -970) 15107) ((-148 . -21) T) ((-148 . -23) T) ((-148 . -1015) T) ((-148 . -554) 15089) ((-148 . -1131) T) ((-148 . -13) T) ((-148 . -72) T) ((-148 . -25) T) ((-148 . -104) T) ((-148 . -584) 15021) ((-148 . -656) 14953) ((-148 . -312) T) ((-148 . -1136) T) ((-148 . -834) T) ((-148 . -497) T) ((-148 . -146) T) ((-148 . -393) T) ((-148 . -258) T) ((-148 . -246) T) ((-148 . -201) T) ((-145 . -1015) T) ((-145 . -554) 14935) ((-145 . -1131) T) ((-145 . -13) T) ((-145 . -72) T) ((-142 . -139) 14919) ((-142 . -35) 14897) ((-142 . -66) 14875) ((-142 . -239) 14853) ((-142 . -434) 14831) ((-142 . -1120) 14809) ((-142 . -1117) 14787) ((-142 . -917) 14739) ((-142 . -823) 14692) ((-142 . -555) 14460) ((-142 . -796) 14444) ((-142 . -320) 14398) ((-142 . -299) 14377) ((-142 . -1068) 14356) ((-142 . -345) 14335) ((-142 . -353) 14306) ((-142 . -38) 14140) ((-142 . -82) 14032) ((-142 . -965) 13945) ((-142 . -970) 13858) ((-142 . -584) 13692) ((-142 . -656) 13526) ((-142 . -322) 13497) ((-142 . -663) 13468) ((-142 . -952) 13366) ((-142 . -557) 13151) ((-142 . -355) 13135) ((-142 . -798) 13060) ((-142 . -343) 13044) ((-142 . -582) 12992) ((-142 . -592) 12869) ((-142 . -590) 12767) ((-142 . -329) 12751) ((-142 . -241) 12709) ((-142 . -260) 12674) ((-142 . -457) 12586) ((-142 . -381) 12570) ((-142 . -288) 12554) ((-142 . -201) 12508) ((-142 . -1136) 12416) ((-142 . -312) 12370) ((-142 . -834) 12304) ((-142 . -497) 12218) ((-142 . -246) 12132) ((-142 . -393) 12066) ((-142 . -258) 12000) ((-142 . -190) 11954) ((-142 . -186) 11882) ((-142 . -189) 11816) ((-142 . -225) 11800) ((-142 . -808) 11724) ((-142 . -813) 11650) ((-142 . -811) 11609) ((-142 . -184) 11593) ((-142 . -146) T) ((-142 . -120) 11572) ((-142 . -963) T) ((-142 . -665) T) ((-142 . -1063) T) ((-142 . -1027) T) ((-142 . -972) T) ((-142 . -21) T) ((-142 . -23) T) ((-142 . -1015) T) ((-142 . -554) 11554) ((-142 . -1131) T) ((-142 . -13) T) ((-142 . -72) T) ((-142 . -25) T) ((-142 . -104) T) ((-142 . -118) 11508) ((-135 . -997) T) ((-135 . -431) 11489) ((-135 . -554) 11455) ((-135 . -557) 11436) ((-135 . -1015) T) ((-135 . -1131) T) ((-135 . -13) T) ((-135 . -72) T) ((-135 . -64) T) ((-134 . -1015) T) ((-134 . -554) 11418) ((-134 . -1131) T) ((-134 . -13) T) ((-134 . -72) T) ((-130 . -25) T) ((-130 . -72) T) ((-130 . -13) T) ((-130 . -1131) T) ((-130 . -554) 11400) ((-130 . -1015) T) ((-129 . -997) T) ((-129 . -431) 11381) ((-129 . -554) 11347) ((-129 . -557) 11328) ((-129 . -1015) T) ((-129 . -1131) T) ((-129 . -13) T) ((-129 . -72) T) ((-129 . -64) T) ((-127 . -997) T) ((-127 . -431) 11309) ((-127 . -554) 11275) ((-127 . -557) 11256) ((-127 . -1015) T) ((-127 . -1131) T) ((-127 . -13) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -963) T) ((-125 . -665) T) ((-125 . -1063) T) ((-125 . -1027) T) ((-125 . -972) T) ((-125 . -21) T) ((-125 . -590) 11215) ((-125 . -23) T) ((-125 . -1015) T) ((-125 . -554) 11197) ((-125 . -1131) T) ((-125 . -13) T) ((-125 . -72) T) ((-125 . -25) T) ((-125 . -104) T) ((-125 . -592) 11171) ((-125 . -557) 11140) ((-125 . -38) 11124) ((-125 . -82) 11103) ((-125 . -965) 11087) ((-125 . -970) 11071) ((-125 . -584) 11055) ((-125 . -656) 11039) ((-125 . -1189) 11023) ((-117 . -754) T) ((-117 . -761) T) ((-117 . -758) T) ((-117 . -1015) T) ((-117 . -554) 11005) ((-117 . -1131) T) ((-117 . -13) T) ((-117 . -72) T) ((-117 . -320) T) ((-114 . -1015) T) ((-114 . -554) 10987) ((-114 . -1131) T) ((-114 . -13) T) ((-114 . -72) T) ((-114 . -555) 10946) ((-114 . -369) 10928) ((-114 . -1013) 10910) ((-114 . -318) 10892) ((-114 . -320) T) ((-114 . -193) 10874) ((-114 . -124) 10856) ((-114 . -430) 10838) ((-114 . -381) 10820) ((-114 . -457) NIL) ((-114 . -260) NIL) ((-114 . -34) T) ((-114 . -1037) 10802) ((-114 . -76) 10784) ((-114 . -183) 10766) ((-113 . -554) 10748) ((-112 . -160) T) ((-112 . -1015) T) ((-112 . -554) 10715) ((-112 . -1131) T) ((-112 . -13) T) ((-112 . -72) T) ((-112 . -749) 10697) ((-111 . -997) T) ((-111 . -431) 10678) ((-111 . -554) 10644) ((-111 . -557) 10625) ((-111 . -1015) T) ((-111 . -1131) T) ((-111 . -13) T) ((-111 . -72) T) ((-111 . -64) T) ((-110 . -997) T) ((-110 . -431) 10606) ((-110 . -554) 10572) ((-110 . -557) 10553) ((-110 . -1015) T) ((-110 . -1131) T) ((-110 . -13) T) ((-110 . -72) T) ((-110 . -64) T) ((-108 . -406) 10530) ((-108 . -557) 10426) ((-108 . -952) 10410) ((-108 . -1015) T) ((-108 . -554) 10392) ((-108 . -1131) T) ((-108 . -13) T) ((-108 . -72) T) ((-108 . -411) 10347) ((-108 . -241) 10324) ((-107 . -758) T) ((-107 . -554) 10306) ((-107 . -1015) T) ((-107 . -72) T) ((-107 . -13) T) ((-107 . -1131) T) ((-107 . -761) T) ((-107 . -23) T) ((-107 . -25) T) ((-107 . -665) T) ((-107 . -1027) T) ((-107 . -952) 10288) ((-107 . -557) 10270) ((-106 . -997) T) ((-106 . -431) 10251) ((-106 . -554) 10217) ((-106 . -557) 10198) ((-106 . -1015) T) ((-106 . -1131) T) ((-106 . -13) T) ((-106 . -72) T) ((-106 . -64) T) ((-103 . -1015) T) ((-103 . -554) 10180) ((-103 . -1131) T) ((-103 . -13) T) ((-103 . -72) T) ((-102 . -19) 10162) ((-102 . -1037) 10144) ((-102 . -318) 10126) ((-102 . -34) T) ((-102 . -13) T) ((-102 . -1131) T) ((-102 . -72) T) ((-102 . -554) 10070) ((-102 . -260) NIL) ((-102 . -457) NIL) ((-102 . -381) 10052) ((-102 . -1015) T) ((-102 . -430) 10034) ((-102 . -595) 10016) ((-102 . -243) 9991) ((-102 . -241) 9941) ((-102 . -540) 9916) ((-102 . -555) NIL) ((-102 . -124) 9898) ((-102 . -758) T) ((-102 . -761) T) ((-102 . -324) 9880) ((-101 . -754) T) ((-101 . -761) T) ((-101 . -758) T) ((-101 . -1015) T) ((-101 . -554) 9862) ((-101 . -1131) T) ((-101 . -13) T) ((-101 . -72) T) ((-101 . -320) T) ((-101 . -606) T) ((-100 . -98) 9846) ((-100 . -1037) 9830) ((-100 . -318) 9814) ((-100 . -925) 9798) ((-100 . -34) T) ((-100 . -13) T) ((-100 . -1131) T) ((-100 . -72) 9752) ((-100 . -554) 9687) ((-100 . -260) 9625) ((-100 . -457) 9558) ((-100 . -381) 9542) ((-100 . -1015) 9520) ((-100 . -430) 9504) ((-100 . -92) 9488) ((-99 . -98) 9472) ((-99 . -1037) 9456) ((-99 . -318) 9440) ((-99 . -925) 9424) ((-99 . -34) T) ((-99 . -13) T) ((-99 . -1131) T) ((-99 . -72) 9378) ((-99 . -554) 9313) ((-99 . -260) 9251) ((-99 . -457) 9184) ((-99 . -381) 9168) ((-99 . -1015) 9146) ((-99 . -430) 9130) ((-99 . -92) 9114) ((-94 . -98) 9098) ((-94 . -1037) 9082) ((-94 . -318) 9066) ((-94 . -925) 9050) ((-94 . -34) T) ((-94 . -13) T) ((-94 . -1131) T) ((-94 . -72) 9004) ((-94 . -554) 8939) ((-94 . -260) 8877) ((-94 . -457) 8810) ((-94 . -381) 8794) ((-94 . -1015) 8772) ((-94 . -430) 8756) ((-94 . -92) 8740) ((-90 . -906) 8718) ((-90 . -1068) NIL) ((-90 . -952) 8696) ((-90 . -557) 8627) ((-90 . -555) NIL) ((-90 . -935) NIL) ((-90 . -823) NIL) ((-90 . -796) 8605) ((-90 . -757) NIL) ((-90 . -723) NIL) ((-90 . -720) NIL) ((-90 . -761) NIL) ((-90 . -758) NIL) ((-90 . -718) NIL) ((-90 . -716) NIL) ((-90 . -742) NIL) ((-90 . -798) NIL) ((-90 . -343) 8583) ((-90 . -582) 8561) ((-90 . -592) 8507) ((-90 . -329) 8485) ((-90 . -241) 8419) ((-90 . -260) 8366) ((-90 . -457) 8236) ((-90 . -381) 8214) ((-90 . -288) 8192) ((-90 . -201) T) ((-90 . -82) 8111) ((-90 . -965) 8057) ((-90 . -970) 8003) ((-90 . -246) T) ((-90 . -656) 7949) ((-90 . -584) 7895) ((-90 . -590) 7826) ((-90 . -38) 7772) ((-90 . -258) T) ((-90 . -393) T) ((-90 . -146) T) ((-90 . -497) T) ((-90 . -834) T) ((-90 . -1136) T) ((-90 . -312) T) ((-90 . -190) NIL) ((-90 . -186) NIL) ((-90 . -189) NIL) ((-90 . -225) 7750) ((-90 . -808) NIL) ((-90 . -813) NIL) ((-90 . -811) NIL) ((-90 . -184) 7728) ((-90 . -120) T) ((-90 . -118) NIL) ((-90 . -104) T) ((-90 . -25) T) ((-90 . -72) T) ((-90 . -13) T) ((-90 . -1131) T) ((-90 . -554) 7710) ((-90 . -1015) T) ((-90 . -23) T) ((-90 . -21) T) ((-90 . -963) T) ((-90 . -665) T) ((-90 . -1063) T) ((-90 . -1027) T) ((-90 . -972) T) ((-89 . -781) 7694) ((-89 . -834) T) ((-89 . -497) T) ((-89 . -246) T) ((-89 . -146) T) ((-89 . -557) 7666) ((-89 . -656) 7653) ((-89 . -584) 7640) ((-89 . -970) 7627) ((-89 . -965) 7614) ((-89 . -82) 7599) ((-89 . -38) 7586) ((-89 . -393) T) ((-89 . -258) T) ((-89 . -963) T) ((-89 . -665) T) ((-89 . -1063) T) ((-89 . -1027) T) ((-89 . -972) T) ((-89 . -21) T) ((-89 . -590) 7558) ((-89 . -23) T) ((-89 . -1015) T) ((-89 . -554) 7540) ((-89 . -1131) T) ((-89 . -13) T) ((-89 . -72) T) ((-89 . -25) T) ((-89 . -104) T) ((-89 . -592) 7527) ((-89 . -120) T) ((-86 . -758) T) ((-86 . -554) 7509) ((-86 . -1015) T) ((-86 . -72) T) ((-86 . -13) T) ((-86 . -1131) T) ((-86 . -761) T) ((-86 . -749) 7490) ((-85 . -754) T) ((-85 . -761) T) ((-85 . -758) T) ((-85 . -1015) T) ((-85 . -554) 7472) ((-85 . -1131) T) ((-85 . -13) T) ((-85 . -72) T) ((-85 . -320) T) ((-85 . -882) T) ((-85 . -606) T) ((-85 . -84) T) ((-85 . -555) 7454) ((-81 . -96) T) ((-81 . -324) 7437) ((-81 . -761) T) ((-81 . -758) T) ((-81 . -124) 7420) ((-81 . -555) 7402) ((-81 . -241) 7353) ((-81 . -540) 7329) ((-81 . -243) 7305) ((-81 . -595) 7288) ((-81 . -430) 7271) ((-81 . -1015) T) ((-81 . -381) 7254) ((-81 . -457) NIL) ((-81 . -260) NIL) ((-81 . -554) 7236) ((-81 . -72) T) ((-81 . -34) T) ((-81 . -318) 7219) ((-81 . -1037) 7202) ((-81 . -19) 7185) ((-81 . -606) T) ((-81 . -13) T) ((-81 . -1131) T) ((-81 . -84) T) ((-79 . -80) 7169) ((-79 . -1131) T) ((-79 . |MappingCategory|) 7143) ((-79 . -1015) T) ((-79 . -554) 7125) ((-79 . -13) T) ((-79 . -72) T) ((-78 . -554) 7107) ((-77 . -906) 7089) ((-77 . -1068) T) ((-77 . -557) 7039) ((-77 . -952) 6999) ((-77 . -555) 6929) ((-77 . -935) T) ((-77 . -823) NIL) ((-77 . -796) 6911) ((-77 . -757) T) ((-77 . -723) T) ((-77 . -720) T) ((-77 . -761) T) ((-77 . -758) T) ((-77 . -718) T) ((-77 . -716) T) ((-77 . -742) T) ((-77 . -798) 6893) ((-77 . -343) 6875) ((-77 . -582) 6857) ((-77 . -329) 6839) ((-77 . -241) NIL) ((-77 . -260) NIL) ((-77 . -457) NIL) ((-77 . -381) 6821) ((-77 . -288) 6803) ((-77 . -201) T) ((-77 . -82) 6730) ((-77 . -965) 6680) ((-77 . -970) 6630) ((-77 . -246) T) ((-77 . -656) 6580) ((-77 . -584) 6530) ((-77 . -592) 6480) ((-77 . -590) 6430) ((-77 . -38) 6380) ((-77 . -258) T) ((-77 . -393) T) ((-77 . -146) T) ((-77 . -497) T) ((-77 . -834) T) ((-77 . -1136) T) ((-77 . -312) T) ((-77 . -190) T) ((-77 . -186) 6367) ((-77 . -189) T) ((-77 . -225) 6349) ((-77 . -808) NIL) ((-77 . -813) NIL) ((-77 . -811) NIL) ((-77 . -184) 6331) ((-77 . -120) T) ((-77 . -118) NIL) ((-77 . -104) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -13) T) ((-77 . -1131) T) ((-77 . -554) 6274) ((-77 . -1015) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -963) T) ((-77 . -665) T) ((-77 . -1063) T) ((-77 . -1027) T) ((-77 . -972) T) ((-73 . -98) 6258) ((-73 . -1037) 6242) ((-73 . -318) 6226) ((-73 . -925) 6210) ((-73 . -34) T) ((-73 . -13) T) ((-73 . -1131) T) ((-73 . -72) 6164) ((-73 . -554) 6099) ((-73 . -260) 6037) ((-73 . -457) 5970) ((-73 . -381) 5954) ((-73 . -1015) 5932) ((-73 . -430) 5916) ((-73 . -92) 5900) ((-69 . -414) T) ((-69 . -1027) T) ((-69 . -72) T) ((-69 . -13) T) ((-69 . -1131) T) ((-69 . -554) 5882) ((-69 . -1015) T) ((-69 . -665) T) ((-69 . -241) 5861) ((-67 . -997) T) ((-67 . -431) 5842) ((-67 . -554) 5808) ((-67 . -557) 5789) ((-67 . -1015) T) ((-67 . -1131) T) ((-67 . -13) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1036) 5773) ((-62 . -318) 5757) ((-62 . -430) 5741) ((-62 . -1015) 5719) ((-62 . -381) 5703) ((-62 . -457) 5636) ((-62 . -260) 5574) ((-62 . -554) 5509) ((-62 . -72) 5463) ((-62 . -1131) T) ((-62 . -13) T) ((-62 . -34) T) ((-62 . -1037) 5447) ((-62 . -76) 5431) ((-60 . -57) 5393) ((-60 . -1037) 5377) ((-60 . -430) 5361) ((-60 . -1015) 5339) ((-60 . -381) 5323) ((-60 . -457) 5256) ((-60 . -260) 5194) ((-60 . -554) 5129) ((-60 . -72) 5083) ((-60 . -1131) T) ((-60 . -13) T) ((-60 . -34) T) ((-60 . -318) 5067) ((-58 . -19) 5051) ((-58 . -1037) 5035) ((-58 . -318) 5019) ((-58 . -34) T) ((-58 . -13) T) ((-58 . -1131) T) ((-58 . -72) 4953) ((-58 . -554) 4868) ((-58 . -260) 4806) ((-58 . -457) 4739) ((-58 . -381) 4723) ((-58 . -1015) 4676) ((-58 . -430) 4660) ((-58 . -595) 4644) ((-58 . -243) 4621) ((-58 . -241) 4573) ((-58 . -540) 4550) ((-58 . -555) 4511) ((-58 . -124) 4495) ((-58 . -758) 4474) ((-58 . -761) 4453) ((-58 . -324) 4437) ((-55 . -1015) T) ((-55 . -554) 4419) ((-55 . -1131) T) ((-55 . -13) T) ((-55 . -72) T) ((-55 . -952) 4401) ((-55 . -557) 4383) ((-51 . -1015) T) ((-51 . -554) 4365) ((-51 . -1131) T) ((-51 . -13) T) ((-51 . -72) T) ((-50 . -562) 4349) ((-50 . -557) 4318) ((-50 . -592) 4292) ((-50 . -590) 4251) ((-50 . -972) T) ((-50 . -1027) T) ((-50 . -1063) T) ((-50 . -665) T) ((-50 . -963) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1015) T) ((-50 . -554) 4233) ((-50 . -1131) T) ((-50 . -13) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -104) T) ((-50 . -952) 4217) ((-50 . -381) 4201) ((-49 . -1015) T) ((-49 . -554) 4183) ((-49 . -1131) T) ((-49 . -13) T) ((-49 . -72) T) ((-48 . -254) T) ((-48 . -72) T) ((-48 . -13) T) ((-48 . -1131) T) ((-48 . -554) 4165) ((-48 . -1015) T) ((-48 . -557) 4066) ((-48 . -952) 4009) ((-48 . -457) 3975) ((-48 . -260) 3962) ((-48 . -27) T) ((-48 . -917) T) ((-48 . -201) T) ((-48 . -82) 3911) ((-48 . -965) 3876) ((-48 . -970) 3841) ((-48 . -246) T) ((-48 . -656) 3806) ((-48 . -584) 3771) ((-48 . -592) 3721) ((-48 . -590) 3671) ((-48 . -104) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -963) T) ((-48 . -665) T) ((-48 . -1063) T) ((-48 . -1027) T) ((-48 . -972) T) ((-48 . -38) 3636) ((-48 . -258) T) ((-48 . -393) T) ((-48 . -146) T) ((-48 . -497) T) ((-48 . -834) T) ((-48 . -1136) T) ((-48 . -312) T) ((-48 . -582) 3596) ((-48 . -935) T) ((-48 . -555) 3541) ((-48 . -120) T) ((-48 . -190) T) ((-48 . -186) 3528) ((-48 . -189) T) ((-45 . -36) 3507) ((-45 . -551) 3486) ((-45 . -243) 3409) ((-45 . -241) 3307) ((-45 . -430) 3242) ((-45 . -381) 3177) ((-45 . -457) 2929) ((-45 . -260) 2727) ((-45 . -540) 2650) ((-45 . -193) 2598) ((-45 . -76) 2546) ((-45 . -183) 2494) ((-45 . -1109) 2473) ((-45 . -1037) 2408) ((-45 . -237) 2356) ((-45 . -124) 2304) ((-45 . -34) T) ((-45 . -13) T) ((-45 . -1131) T) ((-45 . -72) T) ((-45 . -554) 2286) ((-45 . -1015) T) ((-45 . -555) NIL) ((-45 . -595) 2234) ((-45 . -324) 2182) ((-45 . -761) NIL) ((-45 . -758) NIL) ((-45 . -318) 2130) ((-45 . -1066) 2078) ((-45 . -925) 2026) ((-45 . -1170) 1974) ((-45 . -610) 1922) ((-44 . -361) 1906) ((-44 . -685) 1890) ((-44 . -659) T) ((-44 . -687) T) ((-44 . -82) 1869) ((-44 . -965) 1853) ((-44 . -970) 1837) ((-44 . -21) T) ((-44 . -590) 1780) ((-44 . -23) T) ((-44 . -1015) T) ((-44 . -554) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -104) T) ((-44 . -592) 1720) ((-44 . -584) 1704) ((-44 . -656) 1688) ((-44 . -316) 1672) ((-44 . -1131) T) ((-44 . -13) T) ((-44 . -241) 1649) ((-40 . -291) 1623) ((-40 . -146) T) ((-40 . -557) 1553) ((-40 . -972) T) ((-40 . -1027) T) ((-40 . -1063) T) ((-40 . -665) T) ((-40 . -963) T) ((-40 . -592) 1455) ((-40 . -590) 1385) ((-40 . -104) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -13) T) ((-40 . -1131) T) ((-40 . -554) 1367) ((-40 . -1015) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -970) 1312) ((-40 . -965) 1257) ((-40 . -82) 1174) ((-40 . -555) 1158) ((-40 . -184) 1135) ((-40 . -811) 1087) ((-40 . -813) 999) ((-40 . -808) 909) ((-40 . -225) 886) ((-40 . -189) 826) ((-40 . -186) 760) ((-40 . -190) 732) ((-40 . -312) T) ((-40 . -1136) T) ((-40 . -834) T) ((-40 . -497) T) ((-40 . -656) 677) ((-40 . -584) 622) ((-40 . -38) 567) ((-40 . -393) T) ((-40 . -258) T) ((-40 . -246) T) ((-40 . -201) T) ((-40 . -320) NIL) ((-40 . -299) NIL) ((-40 . -1068) NIL) ((-40 . -118) 539) ((-40 . -345) NIL) ((-40 . -353) 511) ((-40 . -120) 483) ((-40 . -322) 455) ((-40 . -329) 432) ((-40 . -582) 366) ((-40 . -355) 343) ((-40 . -952) 220) ((-40 . -663) 192) ((-31 . -997) T) ((-31 . -431) 173) ((-31 . -554) 139) ((-31 . -557) 120) ((-31 . -1015) T) ((-31 . -1131) T) ((-31 . -13) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -868) T) ((-30 . -554) 102) ((0 . |EnumerationCategory|) T) ((0 . -554) 84) ((0 . -1015) T) ((0 . -72) T) ((0 . -1131) T) ((-2 . |RecordCategory|) T) ((-2 . -554) 66) ((-2 . -1015) T) ((-2 . -72) T) ((-2 . -1131) T) ((-3 . |UnionCategory|) T) ((-3 . -554) 48) ((-3 . -1015) T) ((-3 . -72) T) ((-3 . -1131) T) ((-1 . -1015) T) ((-1 . -554) 30) ((-1 . -1131) T) ((-1 . -13) T) ((-1 . -72) T))
\ No newline at end of file +((((-488)) . T)) +(((-1213 . -148) T) ((-1213 . -559) 203855) ((-1213 . -974) T) ((-1213 . -1029) T) ((-1213 . -1065) T) ((-1213 . -667) T) ((-1213 . -965) T) ((-1213 . -594) 203842) ((-1213 . -592) 203814) ((-1213 . -104) T) ((-1213 . -25) T) ((-1213 . -72) T) ((-1213 . -13) T) ((-1213 . -1133) T) ((-1213 . -556) 203796) ((-1213 . -1017) T) ((-1213 . -23) T) ((-1213 . -21) T) ((-1213 . -972) 203783) ((-1213 . -967) 203770) ((-1213 . -82) 203755) ((-1213 . -322) T) ((-1213 . -557) 203737) ((-1213 . -1070) T) ((-1209 . -1017) T) ((-1209 . -556) 203704) ((-1209 . -1133) T) ((-1209 . -13) T) ((-1209 . -72) T) ((-1209 . -433) 203686) ((-1209 . -559) 203668) ((-1208 . -1206) 203647) ((-1208 . -383) 203631) ((-1208 . -13) T) ((-1208 . -1133) T) ((-1208 . -954) 203608) ((-1208 . -559) 203557) ((-1208 . -965) T) ((-1208 . -667) T) ((-1208 . -1065) T) ((-1208 . -1029) T) ((-1208 . -974) T) ((-1208 . -21) T) ((-1208 . -592) 203516) ((-1208 . -23) T) ((-1208 . -1017) T) ((-1208 . -556) 203498) ((-1208 . -72) T) ((-1208 . -25) T) ((-1208 . -104) T) ((-1208 . -594) 203472) ((-1208 . -1198) 203456) ((-1208 . -658) 203426) ((-1208 . -586) 203396) ((-1208 . -972) 203380) ((-1208 . -967) 203364) ((-1208 . -82) 203343) ((-1208 . -38) 203313) ((-1208 . -1203) 203292) ((-1207 . -965) T) ((-1207 . -667) T) ((-1207 . -1065) T) ((-1207 . -1029) T) ((-1207 . -974) T) ((-1207 . -21) T) ((-1207 . -592) 203251) ((-1207 . -23) T) ((-1207 . -1017) T) ((-1207 . -556) 203233) ((-1207 . -1133) T) ((-1207 . -13) T) ((-1207 . -72) T) ((-1207 . -25) T) ((-1207 . -104) T) ((-1207 . -594) 203207) ((-1207 . -559) 203163) ((-1207 . -1198) 203147) ((-1207 . -658) 203117) ((-1207 . -586) 203087) ((-1207 . -972) 203071) ((-1207 . -967) 203055) ((-1207 . -82) 203034) ((-1207 . -38) 203004) ((-1207 . -337) 202983) ((-1207 . -954) 202967) ((-1207 . -383) 202951) ((-1205 . -1206) 202927) ((-1205 . -383) 202911) ((-1205 . -13) T) ((-1205 . -1133) T) ((-1205 . -954) 202885) ((-1205 . -559) 202831) ((-1205 . -965) T) ((-1205 . -667) T) ((-1205 . -1065) T) ((-1205 . -1029) T) ((-1205 . -974) T) ((-1205 . -21) T) ((-1205 . -592) 202790) ((-1205 . -23) T) ((-1205 . -1017) T) ((-1205 . -556) 202772) ((-1205 . -72) T) ((-1205 . -25) T) ((-1205 . -104) T) ((-1205 . -594) 202746) ((-1205 . -1198) 202730) ((-1205 . -658) 202700) ((-1205 . -586) 202670) ((-1205 . -972) 202654) ((-1205 . -967) 202638) ((-1205 . -82) 202617) ((-1205 . -38) 202587) ((-1205 . -1203) 202563) ((-1204 . -1206) 202542) ((-1204 . -383) 202526) ((-1204 . -13) T) ((-1204 . -1133) T) ((-1204 . -954) 202483) ((-1204 . -559) 202412) ((-1204 . -965) T) ((-1204 . -667) T) ((-1204 . -1065) T) ((-1204 . -1029) T) ((-1204 . -974) T) ((-1204 . -21) T) ((-1204 . -592) 202371) ((-1204 . -23) T) ((-1204 . -1017) T) ((-1204 . -556) 202353) ((-1204 . -72) T) ((-1204 . -25) T) ((-1204 . -104) T) ((-1204 . -594) 202327) ((-1204 . -1198) 202311) ((-1204 . -658) 202281) ((-1204 . -586) 202251) ((-1204 . -972) 202235) ((-1204 . -967) 202219) ((-1204 . -82) 202198) ((-1204 . -38) 202168) ((-1204 . -1203) 202147) ((-1204 . -337) 202119) ((-1199 . -337) 202091) ((-1199 . -559) 202040) ((-1199 . -954) 202017) ((-1199 . -586) 201987) ((-1199 . -658) 201957) ((-1199 . -383) 201941) ((-1199 . -594) 201915) ((-1199 . -592) 201874) ((-1199 . -104) T) ((-1199 . -25) T) ((-1199 . -72) T) ((-1199 . -13) T) ((-1199 . -1133) T) ((-1199 . -556) 201856) ((-1199 . -1017) T) ((-1199 . -23) T) ((-1199 . -21) T) ((-1199 . -972) 201840) ((-1199 . -967) 201824) ((-1199 . -82) 201803) ((-1199 . -1206) 201782) ((-1199 . -965) T) ((-1199 . -667) T) ((-1199 . -1065) T) ((-1199 . -1029) T) ((-1199 . -974) T) ((-1199 . -1198) 201766) ((-1199 . -38) 201736) ((-1199 . -1203) 201715) ((-1197 . -1128) 201684) ((-1197 . -1039) 201668) ((-1197 . -556) 201630) ((-1197 . -124) 201614) ((-1197 . -34) T) ((-1197 . -13) T) ((-1197 . -1133) T) ((-1197 . -72) T) ((-1197 . -262) 201552) ((-1197 . -459) 201485) ((-1197 . -383) 201469) ((-1197 . -1017) T) ((-1197 . -432) 201453) ((-1197 . -557) 201414) ((-1197 . -320) 201398) ((-1197 . -893) 201367) ((-1196 . -965) T) ((-1196 . -667) T) ((-1196 . -1065) T) ((-1196 . -1029) T) ((-1196 . -974) T) ((-1196 . -21) T) ((-1196 . -592) 201312) ((-1196 . -23) T) ((-1196 . -1017) T) ((-1196 . -556) 201281) ((-1196 . -1133) T) ((-1196 . -13) T) ((-1196 . -72) T) ((-1196 . -25) T) ((-1196 . -104) T) ((-1196 . -594) 201241) ((-1196 . -559) 201183) ((-1196 . -433) 201167) ((-1196 . -38) 201137) ((-1196 . -82) 201102) ((-1196 . -967) 201072) ((-1196 . -972) 201042) ((-1196 . -586) 201012) ((-1196 . -658) 200982) ((-1195 . -999) T) ((-1195 . -433) 200963) ((-1195 . -556) 200929) ((-1195 . -559) 200910) ((-1195 . -1017) T) ((-1195 . -1133) T) ((-1195 . -13) T) ((-1195 . -72) T) ((-1195 . -64) T) ((-1194 . -999) T) ((-1194 . -433) 200891) ((-1194 . -556) 200857) ((-1194 . -559) 200838) ((-1194 . -1017) T) ((-1194 . -1133) T) ((-1194 . -13) T) ((-1194 . -72) T) ((-1194 . -64) T) ((-1189 . -556) 200820) ((-1187 . -1017) T) ((-1187 . -556) 200802) ((-1187 . -1133) T) ((-1187 . -13) T) ((-1187 . -72) T) ((-1186 . -1017) T) ((-1186 . -556) 200784) ((-1186 . -1133) T) ((-1186 . -13) T) ((-1186 . -72) T) ((-1183 . -1182) 200768) ((-1183 . -326) 200752) ((-1183 . -763) 200731) ((-1183 . -760) 200710) ((-1183 . -124) 200694) ((-1183 . -557) 200655) ((-1183 . -243) 200607) ((-1183 . -542) 200584) ((-1183 . -245) 200561) ((-1183 . -597) 200545) ((-1183 . -432) 200529) ((-1183 . -1017) 200482) ((-1183 . -383) 200466) ((-1183 . -459) 200399) ((-1183 . -262) 200337) ((-1183 . -556) 200252) ((-1183 . -72) 200186) ((-1183 . -1133) T) ((-1183 . -13) T) ((-1183 . -34) T) ((-1183 . -320) 200170) ((-1183 . -1039) 200154) ((-1183 . -19) 200138) ((-1180 . -1017) T) ((-1180 . -556) 200104) ((-1180 . -1133) T) ((-1180 . -13) T) ((-1180 . -72) T) ((-1173 . -1176) 200088) ((-1173 . -192) 200047) ((-1173 . -559) 199929) ((-1173 . -594) 199854) ((-1173 . -592) 199764) ((-1173 . -104) T) ((-1173 . -25) T) ((-1173 . -72) T) ((-1173 . -556) 199746) ((-1173 . -1017) T) ((-1173 . -23) T) ((-1173 . -21) T) ((-1173 . -974) T) ((-1173 . -1029) T) ((-1173 . -1065) T) ((-1173 . -667) T) ((-1173 . -965) T) ((-1173 . -188) 199699) ((-1173 . -13) T) ((-1173 . -1133) T) ((-1173 . -191) 199658) ((-1173 . -243) 199623) ((-1173 . -813) 199536) ((-1173 . -810) 199424) ((-1173 . -815) 199337) ((-1173 . -890) 199307) ((-1173 . -38) 199204) ((-1173 . -82) 199069) ((-1173 . -967) 198955) ((-1173 . -972) 198841) ((-1173 . -586) 198738) ((-1173 . -658) 198635) ((-1173 . -118) 198614) ((-1173 . -120) 198593) ((-1173 . -148) 198547) ((-1173 . -383) 198531) ((-1173 . -499) 198510) ((-1173 . -248) 198489) ((-1173 . -47) 198466) ((-1173 . -1162) 198443) ((-1173 . -35) 198409) ((-1173 . -66) 198375) ((-1173 . -241) 198341) ((-1173 . -436) 198307) ((-1173 . -1122) 198273) ((-1173 . -1119) 198239) ((-1173 . -919) 198205) ((-1170 . -279) 198149) ((-1170 . -954) 198115) ((-1170 . -357) 198081) ((-1170 . -38) 197938) ((-1170 . -559) 197812) ((-1170 . -594) 197701) ((-1170 . -592) 197575) ((-1170 . -974) T) ((-1170 . -1029) T) ((-1170 . -1065) T) ((-1170 . -667) T) ((-1170 . -965) T) ((-1170 . -82) 197425) ((-1170 . -967) 197314) ((-1170 . -972) 197203) ((-1170 . -21) T) ((-1170 . -23) T) ((-1170 . -1017) T) ((-1170 . -556) 197185) ((-1170 . -1133) T) ((-1170 . -13) T) ((-1170 . -72) T) ((-1170 . -25) T) ((-1170 . -104) T) ((-1170 . -586) 197042) ((-1170 . -658) 196899) ((-1170 . -118) 196860) ((-1170 . -120) 196821) ((-1170 . -148) T) ((-1170 . -383) 196787) ((-1170 . -499) T) ((-1170 . -248) T) ((-1170 . -47) 196731) ((-1169 . -1168) 196710) ((-1169 . -314) 196689) ((-1169 . -1138) 196668) ((-1169 . -836) 196647) ((-1169 . -499) 196601) ((-1169 . -148) 196535) ((-1169 . -559) 196354) ((-1169 . -658) 196201) ((-1169 . -586) 196048) ((-1169 . -38) 195895) ((-1169 . -395) 195874) ((-1169 . -260) 195853) ((-1169 . -594) 195753) ((-1169 . -592) 195638) ((-1169 . -974) T) ((-1169 . -1029) T) ((-1169 . -1065) T) ((-1169 . -667) T) ((-1169 . -965) T) ((-1169 . -82) 195458) ((-1169 . -967) 195299) ((-1169 . -972) 195140) ((-1169 . -21) T) ((-1169 . -23) T) ((-1169 . -1017) T) ((-1169 . -556) 195122) ((-1169 . -1133) T) ((-1169 . -13) T) ((-1169 . -72) T) ((-1169 . -25) T) ((-1169 . -104) T) ((-1169 . -248) 195076) ((-1169 . -203) 195055) ((-1169 . -919) 195021) ((-1169 . -1119) 194987) ((-1169 . -1122) 194953) ((-1169 . -436) 194919) ((-1169 . -241) 194885) ((-1169 . -66) 194851) ((-1169 . -35) 194817) ((-1169 . -1162) 194787) ((-1169 . -47) 194757) ((-1169 . -383) 194741) ((-1169 . -120) 194720) ((-1169 . -118) 194699) ((-1169 . -890) 194662) ((-1169 . -815) 194568) ((-1169 . -810) 194472) ((-1169 . -813) 194378) ((-1169 . -243) 194336) ((-1169 . -191) 194288) ((-1169 . -188) 194234) ((-1169 . -192) 194186) ((-1169 . -1166) 194170) ((-1169 . -954) 194154) ((-1164 . -1168) 194115) ((-1164 . -314) 194094) ((-1164 . -1138) 194073) ((-1164 . -836) 194052) ((-1164 . -499) 194006) ((-1164 . -148) 193940) ((-1164 . -559) 193689) ((-1164 . -658) 193536) ((-1164 . -586) 193383) ((-1164 . -38) 193230) ((-1164 . -395) 193209) ((-1164 . -260) 193188) ((-1164 . -594) 193088) ((-1164 . -592) 192973) ((-1164 . -974) T) ((-1164 . -1029) T) ((-1164 . -1065) T) ((-1164 . -667) T) ((-1164 . -965) T) ((-1164 . -82) 192793) ((-1164 . -967) 192634) ((-1164 . -972) 192475) ((-1164 . -21) T) ((-1164 . -23) T) ((-1164 . -1017) T) ((-1164 . -556) 192457) ((-1164 . -1133) T) ((-1164 . -13) T) ((-1164 . -72) T) ((-1164 . -25) T) ((-1164 . -104) T) ((-1164 . -248) 192411) ((-1164 . -203) 192390) ((-1164 . -919) 192356) ((-1164 . -1119) 192322) ((-1164 . -1122) 192288) ((-1164 . -436) 192254) ((-1164 . -241) 192220) ((-1164 . -66) 192186) ((-1164 . -35) 192152) ((-1164 . -1162) 192122) ((-1164 . -47) 192092) ((-1164 . -383) 192076) ((-1164 . -120) 192055) ((-1164 . -118) 192034) ((-1164 . -890) 191997) ((-1164 . -815) 191903) ((-1164 . -810) 191784) ((-1164 . -813) 191690) ((-1164 . -243) 191648) ((-1164 . -191) 191600) ((-1164 . -188) 191546) ((-1164 . -192) 191498) ((-1164 . -1166) 191482) ((-1164 . -954) 191417) ((-1152 . -1159) 191401) ((-1152 . -1070) 191379) ((-1152 . -557) NIL) ((-1152 . -262) 191366) ((-1152 . -459) 191314) ((-1152 . -279) 191291) ((-1152 . -954) 191174) ((-1152 . -357) 191158) ((-1152 . -38) 190990) ((-1152 . -82) 190795) ((-1152 . -967) 190621) ((-1152 . -972) 190447) ((-1152 . -592) 190357) ((-1152 . -594) 190246) ((-1152 . -586) 190078) ((-1152 . -658) 189910) ((-1152 . -559) 189666) ((-1152 . -118) 189645) ((-1152 . -120) 189624) ((-1152 . -383) 189608) ((-1152 . -47) 189585) ((-1152 . -331) 189569) ((-1152 . -584) 189517) ((-1152 . -813) 189461) ((-1152 . -810) 189368) ((-1152 . -815) 189279) ((-1152 . -800) NIL) ((-1152 . -825) 189258) ((-1152 . -1138) 189237) ((-1152 . -865) 189207) ((-1152 . -836) 189186) ((-1152 . -499) 189100) ((-1152 . -248) 189014) ((-1152 . -148) 188908) ((-1152 . -395) 188842) ((-1152 . -260) 188821) ((-1152 . -243) 188748) ((-1152 . -192) T) ((-1152 . -104) T) ((-1152 . -25) T) ((-1152 . -72) T) ((-1152 . -556) 188730) ((-1152 . -1017) T) ((-1152 . -23) T) ((-1152 . -21) T) ((-1152 . -974) T) ((-1152 . -1029) T) ((-1152 . -1065) T) ((-1152 . -667) T) ((-1152 . -965) T) ((-1152 . -188) 188717) ((-1152 . -13) T) ((-1152 . -1133) T) ((-1152 . -191) T) ((-1152 . -227) 188701) ((-1152 . -186) 188685) ((-1150 . -1010) 188669) ((-1150 . -561) 188653) ((-1150 . -1017) 188631) ((-1150 . -556) 188598) ((-1150 . -1133) 188576) ((-1150 . -13) 188554) ((-1150 . -72) 188532) ((-1150 . -1011) 188489) ((-1148 . -1147) 188468) ((-1148 . -919) 188434) ((-1148 . -1119) 188400) ((-1148 . -1122) 188366) ((-1148 . -436) 188332) ((-1148 . -241) 188298) ((-1148 . -66) 188264) ((-1148 . -35) 188230) ((-1148 . -1162) 188207) ((-1148 . -47) 188184) ((-1148 . -383) 188141) ((-1148 . -559) 187896) ((-1148 . -658) 187716) ((-1148 . -586) 187536) ((-1148 . -594) 187347) ((-1148 . -592) 187205) ((-1148 . -972) 187019) ((-1148 . -967) 186833) ((-1148 . -82) 186621) ((-1148 . -38) 186441) ((-1148 . -890) 186411) ((-1148 . -243) 186311) ((-1148 . -1145) 186295) ((-1148 . -974) T) ((-1148 . -1029) T) ((-1148 . -1065) T) ((-1148 . -667) T) ((-1148 . -965) T) ((-1148 . -21) T) ((-1148 . -23) T) ((-1148 . -1017) T) ((-1148 . -556) 186277) ((-1148 . -1133) T) ((-1148 . -13) T) ((-1148 . -72) T) ((-1148 . -25) T) ((-1148 . -104) T) ((-1148 . -118) 186205) ((-1148 . -120) 186087) ((-1148 . -557) 185760) ((-1148 . -186) 185730) ((-1148 . -813) 185584) ((-1148 . -815) 185384) ((-1148 . -810) 185182) ((-1148 . -227) 185152) ((-1148 . -191) 185014) ((-1148 . -188) 184870) ((-1148 . -192) 184778) ((-1148 . -314) 184757) ((-1148 . -1138) 184736) ((-1148 . -836) 184715) ((-1148 . -499) 184669) ((-1148 . -148) 184603) ((-1148 . -395) 184582) ((-1148 . -260) 184561) ((-1148 . -248) 184515) ((-1148 . -203) 184494) ((-1148 . -290) 184464) ((-1148 . -459) 184324) ((-1148 . -262) 184263) ((-1148 . -331) 184233) ((-1148 . -584) 184141) ((-1148 . -345) 184111) ((-1148 . -800) 183984) ((-1148 . -744) 183937) ((-1148 . -718) 183890) ((-1148 . -720) 183843) ((-1148 . -760) 183745) ((-1148 . -763) 183647) ((-1148 . -722) 183600) ((-1148 . -725) 183553) ((-1148 . -759) 183506) ((-1148 . -798) 183476) ((-1148 . -825) 183429) ((-1148 . -937) 183382) ((-1148 . -954) 183171) ((-1148 . -1070) 183123) ((-1148 . -908) 183093) ((-1143 . -1147) 183054) ((-1143 . -919) 183020) ((-1143 . -1119) 182986) ((-1143 . -1122) 182952) ((-1143 . -436) 182918) ((-1143 . -241) 182884) ((-1143 . -66) 182850) ((-1143 . -35) 182816) ((-1143 . -1162) 182793) ((-1143 . -47) 182770) ((-1143 . -383) 182709) ((-1143 . -559) 182510) ((-1143 . -658) 182312) ((-1143 . -586) 182114) ((-1143 . -594) 181969) ((-1143 . -592) 181809) ((-1143 . -972) 181605) ((-1143 . -967) 181401) ((-1143 . -82) 181153) ((-1143 . -38) 180955) ((-1143 . -890) 180925) ((-1143 . -243) 180753) ((-1143 . -1145) 180737) ((-1143 . -974) T) ((-1143 . -1029) T) ((-1143 . -1065) T) ((-1143 . -667) T) ((-1143 . -965) T) ((-1143 . -21) T) ((-1143 . -23) T) ((-1143 . -1017) T) ((-1143 . -556) 180719) ((-1143 . -1133) T) ((-1143 . -13) T) ((-1143 . -72) T) ((-1143 . -25) T) ((-1143 . -104) T) ((-1143 . -118) 180629) ((-1143 . -120) 180539) ((-1143 . -557) NIL) ((-1143 . -186) 180491) ((-1143 . -813) 180327) ((-1143 . -815) 180091) ((-1143 . -810) 179830) ((-1143 . -227) 179782) ((-1143 . -191) 179608) ((-1143 . -188) 179428) ((-1143 . -192) 179318) ((-1143 . -314) 179297) ((-1143 . -1138) 179276) ((-1143 . -836) 179255) ((-1143 . -499) 179209) ((-1143 . -148) 179143) ((-1143 . -395) 179122) ((-1143 . -260) 179101) ((-1143 . -248) 179055) ((-1143 . -203) 179034) ((-1143 . -290) 178986) ((-1143 . -459) 178720) ((-1143 . -262) 178605) ((-1143 . -331) 178557) ((-1143 . -584) 178509) ((-1143 . -345) 178461) ((-1143 . -800) NIL) ((-1143 . -744) NIL) ((-1143 . -718) NIL) ((-1143 . -720) NIL) ((-1143 . -760) NIL) ((-1143 . -763) NIL) ((-1143 . -722) NIL) ((-1143 . -725) NIL) ((-1143 . -759) NIL) ((-1143 . -798) 178413) ((-1143 . -825) NIL) ((-1143 . -937) NIL) ((-1143 . -954) 178379) ((-1143 . -1070) NIL) ((-1143 . -908) 178331) ((-1142 . -756) T) ((-1142 . -763) T) ((-1142 . -760) T) ((-1142 . -1017) T) ((-1142 . -556) 178313) ((-1142 . -1133) T) ((-1142 . -13) T) ((-1142 . -72) T) ((-1142 . -322) T) ((-1142 . -608) T) ((-1141 . -756) T) ((-1141 . -763) T) ((-1141 . -760) T) ((-1141 . -1017) T) ((-1141 . -556) 178295) ((-1141 . -1133) T) ((-1141 . -13) T) ((-1141 . -72) T) ((-1141 . -322) T) ((-1141 . -608) T) ((-1140 . -756) T) ((-1140 . -763) T) ((-1140 . -760) T) ((-1140 . -1017) T) ((-1140 . -556) 178277) ((-1140 . -1133) T) ((-1140 . -13) T) ((-1140 . -72) T) ((-1140 . -322) T) ((-1140 . -608) T) ((-1139 . -756) T) ((-1139 . -763) T) ((-1139 . -760) T) ((-1139 . -1017) T) ((-1139 . -556) 178259) ((-1139 . -1133) T) ((-1139 . -13) T) ((-1139 . -72) T) ((-1139 . -322) T) ((-1139 . -608) T) ((-1134 . -999) T) ((-1134 . -433) 178240) ((-1134 . -556) 178206) ((-1134 . -559) 178187) ((-1134 . -1017) T) ((-1134 . -1133) T) ((-1134 . -13) T) ((-1134 . -72) T) ((-1134 . -64) T) ((-1131 . -433) 178164) ((-1131 . -556) 178105) ((-1131 . -559) 178082) ((-1131 . -1017) 178060) ((-1131 . -1133) 178038) ((-1131 . -13) 178016) ((-1131 . -72) 177994) ((-1126 . -683) 177970) ((-1126 . -35) 177936) ((-1126 . -66) 177902) ((-1126 . -241) 177868) ((-1126 . -436) 177834) ((-1126 . -1122) 177800) ((-1126 . -1119) 177766) ((-1126 . -919) 177732) ((-1126 . -47) 177701) ((-1126 . -38) 177598) ((-1126 . -586) 177495) ((-1126 . -658) 177392) ((-1126 . -559) 177274) ((-1126 . -248) 177253) ((-1126 . -499) 177232) ((-1126 . -383) 177216) ((-1126 . -82) 177081) ((-1126 . -967) 176967) ((-1126 . -972) 176853) ((-1126 . -148) 176807) ((-1126 . -120) 176786) ((-1126 . -118) 176765) ((-1126 . -594) 176690) ((-1126 . -592) 176600) ((-1126 . -890) 176561) ((-1126 . -815) 176542) ((-1126 . -1133) T) ((-1126 . -13) T) ((-1126 . -810) 176521) ((-1126 . -965) T) ((-1126 . -667) T) ((-1126 . -1065) T) ((-1126 . -1029) T) ((-1126 . -974) T) ((-1126 . -21) T) ((-1126 . -23) T) ((-1126 . -1017) T) ((-1126 . -556) 176503) ((-1126 . -72) T) ((-1126 . -25) T) ((-1126 . -104) T) ((-1126 . -813) 176484) ((-1126 . -459) 176451) ((-1126 . -262) 176438) ((-1120 . -927) 176422) ((-1120 . -34) T) ((-1120 . -13) T) ((-1120 . -1133) T) ((-1120 . -72) 176376) ((-1120 . -556) 176311) ((-1120 . -262) 176249) ((-1120 . -459) 176182) ((-1120 . -383) 176166) ((-1120 . -1017) 176144) ((-1120 . -432) 176128) ((-1120 . -320) 176112) ((-1120 . -1039) 176096) ((-1115 . -316) 176070) ((-1115 . -72) T) ((-1115 . -13) T) ((-1115 . -1133) T) ((-1115 . -556) 176052) ((-1115 . -1017) T) ((-1113 . -1017) T) ((-1113 . -556) 176034) ((-1113 . -1133) T) ((-1113 . -13) T) ((-1113 . -72) T) ((-1113 . -559) 176016) ((-1108 . -751) 176000) ((-1108 . -72) T) ((-1108 . -13) T) ((-1108 . -1133) T) ((-1108 . -556) 175982) ((-1108 . -1017) T) ((-1106 . -1111) 175961) ((-1106 . -185) 175909) ((-1106 . -76) 175857) ((-1106 . -1039) 175792) ((-1106 . -124) 175740) ((-1106 . -557) NIL) ((-1106 . -195) 175688) ((-1106 . -542) 175667) ((-1106 . -262) 175465) ((-1106 . -459) 175217) ((-1106 . -383) 175152) ((-1106 . -432) 175087) ((-1106 . -243) 175066) ((-1106 . -245) 175045) ((-1106 . -553) 175024) ((-1106 . -1017) T) ((-1106 . -556) 175006) ((-1106 . -72) T) ((-1106 . -1133) T) ((-1106 . -13) T) ((-1106 . -34) T) ((-1106 . -320) 174954) ((-1102 . -1017) T) ((-1102 . -556) 174936) ((-1102 . -1133) T) ((-1102 . -13) T) ((-1102 . -72) T) ((-1101 . -756) T) ((-1101 . -763) T) ((-1101 . -760) T) ((-1101 . -1017) T) ((-1101 . -556) 174918) ((-1101 . -1133) T) ((-1101 . -13) T) ((-1101 . -72) T) ((-1101 . -322) T) ((-1101 . -608) T) ((-1100 . -756) T) ((-1100 . -763) T) ((-1100 . -760) T) ((-1100 . -1017) T) ((-1100 . -556) 174900) ((-1100 . -1133) T) ((-1100 . -13) T) ((-1100 . -72) T) ((-1100 . -322) T) ((-1099 . -1179) T) ((-1099 . -1017) T) ((-1099 . -556) 174867) ((-1099 . -1133) T) ((-1099 . -13) T) ((-1099 . -72) T) ((-1099 . -954) 174803) ((-1099 . -559) 174739) ((-1098 . -556) 174721) ((-1097 . -556) 174703) ((-1096 . -279) 174680) ((-1096 . -954) 174578) ((-1096 . -357) 174562) ((-1096 . -38) 174459) ((-1096 . -559) 174316) ((-1096 . -594) 174241) ((-1096 . -592) 174151) ((-1096 . -974) T) ((-1096 . -1029) T) ((-1096 . -1065) T) ((-1096 . -667) T) ((-1096 . -965) T) ((-1096 . -82) 174016) ((-1096 . -967) 173902) ((-1096 . -972) 173788) ((-1096 . -21) T) ((-1096 . -23) T) ((-1096 . -1017) T) ((-1096 . -556) 173770) ((-1096 . -1133) T) ((-1096 . -13) T) ((-1096 . -72) T) ((-1096 . -25) T) ((-1096 . -104) T) ((-1096 . -586) 173667) ((-1096 . -658) 173564) ((-1096 . -118) 173543) ((-1096 . -120) 173522) ((-1096 . -148) 173476) ((-1096 . -383) 173460) ((-1096 . -499) 173439) ((-1096 . -248) 173418) ((-1096 . -47) 173395) ((-1094 . -760) T) ((-1094 . -556) 173377) ((-1094 . -1017) T) ((-1094 . -72) T) ((-1094 . -13) T) ((-1094 . -1133) T) ((-1094 . -763) T) ((-1094 . -557) 173299) ((-1094 . -559) 173265) ((-1094 . -954) 173247) ((-1094 . -800) 173214) ((-1093 . -1176) 173198) ((-1093 . -192) 173157) ((-1093 . -559) 173039) ((-1093 . -594) 172964) ((-1093 . -592) 172874) ((-1093 . -104) T) ((-1093 . -25) T) ((-1093 . -72) T) ((-1093 . -556) 172856) ((-1093 . -1017) T) ((-1093 . -23) T) ((-1093 . -21) T) ((-1093 . -974) T) ((-1093 . -1029) T) ((-1093 . -1065) T) ((-1093 . -667) T) ((-1093 . -965) T) ((-1093 . -188) 172809) ((-1093 . -13) T) ((-1093 . -1133) T) ((-1093 . -191) 172768) ((-1093 . -243) 172733) ((-1093 . -813) 172646) ((-1093 . -810) 172534) ((-1093 . -815) 172447) ((-1093 . -890) 172417) ((-1093 . -38) 172314) ((-1093 . -82) 172179) ((-1093 . -967) 172065) ((-1093 . -972) 171951) ((-1093 . -586) 171848) ((-1093 . -658) 171745) ((-1093 . -118) 171724) ((-1093 . -120) 171703) ((-1093 . -148) 171657) ((-1093 . -383) 171641) ((-1093 . -499) 171620) ((-1093 . -248) 171599) ((-1093 . -47) 171576) ((-1093 . -1162) 171553) ((-1093 . -35) 171519) ((-1093 . -66) 171485) ((-1093 . -241) 171451) ((-1093 . -436) 171417) ((-1093 . -1122) 171383) ((-1093 . -1119) 171349) ((-1093 . -919) 171315) ((-1092 . -1168) 171276) ((-1092 . -314) 171255) ((-1092 . -1138) 171234) ((-1092 . -836) 171213) ((-1092 . -499) 171167) ((-1092 . -148) 171101) ((-1092 . -559) 170850) ((-1092 . -658) 170697) ((-1092 . -586) 170544) ((-1092 . -38) 170391) ((-1092 . -395) 170370) ((-1092 . -260) 170349) ((-1092 . -594) 170249) ((-1092 . -592) 170134) ((-1092 . -974) T) ((-1092 . -1029) T) ((-1092 . -1065) T) ((-1092 . -667) T) ((-1092 . -965) T) ((-1092 . -82) 169954) ((-1092 . -967) 169795) ((-1092 . -972) 169636) ((-1092 . -21) T) ((-1092 . -23) T) ((-1092 . -1017) T) ((-1092 . -556) 169618) ((-1092 . -1133) T) ((-1092 . -13) T) ((-1092 . -72) T) ((-1092 . -25) T) ((-1092 . -104) T) ((-1092 . -248) 169572) ((-1092 . -203) 169551) ((-1092 . -919) 169517) ((-1092 . -1119) 169483) ((-1092 . -1122) 169449) ((-1092 . -436) 169415) ((-1092 . -241) 169381) ((-1092 . -66) 169347) ((-1092 . -35) 169313) ((-1092 . -1162) 169283) ((-1092 . -47) 169253) ((-1092 . -383) 169237) ((-1092 . -120) 169216) ((-1092 . -118) 169195) ((-1092 . -890) 169158) ((-1092 . -815) 169064) ((-1092 . -810) 168945) ((-1092 . -813) 168851) ((-1092 . -243) 168809) ((-1092 . -191) 168761) ((-1092 . -188) 168707) ((-1092 . -192) 168659) ((-1092 . -1166) 168643) ((-1092 . -954) 168578) ((-1089 . -1159) 168562) ((-1089 . -1070) 168540) ((-1089 . -557) NIL) ((-1089 . -262) 168527) ((-1089 . -459) 168475) ((-1089 . -279) 168452) ((-1089 . -954) 168335) ((-1089 . -357) 168319) ((-1089 . -38) 168151) ((-1089 . -82) 167956) ((-1089 . -967) 167782) ((-1089 . -972) 167608) ((-1089 . -592) 167518) ((-1089 . -594) 167407) ((-1089 . -586) 167239) ((-1089 . -658) 167071) ((-1089 . -559) 166848) ((-1089 . -118) 166827) ((-1089 . -120) 166806) ((-1089 . -383) 166790) ((-1089 . -47) 166767) ((-1089 . -331) 166751) ((-1089 . -584) 166699) ((-1089 . -813) 166643) ((-1089 . -810) 166550) ((-1089 . -815) 166461) ((-1089 . -800) NIL) ((-1089 . -825) 166440) ((-1089 . -1138) 166419) ((-1089 . -865) 166389) ((-1089 . -836) 166368) ((-1089 . -499) 166282) ((-1089 . -248) 166196) ((-1089 . -148) 166090) ((-1089 . -395) 166024) ((-1089 . -260) 166003) ((-1089 . -243) 165930) ((-1089 . -192) T) ((-1089 . -104) T) ((-1089 . -25) T) ((-1089 . -72) T) ((-1089 . -556) 165912) ((-1089 . -1017) T) ((-1089 . -23) T) ((-1089 . -21) T) ((-1089 . -974) T) ((-1089 . -1029) T) ((-1089 . -1065) T) ((-1089 . -667) T) ((-1089 . -965) T) ((-1089 . -188) 165899) ((-1089 . -13) T) ((-1089 . -1133) T) ((-1089 . -191) T) ((-1089 . -227) 165883) ((-1089 . -186) 165867) ((-1086 . -1147) 165828) ((-1086 . -919) 165794) ((-1086 . -1119) 165760) ((-1086 . -1122) 165726) ((-1086 . -436) 165692) ((-1086 . -241) 165658) ((-1086 . -66) 165624) ((-1086 . -35) 165590) ((-1086 . -1162) 165567) ((-1086 . -47) 165544) ((-1086 . -383) 165483) ((-1086 . -559) 165284) ((-1086 . -658) 165086) ((-1086 . -586) 164888) ((-1086 . -594) 164743) ((-1086 . -592) 164583) ((-1086 . -972) 164379) ((-1086 . -967) 164175) ((-1086 . -82) 163927) ((-1086 . -38) 163729) ((-1086 . -890) 163699) ((-1086 . -243) 163527) ((-1086 . -1145) 163511) ((-1086 . -974) T) ((-1086 . -1029) T) ((-1086 . -1065) T) ((-1086 . -667) T) ((-1086 . -965) T) ((-1086 . -21) T) ((-1086 . -23) T) ((-1086 . -1017) T) ((-1086 . -556) 163493) ((-1086 . -1133) T) ((-1086 . -13) T) ((-1086 . -72) T) ((-1086 . -25) T) ((-1086 . -104) T) ((-1086 . -118) 163403) ((-1086 . -120) 163313) ((-1086 . -557) NIL) ((-1086 . -186) 163265) ((-1086 . -813) 163101) ((-1086 . -815) 162865) ((-1086 . -810) 162604) ((-1086 . -227) 162556) ((-1086 . -191) 162382) ((-1086 . -188) 162202) ((-1086 . -192) 162092) ((-1086 . -314) 162071) ((-1086 . -1138) 162050) ((-1086 . -836) 162029) ((-1086 . -499) 161983) ((-1086 . -148) 161917) ((-1086 . -395) 161896) ((-1086 . -260) 161875) ((-1086 . -248) 161829) ((-1086 . -203) 161808) ((-1086 . -290) 161760) ((-1086 . -459) 161494) ((-1086 . -262) 161379) ((-1086 . -331) 161331) ((-1086 . -584) 161283) ((-1086 . -345) 161235) ((-1086 . -800) NIL) ((-1086 . -744) NIL) ((-1086 . -718) NIL) ((-1086 . -720) NIL) ((-1086 . -760) NIL) ((-1086 . -763) NIL) ((-1086 . -722) NIL) ((-1086 . -725) NIL) ((-1086 . -759) NIL) ((-1086 . -798) 161187) ((-1086 . -825) NIL) ((-1086 . -937) NIL) ((-1086 . -954) 161153) ((-1086 . -1070) NIL) ((-1086 . -908) 161105) ((-1085 . -999) T) ((-1085 . -433) 161086) ((-1085 . -556) 161052) ((-1085 . -559) 161033) ((-1085 . -1017) T) ((-1085 . -1133) T) ((-1085 . -13) T) ((-1085 . -72) T) ((-1085 . -64) T) ((-1084 . -1017) T) ((-1084 . -556) 161015) ((-1084 . -1133) T) ((-1084 . -13) T) ((-1084 . -72) T) ((-1083 . -1017) T) ((-1083 . -556) 160997) ((-1083 . -1133) T) ((-1083 . -13) T) ((-1083 . -72) T) ((-1078 . -1111) 160973) ((-1078 . -185) 160918) ((-1078 . -76) 160863) ((-1078 . -1039) 160795) ((-1078 . -124) 160740) ((-1078 . -557) NIL) ((-1078 . -195) 160685) ((-1078 . -542) 160661) ((-1078 . -262) 160450) ((-1078 . -459) 160190) ((-1078 . -383) 160122) ((-1078 . -432) 160054) ((-1078 . -243) 160030) ((-1078 . -245) 160006) ((-1078 . -553) 159982) ((-1078 . -1017) T) ((-1078 . -556) 159964) ((-1078 . -72) T) ((-1078 . -1133) T) ((-1078 . -13) T) ((-1078 . -34) T) ((-1078 . -320) 159909) ((-1077 . -1062) T) ((-1077 . -326) 159891) ((-1077 . -763) T) ((-1077 . -760) T) ((-1077 . -124) 159873) ((-1077 . -557) NIL) ((-1077 . -243) 159823) ((-1077 . -542) 159798) ((-1077 . -245) 159773) ((-1077 . -597) 159755) ((-1077 . -432) 159737) ((-1077 . -1017) T) ((-1077 . -383) 159719) ((-1077 . -459) NIL) ((-1077 . -262) NIL) ((-1077 . -556) 159701) ((-1077 . -72) T) ((-1077 . -1133) T) ((-1077 . -13) T) ((-1077 . -34) T) ((-1077 . -320) 159683) ((-1077 . -1039) 159665) ((-1077 . -19) 159647) ((-1073 . -620) 159631) ((-1073 . -597) 159615) ((-1073 . -245) 159592) ((-1073 . -243) 159544) ((-1073 . -542) 159521) ((-1073 . -557) 159482) ((-1073 . -432) 159466) ((-1073 . -1017) 159444) ((-1073 . -383) 159428) ((-1073 . -459) 159361) ((-1073 . -262) 159299) ((-1073 . -556) 159234) ((-1073 . -72) 159188) ((-1073 . -1133) T) ((-1073 . -13) T) ((-1073 . -34) T) ((-1073 . -124) 159172) ((-1073 . -1172) 159156) ((-1073 . -927) 159140) ((-1073 . -1068) 159124) ((-1073 . -559) 159101) ((-1073 . -1039) 159085) ((-1071 . -999) T) ((-1071 . -433) 159066) ((-1071 . -556) 159032) ((-1071 . -559) 159013) ((-1071 . -1017) T) ((-1071 . -1133) T) ((-1071 . -13) T) ((-1071 . -72) T) ((-1071 . -64) T) ((-1069 . -1111) 158992) ((-1069 . -185) 158940) ((-1069 . -76) 158888) ((-1069 . -1039) 158823) ((-1069 . -124) 158771) ((-1069 . -557) NIL) ((-1069 . -195) 158719) ((-1069 . -542) 158698) ((-1069 . -262) 158496) ((-1069 . -459) 158248) ((-1069 . -383) 158183) ((-1069 . -432) 158118) ((-1069 . -243) 158097) ((-1069 . -245) 158076) ((-1069 . -553) 158055) ((-1069 . -1017) T) ((-1069 . -556) 158037) ((-1069 . -72) T) ((-1069 . -1133) T) ((-1069 . -13) T) ((-1069 . -34) T) ((-1069 . -320) 157985) ((-1066 . -1038) 157969) ((-1066 . -320) 157953) ((-1066 . -432) 157937) ((-1066 . -1017) 157915) ((-1066 . -383) 157899) ((-1066 . -459) 157832) ((-1066 . -262) 157770) ((-1066 . -556) 157705) ((-1066 . -72) 157659) ((-1066 . -1133) T) ((-1066 . -13) T) ((-1066 . -34) T) ((-1066 . -1039) 157643) ((-1066 . -76) 157627) ((-1064 . -1024) 157596) ((-1064 . -1128) 157565) ((-1064 . -1039) 157549) ((-1064 . -556) 157511) ((-1064 . -124) 157495) ((-1064 . -34) T) ((-1064 . -13) T) ((-1064 . -1133) T) ((-1064 . -72) T) ((-1064 . -262) 157433) ((-1064 . -459) 157366) ((-1064 . -383) 157350) ((-1064 . -1017) T) ((-1064 . -432) 157334) ((-1064 . -557) 157295) ((-1064 . -320) 157279) ((-1064 . -893) 157248) ((-1064 . -987) 157217) ((-1060 . -1041) 157162) ((-1060 . -320) 157146) ((-1060 . -34) T) ((-1060 . -262) 157084) ((-1060 . -459) 157017) ((-1060 . -383) 157001) ((-1060 . -432) 156985) ((-1060 . -969) 156925) ((-1060 . -954) 156823) ((-1060 . -559) 156742) ((-1060 . -357) 156726) ((-1060 . -584) 156674) ((-1060 . -594) 156612) ((-1060 . -331) 156596) ((-1060 . -192) 156575) ((-1060 . -188) 156523) ((-1060 . -191) 156477) ((-1060 . -227) 156461) ((-1060 . -810) 156385) ((-1060 . -815) 156311) ((-1060 . -813) 156270) ((-1060 . -186) 156254) ((-1060 . -658) 156189) ((-1060 . -586) 156124) ((-1060 . -592) 156083) ((-1060 . -104) T) ((-1060 . -25) T) ((-1060 . -72) T) ((-1060 . -13) T) ((-1060 . -1133) T) ((-1060 . -556) 156045) ((-1060 . -1017) T) ((-1060 . -23) T) ((-1060 . -21) T) ((-1060 . -972) 156029) ((-1060 . -967) 156013) ((-1060 . -82) 155992) ((-1060 . -965) T) ((-1060 . -667) T) ((-1060 . -1065) T) ((-1060 . -1029) T) ((-1060 . -974) T) ((-1060 . -38) 155952) ((-1060 . -557) 155913) ((-1059 . -927) 155884) ((-1059 . -34) T) ((-1059 . -13) T) ((-1059 . -1133) T) ((-1059 . -72) T) ((-1059 . -556) 155866) ((-1059 . -262) 155792) ((-1059 . -459) 155700) ((-1059 . -383) 155671) ((-1059 . -1017) T) ((-1059 . -432) 155642) ((-1059 . -320) 155613) ((-1059 . -1039) 155584) ((-1058 . -1017) T) ((-1058 . -556) 155566) ((-1058 . -1133) T) ((-1058 . -13) T) ((-1058 . -72) T) ((-1053 . -1055) T) ((-1053 . -1179) T) ((-1053 . -64) T) ((-1053 . -72) T) ((-1053 . -13) T) ((-1053 . -1133) T) ((-1053 . -556) 155532) ((-1053 . -1017) T) ((-1053 . -559) 155513) ((-1053 . -433) 155494) ((-1053 . -999) T) ((-1051 . -1052) 155478) ((-1051 . -72) T) ((-1051 . -13) T) ((-1051 . -1133) T) ((-1051 . -556) 155460) ((-1051 . -1017) T) ((-1044 . -683) 155439) ((-1044 . -35) 155405) ((-1044 . -66) 155371) ((-1044 . -241) 155337) ((-1044 . -436) 155303) ((-1044 . -1122) 155269) ((-1044 . -1119) 155235) ((-1044 . -919) 155201) ((-1044 . -47) 155173) ((-1044 . -38) 155070) ((-1044 . -586) 154967) ((-1044 . -658) 154864) ((-1044 . -559) 154746) ((-1044 . -248) 154725) ((-1044 . -499) 154704) ((-1044 . -383) 154688) ((-1044 . -82) 154553) ((-1044 . -967) 154439) ((-1044 . -972) 154325) ((-1044 . -148) 154279) ((-1044 . -120) 154258) ((-1044 . -118) 154237) ((-1044 . -594) 154162) ((-1044 . -592) 154072) ((-1044 . -890) 154039) ((-1044 . -815) 154023) ((-1044 . -1133) T) ((-1044 . -13) T) ((-1044 . -810) 154005) ((-1044 . -965) T) ((-1044 . -667) T) ((-1044 . -1065) T) ((-1044 . -1029) T) ((-1044 . -974) T) ((-1044 . -21) T) ((-1044 . -23) T) ((-1044 . -1017) T) ((-1044 . -556) 153987) ((-1044 . -72) T) ((-1044 . -25) T) ((-1044 . -104) T) ((-1044 . -813) 153971) ((-1044 . -459) 153941) ((-1044 . -262) 153928) ((-1043 . -865) 153895) ((-1043 . -559) 153694) ((-1043 . -954) 153579) ((-1043 . -1138) 153558) ((-1043 . -825) 153537) ((-1043 . -800) 153396) ((-1043 . -815) 153380) ((-1043 . -810) 153362) ((-1043 . -813) 153346) ((-1043 . -459) 153298) ((-1043 . -395) 153252) ((-1043 . -584) 153200) ((-1043 . -594) 153089) ((-1043 . -331) 153073) ((-1043 . -47) 153045) ((-1043 . -38) 152897) ((-1043 . -586) 152749) ((-1043 . -658) 152601) ((-1043 . -248) 152535) ((-1043 . -499) 152469) ((-1043 . -383) 152453) ((-1043 . -82) 152278) ((-1043 . -967) 152124) ((-1043 . -972) 151970) ((-1043 . -148) 151884) ((-1043 . -120) 151863) ((-1043 . -118) 151842) ((-1043 . -592) 151752) ((-1043 . -104) T) ((-1043 . -25) T) ((-1043 . -72) T) ((-1043 . -13) T) ((-1043 . -1133) T) ((-1043 . -556) 151734) ((-1043 . -1017) T) ((-1043 . -23) T) ((-1043 . -21) T) ((-1043 . -965) T) ((-1043 . -667) T) ((-1043 . -1065) T) ((-1043 . -1029) T) ((-1043 . -974) T) ((-1043 . -357) 151718) ((-1043 . -279) 151690) ((-1043 . -262) 151677) ((-1043 . -557) 151425) ((-1037 . -487) T) ((-1037 . -1138) T) ((-1037 . -1070) T) ((-1037 . -954) 151407) ((-1037 . -557) 151322) ((-1037 . -937) T) ((-1037 . -800) 151304) ((-1037 . -759) T) ((-1037 . -725) T) ((-1037 . -722) T) ((-1037 . -763) T) ((-1037 . -760) T) ((-1037 . -720) T) ((-1037 . -718) T) ((-1037 . -744) T) ((-1037 . -594) 151276) ((-1037 . -584) 151258) ((-1037 . -836) T) ((-1037 . -499) T) ((-1037 . -248) T) ((-1037 . -148) T) ((-1037 . -559) 151230) ((-1037 . -658) 151217) ((-1037 . -586) 151204) ((-1037 . -972) 151191) ((-1037 . -967) 151178) ((-1037 . -82) 151163) ((-1037 . -38) 151150) ((-1037 . -395) T) ((-1037 . -260) T) ((-1037 . -191) T) ((-1037 . -188) 151137) ((-1037 . -192) T) ((-1037 . -116) T) ((-1037 . -965) T) ((-1037 . -667) T) ((-1037 . -1065) T) ((-1037 . -1029) T) ((-1037 . -974) T) ((-1037 . -21) T) ((-1037 . -592) 151109) ((-1037 . -23) T) ((-1037 . -1017) T) ((-1037 . -556) 151091) ((-1037 . -1133) T) ((-1037 . -13) T) ((-1037 . -72) T) ((-1037 . -25) T) ((-1037 . -104) T) ((-1037 . -120) T) ((-1037 . -756) T) ((-1037 . -322) T) ((-1037 . -84) T) ((-1037 . -608) T) ((-1033 . -999) T) ((-1033 . -433) 151072) ((-1033 . -556) 151038) ((-1033 . -559) 151019) ((-1033 . -1017) T) ((-1033 . -1133) T) ((-1033 . -13) T) ((-1033 . -72) T) ((-1033 . -64) T) ((-1032 . -1017) T) ((-1032 . -556) 151001) ((-1032 . -1133) T) ((-1032 . -13) T) ((-1032 . -72) T) ((-1030 . -198) 150980) ((-1030 . -1191) 150950) ((-1030 . -725) 150929) ((-1030 . -722) 150908) ((-1030 . -763) 150862) ((-1030 . -760) 150816) ((-1030 . -720) 150795) ((-1030 . -721) 150774) ((-1030 . -658) 150719) ((-1030 . -586) 150644) ((-1030 . -245) 150621) ((-1030 . -243) 150598) ((-1030 . -542) 150575) ((-1030 . -954) 150404) ((-1030 . -559) 150208) ((-1030 . -357) 150177) ((-1030 . -584) 150085) ((-1030 . -594) 149924) ((-1030 . -331) 149894) ((-1030 . -432) 149878) ((-1030 . -383) 149862) ((-1030 . -459) 149795) ((-1030 . -262) 149733) ((-1030 . -34) T) ((-1030 . -320) 149717) ((-1030 . -322) 149696) ((-1030 . -192) 149649) ((-1030 . -592) 149437) ((-1030 . -974) 149416) ((-1030 . -1029) 149395) ((-1030 . -1065) 149374) ((-1030 . -667) 149353) ((-1030 . -965) 149332) ((-1030 . -188) 149228) ((-1030 . -191) 149130) ((-1030 . -227) 149100) ((-1030 . -810) 148972) ((-1030 . -815) 148846) ((-1030 . -813) 148779) ((-1030 . -186) 148749) ((-1030 . -556) 148446) ((-1030 . -972) 148371) ((-1030 . -967) 148276) ((-1030 . -82) 148196) ((-1030 . -104) 148071) ((-1030 . -25) 147908) ((-1030 . -72) 147645) ((-1030 . -13) T) ((-1030 . -1133) T) ((-1030 . -1017) 147401) ((-1030 . -23) 147257) ((-1030 . -21) 147172) ((-1026 . -1027) 147156) ((-1026 . |MappingCategory|) 147130) ((-1026 . -1133) T) ((-1026 . -80) 147114) ((-1026 . -1017) T) ((-1026 . -556) 147096) ((-1026 . -13) T) ((-1026 . -72) T) ((-1021 . -1020) 147060) ((-1021 . -72) T) ((-1021 . -556) 147042) ((-1021 . -1017) T) ((-1021 . -243) 146998) ((-1021 . -1133) T) ((-1021 . -13) T) ((-1021 . -561) 146913) ((-1019 . -1020) 146865) ((-1019 . -72) T) ((-1019 . -556) 146847) ((-1019 . -1017) T) ((-1019 . -243) 146803) ((-1019 . -1133) T) ((-1019 . -13) T) ((-1019 . -561) 146706) ((-1018 . -322) T) ((-1018 . -72) T) ((-1018 . -13) T) ((-1018 . -1133) T) ((-1018 . -556) 146688) ((-1018 . -1017) T) ((-1013 . -371) 146672) ((-1013 . -1015) 146656) ((-1013 . -320) 146640) ((-1013 . -322) 146619) ((-1013 . -195) 146603) ((-1013 . -557) 146564) ((-1013 . -124) 146548) ((-1013 . -432) 146532) ((-1013 . -1017) T) ((-1013 . -383) 146516) ((-1013 . -459) 146449) ((-1013 . -262) 146387) ((-1013 . -556) 146369) ((-1013 . -72) T) ((-1013 . -1133) T) ((-1013 . -13) T) ((-1013 . -34) T) ((-1013 . -1039) 146353) ((-1013 . -76) 146337) ((-1013 . -185) 146321) ((-1012 . -999) T) ((-1012 . -433) 146302) ((-1012 . -556) 146268) ((-1012 . -559) 146249) ((-1012 . -1017) T) ((-1012 . -1133) T) ((-1012 . -13) T) ((-1012 . -72) T) ((-1012 . -64) T) ((-1008 . -1133) T) ((-1008 . -13) T) ((-1008 . -1017) 146219) ((-1008 . -556) 146178) ((-1008 . -72) 146148) ((-1007 . -999) T) ((-1007 . -433) 146129) ((-1007 . -556) 146095) ((-1007 . -559) 146076) ((-1007 . -1017) T) ((-1007 . -1133) T) ((-1007 . -13) T) ((-1007 . -72) T) ((-1007 . -64) T) ((-1005 . -1010) 146060) ((-1005 . -561) 146044) ((-1005 . -1017) 146022) ((-1005 . -556) 145989) ((-1005 . -1133) 145967) ((-1005 . -13) 145945) ((-1005 . -72) 145923) ((-1005 . -1011) 145881) ((-1004 . -230) 145865) ((-1004 . -559) 145849) ((-1004 . -954) 145833) ((-1004 . -763) T) ((-1004 . -72) T) ((-1004 . -1017) T) ((-1004 . -556) 145815) ((-1004 . -760) T) ((-1004 . -188) 145802) ((-1004 . -13) T) ((-1004 . -1133) T) ((-1004 . -191) T) ((-1003 . -215) 145739) ((-1003 . -559) 145482) ((-1003 . -954) 145311) ((-1003 . -557) NIL) ((-1003 . -279) 145272) ((-1003 . -357) 145256) ((-1003 . -38) 145108) ((-1003 . -82) 144933) ((-1003 . -967) 144779) ((-1003 . -972) 144625) ((-1003 . -592) 144535) ((-1003 . -594) 144424) ((-1003 . -586) 144276) ((-1003 . -658) 144128) ((-1003 . -118) 144107) ((-1003 . -120) 144086) ((-1003 . -148) 144000) ((-1003 . -383) 143984) ((-1003 . -499) 143918) ((-1003 . -248) 143852) ((-1003 . -47) 143813) ((-1003 . -331) 143797) ((-1003 . -584) 143745) ((-1003 . -395) 143699) ((-1003 . -459) 143562) ((-1003 . -813) 143497) ((-1003 . -810) 143395) ((-1003 . -815) 143297) ((-1003 . -800) NIL) ((-1003 . -825) 143276) ((-1003 . -1138) 143255) ((-1003 . -865) 143200) ((-1003 . -262) 143187) ((-1003 . -192) 143166) ((-1003 . -104) T) ((-1003 . -25) T) ((-1003 . -72) T) ((-1003 . -556) 143148) ((-1003 . -1017) T) ((-1003 . -23) T) ((-1003 . -21) T) ((-1003 . -974) T) ((-1003 . -1029) T) ((-1003 . -1065) T) ((-1003 . -667) T) ((-1003 . -965) T) ((-1003 . -188) 143096) ((-1003 . -13) T) ((-1003 . -1133) T) ((-1003 . -191) 143050) ((-1003 . -227) 143034) ((-1003 . -186) 143018) ((-1001 . -556) 143000) ((-998 . -760) T) ((-998 . -556) 142982) ((-998 . -1017) T) ((-998 . -72) T) ((-998 . -13) T) ((-998 . -1133) T) ((-998 . -763) T) ((-998 . -557) 142963) ((-995 . -665) 142942) ((-995 . -954) 142840) ((-995 . -357) 142824) ((-995 . -584) 142772) ((-995 . -594) 142649) ((-995 . -331) 142633) ((-995 . -324) 142612) ((-995 . -120) 142591) ((-995 . -559) 142416) ((-995 . -658) 142290) ((-995 . -586) 142164) ((-995 . -592) 142062) ((-995 . -972) 141975) ((-995 . -967) 141888) ((-995 . -82) 141780) ((-995 . -38) 141654) ((-995 . -355) 141633) ((-995 . -347) 141612) ((-995 . -118) 141566) ((-995 . -1070) 141545) ((-995 . -301) 141524) ((-995 . -322) 141478) ((-995 . -203) 141432) ((-995 . -248) 141386) ((-995 . -260) 141340) ((-995 . -395) 141294) ((-995 . -499) 141248) ((-995 . -836) 141202) ((-995 . -1138) 141156) ((-995 . -314) 141110) ((-995 . -192) 141038) ((-995 . -188) 140914) ((-995 . -191) 140796) ((-995 . -227) 140766) ((-995 . -810) 140638) ((-995 . -815) 140512) ((-995 . -813) 140445) ((-995 . -186) 140415) ((-995 . -557) 140399) ((-995 . -21) T) ((-995 . -23) T) ((-995 . -1017) T) ((-995 . -556) 140381) ((-995 . -1133) T) ((-995 . -13) T) ((-995 . -72) T) ((-995 . -25) T) ((-995 . -104) T) ((-995 . -965) T) ((-995 . -667) T) ((-995 . -1065) T) ((-995 . -1029) T) ((-995 . -974) T) ((-995 . -148) T) ((-993 . -1017) T) ((-993 . -556) 140363) ((-993 . -1133) T) ((-993 . -13) T) ((-993 . -72) T) ((-993 . -243) 140342) ((-992 . -1017) T) ((-992 . -556) 140324) ((-992 . -1133) T) ((-992 . -13) T) ((-992 . -72) T) ((-991 . -1017) T) ((-991 . -556) 140306) ((-991 . -1133) T) ((-991 . -13) T) ((-991 . -72) T) ((-991 . -243) 140285) ((-991 . -954) 140262) ((-991 . -559) 140239) ((-990 . -1133) T) ((-990 . -13) T) ((-989 . -999) T) ((-989 . -433) 140220) ((-989 . -556) 140186) ((-989 . -559) 140167) ((-989 . -1017) T) ((-989 . -1133) T) ((-989 . -13) T) ((-989 . -72) T) ((-989 . -64) T) ((-982 . -999) T) ((-982 . -433) 140148) ((-982 . -556) 140114) ((-982 . -559) 140095) ((-982 . -1017) T) ((-982 . -1133) T) ((-982 . -13) T) ((-982 . -72) T) ((-982 . -64) T) ((-979 . -487) T) ((-979 . -1138) T) ((-979 . -1070) T) ((-979 . -954) 140077) ((-979 . -557) 139992) ((-979 . -937) T) ((-979 . -800) 139974) ((-979 . -759) T) ((-979 . -725) T) ((-979 . -722) T) ((-979 . -763) T) ((-979 . -760) T) ((-979 . -720) T) ((-979 . -718) T) ((-979 . -744) T) ((-979 . -594) 139946) ((-979 . -584) 139928) ((-979 . -836) T) ((-979 . -499) T) ((-979 . -248) T) ((-979 . -148) T) ((-979 . -559) 139900) ((-979 . -658) 139887) ((-979 . -586) 139874) ((-979 . -972) 139861) ((-979 . -967) 139848) ((-979 . -82) 139833) ((-979 . -38) 139820) ((-979 . -395) T) ((-979 . -260) T) ((-979 . -191) T) ((-979 . -188) 139807) ((-979 . -192) T) ((-979 . -116) T) ((-979 . -965) T) ((-979 . -667) T) ((-979 . -1065) T) ((-979 . -1029) T) ((-979 . -974) T) ((-979 . -21) T) ((-979 . -592) 139779) ((-979 . -23) T) ((-979 . -1017) T) ((-979 . -556) 139761) ((-979 . -1133) T) ((-979 . -13) T) ((-979 . -72) T) ((-979 . -25) T) ((-979 . -104) T) ((-979 . -120) T) ((-979 . -561) 139742) ((-978 . -984) 139721) ((-978 . -72) T) ((-978 . -13) T) ((-978 . -1133) T) ((-978 . -556) 139703) ((-978 . -1017) T) ((-975 . -1133) T) ((-975 . -13) T) ((-975 . -1017) 139681) ((-975 . -556) 139648) ((-975 . -72) 139626) ((-970 . -969) 139566) ((-970 . -586) 139511) ((-970 . -658) 139456) ((-970 . -432) 139440) ((-970 . -383) 139424) ((-970 . -459) 139357) ((-970 . -262) 139295) ((-970 . -34) T) ((-970 . -320) 139279) ((-970 . -594) 139263) ((-970 . -592) 139232) ((-970 . -104) T) ((-970 . -25) T) ((-970 . -72) T) ((-970 . -13) T) ((-970 . -1133) T) ((-970 . -556) 139194) ((-970 . -1017) T) ((-970 . -23) T) ((-970 . -21) T) ((-970 . -972) 139178) ((-970 . -967) 139162) ((-970 . -82) 139141) ((-970 . -1191) 139111) ((-970 . -557) 139072) ((-962 . -987) 139001) ((-962 . -893) 138930) ((-962 . -320) 138895) ((-962 . -557) 138837) ((-962 . -432) 138802) ((-962 . -1017) T) ((-962 . -383) 138767) ((-962 . -459) 138651) ((-962 . -262) 138559) ((-962 . -556) 138502) ((-962 . -72) T) ((-962 . -1133) T) ((-962 . -13) T) ((-962 . -34) T) ((-962 . -124) 138467) ((-962 . -1039) 138432) ((-962 . -1128) 138361) ((-952 . -999) T) ((-952 . -433) 138342) ((-952 . -556) 138308) ((-952 . -559) 138289) ((-952 . -1017) T) ((-952 . -1133) T) ((-952 . -13) T) ((-952 . -72) T) ((-952 . -64) T) ((-951 . -148) T) ((-951 . -559) 138258) ((-951 . -974) T) ((-951 . -1029) T) ((-951 . -1065) T) ((-951 . -667) T) ((-951 . -965) T) ((-951 . -594) 138232) ((-951 . -592) 138191) ((-951 . -104) T) ((-951 . -25) T) ((-951 . -72) T) ((-951 . -13) T) ((-951 . -1133) T) ((-951 . -556) 138173) ((-951 . -1017) T) ((-951 . -23) T) ((-951 . -21) T) ((-951 . -972) 138147) ((-951 . -967) 138121) ((-951 . -82) 138088) ((-951 . -38) 138072) ((-951 . -586) 138056) ((-951 . -658) 138040) ((-944 . -987) 138009) ((-944 . -893) 137978) ((-944 . -320) 137962) ((-944 . -557) 137923) ((-944 . -432) 137907) ((-944 . -1017) T) ((-944 . -383) 137891) ((-944 . -459) 137824) ((-944 . -262) 137762) ((-944 . -556) 137724) ((-944 . -72) T) ((-944 . -1133) T) ((-944 . -13) T) ((-944 . -34) T) ((-944 . -124) 137708) ((-944 . -1039) 137692) ((-944 . -1128) 137661) ((-943 . -1017) T) ((-943 . -556) 137643) ((-943 . -1133) T) ((-943 . -13) T) ((-943 . -72) T) ((-941 . -929) T) ((-941 . -919) T) ((-941 . -718) T) ((-941 . -720) T) ((-941 . -760) T) ((-941 . -763) T) ((-941 . -722) T) ((-941 . -725) T) ((-941 . -759) T) ((-941 . -954) 137528) ((-941 . -357) 137490) ((-941 . -203) T) ((-941 . -248) T) ((-941 . -260) T) ((-941 . -395) T) ((-941 . -38) 137427) ((-941 . -586) 137364) ((-941 . -658) 137301) ((-941 . -559) 137238) ((-941 . -499) T) ((-941 . -836) T) ((-941 . -1138) T) ((-941 . -314) T) ((-941 . -82) 137147) ((-941 . -967) 137084) ((-941 . -972) 137021) ((-941 . -148) T) ((-941 . -120) T) ((-941 . -594) 136958) ((-941 . -592) 136895) ((-941 . -104) T) ((-941 . -25) T) ((-941 . -72) T) ((-941 . -13) T) ((-941 . -1133) T) ((-941 . -556) 136877) ((-941 . -1017) T) ((-941 . -23) T) ((-941 . -21) T) ((-941 . -965) T) ((-941 . -667) T) ((-941 . -1065) T) ((-941 . -1029) T) ((-941 . -974) T) ((-936 . -999) T) ((-936 . -433) 136858) ((-936 . -556) 136824) ((-936 . -559) 136805) ((-936 . -1017) T) ((-936 . -1133) T) ((-936 . -13) T) ((-936 . -72) T) ((-936 . -64) T) ((-921 . -908) 136787) ((-921 . -1070) T) ((-921 . -559) 136737) ((-921 . -954) 136697) ((-921 . -557) 136627) ((-921 . -937) T) ((-921 . -825) NIL) ((-921 . -798) 136609) ((-921 . -759) T) ((-921 . -725) T) ((-921 . -722) T) ((-921 . -763) T) ((-921 . -760) T) ((-921 . -720) T) ((-921 . -718) T) ((-921 . -744) T) ((-921 . -800) 136591) ((-921 . -345) 136573) ((-921 . -584) 136555) ((-921 . -331) 136537) ((-921 . -243) NIL) ((-921 . -262) NIL) ((-921 . -459) NIL) ((-921 . -383) 136519) ((-921 . -290) 136501) ((-921 . -203) T) ((-921 . -82) 136428) ((-921 . -967) 136378) ((-921 . -972) 136328) ((-921 . -248) T) ((-921 . -658) 136278) ((-921 . -586) 136228) ((-921 . -594) 136178) ((-921 . -592) 136128) ((-921 . -38) 136078) ((-921 . -260) T) ((-921 . -395) T) ((-921 . -148) T) ((-921 . -499) T) ((-921 . -836) T) ((-921 . -1138) T) ((-921 . -314) T) ((-921 . -192) T) ((-921 . -188) 136065) ((-921 . -191) T) ((-921 . -227) 136047) ((-921 . -810) NIL) ((-921 . -815) NIL) ((-921 . -813) NIL) ((-921 . -186) 136029) ((-921 . -120) T) ((-921 . -118) NIL) ((-921 . -104) T) ((-921 . -25) T) ((-921 . -72) T) ((-921 . -13) T) ((-921 . -1133) T) ((-921 . -556) 135989) ((-921 . -1017) T) ((-921 . -23) T) ((-921 . -21) T) ((-921 . -965) T) ((-921 . -667) T) ((-921 . -1065) T) ((-921 . -1029) T) ((-921 . -974) T) ((-920 . -293) 135963) ((-920 . -148) T) ((-920 . -559) 135893) ((-920 . -974) T) ((-920 . -1029) T) ((-920 . -1065) T) ((-920 . -667) T) ((-920 . -965) T) ((-920 . -594) 135795) ((-920 . -592) 135725) ((-920 . -104) T) ((-920 . -25) T) ((-920 . -72) T) ((-920 . -13) T) ((-920 . -1133) T) ((-920 . -556) 135707) ((-920 . -1017) T) ((-920 . -23) T) ((-920 . -21) T) ((-920 . -972) 135652) ((-920 . -967) 135597) ((-920 . -82) 135514) ((-920 . -557) 135498) ((-920 . -186) 135475) ((-920 . -813) 135427) ((-920 . -815) 135339) ((-920 . -810) 135249) ((-920 . -227) 135226) ((-920 . -191) 135166) ((-920 . -188) 135100) ((-920 . -192) 135072) ((-920 . -314) T) ((-920 . -1138) T) ((-920 . -836) T) ((-920 . -499) T) ((-920 . -658) 135017) ((-920 . -586) 134962) ((-920 . -38) 134907) ((-920 . -395) T) ((-920 . -260) T) ((-920 . -248) T) ((-920 . -203) T) ((-920 . -322) NIL) ((-920 . -301) NIL) ((-920 . -1070) NIL) ((-920 . -118) 134879) ((-920 . -347) NIL) ((-920 . -355) 134851) ((-920 . -120) 134823) ((-920 . -324) 134795) ((-920 . -331) 134772) ((-920 . -584) 134706) ((-920 . -357) 134683) ((-920 . -954) 134560) ((-920 . -665) 134532) ((-917 . -912) 134516) ((-917 . -320) 134500) ((-917 . -432) 134484) ((-917 . -1017) 134462) ((-917 . -383) 134446) ((-917 . -459) 134379) ((-917 . -262) 134317) ((-917 . -556) 134252) ((-917 . -72) 134206) ((-917 . -1133) T) ((-917 . -13) T) ((-917 . -34) T) ((-917 . -1039) 134190) ((-917 . -76) 134174) ((-913 . -915) 134158) ((-913 . -763) 134137) ((-913 . -760) 134116) ((-913 . -954) 134014) ((-913 . -357) 133998) ((-913 . -584) 133946) ((-913 . -594) 133848) ((-913 . -331) 133832) ((-913 . -243) 133790) ((-913 . -262) 133755) ((-913 . -459) 133667) ((-913 . -383) 133651) ((-913 . -290) 133635) ((-913 . -38) 133583) ((-913 . -82) 133461) ((-913 . -967) 133360) ((-913 . -972) 133259) ((-913 . -592) 133182) ((-913 . -586) 133130) ((-913 . -658) 133078) ((-913 . -559) 132972) ((-913 . -248) 132926) ((-913 . -203) 132905) ((-913 . -192) 132884) ((-913 . -188) 132832) ((-913 . -191) 132786) ((-913 . -227) 132770) ((-913 . -810) 132694) ((-913 . -815) 132620) ((-913 . -813) 132579) ((-913 . -186) 132563) ((-913 . -557) 132524) ((-913 . -120) 132503) ((-913 . -118) 132482) ((-913 . -104) T) ((-913 . -25) T) ((-913 . -72) T) ((-913 . -13) T) ((-913 . -1133) T) ((-913 . -556) 132464) ((-913 . -1017) T) ((-913 . -23) T) ((-913 . -21) T) ((-913 . -965) T) ((-913 . -667) T) ((-913 . -1065) T) ((-913 . -1029) T) ((-913 . -974) T) ((-911 . -999) T) ((-911 . -433) 132445) ((-911 . -556) 132411) ((-911 . -559) 132392) ((-911 . -1017) T) ((-911 . -1133) T) ((-911 . -13) T) ((-911 . -72) T) ((-911 . -64) T) ((-910 . -21) T) ((-910 . -592) 132374) ((-910 . -23) T) ((-910 . -1017) T) ((-910 . -556) 132356) ((-910 . -1133) T) ((-910 . -13) T) ((-910 . -72) T) ((-910 . -25) T) ((-910 . -104) T) ((-910 . -243) 132323) ((-906 . -556) 132305) ((-903 . -1017) T) ((-903 . -556) 132287) ((-903 . -1133) T) ((-903 . -13) T) ((-903 . -72) T) ((-888 . -725) T) ((-888 . -722) T) ((-888 . -763) T) ((-888 . -760) T) ((-888 . -720) T) ((-888 . -23) T) ((-888 . -1017) T) ((-888 . -556) 132247) ((-888 . -1133) T) ((-888 . -13) T) ((-888 . -72) T) ((-888 . -25) T) ((-888 . -104) T) ((-887 . -999) T) ((-887 . -433) 132228) ((-887 . -556) 132194) ((-887 . -559) 132175) ((-887 . -1017) T) ((-887 . -1133) T) ((-887 . -13) T) ((-887 . -72) T) ((-887 . -64) T) ((-881 . -884) T) ((-881 . -72) T) ((-881 . -556) 132157) ((-881 . -1017) T) ((-881 . -608) T) ((-881 . -13) T) ((-881 . -1133) T) ((-881 . -84) T) ((-881 . -559) 132141) ((-880 . -556) 132123) ((-879 . -1017) T) ((-879 . -556) 132105) ((-879 . -1133) T) ((-879 . -13) T) ((-879 . -72) T) ((-879 . -322) 132058) ((-879 . -667) 131960) ((-879 . -1029) 131862) ((-879 . -23) 131676) ((-879 . -25) 131490) ((-879 . -104) 131348) ((-879 . -416) 131301) ((-879 . -21) 131256) ((-879 . -592) 131200) ((-879 . -721) 131153) ((-879 . -720) 131106) ((-879 . -760) 131008) ((-879 . -763) 130910) ((-879 . -722) 130863) ((-879 . -725) 130816) ((-873 . -19) 130800) ((-873 . -1039) 130784) ((-873 . -320) 130768) ((-873 . -34) T) ((-873 . -13) T) ((-873 . -1133) T) ((-873 . -72) 130702) ((-873 . -556) 130617) ((-873 . -262) 130555) ((-873 . -459) 130488) ((-873 . -383) 130472) ((-873 . -1017) 130425) ((-873 . -432) 130409) ((-873 . -597) 130393) ((-873 . -245) 130370) ((-873 . -243) 130322) ((-873 . -542) 130299) ((-873 . -557) 130260) ((-873 . -124) 130244) ((-873 . -760) 130223) ((-873 . -763) 130202) ((-873 . -326) 130186) ((-871 . -279) 130165) ((-871 . -954) 130063) ((-871 . -357) 130047) ((-871 . -38) 129944) ((-871 . -559) 129801) ((-871 . -594) 129726) ((-871 . -592) 129636) ((-871 . -974) T) ((-871 . -1029) T) ((-871 . -1065) T) ((-871 . -667) T) ((-871 . -965) T) ((-871 . -82) 129501) ((-871 . -967) 129387) ((-871 . -972) 129273) ((-871 . -21) T) ((-871 . -23) T) ((-871 . -1017) T) ((-871 . -556) 129255) ((-871 . -1133) T) ((-871 . -13) T) ((-871 . -72) T) ((-871 . -25) T) ((-871 . -104) T) ((-871 . -586) 129152) ((-871 . -658) 129049) ((-871 . -118) 129028) ((-871 . -120) 129007) ((-871 . -148) 128961) ((-871 . -383) 128945) ((-871 . -499) 128924) ((-871 . -248) 128903) ((-871 . -47) 128882) ((-869 . -1017) T) ((-869 . -556) 128848) ((-869 . -1133) T) ((-869 . -13) T) ((-869 . -72) T) ((-861 . -865) 128809) ((-861 . -559) 128605) ((-861 . -954) 128487) ((-861 . -1138) 128466) ((-861 . -825) 128445) ((-861 . -800) 128370) ((-861 . -815) 128351) ((-861 . -810) 128330) ((-861 . -813) 128311) ((-861 . -459) 128257) ((-861 . -395) 128211) ((-861 . -584) 128159) ((-861 . -594) 128048) ((-861 . -331) 128032) ((-861 . -47) 128001) ((-861 . -38) 127853) ((-861 . -586) 127705) ((-861 . -658) 127557) ((-861 . -248) 127491) ((-861 . -499) 127425) ((-861 . -383) 127409) ((-861 . -82) 127234) ((-861 . -967) 127080) ((-861 . -972) 126926) ((-861 . -148) 126840) ((-861 . -120) 126819) ((-861 . -118) 126798) ((-861 . -592) 126708) ((-861 . -104) T) ((-861 . -25) T) ((-861 . -72) T) ((-861 . -13) T) ((-861 . -1133) T) ((-861 . -556) 126690) ((-861 . -1017) T) ((-861 . -23) T) ((-861 . -21) T) ((-861 . -965) T) ((-861 . -667) T) ((-861 . -1065) T) ((-861 . -1029) T) ((-861 . -974) T) ((-861 . -357) 126674) ((-861 . -279) 126643) ((-861 . -262) 126630) ((-861 . -557) 126491) ((-858 . -897) 126475) ((-858 . -19) 126459) ((-858 . -1039) 126443) ((-858 . -320) 126427) ((-858 . -34) T) ((-858 . -13) T) ((-858 . -1133) T) ((-858 . -72) 126361) ((-858 . -556) 126276) ((-858 . -262) 126214) ((-858 . -459) 126147) ((-858 . -383) 126131) ((-858 . -1017) 126084) ((-858 . -432) 126068) ((-858 . -597) 126052) ((-858 . -245) 126029) ((-858 . -243) 125981) ((-858 . -542) 125958) ((-858 . -557) 125919) ((-858 . -124) 125903) ((-858 . -760) 125882) ((-858 . -763) 125861) ((-858 . -326) 125845) ((-858 . -1182) 125829) ((-858 . -561) 125806) ((-842 . -891) T) ((-842 . -556) 125788) ((-840 . -870) T) ((-840 . -556) 125770) ((-834 . -722) T) ((-834 . -763) T) ((-834 . -760) T) ((-834 . -1017) T) ((-834 . -556) 125752) ((-834 . -1133) T) ((-834 . -13) T) ((-834 . -72) T) ((-834 . -25) T) ((-834 . -667) T) ((-834 . -1029) T) ((-829 . -314) T) ((-829 . -1138) T) ((-829 . -836) T) ((-829 . -499) T) ((-829 . -148) T) ((-829 . -559) 125689) ((-829 . -658) 125641) ((-829 . -586) 125593) ((-829 . -38) 125545) ((-829 . -395) T) ((-829 . -260) T) ((-829 . -594) 125497) ((-829 . -592) 125434) ((-829 . -974) T) ((-829 . -1029) T) ((-829 . -1065) T) ((-829 . -667) T) ((-829 . -965) T) ((-829 . -82) 125365) ((-829 . -967) 125317) ((-829 . -972) 125269) ((-829 . -21) T) ((-829 . -23) T) ((-829 . -1017) T) ((-829 . -556) 125251) ((-829 . -1133) T) ((-829 . -13) T) ((-829 . -72) T) ((-829 . -25) T) ((-829 . -104) T) ((-829 . -248) T) ((-829 . -203) T) ((-821 . -301) T) ((-821 . -1070) T) ((-821 . -322) T) ((-821 . -118) T) ((-821 . -314) T) ((-821 . -1138) T) ((-821 . -836) T) ((-821 . -499) T) ((-821 . -148) T) ((-821 . -559) 125201) ((-821 . -658) 125166) ((-821 . -586) 125131) ((-821 . -38) 125096) ((-821 . -395) T) ((-821 . -260) T) ((-821 . -82) 125045) ((-821 . -967) 125010) ((-821 . -972) 124975) ((-821 . -592) 124925) ((-821 . -594) 124890) ((-821 . -248) T) ((-821 . -203) T) ((-821 . -347) T) ((-821 . -191) T) ((-821 . -1133) T) ((-821 . -13) T) ((-821 . -188) 124877) ((-821 . -965) T) ((-821 . -667) T) ((-821 . -1065) T) ((-821 . -1029) T) ((-821 . -974) T) ((-821 . -21) T) ((-821 . -23) T) ((-821 . -1017) T) ((-821 . -556) 124859) ((-821 . -72) T) ((-821 . -25) T) ((-821 . -104) T) ((-821 . -192) T) ((-821 . -282) 124846) ((-821 . -120) 124828) ((-821 . -954) 124815) ((-821 . -1191) 124802) ((-821 . -1202) 124789) ((-821 . -557) 124771) ((-820 . -1017) T) ((-820 . -556) 124753) ((-820 . -1133) T) ((-820 . -13) T) ((-820 . -72) T) ((-817 . -819) 124737) ((-817 . -763) 124691) ((-817 . -760) 124645) ((-817 . -667) T) ((-817 . -1017) T) ((-817 . -556) 124627) ((-817 . -72) T) ((-817 . -1029) T) ((-817 . -416) T) ((-817 . -1133) T) ((-817 . -13) T) ((-817 . -243) 124606) ((-816 . -92) 124590) ((-816 . -432) 124574) ((-816 . -1017) 124552) ((-816 . -383) 124536) ((-816 . -459) 124469) ((-816 . -262) 124407) ((-816 . -556) 124321) ((-816 . -72) 124275) ((-816 . -1133) T) ((-816 . -13) T) ((-816 . -34) T) ((-816 . -927) 124259) ((-807 . -760) T) ((-807 . -556) 124241) ((-807 . -1017) T) ((-807 . -72) T) ((-807 . -13) T) ((-807 . -1133) T) ((-807 . -763) T) ((-807 . -954) 124218) ((-807 . -559) 124195) ((-804 . -1017) T) ((-804 . -556) 124177) ((-804 . -1133) T) ((-804 . -13) T) ((-804 . -72) T) ((-804 . -954) 124145) ((-804 . -559) 124113) ((-802 . -1017) T) ((-802 . -556) 124095) ((-802 . -1133) T) ((-802 . -13) T) ((-802 . -72) T) ((-799 . -1017) T) ((-799 . -556) 124077) ((-799 . -1133) T) ((-799 . -13) T) ((-799 . -72) T) ((-789 . -999) T) ((-789 . -433) 124058) ((-789 . -556) 124024) ((-789 . -559) 124005) ((-789 . -1017) T) ((-789 . -1133) T) ((-789 . -13) T) ((-789 . -72) T) ((-789 . -64) T) ((-789 . -1179) T) ((-787 . -1017) T) ((-787 . -556) 123987) ((-787 . -1133) T) ((-787 . -13) T) ((-787 . -72) T) ((-787 . -559) 123969) ((-786 . -1133) T) ((-786 . -13) T) ((-786 . -556) 123844) ((-786 . -1017) 123795) ((-786 . -72) 123746) ((-785 . -908) 123730) ((-785 . -1070) 123708) ((-785 . -954) 123575) ((-785 . -559) 123474) ((-785 . -557) 123277) ((-785 . -937) 123256) ((-785 . -825) 123235) ((-785 . -798) 123219) ((-785 . -759) 123198) ((-785 . -725) 123177) ((-785 . -722) 123156) ((-785 . -763) 123110) ((-785 . -760) 123064) ((-785 . -720) 123043) ((-785 . -718) 123022) ((-785 . -744) 123001) ((-785 . -800) 122926) ((-785 . -345) 122910) ((-785 . -584) 122858) ((-785 . -594) 122774) ((-785 . -331) 122758) ((-785 . -243) 122716) ((-785 . -262) 122681) ((-785 . -459) 122593) ((-785 . -383) 122577) ((-785 . -290) 122561) ((-785 . -203) T) ((-785 . -82) 122492) ((-785 . -967) 122444) ((-785 . -972) 122396) ((-785 . -248) T) ((-785 . -658) 122348) ((-785 . -586) 122300) ((-785 . -592) 122237) ((-785 . -38) 122189) ((-785 . -260) T) ((-785 . -395) T) ((-785 . -148) T) ((-785 . -499) T) ((-785 . -836) T) ((-785 . -1138) T) ((-785 . -314) T) ((-785 . -192) 122168) ((-785 . -188) 122116) ((-785 . -191) 122070) ((-785 . -227) 122054) ((-785 . -810) 121978) ((-785 . -815) 121904) ((-785 . -813) 121863) ((-785 . -186) 121847) ((-785 . -120) 121801) ((-785 . -118) 121780) ((-785 . -104) T) ((-785 . -25) T) ((-785 . -72) T) ((-785 . -13) T) ((-785 . -1133) T) ((-785 . -556) 121762) ((-785 . -1017) T) ((-785 . -23) T) ((-785 . -21) T) ((-785 . -965) T) ((-785 . -667) T) ((-785 . -1065) T) ((-785 . -1029) T) ((-785 . -974) T) ((-784 . -908) 121739) ((-784 . -1070) NIL) ((-784 . -954) 121716) ((-784 . -559) 121646) ((-784 . -557) NIL) ((-784 . -937) NIL) ((-784 . -825) NIL) ((-784 . -798) 121623) ((-784 . -759) NIL) ((-784 . -725) NIL) ((-784 . -722) NIL) ((-784 . -763) NIL) ((-784 . -760) NIL) ((-784 . -720) NIL) ((-784 . -718) NIL) ((-784 . -744) NIL) ((-784 . -800) NIL) ((-784 . -345) 121600) ((-784 . -584) 121577) ((-784 . -594) 121522) ((-784 . -331) 121499) ((-784 . -243) 121429) ((-784 . -262) 121373) ((-784 . -459) 121236) ((-784 . -383) 121213) ((-784 . -290) 121190) ((-784 . -203) T) ((-784 . -82) 121107) ((-784 . -967) 121052) ((-784 . -972) 120997) ((-784 . -248) T) ((-784 . -658) 120942) ((-784 . -586) 120887) ((-784 . -592) 120817) ((-784 . -38) 120762) ((-784 . -260) T) ((-784 . -395) T) ((-784 . -148) T) ((-784 . -499) T) ((-784 . -836) T) ((-784 . -1138) T) ((-784 . -314) T) ((-784 . -192) NIL) ((-784 . -188) NIL) ((-784 . -191) NIL) ((-784 . -227) 120739) ((-784 . -810) NIL) ((-784 . -815) NIL) ((-784 . -813) NIL) ((-784 . -186) 120716) ((-784 . -120) T) ((-784 . -118) NIL) ((-784 . -104) T) ((-784 . -25) T) ((-784 . -72) T) ((-784 . -13) T) ((-784 . -1133) T) ((-784 . -556) 120698) ((-784 . -1017) T) ((-784 . -23) T) ((-784 . -21) T) ((-784 . -965) T) ((-784 . -667) T) ((-784 . -1065) T) ((-784 . -1029) T) ((-784 . -974) T) ((-782 . -783) 120682) ((-782 . -836) T) ((-782 . -499) T) ((-782 . -248) T) ((-782 . -148) T) ((-782 . -559) 120654) ((-782 . -658) 120641) ((-782 . -586) 120628) ((-782 . -972) 120615) ((-782 . -967) 120602) ((-782 . -82) 120587) ((-782 . -38) 120574) ((-782 . -395) T) ((-782 . -260) T) ((-782 . -965) T) ((-782 . -667) T) ((-782 . -1065) T) ((-782 . -1029) T) ((-782 . -974) T) ((-782 . -21) T) ((-782 . -592) 120546) ((-782 . -23) T) ((-782 . -1017) T) ((-782 . -556) 120528) ((-782 . -1133) T) ((-782 . -13) T) ((-782 . -72) T) ((-782 . -25) T) ((-782 . -104) T) ((-782 . -594) 120515) ((-782 . -120) T) ((-779 . -965) T) ((-779 . -667) T) ((-779 . -1065) T) ((-779 . -1029) T) ((-779 . -974) T) ((-779 . -21) T) ((-779 . -592) 120460) ((-779 . -23) T) ((-779 . -1017) T) ((-779 . -556) 120422) ((-779 . -1133) T) ((-779 . -13) T) ((-779 . -72) T) ((-779 . -25) T) ((-779 . -104) T) ((-779 . -594) 120382) ((-779 . -559) 120317) ((-779 . -433) 120294) ((-779 . -38) 120264) ((-779 . -82) 120229) ((-779 . -967) 120199) ((-779 . -972) 120169) ((-779 . -586) 120139) ((-779 . -658) 120109) ((-778 . -1017) T) ((-778 . -556) 120091) ((-778 . -1133) T) ((-778 . -13) T) ((-778 . -72) T) ((-777 . -756) T) ((-777 . -763) T) ((-777 . -760) T) ((-777 . -1017) T) ((-777 . -556) 120073) ((-777 . -1133) T) ((-777 . -13) T) ((-777 . -72) T) ((-777 . -322) T) ((-777 . -557) 119995) ((-776 . -1017) T) ((-776 . -556) 119977) ((-776 . -1133) T) ((-776 . -13) T) ((-776 . -72) T) ((-775 . -774) T) ((-775 . -149) T) ((-775 . -556) 119959) ((-771 . -760) T) ((-771 . -556) 119941) ((-771 . -1017) T) ((-771 . -72) T) ((-771 . -13) T) ((-771 . -1133) T) ((-771 . -763) T) ((-768 . -765) 119925) ((-768 . -954) 119823) ((-768 . -559) 119721) ((-768 . -357) 119705) ((-768 . -658) 119675) ((-768 . -586) 119645) ((-768 . -594) 119619) ((-768 . -592) 119578) ((-768 . -104) T) ((-768 . -25) T) ((-768 . -72) T) ((-768 . -13) T) ((-768 . -1133) T) ((-768 . -556) 119560) ((-768 . -1017) T) ((-768 . -23) T) ((-768 . -21) T) ((-768 . -972) 119544) ((-768 . -967) 119528) ((-768 . -82) 119507) ((-768 . -965) T) ((-768 . -667) T) ((-768 . -1065) T) ((-768 . -1029) T) ((-768 . -974) T) ((-768 . -38) 119477) ((-767 . -765) 119461) ((-767 . -954) 119359) ((-767 . -559) 119278) ((-767 . -357) 119262) ((-767 . -658) 119232) ((-767 . -586) 119202) ((-767 . -594) 119176) ((-767 . -592) 119135) ((-767 . -104) T) ((-767 . -25) T) ((-767 . -72) T) ((-767 . -13) T) ((-767 . -1133) T) ((-767 . -556) 119117) ((-767 . -1017) T) ((-767 . -23) T) ((-767 . -21) T) ((-767 . -972) 119101) ((-767 . -967) 119085) ((-767 . -82) 119064) ((-767 . -965) T) ((-767 . -667) T) ((-767 . -1065) T) ((-767 . -1029) T) ((-767 . -974) T) ((-767 . -38) 119034) ((-761 . -763) T) ((-761 . -1133) T) ((-761 . -13) T) ((-761 . -72) T) ((-761 . -433) 119018) ((-761 . -556) 118966) ((-761 . -559) 118950) ((-754 . -1017) T) ((-754 . -556) 118932) ((-754 . -1133) T) ((-754 . -13) T) ((-754 . -72) T) ((-754 . -357) 118916) ((-754 . -559) 118789) ((-754 . -954) 118687) ((-754 . -21) 118642) ((-754 . -592) 118562) ((-754 . -23) 118517) ((-754 . -25) 118472) ((-754 . -104) 118427) ((-754 . -759) 118406) ((-754 . -725) 118385) ((-754 . -722) 118364) ((-754 . -763) 118343) ((-754 . -760) 118322) ((-754 . -720) 118301) ((-754 . -718) 118280) ((-754 . -965) 118259) ((-754 . -667) 118238) ((-754 . -1065) 118217) ((-754 . -1029) 118196) ((-754 . -974) 118175) ((-754 . -594) 118148) ((-754 . -120) 118127) ((-753 . -751) 118109) ((-753 . -72) T) ((-753 . -13) T) ((-753 . -1133) T) ((-753 . -556) 118091) ((-753 . -1017) T) ((-749 . -965) T) ((-749 . -667) T) ((-749 . -1065) T) ((-749 . -1029) T) ((-749 . -974) T) ((-749 . -21) T) ((-749 . -592) 118036) ((-749 . -23) T) ((-749 . -1017) T) ((-749 . -556) 118018) ((-749 . -1133) T) ((-749 . -13) T) ((-749 . -72) T) ((-749 . -25) T) ((-749 . -104) T) ((-749 . -594) 117978) ((-749 . -559) 117933) ((-749 . -954) 117903) ((-749 . -243) 117882) ((-749 . -120) 117861) ((-749 . -118) 117840) ((-749 . -38) 117810) ((-749 . -82) 117775) ((-749 . -967) 117745) ((-749 . -972) 117715) ((-749 . -586) 117685) ((-749 . -658) 117655) ((-747 . -1017) T) ((-747 . -556) 117637) ((-747 . -1133) T) ((-747 . -13) T) ((-747 . -72) T) ((-747 . -357) 117621) ((-747 . -559) 117494) ((-747 . -954) 117392) ((-747 . -21) 117347) ((-747 . -592) 117267) ((-747 . -23) 117222) ((-747 . -25) 117177) ((-747 . -104) 117132) ((-747 . -759) 117111) ((-747 . -725) 117090) ((-747 . -722) 117069) ((-747 . -763) 117048) ((-747 . -760) 117027) ((-747 . -720) 117006) ((-747 . -718) 116985) ((-747 . -965) 116964) ((-747 . -667) 116943) ((-747 . -1065) 116922) ((-747 . -1029) 116901) ((-747 . -974) 116880) ((-747 . -594) 116853) ((-747 . -120) 116832) ((-745 . -649) 116816) ((-745 . -559) 116771) ((-745 . -658) 116741) ((-745 . -586) 116711) ((-745 . -594) 116685) ((-745 . -592) 116644) ((-745 . -104) T) ((-745 . -25) T) ((-745 . -72) T) ((-745 . -13) T) ((-745 . -1133) T) ((-745 . -556) 116626) ((-745 . -1017) T) ((-745 . -23) T) ((-745 . -21) T) ((-745 . -972) 116610) ((-745 . -967) 116594) ((-745 . -82) 116573) ((-745 . -965) T) ((-745 . -667) T) ((-745 . -1065) T) ((-745 . -1029) T) ((-745 . -974) T) ((-745 . -38) 116543) ((-745 . -192) 116522) ((-745 . -188) 116495) ((-745 . -191) 116474) ((-743 . -338) 116458) ((-743 . -559) 116442) ((-743 . -954) 116426) ((-743 . -763) T) ((-743 . -760) T) ((-743 . -1029) T) ((-743 . -72) T) ((-743 . -13) T) ((-743 . -1133) T) ((-743 . -556) 116408) ((-743 . -1017) T) ((-743 . -667) T) ((-743 . -758) T) ((-743 . -770) T) ((-742 . -230) 116392) ((-742 . -559) 116376) ((-742 . -954) 116360) ((-742 . -763) T) ((-742 . -72) T) ((-742 . -1017) T) ((-742 . -556) 116342) ((-742 . -760) T) ((-742 . -188) 116329) ((-742 . -13) T) ((-742 . -1133) T) ((-742 . -191) T) ((-741 . -82) 116264) ((-741 . -967) 116215) ((-741 . -972) 116166) ((-741 . -21) T) ((-741 . -592) 116102) ((-741 . -23) T) ((-741 . -1017) T) ((-741 . -556) 116071) ((-741 . -1133) T) ((-741 . -13) T) ((-741 . -72) T) ((-741 . -25) T) ((-741 . -104) T) ((-741 . -594) 116022) ((-741 . -192) T) ((-741 . -559) 115931) ((-741 . -974) T) ((-741 . -1029) T) ((-741 . -1065) T) ((-741 . -667) T) ((-741 . -965) T) ((-741 . -188) 115918) ((-741 . -191) T) ((-741 . -433) 115902) ((-741 . -314) 115881) ((-741 . -1138) 115860) ((-741 . -836) 115839) ((-741 . -499) 115818) ((-741 . -148) 115797) ((-741 . -658) 115734) ((-741 . -586) 115671) ((-741 . -38) 115608) ((-741 . -395) 115587) ((-741 . -260) 115566) ((-741 . -248) 115545) ((-741 . -203) 115524) ((-740 . -215) 115463) ((-740 . -559) 115207) ((-740 . -954) 115037) ((-740 . -557) NIL) ((-740 . -279) 114999) ((-740 . -357) 114983) ((-740 . -38) 114835) ((-740 . -82) 114660) ((-740 . -967) 114506) ((-740 . -972) 114352) ((-740 . -592) 114262) ((-740 . -594) 114151) ((-740 . -586) 114003) ((-740 . -658) 113855) ((-740 . -118) 113834) ((-740 . -120) 113813) ((-740 . -148) 113727) ((-740 . -383) 113711) ((-740 . -499) 113645) ((-740 . -248) 113579) ((-740 . -47) 113541) ((-740 . -331) 113525) ((-740 . -584) 113473) ((-740 . -395) 113427) ((-740 . -459) 113292) ((-740 . -813) 113228) ((-740 . -810) 113127) ((-740 . -815) 113030) ((-740 . -800) NIL) ((-740 . -825) 113009) ((-740 . -1138) 112988) ((-740 . -865) 112935) ((-740 . -262) 112922) ((-740 . -192) 112901) ((-740 . -104) T) ((-740 . -25) T) ((-740 . -72) T) ((-740 . -556) 112883) ((-740 . -1017) T) ((-740 . -23) T) ((-740 . -21) T) ((-740 . -974) T) ((-740 . -1029) T) ((-740 . -1065) T) ((-740 . -667) T) ((-740 . -965) T) ((-740 . -188) 112831) ((-740 . -13) T) ((-740 . -1133) T) ((-740 . -191) 112785) ((-740 . -227) 112769) ((-740 . -186) 112753) ((-739 . -198) 112732) ((-739 . -1191) 112702) ((-739 . -725) 112681) ((-739 . -722) 112660) ((-739 . -763) 112614) ((-739 . -760) 112568) ((-739 . -720) 112547) ((-739 . -721) 112526) ((-739 . -658) 112471) ((-739 . -586) 112396) ((-739 . -245) 112373) ((-739 . -243) 112350) ((-739 . -542) 112327) ((-739 . -954) 112156) ((-739 . -559) 111960) ((-739 . -357) 111929) ((-739 . -584) 111837) ((-739 . -594) 111676) ((-739 . -331) 111646) ((-739 . -432) 111630) ((-739 . -383) 111614) ((-739 . -459) 111547) ((-739 . -262) 111485) ((-739 . -34) T) ((-739 . -320) 111469) ((-739 . -322) 111448) ((-739 . -192) 111401) ((-739 . -592) 111189) ((-739 . -974) 111168) ((-739 . -1029) 111147) ((-739 . -1065) 111126) ((-739 . -667) 111105) ((-739 . -965) 111084) ((-739 . -188) 110980) ((-739 . -191) 110882) ((-739 . -227) 110852) ((-739 . -810) 110724) ((-739 . -815) 110598) ((-739 . -813) 110531) ((-739 . -186) 110501) ((-739 . -556) 110198) ((-739 . -972) 110123) ((-739 . -967) 110028) ((-739 . -82) 109948) ((-739 . -104) 109823) ((-739 . -25) 109660) ((-739 . -72) 109397) ((-739 . -13) T) ((-739 . -1133) T) ((-739 . -1017) 109153) ((-739 . -23) 109009) ((-739 . -21) 108924) ((-726 . -724) 108908) ((-726 . -763) 108887) ((-726 . -760) 108866) ((-726 . -954) 108659) ((-726 . -559) 108512) ((-726 . -357) 108476) ((-726 . -243) 108434) ((-726 . -262) 108399) ((-726 . -459) 108311) ((-726 . -383) 108295) ((-726 . -290) 108279) ((-726 . -322) 108258) ((-726 . -557) 108219) ((-726 . -120) 108198) ((-726 . -118) 108177) ((-726 . -658) 108161) ((-726 . -586) 108145) ((-726 . -594) 108119) ((-726 . -592) 108078) ((-726 . -104) T) ((-726 . -25) T) ((-726 . -72) T) ((-726 . -13) T) ((-726 . -1133) T) ((-726 . -556) 108060) ((-726 . -1017) T) ((-726 . -23) T) ((-726 . -21) T) ((-726 . -972) 108044) ((-726 . -967) 108028) ((-726 . -82) 108007) ((-726 . -965) T) ((-726 . -667) T) ((-726 . -1065) T) ((-726 . -1029) T) ((-726 . -974) T) ((-726 . -38) 107991) ((-708 . -1159) 107975) ((-708 . -1070) 107953) ((-708 . -557) NIL) ((-708 . -262) 107940) ((-708 . -459) 107888) ((-708 . -279) 107865) ((-708 . -954) 107727) ((-708 . -357) 107711) ((-708 . -38) 107543) ((-708 . -82) 107348) ((-708 . -967) 107174) ((-708 . -972) 107000) ((-708 . -592) 106910) ((-708 . -594) 106799) ((-708 . -586) 106631) ((-708 . -658) 106463) ((-708 . -559) 106219) ((-708 . -118) 106198) ((-708 . -120) 106177) ((-708 . -383) 106161) ((-708 . -47) 106138) ((-708 . -331) 106122) ((-708 . -584) 106070) ((-708 . -813) 106014) ((-708 . -810) 105921) ((-708 . -815) 105832) ((-708 . -800) NIL) ((-708 . -825) 105811) ((-708 . -1138) 105790) ((-708 . -865) 105760) ((-708 . -836) 105739) ((-708 . -499) 105653) ((-708 . -248) 105567) ((-708 . -148) 105461) ((-708 . -395) 105395) ((-708 . -260) 105374) ((-708 . -243) 105301) ((-708 . -192) T) ((-708 . -104) T) ((-708 . -25) T) ((-708 . -72) T) ((-708 . -556) 105262) ((-708 . -1017) T) ((-708 . -23) T) ((-708 . -21) T) ((-708 . -974) T) ((-708 . -1029) T) ((-708 . -1065) T) ((-708 . -667) T) ((-708 . -965) T) ((-708 . -188) 105249) ((-708 . -13) T) ((-708 . -1133) T) ((-708 . -191) T) ((-708 . -227) 105233) ((-708 . -186) 105217) ((-707 . -981) 105184) ((-707 . -557) 104819) ((-707 . -262) 104806) ((-707 . -459) 104758) ((-707 . -279) 104730) ((-707 . -954) 104589) ((-707 . -357) 104573) ((-707 . -38) 104425) ((-707 . -559) 104198) ((-707 . -594) 104087) ((-707 . -592) 103997) ((-707 . -974) T) ((-707 . -1029) T) ((-707 . -1065) T) ((-707 . -667) T) ((-707 . -965) T) ((-707 . -82) 103822) ((-707 . -967) 103668) ((-707 . -972) 103514) ((-707 . -21) T) ((-707 . -23) T) ((-707 . -1017) T) ((-707 . -556) 103428) ((-707 . -1133) T) ((-707 . -13) T) ((-707 . -72) T) ((-707 . -25) T) ((-707 . -104) T) ((-707 . -586) 103280) ((-707 . -658) 103132) ((-707 . -118) 103111) ((-707 . -120) 103090) ((-707 . -148) 103004) ((-707 . -383) 102988) ((-707 . -499) 102922) ((-707 . -248) 102856) ((-707 . -47) 102828) ((-707 . -331) 102812) ((-707 . -584) 102760) ((-707 . -395) 102714) ((-707 . -813) 102698) ((-707 . -810) 102680) ((-707 . -815) 102664) ((-707 . -800) 102523) ((-707 . -825) 102502) ((-707 . -1138) 102481) ((-707 . -865) 102448) ((-700 . -1017) T) ((-700 . -556) 102430) ((-700 . -1133) T) ((-700 . -13) T) ((-700 . -72) T) ((-698 . -721) T) ((-698 . -104) T) ((-698 . -25) T) ((-698 . -72) T) ((-698 . -13) T) ((-698 . -1133) T) ((-698 . -556) 102412) ((-698 . -1017) T) ((-698 . -23) T) ((-698 . -720) T) ((-698 . -760) T) ((-698 . -763) T) ((-698 . -722) T) ((-698 . -725) T) ((-698 . -667) T) ((-698 . -1029) T) ((-679 . -680) 102396) ((-679 . -1015) 102380) ((-679 . -195) 102364) ((-679 . -557) 102325) ((-679 . -124) 102309) ((-679 . -432) 102293) ((-679 . -1017) T) ((-679 . -383) 102277) ((-679 . -459) 102210) ((-679 . -262) 102148) ((-679 . -556) 102130) ((-679 . -72) T) ((-679 . -1133) T) ((-679 . -13) T) ((-679 . -34) T) ((-679 . -1039) 102114) ((-679 . -76) 102098) ((-679 . -638) 102082) ((-679 . -320) 102066) ((-678 . -965) T) ((-678 . -667) T) ((-678 . -1065) T) ((-678 . -1029) T) ((-678 . -974) T) ((-678 . -21) T) ((-678 . -592) 102011) ((-678 . -23) T) ((-678 . -1017) T) ((-678 . -556) 101993) ((-678 . -1133) T) ((-678 . -13) T) ((-678 . -72) T) ((-678 . -25) T) ((-678 . -104) T) ((-678 . -594) 101953) ((-678 . -559) 101909) ((-678 . -954) 101880) ((-678 . -383) 101864) ((-678 . -120) 101843) ((-678 . -118) 101822) ((-678 . -38) 101792) ((-678 . -82) 101757) ((-678 . -967) 101727) ((-678 . -972) 101697) ((-678 . -586) 101667) ((-678 . -658) 101637) ((-678 . -322) 101590) ((-674 . -865) 101543) ((-674 . -559) 101335) ((-674 . -954) 101213) ((-674 . -1138) 101192) ((-674 . -825) 101171) ((-674 . -800) NIL) ((-674 . -815) 101148) ((-674 . -810) 101123) ((-674 . -813) 101100) ((-674 . -459) 101038) ((-674 . -395) 100992) ((-674 . -584) 100940) ((-674 . -594) 100829) ((-674 . -331) 100813) ((-674 . -47) 100778) ((-674 . -38) 100630) ((-674 . -586) 100482) ((-674 . -658) 100334) ((-674 . -248) 100268) ((-674 . -499) 100202) ((-674 . -383) 100186) ((-674 . -82) 100011) ((-674 . -967) 99857) ((-674 . -972) 99703) ((-674 . -148) 99617) ((-674 . -120) 99596) ((-674 . -118) 99575) ((-674 . -592) 99485) ((-674 . -104) T) ((-674 . -25) T) ((-674 . -72) T) ((-674 . -13) T) ((-674 . -1133) T) ((-674 . -556) 99467) ((-674 . -1017) T) ((-674 . -23) T) ((-674 . -21) T) ((-674 . -965) T) ((-674 . -667) T) ((-674 . -1065) T) ((-674 . -1029) T) ((-674 . -974) T) ((-674 . -357) 99451) ((-674 . -279) 99416) ((-674 . -262) 99403) ((-674 . -557) 99264) ((-668 . -669) 99248) ((-668 . -80) 99232) ((-668 . -1133) T) ((-668 . |MappingCategory|) 99206) ((-668 . -1027) 99190) ((-668 . -1017) T) ((-668 . -556) 99151) ((-668 . -13) T) ((-668 . -72) T) ((-659 . -416) T) ((-659 . -1029) T) ((-659 . -72) T) ((-659 . -13) T) ((-659 . -1133) T) ((-659 . -556) 99133) ((-659 . -1017) T) ((-659 . -667) T) ((-656 . -965) T) ((-656 . -667) T) ((-656 . -1065) T) ((-656 . -1029) T) ((-656 . -974) T) ((-656 . -21) T) ((-656 . -592) 99105) ((-656 . -23) T) ((-656 . -1017) T) ((-656 . -556) 99087) ((-656 . -1133) T) ((-656 . -13) T) ((-656 . -72) T) ((-656 . -25) T) ((-656 . -104) T) ((-656 . -594) 99074) ((-656 . -559) 99056) ((-655 . -965) T) ((-655 . -667) T) ((-655 . -1065) T) ((-655 . -1029) T) ((-655 . -974) T) ((-655 . -21) T) ((-655 . -592) 99001) ((-655 . -23) T) ((-655 . -1017) T) ((-655 . -556) 98983) ((-655 . -1133) T) ((-655 . -13) T) ((-655 . -72) T) ((-655 . -25) T) ((-655 . -104) T) ((-655 . -594) 98943) ((-655 . -559) 98898) ((-655 . -954) 98868) ((-655 . -243) 98847) ((-655 . -120) 98826) ((-655 . -118) 98805) ((-655 . -38) 98775) ((-655 . -82) 98740) ((-655 . -967) 98710) ((-655 . -972) 98680) ((-655 . -586) 98650) ((-655 . -658) 98620) ((-654 . -760) T) ((-654 . -556) 98555) ((-654 . -1017) T) ((-654 . -72) T) ((-654 . -13) T) ((-654 . -1133) T) ((-654 . -763) T) ((-654 . -433) 98505) ((-654 . -559) 98455) ((-653 . -1159) 98439) ((-653 . -1070) 98417) ((-653 . -557) NIL) ((-653 . -262) 98404) ((-653 . -459) 98352) ((-653 . -279) 98329) ((-653 . -954) 98212) ((-653 . -357) 98196) ((-653 . -38) 98028) ((-653 . -82) 97833) ((-653 . -967) 97659) ((-653 . -972) 97485) ((-653 . -592) 97395) ((-653 . -594) 97284) ((-653 . -586) 97116) ((-653 . -658) 96948) ((-653 . -559) 96712) ((-653 . -118) 96691) ((-653 . -120) 96670) ((-653 . -383) 96654) ((-653 . -47) 96631) ((-653 . -331) 96615) ((-653 . -584) 96563) ((-653 . -813) 96507) ((-653 . -810) 96414) ((-653 . -815) 96325) ((-653 . -800) NIL) ((-653 . -825) 96304) ((-653 . -1138) 96283) ((-653 . -865) 96253) ((-653 . -836) 96232) ((-653 . -499) 96146) ((-653 . -248) 96060) ((-653 . -148) 95954) ((-653 . -395) 95888) ((-653 . -260) 95867) ((-653 . -243) 95794) ((-653 . -192) T) ((-653 . -104) T) ((-653 . -25) T) ((-653 . -72) T) ((-653 . -556) 95776) ((-653 . -1017) T) ((-653 . -23) T) ((-653 . -21) T) ((-653 . -974) T) ((-653 . -1029) T) ((-653 . -1065) T) ((-653 . -667) T) ((-653 . -965) T) ((-653 . -188) 95763) ((-653 . -13) T) ((-653 . -1133) T) ((-653 . -191) T) ((-653 . -227) 95747) ((-653 . -186) 95731) ((-653 . -322) 95710) ((-652 . -314) T) ((-652 . -1138) T) ((-652 . -836) T) ((-652 . -499) T) ((-652 . -148) T) ((-652 . -559) 95660) ((-652 . -658) 95625) ((-652 . -586) 95590) ((-652 . -38) 95555) ((-652 . -395) T) ((-652 . -260) T) ((-652 . -594) 95520) ((-652 . -592) 95470) ((-652 . -974) T) ((-652 . -1029) T) ((-652 . -1065) T) ((-652 . -667) T) ((-652 . -965) T) ((-652 . -82) 95419) ((-652 . -967) 95384) ((-652 . -972) 95349) ((-652 . -21) T) ((-652 . -23) T) ((-652 . -1017) T) ((-652 . -556) 95331) ((-652 . -1133) T) ((-652 . -13) T) ((-652 . -72) T) ((-652 . -25) T) ((-652 . -104) T) ((-652 . -248) T) ((-652 . -203) T) ((-651 . -1017) T) ((-651 . -556) 95313) ((-651 . -1133) T) ((-651 . -13) T) ((-651 . -72) T) ((-636 . -1179) T) ((-636 . -954) 95297) ((-636 . -559) 95281) ((-636 . -556) 95263) ((-634 . -631) 95221) ((-634 . -320) 95205) ((-634 . -34) T) ((-634 . -13) T) ((-634 . -1133) T) ((-634 . -72) 95159) ((-634 . -556) 95094) ((-634 . -262) 95032) ((-634 . -459) 94965) ((-634 . -383) 94949) ((-634 . -1017) 94927) ((-634 . -432) 94911) ((-634 . -1039) 94895) ((-634 . -57) 94853) ((-634 . -557) 94814) ((-626 . -999) T) ((-626 . -433) 94795) ((-626 . -556) 94745) ((-626 . -559) 94726) ((-626 . -1017) T) ((-626 . -1133) T) ((-626 . -13) T) ((-626 . -72) T) ((-626 . -64) T) ((-622 . -760) T) ((-622 . -556) 94708) ((-622 . -1017) T) ((-622 . -72) T) ((-622 . -13) T) ((-622 . -1133) T) ((-622 . -763) T) ((-622 . -954) 94692) ((-622 . -559) 94676) ((-621 . -999) T) ((-621 . -433) 94657) ((-621 . -556) 94623) ((-621 . -559) 94604) ((-621 . -1017) T) ((-621 . -1133) T) ((-621 . -13) T) ((-621 . -72) T) ((-621 . -64) T) ((-618 . -760) T) ((-618 . -556) 94586) ((-618 . -1017) T) ((-618 . -72) T) ((-618 . -13) T) ((-618 . -1133) T) ((-618 . -763) T) ((-618 . -954) 94570) ((-618 . -559) 94554) ((-617 . -999) T) ((-617 . -433) 94535) ((-617 . -556) 94501) ((-617 . -559) 94482) ((-617 . -1017) T) ((-617 . -1133) T) ((-617 . -13) T) ((-617 . -72) T) ((-617 . -64) T) ((-616 . -1041) 94427) ((-616 . -320) 94411) ((-616 . -34) T) ((-616 . -262) 94349) ((-616 . -459) 94282) ((-616 . -383) 94266) ((-616 . -432) 94250) ((-616 . -969) 94190) ((-616 . -954) 94088) ((-616 . -559) 94007) ((-616 . -357) 93991) ((-616 . -584) 93939) ((-616 . -594) 93877) ((-616 . -331) 93861) ((-616 . -192) 93840) ((-616 . -188) 93788) ((-616 . -191) 93742) ((-616 . -227) 93726) ((-616 . -810) 93650) ((-616 . -815) 93576) ((-616 . -813) 93535) ((-616 . -186) 93519) ((-616 . -658) 93503) ((-616 . -586) 93487) ((-616 . -592) 93446) ((-616 . -104) T) ((-616 . -25) T) ((-616 . -72) T) ((-616 . -13) T) ((-616 . -1133) T) ((-616 . -556) 93408) ((-616 . -1017) T) ((-616 . -23) T) ((-616 . -21) T) ((-616 . -972) 93392) ((-616 . -967) 93376) ((-616 . -82) 93355) ((-616 . -965) T) ((-616 . -667) T) ((-616 . -1065) T) ((-616 . -1029) T) ((-616 . -974) T) ((-616 . -38) 93315) ((-616 . -363) 93299) ((-616 . -687) 93283) ((-616 . -661) T) ((-616 . -689) T) ((-616 . -318) 93267) ((-616 . -243) 93244) ((-610 . -328) 93223) ((-610 . -658) 93207) ((-610 . -586) 93191) ((-610 . -594) 93175) ((-610 . -592) 93144) ((-610 . -104) T) ((-610 . -25) T) ((-610 . -72) T) ((-610 . -13) T) ((-610 . -1133) T) ((-610 . -556) 93126) ((-610 . -1017) T) ((-610 . -23) T) ((-610 . -21) T) ((-610 . -972) 93110) ((-610 . -967) 93094) ((-610 . -82) 93073) ((-610 . -578) 93057) ((-610 . -337) 93029) ((-610 . -559) 93006) ((-610 . -954) 92983) ((-610 . -383) 92967) ((-602 . -604) 92951) ((-602 . -38) 92921) ((-602 . -559) 92840) ((-602 . -594) 92814) ((-602 . -592) 92773) ((-602 . -974) T) ((-602 . -1029) T) ((-602 . -1065) T) ((-602 . -667) T) ((-602 . -965) T) ((-602 . -82) 92752) ((-602 . -967) 92736) ((-602 . -972) 92720) ((-602 . -21) T) ((-602 . -23) T) ((-602 . -1017) T) ((-602 . -556) 92702) ((-602 . -72) T) ((-602 . -25) T) ((-602 . -104) T) ((-602 . -586) 92672) ((-602 . -658) 92642) ((-602 . -357) 92626) ((-602 . -954) 92524) ((-602 . -765) 92508) ((-602 . -1133) T) ((-602 . -13) T) ((-602 . -243) 92469) ((-601 . -604) 92453) ((-601 . -38) 92423) ((-601 . -559) 92342) ((-601 . -594) 92316) ((-601 . -592) 92275) ((-601 . -974) T) ((-601 . -1029) T) ((-601 . -1065) T) ((-601 . -667) T) ((-601 . -965) T) ((-601 . -82) 92254) ((-601 . -967) 92238) ((-601 . -972) 92222) ((-601 . -21) T) ((-601 . -23) T) ((-601 . -1017) T) ((-601 . -556) 92204) ((-601 . -72) T) ((-601 . -25) T) ((-601 . -104) T) ((-601 . -586) 92174) ((-601 . -658) 92144) ((-601 . -357) 92128) ((-601 . -954) 92026) ((-601 . -765) 92010) ((-601 . -1133) T) ((-601 . -13) T) ((-601 . -243) 91989) ((-600 . -604) 91973) ((-600 . -38) 91943) ((-600 . -559) 91862) ((-600 . -594) 91836) ((-600 . -592) 91795) ((-600 . -974) T) ((-600 . -1029) T) ((-600 . -1065) T) ((-600 . -667) T) ((-600 . -965) T) ((-600 . -82) 91774) ((-600 . -967) 91758) ((-600 . -972) 91742) ((-600 . -21) T) ((-600 . -23) T) ((-600 . -1017) T) ((-600 . -556) 91724) ((-600 . -72) T) ((-600 . -25) T) ((-600 . -104) T) ((-600 . -586) 91694) ((-600 . -658) 91664) ((-600 . -357) 91648) ((-600 . -954) 91546) ((-600 . -765) 91530) ((-600 . -1133) T) ((-600 . -13) T) ((-600 . -243) 91509) ((-598 . -658) 91493) ((-598 . -586) 91477) ((-598 . -594) 91461) ((-598 . -592) 91430) ((-598 . -104) T) ((-598 . -25) T) ((-598 . -72) T) ((-598 . -13) T) ((-598 . -1133) T) ((-598 . -556) 91412) ((-598 . -1017) T) ((-598 . -23) T) ((-598 . -21) T) ((-598 . -972) 91396) ((-598 . -967) 91380) ((-598 . -82) 91359) ((-598 . -718) 91338) ((-598 . -720) 91317) ((-598 . -760) 91296) ((-598 . -763) 91275) ((-598 . -722) 91254) ((-598 . -725) 91233) ((-595 . -1017) T) ((-595 . -556) 91215) ((-595 . -1133) T) ((-595 . -13) T) ((-595 . -72) T) ((-595 . -954) 91199) ((-595 . -559) 91183) ((-593 . -638) 91167) ((-593 . -76) 91151) ((-593 . -1039) 91135) ((-593 . -34) T) ((-593 . -13) T) ((-593 . -1133) T) ((-593 . -72) 91089) ((-593 . -556) 91024) ((-593 . -262) 90962) ((-593 . -459) 90895) ((-593 . -383) 90879) ((-593 . -1017) 90857) ((-593 . -432) 90841) ((-593 . -124) 90825) ((-593 . -557) 90786) ((-593 . -195) 90770) ((-593 . -320) 90754) ((-591 . -999) T) ((-591 . -433) 90735) ((-591 . -556) 90688) ((-591 . -559) 90669) ((-591 . -1017) T) ((-591 . -1133) T) ((-591 . -13) T) ((-591 . -72) T) ((-591 . -64) T) ((-587 . -612) 90653) ((-587 . -1172) 90637) ((-587 . -927) 90621) ((-587 . -1068) 90605) ((-587 . -320) 90589) ((-587 . -760) 90568) ((-587 . -763) 90547) ((-587 . -326) 90531) ((-587 . -597) 90515) ((-587 . -245) 90492) ((-587 . -243) 90444) ((-587 . -542) 90421) ((-587 . -557) 90382) ((-587 . -432) 90366) ((-587 . -1017) 90319) ((-587 . -383) 90303) ((-587 . -459) 90236) ((-587 . -262) 90174) ((-587 . -556) 90089) ((-587 . -72) 90023) ((-587 . -1133) T) ((-587 . -13) T) ((-587 . -34) T) ((-587 . -124) 90007) ((-587 . -1039) 89991) ((-587 . -239) 89975) ((-585 . -1191) 89959) ((-585 . -82) 89938) ((-585 . -967) 89922) ((-585 . -972) 89906) ((-585 . -21) T) ((-585 . -592) 89875) ((-585 . -23) T) ((-585 . -1017) T) ((-585 . -556) 89857) ((-585 . -1133) T) ((-585 . -13) T) ((-585 . -72) T) ((-585 . -25) T) ((-585 . -104) T) ((-585 . -594) 89841) ((-585 . -586) 89825) ((-585 . -658) 89809) ((-585 . -243) 89776) ((-583 . -1191) 89760) ((-583 . -82) 89739) ((-583 . -967) 89723) ((-583 . -972) 89707) ((-583 . -21) T) ((-583 . -592) 89676) ((-583 . -23) T) ((-583 . -1017) T) ((-583 . -556) 89658) ((-583 . -1133) T) ((-583 . -13) T) ((-583 . -72) T) ((-583 . -25) T) ((-583 . -104) T) ((-583 . -594) 89642) ((-583 . -586) 89626) ((-583 . -658) 89610) ((-583 . -559) 89587) ((-583 . -453) 89559) ((-583 . -383) 89543) ((-583 . -561) 89501) ((-581 . -756) T) ((-581 . -763) T) ((-581 . -760) T) ((-581 . -1017) T) ((-581 . -556) 89483) ((-581 . -1133) T) ((-581 . -13) T) ((-581 . -72) T) ((-581 . -322) T) ((-581 . -559) 89460) ((-576 . -687) 89444) ((-576 . -661) T) ((-576 . -689) T) ((-576 . -82) 89423) ((-576 . -967) 89407) ((-576 . -972) 89391) ((-576 . -21) T) ((-576 . -592) 89360) ((-576 . -23) T) ((-576 . -1017) T) ((-576 . -556) 89329) ((-576 . -1133) T) ((-576 . -13) T) ((-576 . -72) T) ((-576 . -25) T) ((-576 . -104) T) ((-576 . -594) 89313) ((-576 . -586) 89297) ((-576 . -658) 89281) ((-576 . -363) 89246) ((-576 . -318) 89181) ((-576 . -243) 89139) ((-575 . -1111) 89114) ((-575 . -185) 89058) ((-575 . -76) 89002) ((-575 . -1039) 88932) ((-575 . -124) 88876) ((-575 . -557) NIL) ((-575 . -195) 88820) ((-575 . -542) 88795) ((-575 . -262) 88640) ((-575 . -459) 88440) ((-575 . -383) 88370) ((-575 . -432) 88300) ((-575 . -243) 88253) ((-575 . -245) 88228) ((-575 . -553) 88203) ((-575 . -1017) T) ((-575 . -556) 88185) ((-575 . -72) T) ((-575 . -1133) T) ((-575 . -13) T) ((-575 . -34) T) ((-575 . -320) 88129) ((-570 . -416) T) ((-570 . -1029) T) ((-570 . -72) T) ((-570 . -13) T) ((-570 . -1133) T) ((-570 . -556) 88111) ((-570 . -1017) T) ((-570 . -667) T) ((-569 . -999) T) ((-569 . -433) 88092) ((-569 . -556) 88058) ((-569 . -559) 88039) ((-569 . -1017) T) ((-569 . -1133) T) ((-569 . -13) T) ((-569 . -72) T) ((-569 . -64) T) ((-566 . -186) 88023) ((-566 . -813) 87982) ((-566 . -815) 87908) ((-566 . -810) 87832) ((-566 . -227) 87816) ((-566 . -191) 87770) ((-566 . -1133) T) ((-566 . -13) T) ((-566 . -188) 87718) ((-566 . -965) T) ((-566 . -667) T) ((-566 . -1065) T) ((-566 . -1029) T) ((-566 . -974) T) ((-566 . -21) T) ((-566 . -592) 87690) ((-566 . -23) T) ((-566 . -1017) T) ((-566 . -556) 87672) ((-566 . -72) T) ((-566 . -25) T) ((-566 . -104) T) ((-566 . -594) 87659) ((-566 . -559) 87555) ((-566 . -192) 87534) ((-566 . -499) T) ((-566 . -248) T) ((-566 . -148) T) ((-566 . -658) 87521) ((-566 . -586) 87508) ((-566 . -972) 87495) ((-566 . -967) 87482) ((-566 . -82) 87467) ((-566 . -38) 87454) ((-566 . -557) 87431) ((-566 . -357) 87415) ((-566 . -954) 87300) ((-566 . -120) 87279) ((-566 . -118) 87258) ((-566 . -260) 87237) ((-566 . -395) 87216) ((-566 . -836) 87195) ((-562 . -38) 87179) ((-562 . -559) 87148) ((-562 . -594) 87122) ((-562 . -592) 87081) ((-562 . -974) T) ((-562 . -1029) T) ((-562 . -1065) T) ((-562 . -667) T) ((-562 . -965) T) ((-562 . -82) 87060) ((-562 . -967) 87044) ((-562 . -972) 87028) ((-562 . -21) T) ((-562 . -23) T) ((-562 . -1017) T) ((-562 . -556) 87010) ((-562 . -1133) T) ((-562 . -13) T) ((-562 . -72) T) ((-562 . -25) T) ((-562 . -104) T) ((-562 . -586) 86994) ((-562 . -658) 86978) ((-562 . -759) 86957) ((-562 . -725) 86936) ((-562 . -722) 86915) ((-562 . -763) 86894) ((-562 . -760) 86873) ((-562 . -720) 86852) ((-562 . -718) 86831) ((-562 . -120) 86810) ((-560 . -884) T) ((-560 . -72) T) ((-560 . -556) 86792) ((-560 . -1017) T) ((-560 . -608) T) ((-560 . -13) T) ((-560 . -1133) T) ((-560 . -84) T) ((-560 . -322) T) ((-554 . -105) T) ((-554 . -72) T) ((-554 . -13) T) ((-554 . -1133) T) ((-554 . -556) 86774) ((-554 . -1017) T) ((-554 . -760) T) ((-554 . -763) T) ((-554 . -798) 86758) ((-554 . -557) 86619) ((-551 . -316) 86557) ((-551 . -72) T) ((-551 . -13) T) ((-551 . -1133) T) ((-551 . -556) 86539) ((-551 . -1017) T) ((-551 . -1111) 86515) ((-551 . -185) 86460) ((-551 . -76) 86405) ((-551 . -1039) 86337) ((-551 . -124) 86282) ((-551 . -557) NIL) ((-551 . -195) 86227) ((-551 . -542) 86203) ((-551 . -262) 85992) ((-551 . -459) 85732) ((-551 . -383) 85664) ((-551 . -432) 85596) ((-551 . -243) 85572) ((-551 . -245) 85548) ((-551 . -553) 85524) ((-551 . -34) T) ((-551 . -320) 85469) ((-550 . -1017) T) ((-550 . -556) 85421) ((-550 . -1133) T) ((-550 . -13) T) ((-550 . -72) T) ((-550 . -433) 85388) ((-550 . -559) 85355) ((-549 . -1017) T) ((-549 . -556) 85337) ((-549 . -1133) T) ((-549 . -13) T) ((-549 . -72) T) ((-549 . -608) T) ((-548 . -1017) T) ((-548 . -556) 85319) ((-548 . -1133) T) ((-548 . -13) T) ((-548 . -72) T) ((-548 . -608) T) ((-547 . -1017) T) ((-547 . -556) 85286) ((-547 . -1133) T) ((-547 . -13) T) ((-547 . -72) T) ((-546 . -1017) T) ((-546 . -556) 85268) ((-546 . -1133) T) ((-546 . -13) T) ((-546 . -72) T) ((-546 . -608) T) ((-545 . -1017) T) ((-545 . -556) 85235) ((-545 . -1133) T) ((-545 . -13) T) ((-545 . -72) T) ((-545 . -433) 85217) ((-545 . -559) 85199) ((-544 . -687) 85183) ((-544 . -661) T) ((-544 . -689) T) ((-544 . -82) 85162) ((-544 . -967) 85146) ((-544 . -972) 85130) ((-544 . -21) T) ((-544 . -592) 85099) ((-544 . -23) T) ((-544 . -1017) T) ((-544 . -556) 85068) ((-544 . -1133) T) ((-544 . -13) T) ((-544 . -72) T) ((-544 . -25) T) ((-544 . -104) T) ((-544 . -594) 85052) ((-544 . -586) 85036) ((-544 . -658) 85020) ((-544 . -363) 84985) ((-544 . -318) 84920) ((-544 . -243) 84878) ((-543 . -999) T) ((-543 . -433) 84859) ((-543 . -556) 84809) ((-543 . -559) 84790) ((-543 . -1017) T) ((-543 . -1133) T) ((-543 . -13) T) ((-543 . -72) T) ((-543 . -64) T) ((-540 . -383) 84774) ((-540 . -13) T) ((-540 . -1133) T) ((-540 . -556) 84756) ((-536 . -1017) T) ((-536 . -556) 84722) ((-536 . -1133) T) ((-536 . -13) T) ((-536 . -72) T) ((-536 . -433) 84703) ((-536 . -559) 84684) ((-535 . -965) T) ((-535 . -667) T) ((-535 . -1065) T) ((-535 . -1029) T) ((-535 . -974) T) ((-535 . -21) T) ((-535 . -592) 84643) ((-535 . -23) T) ((-535 . -1017) T) ((-535 . -556) 84625) ((-535 . -1133) T) ((-535 . -13) T) ((-535 . -72) T) ((-535 . -25) T) ((-535 . -104) T) ((-535 . -594) 84599) ((-535 . -559) 84557) ((-535 . -82) 84510) ((-535 . -967) 84470) ((-535 . -972) 84430) ((-535 . -499) 84409) ((-535 . -248) 84388) ((-535 . -148) 84367) ((-535 . -658) 84340) ((-535 . -586) 84313) ((-535 . -38) 84286) ((-534 . -1162) 84263) ((-534 . -47) 84240) ((-534 . -38) 84137) ((-534 . -586) 84034) ((-534 . -658) 83931) ((-534 . -559) 83813) ((-534 . -248) 83792) ((-534 . -499) 83771) ((-534 . -383) 83755) ((-534 . -82) 83620) ((-534 . -967) 83506) ((-534 . -972) 83392) ((-534 . -148) 83346) ((-534 . -120) 83325) ((-534 . -118) 83304) ((-534 . -594) 83229) ((-534 . -592) 83139) ((-534 . -890) 83109) ((-534 . -815) 83022) ((-534 . -810) 82933) ((-534 . -813) 82846) ((-534 . -243) 82811) ((-534 . -191) 82770) ((-534 . -1133) T) ((-534 . -13) T) ((-534 . -188) 82723) ((-534 . -965) T) ((-534 . -667) T) ((-534 . -1065) T) ((-534 . -1029) T) ((-534 . -974) T) ((-534 . -21) T) ((-534 . -23) T) ((-534 . -1017) T) ((-534 . -556) 82705) ((-534 . -72) T) ((-534 . -25) T) ((-534 . -104) T) ((-534 . -192) 82664) ((-532 . -999) T) ((-532 . -433) 82645) ((-532 . -556) 82611) ((-532 . -559) 82592) ((-532 . -1017) T) ((-532 . -1133) T) ((-532 . -13) T) ((-532 . -72) T) ((-532 . -64) T) ((-526 . -1017) T) ((-526 . -556) 82558) ((-526 . -1133) T) ((-526 . -13) T) ((-526 . -72) T) ((-526 . -433) 82539) ((-526 . -559) 82520) ((-523 . -658) 82495) ((-523 . -586) 82470) ((-523 . -594) 82445) ((-523 . -592) 82405) ((-523 . -104) T) ((-523 . -25) T) ((-523 . -72) T) ((-523 . -13) T) ((-523 . -1133) T) ((-523 . -556) 82387) ((-523 . -1017) T) ((-523 . -23) T) ((-523 . -21) T) ((-523 . -972) 82362) ((-523 . -967) 82337) ((-523 . -82) 82298) ((-523 . -954) 82282) ((-523 . -559) 82266) ((-521 . -301) T) ((-521 . -1070) T) ((-521 . -322) T) ((-521 . -118) T) ((-521 . -314) T) ((-521 . -1138) T) ((-521 . -836) T) ((-521 . -499) T) ((-521 . -148) T) ((-521 . -559) 82216) ((-521 . -658) 82181) ((-521 . -586) 82146) ((-521 . -38) 82111) ((-521 . -395) T) ((-521 . -260) T) ((-521 . -82) 82060) ((-521 . -967) 82025) ((-521 . -972) 81990) ((-521 . -592) 81940) ((-521 . -594) 81905) ((-521 . -248) T) ((-521 . -203) T) ((-521 . -347) T) ((-521 . -191) T) ((-521 . -1133) T) ((-521 . -13) T) ((-521 . -188) 81892) ((-521 . -965) T) ((-521 . -667) T) ((-521 . -1065) T) ((-521 . -1029) T) ((-521 . -974) T) ((-521 . -21) T) ((-521 . -23) T) ((-521 . -1017) T) ((-521 . -556) 81874) ((-521 . -72) T) ((-521 . -25) T) ((-521 . -104) T) ((-521 . -192) T) ((-521 . -282) 81861) ((-521 . -120) 81843) ((-521 . -954) 81830) ((-521 . -1191) 81817) ((-521 . -1202) 81804) ((-521 . -557) 81786) ((-520 . -783) 81770) ((-520 . -836) T) ((-520 . -499) T) ((-520 . -248) T) ((-520 . -148) T) ((-520 . -559) 81742) ((-520 . -658) 81729) ((-520 . -586) 81716) ((-520 . -972) 81703) ((-520 . -967) 81690) ((-520 . -82) 81675) ((-520 . -38) 81662) ((-520 . -395) T) ((-520 . -260) T) ((-520 . -965) T) ((-520 . -667) T) ((-520 . -1065) T) ((-520 . -1029) T) ((-520 . -974) T) ((-520 . -21) T) ((-520 . -592) 81634) ((-520 . -23) T) ((-520 . -1017) T) ((-520 . -556) 81616) ((-520 . -1133) T) ((-520 . -13) T) ((-520 . -72) T) ((-520 . -25) T) ((-520 . -104) T) ((-520 . -594) 81603) ((-520 . -120) T) ((-519 . -1017) T) ((-519 . -556) 81585) ((-519 . -1133) T) ((-519 . -13) T) ((-519 . -72) T) ((-518 . -1017) T) ((-518 . -556) 81567) ((-518 . -1133) T) ((-518 . -13) T) ((-518 . -72) T) ((-517 . -516) T) ((-517 . -774) T) ((-517 . -149) T) ((-517 . -469) T) ((-517 . -556) 81549) ((-511 . -497) 81533) ((-511 . -35) T) ((-511 . -66) T) ((-511 . -241) T) ((-511 . -436) T) ((-511 . -1122) T) ((-511 . -1119) T) ((-511 . -954) 81515) ((-511 . -919) T) ((-511 . -763) T) ((-511 . -760) T) ((-511 . -499) T) ((-511 . -248) T) ((-511 . -148) T) ((-511 . -559) 81487) ((-511 . -658) 81474) ((-511 . -586) 81461) ((-511 . -594) 81448) ((-511 . -592) 81420) ((-511 . -104) T) ((-511 . -25) T) ((-511 . -72) T) ((-511 . -13) T) ((-511 . -1133) T) ((-511 . -556) 81402) ((-511 . -1017) T) ((-511 . -23) T) ((-511 . -21) T) ((-511 . -972) 81389) ((-511 . -967) 81376) ((-511 . -82) 81361) ((-511 . -965) T) ((-511 . -667) T) ((-511 . -1065) T) ((-511 . -1029) T) ((-511 . -974) T) ((-511 . -38) 81348) ((-511 . -395) T) ((-493 . -1111) 81327) ((-493 . -185) 81275) ((-493 . -76) 81223) ((-493 . -1039) 81158) ((-493 . -124) 81106) ((-493 . -557) NIL) ((-493 . -195) 81054) ((-493 . -542) 81033) ((-493 . -262) 80831) ((-493 . -459) 80583) ((-493 . -383) 80518) ((-493 . -432) 80453) ((-493 . -243) 80432) ((-493 . -245) 80411) ((-493 . -553) 80390) ((-493 . -1017) T) ((-493 . -556) 80372) ((-493 . -72) T) ((-493 . -1133) T) ((-493 . -13) T) ((-493 . -34) T) ((-493 . -320) 80320) ((-492 . -756) T) ((-492 . -763) T) ((-492 . -760) T) ((-492 . -1017) T) ((-492 . -556) 80302) ((-492 . -1133) T) ((-492 . -13) T) ((-492 . -72) T) ((-492 . -322) T) ((-491 . -756) T) ((-491 . -763) T) ((-491 . -760) T) ((-491 . -1017) T) ((-491 . -556) 80284) ((-491 . -1133) T) ((-491 . -13) T) ((-491 . -72) T) ((-491 . -322) T) ((-490 . -756) T) ((-490 . -763) T) ((-490 . -760) T) ((-490 . -1017) T) ((-490 . -556) 80266) ((-490 . -1133) T) ((-490 . -13) T) ((-490 . -72) T) ((-490 . -322) T) ((-489 . -756) T) ((-489 . -763) T) ((-489 . -760) T) ((-489 . -1017) T) ((-489 . -556) 80248) ((-489 . -1133) T) ((-489 . -13) T) ((-489 . -72) T) ((-489 . -322) T) ((-488 . -487) T) ((-488 . -1138) T) ((-488 . -1070) T) ((-488 . -954) 80230) ((-488 . -557) 80145) ((-488 . -937) T) ((-488 . -800) 80127) ((-488 . -759) T) ((-488 . -725) T) ((-488 . -722) T) ((-488 . -763) T) ((-488 . -760) T) ((-488 . -720) T) ((-488 . -718) T) ((-488 . -744) T) ((-488 . -594) 80099) ((-488 . -584) 80081) ((-488 . -836) T) ((-488 . -499) T) ((-488 . -248) T) ((-488 . -148) T) ((-488 . -559) 80053) ((-488 . -658) 80040) ((-488 . -586) 80027) ((-488 . -972) 80014) ((-488 . -967) 80001) ((-488 . -82) 79986) ((-488 . -38) 79973) ((-488 . -395) T) ((-488 . -260) T) ((-488 . -191) T) ((-488 . -188) 79960) ((-488 . -192) T) ((-488 . -116) T) ((-488 . -965) T) ((-488 . -667) T) ((-488 . -1065) T) ((-488 . -1029) T) ((-488 . -974) T) ((-488 . -21) T) ((-488 . -592) 79932) ((-488 . -23) T) ((-488 . -1017) T) ((-488 . -556) 79914) ((-488 . -1133) T) ((-488 . -13) T) ((-488 . -72) T) ((-488 . -25) T) ((-488 . -104) T) ((-488 . -120) T) ((-477 . -1020) 79866) ((-477 . -72) T) ((-477 . -556) 79848) ((-477 . -1017) T) ((-477 . -243) 79804) ((-477 . -1133) T) ((-477 . -13) T) ((-477 . -561) 79707) ((-477 . -557) 79688) ((-475 . -695) 79670) ((-475 . -469) T) ((-475 . -149) T) ((-475 . -774) T) ((-475 . -516) T) ((-475 . -556) 79652) ((-473 . -721) T) ((-473 . -104) T) ((-473 . -25) T) ((-473 . -72) T) ((-473 . -13) T) ((-473 . -1133) T) ((-473 . -556) 79634) ((-473 . -1017) T) ((-473 . -23) T) ((-473 . -720) T) ((-473 . -760) T) ((-473 . -763) T) ((-473 . -722) T) ((-473 . -725) T) ((-473 . -453) 79611) ((-473 . -383) 79593) ((-473 . -561) 79556) ((-471 . -469) T) ((-471 . -149) T) ((-471 . -556) 79538) ((-467 . -999) T) ((-467 . -433) 79519) ((-467 . -556) 79485) ((-467 . -559) 79466) ((-467 . -1017) T) ((-467 . -1133) T) ((-467 . -13) T) ((-467 . -72) T) ((-467 . -64) T) ((-466 . -999) T) ((-466 . -433) 79447) ((-466 . -556) 79413) ((-466 . -559) 79394) ((-466 . -1017) T) ((-466 . -1133) T) ((-466 . -13) T) ((-466 . -72) T) ((-466 . -64) T) ((-463 . -282) 79371) ((-463 . -192) T) ((-463 . -188) 79358) ((-463 . -191) T) ((-463 . -322) T) ((-463 . -1070) T) ((-463 . -301) T) ((-463 . -120) 79340) ((-463 . -559) 79270) ((-463 . -594) 79215) ((-463 . -592) 79145) ((-463 . -104) T) ((-463 . -25) T) ((-463 . -72) T) ((-463 . -13) T) ((-463 . -1133) T) ((-463 . -556) 79127) ((-463 . -1017) T) ((-463 . -23) T) ((-463 . -21) T) ((-463 . -974) T) ((-463 . -1029) T) ((-463 . -1065) T) ((-463 . -667) T) ((-463 . -965) T) ((-463 . -314) T) ((-463 . -1138) T) ((-463 . -836) T) ((-463 . -499) T) ((-463 . -148) T) ((-463 . -658) 79072) ((-463 . -586) 79017) ((-463 . -38) 78982) ((-463 . -395) T) ((-463 . -260) T) ((-463 . -82) 78899) ((-463 . -967) 78844) ((-463 . -972) 78789) ((-463 . -248) T) ((-463 . -203) T) ((-463 . -347) T) ((-463 . -118) T) ((-463 . -954) 78766) ((-463 . -1191) 78743) ((-463 . -1202) 78720) ((-462 . -999) T) ((-462 . -433) 78701) ((-462 . -556) 78667) ((-462 . -559) 78648) ((-462 . -1017) T) ((-462 . -1133) T) ((-462 . -13) T) ((-462 . -72) T) ((-462 . -64) T) ((-461 . -19) 78632) ((-461 . -1039) 78616) ((-461 . -320) 78600) ((-461 . -34) T) ((-461 . -13) T) ((-461 . -1133) T) ((-461 . -72) 78534) ((-461 . -556) 78449) ((-461 . -262) 78387) ((-461 . -459) 78320) ((-461 . -383) 78304) ((-461 . -1017) 78257) ((-461 . -432) 78241) ((-461 . -597) 78225) ((-461 . -245) 78202) ((-461 . -243) 78154) ((-461 . -542) 78131) ((-461 . -557) 78092) ((-461 . -124) 78076) ((-461 . -760) 78055) ((-461 . -763) 78034) ((-461 . -326) 78018) ((-461 . -239) 78002) ((-460 . -276) 77981) ((-460 . -559) 77965) ((-460 . -954) 77949) ((-460 . -23) T) ((-460 . -1017) T) ((-460 . -556) 77931) ((-460 . -1133) T) ((-460 . -13) T) ((-460 . -72) T) ((-460 . -25) T) ((-460 . -104) T) ((-457 . -72) T) ((-457 . -13) T) ((-457 . -1133) T) ((-457 . -556) 77903) ((-456 . -721) T) ((-456 . -104) T) ((-456 . -25) T) ((-456 . -72) T) ((-456 . -13) T) ((-456 . -1133) T) ((-456 . -556) 77885) ((-456 . -1017) T) ((-456 . -23) T) ((-456 . -720) T) ((-456 . -760) T) ((-456 . -763) T) ((-456 . -722) T) ((-456 . -725) T) ((-456 . -453) 77864) ((-456 . -383) 77848) ((-456 . -561) 77813) ((-455 . -720) T) ((-455 . -760) T) ((-455 . -763) T) ((-455 . -722) T) ((-455 . -25) T) ((-455 . -72) T) ((-455 . -13) T) ((-455 . -1133) T) ((-455 . -556) 77795) ((-455 . -1017) T) ((-455 . -23) T) ((-455 . -453) 77774) ((-455 . -383) 77758) ((-455 . -561) 77723) ((-454 . -453) 77702) ((-454 . -556) 77642) ((-454 . -1017) 77593) ((-454 . -383) 77577) ((-454 . -561) 77542) ((-454 . -1133) T) ((-454 . -13) T) ((-454 . -72) T) ((-452 . -23) T) ((-452 . -1017) T) ((-452 . -556) 77524) ((-452 . -1133) T) ((-452 . -13) T) ((-452 . -72) T) ((-452 . -25) T) ((-452 . -453) 77503) ((-452 . -383) 77487) ((-452 . -561) 77452) ((-451 . -21) T) ((-451 . -592) 77434) ((-451 . -23) T) ((-451 . -1017) T) ((-451 . -556) 77416) ((-451 . -1133) T) ((-451 . -13) T) ((-451 . -72) T) ((-451 . -25) T) ((-451 . -104) T) ((-451 . -453) 77395) ((-451 . -383) 77379) ((-451 . -561) 77344) ((-450 . -1017) T) ((-450 . -556) 77326) ((-450 . -1133) T) ((-450 . -13) T) ((-450 . -72) T) ((-447 . -1017) T) ((-447 . -556) 77308) ((-447 . -1133) T) ((-447 . -13) T) ((-447 . -72) T) ((-445 . -760) T) ((-445 . -556) 77290) ((-445 . -1017) T) ((-445 . -72) T) ((-445 . -13) T) ((-445 . -1133) T) ((-445 . -763) T) ((-445 . -559) 77271) ((-443 . -96) T) ((-443 . -326) 77254) ((-443 . -763) T) ((-443 . -760) T) ((-443 . -124) 77237) ((-443 . -557) 77219) ((-443 . -243) 77170) ((-443 . -542) 77146) ((-443 . -245) 77122) ((-443 . -597) 77105) ((-443 . -432) 77088) ((-443 . -1017) T) ((-443 . -383) 77071) ((-443 . -459) NIL) ((-443 . -262) NIL) ((-443 . -556) 77053) ((-443 . -72) T) ((-443 . -34) T) ((-443 . -320) 77036) ((-443 . -1039) 77019) ((-443 . -19) 77002) ((-443 . -608) T) ((-443 . -13) T) ((-443 . -1133) T) ((-443 . -84) T) ((-440 . -57) 76976) ((-440 . -1039) 76960) ((-440 . -432) 76944) ((-440 . -1017) 76922) ((-440 . -383) 76906) ((-440 . -459) 76839) ((-440 . -262) 76777) ((-440 . -556) 76712) ((-440 . -72) 76666) ((-440 . -1133) T) ((-440 . -13) T) ((-440 . -34) T) ((-440 . -320) 76650) ((-439 . -19) 76634) ((-439 . -1039) 76618) ((-439 . -320) 76602) ((-439 . -34) T) ((-439 . -13) T) ((-439 . -1133) T) ((-439 . -72) 76536) ((-439 . -556) 76451) ((-439 . -262) 76389) ((-439 . -459) 76322) ((-439 . -383) 76306) ((-439 . -1017) 76259) ((-439 . -432) 76243) ((-439 . -597) 76227) ((-439 . -245) 76204) ((-439 . -243) 76156) ((-439 . -542) 76133) ((-439 . -557) 76094) ((-439 . -124) 76078) ((-439 . -760) 76057) ((-439 . -763) 76036) ((-439 . -326) 76020) ((-438 . -256) T) ((-438 . -72) T) ((-438 . -13) T) ((-438 . -1133) T) ((-438 . -556) 76002) ((-438 . -1017) T) ((-438 . -559) 75903) ((-438 . -954) 75846) ((-438 . -459) 75812) ((-438 . -262) 75799) ((-438 . -27) T) ((-438 . -919) T) ((-438 . -203) T) ((-438 . -82) 75748) ((-438 . -967) 75713) ((-438 . -972) 75678) ((-438 . -248) T) ((-438 . -658) 75643) ((-438 . -586) 75608) ((-438 . -594) 75558) ((-438 . -592) 75508) ((-438 . -104) T) ((-438 . -25) T) ((-438 . -23) T) ((-438 . -21) T) ((-438 . -965) T) ((-438 . -667) T) ((-438 . -1065) T) ((-438 . -1029) T) ((-438 . -974) T) ((-438 . -38) 75473) ((-438 . -260) T) ((-438 . -395) T) ((-438 . -148) T) ((-438 . -499) T) ((-438 . -836) T) ((-438 . -1138) T) ((-438 . -314) T) ((-438 . -584) 75433) ((-438 . -937) T) ((-438 . -557) 75378) ((-438 . -120) T) ((-438 . -192) T) ((-438 . -188) 75365) ((-438 . -191) T) ((-434 . -1017) T) ((-434 . -556) 75331) ((-434 . -1133) T) ((-434 . -13) T) ((-434 . -72) T) ((-430 . -908) 75313) ((-430 . -1070) T) ((-430 . -559) 75263) ((-430 . -954) 75223) ((-430 . -557) 75153) ((-430 . -937) T) ((-430 . -825) NIL) ((-430 . -798) 75135) ((-430 . -759) T) ((-430 . -725) T) ((-430 . -722) T) ((-430 . -763) T) ((-430 . -760) T) ((-430 . -720) T) ((-430 . -718) T) ((-430 . -744) T) ((-430 . -800) 75117) ((-430 . -345) 75099) ((-430 . -584) 75081) ((-430 . -331) 75063) ((-430 . -243) NIL) ((-430 . -262) NIL) ((-430 . -459) NIL) ((-430 . -383) 75045) ((-430 . -290) 75027) ((-430 . -203) T) ((-430 . -82) 74954) ((-430 . -967) 74904) ((-430 . -972) 74854) ((-430 . -248) T) ((-430 . -658) 74804) ((-430 . -586) 74754) ((-430 . -594) 74704) ((-430 . -592) 74654) ((-430 . -38) 74604) ((-430 . -260) T) ((-430 . -395) T) ((-430 . -148) T) ((-430 . -499) T) ((-430 . -836) T) ((-430 . -1138) T) ((-430 . -314) T) ((-430 . -192) T) ((-430 . -188) 74591) ((-430 . -191) T) ((-430 . -227) 74573) ((-430 . -810) NIL) ((-430 . -815) NIL) ((-430 . -813) NIL) ((-430 . -186) 74555) ((-430 . -120) T) ((-430 . -118) NIL) ((-430 . -104) T) ((-430 . -25) T) ((-430 . -72) T) ((-430 . -13) T) ((-430 . -1133) T) ((-430 . -556) 74497) ((-430 . -1017) T) ((-430 . -23) T) ((-430 . -21) T) ((-430 . -965) T) ((-430 . -667) T) ((-430 . -1065) T) ((-430 . -1029) T) ((-430 . -974) T) ((-428 . -288) 74466) ((-428 . -104) T) ((-428 . -25) T) ((-428 . -72) T) ((-428 . -13) T) ((-428 . -1133) T) ((-428 . -556) 74448) ((-428 . -1017) T) ((-428 . -23) T) ((-428 . -592) 74430) ((-428 . -21) T) ((-427 . -885) 74414) ((-427 . -320) 74398) ((-427 . -432) 74382) ((-427 . -1017) 74360) ((-427 . -383) 74344) ((-427 . -459) 74277) ((-427 . -262) 74215) ((-427 . -556) 74150) ((-427 . -72) 74104) ((-427 . -1133) T) ((-427 . -13) T) ((-427 . -34) T) ((-427 . -1039) 74088) ((-427 . -76) 74072) ((-426 . -999) T) ((-426 . -433) 74053) ((-426 . -556) 74019) ((-426 . -559) 74000) ((-426 . -1017) T) ((-426 . -1133) T) ((-426 . -13) T) ((-426 . -72) T) ((-426 . -64) T) ((-425 . -198) 73979) ((-425 . -1191) 73949) ((-425 . -725) 73928) ((-425 . -722) 73907) ((-425 . -763) 73861) ((-425 . -760) 73815) ((-425 . -720) 73794) ((-425 . -721) 73773) ((-425 . -658) 73718) ((-425 . -586) 73643) ((-425 . -245) 73620) ((-425 . -243) 73597) ((-425 . -542) 73574) ((-425 . -954) 73403) ((-425 . -559) 73207) ((-425 . -357) 73176) ((-425 . -584) 73084) ((-425 . -594) 72923) ((-425 . -331) 72893) ((-425 . -432) 72877) ((-425 . -383) 72861) ((-425 . -459) 72794) ((-425 . -262) 72732) ((-425 . -34) T) ((-425 . -320) 72716) ((-425 . -322) 72695) ((-425 . -192) 72648) ((-425 . -592) 72436) ((-425 . -974) 72415) ((-425 . -1029) 72394) ((-425 . -1065) 72373) ((-425 . -667) 72352) ((-425 . -965) 72331) ((-425 . -188) 72227) ((-425 . -191) 72129) ((-425 . -227) 72099) ((-425 . -810) 71971) ((-425 . -815) 71845) ((-425 . -813) 71778) ((-425 . -186) 71748) ((-425 . -556) 71445) ((-425 . -972) 71370) ((-425 . -967) 71275) ((-425 . -82) 71195) ((-425 . -104) 71070) ((-425 . -25) 70907) ((-425 . -72) 70644) ((-425 . -13) T) ((-425 . -1133) T) ((-425 . -1017) 70400) ((-425 . -23) 70256) ((-425 . -21) 70171) ((-424 . -865) 70116) ((-424 . -559) 69908) ((-424 . -954) 69786) ((-424 . -1138) 69765) ((-424 . -825) 69744) ((-424 . -800) NIL) ((-424 . -815) 69721) ((-424 . -810) 69696) ((-424 . -813) 69673) ((-424 . -459) 69611) ((-424 . -395) 69565) ((-424 . -584) 69513) ((-424 . -594) 69402) ((-424 . -331) 69386) ((-424 . -47) 69343) ((-424 . -38) 69195) ((-424 . -586) 69047) ((-424 . -658) 68899) ((-424 . -248) 68833) ((-424 . -499) 68767) ((-424 . -383) 68751) ((-424 . -82) 68576) ((-424 . -967) 68422) ((-424 . -972) 68268) ((-424 . -148) 68182) ((-424 . -120) 68161) ((-424 . -118) 68140) ((-424 . -592) 68050) ((-424 . -104) T) ((-424 . -25) T) ((-424 . -72) T) ((-424 . -13) T) ((-424 . -1133) T) ((-424 . -556) 68032) ((-424 . -1017) T) ((-424 . -23) T) ((-424 . -21) T) ((-424 . -965) T) ((-424 . -667) T) ((-424 . -1065) T) ((-424 . -1029) T) ((-424 . -974) T) ((-424 . -357) 68016) ((-424 . -279) 67973) ((-424 . -262) 67960) ((-424 . -557) 67821) ((-422 . -1111) 67800) ((-422 . -185) 67748) ((-422 . -76) 67696) ((-422 . -1039) 67631) ((-422 . -124) 67579) ((-422 . -557) NIL) ((-422 . -195) 67527) ((-422 . -542) 67506) ((-422 . -262) 67304) ((-422 . -459) 67056) ((-422 . -383) 66991) ((-422 . -432) 66926) ((-422 . -243) 66905) ((-422 . -245) 66884) ((-422 . -553) 66863) ((-422 . -1017) T) ((-422 . -556) 66845) ((-422 . -72) T) ((-422 . -1133) T) ((-422 . -13) T) ((-422 . -34) T) ((-422 . -320) 66793) ((-421 . -999) T) ((-421 . -433) 66774) ((-421 . -556) 66740) ((-421 . -559) 66721) ((-421 . -1017) T) ((-421 . -1133) T) ((-421 . -13) T) ((-421 . -72) T) ((-421 . -64) T) ((-420 . -314) T) ((-420 . -1138) T) ((-420 . -836) T) ((-420 . -499) T) ((-420 . -148) T) ((-420 . -559) 66671) ((-420 . -658) 66636) ((-420 . -586) 66601) ((-420 . -38) 66566) ((-420 . -395) T) ((-420 . -260) T) ((-420 . -594) 66531) ((-420 . -592) 66481) ((-420 . -974) T) ((-420 . -1029) T) ((-420 . -1065) T) ((-420 . -667) T) ((-420 . -965) T) ((-420 . -82) 66430) ((-420 . -967) 66395) ((-420 . -972) 66360) ((-420 . -21) T) ((-420 . -23) T) ((-420 . -1017) T) ((-420 . -556) 66312) ((-420 . -1133) T) ((-420 . -13) T) ((-420 . -72) T) ((-420 . -25) T) ((-420 . -104) T) ((-420 . -248) T) ((-420 . -203) T) ((-420 . -120) T) ((-420 . -954) 66272) ((-420 . -937) T) ((-420 . -557) 66194) ((-419 . -1128) 66163) ((-419 . -1039) 66147) ((-419 . -556) 66109) ((-419 . -124) 66093) ((-419 . -34) T) ((-419 . -13) T) ((-419 . -1133) T) ((-419 . -72) T) ((-419 . -262) 66031) ((-419 . -459) 65964) ((-419 . -383) 65948) ((-419 . -1017) T) ((-419 . -432) 65932) ((-419 . -557) 65893) ((-419 . -320) 65877) ((-419 . -893) 65846) ((-418 . -1111) 65825) ((-418 . -185) 65773) ((-418 . -76) 65721) ((-418 . -1039) 65656) ((-418 . -124) 65604) ((-418 . -557) NIL) ((-418 . -195) 65552) ((-418 . -542) 65531) ((-418 . -262) 65329) ((-418 . -459) 65081) ((-418 . -383) 65016) ((-418 . -432) 64951) ((-418 . -243) 64930) ((-418 . -245) 64909) ((-418 . -553) 64888) ((-418 . -1017) T) ((-418 . -556) 64870) ((-418 . -72) T) ((-418 . -1133) T) ((-418 . -13) T) ((-418 . -34) T) ((-418 . -320) 64818) ((-417 . -1166) 64802) ((-417 . -192) 64754) ((-417 . -188) 64700) ((-417 . -191) 64652) ((-417 . -243) 64610) ((-417 . -813) 64516) ((-417 . -810) 64397) ((-417 . -815) 64303) ((-417 . -890) 64266) ((-417 . -38) 64113) ((-417 . -82) 63933) ((-417 . -967) 63774) ((-417 . -972) 63615) ((-417 . -592) 63500) ((-417 . -594) 63400) ((-417 . -586) 63247) ((-417 . -658) 63094) ((-417 . -559) 62926) ((-417 . -118) 62905) ((-417 . -120) 62884) ((-417 . -383) 62868) ((-417 . -47) 62838) ((-417 . -1162) 62808) ((-417 . -35) 62774) ((-417 . -66) 62740) ((-417 . -241) 62706) ((-417 . -436) 62672) ((-417 . -1122) 62638) ((-417 . -1119) 62604) ((-417 . -919) 62570) ((-417 . -203) 62549) ((-417 . -248) 62503) ((-417 . -104) T) ((-417 . -25) T) ((-417 . -72) T) ((-417 . -13) T) ((-417 . -1133) T) ((-417 . -556) 62485) ((-417 . -1017) T) ((-417 . -23) T) ((-417 . -21) T) ((-417 . -965) T) ((-417 . -667) T) ((-417 . -1065) T) ((-417 . -1029) T) ((-417 . -974) T) ((-417 . -260) 62464) ((-417 . -395) 62443) ((-417 . -148) 62377) ((-417 . -499) 62331) ((-417 . -836) 62310) ((-417 . -1138) 62289) ((-417 . -314) 62268) ((-411 . -1017) T) ((-411 . -556) 62250) ((-411 . -1133) T) ((-411 . -13) T) ((-411 . -72) T) ((-406 . -893) 62219) ((-406 . -320) 62203) ((-406 . -557) 62164) ((-406 . -432) 62148) ((-406 . -1017) T) ((-406 . -383) 62132) ((-406 . -459) 62065) ((-406 . -262) 62003) ((-406 . -556) 61965) ((-406 . -72) T) ((-406 . -1133) T) ((-406 . -13) T) ((-406 . -34) T) ((-406 . -124) 61949) ((-406 . -1039) 61933) ((-404 . -658) 61904) ((-404 . -586) 61875) ((-404 . -594) 61846) ((-404 . -592) 61802) ((-404 . -104) T) ((-404 . -25) T) ((-404 . -72) T) ((-404 . -13) T) ((-404 . -1133) T) ((-404 . -556) 61784) ((-404 . -1017) T) ((-404 . -23) T) ((-404 . -21) T) ((-404 . -972) 61755) ((-404 . -967) 61726) ((-404 . -82) 61687) ((-397 . -865) 61654) ((-397 . -559) 61446) ((-397 . -954) 61324) ((-397 . -1138) 61303) ((-397 . -825) 61282) ((-397 . -800) NIL) ((-397 . -815) 61259) ((-397 . -810) 61234) ((-397 . -813) 61211) ((-397 . -459) 61149) ((-397 . -395) 61103) ((-397 . -584) 61051) ((-397 . -594) 60940) ((-397 . -331) 60924) ((-397 . -47) 60903) ((-397 . -38) 60755) ((-397 . -586) 60607) ((-397 . -658) 60459) ((-397 . -248) 60393) ((-397 . -499) 60327) ((-397 . -383) 60311) ((-397 . -82) 60136) ((-397 . -967) 59982) ((-397 . -972) 59828) ((-397 . -148) 59742) ((-397 . -120) 59721) ((-397 . -118) 59700) ((-397 . -592) 59610) ((-397 . -104) T) ((-397 . -25) T) ((-397 . -72) T) ((-397 . -13) T) ((-397 . -1133) T) ((-397 . -556) 59592) ((-397 . -1017) T) ((-397 . -23) T) ((-397 . -21) T) ((-397 . -965) T) ((-397 . -667) T) ((-397 . -1065) T) ((-397 . -1029) T) ((-397 . -974) T) ((-397 . -357) 59576) ((-397 . -279) 59555) ((-397 . -262) 59542) ((-397 . -557) 59403) ((-396 . -363) 59373) ((-396 . -687) 59343) ((-396 . -661) T) ((-396 . -689) T) ((-396 . -82) 59294) ((-396 . -967) 59264) ((-396 . -972) 59234) ((-396 . -21) T) ((-396 . -592) 59149) ((-396 . -23) T) ((-396 . -1017) T) ((-396 . -556) 59131) ((-396 . -72) T) ((-396 . -25) T) ((-396 . -104) T) ((-396 . -594) 59061) ((-396 . -586) 59031) ((-396 . -658) 59001) ((-396 . -318) 58971) ((-396 . -1133) T) ((-396 . -13) T) ((-396 . -243) 58934) ((-384 . -1017) T) ((-384 . -556) 58916) ((-384 . -1133) T) ((-384 . -13) T) ((-384 . -72) T) ((-382 . -1017) T) ((-382 . -556) 58898) ((-382 . -1133) T) ((-382 . -13) T) ((-382 . -72) T) ((-381 . -1017) T) ((-381 . -556) 58880) ((-381 . -1133) T) ((-381 . -13) T) ((-381 . -72) T) ((-379 . -556) 58862) ((-374 . -38) 58846) ((-374 . -559) 58815) ((-374 . -594) 58789) ((-374 . -592) 58748) ((-374 . -974) T) ((-374 . -1029) T) ((-374 . -1065) T) ((-374 . -667) T) ((-374 . -965) T) ((-374 . -82) 58727) ((-374 . -967) 58711) ((-374 . -972) 58695) ((-374 . -21) T) ((-374 . -23) T) ((-374 . -1017) T) ((-374 . -556) 58677) ((-374 . -1133) T) ((-374 . -13) T) ((-374 . -72) T) ((-374 . -25) T) ((-374 . -104) T) ((-374 . -586) 58661) ((-374 . -658) 58645) ((-360 . -667) T) ((-360 . -1017) T) ((-360 . -556) 58627) ((-360 . -1133) T) ((-360 . -13) T) ((-360 . -72) T) ((-360 . -1029) T) ((-358 . -416) T) ((-358 . -1029) T) ((-358 . -72) T) ((-358 . -13) T) ((-358 . -1133) T) ((-358 . -556) 58609) ((-358 . -1017) T) ((-358 . -667) T) ((-352 . -908) 58593) ((-352 . -1070) 58571) ((-352 . -954) 58438) ((-352 . -559) 58337) ((-352 . -557) 58140) ((-352 . -937) 58119) ((-352 . -825) 58098) ((-352 . -798) 58082) ((-352 . -759) 58061) ((-352 . -725) 58040) ((-352 . -722) 58019) ((-352 . -763) 57973) ((-352 . -760) 57927) ((-352 . -720) 57906) ((-352 . -718) 57885) ((-352 . -744) 57864) ((-352 . -800) 57789) ((-352 . -345) 57773) ((-352 . -584) 57721) ((-352 . -594) 57637) ((-352 . -331) 57621) ((-352 . -243) 57579) ((-352 . -262) 57544) ((-352 . -459) 57456) ((-352 . -383) 57440) ((-352 . -290) 57424) ((-352 . -203) T) ((-352 . -82) 57355) ((-352 . -967) 57307) ((-352 . -972) 57259) ((-352 . -248) T) ((-352 . -658) 57211) ((-352 . -586) 57163) ((-352 . -592) 57100) ((-352 . -38) 57052) ((-352 . -260) T) ((-352 . -395) T) ((-352 . -148) T) ((-352 . -499) T) ((-352 . -836) T) ((-352 . -1138) T) ((-352 . -314) T) ((-352 . -192) 57031) ((-352 . -188) 56979) ((-352 . -191) 56933) ((-352 . -227) 56917) ((-352 . -810) 56841) ((-352 . -815) 56767) ((-352 . -813) 56726) ((-352 . -186) 56710) ((-352 . -120) 56664) ((-352 . -118) 56643) ((-352 . -104) T) ((-352 . -25) T) ((-352 . -72) T) ((-352 . -13) T) ((-352 . -1133) T) ((-352 . -556) 56625) ((-352 . -1017) T) ((-352 . -23) T) ((-352 . -21) T) ((-352 . -965) T) ((-352 . -667) T) ((-352 . -1065) T) ((-352 . -1029) T) ((-352 . -974) T) ((-350 . -499) T) ((-350 . -248) T) ((-350 . -148) T) ((-350 . -559) 56534) ((-350 . -658) 56508) ((-350 . -586) 56482) ((-350 . -594) 56456) ((-350 . -592) 56415) ((-350 . -104) T) ((-350 . -25) T) ((-350 . -72) T) ((-350 . -13) T) ((-350 . -1133) T) ((-350 . -556) 56397) ((-350 . -1017) T) ((-350 . -23) T) ((-350 . -21) T) ((-350 . -972) 56371) ((-350 . -967) 56345) ((-350 . -82) 56312) ((-350 . -965) T) ((-350 . -667) T) ((-350 . -1065) T) ((-350 . -1029) T) ((-350 . -974) T) ((-350 . -38) 56286) ((-350 . -186) 56270) ((-350 . -813) 56229) ((-350 . -815) 56155) ((-350 . -810) 56079) ((-350 . -227) 56063) ((-350 . -191) 56017) ((-350 . -188) 55965) ((-350 . -192) 55944) ((-350 . -290) 55928) ((-350 . -459) 55770) ((-350 . -383) 55754) ((-350 . -262) 55693) ((-350 . -243) 55621) ((-350 . -357) 55605) ((-350 . -954) 55503) ((-350 . -395) 55456) ((-350 . -937) 55435) ((-350 . -557) 55338) ((-350 . -1138) 55316) ((-344 . -1017) T) ((-344 . -556) 55298) ((-344 . -1133) T) ((-344 . -13) T) ((-344 . -72) T) ((-344 . -191) T) ((-344 . -188) 55285) ((-344 . -557) 55262) ((-342 . -687) 55246) ((-342 . -661) T) ((-342 . -689) T) ((-342 . -82) 55225) ((-342 . -967) 55209) ((-342 . -972) 55193) ((-342 . -21) T) ((-342 . -592) 55162) ((-342 . -23) T) ((-342 . -1017) T) ((-342 . -556) 55144) ((-342 . -1133) T) ((-342 . -13) T) ((-342 . -72) T) ((-342 . -25) T) ((-342 . -104) T) ((-342 . -594) 55128) ((-342 . -586) 55112) ((-342 . -658) 55096) ((-340 . -341) T) ((-340 . -72) T) ((-340 . -13) T) ((-340 . -1133) T) ((-340 . -556) 55062) ((-340 . -1017) T) ((-340 . -559) 55043) ((-340 . -433) 55024) ((-339 . -338) 55008) ((-339 . -559) 54992) ((-339 . -954) 54976) ((-339 . -763) 54955) ((-339 . -760) 54934) ((-339 . -1029) T) ((-339 . -72) T) ((-339 . -13) T) ((-339 . -1133) T) ((-339 . -556) 54916) ((-339 . -1017) T) ((-339 . -667) T) ((-336 . -337) 54895) ((-336 . -559) 54879) ((-336 . -954) 54863) ((-336 . -586) 54833) ((-336 . -658) 54803) ((-336 . -383) 54787) ((-336 . -594) 54771) ((-336 . -592) 54740) ((-336 . -104) T) ((-336 . -25) T) ((-336 . -72) T) ((-336 . -13) T) ((-336 . -1133) T) ((-336 . -556) 54722) ((-336 . -1017) T) ((-336 . -23) T) ((-336 . -21) T) ((-336 . -972) 54706) ((-336 . -967) 54690) ((-336 . -82) 54669) ((-335 . -82) 54648) ((-335 . -967) 54632) ((-335 . -972) 54616) ((-335 . -21) T) ((-335 . -592) 54585) ((-335 . -23) T) ((-335 . -1017) T) ((-335 . -556) 54567) ((-335 . -1133) T) ((-335 . -13) T) ((-335 . -72) T) ((-335 . -25) T) ((-335 . -104) T) ((-335 . -594) 54551) ((-335 . -453) 54530) ((-335 . -383) 54514) ((-335 . -561) 54479) ((-335 . -658) 54449) ((-335 . -586) 54419) ((-332 . -349) T) ((-332 . -120) T) ((-332 . -559) 54369) ((-332 . -594) 54334) ((-332 . -592) 54284) ((-332 . -104) T) ((-332 . -25) T) ((-332 . -72) T) ((-332 . -13) T) ((-332 . -1133) T) ((-332 . -556) 54251) ((-332 . -1017) T) ((-332 . -23) T) ((-332 . -21) T) ((-332 . -974) T) ((-332 . -1029) T) ((-332 . -1065) T) ((-332 . -667) T) ((-332 . -965) T) ((-332 . -557) 54165) ((-332 . -314) T) ((-332 . -1138) T) ((-332 . -836) T) ((-332 . -499) T) ((-332 . -148) T) ((-332 . -658) 54130) ((-332 . -586) 54095) ((-332 . -38) 54060) ((-332 . -395) T) ((-332 . -260) T) ((-332 . -82) 54009) ((-332 . -967) 53974) ((-332 . -972) 53939) ((-332 . -248) T) ((-332 . -203) T) ((-332 . -759) T) ((-332 . -725) T) ((-332 . -722) T) ((-332 . -763) T) ((-332 . -760) T) ((-332 . -720) T) ((-332 . -718) T) ((-332 . -800) 53921) ((-332 . -919) T) ((-332 . -937) T) ((-332 . -954) 53881) ((-332 . -977) T) ((-332 . -192) T) ((-332 . -188) 53868) ((-332 . -191) T) ((-332 . -1119) T) ((-332 . -1122) T) ((-332 . -436) T) ((-332 . -241) T) ((-332 . -66) T) ((-332 . -35) T) ((-332 . -561) 53850) ((-315 . -316) 53827) ((-315 . -72) T) ((-315 . -13) T) ((-315 . -1133) T) ((-315 . -556) 53809) ((-315 . -1017) T) ((-312 . -416) T) ((-312 . -1029) T) ((-312 . -72) T) ((-312 . -13) T) ((-312 . -1133) T) ((-312 . -556) 53791) ((-312 . -1017) T) ((-312 . -667) T) ((-312 . -954) 53775) ((-312 . -559) 53759) ((-310 . -282) 53743) ((-310 . -192) 53722) ((-310 . -188) 53695) ((-310 . -191) 53674) ((-310 . -322) 53653) ((-310 . -1070) 53632) ((-310 . -301) 53611) ((-310 . -120) 53590) ((-310 . -559) 53527) ((-310 . -594) 53479) ((-310 . -592) 53416) ((-310 . -104) T) ((-310 . -25) T) ((-310 . -72) T) ((-310 . -13) T) ((-310 . -1133) T) ((-310 . -556) 53398) ((-310 . -1017) T) ((-310 . -23) T) ((-310 . -21) T) ((-310 . -974) T) ((-310 . -1029) T) ((-310 . -1065) T) ((-310 . -667) T) ((-310 . -965) T) ((-310 . -314) T) ((-310 . -1138) T) ((-310 . -836) T) ((-310 . -499) T) ((-310 . -148) T) ((-310 . -658) 53350) ((-310 . -586) 53302) ((-310 . -38) 53267) ((-310 . -395) T) ((-310 . -260) T) ((-310 . -82) 53198) ((-310 . -967) 53150) ((-310 . -972) 53102) ((-310 . -248) T) ((-310 . -203) T) ((-310 . -347) 53056) ((-310 . -118) 53010) ((-310 . -954) 52994) ((-310 . -1191) 52978) ((-310 . -1202) 52962) ((-306 . -282) 52946) ((-306 . -192) 52925) ((-306 . -188) 52898) ((-306 . -191) 52877) ((-306 . -322) 52856) ((-306 . -1070) 52835) ((-306 . -301) 52814) ((-306 . -120) 52793) ((-306 . -559) 52730) ((-306 . -594) 52682) ((-306 . -592) 52619) ((-306 . -104) T) ((-306 . -25) T) ((-306 . -72) T) ((-306 . -13) T) ((-306 . -1133) T) ((-306 . -556) 52601) ((-306 . -1017) T) ((-306 . -23) T) ((-306 . -21) T) ((-306 . -974) T) ((-306 . -1029) T) ((-306 . -1065) T) ((-306 . -667) T) ((-306 . -965) T) ((-306 . -314) T) ((-306 . -1138) T) ((-306 . -836) T) ((-306 . -499) T) ((-306 . -148) T) ((-306 . -658) 52553) ((-306 . -586) 52505) ((-306 . -38) 52470) ((-306 . -395) T) ((-306 . -260) T) ((-306 . -82) 52401) ((-306 . -967) 52353) ((-306 . -972) 52305) ((-306 . -248) T) ((-306 . -203) T) ((-306 . -347) 52259) ((-306 . -118) 52213) ((-306 . -954) 52197) ((-306 . -1191) 52181) ((-306 . -1202) 52165) ((-305 . -282) 52149) ((-305 . -192) 52128) ((-305 . -188) 52101) ((-305 . -191) 52080) ((-305 . -322) 52059) ((-305 . -1070) 52038) ((-305 . -301) 52017) ((-305 . -120) 51996) ((-305 . -559) 51933) ((-305 . -594) 51885) ((-305 . -592) 51822) ((-305 . -104) T) ((-305 . -25) T) ((-305 . -72) T) ((-305 . -13) T) ((-305 . -1133) T) ((-305 . -556) 51804) ((-305 . -1017) T) ((-305 . -23) T) ((-305 . -21) T) ((-305 . -974) T) ((-305 . -1029) T) ((-305 . -1065) T) ((-305 . -667) T) ((-305 . -965) T) ((-305 . -314) T) ((-305 . -1138) T) ((-305 . -836) T) ((-305 . -499) T) ((-305 . -148) T) ((-305 . -658) 51756) ((-305 . -586) 51708) ((-305 . -38) 51673) ((-305 . -395) T) ((-305 . -260) T) ((-305 . -82) 51604) ((-305 . -967) 51556) ((-305 . -972) 51508) ((-305 . -248) T) ((-305 . -203) T) ((-305 . -347) 51462) ((-305 . -118) 51416) ((-305 . -954) 51400) ((-305 . -1191) 51384) ((-305 . -1202) 51368) ((-304 . -282) 51352) ((-304 . -192) 51331) ((-304 . -188) 51304) ((-304 . -191) 51283) ((-304 . -322) 51262) ((-304 . -1070) 51241) ((-304 . -301) 51220) ((-304 . -120) 51199) ((-304 . -559) 51136) ((-304 . -594) 51088) ((-304 . -592) 51025) ((-304 . -104) T) ((-304 . -25) T) ((-304 . -72) T) ((-304 . -13) T) ((-304 . -1133) T) ((-304 . -556) 51007) ((-304 . -1017) T) ((-304 . -23) T) ((-304 . -21) T) ((-304 . -974) T) ((-304 . -1029) T) ((-304 . -1065) T) ((-304 . -667) T) ((-304 . -965) T) ((-304 . -314) T) ((-304 . -1138) T) ((-304 . -836) T) ((-304 . -499) T) ((-304 . -148) T) ((-304 . -658) 50959) ((-304 . -586) 50911) ((-304 . -38) 50876) ((-304 . -395) T) ((-304 . -260) T) ((-304 . -82) 50807) ((-304 . -967) 50759) ((-304 . -972) 50711) ((-304 . -248) T) ((-304 . -203) T) ((-304 . -347) 50665) ((-304 . -118) 50619) ((-304 . -954) 50603) ((-304 . -1191) 50587) ((-304 . -1202) 50571) ((-303 . -282) 50548) ((-303 . -192) T) ((-303 . -188) 50535) ((-303 . -191) T) ((-303 . -322) T) ((-303 . -1070) T) ((-303 . -301) T) ((-303 . -120) 50517) ((-303 . -559) 50447) ((-303 . -594) 50392) ((-303 . -592) 50322) ((-303 . -104) T) ((-303 . -25) T) ((-303 . -72) T) ((-303 . -13) T) ((-303 . -1133) T) ((-303 . -556) 50304) ((-303 . -1017) T) ((-303 . -23) T) ((-303 . -21) T) ((-303 . -974) T) ((-303 . -1029) T) ((-303 . -1065) T) ((-303 . -667) T) ((-303 . -965) T) ((-303 . -314) T) ((-303 . -1138) T) ((-303 . -836) T) ((-303 . -499) T) ((-303 . -148) T) ((-303 . -658) 50249) ((-303 . -586) 50194) ((-303 . -38) 50159) ((-303 . -395) T) ((-303 . -260) T) ((-303 . -82) 50076) ((-303 . -967) 50021) ((-303 . -972) 49966) ((-303 . -248) T) ((-303 . -203) T) ((-303 . -347) T) ((-303 . -118) T) ((-303 . -954) 49943) ((-303 . -1191) 49920) ((-303 . -1202) 49897) ((-297 . -282) 49881) ((-297 . -192) 49860) ((-297 . -188) 49833) ((-297 . -191) 49812) ((-297 . -322) 49791) ((-297 . -1070) 49770) ((-297 . -301) 49749) ((-297 . -120) 49728) ((-297 . -559) 49665) ((-297 . -594) 49617) ((-297 . -592) 49554) ((-297 . -104) T) ((-297 . -25) T) ((-297 . -72) T) ((-297 . -13) T) ((-297 . -1133) T) ((-297 . -556) 49536) ((-297 . -1017) T) ((-297 . -23) T) ((-297 . -21) T) ((-297 . -974) T) ((-297 . -1029) T) ((-297 . -1065) T) ((-297 . -667) T) ((-297 . -965) T) ((-297 . -314) T) ((-297 . -1138) T) ((-297 . -836) T) ((-297 . -499) T) ((-297 . -148) T) ((-297 . -658) 49488) ((-297 . -586) 49440) ((-297 . -38) 49405) ((-297 . -395) T) ((-297 . -260) T) ((-297 . -82) 49336) ((-297 . -967) 49288) ((-297 . -972) 49240) ((-297 . -248) T) ((-297 . -203) T) ((-297 . -347) 49194) ((-297 . -118) 49148) ((-297 . -954) 49132) ((-297 . -1191) 49116) ((-297 . -1202) 49100) ((-296 . -282) 49084) ((-296 . -192) 49063) ((-296 . -188) 49036) ((-296 . -191) 49015) ((-296 . -322) 48994) ((-296 . -1070) 48973) ((-296 . -301) 48952) ((-296 . -120) 48931) ((-296 . -559) 48868) ((-296 . -594) 48820) ((-296 . -592) 48757) ((-296 . -104) T) ((-296 . -25) T) ((-296 . -72) T) ((-296 . -13) T) ((-296 . -1133) T) ((-296 . -556) 48739) ((-296 . -1017) T) ((-296 . -23) T) ((-296 . -21) T) ((-296 . -974) T) ((-296 . -1029) T) ((-296 . -1065) T) ((-296 . -667) T) ((-296 . -965) T) ((-296 . -314) T) ((-296 . -1138) T) ((-296 . -836) T) ((-296 . -499) T) ((-296 . -148) T) ((-296 . -658) 48691) ((-296 . -586) 48643) ((-296 . -38) 48608) ((-296 . -395) T) ((-296 . -260) T) ((-296 . -82) 48539) ((-296 . -967) 48491) ((-296 . -972) 48443) ((-296 . -248) T) ((-296 . -203) T) ((-296 . -347) 48397) ((-296 . -118) 48351) ((-296 . -954) 48335) ((-296 . -1191) 48319) ((-296 . -1202) 48303) ((-295 . -282) 48280) ((-295 . -192) T) ((-295 . -188) 48267) ((-295 . -191) T) ((-295 . -322) T) ((-295 . -1070) T) ((-295 . -301) T) ((-295 . -120) 48249) ((-295 . -559) 48179) ((-295 . -594) 48124) ((-295 . -592) 48054) ((-295 . -104) T) ((-295 . -25) T) ((-295 . -72) T) ((-295 . -13) T) ((-295 . -1133) T) ((-295 . -556) 48036) ((-295 . -1017) T) ((-295 . -23) T) ((-295 . -21) T) ((-295 . -974) T) ((-295 . -1029) T) ((-295 . -1065) T) ((-295 . -667) T) ((-295 . -965) T) ((-295 . -314) T) ((-295 . -1138) T) ((-295 . -836) T) ((-295 . -499) T) ((-295 . -148) T) ((-295 . -658) 47981) ((-295 . -586) 47926) ((-295 . -38) 47891) ((-295 . -395) T) ((-295 . -260) T) ((-295 . -82) 47808) ((-295 . -967) 47753) ((-295 . -972) 47698) ((-295 . -248) T) ((-295 . -203) T) ((-295 . -347) T) ((-295 . -118) T) ((-295 . -954) 47675) ((-295 . -1191) 47652) ((-295 . -1202) 47629) ((-291 . -282) 47606) ((-291 . -192) T) ((-291 . -188) 47593) ((-291 . -191) T) ((-291 . -322) T) ((-291 . -1070) T) ((-291 . -301) T) ((-291 . -120) 47575) ((-291 . -559) 47505) ((-291 . -594) 47450) ((-291 . -592) 47380) ((-291 . -104) T) ((-291 . -25) T) ((-291 . -72) T) ((-291 . -13) T) ((-291 . -1133) T) ((-291 . -556) 47362) ((-291 . -1017) T) ((-291 . -23) T) ((-291 . -21) T) ((-291 . -974) T) ((-291 . -1029) T) ((-291 . -1065) T) ((-291 . -667) T) ((-291 . -965) T) ((-291 . -314) T) ((-291 . -1138) T) ((-291 . -836) T) ((-291 . -499) T) ((-291 . -148) T) ((-291 . -658) 47307) ((-291 . -586) 47252) ((-291 . -38) 47217) ((-291 . -395) T) ((-291 . -260) T) ((-291 . -82) 47134) ((-291 . -967) 47079) ((-291 . -972) 47024) ((-291 . -248) T) ((-291 . -203) T) ((-291 . -347) T) ((-291 . -118) T) ((-291 . -954) 47001) ((-291 . -1191) 46978) ((-291 . -1202) 46955) ((-285 . -288) 46924) ((-285 . -104) T) ((-285 . -25) T) ((-285 . -72) T) ((-285 . -13) T) ((-285 . -1133) T) ((-285 . -556) 46906) ((-285 . -1017) T) ((-285 . -23) T) ((-285 . -592) 46888) ((-285 . -21) T) ((-284 . -1017) T) ((-284 . -556) 46870) ((-284 . -1133) T) ((-284 . -13) T) ((-284 . -72) T) ((-283 . -760) T) ((-283 . -556) 46852) ((-283 . -1017) T) ((-283 . -72) T) ((-283 . -13) T) ((-283 . -1133) T) ((-283 . -763) T) ((-280 . -19) 46836) ((-280 . -1039) 46820) ((-280 . -320) 46804) ((-280 . -34) T) ((-280 . -13) T) ((-280 . -1133) T) ((-280 . -72) 46738) ((-280 . -556) 46653) ((-280 . -262) 46591) ((-280 . -459) 46524) ((-280 . -383) 46508) ((-280 . -1017) 46461) ((-280 . -432) 46445) ((-280 . -597) 46429) ((-280 . -245) 46406) ((-280 . -243) 46358) ((-280 . -542) 46335) ((-280 . -557) 46296) ((-280 . -124) 46280) ((-280 . -760) 46259) ((-280 . -763) 46238) ((-280 . -326) 46222) ((-280 . -239) 46206) ((-277 . -276) 46183) ((-277 . -559) 46167) ((-277 . -954) 46151) ((-277 . -23) T) ((-277 . -1017) T) ((-277 . -556) 46133) ((-277 . -1133) T) ((-277 . -13) T) ((-277 . -72) T) ((-277 . -25) T) ((-277 . -104) T) ((-275 . -21) T) ((-275 . -592) 46115) ((-275 . -23) T) ((-275 . -1017) T) ((-275 . -556) 46097) ((-275 . -1133) T) ((-275 . -13) T) ((-275 . -72) T) ((-275 . -25) T) ((-275 . -104) T) ((-275 . -658) 46079) ((-275 . -586) 46061) ((-275 . -594) 46043) ((-275 . -972) 46025) ((-275 . -967) 46007) ((-275 . -82) 45982) ((-275 . -276) 45959) ((-275 . -559) 45943) ((-275 . -954) 45927) ((-275 . -760) 45906) ((-275 . -763) 45885) ((-272 . -1166) 45869) ((-272 . -192) 45821) ((-272 . -188) 45767) ((-272 . -191) 45719) ((-272 . -243) 45677) ((-272 . -813) 45583) ((-272 . -810) 45487) ((-272 . -815) 45393) ((-272 . -890) 45356) ((-272 . -38) 45203) ((-272 . -82) 45023) ((-272 . -967) 44864) ((-272 . -972) 44705) ((-272 . -592) 44590) ((-272 . -594) 44490) ((-272 . -586) 44337) ((-272 . -658) 44184) ((-272 . -559) 44016) ((-272 . -118) 43995) ((-272 . -120) 43974) ((-272 . -383) 43958) ((-272 . -47) 43928) ((-272 . -1162) 43898) ((-272 . -35) 43864) ((-272 . -66) 43830) ((-272 . -241) 43796) ((-272 . -436) 43762) ((-272 . -1122) 43728) ((-272 . -1119) 43694) ((-272 . -919) 43660) ((-272 . -203) 43639) ((-272 . -248) 43593) ((-272 . -104) T) ((-272 . -25) T) ((-272 . -72) T) ((-272 . -13) T) ((-272 . -1133) T) ((-272 . -556) 43575) ((-272 . -1017) T) ((-272 . -23) T) ((-272 . -21) T) ((-272 . -965) T) ((-272 . -667) T) ((-272 . -1065) T) ((-272 . -1029) T) ((-272 . -974) T) ((-272 . -260) 43554) ((-272 . -395) 43533) ((-272 . -148) 43467) ((-272 . -499) 43421) ((-272 . -836) 43400) ((-272 . -1138) 43379) ((-272 . -314) 43358) ((-272 . -720) T) ((-272 . -760) T) ((-272 . -763) T) ((-272 . -722) T) ((-267 . -366) 43342) ((-267 . -559) 42917) ((-267 . -954) 42588) ((-267 . -557) 42449) ((-267 . -798) 42433) ((-267 . -815) 42400) ((-267 . -810) 42365) ((-267 . -813) 42332) ((-267 . -416) 42311) ((-267 . -357) 42295) ((-267 . -800) 42220) ((-267 . -345) 42204) ((-267 . -584) 42112) ((-267 . -594) 41850) ((-267 . -331) 41820) ((-267 . -203) 41799) ((-267 . -82) 41688) ((-267 . -967) 41598) ((-267 . -972) 41508) ((-267 . -248) 41487) ((-267 . -658) 41397) ((-267 . -586) 41307) ((-267 . -592) 40974) ((-267 . -38) 40884) ((-267 . -260) 40863) ((-267 . -395) 40842) ((-267 . -148) 40821) ((-267 . -499) 40800) ((-267 . -836) 40779) ((-267 . -1138) 40758) ((-267 . -314) 40737) ((-267 . -262) 40724) ((-267 . -459) 40690) ((-267 . -256) T) ((-267 . -120) 40669) ((-267 . -118) 40648) ((-267 . -965) 40542) ((-267 . -667) 40395) ((-267 . -1065) 40289) ((-267 . -1029) 40142) ((-267 . -974) 40036) ((-267 . -104) 39911) ((-267 . -25) 39767) ((-267 . -72) T) ((-267 . -13) T) ((-267 . -1133) T) ((-267 . -556) 39749) ((-267 . -1017) T) ((-267 . -23) 39605) ((-267 . -21) 39480) ((-267 . -29) 39450) ((-267 . -919) 39429) ((-267 . -27) 39408) ((-267 . -1119) 39387) ((-267 . -1122) 39366) ((-267 . -436) 39345) ((-267 . -241) 39324) ((-267 . -66) 39303) ((-267 . -35) 39282) ((-267 . -133) 39261) ((-267 . -116) 39240) ((-267 . -573) 39219) ((-267 . -875) 39198) ((-267 . -1057) 39177) ((-266 . -908) 39138) ((-266 . -1070) NIL) ((-266 . -954) 39068) ((-266 . -559) 38951) ((-266 . -557) NIL) ((-266 . -937) NIL) ((-266 . -825) NIL) ((-266 . -798) 38912) ((-266 . -759) NIL) ((-266 . -725) NIL) ((-266 . -722) NIL) ((-266 . -763) NIL) ((-266 . -760) NIL) ((-266 . -720) NIL) ((-266 . -718) NIL) ((-266 . -744) NIL) ((-266 . -800) NIL) ((-266 . -345) 38873) ((-266 . -584) 38834) ((-266 . -594) 38763) ((-266 . -331) 38724) ((-266 . -243) 38590) ((-266 . -262) 38486) ((-266 . -459) 38237) ((-266 . -383) 38198) ((-266 . -290) 38159) ((-266 . -203) T) ((-266 . -82) 38044) ((-266 . -967) 37973) ((-266 . -972) 37902) ((-266 . -248) T) ((-266 . -658) 37831) ((-266 . -586) 37760) ((-266 . -592) 37674) ((-266 . -38) 37603) ((-266 . -260) T) ((-266 . -395) T) ((-266 . -148) T) ((-266 . -499) T) ((-266 . -836) T) ((-266 . -1138) T) ((-266 . -314) T) ((-266 . -192) NIL) ((-266 . -188) NIL) ((-266 . -191) NIL) ((-266 . -227) 37564) ((-266 . -810) NIL) ((-266 . -815) NIL) ((-266 . -813) NIL) ((-266 . -186) 37525) ((-266 . -120) 37481) ((-266 . -118) 37437) ((-266 . -104) T) ((-266 . -25) T) ((-266 . -72) T) ((-266 . -13) T) ((-266 . -1133) T) ((-266 . -556) 37419) ((-266 . -1017) T) ((-266 . -23) T) ((-266 . -21) T) ((-266 . -965) T) ((-266 . -667) T) ((-266 . -1065) T) ((-266 . -1029) T) ((-266 . -974) T) ((-265 . -999) T) ((-265 . -433) 37400) ((-265 . -556) 37366) ((-265 . -559) 37347) ((-265 . -1017) T) ((-265 . -1133) T) ((-265 . -13) T) ((-265 . -72) T) ((-265 . -64) T) ((-264 . -1017) T) ((-264 . -556) 37329) ((-264 . -1133) T) ((-264 . -13) T) ((-264 . -72) T) ((-253 . -1111) 37308) ((-253 . -185) 37256) ((-253 . -76) 37204) ((-253 . -1039) 37139) ((-253 . -124) 37087) ((-253 . -557) NIL) ((-253 . -195) 37035) ((-253 . -542) 37014) ((-253 . -262) 36812) ((-253 . -459) 36564) ((-253 . -383) 36499) ((-253 . -432) 36434) ((-253 . -243) 36413) ((-253 . -245) 36392) ((-253 . -553) 36371) ((-253 . -1017) T) ((-253 . -556) 36353) ((-253 . -72) T) ((-253 . -1133) T) ((-253 . -13) T) ((-253 . -34) T) ((-253 . -320) 36301) ((-251 . -383) 36285) ((-251 . -13) T) ((-251 . -1133) T) ((-251 . -459) 36234) ((-251 . -1017) 36020) ((-251 . -556) 35766) ((-251 . -72) 35552) ((-251 . -25) 35420) ((-251 . -21) 35307) ((-251 . -592) 35054) ((-251 . -23) 34941) ((-251 . -104) 34828) ((-251 . -1029) 34713) ((-251 . -667) 34619) ((-251 . -416) 34598) ((-251 . -965) 34544) ((-251 . -1065) 34490) ((-251 . -974) 34436) ((-251 . -594) 34304) ((-251 . -559) 34239) ((-251 . -82) 34159) ((-251 . -967) 34084) ((-251 . -972) 34009) ((-251 . -658) 33954) ((-251 . -586) 33899) ((-251 . -813) 33858) ((-251 . -810) 33815) ((-251 . -815) 33774) ((-251 . -1191) 33744) ((-249 . -556) 33726) ((-246 . -260) T) ((-246 . -395) T) ((-246 . -38) 33713) ((-246 . -559) 33685) ((-246 . -974) T) ((-246 . -1029) T) ((-246 . -1065) T) ((-246 . -667) T) ((-246 . -965) T) ((-246 . -82) 33670) ((-246 . -967) 33657) ((-246 . -972) 33644) ((-246 . -21) T) ((-246 . -592) 33616) ((-246 . -23) T) ((-246 . -1017) T) ((-246 . -556) 33598) ((-246 . -1133) T) ((-246 . -13) T) ((-246 . -72) T) ((-246 . -25) T) ((-246 . -104) T) ((-246 . -594) 33585) ((-246 . -586) 33572) ((-246 . -658) 33559) ((-246 . -148) T) ((-246 . -248) T) ((-246 . -499) T) ((-246 . -836) T) ((-246 . -243) 33538) ((-237 . -556) 33520) ((-236 . -556) 33502) ((-231 . -760) T) ((-231 . -556) 33484) ((-231 . -1017) T) ((-231 . -72) T) ((-231 . -13) T) ((-231 . -1133) T) ((-231 . -763) T) ((-228 . -215) 33446) ((-228 . -559) 33206) ((-228 . -954) 33052) ((-228 . -557) 32800) ((-228 . -279) 32772) ((-228 . -357) 32756) ((-228 . -38) 32608) ((-228 . -82) 32433) ((-228 . -967) 32279) ((-228 . -972) 32125) ((-228 . -592) 32035) ((-228 . -594) 31924) ((-228 . -586) 31776) ((-228 . -658) 31628) ((-228 . -118) 31607) ((-228 . -120) 31586) ((-228 . -148) 31500) ((-228 . -383) 31484) ((-228 . -499) 31418) ((-228 . -248) 31352) ((-228 . -47) 31324) ((-228 . -331) 31308) ((-228 . -584) 31256) ((-228 . -395) 31210) ((-228 . -459) 31101) ((-228 . -813) 31047) ((-228 . -810) 30956) ((-228 . -815) 30869) ((-228 . -800) 30728) ((-228 . -825) 30707) ((-228 . -1138) 30686) ((-228 . -865) 30653) ((-228 . -262) 30640) ((-228 . -192) 30619) ((-228 . -104) T) ((-228 . -25) T) ((-228 . -72) T) ((-228 . -556) 30601) ((-228 . -1017) T) ((-228 . -23) T) ((-228 . -21) T) ((-228 . -974) T) ((-228 . -1029) T) ((-228 . -1065) T) ((-228 . -667) T) ((-228 . -965) T) ((-228 . -188) 30549) ((-228 . -13) T) ((-228 . -1133) T) ((-228 . -191) 30503) ((-228 . -227) 30487) ((-228 . -186) 30471) ((-223 . -1017) T) ((-223 . -556) 30453) ((-223 . -1133) T) ((-223 . -13) T) ((-223 . -72) T) ((-213 . -198) 30432) ((-213 . -1191) 30402) ((-213 . -725) 30381) ((-213 . -722) 30360) ((-213 . -763) 30314) ((-213 . -760) 30268) ((-213 . -720) 30247) ((-213 . -721) 30226) ((-213 . -658) 30171) ((-213 . -586) 30096) ((-213 . -245) 30073) ((-213 . -243) 30050) ((-213 . -542) 30027) ((-213 . -954) 29856) ((-213 . -559) 29660) ((-213 . -357) 29629) ((-213 . -584) 29537) ((-213 . -594) 29363) ((-213 . -331) 29333) ((-213 . -432) 29317) ((-213 . -383) 29301) ((-213 . -459) 29234) ((-213 . -262) 29172) ((-213 . -34) T) ((-213 . -320) 29156) ((-213 . -322) 29135) ((-213 . -192) 29088) ((-213 . -592) 28941) ((-213 . -974) 28920) ((-213 . -1029) 28899) ((-213 . -1065) 28878) ((-213 . -667) 28857) ((-213 . -965) 28836) ((-213 . -188) 28732) ((-213 . -191) 28634) ((-213 . -227) 28604) ((-213 . -810) 28476) ((-213 . -815) 28350) ((-213 . -813) 28283) ((-213 . -186) 28253) ((-213 . -556) 28214) ((-213 . -972) 28139) ((-213 . -967) 28044) ((-213 . -82) 27964) ((-213 . -104) T) ((-213 . -25) T) ((-213 . -72) T) ((-213 . -13) T) ((-213 . -1133) T) ((-213 . -1017) T) ((-213 . -23) T) ((-213 . -21) T) ((-212 . -198) 27943) ((-212 . -1191) 27913) ((-212 . -725) 27892) ((-212 . -722) 27871) ((-212 . -763) 27825) ((-212 . -760) 27779) ((-212 . -720) 27758) ((-212 . -721) 27737) ((-212 . -658) 27682) ((-212 . -586) 27607) ((-212 . -245) 27584) ((-212 . -243) 27561) ((-212 . -542) 27538) ((-212 . -954) 27367) ((-212 . -559) 27171) ((-212 . -357) 27140) ((-212 . -584) 27048) ((-212 . -594) 26861) ((-212 . -331) 26831) ((-212 . -432) 26815) ((-212 . -383) 26799) ((-212 . -459) 26732) ((-212 . -262) 26670) ((-212 . -34) T) ((-212 . -320) 26654) ((-212 . -322) 26633) ((-212 . -192) 26586) ((-212 . -592) 26426) ((-212 . -974) 26405) ((-212 . -1029) 26384) ((-212 . -1065) 26363) ((-212 . -667) 26342) ((-212 . -965) 26321) ((-212 . -188) 26217) ((-212 . -191) 26119) ((-212 . -227) 26089) ((-212 . -810) 25961) ((-212 . -815) 25835) ((-212 . -813) 25768) ((-212 . -186) 25738) ((-212 . -556) 25699) ((-212 . -972) 25624) ((-212 . -967) 25529) ((-212 . -82) 25449) ((-212 . -104) T) ((-212 . -25) T) ((-212 . -72) T) ((-212 . -13) T) ((-212 . -1133) T) ((-212 . -1017) T) ((-212 . -23) T) ((-212 . -21) T) ((-211 . -1017) T) ((-211 . -556) 25431) ((-211 . -1133) T) ((-211 . -13) T) ((-211 . -72) T) ((-211 . -243) 25405) ((-210 . -162) T) ((-210 . -1017) T) ((-210 . -556) 25372) ((-210 . -1133) T) ((-210 . -13) T) ((-210 . -72) T) ((-210 . -751) 25354) ((-209 . -1017) T) ((-209 . -556) 25336) ((-209 . -1133) T) ((-209 . -13) T) ((-209 . -72) T) ((-208 . -865) 25281) ((-208 . -559) 25073) ((-208 . -954) 24951) ((-208 . -1138) 24930) ((-208 . -825) 24909) ((-208 . -800) NIL) ((-208 . -815) 24886) ((-208 . -810) 24861) ((-208 . -813) 24838) ((-208 . -459) 24776) ((-208 . -395) 24730) ((-208 . -584) 24678) ((-208 . -594) 24567) ((-208 . -331) 24551) ((-208 . -47) 24508) ((-208 . -38) 24360) ((-208 . -586) 24212) ((-208 . -658) 24064) ((-208 . -248) 23998) ((-208 . -499) 23932) ((-208 . -383) 23916) ((-208 . -82) 23741) ((-208 . -967) 23587) ((-208 . -972) 23433) ((-208 . -148) 23347) ((-208 . -120) 23326) ((-208 . -118) 23305) ((-208 . -592) 23215) ((-208 . -104) T) ((-208 . -25) T) ((-208 . -72) T) ((-208 . -13) T) ((-208 . -1133) T) ((-208 . -556) 23197) ((-208 . -1017) T) ((-208 . -23) T) ((-208 . -21) T) ((-208 . -965) T) ((-208 . -667) T) ((-208 . -1065) T) ((-208 . -1029) T) ((-208 . -974) T) ((-208 . -357) 23181) ((-208 . -279) 23138) ((-208 . -262) 23125) ((-208 . -557) 22986) ((-205 . -612) 22970) ((-205 . -1172) 22954) ((-205 . -927) 22938) ((-205 . -1068) 22922) ((-205 . -320) 22906) ((-205 . -760) 22885) ((-205 . -763) 22864) ((-205 . -326) 22848) ((-205 . -597) 22832) ((-205 . -245) 22809) ((-205 . -243) 22761) ((-205 . -542) 22738) ((-205 . -557) 22699) ((-205 . -432) 22683) ((-205 . -1017) 22636) ((-205 . -383) 22620) ((-205 . -459) 22553) ((-205 . -262) 22491) ((-205 . -556) 22386) ((-205 . -72) 22320) ((-205 . -1133) T) ((-205 . -13) T) ((-205 . -34) T) ((-205 . -124) 22304) ((-205 . -1039) 22288) ((-205 . -239) 22272) ((-205 . -433) 22249) ((-205 . -559) 22226) ((-199 . -198) 22205) ((-199 . -1191) 22175) ((-199 . -725) 22154) ((-199 . -722) 22133) ((-199 . -763) 22087) ((-199 . -760) 22041) ((-199 . -720) 22020) ((-199 . -721) 21999) ((-199 . -658) 21944) ((-199 . -586) 21869) ((-199 . -245) 21846) ((-199 . -243) 21823) ((-199 . -542) 21800) ((-199 . -954) 21629) ((-199 . -559) 21433) ((-199 . -357) 21402) ((-199 . -584) 21310) ((-199 . -594) 21149) ((-199 . -331) 21119) ((-199 . -432) 21103) ((-199 . -383) 21087) ((-199 . -459) 21020) ((-199 . -262) 20958) ((-199 . -34) T) ((-199 . -320) 20942) ((-199 . -322) 20921) ((-199 . -192) 20874) ((-199 . -592) 20662) ((-199 . -974) 20641) ((-199 . -1029) 20620) ((-199 . -1065) 20599) ((-199 . -667) 20578) ((-199 . -965) 20557) ((-199 . -188) 20453) ((-199 . -191) 20355) ((-199 . -227) 20325) ((-199 . -810) 20197) ((-199 . -815) 20071) ((-199 . -813) 20004) ((-199 . -186) 19974) ((-199 . -556) 19671) ((-199 . -972) 19596) ((-199 . -967) 19501) ((-199 . -82) 19421) ((-199 . -104) 19296) ((-199 . -25) 19133) ((-199 . -72) 18870) ((-199 . -13) T) ((-199 . -1133) T) ((-199 . -1017) 18626) ((-199 . -23) 18482) ((-199 . -21) 18397) ((-183 . -631) 18355) ((-183 . -320) 18339) ((-183 . -34) T) ((-183 . -13) T) ((-183 . -1133) T) ((-183 . -72) 18293) ((-183 . -556) 18228) ((-183 . -262) 18166) ((-183 . -459) 18099) ((-183 . -383) 18083) ((-183 . -1017) 18061) ((-183 . -432) 18045) ((-183 . -1039) 18029) ((-183 . -57) 17987) ((-181 . -349) T) ((-181 . -120) T) ((-181 . -559) 17937) ((-181 . -594) 17902) ((-181 . -592) 17852) ((-181 . -104) T) ((-181 . -25) T) ((-181 . -72) T) ((-181 . -13) T) ((-181 . -1133) T) ((-181 . -556) 17834) ((-181 . -1017) T) ((-181 . -23) T) ((-181 . -21) T) ((-181 . -974) T) ((-181 . -1029) T) ((-181 . -1065) T) ((-181 . -667) T) ((-181 . -965) T) ((-181 . -557) 17764) ((-181 . -314) T) ((-181 . -1138) T) ((-181 . -836) T) ((-181 . -499) T) ((-181 . -148) T) ((-181 . -658) 17729) ((-181 . -586) 17694) ((-181 . -38) 17659) ((-181 . -395) T) ((-181 . -260) T) ((-181 . -82) 17608) ((-181 . -967) 17573) ((-181 . -972) 17538) ((-181 . -248) T) ((-181 . -203) T) ((-181 . -759) T) ((-181 . -725) T) ((-181 . -722) T) ((-181 . -763) T) ((-181 . -760) T) ((-181 . -720) T) ((-181 . -718) T) ((-181 . -800) 17520) ((-181 . -919) T) ((-181 . -937) T) ((-181 . -954) 17480) ((-181 . -977) T) ((-181 . -192) T) ((-181 . -188) 17467) ((-181 . -191) T) ((-181 . -1119) T) ((-181 . -1122) T) ((-181 . -436) T) ((-181 . -241) T) ((-181 . -66) T) ((-181 . -35) T) ((-179 . -564) 17444) ((-179 . -559) 17406) ((-179 . -594) 17373) ((-179 . -592) 17325) ((-179 . -974) T) ((-179 . -1029) T) ((-179 . -1065) T) ((-179 . -667) T) ((-179 . -965) T) ((-179 . -21) T) ((-179 . -23) T) ((-179 . -1017) T) ((-179 . -556) 17307) ((-179 . -1133) T) ((-179 . -13) T) ((-179 . -72) T) ((-179 . -25) T) ((-179 . -104) T) ((-179 . -954) 17284) ((-179 . -383) 17261) ((-178 . -216) 17245) ((-178 . -1038) 17229) ((-178 . -76) 17213) ((-178 . -1039) 17197) ((-178 . -34) T) ((-178 . -13) T) ((-178 . -1133) T) ((-178 . -72) 17151) ((-178 . -556) 17086) ((-178 . -262) 17024) ((-178 . -459) 16957) ((-178 . -383) 16941) ((-178 . -1017) 16919) ((-178 . -432) 16903) ((-178 . -320) 16887) ((-178 . -912) 16871) ((-174 . -999) T) ((-174 . -433) 16852) ((-174 . -556) 16818) ((-174 . -559) 16799) ((-174 . -1017) T) ((-174 . -1133) T) ((-174 . -13) T) ((-174 . -72) T) ((-174 . -64) T) ((-173 . -908) 16781) ((-173 . -1070) T) ((-173 . -559) 16731) ((-173 . -954) 16691) ((-173 . -557) 16621) ((-173 . -937) T) ((-173 . -825) NIL) ((-173 . -798) 16603) ((-173 . -759) T) ((-173 . -725) T) ((-173 . -722) T) ((-173 . -763) T) ((-173 . -760) T) ((-173 . -720) T) ((-173 . -718) T) ((-173 . -744) T) ((-173 . -800) 16585) ((-173 . -345) 16567) ((-173 . -584) 16549) ((-173 . -331) 16531) ((-173 . -243) NIL) ((-173 . -262) NIL) ((-173 . -459) NIL) ((-173 . -383) 16513) ((-173 . -290) 16495) ((-173 . -203) T) ((-173 . -82) 16422) ((-173 . -967) 16372) ((-173 . -972) 16322) ((-173 . -248) T) ((-173 . -658) 16272) ((-173 . -586) 16222) ((-173 . -594) 16172) ((-173 . -592) 16122) ((-173 . -38) 16072) ((-173 . -260) T) ((-173 . -395) T) ((-173 . -148) T) ((-173 . -499) T) ((-173 . -836) T) ((-173 . -1138) T) ((-173 . -314) T) ((-173 . -192) T) ((-173 . -188) 16059) ((-173 . -191) T) ((-173 . -227) 16041) ((-173 . -810) NIL) ((-173 . -815) NIL) ((-173 . -813) NIL) ((-173 . -186) 16023) ((-173 . -120) T) ((-173 . -118) NIL) ((-173 . -104) T) ((-173 . -25) T) ((-173 . -72) T) ((-173 . -13) T) ((-173 . -1133) T) ((-173 . -556) 15965) ((-173 . -1017) T) ((-173 . -23) T) ((-173 . -21) T) ((-173 . -965) T) ((-173 . -667) T) ((-173 . -1065) T) ((-173 . -1029) T) ((-173 . -974) T) ((-170 . -756) T) ((-170 . -763) T) ((-170 . -760) T) ((-170 . -1017) T) ((-170 . -556) 15947) ((-170 . -1133) T) ((-170 . -13) T) ((-170 . -72) T) ((-170 . -322) T) ((-169 . -1017) T) ((-169 . -556) 15929) ((-169 . -1133) T) ((-169 . -13) T) ((-169 . -72) T) ((-169 . -559) 15906) ((-168 . -1017) T) ((-168 . -556) 15888) ((-168 . -1133) T) ((-168 . -13) T) ((-168 . -72) T) ((-163 . -1017) T) ((-163 . -556) 15870) ((-163 . -1133) T) ((-163 . -13) T) ((-163 . -72) T) ((-160 . -1017) T) ((-160 . -556) 15852) ((-160 . -1133) T) ((-160 . -13) T) ((-160 . -72) T) ((-159 . -162) T) ((-159 . -1017) T) ((-159 . -556) 15834) ((-159 . -1133) T) ((-159 . -13) T) ((-159 . -72) T) ((-159 . -751) 15816) ((-156 . -999) T) ((-156 . -433) 15797) ((-156 . -556) 15763) ((-156 . -559) 15744) ((-156 . -1017) T) ((-156 . -1133) T) ((-156 . -13) T) ((-156 . -72) T) ((-156 . -64) T) ((-151 . -556) 15726) ((-150 . -38) 15658) ((-150 . -559) 15575) ((-150 . -594) 15507) ((-150 . -592) 15424) ((-150 . -974) T) ((-150 . -1029) T) ((-150 . -1065) T) ((-150 . -667) T) ((-150 . -965) T) ((-150 . -82) 15323) ((-150 . -967) 15255) ((-150 . -972) 15187) ((-150 . -21) T) ((-150 . -23) T) ((-150 . -1017) T) ((-150 . -556) 15169) ((-150 . -1133) T) ((-150 . -13) T) ((-150 . -72) T) ((-150 . -25) T) ((-150 . -104) T) ((-150 . -586) 15101) ((-150 . -658) 15033) ((-150 . -314) T) ((-150 . -1138) T) ((-150 . -836) T) ((-150 . -499) T) ((-150 . -148) T) ((-150 . -395) T) ((-150 . -260) T) ((-150 . -248) T) ((-150 . -203) T) ((-147 . -1017) T) ((-147 . -556) 15015) ((-147 . -1133) T) ((-147 . -13) T) ((-147 . -72) T) ((-144 . -141) 14999) ((-144 . -35) 14977) ((-144 . -66) 14955) ((-144 . -241) 14933) ((-144 . -436) 14911) ((-144 . -1122) 14889) ((-144 . -1119) 14867) ((-144 . -919) 14819) ((-144 . -825) 14772) ((-144 . -557) 14540) ((-144 . -798) 14524) ((-144 . -322) 14478) ((-144 . -301) 14457) ((-144 . -1070) 14436) ((-144 . -347) 14415) ((-144 . -355) 14386) ((-144 . -38) 14220) ((-144 . -82) 14112) ((-144 . -967) 14025) ((-144 . -972) 13938) ((-144 . -586) 13772) ((-144 . -658) 13606) ((-144 . -324) 13577) ((-144 . -665) 13548) ((-144 . -954) 13446) ((-144 . -559) 13231) ((-144 . -357) 13215) ((-144 . -800) 13140) ((-144 . -345) 13124) ((-144 . -584) 13072) ((-144 . -594) 12949) ((-144 . -592) 12847) ((-144 . -331) 12831) ((-144 . -243) 12789) ((-144 . -262) 12754) ((-144 . -459) 12666) ((-144 . -383) 12650) ((-144 . -290) 12634) ((-144 . -203) 12588) ((-144 . -1138) 12496) ((-144 . -314) 12450) ((-144 . -836) 12384) ((-144 . -499) 12298) ((-144 . -248) 12212) ((-144 . -395) 12146) ((-144 . -260) 12080) ((-144 . -192) 12034) ((-144 . -188) 11962) ((-144 . -191) 11896) ((-144 . -227) 11880) ((-144 . -810) 11804) ((-144 . -815) 11730) ((-144 . -813) 11689) ((-144 . -186) 11673) ((-144 . -148) T) ((-144 . -120) 11652) ((-144 . -965) T) ((-144 . -667) T) ((-144 . -1065) T) ((-144 . -1029) T) ((-144 . -974) T) ((-144 . -21) T) ((-144 . -23) T) ((-144 . -1017) T) ((-144 . -556) 11634) ((-144 . -1133) T) ((-144 . -13) T) ((-144 . -72) T) ((-144 . -25) T) ((-144 . -104) T) ((-144 . -118) 11588) ((-138 . -139) 11572) ((-138 . |MappingCategory|) 11546) ((-138 . -1133) T) ((-138 . -80) 11530) ((-138 . -556) 11508) ((-135 . -999) T) ((-135 . -433) 11489) ((-135 . -556) 11455) ((-135 . -559) 11436) ((-135 . -1017) T) ((-135 . -1133) T) ((-135 . -13) T) ((-135 . -72) T) ((-135 . -64) T) ((-134 . -1017) T) ((-134 . -556) 11418) ((-134 . -1133) T) ((-134 . -13) T) ((-134 . -72) T) ((-130 . -25) T) ((-130 . -72) T) ((-130 . -13) T) ((-130 . -1133) T) ((-130 . -556) 11400) ((-130 . -1017) T) ((-129 . -999) T) ((-129 . -433) 11381) ((-129 . -556) 11347) ((-129 . -559) 11328) ((-129 . -1017) T) ((-129 . -1133) T) ((-129 . -13) T) ((-129 . -72) T) ((-129 . -64) T) ((-127 . -999) T) ((-127 . -433) 11309) ((-127 . -556) 11275) ((-127 . -559) 11256) ((-127 . -1017) T) ((-127 . -1133) T) ((-127 . -13) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -965) T) ((-125 . -667) T) ((-125 . -1065) T) ((-125 . -1029) T) ((-125 . -974) T) ((-125 . -21) T) ((-125 . -592) 11215) ((-125 . -23) T) ((-125 . -1017) T) ((-125 . -556) 11197) ((-125 . -1133) T) ((-125 . -13) T) ((-125 . -72) T) ((-125 . -25) T) ((-125 . -104) T) ((-125 . -594) 11171) ((-125 . -559) 11140) ((-125 . -38) 11124) ((-125 . -82) 11103) ((-125 . -967) 11087) ((-125 . -972) 11071) ((-125 . -586) 11055) ((-125 . -658) 11039) ((-125 . -1191) 11023) ((-117 . -756) T) ((-117 . -763) T) ((-117 . -760) T) ((-117 . -1017) T) ((-117 . -556) 11005) ((-117 . -1133) T) ((-117 . -13) T) ((-117 . -72) T) ((-117 . -322) T) ((-114 . -1017) T) ((-114 . -556) 10987) ((-114 . -1133) T) ((-114 . -13) T) ((-114 . -72) T) ((-114 . -557) 10946) ((-114 . -371) 10928) ((-114 . -1015) 10910) ((-114 . -320) 10892) ((-114 . -322) T) ((-114 . -195) 10874) ((-114 . -124) 10856) ((-114 . -432) 10838) ((-114 . -383) 10820) ((-114 . -459) NIL) ((-114 . -262) NIL) ((-114 . -34) T) ((-114 . -1039) 10802) ((-114 . -76) 10784) ((-114 . -185) 10766) ((-113 . -556) 10748) ((-112 . -162) T) ((-112 . -1017) T) ((-112 . -556) 10715) ((-112 . -1133) T) ((-112 . -13) T) ((-112 . -72) T) ((-112 . -751) 10697) ((-111 . -999) T) ((-111 . -433) 10678) ((-111 . -556) 10644) ((-111 . -559) 10625) ((-111 . -1017) T) ((-111 . -1133) T) ((-111 . -13) T) ((-111 . -72) T) ((-111 . -64) T) ((-110 . -999) T) ((-110 . -433) 10606) ((-110 . -556) 10572) ((-110 . -559) 10553) ((-110 . -1017) T) ((-110 . -1133) T) ((-110 . -13) T) ((-110 . -72) T) ((-110 . -64) T) ((-108 . -408) 10530) ((-108 . -559) 10426) ((-108 . -954) 10410) ((-108 . -1017) T) ((-108 . -556) 10392) ((-108 . -1133) T) ((-108 . -13) T) ((-108 . -72) T) ((-108 . -413) 10347) ((-108 . -243) 10324) ((-107 . -760) T) ((-107 . -556) 10306) ((-107 . -1017) T) ((-107 . -72) T) ((-107 . -13) T) ((-107 . -1133) T) ((-107 . -763) T) ((-107 . -23) T) ((-107 . -25) T) ((-107 . -667) T) ((-107 . -1029) T) ((-107 . -954) 10288) ((-107 . -559) 10270) ((-106 . -999) T) ((-106 . -433) 10251) ((-106 . -556) 10217) ((-106 . -559) 10198) ((-106 . -1017) T) ((-106 . -1133) T) ((-106 . -13) T) ((-106 . -72) T) ((-106 . -64) T) ((-103 . -1017) T) ((-103 . -556) 10180) ((-103 . -1133) T) ((-103 . -13) T) ((-103 . -72) T) ((-102 . -19) 10162) ((-102 . -1039) 10144) ((-102 . -320) 10126) ((-102 . -34) T) ((-102 . -13) T) ((-102 . -1133) T) ((-102 . -72) T) ((-102 . -556) 10070) ((-102 . -262) NIL) ((-102 . -459) NIL) ((-102 . -383) 10052) ((-102 . -1017) T) ((-102 . -432) 10034) ((-102 . -597) 10016) ((-102 . -245) 9991) ((-102 . -243) 9941) ((-102 . -542) 9916) ((-102 . -557) NIL) ((-102 . -124) 9898) ((-102 . -760) T) ((-102 . -763) T) ((-102 . -326) 9880) ((-101 . -756) T) ((-101 . -763) T) ((-101 . -760) T) ((-101 . -1017) T) ((-101 . -556) 9862) ((-101 . -1133) T) ((-101 . -13) T) ((-101 . -72) T) ((-101 . -322) T) ((-101 . -608) T) ((-100 . -98) 9846) ((-100 . -1039) 9830) ((-100 . -320) 9814) ((-100 . -927) 9798) ((-100 . -34) T) ((-100 . -13) T) ((-100 . -1133) T) ((-100 . -72) 9752) ((-100 . -556) 9687) ((-100 . -262) 9625) ((-100 . -459) 9558) ((-100 . -383) 9542) ((-100 . -1017) 9520) ((-100 . -432) 9504) ((-100 . -92) 9488) ((-99 . -98) 9472) ((-99 . -1039) 9456) ((-99 . -320) 9440) ((-99 . -927) 9424) ((-99 . -34) T) ((-99 . -13) T) ((-99 . -1133) T) ((-99 . -72) 9378) ((-99 . -556) 9313) ((-99 . -262) 9251) ((-99 . -459) 9184) ((-99 . -383) 9168) ((-99 . -1017) 9146) ((-99 . -432) 9130) ((-99 . -92) 9114) ((-94 . -98) 9098) ((-94 . -1039) 9082) ((-94 . -320) 9066) ((-94 . -927) 9050) ((-94 . -34) T) ((-94 . -13) T) ((-94 . -1133) T) ((-94 . -72) 9004) ((-94 . -556) 8939) ((-94 . -262) 8877) ((-94 . -459) 8810) ((-94 . -383) 8794) ((-94 . -1017) 8772) ((-94 . -432) 8756) ((-94 . -92) 8740) ((-90 . -908) 8718) ((-90 . -1070) NIL) ((-90 . -954) 8696) ((-90 . -559) 8627) ((-90 . -557) NIL) ((-90 . -937) NIL) ((-90 . -825) NIL) ((-90 . -798) 8605) ((-90 . -759) NIL) ((-90 . -725) NIL) ((-90 . -722) NIL) ((-90 . -763) NIL) ((-90 . -760) NIL) ((-90 . -720) NIL) ((-90 . -718) NIL) ((-90 . -744) NIL) ((-90 . -800) NIL) ((-90 . -345) 8583) ((-90 . -584) 8561) ((-90 . -594) 8507) ((-90 . -331) 8485) ((-90 . -243) 8419) ((-90 . -262) 8366) ((-90 . -459) 8236) ((-90 . -383) 8214) ((-90 . -290) 8192) ((-90 . -203) T) ((-90 . -82) 8111) ((-90 . -967) 8057) ((-90 . -972) 8003) ((-90 . -248) T) ((-90 . -658) 7949) ((-90 . -586) 7895) ((-90 . -592) 7826) ((-90 . -38) 7772) ((-90 . -260) T) ((-90 . -395) T) ((-90 . -148) T) ((-90 . -499) T) ((-90 . -836) T) ((-90 . -1138) T) ((-90 . -314) T) ((-90 . -192) NIL) ((-90 . -188) NIL) ((-90 . -191) NIL) ((-90 . -227) 7750) ((-90 . -810) NIL) ((-90 . -815) NIL) ((-90 . -813) NIL) ((-90 . -186) 7728) ((-90 . -120) T) ((-90 . -118) NIL) ((-90 . -104) T) ((-90 . -25) T) ((-90 . -72) T) ((-90 . -13) T) ((-90 . -1133) T) ((-90 . -556) 7710) ((-90 . -1017) T) ((-90 . -23) T) ((-90 . -21) T) ((-90 . -965) T) ((-90 . -667) T) ((-90 . -1065) T) ((-90 . -1029) T) ((-90 . -974) T) ((-89 . -783) 7694) ((-89 . -836) T) ((-89 . -499) T) ((-89 . -248) T) ((-89 . -148) T) ((-89 . -559) 7666) ((-89 . -658) 7653) ((-89 . -586) 7640) ((-89 . -972) 7627) ((-89 . -967) 7614) ((-89 . -82) 7599) ((-89 . -38) 7586) ((-89 . -395) T) ((-89 . -260) T) ((-89 . -965) T) ((-89 . -667) T) ((-89 . -1065) T) ((-89 . -1029) T) ((-89 . -974) T) ((-89 . -21) T) ((-89 . -592) 7558) ((-89 . -23) T) ((-89 . -1017) T) ((-89 . -556) 7540) ((-89 . -1133) T) ((-89 . -13) T) ((-89 . -72) T) ((-89 . -25) T) ((-89 . -104) T) ((-89 . -594) 7527) ((-89 . -120) T) ((-86 . -760) T) ((-86 . -556) 7509) ((-86 . -1017) T) ((-86 . -72) T) ((-86 . -13) T) ((-86 . -1133) T) ((-86 . -763) T) ((-86 . -751) 7490) ((-85 . -756) T) ((-85 . -763) T) ((-85 . -760) T) ((-85 . -1017) T) ((-85 . -556) 7472) ((-85 . -1133) T) ((-85 . -13) T) ((-85 . -72) T) ((-85 . -322) T) ((-85 . -884) T) ((-85 . -608) T) ((-85 . -84) T) ((-85 . -557) 7454) ((-81 . -96) T) ((-81 . -326) 7437) ((-81 . -763) T) ((-81 . -760) T) ((-81 . -124) 7420) ((-81 . -557) 7402) ((-81 . -243) 7353) ((-81 . -542) 7329) ((-81 . -245) 7305) ((-81 . -597) 7288) ((-81 . -432) 7271) ((-81 . -1017) T) ((-81 . -383) 7254) ((-81 . -459) NIL) ((-81 . -262) NIL) ((-81 . -556) 7236) ((-81 . -72) T) ((-81 . -34) T) ((-81 . -320) 7219) ((-81 . -1039) 7202) ((-81 . -19) 7185) ((-81 . -608) T) ((-81 . -13) T) ((-81 . -1133) T) ((-81 . -84) T) ((-79 . -80) 7169) ((-79 . -1133) T) ((-79 . |MappingCategory|) 7143) ((-79 . -1017) T) ((-79 . -556) 7125) ((-79 . -13) T) ((-79 . -72) T) ((-78 . -556) 7107) ((-77 . -908) 7089) ((-77 . -1070) T) ((-77 . -559) 7039) ((-77 . -954) 6999) ((-77 . -557) 6929) ((-77 . -937) T) ((-77 . -825) NIL) ((-77 . -798) 6911) ((-77 . -759) T) ((-77 . -725) T) ((-77 . -722) T) ((-77 . -763) T) ((-77 . -760) T) ((-77 . -720) T) ((-77 . -718) T) ((-77 . -744) T) ((-77 . -800) 6893) ((-77 . -345) 6875) ((-77 . -584) 6857) ((-77 . -331) 6839) ((-77 . -243) NIL) ((-77 . -262) NIL) ((-77 . -459) NIL) ((-77 . -383) 6821) ((-77 . -290) 6803) ((-77 . -203) T) ((-77 . -82) 6730) ((-77 . -967) 6680) ((-77 . -972) 6630) ((-77 . -248) T) ((-77 . -658) 6580) ((-77 . -586) 6530) ((-77 . -594) 6480) ((-77 . -592) 6430) ((-77 . -38) 6380) ((-77 . -260) T) ((-77 . -395) T) ((-77 . -148) T) ((-77 . -499) T) ((-77 . -836) T) ((-77 . -1138) T) ((-77 . -314) T) ((-77 . -192) T) ((-77 . -188) 6367) ((-77 . -191) T) ((-77 . -227) 6349) ((-77 . -810) NIL) ((-77 . -815) NIL) ((-77 . -813) NIL) ((-77 . -186) 6331) ((-77 . -120) T) ((-77 . -118) NIL) ((-77 . -104) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -13) T) ((-77 . -1133) T) ((-77 . -556) 6274) ((-77 . -1017) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -965) T) ((-77 . -667) T) ((-77 . -1065) T) ((-77 . -1029) T) ((-77 . -974) T) ((-73 . -98) 6258) ((-73 . -1039) 6242) ((-73 . -320) 6226) ((-73 . -927) 6210) ((-73 . -34) T) ((-73 . -13) T) ((-73 . -1133) T) ((-73 . -72) 6164) ((-73 . -556) 6099) ((-73 . -262) 6037) ((-73 . -459) 5970) ((-73 . -383) 5954) ((-73 . -1017) 5932) ((-73 . -432) 5916) ((-73 . -92) 5900) ((-69 . -416) T) ((-69 . -1029) T) ((-69 . -72) T) ((-69 . -13) T) ((-69 . -1133) T) ((-69 . -556) 5882) ((-69 . -1017) T) ((-69 . -667) T) ((-69 . -243) 5861) ((-67 . -999) T) ((-67 . -433) 5842) ((-67 . -556) 5808) ((-67 . -559) 5789) ((-67 . -1017) T) ((-67 . -1133) T) ((-67 . -13) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1038) 5773) ((-62 . -320) 5757) ((-62 . -432) 5741) ((-62 . -1017) 5719) ((-62 . -383) 5703) ((-62 . -459) 5636) ((-62 . -262) 5574) ((-62 . -556) 5509) ((-62 . -72) 5463) ((-62 . -1133) T) ((-62 . -13) T) ((-62 . -34) T) ((-62 . -1039) 5447) ((-62 . -76) 5431) ((-60 . -57) 5393) ((-60 . -1039) 5377) ((-60 . -432) 5361) ((-60 . -1017) 5339) ((-60 . -383) 5323) ((-60 . -459) 5256) ((-60 . -262) 5194) ((-60 . -556) 5129) ((-60 . -72) 5083) ((-60 . -1133) T) ((-60 . -13) T) ((-60 . -34) T) ((-60 . -320) 5067) ((-58 . -19) 5051) ((-58 . -1039) 5035) ((-58 . -320) 5019) ((-58 . -34) T) ((-58 . -13) T) ((-58 . -1133) T) ((-58 . -72) 4953) ((-58 . -556) 4868) ((-58 . -262) 4806) ((-58 . -459) 4739) ((-58 . -383) 4723) ((-58 . -1017) 4676) ((-58 . -432) 4660) ((-58 . -597) 4644) ((-58 . -245) 4621) ((-58 . -243) 4573) ((-58 . -542) 4550) ((-58 . -557) 4511) ((-58 . -124) 4495) ((-58 . -760) 4474) ((-58 . -763) 4453) ((-58 . -326) 4437) ((-55 . -1017) T) ((-55 . -556) 4419) ((-55 . -1133) T) ((-55 . -13) T) ((-55 . -72) T) ((-55 . -954) 4401) ((-55 . -559) 4383) ((-51 . -1017) T) ((-51 . -556) 4365) ((-51 . -1133) T) ((-51 . -13) T) ((-51 . -72) T) ((-50 . -564) 4349) ((-50 . -559) 4318) ((-50 . -594) 4292) ((-50 . -592) 4251) ((-50 . -974) T) ((-50 . -1029) T) ((-50 . -1065) T) ((-50 . -667) T) ((-50 . -965) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1017) T) ((-50 . -556) 4233) ((-50 . -1133) T) ((-50 . -13) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -104) T) ((-50 . -954) 4217) ((-50 . -383) 4201) ((-49 . -1017) T) ((-49 . -556) 4183) ((-49 . -1133) T) ((-49 . -13) T) ((-49 . -72) T) ((-48 . -256) T) ((-48 . -72) T) ((-48 . -13) T) ((-48 . -1133) T) ((-48 . -556) 4165) ((-48 . -1017) T) ((-48 . -559) 4066) ((-48 . -954) 4009) ((-48 . -459) 3975) ((-48 . -262) 3962) ((-48 . -27) T) ((-48 . -919) T) ((-48 . -203) T) ((-48 . -82) 3911) ((-48 . -967) 3876) ((-48 . -972) 3841) ((-48 . -248) T) ((-48 . -658) 3806) ((-48 . -586) 3771) ((-48 . -594) 3721) ((-48 . -592) 3671) ((-48 . -104) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -965) T) ((-48 . -667) T) ((-48 . -1065) T) ((-48 . -1029) T) ((-48 . -974) T) ((-48 . -38) 3636) ((-48 . -260) T) ((-48 . -395) T) ((-48 . -148) T) ((-48 . -499) T) ((-48 . -836) T) ((-48 . -1138) T) ((-48 . -314) T) ((-48 . -584) 3596) ((-48 . -937) T) ((-48 . -557) 3541) ((-48 . -120) T) ((-48 . -192) T) ((-48 . -188) 3528) ((-48 . -191) T) ((-45 . -36) 3507) ((-45 . -553) 3486) ((-45 . -245) 3409) ((-45 . -243) 3307) ((-45 . -432) 3242) ((-45 . -383) 3177) ((-45 . -459) 2929) ((-45 . -262) 2727) ((-45 . -542) 2650) ((-45 . -195) 2598) ((-45 . -76) 2546) ((-45 . -185) 2494) ((-45 . -1111) 2473) ((-45 . -1039) 2408) ((-45 . -239) 2356) ((-45 . -124) 2304) ((-45 . -34) T) ((-45 . -13) T) ((-45 . -1133) T) ((-45 . -72) T) ((-45 . -556) 2286) ((-45 . -1017) T) ((-45 . -557) NIL) ((-45 . -597) 2234) ((-45 . -326) 2182) ((-45 . -763) NIL) ((-45 . -760) NIL) ((-45 . -320) 2130) ((-45 . -1068) 2078) ((-45 . -927) 2026) ((-45 . -1172) 1974) ((-45 . -612) 1922) ((-44 . -363) 1906) ((-44 . -687) 1890) ((-44 . -661) T) ((-44 . -689) T) ((-44 . -82) 1869) ((-44 . -967) 1853) ((-44 . -972) 1837) ((-44 . -21) T) ((-44 . -592) 1780) ((-44 . -23) T) ((-44 . -1017) T) ((-44 . -556) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -104) T) ((-44 . -594) 1720) ((-44 . -586) 1704) ((-44 . -658) 1688) ((-44 . -318) 1672) ((-44 . -1133) T) ((-44 . -13) T) ((-44 . -243) 1649) ((-40 . -293) 1623) ((-40 . -148) T) ((-40 . -559) 1553) ((-40 . -974) T) ((-40 . -1029) T) ((-40 . -1065) T) ((-40 . -667) T) ((-40 . -965) T) ((-40 . -594) 1455) ((-40 . -592) 1385) ((-40 . -104) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -13) T) ((-40 . -1133) T) ((-40 . -556) 1367) ((-40 . -1017) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -972) 1312) ((-40 . -967) 1257) ((-40 . -82) 1174) ((-40 . -557) 1158) ((-40 . -186) 1135) ((-40 . -813) 1087) ((-40 . -815) 999) ((-40 . -810) 909) ((-40 . -227) 886) ((-40 . -191) 826) ((-40 . -188) 760) ((-40 . -192) 732) ((-40 . -314) T) ((-40 . -1138) T) ((-40 . -836) T) ((-40 . -499) T) ((-40 . -658) 677) ((-40 . -586) 622) ((-40 . -38) 567) ((-40 . -395) T) ((-40 . -260) T) ((-40 . -248) T) ((-40 . -203) T) ((-40 . -322) NIL) ((-40 . -301) NIL) ((-40 . -1070) NIL) ((-40 . -118) 539) ((-40 . -347) NIL) ((-40 . -355) 511) ((-40 . -120) 483) ((-40 . -324) 455) ((-40 . -331) 432) ((-40 . -584) 366) ((-40 . -357) 343) ((-40 . -954) 220) ((-40 . -665) 192) ((-31 . -999) T) ((-31 . -433) 173) ((-31 . -556) 139) ((-31 . -559) 120) ((-31 . -1017) T) ((-31 . -1133) T) ((-31 . -13) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -870) T) ((-30 . -556) 102) ((0 . |EnumerationCategory|) T) ((0 . -556) 84) ((0 . -1017) T) ((0 . -72) T) ((0 . -1133) T) ((-2 . |RecordCategory|) T) ((-2 . -556) 66) ((-2 . -1017) T) ((-2 . -72) T) ((-2 . -1133) T) ((-3 . |UnionCategory|) T) ((-3 . -556) 48) ((-3 . -1017) T) ((-3 . -72) T) ((-3 . -1133) T) ((-1 . -1017) T) ((-1 . -556) 30) ((-1 . -1133) T) ((-1 . -13) T) ((-1 . -72) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 5fb4cad3..1d141e01 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3580468865) -(4001 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3580478883) +(4004 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| @@ -37,8 +37,9 @@ |ComplexRootPackage| |ColonAst| |Color| |CombinatorialFunction| |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator| |CommaAst| |CommonOperators| |CommuteUnivariatePolynomialCategory| - |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |CompilerPackage| - |Complex| |ComplexFunctions2| |ComplexPattern| |SubSpaceComponentProperty| + |CommutativeOperation| |CommutativeOperatorCategory| |ComplexCategory&| + |ComplexCategory| |ComplexFactorization| |CompilerPackage| |Complex| + |ComplexFunctions2| |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| |CRApackage| |CoerceAst| |ComplexRootFindingPackage| |CyclicStreamTools| @@ -427,101 +428,102 @@ |removeDuplicates| |e| |clipParametric| |clipWithRanges| |numberOfHues| |yellow| |iifact| |iibinom| |iiperm| |iipow| |iidsum| |iidprod| |ipow| |factorial| |multinomial| |permutation| |stirling1| |stirling2| |summation| - |factorials| |mkcomm| |polarCoordinates| |complex| |imaginary| |elaborateFile| - |elaborate| |macroExpand| |solid| |solid?| |denominators| |numerators| - |convergents| |approximants| |reducedForm| |partialQuotients| - |partialDenominators| |partialNumerators| |reducedContinuedFraction| |push| - |bindings| |cartesian| |polar| |cylindrical| |spherical| |parabolic| - |parabolicCylindrical| |paraboloidal| |ellipticCylindrical| - |prolateSpheroidal| |oblateSpheroidal| |bipolar| |bipolarCylindrical| - |toroidal| |conical| |modTree| |multiEuclideanTree| |complexZeros| - |divisorCascade| |graeffe| |pleskenSplit| |reciprocalPolynomial| |rootRadius| - |schwerpunkt| |setErrorBound| |startPolynomial| |cycleElt| - |computeCycleLength| |computeCycleEntry| |findConstructor| |arguments| - |operations| |dualSignature| |kind| |package| |domain| |category| |coerceP| - |powerSum| |elementary| |alternating| |cyclic| |dihedral| |cap| |cup| |wreath| - |SFunction| |skewSFunction| |cyclotomicDecomposition| - |cyclotomicFactorization| |qsetelt| |doubleResultant| |distdfact| - |separateDegrees| |trace2PowMod| |tracePowMod| |irreducible?| |decimal| - |innerint| |exteriorDifferential| |totalDifferential| |homogeneous?| - |leadingBasisTerm| |ignore?| |computeInt| |checkForZero| |nan?| |logGamma| - |hypergeometric0F1| |rotatez| |rotatey| |rotatex| |identity| |dictionary| - |dioSolve| |directProduct| |newLine| |copies| |say| |sayLength| |setnext!| - |setprevious!| |next| |previous| |datalist| |shanksDiscLogAlgorithm| - |showSummary| |reflect| |reify| |constructor| |functorData| |separant| - |initial| |leader| |isobaric?| |weights| |differentialVariables| - |extractBottom!| |extractTop!| |insertBottom!| |insertTop!| |bottom!| |top!| - |dequeue| |makeObject| |recolor| |drawComplex| |drawComplexVectorField| - |setRealSteps| |setImagSteps| |setClipValue| |draw| |option?| |range| - |colorFunction| |curveColor| |pointColor| |clip| |clipBoolean| |style| - |toScale| |pointColorPalette| |curveColorPalette| |var1Steps| |var2Steps| - |space| |tubePoints| |tubeRadius| |option| |weight| |makeVariable| |Nul| - |exponents| |iisqrt2| |iisqrt3| |iiexp| |iilog| |iisin| |iicos| |iitan| - |iicot| |iisec| |iicsc| |iiasin| |iiacos| |iiatan| |iiacot| |iiasec| |iiacsc| - |iisinh| |iicosh| |iitanh| |iicoth| |iisech| |iicsch| |iiasinh| |iiacosh| - |iiatanh| |iiacoth| |iiasech| |iiacsch| |specialTrigs| |localReal?| - |rischNormalize| |realElementary| |validExponential| |rootNormalize| |tanQ| - |callForm?| |getIdentifier| |variable?| |getConstant| |type| |environment| - |typeForm| |irForm| |elaboration| |select!| |delete!| |sn| |cn| |dn| |sncndn| - |qsetelt!| |categoryFrame| |interactiveEnv| |currentEnv| |putProperties| - |getProperties| |putProperty| |getProperty| |scopes| |eigenvalues| - |eigenvector| |generalizedEigenvector| |generalizedEigenvectors| - |eigenvectors| |factorAndSplit| |rightOne| |leftOne| |rightZero| |leftZero| - |swap| |error| |minPoly| |freeOf?| |operators| |tower| |kernels| |mainKernel| - |distribute| |subst| |multiEuclidean| |extendedEuclidean| |euclideanSize| - |sizeLess?| |simplifyPower| |number?| |seriesSolve| |constantToUnaryFunction| - |tubePlot| |exponentialOrder| |completeEval| |lowerPolynomial| - |raisePolynomial| |normalDeriv| |ran| |highCommonTerms| |mapCoef| |nthCoef| - |binomThmExpt| |pomopo!| |mapExponents| |linearAssociatedLog| - |linearAssociatedOrder| |linearAssociatedExp| |createNormalElement| |sin?| - |lookupFunction| |encodingDirectory| |attributeData| |domainTemplate| - |lSpaceBasis| |finiteBasis| |principal?| |divisor| |rationalPoints| - |nonSingularModel| |algSplitSimple| |hyperelliptic| |elliptic| - |integralDerivationMatrix| |integralRepresents| |integralCoordinates| - |yCoordinates| |inverseIntegralMatrixAtInfinity| |integralMatrixAtInfinity| - |inverseIntegralMatrix| |integralMatrix| |reduceBasisAtInfinity| - |normalizeAtInfinity| |complementaryBasis| |integral?| |integralAtInfinity?| - |integralBasisAtInfinity| |ramified?| |ramifiedAtInfinity?| |singular?| - |singularAtInfinity?| |branchPoint?| |branchPointAtInfinity?| |rationalPoint?| - |absolutelyIrreducible?| |genus| |getZechTable| |createZechTable| - |createMultiplicationTable| |createMultiplicationMatrix| - |createLowComplexityTable| |createLowComplexityNormalBasis| - |representationType| |createPrimitiveElement| |tableForDiscreteLogarithm| - |factorsOfCyclicGroupSize| |sizeMultiplication| |getMultiplicationMatrix| - |getMultiplicationTable| |primitive?| |numberOfIrreduciblePoly| - |numberOfPrimitivePoly| |numberOfNormalPoly| |createIrreduciblePoly| - |createPrimitivePoly| |createNormalPoly| |createNormalPrimitivePoly| - |createPrimitiveNormalPoly| |nextIrreduciblePoly| |nextPrimitivePoly| - |nextNormalPoly| |nextNormalPrimitivePoly| |nextPrimitiveNormalPoly| - |leastAffineMultiple| |reducedQPowers| |rootOfIrreduciblePoly| |write!| - |read!| |iomode| |close!| |reopen!| |open| |rightUnit| |leftUnit| - |rightMinimalPolynomial| |leftMinimalPolynomial| |associatorDependence| - |lieAlgebra?| |jordanAlgebra?| |noncommutativeJordanAlgebra?| - |jordanAdmissible?| |lieAdmissible?| |jacobiIdentity?| |powerAssociative?| - |alternative?| |flexible?| |rightAlternative?| |leftAlternative?| - |antiAssociative?| |associative?| |antiCommutative?| |commutative?| - |rightCharacteristicPolynomial| |leftCharacteristicPolynomial| |rightNorm| - |leftNorm| |rightTrace| |leftTrace| |someBasis| |find| |count| |every?| |any?| - |sort!| |copyInto!| |sorted?| |LiePoly| |quickSort| |heapSort| |shellSort| - |outputSpacing| |outputGeneral| |outputFixed| |outputFloating| |exp1| |log10| - |log2| |rationalApproximation| |relerror| |complexSolve| |complexRoots| - |realRoots| |leadingTerm| |overlap| |hcrf| |hclf| |writable?| |readable?| - |exists?| |extension| |directory| |filename| |shallowExpand| |deepExpand| - |fracPart| |polyPart| |fullPartialFraction| |primeFrobenius| |discreteLog| - |decreasePrecision| |increasePrecision| |precision| |bits| |mantissa| - |unitNormalize| |unit| |flagFactor| |sqfrFactor| |primeFactor| |nthFlag| - |nthExponent| |irreducibleFactor| |factors| |nilFactor| - |regularRepresentation| |traceMatrix| |randomLC| |minimize| |module| - |rightRegularRepresentation| |leftRegularRepresentation| |rightTraceMatrix| - |leftTraceMatrix| |rightDiscriminant| |leftDiscriminant| |represents| - |mergeFactors| |isMult| |applyQuote| |ground| |ground?| |exprToXXP| - |exprToUPS| |exprToGenUPS| |localAbs| |universe| |complement| |cardinality| - |internalIntegrate0| |makeCos| |makeSin| |iiGamma| |iiabs| |bringDown| - |newReduc| |logical?| |character?| |doubleComplex?| |complex?| |double?| - |ffactor| |qfactor| |UP2ifCan| |anfactor| |fortranCharacter| - |fortranDoubleComplex| |fortranComplex| |fortranLogical| |fortranInteger| - |fortranDouble| |fortranReal| |external?| |dimensionsOf| |scalarTypeOf| - |makeFR| |musserTrials| |stopMusserTrials| |numberOfFactors| |modularFactor| + |factorials| |mkcomm| |commutativeOperation| |polarCoordinates| |complex| + |imaginary| |elaborateFile| |elaborate| |macroExpand| |solid| |solid?| + |denominators| |numerators| |convergents| |approximants| |reducedForm| + |partialQuotients| |partialDenominators| |partialNumerators| + |reducedContinuedFraction| |push| |bindings| |cartesian| |polar| |cylindrical| + |spherical| |parabolic| |parabolicCylindrical| |paraboloidal| + |ellipticCylindrical| |prolateSpheroidal| |oblateSpheroidal| |bipolar| + |bipolarCylindrical| |toroidal| |conical| |modTree| |multiEuclideanTree| + |complexZeros| |divisorCascade| |graeffe| |pleskenSplit| + |reciprocalPolynomial| |rootRadius| |schwerpunkt| |setErrorBound| + |startPolynomial| |cycleElt| |computeCycleLength| |computeCycleEntry| + |findConstructor| |arguments| |operations| |dualSignature| |kind| |package| + |domain| |category| |coerceP| |powerSum| |elementary| |alternating| |cyclic| + |dihedral| |cap| |cup| |wreath| |SFunction| |skewSFunction| + |cyclotomicDecomposition| |cyclotomicFactorization| |qsetelt| + |doubleResultant| |distdfact| |separateDegrees| |trace2PowMod| |tracePowMod| + |irreducible?| |decimal| |innerint| |exteriorDifferential| |totalDifferential| + |homogeneous?| |leadingBasisTerm| |ignore?| |computeInt| |checkForZero| |nan?| + |logGamma| |hypergeometric0F1| |rotatez| |rotatey| |rotatex| |identity| + |dictionary| |dioSolve| |directProduct| |newLine| |copies| |say| |sayLength| + |setnext!| |setprevious!| |next| |previous| |datalist| + |shanksDiscLogAlgorithm| |showSummary| |reflect| |reify| |constructor| + |functorData| |separant| |initial| |leader| |isobaric?| |weights| + |differentialVariables| |extractBottom!| |extractTop!| |insertBottom!| + |insertTop!| |bottom!| |top!| |dequeue| |makeObject| |recolor| |drawComplex| + |drawComplexVectorField| |setRealSteps| |setImagSteps| |setClipValue| |draw| + |option?| |range| |colorFunction| |curveColor| |pointColor| |clip| + |clipBoolean| |style| |toScale| |pointColorPalette| |curveColorPalette| + |var1Steps| |var2Steps| |space| |tubePoints| |tubeRadius| |option| |weight| + |makeVariable| |Nul| |exponents| |iisqrt2| |iisqrt3| |iiexp| |iilog| |iisin| + |iicos| |iitan| |iicot| |iisec| |iicsc| |iiasin| |iiacos| |iiatan| |iiacot| + |iiasec| |iiacsc| |iisinh| |iicosh| |iitanh| |iicoth| |iisech| |iicsch| + |iiasinh| |iiacosh| |iiatanh| |iiacoth| |iiasech| |iiacsch| |specialTrigs| + |localReal?| |rischNormalize| |realElementary| |validExponential| + |rootNormalize| |tanQ| |callForm?| |getIdentifier| |variable?| |getConstant| + |type| |environment| |typeForm| |irForm| |elaboration| |select!| |delete!| + |sn| |cn| |dn| |sncndn| |qsetelt!| |categoryFrame| |interactiveEnv| + |currentEnv| |putProperties| |getProperties| |putProperty| |getProperty| + |scopes| |eigenvalues| |eigenvector| |generalizedEigenvector| + |generalizedEigenvectors| |eigenvectors| |factorAndSplit| |rightOne| |leftOne| + |rightZero| |leftZero| |swap| |error| |minPoly| |freeOf?| |operators| |tower| + |kernels| |mainKernel| |distribute| |subst| |multiEuclidean| + |extendedEuclidean| |euclideanSize| |sizeLess?| |simplifyPower| |number?| + |seriesSolve| |constantToUnaryFunction| |tubePlot| |exponentialOrder| + |completeEval| |lowerPolynomial| |raisePolynomial| |normalDeriv| |ran| + |highCommonTerms| |mapCoef| |nthCoef| |binomThmExpt| |pomopo!| |mapExponents| + |linearAssociatedLog| |linearAssociatedOrder| |linearAssociatedExp| + |createNormalElement| |sin?| |lookupFunction| |encodingDirectory| + |attributeData| |domainTemplate| |lSpaceBasis| |finiteBasis| |principal?| + |divisor| |rationalPoints| |nonSingularModel| |algSplitSimple| |hyperelliptic| + |elliptic| |integralDerivationMatrix| |integralRepresents| + |integralCoordinates| |yCoordinates| |inverseIntegralMatrixAtInfinity| + |integralMatrixAtInfinity| |inverseIntegralMatrix| |integralMatrix| + |reduceBasisAtInfinity| |normalizeAtInfinity| |complementaryBasis| |integral?| + |integralAtInfinity?| |integralBasisAtInfinity| |ramified?| + |ramifiedAtInfinity?| |singular?| |singularAtInfinity?| |branchPoint?| + |branchPointAtInfinity?| |rationalPoint?| |absolutelyIrreducible?| |genus| + |getZechTable| |createZechTable| |createMultiplicationTable| + |createMultiplicationMatrix| |createLowComplexityTable| + |createLowComplexityNormalBasis| |representationType| |createPrimitiveElement| + |tableForDiscreteLogarithm| |factorsOfCyclicGroupSize| |sizeMultiplication| + |getMultiplicationMatrix| |getMultiplicationTable| |primitive?| + |numberOfIrreduciblePoly| |numberOfPrimitivePoly| |numberOfNormalPoly| + |createIrreduciblePoly| |createPrimitivePoly| |createNormalPoly| + |createNormalPrimitivePoly| |createPrimitiveNormalPoly| |nextIrreduciblePoly| + |nextPrimitivePoly| |nextNormalPoly| |nextNormalPrimitivePoly| + |nextPrimitiveNormalPoly| |leastAffineMultiple| |reducedQPowers| + |rootOfIrreduciblePoly| |write!| |read!| |iomode| |close!| |reopen!| |open| + |rightUnit| |leftUnit| |rightMinimalPolynomial| |leftMinimalPolynomial| + |associatorDependence| |lieAlgebra?| |jordanAlgebra?| + |noncommutativeJordanAlgebra?| |jordanAdmissible?| |lieAdmissible?| + |jacobiIdentity?| |powerAssociative?| |alternative?| |flexible?| + |rightAlternative?| |leftAlternative?| |antiAssociative?| |associative?| + |antiCommutative?| |commutative?| |rightCharacteristicPolynomial| + |leftCharacteristicPolynomial| |rightNorm| |leftNorm| |rightTrace| |leftTrace| + |someBasis| |find| |count| |every?| |any?| |sort!| |copyInto!| |sorted?| + |LiePoly| |quickSort| |heapSort| |shellSort| |outputSpacing| |outputGeneral| + |outputFixed| |outputFloating| |exp1| |log10| |log2| |rationalApproximation| + |relerror| |complexSolve| |complexRoots| |realRoots| |leadingTerm| |overlap| + |hcrf| |hclf| |writable?| |readable?| |exists?| |extension| |directory| + |filename| |shallowExpand| |deepExpand| |fracPart| |polyPart| + |fullPartialFraction| |primeFrobenius| |discreteLog| |decreasePrecision| + |increasePrecision| |precision| |bits| |mantissa| |unitNormalize| |unit| + |flagFactor| |sqfrFactor| |primeFactor| |nthFlag| |nthExponent| + |irreducibleFactor| |factors| |nilFactor| |regularRepresentation| + |traceMatrix| |randomLC| |minimize| |module| |rightRegularRepresentation| + |leftRegularRepresentation| |rightTraceMatrix| |leftTraceMatrix| + |rightDiscriminant| |leftDiscriminant| |represents| |mergeFactors| |isMult| + |applyQuote| |ground| |ground?| |exprToXXP| |exprToUPS| |exprToGenUPS| + |localAbs| |universe| |complement| |cardinality| |internalIntegrate0| + |makeCos| |makeSin| |iiGamma| |iiabs| |bringDown| |newReduc| |logical?| + |character?| |doubleComplex?| |complex?| |double?| |ffactor| |qfactor| + |UP2ifCan| |anfactor| |fortranCharacter| |fortranDoubleComplex| + |fortranComplex| |fortranLogical| |fortranInteger| |fortranDouble| + |fortranReal| |external?| |dimensionsOf| |scalarTypeOf| |makeFR| + |musserTrials| |stopMusserTrials| |numberOfFactors| |modularFactor| |useSingleFactorBound?| |useSingleFactorBound| |useEisensteinCriterion?| |useEisensteinCriterion| |eisensteinIrreducible?| |tryFunctionalDecomposition?| |tryFunctionalDecomposition| |btwFact| diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index b0ee8362..57156d5f 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,4057 +1,4065 @@ -(2793086 . 3580468876) -((-1737 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1735 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3791 ((|#2| $ (-486) |#2|) NIL T ELT) ((|#2| $ (-1148 (-486)) |#2|) 44 T ELT)) (-2299 (($ $) 80 T ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3422 (((-486) (-1 (-85) |#2|) $) 27 T ELT) (((-486) |#2| $) NIL T ELT) (((-486) |#2| $ (-486)) 96 T ELT)) (-3521 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-2611 (((-585 |#2|) $) 13 T ELT)) (-3329 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2306 (($ |#2| $ (-486)) NIL T ELT) (($ $ $ (-486)) 67 T ELT)) (-1731 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3803 ((|#2| $ (-486) |#2|) NIL T ELT) ((|#2| $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) 66 T ELT)) (-2307 (($ $ (-486)) 76 T ELT) (($ $ (-1148 (-486))) 75 T ELT)) (-1732 (((-696) |#2| $) NIL T ELT) (((-696) (-1 (-85) |#2|) $) 34 T ELT)) (-1736 (($ $ $ (-486)) 69 T ELT)) (-3403 (($ $) 68 T ELT)) (-3533 (($ (-585 |#2|)) 73 T ELT)) (-3805 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-585 $)) 85 T ELT)) (-3950 (((-774) $) 92 T ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3059 (((-85) $ $) 95 T ELT)) (-2688 (((-85) $ $) 99 T ELT))) -(((-18 |#1| |#2|) (-10 -7 (-15 -3059 ((-85) |#1| |#1|)) (-15 -3950 ((-774) |#1|)) (-15 -3329 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2688 ((-85) |#1| |#1|)) (-15 -1735 (|#1| |#1|)) (-15 -1735 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -1736 (|#1| |#1| |#1| (-486))) (-15 -1737 ((-85) |#1|)) (-15 -3521 (|#1| |#1| |#1|)) (-15 -3422 ((-486) |#2| |#1| (-486))) (-15 -3422 ((-486) |#2| |#1|)) (-15 -3422 ((-486) (-1 (-85) |#2|) |#1|)) (-15 -1737 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3521 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1734 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1733 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1732 ((-696) (-1 (-85) |#2|) |#1|)) (-15 -2611 ((-585 |#2|) |#1|)) (-15 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1731 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -1732 ((-696) |#2| |#1|)) (-15 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3791 (|#2| |#1| (-1148 (-486)) |#2|)) (-15 -2306 (|#1| |#1| |#1| (-486))) (-15 -2306 (|#1| |#2| |#1| (-486))) (-15 -2307 (|#1| |#1| (-1148 (-486)))) (-15 -2307 (|#1| |#1| (-486))) (-15 -3846 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3805 (|#1| (-585 |#1|))) (-15 -3805 (|#1| |#1| |#1|)) (-15 -3805 (|#1| |#2| |#1|)) (-15 -3805 (|#1| |#1| |#2|)) (-15 -3803 (|#1| |#1| (-1148 (-486)))) (-15 -3533 (|#1| (-585 |#2|))) (-15 -3803 (|#2| |#1| (-486))) (-15 -3803 (|#2| |#1| (-486) |#2|)) (-15 -3791 (|#2| |#1| (-486) |#2|)) (-15 -3846 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3403 (|#1| |#1|))) (-19 |#2|) (-1131)) (T -18)) +(2793740 . 3580478893) +((-1740 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1738 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3794 ((|#2| $ (-488) |#2|) NIL T ELT) ((|#2| $ (-1150 (-488)) |#2|) 44 T ELT)) (-2302 (($ $) 80 T ELT)) (-3848 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3425 (((-488) (-1 (-85) |#2|) $) 27 T ELT) (((-488) |#2| $) NIL T ELT) (((-488) |#2| $ (-488)) 96 T ELT)) (-3524 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-2614 (((-587 |#2|) $) 13 T ELT)) (-3332 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3849 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2309 (($ |#2| $ (-488)) NIL T ELT) (($ $ $ (-488)) 67 T ELT)) (-1734 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-1736 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3806 ((|#2| $ (-488) |#2|) NIL T ELT) ((|#2| $ (-488)) NIL T ELT) (($ $ (-1150 (-488))) 66 T ELT)) (-2310 (($ $ (-488)) 76 T ELT) (($ $ (-1150 (-488))) 75 T ELT)) (-1735 (((-698) |#2| $) NIL T ELT) (((-698) (-1 (-85) |#2|) $) 34 T ELT)) (-1739 (($ $ $ (-488)) 69 T ELT)) (-3406 (($ $) 68 T ELT)) (-3536 (($ (-587 |#2|)) 73 T ELT)) (-3808 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-587 $)) 85 T ELT)) (-3953 (((-776) $) 92 T ELT)) (-1737 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3062 (((-85) $ $) 95 T ELT)) (-2691 (((-85) $ $) 99 T ELT))) +(((-18 |#1| |#2|) (-10 -7 (-15 -3062 ((-85) |#1| |#1|)) (-15 -3953 ((-776) |#1|)) (-15 -3332 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2691 ((-85) |#1| |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -1738 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2302 (|#1| |#1|)) (-15 -1739 (|#1| |#1| |#1| (-488))) (-15 -1740 ((-85) |#1|)) (-15 -3524 (|#1| |#1| |#1|)) (-15 -3425 ((-488) |#2| |#1| (-488))) (-15 -3425 ((-488) |#2| |#1|)) (-15 -3425 ((-488) (-1 (-85) |#2|) |#1|)) (-15 -1740 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3524 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1737 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1736 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1735 ((-698) (-1 (-85) |#2|) |#1|)) (-15 -2614 ((-587 |#2|) |#1|)) (-15 -3848 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3848 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1734 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -1735 ((-698) |#2| |#1|)) (-15 -3848 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3794 (|#2| |#1| (-1150 (-488)) |#2|)) (-15 -2309 (|#1| |#1| |#1| (-488))) (-15 -2309 (|#1| |#2| |#1| (-488))) (-15 -2310 (|#1| |#1| (-1150 (-488)))) (-15 -2310 (|#1| |#1| (-488))) (-15 -3849 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3808 (|#1| (-587 |#1|))) (-15 -3808 (|#1| |#1| |#1|)) (-15 -3808 (|#1| |#2| |#1|)) (-15 -3808 (|#1| |#1| |#2|)) (-15 -3806 (|#1| |#1| (-1150 (-488)))) (-15 -3536 (|#1| (-587 |#2|))) (-15 -3806 (|#2| |#1| (-488))) (-15 -3806 (|#2| |#1| (-488) |#2|)) (-15 -3794 (|#2| |#1| (-488) |#2|)) (-15 -3849 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3406 (|#1| |#1|))) (-19 |#2|) (-1133)) (T -18)) NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) 35 (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) 96 T ELT) (((-85) $) 90 (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) 87 (|has| $ (-1037 |#1|)) ELT) (($ $) 86 (-12 (|has| |#1| (-758)) (|has| $ (-1037 |#1|))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) 97 T ELT) (($ $) 91 (|has| |#1| (-758)) ELT)) (-3791 ((|#1| $ (-486) |#1|) 47 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2299 (($ $) 88 (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) 98 T ELT)) (-1355 (($ $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3409 (($ |#1| $) 70 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 68 (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 105 T ELT)) (-1577 ((|#1| $ (-486) |#1|) 48 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 46 T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) 95 T ELT) (((-486) |#1| $) 94 (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) 93 (|has| |#1| (-72)) ELT)) (-3617 (($ (-696) |#1|) 65 T ELT)) (-2202 (((-486) $) 38 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) 80 (|has| |#1| (-758)) ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) 104 T ELT)) (-3248 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) 39 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) 81 (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 112 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) 57 T ELT) (($ $ $ (-486)) 56 T ELT)) (-2205 (((-585 (-486)) $) 41 T ELT)) (-2206 (((-85) (-486) $) 42 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 37 (|has| (-486) (-758)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 107 T ELT)) (-2201 (($ $ |#1|) 36 (|has| $ (-1037 |#1|)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) 43 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-486) |#1|) 45 T ELT) ((|#1| $ (-486)) 44 T ELT) (($ $ (-1148 (-486))) 66 T ELT)) (-2307 (($ $ (-486)) 59 T ELT) (($ $ (-1148 (-486))) 58 T ELT)) (-1732 (((-696) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 103 T ELT)) (-1736 (($ $ $ (-486)) 89 (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 72 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 67 T ELT)) (-3805 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 101 T ELT)) (-2569 (((-85) $ $) 82 (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) 84 (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) 83 (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 85 (|has| |#1| (-758)) ELT)) (-3961 (((-696) $) 100 T ELT))) -(((-19 |#1|) (-113) (-1131)) (T -19)) +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2203 (((-1189) $ (-488) (-488)) 35 (|has| $ (-1039 |#1|)) ELT)) (-1740 (((-85) (-1 (-85) |#1| |#1|) $) 96 T ELT) (((-85) $) 90 (|has| |#1| (-760)) ELT)) (-1738 (($ (-1 (-85) |#1| |#1|) $) 87 (|has| $ (-1039 |#1|)) ELT) (($ $) 86 (-12 (|has| |#1| (-760)) (|has| $ (-1039 |#1|))) ELT)) (-2915 (($ (-1 (-85) |#1| |#1|) $) 97 T ELT) (($ $) 91 (|has| |#1| (-760)) ELT)) (-3794 ((|#1| $ (-488) |#1|) 47 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-1150 (-488)) |#1|) 55 (|has| $ (-1039 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) 69 (|has| $ (-320 |#1|)) ELT)) (-3730 (($) 6 T CONST)) (-2302 (($ $) 88 (|has| $ (-1039 |#1|)) ELT)) (-2303 (($ $) 98 T ELT)) (-1357 (($ $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-3412 (($ |#1| $) 70 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 68 (|has| $ (-320 |#1|)) ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 105 T ELT)) (-1580 ((|#1| $ (-488) |#1|) 48 (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-488)) 46 T ELT)) (-3425 (((-488) (-1 (-85) |#1|) $) 95 T ELT) (((-488) |#1| $) 94 (|has| |#1| (-72)) ELT) (((-488) |#1| $ (-488)) 93 (|has| |#1| (-72)) ELT)) (-3620 (($ (-698) |#1|) 65 T ELT)) (-2205 (((-488) $) 38 (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) 80 (|has| |#1| (-760)) ELT)) (-3524 (($ (-1 (-85) |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| (-760)) ELT)) (-2614 (((-587 |#1|) $) 104 T ELT)) (-3251 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2206 (((-488) $) 39 (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) 81 (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 112 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-2309 (($ |#1| $ (-488)) 57 T ELT) (($ $ $ (-488)) 56 T ELT)) (-2208 (((-587 (-488)) $) 41 T ELT)) (-2209 (((-85) (-488) $) 42 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-3807 ((|#1| $) 37 (|has| (-488) (-760)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 107 T ELT)) (-2204 (($ $ |#1|) 36 (|has| $ (-1039 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-2207 (((-85) |#1| $) 40 (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) 43 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#1| $ (-488) |#1|) 45 T ELT) ((|#1| $ (-488)) 44 T ELT) (($ $ (-1150 (-488))) 66 T ELT)) (-2310 (($ $ (-488)) 59 T ELT) (($ $ (-1150 (-488))) 58 T ELT)) (-1735 (((-698) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) 103 T ELT)) (-1739 (($ $ $ (-488)) 89 (|has| $ (-1039 |#1|)) ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 72 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 67 T ELT)) (-3808 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) 101 T ELT)) (-2572 (((-85) $ $) 82 (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) 84 (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2690 (((-85) $ $) 83 (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) 85 (|has| |#1| (-760)) ELT)) (-3964 (((-698) $) 100 T ELT))) +(((-19 |#1|) (-113) (-1133)) (T -19)) NIL -(-13 (-324 |t#1|) (-1037 |t#1|)) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 (-486) |#1|) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-540 (-486) |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-1015) OR (|has| |#1| (-1015)) (|has| |#1| (-758))) ((-1037 |#1|) . T) ((-1131) . T)) -((-1314 (((-3 $ "failed") $ $) 12 T ELT)) (-1216 (((-85) $ $) 27 T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) 16 T ELT) (($ (-486) $) 25 T ELT))) -(((-20 |#1|) (-10 -7 (-15 -3840 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 -1314 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1216 ((-85) |#1| |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|))) (-21)) (T -20)) +(-13 (-326 |t#1|) (-1039 |t#1|)) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-760)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-760)) (|has| |#1| (-556 (-776)))) ((-124 |#1|) . T) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-243 (-488) |#1|) . T) ((-243 (-1150 (-488)) $) . T) ((-245 (-488) |#1|) . T) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-320 |#1|) . T) ((-326 |#1|) . T) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-542 (-488) |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-597 |#1|) . T) ((-760) |has| |#1| (-760)) ((-763) |has| |#1| (-760)) ((-1017) OR (|has| |#1| (-1017)) (|has| |#1| (-760))) ((-1039 |#1|) . T) ((-1133) . T)) +((-1316 (((-3 $ "failed") $ $) 12 T ELT)) (-1218 (((-85) $ $) 27 T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) 16 T ELT) (($ (-488) $) 25 T ELT))) +(((-20 |#1|) (-10 -7 (-15 -3843 (|#1| |#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 * (|#1| (-488) |#1|)) (-15 -1316 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1218 ((-85) |#1| |#1|)) (-15 * (|#1| (-698) |#1|)) (-15 * (|#1| (-834) |#1|))) (-21)) (T -20)) NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-1218 (((-85) $ $) 20 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT))) (((-21) (-113)) (T -21)) -((-3840 (*1 *1 *1) (-4 *1 (-21))) (-3840 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-104) (-590 (-486)) (-10 -8 (-15 -3840 ($ $)) (-15 -3840 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-1015) . T) ((-1131) . T)) -((-3191 (((-85) $) 10 T ELT)) (-3727 (($) 15 T CONST)) (-1216 (((-85) $ $) 22 T ELT)) (* (($ (-832) $) 14 T ELT) (($ (-696) $) 19 T ELT))) -(((-22 |#1|) (-10 -7 (-15 -1216 ((-85) |#1| |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 -3191 ((-85) |#1|)) (-15 -3727 (|#1|) -3956) (-15 * (|#1| (-832) |#1|))) (-23)) (T -22)) +((-3843 (*1 *1 *1) (-4 *1 (-21))) (-3843 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-104) (-592 (-488)) (-10 -8 (-15 -3843 ($ $)) (-15 -3843 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-1017) . T) ((-1133) . T)) +((-3194 (((-85) $) 10 T ELT)) (-3730 (($) 15 T CONST)) (-1218 (((-85) $ $) 22 T ELT)) (* (($ (-834) $) 14 T ELT) (($ (-698) $) 19 T ELT))) +(((-22 |#1|) (-10 -7 (-15 -1218 ((-85) |#1| |#1|)) (-15 * (|#1| (-698) |#1|)) (-15 -3194 ((-85) |#1|)) (-15 -3730 (|#1|) -3959) (-15 * (|#1| (-834) |#1|))) (-23)) (T -22)) NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3730 (($) 23 T CONST)) (-1218 (((-85) $ $) 20 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT))) (((-23) (-113)) (T -23)) -((-2663 (*1 *1) (-4 *1 (-23))) (-3727 (*1 *1) (-4 *1 (-23))) (-3191 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-696)))) (-1216 (*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85))))) -(-13 (-25) (-10 -8 (-15 -2663 ($) -3956) (-15 -3727 ($) -3956) (-15 -3191 ((-85) $)) (-15 * ($ (-696) $)) (-15 -1216 ((-85) $ $)))) -(((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((* (($ (-832) $) 10 T ELT))) -(((-24 |#1|) (-10 -7 (-15 * (|#1| (-832) |#1|))) (-25)) (T -24)) +((-2666 (*1 *1) (-4 *1 (-23))) (-3730 (*1 *1) (-4 *1 (-23))) (-3194 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-698)))) (-1218 (*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85))))) +(-13 (-25) (-10 -8 (-15 -2666 ($) -3959) (-15 -3730 ($) -3959) (-15 -3194 ((-85) $)) (-15 * ($ (-698) $)) (-15 -1218 ((-85) $ $)))) +(((-25) . T) ((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((* (($ (-834) $) 10 T ELT))) +(((-24 |#1|) (-10 -7 (-15 * (|#1| (-834) |#1|))) (-25)) (T -24)) NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT))) +((-2574 (((-85) $ $) 7 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT))) (((-25) (-113)) (T -25)) -((-3842 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-832))))) -(-13 (-1015) (-10 -8 (-15 -3842 ($ $ $)) (-15 * ($ (-832) $)))) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-1217 (((-585 $) (-859 $)) 32 T ELT) (((-585 $) (-1087 $)) 16 T ELT) (((-585 $) (-1087 $) (-1092)) 20 T ELT)) (-1218 (($ (-859 $)) 30 T ELT) (($ (-1087 $)) 11 T ELT) (($ (-1087 $) (-1092)) 60 T ELT)) (-1219 (((-585 $) (-859 $)) 33 T ELT) (((-585 $) (-1087 $)) 18 T ELT) (((-585 $) (-1087 $) (-1092)) 19 T ELT)) (-3186 (($ (-859 $)) 31 T ELT) (($ (-1087 $)) 13 T ELT) (($ (-1087 $) (-1092)) NIL T ELT))) -(((-26 |#1|) (-10 -7 (-15 -1217 ((-585 |#1|) (-1087 |#1|) (-1092))) (-15 -1217 ((-585 |#1|) (-1087 |#1|))) (-15 -1217 ((-585 |#1|) (-859 |#1|))) (-15 -1218 (|#1| (-1087 |#1|) (-1092))) (-15 -1218 (|#1| (-1087 |#1|))) (-15 -1218 (|#1| (-859 |#1|))) (-15 -1219 ((-585 |#1|) (-1087 |#1|) (-1092))) (-15 -1219 ((-585 |#1|) (-1087 |#1|))) (-15 -1219 ((-585 |#1|) (-859 |#1|))) (-15 -3186 (|#1| (-1087 |#1|) (-1092))) (-15 -3186 (|#1| (-1087 |#1|))) (-15 -3186 (|#1| (-859 |#1|)))) (-27)) (T -26)) +((-3845 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-834))))) +(-13 (-1017) (-10 -8 (-15 -3845 ($ $ $)) (-15 * ($ (-834) $)))) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-1219 (((-587 $) (-861 $)) 32 T ELT) (((-587 $) (-1089 $)) 16 T ELT) (((-587 $) (-1089 $) (-1094)) 20 T ELT)) (-1220 (($ (-861 $)) 30 T ELT) (($ (-1089 $)) 11 T ELT) (($ (-1089 $) (-1094)) 60 T ELT)) (-1221 (((-587 $) (-861 $)) 33 T ELT) (((-587 $) (-1089 $)) 18 T ELT) (((-587 $) (-1089 $) (-1094)) 19 T ELT)) (-3189 (($ (-861 $)) 31 T ELT) (($ (-1089 $)) 13 T ELT) (($ (-1089 $) (-1094)) NIL T ELT))) +(((-26 |#1|) (-10 -7 (-15 -1219 ((-587 |#1|) (-1089 |#1|) (-1094))) (-15 -1219 ((-587 |#1|) (-1089 |#1|))) (-15 -1219 ((-587 |#1|) (-861 |#1|))) (-15 -1220 (|#1| (-1089 |#1|) (-1094))) (-15 -1220 (|#1| (-1089 |#1|))) (-15 -1220 (|#1| (-861 |#1|))) (-15 -1221 ((-587 |#1|) (-1089 |#1|) (-1094))) (-15 -1221 ((-587 |#1|) (-1089 |#1|))) (-15 -1221 ((-587 |#1|) (-861 |#1|))) (-15 -3189 (|#1| (-1089 |#1|) (-1094))) (-15 -3189 (|#1| (-1089 |#1|))) (-15 -3189 (|#1| (-861 |#1|)))) (-27)) (T -26)) NIL -((-2571 (((-85) $ $) 7 T ELT)) (-1217 (((-585 $) (-859 $)) 98 T ELT) (((-585 $) (-1087 $)) 97 T ELT) (((-585 $) (-1087 $) (-1092)) 96 T ELT)) (-1218 (($ (-859 $)) 101 T ELT) (($ (-1087 $)) 100 T ELT) (($ (-1087 $) (-1092)) 99 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-3040 (($ $) 110 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-1219 (((-585 $) (-859 $)) 104 T ELT) (((-585 $) (-1087 $)) 103 T ELT) (((-585 $) (-1087 $) (-1092)) 102 T ELT)) (-3186 (($ (-859 $)) 107 T ELT) (($ (-1087 $)) 106 T ELT) (($ (-1087 $) (-1092)) 105 T ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3726 (((-85) $) 89 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 109 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ $) 83 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT) (($ $ (-350 (-486))) 108 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT))) +((-2574 (((-85) $ $) 7 T ELT)) (-1219 (((-587 $) (-861 $)) 98 T ELT) (((-587 $) (-1089 $)) 97 T ELT) (((-587 $) (-1089 $) (-1094)) 96 T ELT)) (-1220 (($ (-861 $)) 101 T ELT) (($ (-1089 $)) 100 T ELT) (($ (-1089 $) (-1094)) 99 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3781 (($ $) 91 T ELT)) (-3977 (((-350 $) $) 90 T ELT)) (-3043 (($ $) 110 T ELT)) (-1612 (((-85) $ $) 75 T ELT)) (-3730 (($) 23 T CONST)) (-1221 (((-587 $) (-861 $)) 104 T ELT) (((-587 $) (-1089 $)) 103 T ELT) (((-587 $) (-1089 $) (-1094)) 102 T ELT)) (-3189 (($ (-861 $)) 107 T ELT) (($ (-1089 $)) 106 T ELT) (($ (-1089 $) (-1094)) 105 T ELT)) (-2570 (($ $ $) 71 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-2569 (($ $ $) 72 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 66 T ELT)) (-3729 (((-85) $) 89 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3017 (($ $ (-488)) 109 T ELT)) (-1609 (((-3 (-587 $) #1="failed") (-587 $) $) 68 T ELT)) (-1899 (($ $ $) 60 T ELT) (($ (-587 $)) 59 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 88 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 58 T ELT)) (-3150 (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-3738 (((-350 $) $) 92 T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 65 T ELT)) (-1611 (((-698) $) 74 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 73 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT) (($ (-352 (-488))) 84 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ $) 83 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 87 T ELT) (($ $ (-352 (-488))) 108 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-352 (-488))) 86 T ELT) (($ (-352 (-488)) $) 85 T ELT))) (((-27) (-113)) (T -27)) -((-3186 (*1 *1 *2) (-12 (-5 *2 (-859 *1)) (-4 *1 (-27)))) (-3186 (*1 *1 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-27)))) (-3186 (*1 *1 *2 *3) (-12 (-5 *2 (-1087 *1)) (-5 *3 (-1092)) (-4 *1 (-27)))) (-1219 (*1 *2 *3) (-12 (-5 *3 (-859 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-1219 (*1 *2 *3) (-12 (-5 *3 (-1087 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-1219 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *1)) (-5 *4 (-1092)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-1218 (*1 *1 *2) (-12 (-5 *2 (-859 *1)) (-4 *1 (-27)))) (-1218 (*1 *1 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-27)))) (-1218 (*1 *1 *2 *3) (-12 (-5 *2 (-1087 *1)) (-5 *3 (-1092)) (-4 *1 (-27)))) (-1217 (*1 *2 *3) (-12 (-5 *3 (-859 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-1217 (*1 *2 *3) (-12 (-5 *3 (-1087 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-1217 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *1)) (-5 *4 (-1092)) (-4 *1 (-27)) (-5 *2 (-585 *1))))) -(-13 (-312) (-917) (-10 -8 (-15 -3186 ($ (-859 $))) (-15 -3186 ($ (-1087 $))) (-15 -3186 ($ (-1087 $) (-1092))) (-15 -1219 ((-585 $) (-859 $))) (-15 -1219 ((-585 $) (-1087 $))) (-15 -1219 ((-585 $) (-1087 $) (-1092))) (-15 -1218 ($ (-859 $))) (-15 -1218 ($ (-1087 $))) (-15 -1218 ($ (-1087 $) (-1092))) (-15 -1217 ((-585 $) (-859 $))) (-15 -1217 ((-585 $) (-1087 $))) (-15 -1217 ((-585 $) (-1087 $) (-1092))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 $) . T) ((-656 (-350 (-486))) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-917) . T) ((-965 (-350 (-486))) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) . T)) -((-1217 (((-585 $) (-859 $)) NIL T ELT) (((-585 $) (-1087 $)) NIL T ELT) (((-585 $) (-1087 $) (-1092)) 54 T ELT) (((-585 $) $) 22 T ELT) (((-585 $) $ (-1092)) 45 T ELT)) (-1218 (($ (-859 $)) NIL T ELT) (($ (-1087 $)) NIL T ELT) (($ (-1087 $) (-1092)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1092)) 39 T ELT)) (-1219 (((-585 $) (-859 $)) NIL T ELT) (((-585 $) (-1087 $)) NIL T ELT) (((-585 $) (-1087 $) (-1092)) 52 T ELT) (((-585 $) $) 18 T ELT) (((-585 $) $ (-1092)) 47 T ELT)) (-3186 (($ (-859 $)) NIL T ELT) (($ (-1087 $)) NIL T ELT) (($ (-1087 $) (-1092)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1092)) 41 T ELT))) -(((-28 |#1| |#2|) (-10 -7 (-15 -1217 ((-585 |#1|) |#1| (-1092))) (-15 -1218 (|#1| |#1| (-1092))) (-15 -1217 ((-585 |#1|) |#1|)) (-15 -1218 (|#1| |#1|)) (-15 -1219 ((-585 |#1|) |#1| (-1092))) (-15 -3186 (|#1| |#1| (-1092))) (-15 -1219 ((-585 |#1|) |#1|)) (-15 -3186 (|#1| |#1|)) (-15 -1217 ((-585 |#1|) (-1087 |#1|) (-1092))) (-15 -1217 ((-585 |#1|) (-1087 |#1|))) (-15 -1217 ((-585 |#1|) (-859 |#1|))) (-15 -1218 (|#1| (-1087 |#1|) (-1092))) (-15 -1218 (|#1| (-1087 |#1|))) (-15 -1218 (|#1| (-859 |#1|))) (-15 -1219 ((-585 |#1|) (-1087 |#1|) (-1092))) (-15 -1219 ((-585 |#1|) (-1087 |#1|))) (-15 -1219 ((-585 |#1|) (-859 |#1|))) (-15 -3186 (|#1| (-1087 |#1|) (-1092))) (-15 -3186 (|#1| (-1087 |#1|))) (-15 -3186 (|#1| (-859 |#1|)))) (-29 |#2|) (-497)) (T -28)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-1217 (((-585 $) (-859 $)) 98 T ELT) (((-585 $) (-1087 $)) 97 T ELT) (((-585 $) (-1087 $) (-1092)) 96 T ELT) (((-585 $) $) 148 T ELT) (((-585 $) $ (-1092)) 146 T ELT)) (-1218 (($ (-859 $)) 101 T ELT) (($ (-1087 $)) 100 T ELT) (($ (-1087 $) (-1092)) 99 T ELT) (($ $) 149 T ELT) (($ $ (-1092)) 147 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 (-1092)) $) 217 T ELT)) (-3086 (((-350 (-1087 $)) $ (-552 $)) 249 (|has| |#1| (-497)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1601 (((-585 (-552 $)) $) 180 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-1605 (($ $ (-585 (-552 $)) (-585 $)) 170 T ELT) (($ $ (-585 (-249 $))) 169 T ELT) (($ $ (-249 $)) 168 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-3040 (($ $) 110 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-1219 (((-585 $) (-859 $)) 104 T ELT) (((-585 $) (-1087 $)) 103 T ELT) (((-585 $) (-1087 $) (-1092)) 102 T ELT) (((-585 $) $) 152 T ELT) (((-585 $) $ (-1092)) 150 T ELT)) (-3186 (($ (-859 $)) 107 T ELT) (($ (-1087 $)) 106 T ELT) (($ (-1087 $) (-1092)) 105 T ELT) (($ $) 153 T ELT) (($ $ (-1092)) 151 T ELT)) (-3160 (((-3 (-859 |#1|) #1="failed") $) 268 (|has| |#1| (-963)) ELT) (((-3 (-350 (-859 |#1|)) #1#) $) 251 (|has| |#1| (-497)) ELT) (((-3 |#1| #1#) $) 213 T ELT) (((-3 (-486) #1#) $) 210 (|has| |#1| (-952 (-486))) ELT) (((-3 (-1092) #1#) $) 204 T ELT) (((-3 (-552 $) #1#) $) 155 T ELT) (((-3 (-350 (-486)) #1#) $) 143 (OR (-12 (|has| |#1| (-952 (-486))) (|has| |#1| (-497))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-3159 (((-859 |#1|) $) 267 (|has| |#1| (-963)) ELT) (((-350 (-859 |#1|)) $) 250 (|has| |#1| (-497)) ELT) ((|#1| $) 212 T ELT) (((-486) $) 211 (|has| |#1| (-952 (-486))) ELT) (((-1092) $) 203 T ELT) (((-552 $) $) 154 T ELT) (((-350 (-486)) $) 144 (OR (-12 (|has| |#1| (-952 (-486))) (|has| |#1| (-497))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-2567 (($ $ $) 71 T ELT)) (-2281 (((-632 |#1|) (-632 $)) 256 (|has| |#1| (-963)) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 255 (|has| |#1| (-963)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 142 (OR (-2565 (|has| |#1| (-963)) (|has| |#1| (-582 (-486)))) (-2565 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT) (((-632 (-486)) (-632 $)) 141 (OR (-2565 (|has| |#1| (-963)) (|has| |#1| (-582 (-486)))) (-2565 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3726 (((-85) $) 89 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 209 (|has| |#1| (-798 (-330))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 208 (|has| |#1| (-798 (-486))) ELT)) (-2576 (($ (-585 $)) 174 T ELT) (($ $) 173 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-1600 (((-585 (-86)) $) 181 T ELT)) (-3598 (((-86) (-86)) 182 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2676 (((-85) $) 202 (|has| $ (-952 (-486))) ELT)) (-2999 (($ $) 234 (|has| |#1| (-963)) ELT)) (-3001 (((-1041 |#1| (-552 $)) $) 233 (|has| |#1| (-963)) ELT)) (-3014 (($ $ (-486)) 109 T ELT)) (-1606 (((-3 (-585 $) #2="failed") (-585 $) $) 68 T ELT)) (-1598 (((-1087 $) (-552 $)) 199 (|has| $ (-963)) ELT)) (-3846 (($ (-1 $ $) (-552 $)) 188 T ELT)) (-1603 (((-3 (-552 $) "failed") $) 178 T ELT)) (-2282 (((-632 |#1|) (-1181 $)) 258 (|has| |#1| (-963)) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 257 (|has| |#1| (-963)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 140 (OR (-2565 (|has| |#1| (-963)) (|has| |#1| (-582 (-486)))) (-2565 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT) (((-632 (-486)) (-1181 $)) 139 (OR (-2565 (|has| |#1| (-963)) (|has| |#1| (-582 (-486)))) (-2565 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1602 (((-585 (-552 $)) $) 179 T ELT)) (-2237 (($ (-86) (-585 $)) 187 T ELT) (($ (-86) $) 186 T ELT)) (-2826 (((-3 (-585 $) #3="failed") $) 228 (|has| |#1| (-1027)) ELT)) (-2828 (((-3 (-2 (|:| |val| $) (|:| -2403 (-486))) #3#) $) 237 (|has| |#1| (-963)) ELT)) (-2825 (((-3 (-585 $) #3#) $) 230 (|has| |#1| (-25)) ELT)) (-1799 (((-3 (-2 (|:| -3958 (-486)) (|:| |var| (-552 $))) #3#) $) 231 (|has| |#1| (-25)) ELT)) (-2827 (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) #3#) $ (-1092)) 236 (|has| |#1| (-963)) ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) #3#) $ (-86)) 235 (|has| |#1| (-963)) ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) #3#) $) 229 (|has| |#1| (-1027)) ELT)) (-2636 (((-85) $ (-1092)) 185 T ELT) (((-85) $ (-86)) 184 T ELT)) (-2487 (($ $) 88 T ELT)) (-2606 (((-696) $) 177 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1802 (((-85) $) 215 T ELT)) (-1801 ((|#1| $) 216 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-1599 (((-85) $ (-1092)) 190 T ELT) (((-85) $ $) 189 T ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-2677 (((-85) $) 201 (|has| $ (-952 (-486))) ELT)) (-3771 (($ $ (-1092) (-696) (-1 $ $)) 241 (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696) (-1 $ (-585 $))) 240 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ (-585 $)))) 239 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ $))) 238 (|has| |#1| (-963)) ELT) (($ $ (-585 (-86)) (-585 $) (-1092)) 227 (|has| |#1| (-555 (-475))) ELT) (($ $ (-86) $ (-1092)) 226 (|has| |#1| (-555 (-475))) ELT) (($ $) 225 (|has| |#1| (-555 (-475))) ELT) (($ $ (-585 (-1092))) 224 (|has| |#1| (-555 (-475))) ELT) (($ $ (-1092)) 223 (|has| |#1| (-555 (-475))) ELT) (($ $ (-86) (-1 $ $)) 198 T ELT) (($ $ (-86) (-1 $ (-585 $))) 197 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) 196 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) 195 T ELT) (($ $ (-1092) (-1 $ $)) 194 T ELT) (($ $ (-1092) (-1 $ (-585 $))) 193 T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ (-585 $)))) 192 T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ $))) 191 T ELT) (($ $ (-585 $) (-585 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-249 $)) 160 T ELT) (($ $ (-585 (-249 $))) 159 T ELT) (($ $ (-585 (-552 $)) (-585 $)) 158 T ELT) (($ $ (-552 $) $) 157 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-3803 (($ (-86) (-585 $)) 167 T ELT) (($ (-86) $ $ $ $) 166 T ELT) (($ (-86) $ $ $) 165 T ELT) (($ (-86) $ $) 164 T ELT) (($ (-86) $) 163 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-1604 (($ $ $) 176 T ELT) (($ $) 175 T ELT)) (-3761 (($ $ (-585 (-1092)) (-585 (-696))) 263 (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696)) 262 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092))) 261 (|has| |#1| (-963)) ELT) (($ $ (-1092)) 259 (|has| |#1| (-963)) ELT)) (-2998 (($ $) 244 (|has| |#1| (-497)) ELT)) (-3000 (((-1041 |#1| (-552 $)) $) 243 (|has| |#1| (-497)) ELT)) (-3188 (($ $) 200 (|has| $ (-963)) ELT)) (-3975 (((-475) $) 272 (|has| |#1| (-555 (-475))) ELT) (($ (-348 $)) 242 (|has| |#1| (-497)) ELT) (((-802 (-330)) $) 207 (|has| |#1| (-555 (-802 (-330)))) ELT) (((-802 (-486)) $) 206 (|has| |#1| (-555 (-802 (-486)))) ELT)) (-3012 (($ $ $) 271 (|has| |#1| (-414)) ELT)) (-2438 (($ $ $) 270 (|has| |#1| (-414)) ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT) (($ (-859 |#1|)) 269 (|has| |#1| (-963)) ELT) (($ (-350 (-859 |#1|))) 252 (|has| |#1| (-497)) ELT) (($ (-350 (-859 (-350 |#1|)))) 248 (|has| |#1| (-497)) ELT) (($ (-859 (-350 |#1|))) 247 (|has| |#1| (-497)) ELT) (($ (-350 |#1|)) 246 (|has| |#1| (-497)) ELT) (($ (-1041 |#1| (-552 $))) 232 (|has| |#1| (-963)) ELT) (($ |#1|) 214 T ELT) (($ (-1092)) 205 T ELT) (($ (-552 $)) 156 T ELT)) (-2705 (((-634 $) $) 254 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-2593 (($ (-585 $)) 172 T ELT) (($ $) 171 T ELT)) (-2256 (((-85) (-86)) 183 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-1800 (($ (-1092) (-585 $)) 222 T ELT) (($ (-1092) $ $ $ $) 221 T ELT) (($ (-1092) $ $ $) 220 T ELT) (($ (-1092) $ $) 219 T ELT) (($ (-1092) $) 218 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-585 (-1092)) (-585 (-696))) 266 (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696)) 265 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092))) 264 (|has| |#1| (-963)) ELT) (($ $ (-1092)) 260 (|has| |#1| (-963)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ $) 83 T ELT) (($ (-1041 |#1| (-552 $)) (-1041 |#1| (-552 $))) 245 (|has| |#1| (-497)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT) (($ $ (-350 (-486))) 108 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT) (($ $ |#1|) 253 (|has| |#1| (-146)) ELT) (($ |#1| $) 145 (|has| |#1| (-963)) ELT))) -(((-29 |#1|) (-113) (-497)) (T -29)) -((-3186 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-497)))) (-1219 (*1 *2 *1) (-12 (-4 *3 (-497)) (-5 *2 (-585 *1)) (-4 *1 (-29 *3)))) (-3186 (*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-4 *1 (-29 *3)) (-4 *3 (-497)))) (-1219 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *2 (-585 *1)) (-4 *1 (-29 *4)))) (-1218 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-497)))) (-1217 (*1 *2 *1) (-12 (-4 *3 (-497)) (-5 *2 (-585 *1)) (-4 *1 (-29 *3)))) (-1218 (*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-4 *1 (-29 *3)) (-4 *3 (-497)))) (-1217 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *2 (-585 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-364 |t#1|) (-10 -8 (-15 -3186 ($ $)) (-15 -1219 ((-585 $) $)) (-15 -3186 ($ $ (-1092))) (-15 -1219 ((-585 $) $ (-1092))) (-15 -1218 ($ $)) (-15 -1217 ((-585 $) $)) (-15 -1218 ($ $ (-1092))) (-15 -1217 ((-585 $) $ (-1092))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) . T) ((-557 (-350 (-859 |#1|))) |has| |#1| (-497)) ((-557 (-486)) . T) ((-557 (-552 $)) . T) ((-557 (-859 |#1|)) |has| |#1| (-963)) ((-557 (-1092)) . T) ((-557 |#1|) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-555 (-802 (-330))) |has| |#1| (-555 (-802 (-330)))) ((-555 (-802 (-486))) |has| |#1| (-555 (-802 (-486)))) ((-201) . T) ((-246) . T) ((-258) . T) ((-260 $) . T) ((-254) . T) ((-312) . T) ((-329 |#1|) |has| |#1| (-963)) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-364 |#1|) . T) ((-393) . T) ((-414) |has| |#1| (-414)) ((-457 (-552 $) $) . T) ((-457 $ $) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 |#1|) OR (|has| |#1| (-963)) (|has| |#1| (-146))) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 (-486)) -12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ((-592 |#1|) OR (|has| |#1| (-963)) (|has| |#1| (-146))) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) . T) ((-582 (-486)) -12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ((-582 |#1|) |has| |#1| (-963)) ((-656 (-350 (-486))) . T) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) . T) ((-665) . T) ((-808 $ (-1092)) |has| |#1| (-963)) ((-811 (-1092)) |has| |#1| (-963)) ((-813 (-1092)) |has| |#1| (-963)) ((-798 (-330)) |has| |#1| (-798 (-330))) ((-798 (-486)) |has| |#1| (-798 (-486))) ((-796 |#1|) . T) ((-834) . T) ((-917) . T) ((-952 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (-12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486))))) ((-952 (-350 (-859 |#1|))) |has| |#1| (-497)) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 (-552 $)) . T) ((-952 (-859 |#1|)) |has| |#1| (-963)) ((-952 (-1092)) . T) ((-952 |#1|) . T) ((-965 (-350 (-486))) . T) ((-965 |#1|) |has| |#1| (-146)) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 |#1|) |has| |#1| (-146)) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) . T)) -((-2899 (((-1003 (-179)) $) NIL T ELT)) (-2900 (((-1003 (-179)) $) NIL T ELT)) (-3137 (($ $ (-179)) 164 T ELT)) (-1220 (($ (-859 (-486)) (-1092) (-1092) (-1003 (-350 (-486))) (-1003 (-350 (-486)))) 103 T ELT)) (-2901 (((-585 (-585 (-856 (-179)))) $) 181 T ELT)) (-3950 (((-774) $) 195 T ELT))) -(((-30) (-13 (-868) (-10 -8 (-15 -1220 ($ (-859 (-486)) (-1092) (-1092) (-1003 (-350 (-486))) (-1003 (-350 (-486))))) (-15 -3137 ($ $ (-179)))))) (T -30)) -((-1220 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-859 (-486))) (-5 *3 (-1092)) (-5 *4 (-1003 (-350 (-486)))) (-5 *1 (-30)))) (-3137 (*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 18 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-1051) $) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2697 (((-1051) $) 10 T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-31) (-13 (-997) (-10 -8 (-15 -2697 ((-1051) $)) (-15 -3236 ((-1051) $))))) (T -31)) -((-2697 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-31)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-31))))) -((-3186 ((|#2| (-1087 |#2|) (-1092)) 39 T ELT)) (-3598 (((-86) (-86)) 53 T ELT)) (-1598 (((-1087 |#2|) (-552 |#2|)) 148 (|has| |#1| (-952 (-486))) ELT)) (-1223 ((|#2| |#1| (-486)) 120 (|has| |#1| (-952 (-486))) ELT)) (-1221 ((|#2| (-1087 |#2|) |#2|) 29 T ELT)) (-1222 (((-774) (-585 |#2|)) 87 T ELT)) (-3188 ((|#2| |#2|) 143 (|has| |#1| (-952 (-486))) ELT)) (-2256 (((-85) (-86)) 17 T ELT)) (** ((|#2| |#2| (-350 (-486))) 96 (|has| |#1| (-952 (-486))) ELT))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3186 (|#2| (-1087 |#2|) (-1092))) (-15 -3598 ((-86) (-86))) (-15 -2256 ((-85) (-86))) (-15 -1221 (|#2| (-1087 |#2|) |#2|)) (-15 -1222 ((-774) (-585 |#2|))) (IF (|has| |#1| (-952 (-486))) (PROGN (-15 ** (|#2| |#2| (-350 (-486)))) (-15 -1598 ((-1087 |#2|) (-552 |#2|))) (-15 -3188 (|#2| |#2|)) (-15 -1223 (|#2| |#1| (-486)))) |%noBranch|)) (-497) (-364 |#1|)) (T -32)) -((-1223 (*1 *2 *3 *4) (-12 (-5 *4 (-486)) (-4 *2 (-364 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-952 *4)) (-4 *3 (-497)))) (-3188 (*1 *2 *2) (-12 (-4 *3 (-952 (-486))) (-4 *3 (-497)) (-5 *1 (-32 *3 *2)) (-4 *2 (-364 *3)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-552 *5)) (-4 *5 (-364 *4)) (-4 *4 (-952 (-486))) (-4 *4 (-497)) (-5 *2 (-1087 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-486))) (-4 *4 (-952 (-486))) (-4 *4 (-497)) (-5 *1 (-32 *4 *2)) (-4 *2 (-364 *4)))) (-1222 (*1 *2 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-364 *4)) (-4 *4 (-497)) (-5 *2 (-774)) (-5 *1 (-32 *4 *5)))) (-1221 (*1 *2 *3 *2) (-12 (-5 *3 (-1087 *2)) (-4 *2 (-364 *4)) (-4 *4 (-497)) (-5 *1 (-32 *4 *2)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-364 *4)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-32 *3 *4)) (-4 *4 (-364 *3)))) (-3186 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *2)) (-5 *4 (-1092)) (-4 *2 (-364 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-497))))) -((-3727 (($) 10 T CONST)) (-1224 (((-85) $ $) 8 T ELT))) -(((-33 |#1|) (-10 -7 (-15 -3727 (|#1|) -3956) (-15 -1224 ((-85) |#1| |#1|))) (-34)) (T -33)) -NIL -((-3727 (($) 6 T CONST)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3403 (($ $) 9 T ELT))) +((-3189 (*1 *1 *2) (-12 (-5 *2 (-861 *1)) (-4 *1 (-27)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-27)))) (-3189 (*1 *1 *2 *3) (-12 (-5 *2 (-1089 *1)) (-5 *3 (-1094)) (-4 *1 (-27)))) (-1221 (*1 *2 *3) (-12 (-5 *3 (-861 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) (-1221 (*1 *2 *3) (-12 (-5 *3 (-1089 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) (-1221 (*1 *2 *3 *4) (-12 (-5 *3 (-1089 *1)) (-5 *4 (-1094)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) (-1220 (*1 *1 *2) (-12 (-5 *2 (-861 *1)) (-4 *1 (-27)))) (-1220 (*1 *1 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-27)))) (-1220 (*1 *1 *2 *3) (-12 (-5 *2 (-1089 *1)) (-5 *3 (-1094)) (-4 *1 (-27)))) (-1219 (*1 *2 *3) (-12 (-5 *3 (-861 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) (-1219 (*1 *2 *3) (-12 (-5 *3 (-1089 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) (-1219 (*1 *2 *3 *4) (-12 (-5 *3 (-1089 *1)) (-5 *4 (-1094)) (-4 *1 (-27)) (-5 *2 (-587 *1))))) +(-13 (-314) (-919) (-10 -8 (-15 -3189 ($ (-861 $))) (-15 -3189 ($ (-1089 $))) (-15 -3189 ($ (-1089 $) (-1094))) (-15 -1221 ((-587 $) (-861 $))) (-15 -1221 ((-587 $) (-1089 $))) (-15 -1221 ((-587 $) (-1089 $) (-1094))) (-15 -1220 ($ (-861 $))) (-15 -1220 ($ (-1089 $))) (-15 -1220 ($ (-1089 $) (-1094))) (-15 -1219 ((-587 $) (-861 $))) (-15 -1219 ((-587 $) (-1089 $))) (-15 -1219 ((-587 $) (-1089 $) (-1094))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-352 (-488))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) . T) ((-82 $ $) . T) ((-104) . T) ((-559 (-352 (-488))) . T) ((-559 (-488)) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-203) . T) ((-248) . T) ((-260) . T) ((-314) . T) ((-395) . T) ((-499) . T) ((-13) . T) ((-592 (-352 (-488))) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 (-352 (-488))) . T) ((-594 $) . T) ((-586 (-352 (-488))) . T) ((-586 $) . T) ((-658 (-352 (-488))) . T) ((-658 $) . T) ((-667) . T) ((-836) . T) ((-919) . T) ((-967 (-352 (-488))) . T) ((-967 $) . T) ((-972 (-352 (-488))) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T) ((-1138) . T)) +((-1219 (((-587 $) (-861 $)) NIL T ELT) (((-587 $) (-1089 $)) NIL T ELT) (((-587 $) (-1089 $) (-1094)) 54 T ELT) (((-587 $) $) 22 T ELT) (((-587 $) $ (-1094)) 45 T ELT)) (-1220 (($ (-861 $)) NIL T ELT) (($ (-1089 $)) NIL T ELT) (($ (-1089 $) (-1094)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1094)) 39 T ELT)) (-1221 (((-587 $) (-861 $)) NIL T ELT) (((-587 $) (-1089 $)) NIL T ELT) (((-587 $) (-1089 $) (-1094)) 52 T ELT) (((-587 $) $) 18 T ELT) (((-587 $) $ (-1094)) 47 T ELT)) (-3189 (($ (-861 $)) NIL T ELT) (($ (-1089 $)) NIL T ELT) (($ (-1089 $) (-1094)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1094)) 41 T ELT))) +(((-28 |#1| |#2|) (-10 -7 (-15 -1219 ((-587 |#1|) |#1| (-1094))) (-15 -1220 (|#1| |#1| (-1094))) (-15 -1219 ((-587 |#1|) |#1|)) (-15 -1220 (|#1| |#1|)) (-15 -1221 ((-587 |#1|) |#1| (-1094))) (-15 -3189 (|#1| |#1| (-1094))) (-15 -1221 ((-587 |#1|) |#1|)) (-15 -3189 (|#1| |#1|)) (-15 -1219 ((-587 |#1|) (-1089 |#1|) (-1094))) (-15 -1219 ((-587 |#1|) (-1089 |#1|))) (-15 -1219 ((-587 |#1|) (-861 |#1|))) (-15 -1220 (|#1| (-1089 |#1|) (-1094))) (-15 -1220 (|#1| (-1089 |#1|))) (-15 -1220 (|#1| (-861 |#1|))) (-15 -1221 ((-587 |#1|) (-1089 |#1|) (-1094))) (-15 -1221 ((-587 |#1|) (-1089 |#1|))) (-15 -1221 ((-587 |#1|) (-861 |#1|))) (-15 -3189 (|#1| (-1089 |#1|) (-1094))) (-15 -3189 (|#1| (-1089 |#1|))) (-15 -3189 (|#1| (-861 |#1|)))) (-29 |#2|) (-499)) (T -28)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-1219 (((-587 $) (-861 $)) 98 T ELT) (((-587 $) (-1089 $)) 97 T ELT) (((-587 $) (-1089 $) (-1094)) 96 T ELT) (((-587 $) $) 148 T ELT) (((-587 $) $ (-1094)) 146 T ELT)) (-1220 (($ (-861 $)) 101 T ELT) (($ (-1089 $)) 100 T ELT) (($ (-1089 $) (-1094)) 99 T ELT) (($ $) 149 T ELT) (($ $ (-1094)) 147 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3087 (((-587 (-1094)) $) 217 T ELT)) (-3089 (((-352 (-1089 $)) $ (-554 $)) 249 (|has| |#1| (-499)) ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-1604 (((-587 (-554 $)) $) 180 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-1608 (($ $ (-587 (-554 $)) (-587 $)) 170 T ELT) (($ $ (-587 (-251 $))) 169 T ELT) (($ $ (-251 $)) 168 T ELT)) (-3781 (($ $) 91 T ELT)) (-3977 (((-350 $) $) 90 T ELT)) (-3043 (($ $) 110 T ELT)) (-1612 (((-85) $ $) 75 T ELT)) (-3730 (($) 23 T CONST)) (-1221 (((-587 $) (-861 $)) 104 T ELT) (((-587 $) (-1089 $)) 103 T ELT) (((-587 $) (-1089 $) (-1094)) 102 T ELT) (((-587 $) $) 152 T ELT) (((-587 $) $ (-1094)) 150 T ELT)) (-3189 (($ (-861 $)) 107 T ELT) (($ (-1089 $)) 106 T ELT) (($ (-1089 $) (-1094)) 105 T ELT) (($ $) 153 T ELT) (($ $ (-1094)) 151 T ELT)) (-3163 (((-3 (-861 |#1|) #1="failed") $) 268 (|has| |#1| (-965)) ELT) (((-3 (-352 (-861 |#1|)) #1#) $) 251 (|has| |#1| (-499)) ELT) (((-3 |#1| #1#) $) 213 T ELT) (((-3 (-488) #1#) $) 210 (|has| |#1| (-954 (-488))) ELT) (((-3 (-1094) #1#) $) 204 T ELT) (((-3 (-554 $) #1#) $) 155 T ELT) (((-3 (-352 (-488)) #1#) $) 143 (OR (-12 (|has| |#1| (-954 (-488))) (|has| |#1| (-499))) (|has| |#1| (-954 (-352 (-488))))) ELT)) (-3162 (((-861 |#1|) $) 267 (|has| |#1| (-965)) ELT) (((-352 (-861 |#1|)) $) 250 (|has| |#1| (-499)) ELT) ((|#1| $) 212 T ELT) (((-488) $) 211 (|has| |#1| (-954 (-488))) ELT) (((-1094) $) 203 T ELT) (((-554 $) $) 154 T ELT) (((-352 (-488)) $) 144 (OR (-12 (|has| |#1| (-954 (-488))) (|has| |#1| (-499))) (|has| |#1| (-954 (-352 (-488))))) ELT)) (-2570 (($ $ $) 71 T ELT)) (-2284 (((-634 |#1|) (-634 $)) 256 (|has| |#1| (-965)) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) 255 (|has| |#1| (-965)) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) 142 (OR (-2568 (|has| |#1| (-965)) (|has| |#1| (-584 (-488)))) (-2568 (|has| |#1| (-584 (-488))) (|has| |#1| (-965)))) ELT) (((-634 (-488)) (-634 $)) 141 (OR (-2568 (|has| |#1| (-965)) (|has| |#1| (-584 (-488)))) (-2568 (|has| |#1| (-584 (-488))) (|has| |#1| (-965)))) ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-2569 (($ $ $) 72 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 66 T ELT)) (-3729 (((-85) $) 89 T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) 209 (|has| |#1| (-800 (-332))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) 208 (|has| |#1| (-800 (-488))) ELT)) (-2579 (($ (-587 $)) 174 T ELT) (($ $) 173 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-1603 (((-587 (-86)) $) 181 T ELT)) (-3601 (((-86) (-86)) 182 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-2679 (((-85) $) 202 (|has| $ (-954 (-488))) ELT)) (-3002 (($ $) 234 (|has| |#1| (-965)) ELT)) (-3004 (((-1043 |#1| (-554 $)) $) 233 (|has| |#1| (-965)) ELT)) (-3017 (($ $ (-488)) 109 T ELT)) (-1609 (((-3 (-587 $) #2="failed") (-587 $) $) 68 T ELT)) (-1601 (((-1089 $) (-554 $)) 199 (|has| $ (-965)) ELT)) (-3849 (($ (-1 $ $) (-554 $)) 188 T ELT)) (-1606 (((-3 (-554 $) "failed") $) 178 T ELT)) (-2285 (((-634 |#1|) (-1183 $)) 258 (|has| |#1| (-965)) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) 257 (|has| |#1| (-965)) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) 140 (OR (-2568 (|has| |#1| (-965)) (|has| |#1| (-584 (-488)))) (-2568 (|has| |#1| (-584 (-488))) (|has| |#1| (-965)))) ELT) (((-634 (-488)) (-1183 $)) 139 (OR (-2568 (|has| |#1| (-965)) (|has| |#1| (-584 (-488)))) (-2568 (|has| |#1| (-584 (-488))) (|has| |#1| (-965)))) ELT)) (-1899 (($ $ $) 60 T ELT) (($ (-587 $)) 59 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-1605 (((-587 (-554 $)) $) 179 T ELT)) (-2240 (($ (-86) (-587 $)) 187 T ELT) (($ (-86) $) 186 T ELT)) (-2829 (((-3 (-587 $) #3="failed") $) 228 (|has| |#1| (-1029)) ELT)) (-2831 (((-3 (-2 (|:| |val| $) (|:| -2406 (-488))) #3#) $) 237 (|has| |#1| (-965)) ELT)) (-2828 (((-3 (-587 $) #3#) $) 230 (|has| |#1| (-25)) ELT)) (-1802 (((-3 (-2 (|:| -3961 (-488)) (|:| |var| (-554 $))) #3#) $) 231 (|has| |#1| (-25)) ELT)) (-2830 (((-3 (-2 (|:| |var| (-554 $)) (|:| -2406 (-488))) #3#) $ (-1094)) 236 (|has| |#1| (-965)) ELT) (((-3 (-2 (|:| |var| (-554 $)) (|:| -2406 (-488))) #3#) $ (-86)) 235 (|has| |#1| (-965)) ELT) (((-3 (-2 (|:| |var| (-554 $)) (|:| -2406 (-488))) #3#) $) 229 (|has| |#1| (-1029)) ELT)) (-2639 (((-85) $ (-1094)) 185 T ELT) (((-85) $ (-86)) 184 T ELT)) (-2490 (($ $) 88 T ELT)) (-2609 (((-698) $) 177 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-1805 (((-85) $) 215 T ELT)) (-1804 ((|#1| $) 216 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 58 T ELT)) (-3150 (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-1602 (((-85) $ (-1094)) 190 T ELT) (((-85) $ $) 189 T ELT)) (-3738 (((-350 $) $) 92 T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 65 T ELT)) (-2680 (((-85) $) 201 (|has| $ (-954 (-488))) ELT)) (-3774 (($ $ (-1094) (-698) (-1 $ $)) 241 (|has| |#1| (-965)) ELT) (($ $ (-1094) (-698) (-1 $ (-587 $))) 240 (|has| |#1| (-965)) ELT) (($ $ (-587 (-1094)) (-587 (-698)) (-587 (-1 $ (-587 $)))) 239 (|has| |#1| (-965)) ELT) (($ $ (-587 (-1094)) (-587 (-698)) (-587 (-1 $ $))) 238 (|has| |#1| (-965)) ELT) (($ $ (-587 (-86)) (-587 $) (-1094)) 227 (|has| |#1| (-557 (-477))) ELT) (($ $ (-86) $ (-1094)) 226 (|has| |#1| (-557 (-477))) ELT) (($ $) 225 (|has| |#1| (-557 (-477))) ELT) (($ $ (-587 (-1094))) 224 (|has| |#1| (-557 (-477))) ELT) (($ $ (-1094)) 223 (|has| |#1| (-557 (-477))) ELT) (($ $ (-86) (-1 $ $)) 198 T ELT) (($ $ (-86) (-1 $ (-587 $))) 197 T ELT) (($ $ (-587 (-86)) (-587 (-1 $ (-587 $)))) 196 T ELT) (($ $ (-587 (-86)) (-587 (-1 $ $))) 195 T ELT) (($ $ (-1094) (-1 $ $)) 194 T ELT) (($ $ (-1094) (-1 $ (-587 $))) 193 T ELT) (($ $ (-587 (-1094)) (-587 (-1 $ (-587 $)))) 192 T ELT) (($ $ (-587 (-1094)) (-587 (-1 $ $))) 191 T ELT) (($ $ (-587 $) (-587 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-251 $)) 160 T ELT) (($ $ (-587 (-251 $))) 159 T ELT) (($ $ (-587 (-554 $)) (-587 $)) 158 T ELT) (($ $ (-554 $) $) 157 T ELT)) (-1611 (((-698) $) 74 T ELT)) (-3806 (($ (-86) (-587 $)) 167 T ELT) (($ (-86) $ $ $ $) 166 T ELT) (($ (-86) $ $ $) 165 T ELT) (($ (-86) $ $) 164 T ELT) (($ (-86) $) 163 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 73 T ELT)) (-1607 (($ $ $) 176 T ELT) (($ $) 175 T ELT)) (-3764 (($ $ (-587 (-1094)) (-587 (-698))) 263 (|has| |#1| (-965)) ELT) (($ $ (-1094) (-698)) 262 (|has| |#1| (-965)) ELT) (($ $ (-587 (-1094))) 261 (|has| |#1| (-965)) ELT) (($ $ (-1094)) 259 (|has| |#1| (-965)) ELT)) (-3001 (($ $) 244 (|has| |#1| (-499)) ELT)) (-3003 (((-1043 |#1| (-554 $)) $) 243 (|has| |#1| (-499)) ELT)) (-3191 (($ $) 200 (|has| $ (-965)) ELT)) (-3978 (((-477) $) 272 (|has| |#1| (-557 (-477))) ELT) (($ (-350 $)) 242 (|has| |#1| (-499)) ELT) (((-804 (-332)) $) 207 (|has| |#1| (-557 (-804 (-332)))) ELT) (((-804 (-488)) $) 206 (|has| |#1| (-557 (-804 (-488)))) ELT)) (-3015 (($ $ $) 271 (|has| |#1| (-416)) ELT)) (-2441 (($ $ $) 270 (|has| |#1| (-416)) ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT) (($ (-352 (-488))) 84 T ELT) (($ (-861 |#1|)) 269 (|has| |#1| (-965)) ELT) (($ (-352 (-861 |#1|))) 252 (|has| |#1| (-499)) ELT) (($ (-352 (-861 (-352 |#1|)))) 248 (|has| |#1| (-499)) ELT) (($ (-861 (-352 |#1|))) 247 (|has| |#1| (-499)) ELT) (($ (-352 |#1|)) 246 (|has| |#1| (-499)) ELT) (($ (-1043 |#1| (-554 $))) 232 (|has| |#1| (-965)) ELT) (($ |#1|) 214 T ELT) (($ (-1094)) 205 T ELT) (($ (-554 $)) 156 T ELT)) (-2708 (((-636 $) $) 254 (|has| |#1| (-118)) ELT)) (-3132 (((-698)) 40 T CONST)) (-2596 (($ (-587 $)) 172 T ELT) (($ $) 171 T ELT)) (-2259 (((-85) (-86)) 183 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-1803 (($ (-1094) (-587 $)) 222 T ELT) (($ (-1094) $ $ $ $) 221 T ELT) (($ (-1094) $ $ $) 220 T ELT) (($ (-1094) $ $) 219 T ELT) (($ (-1094) $) 218 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-587 (-1094)) (-587 (-698))) 266 (|has| |#1| (-965)) ELT) (($ $ (-1094) (-698)) 265 (|has| |#1| (-965)) ELT) (($ $ (-587 (-1094))) 264 (|has| |#1| (-965)) ELT) (($ $ (-1094)) 260 (|has| |#1| (-965)) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ $) 83 T ELT) (($ (-1043 |#1| (-554 $)) (-1043 |#1| (-554 $))) 245 (|has| |#1| (-499)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 87 T ELT) (($ $ (-352 (-488))) 108 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-352 (-488))) 86 T ELT) (($ (-352 (-488)) $) 85 T ELT) (($ $ |#1|) 253 (|has| |#1| (-148)) ELT) (($ |#1| $) 145 (|has| |#1| (-965)) ELT))) +(((-29 |#1|) (-113) (-499)) (T -29)) +((-3189 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-499)))) (-1221 (*1 *2 *1) (-12 (-4 *3 (-499)) (-5 *2 (-587 *1)) (-4 *1 (-29 *3)))) (-3189 (*1 *1 *1 *2) (-12 (-5 *2 (-1094)) (-4 *1 (-29 *3)) (-4 *3 (-499)))) (-1221 (*1 *2 *1 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-499)) (-5 *2 (-587 *1)) (-4 *1 (-29 *4)))) (-1220 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-499)))) (-1219 (*1 *2 *1) (-12 (-4 *3 (-499)) (-5 *2 (-587 *1)) (-4 *1 (-29 *3)))) (-1220 (*1 *1 *1 *2) (-12 (-5 *2 (-1094)) (-4 *1 (-29 *3)) (-4 *3 (-499)))) (-1219 (*1 *2 *1 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-499)) (-5 *2 (-587 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-366 |t#1|) (-10 -8 (-15 -3189 ($ $)) (-15 -1221 ((-587 $) $)) (-15 -3189 ($ $ (-1094))) (-15 -1221 ((-587 $) $ (-1094))) (-15 -1220 ($ $)) (-15 -1219 ((-587 $) $)) (-15 -1220 ($ $ (-1094))) (-15 -1219 ((-587 $) $ (-1094))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-352 (-488))) . T) ((-38 |#1|) |has| |#1| (-148)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) . T) ((-82 |#1| |#1|) |has| |#1| (-148)) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) . T) ((-559 (-352 (-861 |#1|))) |has| |#1| (-499)) ((-559 (-488)) . T) ((-559 (-554 $)) . T) ((-559 (-861 |#1|)) |has| |#1| (-965)) ((-559 (-1094)) . T) ((-559 |#1|) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-557 (-804 (-332))) |has| |#1| (-557 (-804 (-332)))) ((-557 (-804 (-488))) |has| |#1| (-557 (-804 (-488)))) ((-203) . T) ((-248) . T) ((-260) . T) ((-262 $) . T) ((-256) . T) ((-314) . T) ((-331 |#1|) |has| |#1| (-965)) ((-345 |#1|) . T) ((-357 |#1|) . T) ((-366 |#1|) . T) ((-395) . T) ((-416) |has| |#1| (-416)) ((-459 (-554 $) $) . T) ((-459 $ $) . T) ((-499) . T) ((-13) . T) ((-592 (-352 (-488))) . T) ((-592 (-488)) . T) ((-592 |#1|) OR (|has| |#1| (-965)) (|has| |#1| (-148))) ((-592 $) . T) ((-594 (-352 (-488))) . T) ((-594 (-488)) -12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965))) ((-594 |#1|) OR (|has| |#1| (-965)) (|has| |#1| (-148))) ((-594 $) . T) ((-586 (-352 (-488))) . T) ((-586 |#1|) |has| |#1| (-148)) ((-586 $) . T) ((-584 (-488)) -12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965))) ((-584 |#1|) |has| |#1| (-965)) ((-658 (-352 (-488))) . T) ((-658 |#1|) |has| |#1| (-148)) ((-658 $) . T) ((-667) . T) ((-810 $ (-1094)) |has| |#1| (-965)) ((-813 (-1094)) |has| |#1| (-965)) ((-815 (-1094)) |has| |#1| (-965)) ((-800 (-332)) |has| |#1| (-800 (-332))) ((-800 (-488)) |has| |#1| (-800 (-488))) ((-798 |#1|) . T) ((-836) . T) ((-919) . T) ((-954 (-352 (-488))) OR (|has| |#1| (-954 (-352 (-488)))) (-12 (|has| |#1| (-499)) (|has| |#1| (-954 (-488))))) ((-954 (-352 (-861 |#1|))) |has| |#1| (-499)) ((-954 (-488)) |has| |#1| (-954 (-488))) ((-954 (-554 $)) . T) ((-954 (-861 |#1|)) |has| |#1| (-965)) ((-954 (-1094)) . T) ((-954 |#1|) . T) ((-967 (-352 (-488))) . T) ((-967 |#1|) |has| |#1| (-148)) ((-967 $) . T) ((-972 (-352 (-488))) . T) ((-972 |#1|) |has| |#1| (-148)) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T) ((-1138) . T)) +((-2902 (((-1005 (-181)) $) NIL T ELT)) (-2903 (((-1005 (-181)) $) NIL T ELT)) (-3140 (($ $ (-181)) 164 T ELT)) (-1222 (($ (-861 (-488)) (-1094) (-1094) (-1005 (-352 (-488))) (-1005 (-352 (-488)))) 103 T ELT)) (-2904 (((-587 (-587 (-858 (-181)))) $) 181 T ELT)) (-3953 (((-776) $) 195 T ELT))) +(((-30) (-13 (-870) (-10 -8 (-15 -1222 ($ (-861 (-488)) (-1094) (-1094) (-1005 (-352 (-488))) (-1005 (-352 (-488))))) (-15 -3140 ($ $ (-181)))))) (T -30)) +((-1222 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-861 (-488))) (-5 *3 (-1094)) (-5 *4 (-1005 (-352 (-488)))) (-5 *1 (-30)))) (-3140 (*1 *1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-30))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 18 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-3239 (((-1053) $) 12 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2700 (((-1053) $) 10 T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-31) (-13 (-999) (-10 -8 (-15 -2700 ((-1053) $)) (-15 -3239 ((-1053) $))))) (T -31)) +((-2700 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-31)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-31))))) +((-3189 ((|#2| (-1089 |#2|) (-1094)) 39 T ELT)) (-3601 (((-86) (-86)) 53 T ELT)) (-1601 (((-1089 |#2|) (-554 |#2|)) 148 (|has| |#1| (-954 (-488))) ELT)) (-1225 ((|#2| |#1| (-488)) 120 (|has| |#1| (-954 (-488))) ELT)) (-1223 ((|#2| (-1089 |#2|) |#2|) 29 T ELT)) (-1224 (((-776) (-587 |#2|)) 87 T ELT)) (-3191 ((|#2| |#2|) 143 (|has| |#1| (-954 (-488))) ELT)) (-2259 (((-85) (-86)) 17 T ELT)) (** ((|#2| |#2| (-352 (-488))) 96 (|has| |#1| (-954 (-488))) ELT))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3189 (|#2| (-1089 |#2|) (-1094))) (-15 -3601 ((-86) (-86))) (-15 -2259 ((-85) (-86))) (-15 -1223 (|#2| (-1089 |#2|) |#2|)) (-15 -1224 ((-776) (-587 |#2|))) (IF (|has| |#1| (-954 (-488))) (PROGN (-15 ** (|#2| |#2| (-352 (-488)))) (-15 -1601 ((-1089 |#2|) (-554 |#2|))) (-15 -3191 (|#2| |#2|)) (-15 -1225 (|#2| |#1| (-488)))) |%noBranch|)) (-499) (-366 |#1|)) (T -32)) +((-1225 (*1 *2 *3 *4) (-12 (-5 *4 (-488)) (-4 *2 (-366 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-954 *4)) (-4 *3 (-499)))) (-3191 (*1 *2 *2) (-12 (-4 *3 (-954 (-488))) (-4 *3 (-499)) (-5 *1 (-32 *3 *2)) (-4 *2 (-366 *3)))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-554 *5)) (-4 *5 (-366 *4)) (-4 *4 (-954 (-488))) (-4 *4 (-499)) (-5 *2 (-1089 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-352 (-488))) (-4 *4 (-954 (-488))) (-4 *4 (-499)) (-5 *1 (-32 *4 *2)) (-4 *2 (-366 *4)))) (-1224 (*1 *2 *3) (-12 (-5 *3 (-587 *5)) (-4 *5 (-366 *4)) (-4 *4 (-499)) (-5 *2 (-776)) (-5 *1 (-32 *4 *5)))) (-1223 (*1 *2 *3 *2) (-12 (-5 *3 (-1089 *2)) (-4 *2 (-366 *4)) (-4 *4 (-499)) (-5 *1 (-32 *4 *2)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-499)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-366 *4)))) (-3601 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-499)) (-5 *1 (-32 *3 *4)) (-4 *4 (-366 *3)))) (-3189 (*1 *2 *3 *4) (-12 (-5 *3 (-1089 *2)) (-5 *4 (-1094)) (-4 *2 (-366 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-499))))) +((-3730 (($) 10 T CONST)) (-1226 (((-85) $ $) 8 T ELT))) +(((-33 |#1|) (-10 -7 (-15 -3730 (|#1|) -3959) (-15 -1226 ((-85) |#1| |#1|))) (-34)) (T -33)) +NIL +((-3730 (($) 6 T CONST)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3406 (($ $) 9 T ELT))) (((-34) (-113)) (T -34)) -((-1224 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3403 (*1 *1 *1) (-4 *1 (-34))) (-3568 (*1 *1) (-4 *1 (-34))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3727 (*1 *1) (-4 *1 (-34)))) -(-13 (-1131) (-10 -8 (-15 -1224 ((-85) $ $)) (-15 -3403 ($ $)) (-15 -3568 ($)) (-15 -3406 ((-85) $)) (-15 -3727 ($) -3956))) -(((-13) . T) ((-1131) . T)) -((-3501 (($ $) 11 T ELT)) (-3499 (($ $) 10 T ELT)) (-3503 (($ $) 9 T ELT)) (-3504 (($ $) 8 T ELT)) (-3502 (($ $) 7 T ELT)) (-3500 (($ $) 6 T ELT))) +((-1226 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3406 (*1 *1 *1) (-4 *1 (-34))) (-3571 (*1 *1) (-4 *1 (-34))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3730 (*1 *1) (-4 *1 (-34)))) +(-13 (-1133) (-10 -8 (-15 -1226 ((-85) $ $)) (-15 -3406 ($ $)) (-15 -3571 ($)) (-15 -3409 ((-85) $)) (-15 -3730 ($) -3959))) +(((-13) . T) ((-1133) . T)) +((-3504 (($ $) 11 T ELT)) (-3502 (($ $) 10 T ELT)) (-3506 (($ $) 9 T ELT)) (-3507 (($ $) 8 T ELT)) (-3505 (($ $) 7 T ELT)) (-3503 (($ $) 6 T ELT))) (((-35) (-113)) (T -35)) -((-3501 (*1 *1 *1) (-4 *1 (-35))) (-3499 (*1 *1 *1) (-4 *1 (-35))) (-3503 (*1 *1 *1) (-4 *1 (-35))) (-3504 (*1 *1 *1) (-4 *1 (-35))) (-3502 (*1 *1 *1) (-4 *1 (-35))) (-3500 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3500 ($ $)) (-15 -3502 ($ $)) (-15 -3504 ($ $)) (-15 -3503 ($ $)) (-15 -3499 ($ $)) (-15 -3501 ($ $)))) -((-2571 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3405 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 136 T ELT)) (-3798 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 159 T ELT)) (-3800 (($ $) 157 T ELT)) (-3602 (($) 95 T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 94 T ELT)) (-2200 (((-1187) $ |#1| |#1|) 82 (|has| $ (-1037 |#2|)) ELT) (((-1187) $ (-486) (-486)) 185 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3788 (($ $ (-486)) 170 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-1737 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 219 T ELT) (((-85) $) 213 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-1735 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 210 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ $) 209 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) ELT)) (-2912 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 220 T ELT) (($ $) 214 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3445 (((-85) $ (-696)) 202 T ELT)) (-3028 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 145 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3790 (($ $ $) 166 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3789 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 168 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3792 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 164 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3791 ((|#2| $ |#1| |#2|) 70 (|has| $ (-1037 |#2|)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-486) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 196 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-1148 (-486)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 171 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 169 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ $ #2="rest" $) 167 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 165 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 144 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3029 (($ $ (-585 $)) 143 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 42 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 236 T ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 183 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3799 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 158 T ELT)) (-2233 (((-3 |#2| #5="failed") |#1| $) 59 T ELT)) (-3727 (($) 6 T CONST)) (-2299 (($ $) 211 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2300 (($ $) 221 T ELT)) (-3802 (($ $ (-696)) 153 T ELT) (($ $) 151 T ELT)) (-2370 (($ $) 234 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1355 (($ $) 51 (OR (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 44 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 43 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #5#) |#1| $) 60 T ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 240 T ELT) (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 235 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 50 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 184 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 182 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 111 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 107 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 106 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 232 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 228 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 227 T ELT)) (-1577 ((|#2| $ |#1| |#2|) 69 (|has| $ (-1037 |#2|)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-486) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 197 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3115 ((|#2| $ |#1|) 71 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-486)) 195 T ELT)) (-3446 (((-85) $) 199 T ELT)) (-3422 (((-486) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 218 T ELT) (((-486) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 217 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-486) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-486)) 216 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3034 (((-585 $) $) 134 T ELT)) (-3030 (((-85) $ $) 142 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3617 (($ (-696) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 179 T ELT)) (-3722 (((-85) $ (-696)) 201 T ELT)) (-2202 ((|#1| $) 79 (|has| |#1| (-758)) ELT) (((-486) $) 187 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) 203 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2859 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ $) 237 T ELT) (($ $ $) 233 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3521 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ $) 222 T ELT) (($ $ $) 215 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 105 T ELT) (((-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 226 T ELT)) (-3248 (((-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 110 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 231 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2203 ((|#1| $) 78 (|has| |#1| (-758)) ELT) (((-486) $) 188 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) 204 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 39 T ELT) (($ (-1 |#2| |#2|) $) 63 T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 245 T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 26 T ELT) (($ (-1 |#2| |#2|) $) 64 T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 96 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 93 T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ $) 176 T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 128 T ELT)) (-3537 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 246 T ELT)) (-3719 (((-85) $ (-696)) 200 T ELT)) (-3033 (((-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 139 T ELT)) (-3530 (((-85) $) 135 T ELT)) (-3245 (((-1075) $) 21 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-3801 (($ $ (-696)) 156 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 154 T ELT)) (-2234 (((-585 |#1|) $) 61 T ELT)) (-2235 (((-85) |#1| $) 62 T ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 35 T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 36 T ELT) (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-486)) 239 T ELT) (($ $ $ (-486)) 238 T ELT)) (-2306 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-486)) 173 T ELT) (($ $ $ (-486)) 172 T ELT)) (-2205 (((-585 |#1|) $) 76 T ELT) (((-585 (-486)) $) 190 T ELT)) (-2206 (((-85) |#1| $) 75 T ELT) (((-85) (-486) $) 191 T ELT)) (-3246 (((-1035) $) 20 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-3804 ((|#2| $) 80 (|has| |#1| (-758)) ELT) (($ $ (-696)) 150 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 148 T ELT)) (-1731 (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 108 T ELT) (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 229 T ELT)) (-2201 (($ $ |#2|) 81 (|has| $ (-1037 |#2|)) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 186 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-1277 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 37 T ELT)) (-3447 (((-85) $) 198 T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 103 T ELT) (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 224 T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) 25 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 24 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 23 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 22 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 68 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) 67 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) 66 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) 65 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 100 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 99 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 98 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) 97 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 132 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 131 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 130 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) 129 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#2| $) 77 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 189 (-12 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2207 (((-585 |#2|) $) 74 T ELT) (((-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 192 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#2| $ |#1|) 73 T ELT) ((|#2| $ |#1| |#2|) 72 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-486) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 194 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-486)) 193 T ELT) (($ $ (-1148 (-486))) 180 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #1#) 155 T ELT) (($ $ #2#) 152 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #3#) 149 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #4#) 137 T ELT)) (-3032 (((-486) $ $) 140 T ELT)) (-1467 (($) 46 T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 45 T ELT)) (-1572 (($ $ (-486)) 242 T ELT) (($ $ (-1148 (-486))) 241 T ELT)) (-2307 (($ $ (-486)) 175 T ELT) (($ $ (-1148 (-486))) 174 T ELT)) (-3636 (((-85) $) 138 T ELT)) (-3795 (($ $) 162 T ELT)) (-3793 (($ $) 163 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3796 (((-696) $) 161 T ELT)) (-3797 (($ $) 160 T ELT)) (-1732 (((-696) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 109 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 104 T ELT) (((-696) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 230 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 225 T ELT)) (-1736 (($ $ $ (-486)) 212 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 52 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-555 (-475))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-555 (-475)))) ELT)) (-3533 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 47 T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 181 T ELT)) (-3794 (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 244 T ELT) (($ $ $) 243 T ELT)) (-3805 (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 178 T ELT) (($ (-585 $)) 177 T ELT) (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 147 T ELT) (($ $ $) 146 T ELT)) (-3950 (((-774) $) 16 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-774)))) ELT)) (-3525 (((-585 $) $) 133 T ELT)) (-3031 (((-85) $ $) 141 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1267 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 38 T ELT)) (-1225 (((-634 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |#1| $) 127 T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 102 T ELT) (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 223 T ELT)) (-2569 (((-85) $ $) 205 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2570 (((-85) $ $) 207 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3059 (((-85) $ $) 17 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2687 (((-85) $ $) 206 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2688 (((-85) $ $) 208 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3961 (((-696) $) 101 T ELT))) -(((-36 |#1| |#2|) (-113) (-1015) (-1015)) (T -36)) -((-1225 (*1 *2 *3 *1) (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-634 (-2 (|:| -3864 *3) (|:| |entry| *4))))))) -(-13 (-1109 |t#1| |t#2|) (-610 (-2 (|:| -3864 |t#1|) (|:| |entry| |t#2|))) (-1037 |t#2|) (-10 -8 (-15 -1225 ((-634 (-2 (|:| -3864 |t#1|) (|:| |entry| |t#2|))) |t#1| $)))) -(((-34) . T) ((-76 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1015)) (|has| |#2| (-72))) ((-554 (-774)) OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-1015)) (|has| |#2| (-554 (-774)))) ((-124 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-555 (-475)) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ((-183 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-486) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-1148 (-486)) $) . T) ((-241 |#1| |#2|) . T) ((-243 (-486) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-237 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-324 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-381 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-381 |#2|) . T) ((-430 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-430 |#2|) . T) ((-540 (-486) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-540 |#1| |#2|) . T) ((-457 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ((-457 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-13) . T) ((-551 |#1| |#2|) . T) ((-595 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-610 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-758) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ((-761) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ((-925 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-1015) OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) (|has| |#2| (-1015))) ((-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-1037 |#2|) . T) ((-1066 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-1109 |#1| |#2|) . T) ((-1131) . T) ((-1170 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T)) -((-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-37 |#1| |#2|) (-10 -7 (-15 -3950 (|#1| |#2|)) (-15 -3950 (|#1| (-486))) (-15 -3950 ((-774) |#1|))) (-38 |#2|) (-146)) (T -37)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 52 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) -(((-38 |#1|) (-113) (-146)) (T -38)) -NIL -(-13 (-963) (-656 |t#1|) (-557 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-665) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-3421 (((-348 |#1|) |#1|) 41 T ELT)) (-3735 (((-348 |#1|) |#1|) 30 T ELT) (((-348 |#1|) |#1| (-585 (-48))) 33 T ELT)) (-1226 (((-85) |#1|) 59 T ELT))) -(((-39 |#1|) (-10 -7 (-15 -3735 ((-348 |#1|) |#1| (-585 (-48)))) (-15 -3735 ((-348 |#1|) |#1|)) (-15 -3421 ((-348 |#1|) |#1|)) (-15 -1226 ((-85) |#1|))) (-1157 (-48))) (T -39)) -((-1226 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1157 (-48))))) (-3421 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1157 (-48))))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1157 (-48))))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-48))) (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1157 (-48)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1648 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2065 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2063 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1787 (((-632 (-350 |#2|)) (-1181 $)) NIL T ELT) (((-632 (-350 |#2|))) NIL T ELT)) (-3333 (((-350 |#2|) $) NIL T ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3139 (((-696)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1662 (((-85)) NIL T ELT)) (-1661 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| (-350 |#2|) (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| (-350 |#2|) (-952 (-350 (-486)))) ELT) (((-3 (-350 |#2|) #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| (-350 |#2|) (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| (-350 |#2|) (-952 (-350 (-486)))) ELT) (((-350 |#2|) $) NIL T ELT)) (-1797 (($ (-1181 (-350 |#2|)) (-1181 $)) NIL T ELT) (($ (-1181 (-350 |#2|))) 60 T ELT) (($ (-1181 |#2|) |#2|) 130 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-350 |#2|) (-299)) ELT)) (-2567 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1786 (((-632 (-350 |#2|)) $ (-1181 $)) NIL T ELT) (((-632 (-350 |#2|)) $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-350 |#2|))) (|:| |vec| (-1181 (-350 |#2|)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-350 |#2|)) (-632 $)) NIL T ELT)) (-1653 (((-1181 $) (-1181 $)) NIL T ELT)) (-3845 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-350 |#3|)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1640 (((-585 (-585 |#1|))) NIL (|has| |#1| (-320)) ELT)) (-1665 (((-85) |#1| |#1|) NIL T ELT)) (-3111 (((-832)) NIL T ELT)) (-2997 (($) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1660 (((-85)) NIL T ELT)) (-1659 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-2566 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3506 (($ $) NIL T ELT)) (-2836 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1681 (((-85) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1769 (($ $ (-696)) NIL (|has| (-350 |#2|) (-299)) ELT) (($ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3726 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3775 (((-832) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-745 (-832)) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3380 (((-696)) NIL T ELT)) (-1654 (((-1181 $) (-1181 $)) 105 T ELT)) (-3135 (((-350 |#2|) $) NIL T ELT)) (-1641 (((-585 (-859 |#1|)) (-1092)) NIL (|has| |#1| (-312)) ELT)) (-3448 (((-634 $) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2016 ((|#3| $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2012 (((-832) $) NIL (|has| (-350 |#2|) (-320)) ELT)) (-3082 ((|#3| $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-350 |#2|))) (|:| |vec| (-1181 (-350 |#2|)))) (-1181 $) $) NIL T ELT) (((-632 (-350 |#2|)) (-1181 $)) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1227 (((-1187) (-696)) 83 T ELT)) (-1649 (((-632 (-350 |#2|))) 55 T ELT)) (-1651 (((-632 (-350 |#2|))) 48 T ELT)) (-2487 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1646 (($ (-1181 |#2|) |#2|) 131 T ELT)) (-1650 (((-632 (-350 |#2|))) 49 T ELT)) (-1652 (((-632 (-350 |#2|))) 47 T ELT)) (-1645 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1647 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1658 (((-1181 $)) 46 T ELT)) (-3922 (((-1181 $)) 45 T ELT)) (-1657 (((-85) $) NIL T ELT)) (-1656 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3449 (($) NIL (|has| (-350 |#2|) (-299)) CONST)) (-2402 (($ (-832)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1643 (((-3 |#2| #1#)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1667 (((-696)) NIL T ELT)) (-2411 (($) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3735 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-696) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3803 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1644 (((-3 |#2| #1#)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3760 (((-350 |#2|) (-1181 $)) NIL T ELT) (((-350 |#2|)) 43 T ELT)) (-1770 (((-696) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-3 (-696) #1#) $ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3761 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-696)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2410 (((-632 (-350 |#2|)) (-1181 $) (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3188 ((|#3|) 54 T ELT)) (-1675 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3227 (((-1181 (-350 |#2|)) $ (-1181 $)) NIL T ELT) (((-632 (-350 |#2|)) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 (-350 |#2|)) $) 61 T ELT) (((-632 (-350 |#2|)) (-1181 $)) 106 T ELT)) (-3975 (((-1181 (-350 |#2|)) $) NIL T ELT) (($ (-1181 (-350 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1655 (((-1181 $) (-1181 $)) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-350 |#2|)) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2705 (($ $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-634 $) $) NIL (|has| (-350 |#2|) (-118)) ELT)) (-2452 ((|#3| $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1664 (((-85)) 41 T ELT)) (-1663 (((-85) |#1|) 53 T ELT) (((-85) |#2|) 137 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1666 (((-85)) NIL T ELT)) (-2663 (($) 17 T CONST)) (-2669 (($) 27 T CONST)) (-2672 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-696)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 |#2|)) NIL T ELT) (($ (-350 |#2|) $) NIL T ELT) (($ (-350 (-486)) $) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-486))) NIL (|has| (-350 |#2|) (-312)) ELT))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-291 |#1| |#2| |#3|) (-10 -7 (-15 -1227 ((-1187) (-696))))) (-312) (-1157 |#1|) (-1157 (-350 |#2|)) |#3|) (T -40)) -((-1227 (*1 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-312)) (-4 *5 (-1157 *4)) (-5 *2 (-1187)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1157 (-350 *5))) (-14 *7 *6)))) -((-1228 ((|#2| |#2|) 47 T ELT)) (-1233 ((|#2| |#2|) 136 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-393) (-952 (-486))))) ELT)) (-1232 ((|#2| |#2|) 100 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-393) (-952 (-486))))) ELT)) (-1231 ((|#2| |#2|) 101 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-393) (-952 (-486))))) ELT)) (-1234 ((|#2| (-86) |#2| (-696)) 80 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-393) (-952 (-486))))) ELT)) (-1230 (((-1087 |#2|) |#2|) 44 T ELT)) (-1229 ((|#2| |#2| (-585 (-552 |#2|))) 18 T ELT) ((|#2| |#2| (-585 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1228 (|#2| |#2|)) (-15 -1229 (|#2| |#2|)) (-15 -1229 (|#2| |#2| |#2|)) (-15 -1229 (|#2| |#2| (-585 |#2|))) (-15 -1229 (|#2| |#2| (-585 (-552 |#2|)))) (-15 -1230 ((-1087 |#2|) |#2|)) (IF (|has| |#1| (-13 (-393) (-952 (-486)))) (IF (|has| |#2| (-364 |#1|)) (PROGN (-15 -1231 (|#2| |#2|)) (-15 -1232 (|#2| |#2|)) (-15 -1233 (|#2| |#2|)) (-15 -1234 (|#2| (-86) |#2| (-696)))) |%noBranch|) |%noBranch|)) (-497) (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 |#1| (-552 $)) $)) (-15 -3000 ((-1041 |#1| (-552 $)) $)) (-15 -3950 ($ (-1041 |#1| (-552 $))))))) (T -41)) -((-1234 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-86)) (-5 *4 (-696)) (-4 *5 (-13 (-393) (-952 (-486)))) (-4 *5 (-497)) (-5 *1 (-41 *5 *2)) (-4 *2 (-364 *5)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *5 (-552 $)) $)) (-15 -3000 ((-1041 *5 (-552 $)) $)) (-15 -3950 ($ (-1041 *5 (-552 $))))))))) (-1233 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)))) (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) (-15 -3000 ((-1041 *3 (-552 $)) $)) (-15 -3950 ($ (-1041 *3 (-552 $))))))))) (-1232 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)))) (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) (-15 -3000 ((-1041 *3 (-552 $)) $)) (-15 -3950 ($ (-1041 *3 (-552 $))))))))) (-1231 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)))) (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) (-15 -3000 ((-1041 *3 (-552 $)) $)) (-15 -3950 ($ (-1041 *3 (-552 $))))))))) (-1230 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-1087 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *4 (-552 $)) $)) (-15 -3000 ((-1041 *4 (-552 $)) $)) (-15 -3950 ($ (-1041 *4 (-552 $))))))))) (-1229 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-552 *2))) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *4 (-552 $)) $)) (-15 -3000 ((-1041 *4 (-552 $)) $)) (-15 -3950 ($ (-1041 *4 (-552 $))))))) (-4 *4 (-497)) (-5 *1 (-41 *4 *2)))) (-1229 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *4 (-552 $)) $)) (-15 -3000 ((-1041 *4 (-552 $)) $)) (-15 -3950 ($ (-1041 *4 (-552 $))))))) (-4 *4 (-497)) (-5 *1 (-41 *4 *2)))) (-1229 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) (-15 -3000 ((-1041 *3 (-552 $)) $)) (-15 -3950 ($ (-1041 *3 (-552 $))))))))) (-1229 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) (-15 -3000 ((-1041 *3 (-552 $)) $)) (-15 -3950 ($ (-1041 *3 (-552 $))))))))) (-1228 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) (-15 -3000 ((-1041 *3 (-552 $)) $)) (-15 -3950 ($ (-1041 *3 (-552 $)))))))))) -((-3735 (((-348 (-1087 |#3|)) (-1087 |#3|) (-585 (-48))) 23 T ELT) (((-348 |#3|) |#3| (-585 (-48))) 19 T ELT))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3735 ((-348 |#3|) |#3| (-585 (-48)))) (-15 -3735 ((-348 (-1087 |#3|)) (-1087 |#3|) (-585 (-48))))) (-758) (-719) (-863 (-48) |#2| |#1|)) (T -42)) -((-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-48))) (-4 *5 (-758)) (-4 *6 (-719)) (-4 *7 (-863 (-48) *6 *5)) (-5 *2 (-348 (-1087 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1087 *7)))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-48))) (-4 *5 (-758)) (-4 *6 (-719)) (-5 *2 (-348 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-863 (-48) *6 *5))))) -((-1238 (((-696) |#2|) 70 T ELT)) (-1236 (((-696) |#2|) 74 T ELT)) (-1251 (((-585 |#2|)) 37 T ELT)) (-1235 (((-696) |#2|) 73 T ELT)) (-1237 (((-696) |#2|) 69 T ELT)) (-1239 (((-696) |#2|) 72 T ELT)) (-1249 (((-585 (-632 |#1|))) 65 T ELT)) (-1244 (((-585 |#2|)) 60 T ELT)) (-1242 (((-585 |#2|) |#2|) 48 T ELT)) (-1246 (((-585 |#2|)) 62 T ELT)) (-1245 (((-585 |#2|)) 61 T ELT)) (-1248 (((-585 (-632 |#1|))) 53 T ELT)) (-1243 (((-585 |#2|)) 59 T ELT)) (-1241 (((-585 |#2|) |#2|) 47 T ELT)) (-1240 (((-585 |#2|)) 55 T ELT)) (-1250 (((-585 (-632 |#1|))) 66 T ELT)) (-1247 (((-585 |#2|)) 64 T ELT)) (-2014 (((-1181 |#2|) (-1181 |#2|)) 99 (|has| |#1| (-258)) ELT))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1235 ((-696) |#2|)) (-15 -1236 ((-696) |#2|)) (-15 -1237 ((-696) |#2|)) (-15 -1238 ((-696) |#2|)) (-15 -1239 ((-696) |#2|)) (-15 -1240 ((-585 |#2|))) (-15 -1241 ((-585 |#2|) |#2|)) (-15 -1242 ((-585 |#2|) |#2|)) (-15 -1243 ((-585 |#2|))) (-15 -1244 ((-585 |#2|))) (-15 -1245 ((-585 |#2|))) (-15 -1246 ((-585 |#2|))) (-15 -1247 ((-585 |#2|))) (-15 -1248 ((-585 (-632 |#1|)))) (-15 -1249 ((-585 (-632 |#1|)))) (-15 -1250 ((-585 (-632 |#1|)))) (-15 -1251 ((-585 |#2|))) (IF (|has| |#1| (-258)) (-15 -2014 ((-1181 |#2|) (-1181 |#2|))) |%noBranch|)) (-497) (-361 |#1|)) (T -43)) -((-2014 (*1 *2 *2) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-361 *3)) (-4 *3 (-258)) (-4 *3 (-497)) (-5 *1 (-43 *3 *4)))) (-1251 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1250 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 (-632 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1249 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 (-632 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1248 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 (-632 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1247 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1246 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1245 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1244 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1243 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1242 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-585 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1241 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-585 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1240 (*1 *2) (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1239 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1238 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1237 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1236 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1235 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1777 (((-3 $ #1="failed")) NIL (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ #1#) $ $) NIL T ELT)) (-3226 (((-1181 (-632 |#1|)) (-1181 $)) NIL T ELT) (((-1181 (-632 |#1|))) 24 T ELT)) (-1730 (((-1181 $)) 52 T ELT)) (-3727 (($) NIL T CONST)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (|has| |#1| (-497)) ELT)) (-1704 (((-3 $ #1#)) NIL (|has| |#1| (-497)) ELT)) (-1793 (((-632 |#1|) (-1181 $)) NIL T ELT) (((-632 |#1|)) NIL T ELT)) (-1728 ((|#1| $) NIL T ELT)) (-1791 (((-632 |#1|) $ (-1181 $)) NIL T ELT) (((-632 |#1|) $) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| |#1| (-497)) ELT)) (-1905 (((-1087 (-859 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2409 (($ $ (-832)) NIL T ELT)) (-1726 ((|#1| $) NIL T ELT)) (-1706 (((-1087 |#1|) $) NIL (|has| |#1| (-497)) ELT)) (-1795 ((|#1| (-1181 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1724 (((-1087 |#1|) $) NIL T ELT)) (-1718 (((-85)) 99 T ELT)) (-1797 (($ (-1181 |#1|) (-1181 $)) NIL T ELT) (($ (-1181 |#1|)) NIL T ELT)) (-3470 (((-3 $ #1#) $) 14 (|has| |#1| (-497)) ELT)) (-3111 (((-832)) 53 T ELT)) (-1715 (((-85)) NIL T ELT)) (-2436 (($ $ (-832)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1713 (((-85)) 101 T ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (|has| |#1| (-497)) ELT)) (-1705 (((-3 $ #1#)) NIL (|has| |#1| (-497)) ELT)) (-1794 (((-632 |#1|) (-1181 $)) NIL T ELT) (((-632 |#1|)) NIL T ELT)) (-1729 ((|#1| $) NIL T ELT)) (-1792 (((-632 |#1|) $ (-1181 $)) NIL T ELT) (((-632 |#1|) $) NIL T ELT)) (-2407 (((-3 $ #1#) $) NIL (|has| |#1| (-497)) ELT)) (-1909 (((-1087 (-859 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2408 (($ $ (-832)) NIL T ELT)) (-1727 ((|#1| $) NIL T ELT)) (-1707 (((-1087 |#1|) $) NIL (|has| |#1| (-497)) ELT)) (-1796 ((|#1| (-1181 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1725 (((-1087 |#1|) $) NIL T ELT)) (-1719 (((-85)) 98 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1710 (((-85)) 106 T ELT)) (-1712 (((-85)) 105 T ELT)) (-1714 (((-85)) 107 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1717 (((-85)) 100 T ELT)) (-3803 ((|#1| $ (-486)) 55 T ELT)) (-3227 (((-1181 |#1|) $ (-1181 $)) 48 T ELT) (((-632 |#1|) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 |#1|) $) 28 T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-3975 (((-1181 |#1|) $) NIL T ELT) (($ (-1181 |#1|)) NIL T ELT)) (-1897 (((-585 (-859 |#1|)) (-1181 $)) NIL T ELT) (((-585 (-859 |#1|))) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-1723 (((-85)) 95 T ELT)) (-3950 (((-774) $) 71 T ELT) (($ (-1181 |#1|)) 22 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) 51 T ELT)) (-1708 (((-585 (-1181 |#1|))) NIL (|has| |#1| (-497)) ELT)) (-2439 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) 91 T ELT)) (-2548 (($ (-632 |#1|) $) 18 T ELT)) (-2437 (($ $ $) NIL T ELT)) (-1722 (((-85)) 97 T ELT)) (-1720 (((-85)) 92 T ELT)) (-1716 (((-85)) 90 T ELT)) (-2663 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1058 |#2| |#1|) $) 19 T ELT))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-361 |#1|) (-592 (-1058 |#2| |#1|)) (-10 -8 (-15 -3950 ($ (-1181 |#1|))))) (-312) (-832) (-585 (-1092)) (-1181 (-632 |#1|))) (T -44)) -((-3950 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-312)) (-14 *6 (-1181 (-632 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-832)) (-14 *5 (-585 (-1092)))))) -((-2571 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3405 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3798 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3800 (($ $) NIL T ELT)) (-3602 (($) NIL T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1187) $ |#1| |#1|) NIL (|has| $ (-1037 |#2|)) ELT) (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3788 (($ $ (-486)) NIL (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-1737 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-1735 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ $) NIL (-12 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758))) ELT)) (-2912 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3445 (((-85) $ (-696)) NIL T ELT)) (-3028 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3790 (($ $ $) 35 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3789 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3792 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 37 (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3791 ((|#2| $ |#1| |#2|) 60 (|has| $ (-1037 |#2|)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-486) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-1148 (-486)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ $ #2="rest" $) NIL (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3029 (($ $ (-585 $)) NIL (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3799 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2233 (((-3 |#2| #5="failed") |#1| $) 45 T ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2300 (($ $) NIL T ELT)) (-3802 (($ $ (-696)) NIL T ELT) (($ $) 31 T ELT)) (-2370 (($ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #5#) |#1| $) 63 T ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-486) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-486)) NIL T ELT)) (-3446 (((-85) $) NIL T ELT)) (-3422 (((-486) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-486) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-486) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-486)) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3034 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3617 (($ (-696) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3722 (((-85) $ (-696)) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT) (((-486) $) 40 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2859 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3521 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 22 T ELT) (((-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 22 T ELT)) (-3248 (((-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT) (((-486) $) 42 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3537 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3719 (((-85) $ (-696)) NIL T ELT)) (-3033 (((-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3530 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) 51 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3801 (($ $ (-696)) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2234 (((-585 |#1|) $) 24 T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2306 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT) (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT) (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-758)) ELT) (($ $ (-696)) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 29 T ELT)) (-1731 (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-1277 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3447 (((-85) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT) (((-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 21 T ELT)) (-3406 (((-85) $) 20 T ELT)) (-3568 (($) 16 T ELT)) (-3803 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-486) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3032 (((-486) $ $) NIL T ELT)) (-1467 (($) 14 T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 15 T ELT)) (-1572 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-3636 (((-85) $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-3793 (($ $) NIL (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3796 (((-696) $) NIL T ELT)) (-3797 (($ $) NIL T ELT)) (-1732 (((-696) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-696) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3794 (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3805 (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-585 $)) NIL T ELT) (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 33 T ELT) (($ $ $) NIL T ELT)) (-3950 (((-774) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-3525 (((-585 $) $) NIL T ELT)) (-3031 (((-85) $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1267 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1225 (((-634 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |#1| $) 55 T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3059 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2687 (((-85) $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3961 (((-696) $) 27 T ELT))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1015) (-1015)) (T -45)) -NIL -((-3941 (((-85) $) 12 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-350 (-486)) $) 25 T ELT) (($ $ (-350 (-486))) NIL T ELT))) -(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-350 (-486)))) (-15 * (|#1| (-350 (-486)) |#1|)) (-15 -3941 ((-85) |#1|)) (-15 -3846 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|))) (-47 |#2| |#3|) (-963) (-718)) (T -46)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 72 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 73 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 75 (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3962 (($ $) 81 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3941 (((-85) $) 83 T ELT)) (-2896 (($ |#1| |#2|) 82 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3469 (((-3 $ "failed") $ $) 71 (|has| |#1| (-497)) ELT)) (-3952 ((|#2| $) 84 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 (-486))) 78 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) 70 (|has| |#1| (-497)) ELT) (($ |#1|) 68 (|has| |#1| (-146)) ELT)) (-3680 ((|#1| $ |#2|) 80 T ELT)) (-2705 (((-634 $) $) 69 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 74 (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 79 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-350 (-486)) $) 77 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 76 (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-47 |#1| |#2|) (-113) (-963) (-718)) (T -47)) -((-3177 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) (-2897 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-85)))) (-2896 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) (-3680 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) (-3953 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *2 (-312))))) -(-13 (-963) (-82 |t#1| |t#1|) (-381 |t#1|) (-10 -8 (-15 -3177 (|t#1| $)) (-15 -2897 ($ $)) (-15 -3952 (|t#2| $)) (-15 -3941 ((-85) $)) (-15 -2896 ($ |t#1| |t#2|)) (-15 -3962 ($ $)) (-15 -3680 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-312)) (-15 -3953 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-6 (-146)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-497)) (-6 (-497)) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-486)))) (-6 (-38 (-350 (-486)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-497)) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-557 (-486)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) |has| |#1| (-497)) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-246) |has| |#1| (-497)) ((-381 |#1|) . T) ((-497) |has| |#1| (-497)) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-497)) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-497)) ((-665) . T) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-1217 (((-585 $) (-1087 $) (-1092)) NIL T ELT) (((-585 $) (-1087 $)) NIL T ELT) (((-585 $) (-859 $)) NIL T ELT)) (-1218 (($ (-1087 $) (-1092)) NIL T ELT) (($ (-1087 $)) NIL T ELT) (($ (-859 $)) NIL T ELT)) (-3191 (((-85) $) 9 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1601 (((-585 (-552 $)) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-3040 (($ $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1219 (((-585 $) (-1087 $) (-1092)) NIL T ELT) (((-585 $) (-1087 $)) NIL T ELT) (((-585 $) (-859 $)) NIL T ELT)) (-3186 (($ (-1087 $) (-1092)) NIL T ELT) (($ (-1087 $)) NIL T ELT) (($ (-859 $)) NIL T ELT)) (-3160 (((-3 (-552 $) #1#) $) NIL T ELT) (((-3 (-486) #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT)) (-3159 (((-552 $) $) NIL T ELT) (((-486) $) NIL T ELT) (((-350 (-486)) $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-486)) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-350 (-486)))) (|:| |vec| (-1181 (-350 (-486))))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-350 (-486))) (-632 $)) NIL T ELT)) (-3845 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-2576 (($ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-1600 (((-585 (-86)) $) NIL T ELT)) (-3598 (((-86) (-86)) NIL T ELT)) (-2412 (((-85) $) 11 T ELT)) (-2676 (((-85) $) NIL (|has| $ (-952 (-486))) ELT)) (-3001 (((-1041 (-486) (-552 $)) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL T ELT)) (-3135 (((-1087 $) (-1087 $) (-552 $)) NIL T ELT) (((-1087 $) (-1087 $) (-585 (-552 $))) NIL T ELT) (($ $ (-552 $)) NIL T ELT) (($ $ (-585 (-552 $))) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-1598 (((-1087 $) (-552 $)) NIL (|has| $ (-963)) ELT)) (-3846 (($ (-1 $ $) (-552 $)) NIL T ELT)) (-1603 (((-3 (-552 $) #1#) $) NIL T ELT)) (-2282 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL T ELT) (((-632 (-486)) (-1181 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-350 (-486)))) (|:| |vec| (-1181 (-350 (-486))))) (-1181 $) $) NIL T ELT) (((-632 (-350 (-486))) (-1181 $)) NIL T ELT)) (-1896 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1602 (((-585 (-552 $)) $) NIL T ELT)) (-2237 (($ (-86) $) NIL T ELT) (($ (-86) (-585 $)) NIL T ELT)) (-2636 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1092)) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-2606 (((-696) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1599 (((-85) $ $) NIL T ELT) (((-85) $ (-1092)) NIL T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2677 (((-85) $) NIL (|has| $ (-952 (-486))) ELT)) (-3771 (($ $ (-552 $) $) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) NIL T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-1092) (-1 $ (-585 $))) NIL T ELT) (($ $ (-1092) (-1 $ $)) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-585 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-3803 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-585 $)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1604 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3761 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3000 (((-1041 (-486) (-552 $)) $) NIL T ELT)) (-3188 (($ $) NIL (|has| $ (-963)) ELT)) (-3975 (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (((-142 (-330)) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-552 $)) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-1041 (-486) (-552 $))) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-2593 (($ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-2256 (((-85) (-86)) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 6 T CONST)) (-2669 (($) 10 T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3059 (((-85) $ $) 13 T ELT)) (-3953 (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-350 (-486))) NIL T ELT) (($ $ (-486)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT)) (* (($ (-350 (-486)) $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-832) $) NIL T ELT))) -(((-48) (-13 (-254) (-27) (-952 (-486)) (-952 (-350 (-486))) (-582 (-486)) (-935) (-582 (-350 (-486))) (-120) (-555 (-142 (-330))) (-190) (-557 (-1041 (-486) (-552 $))) (-10 -8 (-15 -3001 ((-1041 (-486) (-552 $)) $)) (-15 -3000 ((-1041 (-486) (-552 $)) $)) (-15 -3845 ($ $)) (-15 -3135 ((-1087 $) (-1087 $) (-552 $))) (-15 -3135 ((-1087 $) (-1087 $) (-585 (-552 $)))) (-15 -3135 ($ $ (-552 $))) (-15 -3135 ($ $ (-585 (-552 $))))))) (T -48)) -((-3001 (*1 *2 *1) (-12 (-5 *2 (-1041 (-486) (-552 (-48)))) (-5 *1 (-48)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-1041 (-486) (-552 (-48)))) (-5 *1 (-48)))) (-3845 (*1 *1 *1) (-5 *1 (-48))) (-3135 (*1 *2 *2 *3) (-12 (-5 *2 (-1087 (-48))) (-5 *3 (-552 (-48))) (-5 *1 (-48)))) (-3135 (*1 *2 *2 *3) (-12 (-5 *2 (-1087 (-48))) (-5 *3 (-585 (-552 (-48)))) (-5 *1 (-48)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-552 (-48))) (-5 *1 (-48)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-552 (-48)))) (-5 *1 (-48))))) -((-2571 (((-85) $ $) NIL T ELT)) (-1943 (((-585 (-448)) $) 17 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 7 T ELT)) (-3236 (((-1097) $) 18 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-49) (-13 (-1015) (-10 -8 (-15 -1943 ((-585 (-448)) $)) (-15 -3236 ((-1097) $))))) (T -49)) -((-1943 (*1 *2 *1) (-12 (-5 *2 (-585 (-448))) (-5 *1 (-49)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-49))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 86 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2667 (((-85) $) 31 T ELT)) (-3160 (((-3 |#1| #1#) $) 34 T ELT)) (-3159 ((|#1| $) 35 T ELT)) (-3962 (($ $) 41 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3177 ((|#1| $) 32 T ELT)) (-1456 (($ $) 75 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1455 (((-85) $) 44 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($ (-696)) 73 T ELT)) (-3947 (($ (-585 (-486))) 74 T ELT)) (-3952 (((-696) $) 45 T ELT)) (-3950 (((-774) $) 92 T ELT) (($ (-486)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3680 ((|#1| $ $) 29 T ELT)) (-3129 (((-696)) 72 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 46 T CONST)) (-2669 (($) 17 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 65 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT))) -(((-50 |#1| |#2|) (-13 (-562 |#1|) (-952 |#1|) (-381 |#1|) (-10 -8 (-15 -3177 (|#1| $)) (-15 -1456 ($ $)) (-15 -3962 ($ $)) (-15 -3680 (|#1| $ $)) (-15 -2411 ($ (-696))) (-15 -3947 ($ (-585 (-486)))) (-15 -1455 ((-85) $)) (-15 -2667 ((-85) $)) (-15 -3952 ((-696) $)))) (-963) (-585 (-1092))) (T -50)) -((-3177 (*1 *2 *1) (-12 (-4 *2 (-963)) (-5 *1 (-50 *2 *3)) (-14 *3 (-585 (-1092))))) (-1456 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-963)) (-14 *3 (-585 (-1092))))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-963)) (-14 *3 (-585 (-1092))))) (-3680 (*1 *2 *1 *1) (-12 (-4 *2 (-963)) (-5 *1 (-50 *2 *3)) (-14 *3 (-585 (-1092))))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) (-14 *4 (-585 (-1092))))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) (-14 *4 (-585 (-1092))))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) (-14 *4 (-585 (-1092))))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) (-14 *4 (-585 (-1092))))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) (-14 *4 (-585 (-1092)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-1252 (((-698) $) 8 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1253 (((-1017) $) 10 T ELT)) (-3950 (((-774) $) 15 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1254 (($ (-1017) (-698)) 16 T ELT)) (-3059 (((-85) $ $) 12 T ELT))) -(((-51) (-13 (-1015) (-10 -8 (-15 -1254 ($ (-1017) (-698))) (-15 -1253 ((-1017) $)) (-15 -1252 ((-698) $))))) (T -51)) -((-1254 (*1 *1 *2 *3) (-12 (-5 *2 (-1017)) (-5 *3 (-698)) (-5 *1 (-51)))) (-1253 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-51)))) (-1252 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-51))))) -((-2667 (((-85) (-51)) 18 T ELT)) (-3160 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3159 ((|#1| (-51)) 21 T ELT)) (-3950 (((-51) |#1|) 14 T ELT))) -(((-52 |#1|) (-10 -7 (-15 -3950 ((-51) |#1|)) (-15 -3160 ((-3 |#1| "failed") (-51))) (-15 -2667 ((-85) (-51))) (-15 -3159 (|#1| (-51)))) (-1131)) (T -52)) -((-3159 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1131)))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1131)))) (-3160 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1131)))) (-3950 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1131))))) -((-2548 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2548 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-963) (-592 |#1|) (-763 |#1|)) (T -53)) -((-2548 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-592 *5)) (-4 *5 (-963)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-763 *5))))) -((-1256 ((|#3| |#3| (-585 (-1092))) 44 T ELT)) (-1255 ((|#3| (-585 (-989 |#1| |#2| |#3|)) |#3| (-832)) 32 T ELT) ((|#3| (-585 (-989 |#1| |#2| |#3|)) |#3|) 31 T ELT))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1255 (|#3| (-585 (-989 |#1| |#2| |#3|)) |#3|)) (-15 -1255 (|#3| (-585 (-989 |#1| |#2| |#3|)) |#3| (-832))) (-15 -1256 (|#3| |#3| (-585 (-1092))))) (-1015) (-13 (-963) (-798 |#1|) (-555 (-802 |#1|))) (-13 (-364 |#2|) (-798 |#1|) (-555 (-802 |#1|)))) (T -54)) -((-1256 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-1092))) (-4 *4 (-1015)) (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))))) (-1255 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-585 (-989 *5 *6 *2))) (-5 *4 (-832)) (-4 *5 (-1015)) (-4 *6 (-13 (-963) (-798 *5) (-555 (-802 *5)))) (-4 *2 (-13 (-364 *6) (-798 *5) (-555 (-802 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1255 (*1 *2 *3 *2) (-12 (-5 *3 (-585 (-989 *4 *5 *2))) (-4 *4 (-1015)) (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-54 *4 *5 *2))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 13 T ELT)) (-3160 (((-3 (-696) "failed") $) 31 T ELT)) (-3159 (((-696) $) NIL T ELT)) (-2412 (((-85) $) 15 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) 17 T ELT)) (-3950 (((-774) $) 22 T ELT) (($ (-696)) 28 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1257 (($) 10 T CONST)) (-3059 (((-85) $ $) 19 T ELT))) -(((-55) (-13 (-1015) (-952 (-696)) (-10 -8 (-15 -1257 ($) -3956) (-15 -3191 ((-85) $)) (-15 -2412 ((-85) $))))) (T -55)) -((-1257 (*1 *1) (-5 *1 (-55))) (-3191 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) (-2412 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55))))) -((-1259 (($ $ (-486) |#3|) 46 T ELT)) (-1258 (($ $ (-486) |#4|) 50 T ELT)) (-2611 (((-585 |#2|) $) 41 T ELT)) (-3248 (((-85) |#2| $) 55 T ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3803 ((|#2| $ (-486) (-486)) NIL T ELT) ((|#2| $ (-486) (-486) |#2|) 29 T ELT)) (-1732 (((-696) (-1 (-85) |#2|) $) 35 T ELT) (((-696) |#2| $) 57 T ELT)) (-3950 (((-774) $) 63 T ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) 20 T ELT)) (-3059 (((-85) $ $) 54 T ELT)) (-3961 (((-696) $) 26 T ELT))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3059 ((-85) |#1| |#1|)) (-15 -3950 ((-774) |#1|)) (-15 -1258 (|#1| |#1| (-486) |#4|)) (-15 -1259 (|#1| |#1| (-486) |#3|)) (-15 -3803 (|#2| |#1| (-486) (-486) |#2|)) (-15 -3803 (|#2| |#1| (-486) (-486))) (-15 -3248 ((-85) |#2| |#1|)) (-15 -1732 ((-696) |#2| |#1|)) (-15 -2611 ((-585 |#2|) |#1|)) (-15 -1732 ((-696) (-1 (-85) |#2|) |#1|)) (-15 -1733 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1734 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3961 ((-696) |#1|))) (-57 |#2| |#3| |#4|) (-1131) (-324 |#2|) (-324 |#2|)) (T -56)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3791 ((|#1| $ (-486) (-486) |#1|) 52 T ELT)) (-1259 (($ $ (-486) |#2|) 50 T ELT)) (-1258 (($ $ (-486) |#3|) 49 T ELT)) (-3727 (($) 6 T CONST)) (-3114 ((|#2| $ (-486)) 54 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) 39 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 38 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| (-72)) ELT)) (-1577 ((|#1| $ (-486) (-486) |#1|) 51 T ELT)) (-3115 ((|#1| $ (-486) (-486)) 56 T ELT)) (-3117 (((-696) $) 59 T ELT)) (-3617 (($ (-696) (-696) |#1|) 65 T ELT)) (-3116 (((-696) $) 58 T ELT)) (-3121 (((-486) $) 63 T ELT)) (-3119 (((-486) $) 61 T ELT)) (-2611 (((-585 |#1|) $) 40 T ELT)) (-3248 (((-85) |#1| $) 35 (|has| |#1| (-72)) ELT)) (-3120 (((-486) $) 62 T ELT)) (-3118 (((-486) $) 60 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) 66 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 48 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 47 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 37 T ELT)) (-2201 (($ $ |#1|) 64 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 42 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-486) (-486)) 57 T ELT) ((|#1| $ (-486) (-486) |#1|) 55 T ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) 41 T ELT) (((-696) |#1| $) 36 (|has| |#1| (-72)) ELT)) (-3403 (($ $) 9 T ELT)) (-3113 ((|#3| $ (-486)) 53 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 43 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) 44 T ELT))) -(((-57 |#1| |#2| |#3|) (-113) (-1131) (-324 |t#1|) (-324 |t#1|)) (T -57)) -((-3617 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-696)) (-4 *3 (-1131)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2201 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-486)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-486)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-486)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-486)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-696)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-696)))) (-3803 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-1131)))) (-3115 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-1131)))) (-3803 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1131)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-3114 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1131)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) (-3113 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1131)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) (-3791 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1131)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-1577 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1131)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-1259 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-486)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1131)) (-4 *3 (-324 *4)) (-4 *5 (-324 *4)))) (-1258 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-486)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1131)) (-4 *5 (-324 *4)) (-4 *3 (-324 *4)))) (-3846 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3846 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))) -(-13 (-318 |t#1|) (-1037 |t#1|) (-10 -8 (-15 -3617 ($ (-696) (-696) |t#1|)) (-15 -2201 ($ $ |t#1|)) (-15 -3121 ((-486) $)) (-15 -3120 ((-486) $)) (-15 -3119 ((-486) $)) (-15 -3118 ((-486) $)) (-15 -3117 ((-696) $)) (-15 -3116 ((-696) $)) (-15 -3803 (|t#1| $ (-486) (-486))) (-15 -3115 (|t#1| $ (-486) (-486))) (-15 -3803 (|t#1| $ (-486) (-486) |t#1|)) (-15 -3114 (|t#2| $ (-486))) (-15 -3113 (|t#3| $ (-486))) (-15 -3791 (|t#1| $ (-486) (-486) |t#1|)) (-15 -1577 (|t#1| $ (-486) (-486) |t#1|)) (-15 -1259 ($ $ (-486) |t#2|)) (-15 -1258 ($ $ (-486) |t#3|)) (-15 -3846 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3846 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1037 |#1|)) (|has| |#1| (-758))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-3791 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) NIL T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) NIL T ELT) (((-486) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) NIL (|has| |#1| (-72)) ELT)) (-1260 (($ (-585 |#1|)) 11 T ELT) (($ (-696) |#1|) 14 T ELT)) (-3617 (($ (-696) |#1|) 13 T ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) NIL (|has| (-486) (-758)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-486) |#1|) NIL T ELT) ((|#1| $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 10 T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3950 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1260 ($ (-585 |#1|))) (-15 -1260 ($ (-696) |#1|)))) (-1131)) (T -58)) -((-1260 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-58 *3)))) (-1260 (*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-58 *3)) (-4 *3 (-1131))))) -((-3844 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3845 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3846 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) -(((-59 |#1| |#2|) (-10 -7 (-15 -3844 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3845 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3846 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1131) (-1131)) (T -59)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3845 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-59 *5 *2)))) (-3844 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3791 ((|#1| $ (-486) (-486) |#1|) NIL T ELT)) (-1259 (($ $ (-486) (-58 |#1|)) NIL T ELT)) (-1258 (($ $ (-486) (-58 |#1|)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3114 (((-58 |#1|) $ (-486)) NIL T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1577 ((|#1| $ (-486) (-486) |#1|) NIL T ELT)) (-3115 ((|#1| $ (-486) (-486)) NIL T ELT)) (-3117 (((-696) $) NIL T ELT)) (-3617 (($ (-696) (-696) |#1|) NIL T ELT)) (-3116 (((-696) $) NIL T ELT)) (-3121 (((-486) $) NIL T ELT)) (-3119 (((-486) $) NIL T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3120 (((-486) $) NIL T ELT)) (-3118 (((-486) $) NIL T ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-486) (-486)) NIL T ELT) ((|#1| $ (-486) (-486) |#1|) NIL T ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) NIL T ELT) (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3403 (($ $) NIL T ELT)) (-3113 (((-58 |#1|) $ (-486)) NIL T ELT)) (-3950 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-60 |#1|) (-57 |#1| (-58 |#1|) (-58 |#1|)) (-1131)) (T -60)) -NIL -((-1262 (((-1181 (-632 |#1|)) (-632 |#1|)) 61 T ELT)) (-1261 (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 (-585 (-832))))) |#2| (-832)) 49 T ELT)) (-1263 (((-2 (|:| |minor| (-585 (-832))) (|:| -3269 |#2|) (|:| |minors| (-585 (-585 (-832)))) (|:| |ops| (-585 |#2|))) |#2| (-832)) 72 (|has| |#1| (-312)) ELT))) -(((-61 |#1| |#2|) (-10 -7 (-15 -1261 ((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 (-585 (-832))))) |#2| (-832))) (-15 -1262 ((-1181 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-312)) (-15 -1263 ((-2 (|:| |minor| (-585 (-832))) (|:| -3269 |#2|) (|:| |minors| (-585 (-585 (-832)))) (|:| |ops| (-585 |#2|))) |#2| (-832))) |%noBranch|)) (-497) (-602 |#1|)) (T -61)) -((-1263 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *5 (-497)) (-5 *2 (-2 (|:| |minor| (-585 (-832))) (|:| -3269 *3) (|:| |minors| (-585 (-585 (-832)))) (|:| |ops| (-585 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-832)) (-4 *3 (-602 *5)))) (-1262 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-1181 (-632 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-632 *4)) (-4 *5 (-602 *4)))) (-1261 (*1 *2 *3 *4) (-12 (-4 *5 (-497)) (-5 *2 (-2 (|:| |mat| (-632 *5)) (|:| |vec| (-1181 (-585 (-832)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-832)) (-4 *3 (-602 *5))))) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3326 ((|#1| $) 42 T ELT)) (-3727 (($) NIL T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3328 ((|#1| |#1| $) 37 T ELT)) (-3327 ((|#1| $) 35 T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) NIL T ELT)) (-3612 (($ |#1| $) 38 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1277 ((|#1| $) 36 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 20 T ELT)) (-3568 (($) 46 T ELT)) (-3325 (((-696) $) 33 T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) 19 T ELT)) (-3950 (((-774) $) 32 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) NIL T ELT)) (-1264 (($ (-585 |#1|)) 44 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) 14 T ELT))) -(((-62 |#1|) (-13 (-1036 |#1|) (-10 -8 (-15 -1264 ($ (-585 |#1|))))) (-1015)) (T -62)) -((-1264 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-62 *3))))) -((-3950 (((-774) $) 13 T ELT) (($ (-1097)) 9 T ELT) (((-1097) $) 8 T ELT))) -(((-63 |#1|) (-10 -7 (-15 -3950 ((-1097) |#1|)) (-15 -3950 (|#1| (-1097))) (-15 -3950 ((-774) |#1|))) (-64)) (T -63)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-1097)) 20 T ELT) (((-1097) $) 19 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) +((-3504 (*1 *1 *1) (-4 *1 (-35))) (-3502 (*1 *1 *1) (-4 *1 (-35))) (-3506 (*1 *1 *1) (-4 *1 (-35))) (-3507 (*1 *1 *1) (-4 *1 (-35))) (-3505 (*1 *1 *1) (-4 *1 (-35))) (-3503 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3503 ($ $)) (-15 -3505 ($ $)) (-15 -3507 ($ $)) (-15 -3506 ($ $)) (-15 -3502 ($ $)) (-15 -3504 ($ $)))) +((-2574 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3408 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 136 T ELT)) (-3801 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 159 T ELT)) (-3803 (($ $) 157 T ELT)) (-3605 (($) 95 T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 94 T ELT)) (-2203 (((-1189) $ |#1| |#1|) 82 (|has| $ (-1039 |#2|)) ELT) (((-1189) $ (-488) (-488)) 185 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3791 (($ $ (-488)) 170 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-1740 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 219 T ELT) (((-85) $) 213 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-1738 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 210 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ $) 209 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) ELT)) (-2915 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 220 T ELT) (($ $) 214 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-3448 (((-85) $ (-698)) 202 T ELT)) (-3031 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 145 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3793 (($ $ $) 166 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3792 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 168 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3795 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 164 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3794 ((|#2| $ |#1| |#2|) 70 (|has| $ (-1039 |#2|)) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-488) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 196 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-1150 (-488)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 171 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 169 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ $ #2="rest" $) 167 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 165 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 144 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3032 (($ $ (-587 $)) 143 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-1574 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 42 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 236 T ELT)) (-3716 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 183 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3802 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 158 T ELT)) (-2236 (((-3 |#2| #5="failed") |#1| $) 59 T ELT)) (-3730 (($) 6 T CONST)) (-2302 (($ $) 211 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-2303 (($ $) 221 T ELT)) (-3805 (($ $ (-698)) 153 T ELT) (($ $) 151 T ELT)) (-2373 (($ $) 234 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1357 (($ $) 51 (OR (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))))) ELT)) (-3411 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 44 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 43 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #5#) |#1| $) 60 T ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 240 T ELT) (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 235 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3412 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 50 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 184 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 182 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3848 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 111 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 107 T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 106 T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 232 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 228 T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 227 T ELT)) (-1580 ((|#2| $ |#1| |#2|) 69 (|has| $ (-1039 |#2|)) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-488) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 197 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3118 ((|#2| $ |#1|) 71 T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-488)) 195 T ELT)) (-3449 (((-85) $) 199 T ELT)) (-3425 (((-488) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 218 T ELT) (((-488) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 217 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-488) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-488)) 216 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3037 (((-587 $) $) 134 T ELT)) (-3033 (((-85) $ $) 142 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3620 (($ (-698) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 179 T ELT)) (-3725 (((-85) $ (-698)) 201 T ELT)) (-2205 ((|#1| $) 79 (|has| |#1| (-760)) ELT) (((-488) $) 187 (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) 203 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-2862 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ $) 237 T ELT) (($ $ $) 233 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-3524 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ $) 222 T ELT) (($ $ $) 215 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-2614 (((-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 105 T ELT) (((-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 226 T ELT)) (-3251 (((-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 110 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 231 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2206 ((|#1| $) 78 (|has| |#1| (-760)) ELT) (((-488) $) 188 (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) 204 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-3332 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 39 T ELT) (($ (-1 |#2| |#2|) $) 63 T ELT) (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 245 T ELT)) (-3849 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 26 T ELT) (($ (-1 |#2| |#2|) $) 64 T ELT) (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 96 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 93 T ELT) (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ $) 176 T ELT) (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 128 T ELT)) (-3540 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 246 T ELT)) (-3722 (((-85) $ (-698)) 200 T ELT)) (-3036 (((-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 139 T ELT)) (-3533 (((-85) $) 135 T ELT)) (-3248 (((-1077) $) 21 (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT)) (-3804 (($ $ (-698)) 156 T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 154 T ELT)) (-2237 (((-587 |#1|) $) 61 T ELT)) (-2238 (((-85) |#1| $) 62 T ELT)) (-1278 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 35 T ELT)) (-3615 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 36 T ELT) (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-488)) 239 T ELT) (($ $ $ (-488)) 238 T ELT)) (-2309 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-488)) 173 T ELT) (($ $ $ (-488)) 172 T ELT)) (-2208 (((-587 |#1|) $) 76 T ELT) (((-587 (-488)) $) 190 T ELT)) (-2209 (((-85) |#1| $) 75 T ELT) (((-85) (-488) $) 191 T ELT)) (-3249 (((-1037) $) 20 (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT)) (-3807 ((|#2| $) 80 (|has| |#1| (-760)) ELT) (($ $ (-698)) 150 T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 148 T ELT)) (-1734 (((-3 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 108 T ELT) (((-3 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 229 T ELT)) (-2204 (($ $ |#2|) 81 (|has| $ (-1039 |#2|)) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 186 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-1279 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 37 T ELT)) (-3450 (((-85) $) 198 T ELT)) (-1736 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 103 T ELT) (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 224 T ELT)) (-3774 (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) 25 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 24 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 23 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 22 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) 68 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ |#2| |#2|) 67 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-251 |#2|)) 66 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 (-251 |#2|))) 65 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 100 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 99 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 98 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) 97 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 132 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 131 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 130 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) 129 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-2207 (((-85) |#2| $) 77 (-12 (|has| $ (-320 |#2|)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 189 (-12 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2210 (((-587 |#2|) $) 74 T ELT) (((-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 192 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#2| $ |#1|) 73 T ELT) ((|#2| $ |#1| |#2|) 72 T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-488) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 194 T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-488)) 193 T ELT) (($ $ (-1150 (-488))) 180 T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ #1#) 155 T ELT) (($ $ #2#) 152 T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ #3#) 149 T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ #4#) 137 T ELT)) (-3035 (((-488) $ $) 140 T ELT)) (-1470 (($) 46 T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 45 T ELT)) (-1575 (($ $ (-488)) 242 T ELT) (($ $ (-1150 (-488))) 241 T ELT)) (-2310 (($ $ (-488)) 175 T ELT) (($ $ (-1150 (-488))) 174 T ELT)) (-3639 (((-85) $) 138 T ELT)) (-3798 (($ $) 162 T ELT)) (-3796 (($ $) 163 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3799 (((-698) $) 161 T ELT)) (-3800 (($ $) 160 T ELT)) (-1735 (((-698) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 109 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-698) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 104 T ELT) (((-698) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 230 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-698) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 225 T ELT)) (-1739 (($ $ $ (-488)) 212 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 52 (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-557 (-477))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-557 (-477)))) ELT)) (-3536 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 47 T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 181 T ELT)) (-3797 (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 244 T ELT) (($ $ $) 243 T ELT)) (-3808 (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 178 T ELT) (($ (-587 $)) 177 T ELT) (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 147 T ELT) (($ $ $) 146 T ELT)) (-3953 (((-776) $) 16 (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-556 (-776))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-556 (-776))) (|has| |#2| (-556 (-776))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-556 (-776)))) ELT)) (-3528 (((-587 $) $) 133 T ELT)) (-3034 (((-85) $ $) 141 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1269 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1280 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 38 T ELT)) (-1227 (((-636 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) |#1| $) 127 T ELT)) (-1737 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 102 T ELT) (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 223 T ELT)) (-2572 (((-85) $ $) 205 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-2573 (((-85) $ $) 207 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-3062 (((-85) $ $) 17 (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2690 (((-85) $ $) 206 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-2691 (((-85) $ $) 208 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-3964 (((-698) $) 101 T ELT))) +(((-36 |#1| |#2|) (-113) (-1017) (-1017)) (T -36)) +((-1227 (*1 *2 *3 *1) (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-5 *2 (-636 (-2 (|:| -3867 *3) (|:| |entry| *4))))))) +(-13 (-1111 |t#1| |t#2|) (-612 (-2 (|:| -3867 |t#1|) (|:| |entry| |t#2|))) (-1039 |t#2|) (-10 -8 (-15 -1227 ((-636 (-2 (|:| -3867 |t#1|) (|:| |entry| |t#2|))) |t#1| $)))) +(((-34) . T) ((-76 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1017)) (|has| |#2| (-72))) ((-556 (-776)) OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-556 (-776))) (|has| |#2| (-1017)) (|has| |#2| (-556 (-776)))) ((-124 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-557 (-477)) |has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-557 (-477))) ((-185 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-195 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-243 (-488) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-243 (-1150 (-488)) $) . T) ((-243 |#1| |#2|) . T) ((-245 (-488) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-245 |#1| |#2|) . T) ((-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ((-262 |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ((-239 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-326 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-383 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-383 |#2|) . T) ((-432 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-432 |#2|) . T) ((-542 (-488) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-542 |#1| |#2|) . T) ((-459 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ((-459 |#2| |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ((-13) . T) ((-553 |#1| |#2|) . T) ((-597 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-612 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-760) |has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ((-763) |has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ((-927 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-1017) OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) (|has| |#2| (-1017))) ((-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-1039 |#2|) . T) ((-1068 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-1111 |#1| |#2|) . T) ((-1133) . T) ((-1172 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T)) +((-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-37 |#1| |#2|) (-10 -7 (-15 -3953 (|#1| |#2|)) (-15 -3953 (|#1| (-488))) (-15 -3953 ((-776) |#1|))) (-38 |#2|) (-148)) (T -37)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#1|) 52 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) +(((-38 |#1|) (-113) (-148)) (T -38)) +NIL +(-13 (-965) (-658 |t#1|) (-559 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-559 (-488)) . T) ((-559 |#1|) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-586 |#1|) . T) ((-658 |#1|) . T) ((-667) . T) ((-967 |#1|) . T) ((-972 |#1|) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-3424 (((-350 |#1|) |#1|) 41 T ELT)) (-3738 (((-350 |#1|) |#1|) 30 T ELT) (((-350 |#1|) |#1| (-587 (-48))) 33 T ELT)) (-1228 (((-85) |#1|) 59 T ELT))) +(((-39 |#1|) (-10 -7 (-15 -3738 ((-350 |#1|) |#1| (-587 (-48)))) (-15 -3738 ((-350 |#1|) |#1|)) (-15 -3424 ((-350 |#1|) |#1|)) (-15 -1228 ((-85) |#1|))) (-1159 (-48))) (T -39)) +((-1228 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1159 (-48))))) (-3424 (*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1159 (-48))))) (-3738 (*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1159 (-48))))) (-3738 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-48))) (-5 *2 (-350 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1159 (-48)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1651 (((-2 (|:| |num| (-1183 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-2068 (($ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-2066 (((-85) $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-1790 (((-634 (-352 |#2|)) (-1183 $)) NIL T ELT) (((-634 (-352 |#2|))) NIL T ELT)) (-3336 (((-352 |#2|) $) NIL T ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) NIL (|has| (-352 |#2|) (-301)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3977 (((-350 $) $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-1612 (((-85) $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3142 (((-698)) NIL (|has| (-352 |#2|) (-322)) ELT)) (-1665 (((-85)) NIL T ELT)) (-1664 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL (|has| (-352 |#2|) (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| (-352 |#2|) (-954 (-352 (-488)))) ELT) (((-3 (-352 |#2|) #1#) $) NIL T ELT)) (-3162 (((-488) $) NIL (|has| (-352 |#2|) (-954 (-488))) ELT) (((-352 (-488)) $) NIL (|has| (-352 |#2|) (-954 (-352 (-488)))) ELT) (((-352 |#2|) $) NIL T ELT)) (-1800 (($ (-1183 (-352 |#2|)) (-1183 $)) NIL T ELT) (($ (-1183 (-352 |#2|))) 60 T ELT) (($ (-1183 |#2|) |#2|) 130 T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-352 |#2|) (-301)) ELT)) (-2570 (($ $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-1789 (((-634 (-352 |#2|)) $ (-1183 $)) NIL T ELT) (((-634 (-352 |#2|)) $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| (-352 |#2|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| (-352 |#2|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-352 |#2|))) (|:| |vec| (-1183 (-352 |#2|)))) (-634 $) (-1183 $)) NIL T ELT) (((-634 (-352 |#2|)) (-634 $)) NIL T ELT)) (-1656 (((-1183 $) (-1183 $)) NIL T ELT)) (-3848 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-352 |#3|)) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-1643 (((-587 (-587 |#1|))) NIL (|has| |#1| (-322)) ELT)) (-1668 (((-85) |#1| |#1|) NIL T ELT)) (-3114 (((-834)) NIL T ELT)) (-3000 (($) NIL (|has| (-352 |#2|) (-322)) ELT)) (-1663 (((-85)) NIL T ELT)) (-1662 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-2569 (($ $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3509 (($ $) NIL T ELT)) (-2839 (($) NIL (|has| (-352 |#2|) (-301)) ELT)) (-1684 (((-85) $) NIL (|has| (-352 |#2|) (-301)) ELT)) (-1772 (($ $ (-698)) NIL (|has| (-352 |#2|) (-301)) ELT) (($ $) NIL (|has| (-352 |#2|) (-301)) ELT)) (-3729 (((-85) $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3778 (((-834) $) NIL (|has| (-352 |#2|) (-301)) ELT) (((-747 (-834)) $) NIL (|has| (-352 |#2|) (-301)) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3383 (((-698)) NIL T ELT)) (-1657 (((-1183 $) (-1183 $)) 105 T ELT)) (-3138 (((-352 |#2|) $) NIL T ELT)) (-1644 (((-587 (-861 |#1|)) (-1094)) NIL (|has| |#1| (-314)) ELT)) (-3451 (((-636 $) $) NIL (|has| (-352 |#2|) (-301)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-2019 ((|#3| $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-2015 (((-834) $) NIL (|has| (-352 |#2|) (-322)) ELT)) (-3085 ((|#3| $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| (-352 |#2|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| (-352 |#2|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-352 |#2|))) (|:| |vec| (-1183 (-352 |#2|)))) (-1183 $) $) NIL T ELT) (((-634 (-352 |#2|)) (-1183 $)) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| (-352 |#2|) (-314)) ELT) (($ $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1229 (((-1189) (-698)) 83 T ELT)) (-1652 (((-634 (-352 |#2|))) 55 T ELT)) (-1654 (((-634 (-352 |#2|))) 48 T ELT)) (-2490 (($ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-1649 (($ (-1183 |#2|) |#2|) 131 T ELT)) (-1653 (((-634 (-352 |#2|))) 49 T ELT)) (-1655 (((-634 (-352 |#2|))) 47 T ELT)) (-1648 (((-2 (|:| |num| (-634 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1650 (((-2 (|:| |num| (-1183 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1661 (((-1183 $)) 46 T ELT)) (-3925 (((-1183 $)) 45 T ELT)) (-1660 (((-85) $) NIL T ELT)) (-1659 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3452 (($) NIL (|has| (-352 |#2|) (-301)) CONST)) (-2405 (($ (-834)) NIL (|has| (-352 |#2|) (-322)) ELT)) (-1646 (((-3 |#2| #1#)) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1670 (((-698)) NIL T ELT)) (-2414 (($) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3150 (($ (-587 $)) NIL (|has| (-352 |#2|) (-314)) ELT) (($ $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) NIL (|has| (-352 |#2|) (-301)) ELT)) (-3738 (((-350 $) $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-352 |#2|) (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3472 (((-3 $ #1#) $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-1611 (((-698) $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3806 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1647 (((-3 |#2| #1#)) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3763 (((-352 |#2|) (-1183 $)) NIL T ELT) (((-352 |#2|)) 43 T ELT)) (-1773 (((-698) $) NIL (|has| (-352 |#2|) (-301)) ELT) (((-3 (-698) #1#) $ $) NIL (|has| (-352 |#2|) (-301)) ELT)) (-3764 (($ $ (-1 (-352 |#2|) (-352 |#2|))) NIL (|has| (-352 |#2|) (-314)) ELT) (($ $ (-1 (-352 |#2|) (-352 |#2|)) (-698)) NIL (|has| (-352 |#2|) (-314)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (OR (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094))))) ELT) (($ $ (-1094) (-698)) NIL (OR (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094))))) ELT) (($ $ (-587 (-1094))) NIL (OR (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094))))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094))))) ELT) (($ $ (-698)) NIL (OR (-12 (|has| (-352 |#2|) (-192)) (|has| (-352 |#2|) (-314))) (-12 (|has| (-352 |#2|) (-191)) (|has| (-352 |#2|) (-314))) (|has| (-352 |#2|) (-301))) ELT) (($ $) NIL (OR (-12 (|has| (-352 |#2|) (-192)) (|has| (-352 |#2|) (-314))) (-12 (|has| (-352 |#2|) (-191)) (|has| (-352 |#2|) (-314))) (|has| (-352 |#2|) (-301))) ELT)) (-2413 (((-634 (-352 |#2|)) (-1183 $) (-1 (-352 |#2|) (-352 |#2|))) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3191 ((|#3|) 54 T ELT)) (-1678 (($) NIL (|has| (-352 |#2|) (-301)) ELT)) (-3230 (((-1183 (-352 |#2|)) $ (-1183 $)) NIL T ELT) (((-634 (-352 |#2|)) (-1183 $) (-1183 $)) NIL T ELT) (((-1183 (-352 |#2|)) $) 61 T ELT) (((-634 (-352 |#2|)) (-1183 $)) 106 T ELT)) (-3978 (((-1183 (-352 |#2|)) $) NIL T ELT) (($ (-1183 (-352 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (|has| (-352 |#2|) (-301)) ELT)) (-1658 (((-1183 $) (-1183 $)) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ (-352 |#2|)) NIL T ELT) (($ (-352 (-488))) NIL (OR (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-954 (-352 (-488))))) ELT) (($ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-2708 (($ $) NIL (|has| (-352 |#2|) (-301)) ELT) (((-636 $) $) NIL (|has| (-352 |#2|) (-118)) ELT)) (-2455 ((|#3| $) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-1667 (((-85)) 41 T ELT)) (-1666 (((-85) |#1|) 53 T ELT) (((-85) |#2|) 137 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 $)) NIL T ELT)) (-2067 (((-85) $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-1645 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1669 (((-85)) NIL T ELT)) (-2666 (($) 17 T CONST)) (-2672 (($) 27 T CONST)) (-2675 (($ $ (-1 (-352 |#2|) (-352 |#2|))) NIL (|has| (-352 |#2|) (-314)) ELT) (($ $ (-1 (-352 |#2|) (-352 |#2|)) (-698)) NIL (|has| (-352 |#2|) (-314)) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (OR (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094))))) ELT) (($ $ (-1094) (-698)) NIL (OR (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094))))) ELT) (($ $ (-587 (-1094))) NIL (OR (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094))))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094))))) ELT) (($ $ (-698)) NIL (OR (-12 (|has| (-352 |#2|) (-192)) (|has| (-352 |#2|) (-314))) (-12 (|has| (-352 |#2|) (-191)) (|has| (-352 |#2|) (-314))) (|has| (-352 |#2|) (-301))) ELT) (($ $) NIL (OR (-12 (|has| (-352 |#2|) (-192)) (|has| (-352 |#2|) (-314))) (-12 (|has| (-352 |#2|) (-191)) (|has| (-352 |#2|) (-314))) (|has| (-352 |#2|) (-301))) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL (|has| (-352 |#2|) (-314)) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 |#2|)) NIL T ELT) (($ (-352 |#2|) $) NIL T ELT) (($ (-352 (-488)) $) NIL (|has| (-352 |#2|) (-314)) ELT) (($ $ (-352 (-488))) NIL (|has| (-352 |#2|) (-314)) ELT))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-293 |#1| |#2| |#3|) (-10 -7 (-15 -1229 ((-1189) (-698))))) (-314) (-1159 |#1|) (-1159 (-352 |#2|)) |#3|) (T -40)) +((-1229 (*1 *2 *3) (-12 (-5 *3 (-698)) (-4 *4 (-314)) (-4 *5 (-1159 *4)) (-5 *2 (-1189)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1159 (-352 *5))) (-14 *7 *6)))) +((-1230 ((|#2| |#2|) 47 T ELT)) (-1235 ((|#2| |#2|) 136 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-13 (-395) (-954 (-488))))) ELT)) (-1234 ((|#2| |#2|) 100 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-13 (-395) (-954 (-488))))) ELT)) (-1233 ((|#2| |#2|) 101 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-13 (-395) (-954 (-488))))) ELT)) (-1236 ((|#2| (-86) |#2| (-698)) 80 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-13 (-395) (-954 (-488))))) ELT)) (-1232 (((-1089 |#2|) |#2|) 44 T ELT)) (-1231 ((|#2| |#2| (-587 (-554 |#2|))) 18 T ELT) ((|#2| |#2| (-587 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) +(((-41 |#1| |#2|) (-10 -7 (-15 -1230 (|#2| |#2|)) (-15 -1231 (|#2| |#2|)) (-15 -1231 (|#2| |#2| |#2|)) (-15 -1231 (|#2| |#2| (-587 |#2|))) (-15 -1231 (|#2| |#2| (-587 (-554 |#2|)))) (-15 -1232 ((-1089 |#2|) |#2|)) (IF (|has| |#1| (-13 (-395) (-954 (-488)))) (IF (|has| |#2| (-366 |#1|)) (PROGN (-15 -1233 (|#2| |#2|)) (-15 -1234 (|#2| |#2|)) (-15 -1235 (|#2| |#2|)) (-15 -1236 (|#2| (-86) |#2| (-698)))) |%noBranch|) |%noBranch|)) (-499) (-13 (-314) (-256) (-10 -8 (-15 -3004 ((-1043 |#1| (-554 $)) $)) (-15 -3003 ((-1043 |#1| (-554 $)) $)) (-15 -3953 ($ (-1043 |#1| (-554 $))))))) (T -41)) +((-1236 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-86)) (-5 *4 (-698)) (-4 *5 (-13 (-395) (-954 (-488)))) (-4 *5 (-499)) (-5 *1 (-41 *5 *2)) (-4 *2 (-366 *5)) (-4 *2 (-13 (-314) (-256) (-10 -8 (-15 -3004 ((-1043 *5 (-554 $)) $)) (-15 -3003 ((-1043 *5 (-554 $)) $)) (-15 -3953 ($ (-1043 *5 (-554 $))))))))) (-1235 (*1 *2 *2) (-12 (-4 *3 (-13 (-395) (-954 (-488)))) (-4 *3 (-499)) (-5 *1 (-41 *3 *2)) (-4 *2 (-366 *3)) (-4 *2 (-13 (-314) (-256) (-10 -8 (-15 -3004 ((-1043 *3 (-554 $)) $)) (-15 -3003 ((-1043 *3 (-554 $)) $)) (-15 -3953 ($ (-1043 *3 (-554 $))))))))) (-1234 (*1 *2 *2) (-12 (-4 *3 (-13 (-395) (-954 (-488)))) (-4 *3 (-499)) (-5 *1 (-41 *3 *2)) (-4 *2 (-366 *3)) (-4 *2 (-13 (-314) (-256) (-10 -8 (-15 -3004 ((-1043 *3 (-554 $)) $)) (-15 -3003 ((-1043 *3 (-554 $)) $)) (-15 -3953 ($ (-1043 *3 (-554 $))))))))) (-1233 (*1 *2 *2) (-12 (-4 *3 (-13 (-395) (-954 (-488)))) (-4 *3 (-499)) (-5 *1 (-41 *3 *2)) (-4 *2 (-366 *3)) (-4 *2 (-13 (-314) (-256) (-10 -8 (-15 -3004 ((-1043 *3 (-554 $)) $)) (-15 -3003 ((-1043 *3 (-554 $)) $)) (-15 -3953 ($ (-1043 *3 (-554 $))))))))) (-1232 (*1 *2 *3) (-12 (-4 *4 (-499)) (-5 *2 (-1089 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-314) (-256) (-10 -8 (-15 -3004 ((-1043 *4 (-554 $)) $)) (-15 -3003 ((-1043 *4 (-554 $)) $)) (-15 -3953 ($ (-1043 *4 (-554 $))))))))) (-1231 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-554 *2))) (-4 *2 (-13 (-314) (-256) (-10 -8 (-15 -3004 ((-1043 *4 (-554 $)) $)) (-15 -3003 ((-1043 *4 (-554 $)) $)) (-15 -3953 ($ (-1043 *4 (-554 $))))))) (-4 *4 (-499)) (-5 *1 (-41 *4 *2)))) (-1231 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-13 (-314) (-256) (-10 -8 (-15 -3004 ((-1043 *4 (-554 $)) $)) (-15 -3003 ((-1043 *4 (-554 $)) $)) (-15 -3953 ($ (-1043 *4 (-554 $))))))) (-4 *4 (-499)) (-5 *1 (-41 *4 *2)))) (-1231 (*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-314) (-256) (-10 -8 (-15 -3004 ((-1043 *3 (-554 $)) $)) (-15 -3003 ((-1043 *3 (-554 $)) $)) (-15 -3953 ($ (-1043 *3 (-554 $))))))))) (-1231 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-314) (-256) (-10 -8 (-15 -3004 ((-1043 *3 (-554 $)) $)) (-15 -3003 ((-1043 *3 (-554 $)) $)) (-15 -3953 ($ (-1043 *3 (-554 $))))))))) (-1230 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-314) (-256) (-10 -8 (-15 -3004 ((-1043 *3 (-554 $)) $)) (-15 -3003 ((-1043 *3 (-554 $)) $)) (-15 -3953 ($ (-1043 *3 (-554 $)))))))))) +((-3738 (((-350 (-1089 |#3|)) (-1089 |#3|) (-587 (-48))) 23 T ELT) (((-350 |#3|) |#3| (-587 (-48))) 19 T ELT))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3738 ((-350 |#3|) |#3| (-587 (-48)))) (-15 -3738 ((-350 (-1089 |#3|)) (-1089 |#3|) (-587 (-48))))) (-760) (-721) (-865 (-48) |#2| |#1|)) (T -42)) +((-3738 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-48))) (-4 *5 (-760)) (-4 *6 (-721)) (-4 *7 (-865 (-48) *6 *5)) (-5 *2 (-350 (-1089 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1089 *7)))) (-3738 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-48))) (-4 *5 (-760)) (-4 *6 (-721)) (-5 *2 (-350 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-865 (-48) *6 *5))))) +((-1240 (((-698) |#2|) 70 T ELT)) (-1238 (((-698) |#2|) 74 T ELT)) (-1253 (((-587 |#2|)) 37 T ELT)) (-1237 (((-698) |#2|) 73 T ELT)) (-1239 (((-698) |#2|) 69 T ELT)) (-1241 (((-698) |#2|) 72 T ELT)) (-1251 (((-587 (-634 |#1|))) 65 T ELT)) (-1246 (((-587 |#2|)) 60 T ELT)) (-1244 (((-587 |#2|) |#2|) 48 T ELT)) (-1248 (((-587 |#2|)) 62 T ELT)) (-1247 (((-587 |#2|)) 61 T ELT)) (-1250 (((-587 (-634 |#1|))) 53 T ELT)) (-1245 (((-587 |#2|)) 59 T ELT)) (-1243 (((-587 |#2|) |#2|) 47 T ELT)) (-1242 (((-587 |#2|)) 55 T ELT)) (-1252 (((-587 (-634 |#1|))) 66 T ELT)) (-1249 (((-587 |#2|)) 64 T ELT)) (-2017 (((-1183 |#2|) (-1183 |#2|)) 99 (|has| |#1| (-260)) ELT))) +(((-43 |#1| |#2|) (-10 -7 (-15 -1237 ((-698) |#2|)) (-15 -1238 ((-698) |#2|)) (-15 -1239 ((-698) |#2|)) (-15 -1240 ((-698) |#2|)) (-15 -1241 ((-698) |#2|)) (-15 -1242 ((-587 |#2|))) (-15 -1243 ((-587 |#2|) |#2|)) (-15 -1244 ((-587 |#2|) |#2|)) (-15 -1245 ((-587 |#2|))) (-15 -1246 ((-587 |#2|))) (-15 -1247 ((-587 |#2|))) (-15 -1248 ((-587 |#2|))) (-15 -1249 ((-587 |#2|))) (-15 -1250 ((-587 (-634 |#1|)))) (-15 -1251 ((-587 (-634 |#1|)))) (-15 -1252 ((-587 (-634 |#1|)))) (-15 -1253 ((-587 |#2|))) (IF (|has| |#1| (-260)) (-15 -2017 ((-1183 |#2|) (-1183 |#2|))) |%noBranch|)) (-499) (-363 |#1|)) (T -43)) +((-2017 (*1 *2 *2) (-12 (-5 *2 (-1183 *4)) (-4 *4 (-363 *3)) (-4 *3 (-260)) (-4 *3 (-499)) (-5 *1 (-43 *3 *4)))) (-1253 (*1 *2) (-12 (-4 *3 (-499)) (-5 *2 (-587 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-363 *3)))) (-1252 (*1 *2) (-12 (-4 *3 (-499)) (-5 *2 (-587 (-634 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-363 *3)))) (-1251 (*1 *2) (-12 (-4 *3 (-499)) (-5 *2 (-587 (-634 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-363 *3)))) (-1250 (*1 *2) (-12 (-4 *3 (-499)) (-5 *2 (-587 (-634 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-363 *3)))) (-1249 (*1 *2) (-12 (-4 *3 (-499)) (-5 *2 (-587 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-363 *3)))) (-1248 (*1 *2) (-12 (-4 *3 (-499)) (-5 *2 (-587 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-363 *3)))) (-1247 (*1 *2) (-12 (-4 *3 (-499)) (-5 *2 (-587 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-363 *3)))) (-1246 (*1 *2) (-12 (-4 *3 (-499)) (-5 *2 (-587 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-363 *3)))) (-1245 (*1 *2) (-12 (-4 *3 (-499)) (-5 *2 (-587 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-363 *3)))) (-1244 (*1 *2 *3) (-12 (-4 *4 (-499)) (-5 *2 (-587 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-363 *4)))) (-1243 (*1 *2 *3) (-12 (-4 *4 (-499)) (-5 *2 (-587 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-363 *4)))) (-1242 (*1 *2) (-12 (-4 *3 (-499)) (-5 *2 (-587 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-363 *3)))) (-1241 (*1 *2 *3) (-12 (-4 *4 (-499)) (-5 *2 (-698)) (-5 *1 (-43 *4 *3)) (-4 *3 (-363 *4)))) (-1240 (*1 *2 *3) (-12 (-4 *4 (-499)) (-5 *2 (-698)) (-5 *1 (-43 *4 *3)) (-4 *3 (-363 *4)))) (-1239 (*1 *2 *3) (-12 (-4 *4 (-499)) (-5 *2 (-698)) (-5 *1 (-43 *4 *3)) (-4 *3 (-363 *4)))) (-1238 (*1 *2 *3) (-12 (-4 *4 (-499)) (-5 *2 (-698)) (-5 *1 (-43 *4 *3)) (-4 *3 (-363 *4)))) (-1237 (*1 *2 *3) (-12 (-4 *4 (-499)) (-5 *2 (-698)) (-5 *1 (-43 *4 *3)) (-4 *3 (-363 *4))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1780 (((-3 $ #1="failed")) NIL (|has| |#1| (-499)) ELT)) (-1316 (((-3 $ #1#) $ $) NIL T ELT)) (-3229 (((-1183 (-634 |#1|)) (-1183 $)) NIL T ELT) (((-1183 (-634 |#1|))) 24 T ELT)) (-1733 (((-1183 $)) 52 T ELT)) (-3730 (($) NIL T CONST)) (-1914 (((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) #1#)) NIL (|has| |#1| (-499)) ELT)) (-1707 (((-3 $ #1#)) NIL (|has| |#1| (-499)) ELT)) (-1796 (((-634 |#1|) (-1183 $)) NIL T ELT) (((-634 |#1|)) NIL T ELT)) (-1731 ((|#1| $) NIL T ELT)) (-1794 (((-634 |#1|) $ (-1183 $)) NIL T ELT) (((-634 |#1|) $) NIL T ELT)) (-2409 (((-3 $ #1#) $) NIL (|has| |#1| (-499)) ELT)) (-1908 (((-1089 (-861 |#1|))) NIL (|has| |#1| (-314)) ELT)) (-2412 (($ $ (-834)) NIL T ELT)) (-1729 ((|#1| $) NIL T ELT)) (-1709 (((-1089 |#1|) $) NIL (|has| |#1| (-499)) ELT)) (-1798 ((|#1| (-1183 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1727 (((-1089 |#1|) $) NIL T ELT)) (-1721 (((-85)) 99 T ELT)) (-1800 (($ (-1183 |#1|) (-1183 $)) NIL T ELT) (($ (-1183 |#1|)) NIL T ELT)) (-3473 (((-3 $ #1#) $) 14 (|has| |#1| (-499)) ELT)) (-3114 (((-834)) 53 T ELT)) (-1718 (((-85)) NIL T ELT)) (-2439 (($ $ (-834)) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1716 (((-85)) 101 T ELT)) (-1915 (((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) #1#)) NIL (|has| |#1| (-499)) ELT)) (-1708 (((-3 $ #1#)) NIL (|has| |#1| (-499)) ELT)) (-1797 (((-634 |#1|) (-1183 $)) NIL T ELT) (((-634 |#1|)) NIL T ELT)) (-1732 ((|#1| $) NIL T ELT)) (-1795 (((-634 |#1|) $ (-1183 $)) NIL T ELT) (((-634 |#1|) $) NIL T ELT)) (-2410 (((-3 $ #1#) $) NIL (|has| |#1| (-499)) ELT)) (-1912 (((-1089 (-861 |#1|))) NIL (|has| |#1| (-314)) ELT)) (-2411 (($ $ (-834)) NIL T ELT)) (-1730 ((|#1| $) NIL T ELT)) (-1710 (((-1089 |#1|) $) NIL (|has| |#1| (-499)) ELT)) (-1799 ((|#1| (-1183 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1728 (((-1089 |#1|) $) NIL T ELT)) (-1722 (((-85)) 98 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1713 (((-85)) 106 T ELT)) (-1715 (((-85)) 105 T ELT)) (-1717 (((-85)) 107 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1720 (((-85)) 100 T ELT)) (-3806 ((|#1| $ (-488)) 55 T ELT)) (-3230 (((-1183 |#1|) $ (-1183 $)) 48 T ELT) (((-634 |#1|) (-1183 $) (-1183 $)) NIL T ELT) (((-1183 |#1|) $) 28 T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-3978 (((-1183 |#1|) $) NIL T ELT) (($ (-1183 |#1|)) NIL T ELT)) (-1900 (((-587 (-861 |#1|)) (-1183 $)) NIL T ELT) (((-587 (-861 |#1|))) NIL T ELT)) (-2441 (($ $ $) NIL T ELT)) (-1726 (((-85)) 95 T ELT)) (-3953 (((-776) $) 71 T ELT) (($ (-1183 |#1|)) 22 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 $)) 51 T ELT)) (-1711 (((-587 (-1183 |#1|))) NIL (|has| |#1| (-499)) ELT)) (-2442 (($ $ $ $) NIL T ELT)) (-1724 (((-85)) 91 T ELT)) (-2551 (($ (-634 |#1|) $) 18 T ELT)) (-2440 (($ $ $) NIL T ELT)) (-1725 (((-85)) 97 T ELT)) (-1723 (((-85)) 92 T ELT)) (-1719 (((-85)) 90 T ELT)) (-2666 (($) NIL T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1060 |#2| |#1|) $) 19 T ELT))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-363 |#1|) (-594 (-1060 |#2| |#1|)) (-10 -8 (-15 -3953 ($ (-1183 |#1|))))) (-314) (-834) (-587 (-1094)) (-1183 (-634 |#1|))) (T -44)) +((-3953 (*1 *1 *2) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-314)) (-14 *6 (-1183 (-634 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-834)) (-14 *5 (-587 (-1094)))))) +((-2574 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3408 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3801 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3803 (($ $) NIL T ELT)) (-3605 (($) NIL T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2203 (((-1189) $ |#1| |#1|) NIL (|has| $ (-1039 |#2|)) ELT) (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3791 (($ $ (-488)) NIL (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-1740 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-1738 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ $) NIL (-12 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760))) ELT)) (-2915 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-3448 (((-85) $ (-698)) NIL T ELT)) (-3031 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3793 (($ $ $) 35 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3792 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3795 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 37 (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3794 ((|#2| $ |#1| |#2|) 60 (|has| $ (-1039 |#2|)) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-488) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-1150 (-488)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ $ #2="rest" $) NIL (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3032 (($ $ (-587 $)) NIL (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-1574 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3716 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3802 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2236 (((-3 |#2| #5="failed") |#1| $) 45 T ELT)) (-3730 (($) NIL T CONST)) (-2302 (($ $) NIL (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-2303 (($ $) NIL T ELT)) (-3805 (($ $ (-698)) NIL T ELT) (($ $) 31 T ELT)) (-2373 (($ $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3411 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #5#) |#1| $) 63 T ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3412 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3848 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1580 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1039 |#2|)) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-488) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3118 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-488)) NIL T ELT)) (-3449 (((-85) $) NIL T ELT)) (-3425 (((-488) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-488) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-488) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-488)) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3037 (((-587 $) $) NIL T ELT)) (-3033 (((-85) $ $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3620 (($ (-698) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3725 (((-85) $ (-698)) NIL T ELT)) (-2205 ((|#1| $) NIL (|has| |#1| (-760)) ELT) (((-488) $) 40 (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-2862 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-3524 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-2614 (((-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 22 T ELT) (((-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 22 T ELT)) (-3251 (((-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2206 ((|#1| $) NIL (|has| |#1| (-760)) ELT) (((-488) $) 42 (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-3332 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3849 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3540 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3722 (((-85) $ (-698)) NIL T ELT)) (-3036 (((-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3533 (((-85) $) NIL T ELT)) (-3248 (((-1077) $) 51 (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017))) ELT)) (-3804 (($ $ (-698)) NIL T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2237 (((-587 |#1|) $) 24 T ELT)) (-2238 (((-85) |#1| $) NIL T ELT)) (-1278 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3615 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-488)) NIL T ELT) (($ $ $ (-488)) NIL T ELT)) (-2309 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-488)) NIL T ELT) (($ $ $ (-488)) NIL T ELT)) (-2208 (((-587 |#1|) $) NIL T ELT) (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) |#1| $) NIL T ELT) (((-85) (-488) $) NIL T ELT)) (-3249 (((-1037) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017))) ELT)) (-3807 ((|#2| $) NIL (|has| |#1| (-760)) ELT) (($ $ (-698)) NIL T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 29 T ELT)) (-1734 (((-3 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2204 (($ $ |#2|) NIL (|has| $ (-1039 |#2|)) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-1279 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3450 (((-85) $) NIL T ELT)) (-1736 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-251 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 (-251 |#2|))) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#2| $) NIL (-12 (|has| $ (-320 |#2|)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2210 (((-587 |#2|) $) NIL T ELT) (((-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 21 T ELT)) (-3409 (((-85) $) 20 T ELT)) (-3571 (($) 16 T ELT)) (-3806 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-488) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ (-488)) NIL T ELT) (($ $ (-1150 (-488))) NIL T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3035 (((-488) $ $) NIL T ELT)) (-1470 (($) 14 T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 15 T ELT)) (-1575 (($ $ (-488)) NIL T ELT) (($ $ (-1150 (-488))) NIL T ELT)) (-2310 (($ $ (-488)) NIL T ELT) (($ $ (-1150 (-488))) NIL T ELT)) (-3639 (((-85) $) NIL T ELT)) (-3798 (($ $) NIL T ELT)) (-3796 (($ $) NIL (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3799 (((-698) $) NIL T ELT)) (-3800 (($ $) NIL T ELT)) (-1735 (((-698) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-698) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-698) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-698) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1739 (($ $ $ (-488)) NIL (|has| $ (-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-557 (-477))) ELT)) (-3536 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3797 (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3808 (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-587 $)) NIL T ELT) (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 33 T ELT) (($ $ $) NIL T ELT)) (-3953 (((-776) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-556 (-776))) (|has| |#2| (-556 (-776)))) ELT)) (-3528 (((-587 $) $) NIL T ELT)) (-3034 (((-85) $ $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1269 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1280 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1227 (((-636 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) |#1| $) 55 T ELT)) (-1737 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2572 (((-85) $ $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-3062 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2690 (((-85) $ $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-760)) ELT)) (-3964 (((-698) $) 27 T ELT))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1017) (-1017)) (T -45)) +NIL +((-3944 (((-85) $) 12 T ELT)) (-3849 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-352 (-488)) $) 25 T ELT) (($ $ (-352 (-488))) NIL T ELT))) +(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-352 (-488)))) (-15 * (|#1| (-352 (-488)) |#1|)) (-15 -3944 ((-85) |#1|)) (-15 -3849 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-488) |#1|)) (-15 * (|#1| (-698) |#1|)) (-15 * (|#1| (-834) |#1|))) (-47 |#2| |#3|) (-965) (-720)) (T -46)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 72 (|has| |#1| (-499)) ELT)) (-2068 (($ $) 73 (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) 75 (|has| |#1| (-499)) ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3965 (($ $) 81 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3944 (((-85) $) 83 T ELT)) (-2899 (($ |#1| |#2|) 82 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-2900 (($ $) 85 T ELT)) (-3180 ((|#1| $) 86 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3472 (((-3 $ "failed") $ $) 71 (|has| |#1| (-499)) ELT)) (-3955 ((|#2| $) 84 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ (-352 (-488))) 78 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $) 70 (|has| |#1| (-499)) ELT) (($ |#1|) 68 (|has| |#1| (-148)) ELT)) (-3683 ((|#1| $ |#2|) 80 T ELT)) (-2708 (((-636 $) $) 69 (|has| |#1| (-118)) ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 74 (|has| |#1| (-499)) ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ |#1|) 79 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-352 (-488)) $) 77 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 76 (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-47 |#1| |#2|) (-113) (-965) (-720)) (T -47)) +((-3180 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-720)) (-4 *2 (-965)))) (-2900 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-965)) (-4 *3 (-720)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-965)) (-4 *2 (-720)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720)) (-5 *2 (-85)))) (-2899 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-965)) (-4 *3 (-720)))) (-3965 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-965)) (-4 *3 (-720)))) (-3683 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-720)) (-4 *2 (-965)))) (-3956 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-965)) (-4 *3 (-720)) (-4 *2 (-314))))) +(-13 (-965) (-82 |t#1| |t#1|) (-383 |t#1|) (-10 -8 (-15 -3180 (|t#1| $)) (-15 -2900 ($ $)) (-15 -3955 (|t#2| $)) (-15 -3944 ((-85) $)) (-15 -2899 ($ |t#1| |t#2|)) (-15 -3965 ($ $)) (-15 -3683 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-314)) (-15 -3956 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-148)) (PROGN (-6 (-148)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-499)) (-6 (-499)) |%noBranch|) (IF (|has| |t#1| (-38 (-352 (-488)))) (-6 (-38 (-352 (-488)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-38 |#1|) |has| |#1| (-148)) ((-38 $) |has| |#1| (-499)) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-559 (-488)) . T) ((-559 |#1|) |has| |#1| (-148)) ((-559 $) |has| |#1| (-499)) ((-556 (-776)) . T) ((-148) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-248) |has| |#1| (-499)) ((-383 |#1|) . T) ((-499) |has| |#1| (-499)) ((-13) . T) ((-592 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-594 |#1|) . T) ((-594 $) . T) ((-586 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-586 |#1|) |has| |#1| (-148)) ((-586 $) |has| |#1| (-499)) ((-658 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-658 |#1|) |has| |#1| (-148)) ((-658 $) |has| |#1| (-499)) ((-667) . T) ((-967 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-972 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-972 |#1|) . T) ((-972 $) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-1219 (((-587 $) (-1089 $) (-1094)) NIL T ELT) (((-587 $) (-1089 $)) NIL T ELT) (((-587 $) (-861 $)) NIL T ELT)) (-1220 (($ (-1089 $) (-1094)) NIL T ELT) (($ (-1089 $)) NIL T ELT) (($ (-861 $)) NIL T ELT)) (-3194 (((-85) $) 9 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1604 (((-587 (-554 $)) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1608 (($ $ (-251 $)) NIL T ELT) (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-587 (-554 $)) (-587 $)) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-3043 (($ $) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-1221 (((-587 $) (-1089 $) (-1094)) NIL T ELT) (((-587 $) (-1089 $)) NIL T ELT) (((-587 $) (-861 $)) NIL T ELT)) (-3189 (($ (-1089 $) (-1094)) NIL T ELT) (($ (-1089 $)) NIL T ELT) (($ (-861 $)) NIL T ELT)) (-3163 (((-3 (-554 $) #1#) $) NIL T ELT) (((-3 (-488) #1#) $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL T ELT)) (-3162 (((-554 $) $) NIL T ELT) (((-488) $) NIL T ELT) (((-352 (-488)) $) NIL T ELT)) (-2570 (($ $ $) NIL T ELT)) (-2284 (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL T ELT) (((-634 (-488)) (-634 $)) NIL T ELT) (((-2 (|:| |mat| (-634 (-352 (-488)))) (|:| |vec| (-1183 (-352 (-488))))) (-634 $) (-1183 $)) NIL T ELT) (((-634 (-352 (-488))) (-634 $)) NIL T ELT)) (-3848 (($ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-2579 (($ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-1603 (((-587 (-86)) $) NIL T ELT)) (-3601 (((-86) (-86)) NIL T ELT)) (-2415 (((-85) $) 11 T ELT)) (-2679 (((-85) $) NIL (|has| $ (-954 (-488))) ELT)) (-3004 (((-1043 (-488) (-554 $)) $) NIL T ELT)) (-3017 (($ $ (-488)) NIL T ELT)) (-3138 (((-1089 $) (-1089 $) (-554 $)) NIL T ELT) (((-1089 $) (-1089 $) (-587 (-554 $))) NIL T ELT) (($ $ (-554 $)) NIL T ELT) (($ $ (-587 (-554 $))) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-1601 (((-1089 $) (-554 $)) NIL (|has| $ (-965)) ELT)) (-3849 (($ (-1 $ $) (-554 $)) NIL T ELT)) (-1606 (((-3 (-554 $) #1#) $) NIL T ELT)) (-2285 (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL T ELT) (((-634 (-488)) (-1183 $)) NIL T ELT) (((-2 (|:| |mat| (-634 (-352 (-488)))) (|:| |vec| (-1183 (-352 (-488))))) (-1183 $) $) NIL T ELT) (((-634 (-352 (-488))) (-1183 $)) NIL T ELT)) (-1899 (($ (-587 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1605 (((-587 (-554 $)) $) NIL T ELT)) (-2240 (($ (-86) $) NIL T ELT) (($ (-86) (-587 $)) NIL T ELT)) (-2639 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1094)) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-2609 (((-698) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ (-587 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1602 (((-85) $ $) NIL T ELT) (((-85) $ (-1094)) NIL T ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-2680 (((-85) $) NIL (|has| $ (-954 (-488))) ELT)) (-3774 (($ $ (-554 $) $) NIL T ELT) (($ $ (-587 (-554 $)) (-587 $)) NIL T ELT) (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-1 $ $))) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-1 $ (-587 $)))) NIL T ELT) (($ $ (-1094) (-1 $ (-587 $))) NIL T ELT) (($ $ (-1094) (-1 $ $)) NIL T ELT) (($ $ (-587 (-86)) (-587 (-1 $ $))) NIL T ELT) (($ $ (-587 (-86)) (-587 (-1 $ (-587 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-587 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-3806 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-587 $)) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-1607 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3764 (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-3003 (((-1043 (-488) (-554 $)) $) NIL T ELT)) (-3191 (($ $) NIL (|has| $ (-965)) ELT)) (-3978 (((-332) $) NIL T ELT) (((-181) $) NIL T ELT) (((-144 (-332)) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-554 $)) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ $) NIL T ELT) (($ (-488)) NIL T ELT) (($ (-1043 (-488) (-554 $))) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-2596 (($ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-2259 (((-85) (-86)) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 6 T CONST)) (-2672 (($) 10 T CONST)) (-2675 (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-3062 (((-85) $ $) 13 T ELT)) (-3956 (($ $ $) NIL T ELT)) (-3843 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-352 (-488))) NIL T ELT) (($ $ (-488)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-834)) NIL T ELT)) (* (($ (-352 (-488)) $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-834) $) NIL T ELT))) +(((-48) (-13 (-256) (-27) (-954 (-488)) (-954 (-352 (-488))) (-584 (-488)) (-937) (-584 (-352 (-488))) (-120) (-557 (-144 (-332))) (-192) (-559 (-1043 (-488) (-554 $))) (-10 -8 (-15 -3004 ((-1043 (-488) (-554 $)) $)) (-15 -3003 ((-1043 (-488) (-554 $)) $)) (-15 -3848 ($ $)) (-15 -3138 ((-1089 $) (-1089 $) (-554 $))) (-15 -3138 ((-1089 $) (-1089 $) (-587 (-554 $)))) (-15 -3138 ($ $ (-554 $))) (-15 -3138 ($ $ (-587 (-554 $))))))) (T -48)) +((-3004 (*1 *2 *1) (-12 (-5 *2 (-1043 (-488) (-554 (-48)))) (-5 *1 (-48)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-1043 (-488) (-554 (-48)))) (-5 *1 (-48)))) (-3848 (*1 *1 *1) (-5 *1 (-48))) (-3138 (*1 *2 *2 *3) (-12 (-5 *2 (-1089 (-48))) (-5 *3 (-554 (-48))) (-5 *1 (-48)))) (-3138 (*1 *2 *2 *3) (-12 (-5 *2 (-1089 (-48))) (-5 *3 (-587 (-554 (-48)))) (-5 *1 (-48)))) (-3138 (*1 *1 *1 *2) (-12 (-5 *2 (-554 (-48))) (-5 *1 (-48)))) (-3138 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-554 (-48)))) (-5 *1 (-48))))) +((-2574 (((-85) $ $) NIL T ELT)) (-1946 (((-587 (-450)) $) 17 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 7 T ELT)) (-3239 (((-1099) $) 18 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-49) (-13 (-1017) (-10 -8 (-15 -1946 ((-587 (-450)) $)) (-15 -3239 ((-1099) $))))) (T -49)) +((-1946 (*1 *2 *1) (-12 (-5 *2 (-587 (-450))) (-5 *1 (-49)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-49))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 86 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2670 (((-85) $) 31 T ELT)) (-3163 (((-3 |#1| #1#) $) 34 T ELT)) (-3162 ((|#1| $) 35 T ELT)) (-3965 (($ $) 41 T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3180 ((|#1| $) 32 T ELT)) (-1459 (($ $) 75 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1458 (((-85) $) 44 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2414 (($ (-698)) 73 T ELT)) (-3950 (($ (-587 (-488))) 74 T ELT)) (-3955 (((-698) $) 45 T ELT)) (-3953 (((-776) $) 92 T ELT) (($ (-488)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3683 ((|#1| $ $) 29 T ELT)) (-3132 (((-698)) 72 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 46 T CONST)) (-2672 (($) 17 T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 65 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT))) +(((-50 |#1| |#2|) (-13 (-564 |#1|) (-954 |#1|) (-383 |#1|) (-10 -8 (-15 -3180 (|#1| $)) (-15 -1459 ($ $)) (-15 -3965 ($ $)) (-15 -3683 (|#1| $ $)) (-15 -2414 ($ (-698))) (-15 -3950 ($ (-587 (-488)))) (-15 -1458 ((-85) $)) (-15 -2670 ((-85) $)) (-15 -3955 ((-698) $)))) (-965) (-587 (-1094))) (T -50)) +((-3180 (*1 *2 *1) (-12 (-4 *2 (-965)) (-5 *1 (-50 *2 *3)) (-14 *3 (-587 (-1094))))) (-1459 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-965)) (-14 *3 (-587 (-1094))))) (-3965 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-965)) (-14 *3 (-587 (-1094))))) (-3683 (*1 *2 *1 *1) (-12 (-4 *2 (-965)) (-5 *1 (-50 *2 *3)) (-14 *3 (-587 (-1094))))) (-2414 (*1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-50 *3 *4)) (-4 *3 (-965)) (-14 *4 (-587 (-1094))))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-50 *3 *4)) (-4 *3 (-965)) (-14 *4 (-587 (-1094))))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-965)) (-14 *4 (-587 (-1094))))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-965)) (-14 *4 (-587 (-1094))))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-50 *3 *4)) (-4 *3 (-965)) (-14 *4 (-587 (-1094)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-1254 (((-700) $) 8 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1255 (((-1019) $) 10 T ELT)) (-3953 (((-776) $) 15 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-1256 (($ (-1019) (-700)) 16 T ELT)) (-3062 (((-85) $ $) 12 T ELT))) +(((-51) (-13 (-1017) (-10 -8 (-15 -1256 ($ (-1019) (-700))) (-15 -1255 ((-1019) $)) (-15 -1254 ((-700) $))))) (T -51)) +((-1256 (*1 *1 *2 *3) (-12 (-5 *2 (-1019)) (-5 *3 (-700)) (-5 *1 (-51)))) (-1255 (*1 *2 *1) (-12 (-5 *2 (-1019)) (-5 *1 (-51)))) (-1254 (*1 *2 *1) (-12 (-5 *2 (-700)) (-5 *1 (-51))))) +((-2670 (((-85) (-51)) 18 T ELT)) (-3163 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3162 ((|#1| (-51)) 21 T ELT)) (-3953 (((-51) |#1|) 14 T ELT))) +(((-52 |#1|) (-10 -7 (-15 -3953 ((-51) |#1|)) (-15 -3163 ((-3 |#1| "failed") (-51))) (-15 -2670 ((-85) (-51))) (-15 -3162 (|#1| (-51)))) (-1133)) (T -52)) +((-3162 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1133)))) (-2670 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1133)))) (-3163 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1133)))) (-3953 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1133))))) +((-2551 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2551 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-965) (-594 |#1|) (-765 |#1|)) (T -53)) +((-2551 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-594 *5)) (-4 *5 (-965)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-765 *5))))) +((-1258 ((|#3| |#3| (-587 (-1094))) 44 T ELT)) (-1257 ((|#3| (-587 (-991 |#1| |#2| |#3|)) |#3| (-834)) 32 T ELT) ((|#3| (-587 (-991 |#1| |#2| |#3|)) |#3|) 31 T ELT))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1257 (|#3| (-587 (-991 |#1| |#2| |#3|)) |#3|)) (-15 -1257 (|#3| (-587 (-991 |#1| |#2| |#3|)) |#3| (-834))) (-15 -1258 (|#3| |#3| (-587 (-1094))))) (-1017) (-13 (-965) (-800 |#1|) (-557 (-804 |#1|))) (-13 (-366 |#2|) (-800 |#1|) (-557 (-804 |#1|)))) (T -54)) +((-1258 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-1094))) (-4 *4 (-1017)) (-4 *5 (-13 (-965) (-800 *4) (-557 (-804 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-366 *5) (-800 *4) (-557 (-804 *4)))))) (-1257 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-587 (-991 *5 *6 *2))) (-5 *4 (-834)) (-4 *5 (-1017)) (-4 *6 (-13 (-965) (-800 *5) (-557 (-804 *5)))) (-4 *2 (-13 (-366 *6) (-800 *5) (-557 (-804 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1257 (*1 *2 *3 *2) (-12 (-5 *3 (-587 (-991 *4 *5 *2))) (-4 *4 (-1017)) (-4 *5 (-13 (-965) (-800 *4) (-557 (-804 *4)))) (-4 *2 (-13 (-366 *5) (-800 *4) (-557 (-804 *4)))) (-5 *1 (-54 *4 *5 *2))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 13 T ELT)) (-3163 (((-3 (-698) "failed") $) 31 T ELT)) (-3162 (((-698) $) NIL T ELT)) (-2415 (((-85) $) 15 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) 17 T ELT)) (-3953 (((-776) $) 22 T ELT) (($ (-698)) 28 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-1259 (($) 10 T CONST)) (-3062 (((-85) $ $) 19 T ELT))) +(((-55) (-13 (-1017) (-954 (-698)) (-10 -8 (-15 -1259 ($) -3959) (-15 -3194 ((-85) $)) (-15 -2415 ((-85) $))))) (T -55)) +((-1259 (*1 *1) (-5 *1 (-55))) (-3194 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) (-2415 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55))))) +((-1261 (($ $ (-488) |#3|) 46 T ELT)) (-1260 (($ $ (-488) |#4|) 50 T ELT)) (-2614 (((-587 |#2|) $) 41 T ELT)) (-3251 (((-85) |#2| $) 55 T ELT)) (-1736 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3806 ((|#2| $ (-488) (-488)) NIL T ELT) ((|#2| $ (-488) (-488) |#2|) 29 T ELT)) (-1735 (((-698) (-1 (-85) |#2|) $) 35 T ELT) (((-698) |#2| $) 57 T ELT)) (-3953 (((-776) $) 63 T ELT)) (-1737 (((-85) (-1 (-85) |#2|) $) 20 T ELT)) (-3062 (((-85) $ $) 54 T ELT)) (-3964 (((-698) $) 26 T ELT))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3062 ((-85) |#1| |#1|)) (-15 -3953 ((-776) |#1|)) (-15 -1260 (|#1| |#1| (-488) |#4|)) (-15 -1261 (|#1| |#1| (-488) |#3|)) (-15 -3806 (|#2| |#1| (-488) (-488) |#2|)) (-15 -3806 (|#2| |#1| (-488) (-488))) (-15 -3251 ((-85) |#2| |#1|)) (-15 -1735 ((-698) |#2| |#1|)) (-15 -2614 ((-587 |#2|) |#1|)) (-15 -1735 ((-698) (-1 (-85) |#2|) |#1|)) (-15 -1736 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1737 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3964 ((-698) |#1|))) (-57 |#2| |#3| |#4|) (-1133) (-326 |#2|) (-326 |#2|)) (T -56)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3794 ((|#1| $ (-488) (-488) |#1|) 52 T ELT)) (-1261 (($ $ (-488) |#2|) 50 T ELT)) (-1260 (($ $ (-488) |#3|) 49 T ELT)) (-3730 (($) 6 T CONST)) (-3117 ((|#2| $ (-488)) 54 T ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $) 39 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 38 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| (-72)) ELT)) (-1580 ((|#1| $ (-488) (-488) |#1|) 51 T ELT)) (-3118 ((|#1| $ (-488) (-488)) 56 T ELT)) (-3120 (((-698) $) 59 T ELT)) (-3620 (($ (-698) (-698) |#1|) 65 T ELT)) (-3119 (((-698) $) 58 T ELT)) (-3124 (((-488) $) 63 T ELT)) (-3122 (((-488) $) 61 T ELT)) (-2614 (((-587 |#1|) $) 40 T ELT)) (-3251 (((-85) |#1| $) 35 (|has| |#1| (-72)) ELT)) (-3123 (((-488) $) 62 T ELT)) (-3121 (((-488) $) 60 T ELT)) (-3332 (($ (-1 |#1| |#1|) $) 66 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 48 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 47 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 37 T ELT)) (-2204 (($ $ |#1|) 64 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) 42 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#1| $ (-488) (-488)) 57 T ELT) ((|#1| $ (-488) (-488) |#1|) 55 T ELT)) (-1735 (((-698) (-1 (-85) |#1|) $) 41 T ELT) (((-698) |#1| $) 36 (|has| |#1| (-72)) ELT)) (-3406 (($ $) 9 T ELT)) (-3116 ((|#3| $ (-488)) 53 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) 43 T ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) 44 T ELT))) +(((-57 |#1| |#2| |#3|) (-113) (-1133) (-326 |t#1|) (-326 |t#1|)) (T -57)) +((-3620 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-698)) (-4 *3 (-1133)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) (-2204 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-326 *2)) (-4 *4 (-326 *2)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *2 (-488)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *2 (-488)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *2 (-488)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *2 (-488)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *2 (-698)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *2 (-698)))) (-3806 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-488)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-326 *2)) (-4 *5 (-326 *2)) (-4 *2 (-1133)))) (-3118 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-488)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-326 *2)) (-4 *5 (-326 *2)) (-4 *2 (-1133)))) (-3806 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-488)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1133)) (-4 *4 (-326 *2)) (-4 *5 (-326 *2)))) (-3117 (*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1133)) (-4 *5 (-326 *4)) (-4 *2 (-326 *4)))) (-3116 (*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1133)) (-4 *5 (-326 *4)) (-4 *2 (-326 *4)))) (-3794 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-488)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1133)) (-4 *4 (-326 *2)) (-4 *5 (-326 *2)))) (-1580 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-488)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1133)) (-4 *4 (-326 *2)) (-4 *5 (-326 *2)))) (-1261 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-488)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-326 *4)) (-4 *5 (-326 *4)))) (-1260 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-488)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1133)) (-4 *5 (-326 *4)) (-4 *3 (-326 *4)))) (-3849 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) (-3849 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3))))) +(-13 (-320 |t#1|) (-1039 |t#1|) (-10 -8 (-15 -3620 ($ (-698) (-698) |t#1|)) (-15 -2204 ($ $ |t#1|)) (-15 -3124 ((-488) $)) (-15 -3123 ((-488) $)) (-15 -3122 ((-488) $)) (-15 -3121 ((-488) $)) (-15 -3120 ((-698) $)) (-15 -3119 ((-698) $)) (-15 -3806 (|t#1| $ (-488) (-488))) (-15 -3118 (|t#1| $ (-488) (-488))) (-15 -3806 (|t#1| $ (-488) (-488) |t#1|)) (-15 -3117 (|t#2| $ (-488))) (-15 -3116 (|t#3| $ (-488))) (-15 -3794 (|t#1| $ (-488) (-488) |t#1|)) (-15 -1580 (|t#1| $ (-488) (-488) |t#1|)) (-15 -1261 ($ $ (-488) |t#2|)) (-15 -1260 ($ $ (-488) |t#3|)) (-15 -3849 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3849 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-320 |#1|) . T) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-1017) |has| |#1| (-1017)) ((-1039 |#1|) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 |#1|)) ELT)) (-1740 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-760)) ELT)) (-1738 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1039 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1039 |#1|)) (|has| |#1| (-760))) ELT)) (-2915 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-760)) ELT)) (-3794 ((|#1| $ (-488) |#1|) NIL (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-1150 (-488)) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3730 (($) NIL T CONST)) (-2302 (($ $) NIL (|has| $ (-1039 |#1|)) ELT)) (-2303 (($ $) NIL T ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-3412 (($ |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1580 ((|#1| $ (-488) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-488)) NIL T ELT)) (-3425 (((-488) (-1 (-85) |#1|) $) NIL T ELT) (((-488) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-488) |#1| $ (-488)) NIL (|has| |#1| (-72)) ELT)) (-1262 (($ (-587 |#1|)) 11 T ELT) (($ (-698) |#1|) 14 T ELT)) (-3620 (($ (-698) |#1|) 13 T ELT)) (-2205 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-3524 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-2614 (((-587 |#1|) $) NIL T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2206 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-2309 (($ |#1| $ (-488)) NIL T ELT) (($ $ $ (-488)) NIL T ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) NIL T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-3807 ((|#1| $) NIL (|has| (-488) (-760)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2204 (($ $ |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#1| $ (-488) |#1|) NIL T ELT) ((|#1| $ (-488)) NIL T ELT) (($ $ (-1150 (-488))) NIL T ELT)) (-2310 (($ $ (-488)) NIL T ELT) (($ $ (-1150 (-488))) NIL T ELT)) (-1735 (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) NIL T ELT)) (-1739 (($ $ $ (-488)) NIL (|has| $ (-1039 |#1|)) ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) NIL (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 10 T ELT)) (-3808 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3953 (((-776) $) NIL (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2572 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2690 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1262 ($ (-587 |#1|))) (-15 -1262 ($ (-698) |#1|)))) (-1133)) (T -58)) +((-1262 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1133)) (-5 *1 (-58 *3)))) (-1262 (*1 *1 *2 *3) (-12 (-5 *2 (-698)) (-5 *1 (-58 *3)) (-4 *3 (-1133))))) +((-3847 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3848 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3849 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) +(((-59 |#1| |#2|) (-10 -7 (-15 -3847 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3848 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3849 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1133) (-1133)) (T -59)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3848 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1133)) (-4 *2 (-1133)) (-5 *1 (-59 *5 *2)))) (-3847 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1133)) (-4 *5 (-1133)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3794 ((|#1| $ (-488) (-488) |#1|) NIL T ELT)) (-1261 (($ $ (-488) (-58 |#1|)) NIL T ELT)) (-1260 (($ $ (-488) (-58 |#1|)) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3117 (((-58 |#1|) $ (-488)) NIL T ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1580 ((|#1| $ (-488) (-488) |#1|) NIL T ELT)) (-3118 ((|#1| $ (-488) (-488)) NIL T ELT)) (-3120 (((-698) $) NIL T ELT)) (-3620 (($ (-698) (-698) |#1|) NIL T ELT)) (-3119 (((-698) $) NIL T ELT)) (-3124 (((-488) $) NIL T ELT)) (-3122 (((-488) $) NIL T ELT)) (-2614 (((-587 |#1|) $) NIL T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3123 (((-488) $) NIL T ELT)) (-3121 (((-488) $) NIL T ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2204 (($ $ |#1|) NIL T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#1| $ (-488) (-488)) NIL T ELT) ((|#1| $ (-488) (-488) |#1|) NIL T ELT)) (-1735 (((-698) (-1 (-85) |#1|) $) NIL T ELT) (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3406 (($ $) NIL T ELT)) (-3116 (((-58 |#1|) $ (-488)) NIL T ELT)) (-3953 (((-776) $) NIL (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3062 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-60 |#1|) (-57 |#1| (-58 |#1|) (-58 |#1|)) (-1133)) (T -60)) +NIL +((-1264 (((-1183 (-634 |#1|)) (-634 |#1|)) 61 T ELT)) (-1263 (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 (-587 (-834))))) |#2| (-834)) 49 T ELT)) (-1265 (((-2 (|:| |minor| (-587 (-834))) (|:| -3272 |#2|) (|:| |minors| (-587 (-587 (-834)))) (|:| |ops| (-587 |#2|))) |#2| (-834)) 72 (|has| |#1| (-314)) ELT))) +(((-61 |#1| |#2|) (-10 -7 (-15 -1263 ((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 (-587 (-834))))) |#2| (-834))) (-15 -1264 ((-1183 (-634 |#1|)) (-634 |#1|))) (IF (|has| |#1| (-314)) (-15 -1265 ((-2 (|:| |minor| (-587 (-834))) (|:| -3272 |#2|) (|:| |minors| (-587 (-587 (-834)))) (|:| |ops| (-587 |#2|))) |#2| (-834))) |%noBranch|)) (-499) (-604 |#1|)) (T -61)) +((-1265 (*1 *2 *3 *4) (-12 (-4 *5 (-314)) (-4 *5 (-499)) (-5 *2 (-2 (|:| |minor| (-587 (-834))) (|:| -3272 *3) (|:| |minors| (-587 (-587 (-834)))) (|:| |ops| (-587 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-834)) (-4 *3 (-604 *5)))) (-1264 (*1 *2 *3) (-12 (-4 *4 (-499)) (-5 *2 (-1183 (-634 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-634 *4)) (-4 *5 (-604 *4)))) (-1263 (*1 *2 *3 *4) (-12 (-4 *5 (-499)) (-5 *2 (-2 (|:| |mat| (-634 *5)) (|:| |vec| (-1183 (-587 (-834)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-834)) (-4 *3 (-604 *5))))) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3329 ((|#1| $) 42 T ELT)) (-3730 (($) NIL T CONST)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3331 ((|#1| |#1| $) 37 T ELT)) (-3330 ((|#1| $) 35 T ELT)) (-2614 (((-587 |#1|) $) NIL T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-1278 ((|#1| $) NIL T ELT)) (-3615 (($ |#1| $) 38 T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1279 ((|#1| $) 36 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) 20 T ELT)) (-3571 (($) 46 T ELT)) (-3328 (((-698) $) 33 T ELT)) (-1735 (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) NIL T ELT)) (-3406 (($ $) 19 T ELT)) (-3953 (((-776) $) 32 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1280 (($ (-587 |#1|)) NIL T ELT)) (-1266 (($ (-587 |#1|)) 44 T ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) 14 T ELT))) +(((-62 |#1|) (-13 (-1038 |#1|) (-10 -8 (-15 -1266 ($ (-587 |#1|))))) (-1017)) (T -62)) +((-1266 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-5 *1 (-62 *3))))) +((-3953 (((-776) $) 13 T ELT) (($ (-1099)) 9 T ELT) (((-1099) $) 8 T ELT))) +(((-63 |#1|) (-10 -7 (-15 -3953 ((-1099) |#1|)) (-15 -3953 (|#1| (-1099))) (-15 -3953 ((-776) |#1|))) (-64)) (T -63)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-1099)) 20 T ELT) (((-1099) $) 19 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT))) (((-64) (-113)) (T -64)) NIL -(-13 (-1015) (-431 (-1097))) -(((-72) . T) ((-557 (-1097)) . T) ((-554 (-774)) . T) ((-554 (-1097)) . T) ((-431 (-1097)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-3491 (($ $) 10 T ELT)) (-3492 (($ $) 12 T ELT))) -(((-65 |#1|) (-10 -7 (-15 -3492 (|#1| |#1|)) (-15 -3491 (|#1| |#1|))) (-66)) (T -65)) +(-13 (-1017) (-433 (-1099))) +(((-72) . T) ((-559 (-1099)) . T) ((-556 (-776)) . T) ((-556 (-1099)) . T) ((-433 (-1099)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-3494 (($ $) 10 T ELT)) (-3495 (($ $) 12 T ELT))) +(((-65 |#1|) (-10 -7 (-15 -3495 (|#1| |#1|)) (-15 -3494 (|#1| |#1|))) (-66)) (T -65)) NIL -((-3489 (($ $) 11 T ELT)) (-3487 (($ $) 10 T ELT)) (-3491 (($ $) 9 T ELT)) (-3492 (($ $) 8 T ELT)) (-3490 (($ $) 7 T ELT)) (-3488 (($ $) 6 T ELT))) +((-3492 (($ $) 11 T ELT)) (-3490 (($ $) 10 T ELT)) (-3494 (($ $) 9 T ELT)) (-3495 (($ $) 8 T ELT)) (-3493 (($ $) 7 T ELT)) (-3491 (($ $) 6 T ELT))) (((-66) (-113)) (T -66)) -((-3489 (*1 *1 *1) (-4 *1 (-66))) (-3487 (*1 *1 *1) (-4 *1 (-66))) (-3491 (*1 *1 *1) (-4 *1 (-66))) (-3492 (*1 *1 *1) (-4 *1 (-66))) (-3490 (*1 *1 *1) (-4 *1 (-66))) (-3488 (*1 *1 *1) (-4 *1 (-66)))) -(-13 (-10 -8 (-15 -3488 ($ $)) (-15 -3490 ($ $)) (-15 -3492 ($ $)) (-15 -3491 ($ $)) (-15 -3487 ($ $)) (-15 -3489 ($ $)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3545 (((-1051) $) 11 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 17 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-67) (-13 (-997) (-10 -8 (-15 -3545 ((-1051) $))))) (T -67)) -((-3545 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-67))))) +((-3492 (*1 *1 *1) (-4 *1 (-66))) (-3490 (*1 *1 *1) (-4 *1 (-66))) (-3494 (*1 *1 *1) (-4 *1 (-66))) (-3495 (*1 *1 *1) (-4 *1 (-66))) (-3493 (*1 *1 *1) (-4 *1 (-66))) (-3491 (*1 *1 *1) (-4 *1 (-66)))) +(-13 (-10 -8 (-15 -3491 ($ $)) (-15 -3493 ($ $)) (-15 -3495 ($ $)) (-15 -3494 ($ $)) (-15 -3490 ($ $)) (-15 -3492 ($ $)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3548 (((-1053) $) 11 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 17 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-67) (-13 (-999) (-10 -8 (-15 -3548 ((-1053) $))))) (T -67)) +((-3548 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-67))))) NIL (((-68) (-113)) (T -68)) NIL -(-13 (-10 -7 (-6 (-4000 "*")) (-6 -3995) (-6 -3993) (-6 -3992) (-6 -3991) (-6 -3996) (-6 -3990) (-6 -3989) (-6 -3988) (-6 -3987) (-6 -3986) (-6 -3994) (-6 -3997) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3985))) -((-2571 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1265 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-486))) 24 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 16 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 ((|#1| $ |#1|) 13 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-3950 (((-774) $) 22 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2669 (($) 8 T CONST)) (-3059 (((-85) $ $) 10 T ELT)) (-3953 (($ $ $) NIL T ELT)) (** (($ $ (-832)) 30 T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 18 T ELT)) (* (($ $ $) 31 T ELT))) -(((-69 |#1|) (-13 (-414) (-241 |#1| |#1|) (-10 -8 (-15 -1265 ($ (-1 |#1| |#1|))) (-15 -1265 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1265 ($ (-1 |#1| |#1| (-486)))))) (-963)) (T -69)) -((-1265 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-69 *3)))) (-1265 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-69 *3)))) (-1265 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-486))) (-4 *3 (-963)) (-5 *1 (-69 *3))))) -((-1266 (((-348 |#2|) |#2| (-585 |#2|)) 10 T ELT) (((-348 |#2|) |#2| |#2|) 11 T ELT))) -(((-70 |#1| |#2|) (-10 -7 (-15 -1266 ((-348 |#2|) |#2| |#2|)) (-15 -1266 ((-348 |#2|) |#2| (-585 |#2|)))) (-13 (-393) (-120)) (-1157 |#1|)) (T -70)) -((-1266 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-13 (-393) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *5 *3)))) (-1266 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-393) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1157 *4))))) -((-2571 (((-85) $ $) 13 T ELT)) (-1267 (((-85) $ $) 14 T ELT)) (-3059 (((-85) $ $) 11 T ELT))) -(((-71 |#1|) (-10 -7 (-15 -1267 ((-85) |#1| |#1|)) (-15 -2571 ((-85) |#1| |#1|)) (-15 -3059 ((-85) |#1| |#1|))) (-72)) (T -71)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) +(-13 (-10 -7 (-6 (-4003 "*")) (-6 -3998) (-6 -3996) (-6 -3995) (-6 -3994) (-6 -3999) (-6 -3993) (-6 -3992) (-6 -3991) (-6 -3990) (-6 -3989) (-6 -3997) (-6 -4000) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3988))) +((-2574 (((-85) $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3473 (((-3 $ "failed") $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-1267 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-488))) 24 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) 16 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3806 ((|#1| $ |#1|) 13 T ELT)) (-3015 (($ $ $) NIL T ELT)) (-2441 (($ $ $) NIL T ELT)) (-3953 (((-776) $) 22 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2672 (($) 8 T CONST)) (-3062 (((-85) $ $) 10 T ELT)) (-3956 (($ $ $) NIL T ELT)) (** (($ $ (-834)) 30 T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) 18 T ELT)) (* (($ $ $) 31 T ELT))) +(((-69 |#1|) (-13 (-416) (-243 |#1| |#1|) (-10 -8 (-15 -1267 ($ (-1 |#1| |#1|))) (-15 -1267 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1267 ($ (-1 |#1| |#1| (-488)))))) (-965)) (T -69)) +((-1267 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-965)) (-5 *1 (-69 *3)))) (-1267 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-965)) (-5 *1 (-69 *3)))) (-1267 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-488))) (-4 *3 (-965)) (-5 *1 (-69 *3))))) +((-1268 (((-350 |#2|) |#2| (-587 |#2|)) 10 T ELT) (((-350 |#2|) |#2| |#2|) 11 T ELT))) +(((-70 |#1| |#2|) (-10 -7 (-15 -1268 ((-350 |#2|) |#2| |#2|)) (-15 -1268 ((-350 |#2|) |#2| (-587 |#2|)))) (-13 (-395) (-120)) (-1159 |#1|)) (T -70)) +((-1268 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-1159 *5)) (-4 *5 (-13 (-395) (-120))) (-5 *2 (-350 *3)) (-5 *1 (-70 *5 *3)))) (-1268 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-395) (-120))) (-5 *2 (-350 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1159 *4))))) +((-2574 (((-85) $ $) 13 T ELT)) (-1269 (((-85) $ $) 14 T ELT)) (-3062 (((-85) $ $) 11 T ELT))) +(((-71 |#1|) (-10 -7 (-15 -1269 ((-85) |#1| |#1|)) (-15 -2574 ((-85) |#1| |#1|)) (-15 -3062 ((-85) |#1| |#1|))) (-72)) (T -71)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT))) (((-72) (-113)) (T -72)) -((-3059 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-2571 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-1267 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))) -(-13 (-1131) (-10 -8 (-15 -3059 ((-85) $ $)) (-15 -2571 ((-85) $ $)) (-15 -1267 ((-85) $ $)))) -(((-13) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) NIL T ELT)) (-3028 ((|#1| $ |#1|) 24 (|has| $ (-1037 |#1|)) ELT)) (-1295 (($ $ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-1296 (($ $ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-1270 (($ $ (-585 |#1|)) 30 T ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-3140 (($ $) 12 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3034 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1304 (($ $ |#1| $) 32 T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1269 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1268 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-585 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3141 (($ $) 11 T ELT)) (-3033 (((-585 |#1|) $) NIL T ELT)) (-3530 (((-85) $) 13 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 9 T ELT)) (-3568 (($) 31 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3032 (((-486) $ $) NIL T ELT)) (-3636 (((-85) $) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) NIL T ELT)) (-3031 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1271 (($ (-696) |#1|) 33 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-73 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1271 ($ (-696) |#1|)) (-15 -1270 ($ $ (-585 |#1|))) (-15 -1269 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1269 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1268 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1268 ($ $ |#1| (-1 (-585 |#1|) |#1| |#1| |#1|))))) (-1015)) (T -73)) -((-1271 (*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-73 *3)) (-4 *3 (-1015)))) (-1270 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-73 *3)))) (-1269 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1015)))) (-1269 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1015)) (-5 *1 (-73 *3)))) (-1268 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1015)) (-5 *1 (-73 *2)))) (-1268 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-585 *2) *2 *2 *2)) (-4 *2 (-1015)) (-5 *1 (-73 *2))))) -((-1272 ((|#3| |#2| |#2|) 34 T ELT)) (-1274 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-4000 #1="*"))) ELT)) (-1273 ((|#3| |#2| |#2|) 36 T ELT)) (-1275 ((|#1| |#2|) 53 (|has| |#1| (-6 (-4000 #1#))) ELT))) -(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1272 (|#3| |#2| |#2|)) (-15 -1273 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4000 "*"))) (PROGN (-15 -1274 (|#1| |#2| |#2|)) (-15 -1275 (|#1| |#2|))) |%noBranch|)) (-963) (-1157 |#1|) (-629 |#1| |#4| |#5|) (-324 |#1|) (-324 |#1|)) (T -74)) -((-1275 (*1 *2 *3) (-12 (|has| *2 (-6 (-4000 #1="*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) (-4 *2 (-963)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2)) (-4 *4 (-629 *2 *5 *6)))) (-1274 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4000 #1#))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) (-4 *2 (-963)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2)) (-4 *4 (-629 *2 *5 *6)))) (-1273 (*1 *2 *3 *3) (-12 (-4 *4 (-963)) (-4 *2 (-629 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1157 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) (-1272 (*1 *2 *3 *3) (-12 (-4 *4 (-963)) (-4 *2 (-629 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1157 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))))) -((-1278 (($ (-585 |#2|)) 11 T ELT))) -(((-75 |#1| |#2|) (-10 -7 (-15 -1278 (|#1| (-585 |#2|)))) (-76 |#2|) (-1131)) (T -75)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3727 (($) 6 T CONST)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-1277 ((|#1| $) 37 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) -(((-76 |#1|) (-113) (-1131)) (T -76)) -((-1278 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-4 *1 (-76 *3)))) (-1277 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1131)))) (-3612 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1131)))) (-1276 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1131))))) -(-13 (-430 |t#1|) (-1037 |t#1|) (-10 -8 (-15 -1278 ($ (-585 |t#1|))) (-15 -1277 (|t#1| $)) (-15 -3612 ($ |t#1| $)) (-15 -1276 (|t#1| $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 (((-486) $) NIL (|has| (-486) (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| (-486) (-742)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL (|has| (-486) (-952 (-1092))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| (-486) (-952 (-486))) ELT) (((-3 (-486) #1#) $) NIL (|has| (-486) (-952 (-486))) ELT)) (-3159 (((-486) $) NIL T ELT) (((-1092) $) NIL (|has| (-486) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL (|has| (-486) (-952 (-486))) ELT) (((-486) $) NIL (|has| (-486) (-952 (-486))) ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-486)) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-486) (-485)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| (-486) (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| (-486) (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| (-486) (-798 (-330))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-486) $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| (-486) (-1068)) ELT)) (-3190 (((-85) $) NIL (|has| (-486) (-742)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-486) (-758)) ELT)) (-3846 (($ (-1 (-486) (-486)) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL T ELT) (((-632 (-486)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-486) (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-486) (-258)) ELT) (((-350 (-486)) $) NIL T ELT)) (-3133 (((-486) $) NIL (|has| (-486) (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3771 (($ $ (-585 (-486)) (-585 (-486))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-486) (-486)) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-249 (-486))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-585 (-249 (-486)))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-585 (-1092)) (-585 (-486))) NIL (|has| (-486) (-457 (-1092) (-486))) ELT) (($ $ (-1092) (-486)) NIL (|has| (-486) (-457 (-1092) (-486))) ELT)) (-1608 (((-696) $) NIL T ELT)) (-3803 (($ $ (-486)) NIL (|has| (-486) (-241 (-486) (-486))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-486) (-486))) NIL T ELT) (($ $ (-1 (-486) (-486)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $) NIL (|has| (-486) (-189)) ELT) (($ $ (-696)) NIL (|has| (-486) (-189)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-486) $) NIL T ELT)) (-3975 (((-802 (-486)) $) NIL (|has| (-486) (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| (-486) (-555 (-802 (-330)))) ELT) (((-475) $) NIL (|has| (-486) (-555 (-475))) ELT) (((-330) $) NIL (|has| (-486) (-935)) ELT) (((-179) $) NIL (|has| (-486) (-935)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-486) (-823))) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) 8 T ELT) (($ (-486)) NIL T ELT) (($ (-1092)) NIL (|has| (-486) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL T ELT) (((-919 2) $) 10 T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-486) (-823))) (|has| (-486) (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-3134 (((-486) $) NIL (|has| (-486) (-485)) ELT)) (-2031 (($ (-350 (-486))) 9 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-486) (-742)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-486) (-486))) NIL T ELT) (($ $ (-1 (-486) (-486)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $) NIL (|has| (-486) (-189)) ELT) (($ $ (-696)) NIL (|has| (-486) (-189)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-3953 (($ $ $) NIL T ELT) (($ (-486) (-486)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ (-486)) NIL T ELT))) -(((-77) (-13 (-906 (-486)) (-554 (-350 (-486))) (-554 (-919 2)) (-10 -8 (-15 -3131 ((-350 (-486)) $)) (-15 -2031 ($ (-350 (-486))))))) (T -77)) -((-3131 (*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-77)))) (-2031 (*1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-77))))) -((-1290 (((-585 (-878)) $) 14 T ELT)) (-3545 (((-448) $) 12 T ELT)) (-3950 (((-774) $) 21 T ELT)) (-1279 (($ (-448) (-585 (-878))) 16 T ELT))) -(((-78) (-13 (-554 (-774)) (-10 -8 (-15 -3545 ((-448) $)) (-15 -1290 ((-585 (-878)) $)) (-15 -1279 ($ (-448) (-585 (-878))))))) (T -78)) -((-3545 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-78)))) (-1290 (*1 *2 *1) (-12 (-5 *2 (-585 (-878))) (-5 *1 (-78)))) (-1279 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-585 (-878))) (-5 *1 (-78))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 ((|#1| $ |#1| |#1|) 8 T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1280 (($ (-1 |#1| |#1| |#1|)) 7 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-79 |#1|) (-13 (-80 |#1|) (-1015) (-10 -8 (-15 -1280 ($ (-1 |#1| |#1| |#1|))))) (-1131)) (T -79)) -((-1280 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-79 *3))))) -((-3803 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-80 |#1|) (-113) (-1131)) (T -80)) +((-3062 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-2574 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-1269 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))) +(-13 (-1133) (-10 -8 (-15 -3062 ((-85) $ $)) (-15 -2574 ((-85) $ $)) (-15 -1269 ((-85) $ $)))) +(((-13) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3408 ((|#1| $) NIL T ELT)) (-3031 ((|#1| $ |#1|) 24 (|has| $ (-1039 |#1|)) ELT)) (-1297 (($ $ $) NIL (|has| $ (-1039 |#1|)) ELT)) (-1298 (($ $ $) NIL (|has| $ (-1039 |#1|)) ELT)) (-1272 (($ $ (-587 |#1|)) 30 T ELT)) (-3794 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1039 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1039 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1039 |#1|)) ELT)) (-3032 (($ $ (-587 $)) NIL (|has| $ (-1039 |#1|)) ELT)) (-3730 (($) NIL T CONST)) (-3143 (($ $) 12 T ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3037 (((-587 $) $) NIL T ELT)) (-3033 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1306 (($ $ |#1| $) 32 T ELT)) (-2614 (((-587 |#1|) $) NIL T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1271 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1270 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-587 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3144 (($ $) 11 T ELT)) (-3036 (((-587 |#1|) $) NIL T ELT)) (-3533 (((-85) $) 13 T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) 9 T ELT)) (-3571 (($) 31 T ELT)) (-3806 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3035 (((-488) $ $) NIL T ELT)) (-3639 (((-85) $) NIL T ELT)) (-1735 (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3953 (((-776) $) NIL (|has| |#1| (-556 (-776))) ELT)) (-3528 (((-587 $) $) NIL T ELT)) (-3034 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1273 (($ (-698) |#1|) 33 T ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3062 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-73 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1273 ($ (-698) |#1|)) (-15 -1272 ($ $ (-587 |#1|))) (-15 -1271 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1271 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1270 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1270 ($ $ |#1| (-1 (-587 |#1|) |#1| |#1| |#1|))))) (-1017)) (T -73)) +((-1273 (*1 *1 *2 *3) (-12 (-5 *2 (-698)) (-5 *1 (-73 *3)) (-4 *3 (-1017)))) (-1272 (*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-5 *1 (-73 *3)))) (-1271 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1017)))) (-1271 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1017)) (-5 *1 (-73 *3)))) (-1270 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1017)) (-5 *1 (-73 *2)))) (-1270 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-587 *2) *2 *2 *2)) (-4 *2 (-1017)) (-5 *1 (-73 *2))))) +((-1274 ((|#3| |#2| |#2|) 34 T ELT)) (-1276 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-4003 #1="*"))) ELT)) (-1275 ((|#3| |#2| |#2|) 36 T ELT)) (-1277 ((|#1| |#2|) 53 (|has| |#1| (-6 (-4003 #1#))) ELT))) +(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1274 (|#3| |#2| |#2|)) (-15 -1275 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4003 "*"))) (PROGN (-15 -1276 (|#1| |#2| |#2|)) (-15 -1277 (|#1| |#2|))) |%noBranch|)) (-965) (-1159 |#1|) (-631 |#1| |#4| |#5|) (-326 |#1|) (-326 |#1|)) (T -74)) +((-1277 (*1 *2 *3) (-12 (|has| *2 (-6 (-4003 #1="*"))) (-4 *5 (-326 *2)) (-4 *6 (-326 *2)) (-4 *2 (-965)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1159 *2)) (-4 *4 (-631 *2 *5 *6)))) (-1276 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4003 #1#))) (-4 *5 (-326 *2)) (-4 *6 (-326 *2)) (-4 *2 (-965)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1159 *2)) (-4 *4 (-631 *2 *5 *6)))) (-1275 (*1 *2 *3 *3) (-12 (-4 *4 (-965)) (-4 *2 (-631 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1159 *4)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)))) (-1274 (*1 *2 *3 *3) (-12 (-4 *4 (-965)) (-4 *2 (-631 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1159 *4)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4))))) +((-1280 (($ (-587 |#2|)) 11 T ELT))) +(((-75 |#1| |#2|) (-10 -7 (-15 -1280 (|#1| (-587 |#2|)))) (-76 |#2|) (-1133)) (T -75)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3730 (($) 6 T CONST)) (-3332 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-1278 ((|#1| $) 35 T ELT)) (-3615 (($ |#1| $) 36 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-1279 ((|#1| $) 37 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3406 (($ $) 9 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1280 (($ (-587 |#1|)) 38 T ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-76 |#1|) (-113) (-1133)) (T -76)) +((-1280 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1133)) (-4 *1 (-76 *3)))) (-1279 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1133)))) (-3615 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1133)))) (-1278 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1133))))) +(-13 (-432 |t#1|) (-1039 |t#1|) (-10 -8 (-15 -1280 ($ (-587 |t#1|))) (-15 -1279 (|t#1| $)) (-15 -3615 ($ |t#1| $)) (-15 -1278 (|t#1| $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-1017) |has| |#1| (-1017)) ((-1039 |#1|) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3135 (((-488) $) NIL (|has| (-488) (-260)) ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-488) (-825)) ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| (-488) (-825)) ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3629 (((-488) $) NIL (|has| (-488) (-744)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL T ELT) (((-3 (-1094) #1#) $) NIL (|has| (-488) (-954 (-1094))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| (-488) (-954 (-488))) ELT) (((-3 (-488) #1#) $) NIL (|has| (-488) (-954 (-488))) ELT)) (-3162 (((-488) $) NIL T ELT) (((-1094) $) NIL (|has| (-488) (-954 (-1094))) ELT) (((-352 (-488)) $) NIL (|has| (-488) (-954 (-488))) ELT) (((-488) $) NIL (|has| (-488) (-954 (-488))) ELT)) (-2570 (($ $ $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| (-488) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| (-488) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL T ELT) (((-634 (-488)) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3000 (($) NIL (|has| (-488) (-487)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-3192 (((-85) $) NIL (|has| (-488) (-744)) ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (|has| (-488) (-800 (-488))) ELT) (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (|has| (-488) (-800 (-332))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3002 (($ $) NIL T ELT)) (-3004 (((-488) $) NIL T ELT)) (-3451 (((-636 $) $) NIL (|has| (-488) (-1070)) ELT)) (-3193 (((-85) $) NIL (|has| (-488) (-744)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2537 (($ $ $) NIL (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| (-488) (-760)) ELT)) (-3849 (($ (-1 (-488) (-488)) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| (-488) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| (-488) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL T ELT) (((-634 (-488)) (-1183 $)) NIL T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3452 (($) NIL (|has| (-488) (-1070)) CONST)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3134 (($ $) NIL (|has| (-488) (-260)) ELT) (((-352 (-488)) $) NIL T ELT)) (-3136 (((-488) $) NIL (|has| (-488) (-487)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-488) (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-488) (-825)) ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-3774 (($ $ (-587 (-488)) (-587 (-488))) NIL (|has| (-488) (-262 (-488))) ELT) (($ $ (-488) (-488)) NIL (|has| (-488) (-262 (-488))) ELT) (($ $ (-251 (-488))) NIL (|has| (-488) (-262 (-488))) ELT) (($ $ (-587 (-251 (-488)))) NIL (|has| (-488) (-262 (-488))) ELT) (($ $ (-587 (-1094)) (-587 (-488))) NIL (|has| (-488) (-459 (-1094) (-488))) ELT) (($ $ (-1094) (-488)) NIL (|has| (-488) (-459 (-1094) (-488))) ELT)) (-1611 (((-698) $) NIL T ELT)) (-3806 (($ $ (-488)) NIL (|has| (-488) (-243 (-488) (-488))) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-3764 (($ $ (-1 (-488) (-488))) NIL T ELT) (($ $ (-1 (-488) (-488)) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $) NIL (|has| (-488) (-191)) ELT) (($ $ (-698)) NIL (|has| (-488) (-191)) ELT)) (-3001 (($ $) NIL T ELT)) (-3003 (((-488) $) NIL T ELT)) (-3978 (((-804 (-488)) $) NIL (|has| (-488) (-557 (-804 (-488)))) ELT) (((-804 (-332)) $) NIL (|has| (-488) (-557 (-804 (-332)))) ELT) (((-477) $) NIL (|has| (-488) (-557 (-477))) ELT) (((-332) $) NIL (|has| (-488) (-937)) ELT) (((-181) $) NIL (|has| (-488) (-937)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| (-488) (-825))) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) 8 T ELT) (($ (-488)) NIL T ELT) (($ (-1094)) NIL (|has| (-488) (-954 (-1094))) ELT) (((-352 (-488)) $) NIL T ELT) (((-921 2) $) 10 T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-488) (-825))) (|has| (-488) (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-3137 (((-488) $) NIL (|has| (-488) (-487)) ELT)) (-2034 (($ (-352 (-488))) 9 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3389 (($ $) NIL (|has| (-488) (-744)) ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $ (-1 (-488) (-488))) NIL T ELT) (($ $ (-1 (-488) (-488)) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $) NIL (|has| (-488) (-191)) ELT) (($ $ (-698)) NIL (|has| (-488) (-191)) ELT)) (-2572 (((-85) $ $) NIL (|has| (-488) (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| (-488) (-760)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL (|has| (-488) (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| (-488) (-760)) ELT)) (-3956 (($ $ $) NIL T ELT) (($ (-488) (-488)) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ (-488)) NIL T ELT))) +(((-77) (-13 (-908 (-488)) (-556 (-352 (-488))) (-556 (-921 2)) (-10 -8 (-15 -3134 ((-352 (-488)) $)) (-15 -2034 ($ (-352 (-488))))))) (T -77)) +((-3134 (*1 *2 *1) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-77)))) (-2034 (*1 *1 *2) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-77))))) +((-1292 (((-587 (-880)) $) 14 T ELT)) (-3548 (((-450) $) 12 T ELT)) (-3953 (((-776) $) 21 T ELT)) (-1281 (($ (-450) (-587 (-880))) 16 T ELT))) +(((-78) (-13 (-556 (-776)) (-10 -8 (-15 -3548 ((-450) $)) (-15 -1292 ((-587 (-880)) $)) (-15 -1281 ($ (-450) (-587 (-880))))))) (T -78)) +((-3548 (*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-78)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-587 (-880))) (-5 *1 (-78)))) (-1281 (*1 *1 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-587 (-880))) (-5 *1 (-78))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3806 ((|#1| $ |#1| |#1|) 8 T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1282 (($ (-1 |#1| |#1| |#1|)) 7 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-79 |#1|) (-13 (-80 |#1|) (-1017) (-10 -8 (-15 -1282 ($ (-1 |#1| |#1| |#1|))))) (-1133)) (T -79)) +((-1282 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1133)) (-5 *1 (-79 *3))))) +((-3806 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-80 |#1|) (-113) (-1133)) (T -80)) NIL (-13 (|MappingCategory| |t#1| |t#1| |t#1|)) -(((|MappingCategory| |#1| |#1| |#1|) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3324 (($ $ $) NIL T ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 (-85))) ELT)) (-1737 (((-85) $) NIL (|has| (-85) (-758)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1735 (($ $) NIL (-12 (|has| $ (-1037 (-85))) (|has| (-85) (-758))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-1037 (-85))) ELT)) (-2912 (($ $) NIL (|has| (-85) (-758)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3791 (((-85) $ (-1148 (-486)) (-85)) NIL (|has| $ (-1037 (-85))) ELT) (((-85) $ (-486) (-85)) NIL (|has| $ (-1037 (-85))) ELT)) (-3713 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-318 (-85))) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 (-85))) ELT)) (-2300 (($ $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-3409 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-318 (-85))) ELT) (($ (-85) $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-3845 (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (|has| (-85) (-72)) ELT)) (-1577 (((-85) $ (-486) (-85)) NIL (|has| $ (-1037 (-85))) ELT)) (-3115 (((-85) $ (-486)) NIL T ELT)) (-3422 (((-486) (-85) $ (-486)) NIL (|has| (-85) (-72)) ELT) (((-486) (-85) $) NIL (|has| (-85) (-72)) ELT) (((-486) (-1 (-85) (-85)) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2563 (($ $) NIL T ELT)) (-1302 (($ $ $) NIL T ELT)) (-3617 (($ (-696) (-85)) 10 T ELT)) (-1303 (($ $ $) NIL T ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL T ELT)) (-3521 (($ $ $) NIL (|has| (-85) (-758)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2611 (((-585 (-85)) $) NIL T ELT)) (-3248 (((-85) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL T ELT)) (-3329 (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3846 (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2306 (($ $ $ (-486)) NIL T ELT) (($ (-85) $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 (((-85) $) NIL (|has| (-486) (-758)) ELT)) (-1731 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2201 (($ $ (-85)) NIL (|has| $ (-1037 (-85))) ELT)) (-1733 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-3771 (($ $ (-585 (-85)) (-585 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-585 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) (-85) $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-2207 (((-585 (-85)) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 (($ $ (-1148 (-486))) NIL T ELT) (((-85) $ (-486)) NIL T ELT) (((-85) $ (-486) (-85)) NIL T ELT)) (-2307 (($ $ (-1148 (-486))) NIL T ELT) (($ $ (-486)) NIL T ELT)) (-1732 (((-696) (-1 (-85) (-85)) $) NIL T ELT) (((-696) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 (-85))) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-85) (-555 (-475))) ELT)) (-3533 (($ (-585 (-85))) NIL T ELT)) (-3805 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1774 (($ (-696) (-85)) 11 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-81) (-13 (-96) (-10 -8 (-15 -1774 ($ (-696) (-85)))))) (T -81)) -((-1774 (*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *3 (-85)) (-5 *1 (-81))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#2|) 37 T ELT))) -(((-82 |#1| |#2|) (-113) (-963) (-963)) (T -82)) -NIL -(-13 (-592 |t#1|) (-970 |t#2|) (-10 -7 (-6 -3993) (-6 -3992))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-965 |#2|) . T) ((-970 |#2|) . T) ((-1015) . T) ((-1131) . T)) -((-2564 (($ $ $) 12 T ELT)) (-2563 (($ $) 8 T ELT)) (-2565 (($ $ $) 10 T ELT))) -(((-83 |#1|) (-10 -7 (-15 -2564 (|#1| |#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -2563 (|#1| |#1|))) (-84)) (T -83)) -NIL -((-2315 (($ $) 8 T ELT)) (-2564 (($ $ $) 9 T ELT)) (-2563 (($ $) 11 T ELT)) (-2565 (($ $ $) 10 T ELT)) (-2313 (($ $ $) 6 T ELT)) (-2314 (($ $ $) 7 T ELT))) +(((|MappingCategory| |#1| |#1| |#1|) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-2318 (($ $) NIL T ELT)) (-3327 (($ $ $) NIL T ELT)) (-2203 (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 (-85))) ELT)) (-1740 (((-85) $) NIL (|has| (-85) (-760)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1738 (($ $) NIL (-12 (|has| $ (-1039 (-85))) (|has| (-85) (-760))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-1039 (-85))) ELT)) (-2915 (($ $) NIL (|has| (-85) (-760)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3794 (((-85) $ (-1150 (-488)) (-85)) NIL (|has| $ (-1039 (-85))) ELT) (((-85) $ (-488) (-85)) NIL (|has| $ (-1039 (-85))) ELT)) (-3716 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-320 (-85))) ELT)) (-3730 (($) NIL T CONST)) (-2302 (($ $) NIL (|has| $ (-1039 (-85))) ELT)) (-2303 (($ $) NIL T ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 (-85))) (|has| (-85) (-72))) ELT)) (-3412 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-320 (-85))) ELT) (($ (-85) $) NIL (-12 (|has| $ (-320 (-85))) (|has| (-85) (-72))) ELT)) (-3848 (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (|has| (-85) (-72)) ELT)) (-1580 (((-85) $ (-488) (-85)) NIL (|has| $ (-1039 (-85))) ELT)) (-3118 (((-85) $ (-488)) NIL T ELT)) (-3425 (((-488) (-85) $ (-488)) NIL (|has| (-85) (-72)) ELT) (((-488) (-85) $) NIL (|has| (-85) (-72)) ELT) (((-488) (-1 (-85) (-85)) $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2566 (($ $) NIL T ELT)) (-1304 (($ $ $) NIL T ELT)) (-3620 (($ (-698) (-85)) 10 T ELT)) (-1305 (($ $ $) NIL T ELT)) (-2205 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL T ELT)) (-3524 (($ $ $) NIL (|has| (-85) (-760)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2614 (((-587 (-85)) $) NIL T ELT)) (-3251 (((-85) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-2206 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL T ELT)) (-3332 (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3849 (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2309 (($ $ $ (-488)) NIL T ELT) (($ (-85) $ (-488)) NIL T ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3807 (((-85) $) NIL (|has| (-488) (-760)) ELT)) (-1734 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2204 (($ $ (-85)) NIL (|has| $ (-1039 (-85))) ELT)) (-1736 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-3774 (($ $ (-587 (-85)) (-587 (-85))) NIL (-12 (|has| (-85) (-262 (-85))) (|has| (-85) (-1017))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-262 (-85))) (|has| (-85) (-1017))) ELT) (($ $ (-251 (-85))) NIL (-12 (|has| (-85) (-262 (-85))) (|has| (-85) (-1017))) ELT) (($ $ (-587 (-251 (-85)))) NIL (-12 (|has| (-85) (-262 (-85))) (|has| (-85) (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) (-85) $) NIL (-12 (|has| $ (-320 (-85))) (|has| (-85) (-72))) ELT)) (-2210 (((-587 (-85)) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 (($ $ (-1150 (-488))) NIL T ELT) (((-85) $ (-488)) NIL T ELT) (((-85) $ (-488) (-85)) NIL T ELT)) (-2310 (($ $ (-1150 (-488))) NIL T ELT) (($ $ (-488)) NIL T ELT)) (-1735 (((-698) (-1 (-85) (-85)) $) NIL T ELT) (((-698) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-1739 (($ $ $ (-488)) NIL (|has| $ (-1039 (-85))) ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) NIL (|has| (-85) (-557 (-477))) ELT)) (-3536 (($ (-587 (-85))) NIL T ELT)) (-3808 (($ (-587 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1777 (($ (-698) (-85)) 11 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-1737 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-2568 (($ $ $) NIL T ELT)) (-2316 (($ $ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) NIL T ELT)) (-2317 (($ $ $) NIL T ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-81) (-13 (-96) (-10 -8 (-15 -1777 ($ (-698) (-85)))))) (T -81)) +((-1777 (*1 *1 *2 *3) (-12 (-5 *2 (-698)) (-5 *3 (-85)) (-5 *1 (-81))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-1218 (((-85) $ $) 20 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#2|) 37 T ELT))) +(((-82 |#1| |#2|) (-113) (-965) (-965)) (T -82)) +NIL +(-13 (-594 |t#1|) (-972 |t#2|) (-10 -7 (-6 -3996) (-6 -3995))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-594 |#1|) . T) ((-967 |#2|) . T) ((-972 |#2|) . T) ((-1017) . T) ((-1133) . T)) +((-2567 (($ $ $) 12 T ELT)) (-2566 (($ $) 8 T ELT)) (-2568 (($ $ $) 10 T ELT))) +(((-83 |#1|) (-10 -7 (-15 -2567 (|#1| |#1| |#1|)) (-15 -2568 (|#1| |#1| |#1|)) (-15 -2566 (|#1| |#1|))) (-84)) (T -83)) +NIL +((-2318 (($ $) 8 T ELT)) (-2567 (($ $ $) 9 T ELT)) (-2566 (($ $) 11 T ELT)) (-2568 (($ $ $) 10 T ELT)) (-2316 (($ $ $) 6 T ELT)) (-2317 (($ $ $) 7 T ELT))) (((-84) (-113)) (T -84)) -((-2563 (*1 *1 *1) (-4 *1 (-84))) (-2565 (*1 *1 *1 *1) (-4 *1 (-84))) (-2564 (*1 *1 *1 *1) (-4 *1 (-84)))) -(-13 (-606) (-10 -8 (-15 -2563 ($ $)) (-15 -2565 ($ $ $)) (-15 -2564 ($ $ $)))) -(((-13) . T) ((-606) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) 9 T ELT)) (-3324 (($ $ $) 14 T ELT)) (-2858 (($) 6 T CONST)) (-3139 (((-696)) 23 T ELT)) (-2997 (($) 31 T ELT)) (-2564 (($ $ $) 12 T ELT)) (-2563 (($ $) 8 T ELT)) (-1302 (($ $ $) 15 T ELT)) (-1303 (($ $ $) 16 T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) 29 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) 27 T ELT)) (-2856 (($ $ $) 19 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2857 (($) 7 T CONST)) (-2855 (($ $ $) 20 T ELT)) (-3975 (((-475) $) 33 T ELT)) (-3950 (((-774) $) 35 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2565 (($ $ $) 10 T ELT)) (-2313 (($ $ $) 13 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 18 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 21 T ELT)) (-2314 (($ $ $) 11 T ELT))) -(((-85) (-13 (-754) (-882) (-555 (-475)) (-10 -8 (-15 -3324 ($ $ $)) (-15 -1303 ($ $ $)) (-15 -1302 ($ $ $))))) (T -85)) -((-3324 (*1 *1 *1 *1) (-5 *1 (-85))) (-1303 (*1 *1 *1 *1) (-5 *1 (-85))) (-1302 (*1 *1 *1 *1) (-5 *1 (-85)))) -((-2571 (((-85) $ $) NIL T ELT)) (-1523 (((-696) $) 92 T ELT) (($ $ (-696)) 38 T ELT)) (-1288 (((-85) $) 42 T ELT)) (-1282 (($ $ (-1075) (-698)) 59 T ELT) (($ $ (-448) (-698)) 34 T ELT)) (-1281 (($ $ (-45 (-1075) (-698))) 16 T ELT)) (-2844 (((-3 (-698) "failed") $ (-1075)) 27 T ELT) (((-634 (-698)) $ (-448)) 33 T ELT)) (-1290 (((-45 (-1075) (-698)) $) 15 T ELT)) (-3598 (($ (-1092)) 20 T ELT) (($ (-1092) (-696)) 23 T ELT) (($ (-1092) (-55)) 24 T ELT)) (-1289 (((-85) $) 40 T ELT)) (-1287 (((-85) $) 44 T ELT)) (-3545 (((-1092) $) 8 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2636 (((-85) $ (-1092)) 11 T ELT)) (-2130 (($ $ (-1 (-475) (-585 (-475)))) 65 T ELT) (((-634 (-1 (-475) (-585 (-475)))) $) 69 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1284 (((-85) $ (-448)) 37 T ELT)) (-1286 (($ $ (-1 (-85) $ $)) 46 T ELT)) (-3620 (((-634 (-1 (-774) (-585 (-774)))) $) 67 T ELT) (($ $ (-1 (-774) (-585 (-774)))) 52 T ELT) (($ $ (-1 (-774) (-774))) 54 T ELT)) (-1283 (($ $ (-1075)) 56 T ELT) (($ $ (-448)) 57 T ELT)) (-3403 (($ $) 75 T ELT)) (-1285 (($ $ (-1 (-85) $ $)) 47 T ELT)) (-3950 (((-774) $) 61 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2795 (($ $ (-448)) 35 T ELT)) (-2524 (((-55) $) 70 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 88 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 104 T ELT))) -(((-86) (-13 (-758) (-749 (-1092)) (-10 -8 (-15 -1290 ((-45 (-1075) (-698)) $)) (-15 -3403 ($ $)) (-15 -3598 ($ (-1092))) (-15 -3598 ($ (-1092) (-696))) (-15 -3598 ($ (-1092) (-55))) (-15 -1289 ((-85) $)) (-15 -1288 ((-85) $)) (-15 -1287 ((-85) $)) (-15 -1523 ((-696) $)) (-15 -1523 ($ $ (-696))) (-15 -1286 ($ $ (-1 (-85) $ $))) (-15 -1285 ($ $ (-1 (-85) $ $))) (-15 -3620 ((-634 (-1 (-774) (-585 (-774)))) $)) (-15 -3620 ($ $ (-1 (-774) (-585 (-774))))) (-15 -3620 ($ $ (-1 (-774) (-774)))) (-15 -2130 ($ $ (-1 (-475) (-585 (-475))))) (-15 -2130 ((-634 (-1 (-475) (-585 (-475)))) $)) (-15 -1284 ((-85) $ (-448))) (-15 -2795 ($ $ (-448))) (-15 -1283 ($ $ (-1075))) (-15 -1283 ($ $ (-448))) (-15 -2844 ((-3 (-698) "failed") $ (-1075))) (-15 -2844 ((-634 (-698)) $ (-448))) (-15 -1282 ($ $ (-1075) (-698))) (-15 -1282 ($ $ (-448) (-698))) (-15 -1281 ($ $ (-45 (-1075) (-698))))))) (T -86)) -((-1290 (*1 *2 *1) (-12 (-5 *2 (-45 (-1075) (-698))) (-5 *1 (-86)))) (-3403 (*1 *1 *1) (-5 *1 (-86))) (-3598 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-86)))) (-3598 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-696)) (-5 *1 (-86)))) (-3598 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-55)) (-5 *1 (-86)))) (-1289 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1287 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1523 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-86)))) (-1523 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-86)))) (-1286 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-1285 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-634 (-1 (-774) (-585 (-774))))) (-5 *1 (-86)))) (-3620 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-774) (-585 (-774)))) (-5 *1 (-86)))) (-3620 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-774) (-774))) (-5 *1 (-86)))) (-2130 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-475) (-585 (-475)))) (-5 *1 (-86)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-634 (-1 (-475) (-585 (-475))))) (-5 *1 (-86)))) (-1284 (*1 *2 *1 *3) (-12 (-5 *3 (-448)) (-5 *2 (-85)) (-5 *1 (-86)))) (-2795 (*1 *1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-86)))) (-1283 (*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-86)))) (-1283 (*1 *1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-86)))) (-2844 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1075)) (-5 *2 (-698)) (-5 *1 (-86)))) (-2844 (*1 *2 *1 *3) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-698))) (-5 *1 (-86)))) (-1282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-698)) (-5 *1 (-86)))) (-1282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-698)) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1075) (-698))) (-5 *1 (-86))))) -((-2521 (((-3 (-1 |#1| (-585 |#1|)) #1="failed") (-86)) 23 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 13 T ELT) (((-86) (-86) (-1 |#1| (-585 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-86) (-585 |#1|)) 25 T ELT)) (-1291 (((-3 (-585 (-1 |#1| (-585 |#1|))) #1#) (-86)) 29 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 33 T ELT) (((-86) (-86) (-585 (-1 |#1| (-585 |#1|)))) 30 T ELT)) (-1292 (((-86) |#1|) 63 T ELT)) (-1293 (((-3 |#1| #1#) (-86)) 58 T ELT))) -(((-87 |#1|) (-10 -7 (-15 -2521 ((-3 |#1| #1="failed") (-86) (-585 |#1|))) (-15 -2521 ((-86) (-86) (-1 |#1| (-585 |#1|)))) (-15 -2521 ((-86) (-86) (-1 |#1| |#1|))) (-15 -2521 ((-3 (-1 |#1| (-585 |#1|)) #1#) (-86))) (-15 -1291 ((-86) (-86) (-585 (-1 |#1| (-585 |#1|))))) (-15 -1291 ((-86) (-86) (-1 |#1| |#1|))) (-15 -1291 ((-3 (-585 (-1 |#1| (-585 |#1|))) #1#) (-86))) (-15 -1292 ((-86) |#1|)) (-15 -1293 ((-3 |#1| #1#) (-86)))) (-1015)) (T -87)) -((-1293 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1015)))) (-1292 (*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1015)))) (-1291 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-585 (-1 *4 (-585 *4)))) (-5 *1 (-87 *4)) (-4 *4 (-1015)))) (-1291 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) (-1291 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-585 (-1 *4 (-585 *4)))) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) (-2521 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-585 *4))) (-5 *1 (-87 *4)) (-4 *4 (-1015)))) (-2521 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) (-2521 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-585 *4))) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) (-2521 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-585 *2)) (-5 *1 (-87 *2)) (-4 *2 (-1015))))) -((-1294 (((-486) |#2|) 41 T ELT))) -(((-88 |#1| |#2|) (-10 -7 (-15 -1294 ((-486) |#2|))) (-13 (-312) (-952 (-350 (-486)))) (-1157 |#1|)) (T -88)) -((-1294 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-952 (-350 *2)))) (-5 *2 (-486)) (-5 *1 (-88 *4 *3)) (-4 *3 (-1157 *4))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $ (-486)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2614 (($ (-1087 (-486)) (-486)) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2615 (($ $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3775 (((-696) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2617 (((-486)) NIL T ELT)) (-2616 (((-486) $) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3772 (($ $ (-486)) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2618 (((-1071 (-486)) $) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3773 (((-486) $ (-486)) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-89 |#1|) (-781 |#1|) (-486)) (T -89)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-89 |#1|) (-823)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| (-89 |#1|) (-823)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| (-89 |#1|) (-742)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-89 |#1|) #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL (|has| (-89 |#1|) (-952 (-1092))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| (-89 |#1|) (-952 (-486))) ELT) (((-3 (-486) #1#) $) NIL (|has| (-89 |#1|) (-952 (-486))) ELT)) (-3159 (((-89 |#1|) $) NIL T ELT) (((-1092) $) NIL (|has| (-89 |#1|) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL (|has| (-89 |#1|) (-952 (-486))) ELT) (((-486) $) NIL (|has| (-89 |#1|) (-952 (-486))) ELT)) (-3733 (($ $) NIL T ELT) (($ (-486) $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| (-89 |#1|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| (-89 |#1|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-89 |#1|))) (|:| |vec| (-1181 (-89 |#1|)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-89 |#1|)) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-89 |#1|) (-485)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| (-89 |#1|) (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| (-89 |#1|) (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| (-89 |#1|) (-798 (-330))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-89 |#1|) $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| (-89 |#1|) (-1068)) ELT)) (-3190 (((-85) $) NIL (|has| (-89 |#1|) (-742)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-89 |#1|) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-89 |#1|) (-758)) ELT)) (-3846 (($ (-1 (-89 |#1|) (-89 |#1|)) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| (-89 |#1|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| (-89 |#1|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-89 |#1|))) (|:| |vec| (-1181 (-89 |#1|)))) (-1181 $) $) NIL T ELT) (((-632 (-89 |#1|)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-89 |#1|) (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-3133 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-89 |#1|) (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-89 |#1|) (-823)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3771 (($ $ (-585 (-89 |#1|)) (-585 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-89 |#1|) (-89 |#1|)) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-249 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-585 (-249 (-89 |#1|)))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-585 (-1092)) (-585 (-89 |#1|))) NIL (|has| (-89 |#1|) (-457 (-1092) (-89 |#1|))) ELT) (($ $ (-1092) (-89 |#1|)) NIL (|has| (-89 |#1|) (-457 (-1092) (-89 |#1|))) ELT)) (-1608 (((-696) $) NIL T ELT)) (-3803 (($ $ (-89 |#1|)) NIL (|has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-89 |#1|) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-89 |#1|) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-89 |#1|) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-89 |#1|) (-813 (-1092))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-696)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-89 |#1|) $) NIL T ELT)) (-3975 (((-802 (-486)) $) NIL (|has| (-89 |#1|) (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| (-89 |#1|) (-555 (-802 (-330)))) ELT) (((-475) $) NIL (|has| (-89 |#1|) (-555 (-475))) ELT) (((-330) $) NIL (|has| (-89 |#1|) (-935)) ELT) (((-179) $) NIL (|has| (-89 |#1|) (-935)) ELT)) (-2619 (((-148 (-350 (-486))) $) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-823))) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-89 |#1|)) NIL T ELT) (($ (-1092)) NIL (|has| (-89 |#1|) (-952 (-1092))) ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-823))) (|has| (-89 |#1|) (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-3134 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-485)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3773 (((-350 (-486)) $ (-486)) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-89 |#1|) (-742)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-89 |#1|) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-89 |#1|) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-89 |#1|) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-89 |#1|) (-813 (-1092))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-696)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-89 |#1|) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-89 |#1|) (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| (-89 |#1|) (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| (-89 |#1|) (-758)) ELT)) (-3953 (($ $ $) NIL T ELT) (($ (-89 |#1|) (-89 |#1|)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ (-89 |#1|) $) NIL T ELT) (($ $ (-89 |#1|)) NIL T ELT))) -(((-90 |#1|) (-13 (-906 (-89 |#1|)) (-10 -8 (-15 -3773 ((-350 (-486)) $ (-486))) (-15 -2619 ((-148 (-350 (-486))) $)) (-15 -3733 ($ $)) (-15 -3733 ($ (-486) $)))) (-486)) (T -90)) -((-3773 (*1 *2 *1 *3) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-486)))) (-2619 (*1 *2 *1) (-12 (-5 *2 (-148 (-350 (-486)))) (-5 *1 (-90 *3)) (-14 *3 (-486)))) (-3733 (*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-486)))) (-3733 (*1 *1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-90 *3)) (-14 *3 *2)))) -((-3791 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 59 T ELT) (($ $ #3="right" $) 61 T ELT)) (-3034 (((-585 $) $) 31 T ELT)) (-3030 (((-85) $ $) 36 T ELT)) (-3033 (((-585 |#2|) $) 25 T ELT)) (-3530 (((-85) $) 18 T ELT)) (-3803 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3636 (((-85) $) 55 T ELT)) (-3950 (((-774) $) 46 T ELT)) (-3525 (((-585 $) $) 32 T ELT)) (-3059 (((-85) $ $) 38 T ELT))) -(((-91 |#1| |#2|) (-10 -7 (-15 -3059 ((-85) |#1| |#1|)) (-15 -3950 ((-774) |#1|)) (-15 -3791 (|#1| |#1| #1="right" |#1|)) (-15 -3791 (|#1| |#1| #2="left" |#1|)) (-15 -3803 (|#1| |#1| #1#)) (-15 -3803 (|#1| |#1| #2#)) (-15 -3791 (|#2| |#1| #3="value" |#2|)) (-15 -3030 ((-85) |#1| |#1|)) (-15 -3033 ((-585 |#2|) |#1|)) (-15 -3636 ((-85) |#1|)) (-15 -3803 (|#2| |#1| #3#)) (-15 -3530 ((-85) |#1|)) (-15 -3034 ((-585 |#1|) |#1|)) (-15 -3525 ((-585 |#1|) |#1|))) (-92 |#2|) (-1131)) (T -91)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1037 |#1|)) ELT)) (-1295 (($ $ $) 49 (|has| $ (-1037 |#1|)) ELT)) (-1296 (($ $ $) 51 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1037 |#1|)) ELT) (($ $ "left" $) 52 (|has| $ (-1037 |#1|)) ELT) (($ $ "right" $) 50 (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) 36 (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-3140 (($ $) 54 T ELT)) (-3034 (((-585 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3141 (($ $) 56 T ELT)) (-3033 (((-585 |#1|) $) 40 T ELT)) (-3530 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT) (($ $ "left") 55 T ELT) (($ $ "right") 53 T ELT)) (-3032 (((-486) $ $) 39 T ELT)) (-3636 (((-85) $) 41 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) 46 T ELT)) (-3031 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) -(((-92 |#1|) (-113) (-1131)) (T -92)) -((-3141 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1131)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1131)))) (-3140 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1131)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1131)))) (-3791 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (-4 *1 (-1037 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1131)))) (-1296 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1131)))) (-3791 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (-4 *1 (-1037 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1131)))) (-1295 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1131))))) -(-13 (-925 |t#1|) (-10 -8 (-15 -3141 ($ $)) (-15 -3803 ($ $ "left")) (-15 -3140 ($ $)) (-15 -3803 ($ $ "right")) (IF (|has| $ (-1037 |t#1|)) (PROGN (-15 -3791 ($ $ "left" $)) (-15 -1296 ($ $ $)) (-15 -3791 ($ $ "right" $)) (-15 -1295 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-925 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1131) . T)) -((-1299 (((-85) |#1|) 29 T ELT)) (-1298 (((-696) (-696)) 28 T ELT) (((-696)) 27 T ELT)) (-1297 (((-85) |#1| (-85)) 30 T ELT) (((-85) |#1|) 31 T ELT))) -(((-93 |#1|) (-10 -7 (-15 -1297 ((-85) |#1|)) (-15 -1297 ((-85) |#1| (-85))) (-15 -1298 ((-696))) (-15 -1298 ((-696) (-696))) (-15 -1299 ((-85) |#1|))) (-1157 (-486))) (T -93)) -((-1299 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486))))) (-1298 (*1 *2 *2) (-12 (-5 *2 (-696)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486))))) (-1298 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486))))) (-1297 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486))))) (-1297 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486)))))) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 18 T ELT)) (-3421 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3028 ((|#1| $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1295 (($ $ $) 21 (|has| $ (-1037 |#1|)) ELT)) (-1296 (($ $ $) 23 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-3140 (($ $) 20 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3034 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1304 (($ $ |#1| $) 27 T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3141 (($ $) 22 T ELT)) (-3033 (((-585 |#1|) $) NIL T ELT)) (-3530 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-1300 (($ |#1| $) 28 T ELT)) (-3612 (($ |#1| $) 15 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 17 T ELT)) (-3568 (($) 11 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3032 (((-486) $ $) NIL T ELT)) (-3636 (((-85) $) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) NIL T ELT)) (-3031 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1301 (($ (-585 |#1|)) 16 T ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-94 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1301 ($ (-585 |#1|))) (-15 -3612 ($ |#1| $)) (-15 -1300 ($ |#1| $)) (-15 -3421 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-758)) (T -94)) -((-1301 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-94 *3)))) (-3612 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-758)))) (-1300 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-758)))) (-3421 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) (-5 *1 (-94 *3)) (-4 *3 (-758))))) -((-2315 (($ $) 13 T ELT)) (-2563 (($ $) 11 T ELT)) (-1302 (($ $ $) 23 T ELT)) (-1303 (($ $ $) 21 T ELT)) (-2313 (($ $ $) 19 T ELT)) (-2314 (($ $ $) 17 T ELT))) -(((-95 |#1|) (-10 -7 (-15 -1302 (|#1| |#1| |#1|)) (-15 -1303 (|#1| |#1| |#1|)) (-15 -2315 (|#1| |#1|)) (-15 -2314 (|#1| |#1| |#1|)) (-15 -2313 (|#1| |#1| |#1|)) (-15 -2563 (|#1| |#1|))) (-96)) (T -95)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-2315 (($ $) 105 T ELT)) (-3324 (($ $ $) 34 T ELT)) (-2200 (((-1187) $ (-486) (-486)) 60 (|has| $ (-1037 (-85))) ELT)) (-1737 (((-85) $) 99 (|has| (-85) (-758)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) 93 T ELT)) (-1735 (($ $) 103 (-12 (|has| (-85) (-758)) (|has| $ (-1037 (-85)))) ELT) (($ (-1 (-85) (-85) (-85)) $) 102 (|has| $ (-1037 (-85))) ELT)) (-2912 (($ $) 98 (|has| (-85) (-758)) ELT) (($ (-1 (-85) (-85) (-85)) $) 92 T ELT)) (-3791 (((-85) $ (-1148 (-486)) (-85)) 78 (|has| $ (-1037 (-85))) ELT) (((-85) $ (-486) (-85)) 48 (|has| $ (-1037 (-85))) ELT)) (-3713 (($ (-1 (-85) (-85)) $) 64 (|has| $ (-318 (-85))) ELT)) (-3727 (($) 41 T CONST)) (-2299 (($ $) 101 (|has| $ (-1037 (-85))) ELT)) (-2300 (($ $) 91 T ELT)) (-1355 (($ $) 62 (-12 (|has| (-85) (-72)) (|has| $ (-318 (-85)))) ELT)) (-3409 (($ (-1 (-85) (-85)) $) 65 (|has| $ (-318 (-85))) ELT) (($ (-85) $) 63 (-12 (|has| (-85) (-72)) (|has| $ (-318 (-85)))) ELT)) (-3845 (((-85) (-1 (-85) (-85) (-85)) $) 84 T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) 83 T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) 79 (|has| (-85) (-72)) ELT)) (-1577 (((-85) $ (-486) (-85)) 47 (|has| $ (-1037 (-85))) ELT)) (-3115 (((-85) $ (-486)) 49 T ELT)) (-3422 (((-486) (-85) $ (-486)) 96 (|has| (-85) (-72)) ELT) (((-486) (-85) $) 95 (|has| (-85) (-72)) ELT) (((-486) (-1 (-85) (-85)) $) 94 T ELT)) (-2564 (($ $ $) 110 T ELT)) (-2563 (($ $) 108 T ELT)) (-1302 (($ $ $) 35 T ELT)) (-3617 (($ (-696) (-85)) 68 T ELT)) (-1303 (($ $ $) 36 T ELT)) (-2202 (((-486) $) 57 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) 23 T ELT)) (-3521 (($ $ $) 97 (|has| (-85) (-758)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) 90 T ELT)) (-2611 (((-585 (-85)) $) 85 T ELT)) (-3248 (((-85) (-85) $) 80 (|has| (-85) (-72)) ELT)) (-2203 (((-486) $) 56 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) 22 T ELT)) (-3329 (($ (-1 (-85) (-85)) $) 104 T ELT)) (-3846 (($ (-1 (-85) (-85) (-85)) $ $) 73 T ELT) (($ (-1 (-85) (-85)) $) 42 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2306 (($ $ $ (-486)) 77 T ELT) (($ (-85) $ (-486)) 76 T ELT)) (-2205 (((-585 (-486)) $) 54 T ELT)) (-2206 (((-85) (-486) $) 53 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3804 (((-85) $) 58 (|has| (-486) (-758)) ELT)) (-1731 (((-3 (-85) "failed") (-1 (-85) (-85)) $) 82 T ELT)) (-2201 (($ $ (-85)) 59 (|has| $ (-1037 (-85))) ELT)) (-1733 (((-85) (-1 (-85) (-85)) $) 87 T ELT)) (-3771 (($ $ (-585 (-85)) (-585 (-85))) 46 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-85) (-85)) 45 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-249 (-85))) 44 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-585 (-249 (-85)))) 43 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT)) (-1224 (((-85) $ $) 37 T ELT)) (-2204 (((-85) (-85) $) 55 (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-2207 (((-585 (-85)) $) 52 T ELT)) (-3406 (((-85) $) 40 T ELT)) (-3568 (($) 39 T ELT)) (-3803 (($ $ (-1148 (-486))) 67 T ELT) (((-85) $ (-486)) 51 T ELT) (((-85) $ (-486) (-85)) 50 T ELT)) (-2307 (($ $ (-1148 (-486))) 75 T ELT) (($ $ (-486)) 74 T ELT)) (-1732 (((-696) (-1 (-85) (-85)) $) 86 T ELT) (((-696) (-85) $) 81 (|has| (-85) (-72)) ELT)) (-1736 (($ $ $ (-486)) 100 (|has| $ (-1037 (-85))) ELT)) (-3403 (($ $) 38 T ELT)) (-3975 (((-475) $) 61 (|has| (-85) (-555 (-475))) ELT)) (-3533 (($ (-585 (-85))) 66 T ELT)) (-3805 (($ (-585 $)) 72 T ELT) (($ $ $) 71 T ELT) (($ (-85) $) 70 T ELT) (($ $ (-85)) 69 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-1734 (((-85) (-1 (-85) (-85)) $) 88 T ELT)) (-2565 (($ $ $) 109 T ELT)) (-2313 (($ $ $) 107 T ELT)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (-2314 (($ $ $) 106 T ELT)) (-3961 (((-696) $) 89 T ELT))) +((-2566 (*1 *1 *1) (-4 *1 (-84))) (-2568 (*1 *1 *1 *1) (-4 *1 (-84))) (-2567 (*1 *1 *1 *1) (-4 *1 (-84)))) +(-13 (-608) (-10 -8 (-15 -2566 ($ $)) (-15 -2568 ($ $ $)) (-15 -2567 ($ $ $)))) +(((-13) . T) ((-608) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-2318 (($ $) 9 T ELT)) (-3327 (($ $ $) 14 T ELT)) (-2861 (($) 6 T CONST)) (-3142 (((-698)) 23 T ELT)) (-3000 (($) 31 T ELT)) (-2567 (($ $ $) 12 T ELT)) (-2566 (($ $) 8 T ELT)) (-1304 (($ $ $) 15 T ELT)) (-1305 (($ $ $) 16 T ELT)) (-2537 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2863 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2015 (((-834) $) 29 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2405 (($ (-834)) 27 T ELT)) (-2859 (($ $ $) 19 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2860 (($) 7 T CONST)) (-2858 (($ $ $) 20 T ELT)) (-3978 (((-477) $) 33 T ELT)) (-3953 (((-776) $) 35 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2568 (($ $ $) 10 T ELT)) (-2316 (($ $ $) 13 T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 18 T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 21 T ELT)) (-2317 (($ $ $) 11 T ELT))) +(((-85) (-13 (-756) (-884) (-557 (-477)) (-10 -8 (-15 -3327 ($ $ $)) (-15 -1305 ($ $ $)) (-15 -1304 ($ $ $))))) (T -85)) +((-3327 (*1 *1 *1 *1) (-5 *1 (-85))) (-1305 (*1 *1 *1 *1) (-5 *1 (-85))) (-1304 (*1 *1 *1 *1) (-5 *1 (-85)))) +((-2574 (((-85) $ $) NIL T ELT)) (-1526 (((-698) $) 92 T ELT) (($ $ (-698)) 38 T ELT)) (-1290 (((-85) $) 42 T ELT)) (-1284 (($ $ (-1077) (-700)) 59 T ELT) (($ $ (-450) (-700)) 34 T ELT)) (-1283 (($ $ (-45 (-1077) (-700))) 16 T ELT)) (-2847 (((-3 (-700) "failed") $ (-1077)) 27 T ELT) (((-636 (-700)) $ (-450)) 33 T ELT)) (-1292 (((-45 (-1077) (-700)) $) 15 T ELT)) (-3601 (($ (-1094)) 20 T ELT) (($ (-1094) (-698)) 23 T ELT) (($ (-1094) (-55)) 24 T ELT)) (-1291 (((-85) $) 40 T ELT)) (-1289 (((-85) $) 44 T ELT)) (-3548 (((-1094) $) 8 T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2639 (((-85) $ (-1094)) 11 T ELT)) (-2133 (($ $ (-1 (-477) (-587 (-477)))) 65 T ELT) (((-636 (-1 (-477) (-587 (-477)))) $) 69 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1286 (((-85) $ (-450)) 37 T ELT)) (-1288 (($ $ (-1 (-85) $ $)) 46 T ELT)) (-3623 (((-636 (-1 (-776) (-587 (-776)))) $) 67 T ELT) (($ $ (-1 (-776) (-587 (-776)))) 52 T ELT) (($ $ (-1 (-776) (-776))) 54 T ELT)) (-1285 (($ $ (-1077)) 56 T ELT) (($ $ (-450)) 57 T ELT)) (-3406 (($ $) 75 T ELT)) (-1287 (($ $ (-1 (-85) $ $)) 47 T ELT)) (-3953 (((-776) $) 61 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2798 (($ $ (-450)) 35 T ELT)) (-2527 (((-55) $) 70 T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 88 T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 104 T ELT))) +(((-86) (-13 (-760) (-751 (-1094)) (-10 -8 (-15 -1292 ((-45 (-1077) (-700)) $)) (-15 -3406 ($ $)) (-15 -3601 ($ (-1094))) (-15 -3601 ($ (-1094) (-698))) (-15 -3601 ($ (-1094) (-55))) (-15 -1291 ((-85) $)) (-15 -1290 ((-85) $)) (-15 -1289 ((-85) $)) (-15 -1526 ((-698) $)) (-15 -1526 ($ $ (-698))) (-15 -1288 ($ $ (-1 (-85) $ $))) (-15 -1287 ($ $ (-1 (-85) $ $))) (-15 -3623 ((-636 (-1 (-776) (-587 (-776)))) $)) (-15 -3623 ($ $ (-1 (-776) (-587 (-776))))) (-15 -3623 ($ $ (-1 (-776) (-776)))) (-15 -2133 ($ $ (-1 (-477) (-587 (-477))))) (-15 -2133 ((-636 (-1 (-477) (-587 (-477)))) $)) (-15 -1286 ((-85) $ (-450))) (-15 -2798 ($ $ (-450))) (-15 -1285 ($ $ (-1077))) (-15 -1285 ($ $ (-450))) (-15 -2847 ((-3 (-700) "failed") $ (-1077))) (-15 -2847 ((-636 (-700)) $ (-450))) (-15 -1284 ($ $ (-1077) (-700))) (-15 -1284 ($ $ (-450) (-700))) (-15 -1283 ($ $ (-45 (-1077) (-700))))))) (T -86)) +((-1292 (*1 *2 *1) (-12 (-5 *2 (-45 (-1077) (-700))) (-5 *1 (-86)))) (-3406 (*1 *1 *1) (-5 *1 (-86))) (-3601 (*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-86)))) (-3601 (*1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-698)) (-5 *1 (-86)))) (-3601 (*1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-55)) (-5 *1 (-86)))) (-1291 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1290 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1289 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1526 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-86)))) (-1526 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-86)))) (-1288 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-1287 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-636 (-1 (-776) (-587 (-776))))) (-5 *1 (-86)))) (-3623 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-776) (-587 (-776)))) (-5 *1 (-86)))) (-3623 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-776) (-776))) (-5 *1 (-86)))) (-2133 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-477) (-587 (-477)))) (-5 *1 (-86)))) (-2133 (*1 *2 *1) (-12 (-5 *2 (-636 (-1 (-477) (-587 (-477))))) (-5 *1 (-86)))) (-1286 (*1 *2 *1 *3) (-12 (-5 *3 (-450)) (-5 *2 (-85)) (-5 *1 (-86)))) (-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-450)) (-5 *1 (-86)))) (-1285 (*1 *1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-86)))) (-1285 (*1 *1 *1 *2) (-12 (-5 *2 (-450)) (-5 *1 (-86)))) (-2847 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1077)) (-5 *2 (-700)) (-5 *1 (-86)))) (-2847 (*1 *2 *1 *3) (-12 (-5 *3 (-450)) (-5 *2 (-636 (-700))) (-5 *1 (-86)))) (-1284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-700)) (-5 *1 (-86)))) (-1284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-700)) (-5 *1 (-86)))) (-1283 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1077) (-700))) (-5 *1 (-86))))) +((-2524 (((-3 (-1 |#1| (-587 |#1|)) #1="failed") (-86)) 23 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 13 T ELT) (((-86) (-86) (-1 |#1| (-587 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-86) (-587 |#1|)) 25 T ELT)) (-1293 (((-3 (-587 (-1 |#1| (-587 |#1|))) #1#) (-86)) 29 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 33 T ELT) (((-86) (-86) (-587 (-1 |#1| (-587 |#1|)))) 30 T ELT)) (-1294 (((-86) |#1|) 63 T ELT)) (-1295 (((-3 |#1| #1#) (-86)) 58 T ELT))) +(((-87 |#1|) (-10 -7 (-15 -2524 ((-3 |#1| #1="failed") (-86) (-587 |#1|))) (-15 -2524 ((-86) (-86) (-1 |#1| (-587 |#1|)))) (-15 -2524 ((-86) (-86) (-1 |#1| |#1|))) (-15 -2524 ((-3 (-1 |#1| (-587 |#1|)) #1#) (-86))) (-15 -1293 ((-86) (-86) (-587 (-1 |#1| (-587 |#1|))))) (-15 -1293 ((-86) (-86) (-1 |#1| |#1|))) (-15 -1293 ((-3 (-587 (-1 |#1| (-587 |#1|))) #1#) (-86))) (-15 -1294 ((-86) |#1|)) (-15 -1295 ((-3 |#1| #1#) (-86)))) (-1017)) (T -87)) +((-1295 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1017)))) (-1294 (*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1017)))) (-1293 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-587 (-1 *4 (-587 *4)))) (-5 *1 (-87 *4)) (-4 *4 (-1017)))) (-1293 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1017)) (-5 *1 (-87 *4)))) (-1293 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-587 (-1 *4 (-587 *4)))) (-4 *4 (-1017)) (-5 *1 (-87 *4)))) (-2524 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-587 *4))) (-5 *1 (-87 *4)) (-4 *4 (-1017)))) (-2524 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1017)) (-5 *1 (-87 *4)))) (-2524 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-587 *4))) (-4 *4 (-1017)) (-5 *1 (-87 *4)))) (-2524 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-587 *2)) (-5 *1 (-87 *2)) (-4 *2 (-1017))))) +((-1296 (((-488) |#2|) 41 T ELT))) +(((-88 |#1| |#2|) (-10 -7 (-15 -1296 ((-488) |#2|))) (-13 (-314) (-954 (-352 (-488)))) (-1159 |#1|)) (T -88)) +((-1296 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-954 (-352 *2)))) (-5 *2 (-488)) (-5 *1 (-88 *4 *3)) (-4 *3 (-1159 *4))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3043 (($ $ (-488)) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2617 (($ (-1089 (-488)) (-488)) NIL T ELT)) (-2570 (($ $ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-2618 (($ $) NIL T ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3778 (((-698) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2620 (((-488)) NIL T ELT)) (-2619 (((-488) $) NIL T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3775 (($ $ (-488)) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-2621 (((-1073 (-488)) $) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3776 (((-488) $ (-488)) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-89 |#1|) (-783 |#1|) (-488)) (T -89)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3135 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-260)) ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-89 |#1|) (-825)) ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| (-89 |#1|) (-825)) ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3629 (((-488) $) NIL (|has| (-89 |#1|) (-744)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-89 |#1|) #1#) $) NIL T ELT) (((-3 (-1094) #1#) $) NIL (|has| (-89 |#1|) (-954 (-1094))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| (-89 |#1|) (-954 (-488))) ELT) (((-3 (-488) #1#) $) NIL (|has| (-89 |#1|) (-954 (-488))) ELT)) (-3162 (((-89 |#1|) $) NIL T ELT) (((-1094) $) NIL (|has| (-89 |#1|) (-954 (-1094))) ELT) (((-352 (-488)) $) NIL (|has| (-89 |#1|) (-954 (-488))) ELT) (((-488) $) NIL (|has| (-89 |#1|) (-954 (-488))) ELT)) (-3736 (($ $) NIL T ELT) (($ (-488) $) NIL T ELT)) (-2570 (($ $ $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| (-89 |#1|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| (-89 |#1|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-89 |#1|))) (|:| |vec| (-1183 (-89 |#1|)))) (-634 $) (-1183 $)) NIL T ELT) (((-634 (-89 |#1|)) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3000 (($) NIL (|has| (-89 |#1|) (-487)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-3192 (((-85) $) NIL (|has| (-89 |#1|) (-744)) ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (|has| (-89 |#1|) (-800 (-488))) ELT) (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (|has| (-89 |#1|) (-800 (-332))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3002 (($ $) NIL T ELT)) (-3004 (((-89 |#1|) $) NIL T ELT)) (-3451 (((-636 $) $) NIL (|has| (-89 |#1|) (-1070)) ELT)) (-3193 (((-85) $) NIL (|has| (-89 |#1|) (-744)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2537 (($ $ $) NIL (|has| (-89 |#1|) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| (-89 |#1|) (-760)) ELT)) (-3849 (($ (-1 (-89 |#1|) (-89 |#1|)) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| (-89 |#1|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| (-89 |#1|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-89 |#1|))) (|:| |vec| (-1183 (-89 |#1|)))) (-1183 $) $) NIL T ELT) (((-634 (-89 |#1|)) (-1183 $)) NIL T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3452 (($) NIL (|has| (-89 |#1|) (-1070)) CONST)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3134 (($ $) NIL (|has| (-89 |#1|) (-260)) ELT)) (-3136 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-487)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-89 |#1|) (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-89 |#1|) (-825)) ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-3774 (($ $ (-587 (-89 |#1|)) (-587 (-89 |#1|))) NIL (|has| (-89 |#1|) (-262 (-89 |#1|))) ELT) (($ $ (-89 |#1|) (-89 |#1|)) NIL (|has| (-89 |#1|) (-262 (-89 |#1|))) ELT) (($ $ (-251 (-89 |#1|))) NIL (|has| (-89 |#1|) (-262 (-89 |#1|))) ELT) (($ $ (-587 (-251 (-89 |#1|)))) NIL (|has| (-89 |#1|) (-262 (-89 |#1|))) ELT) (($ $ (-587 (-1094)) (-587 (-89 |#1|))) NIL (|has| (-89 |#1|) (-459 (-1094) (-89 |#1|))) ELT) (($ $ (-1094) (-89 |#1|)) NIL (|has| (-89 |#1|) (-459 (-1094) (-89 |#1|))) ELT)) (-1611 (((-698) $) NIL T ELT)) (-3806 (($ $ (-89 |#1|)) NIL (|has| (-89 |#1|) (-243 (-89 |#1|) (-89 |#1|))) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-3764 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| (-89 |#1|) (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| (-89 |#1|) (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| (-89 |#1|) (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| (-89 |#1|) (-815 (-1094))) ELT) (($ $) NIL (|has| (-89 |#1|) (-191)) ELT) (($ $ (-698)) NIL (|has| (-89 |#1|) (-191)) ELT)) (-3001 (($ $) NIL T ELT)) (-3003 (((-89 |#1|) $) NIL T ELT)) (-3978 (((-804 (-488)) $) NIL (|has| (-89 |#1|) (-557 (-804 (-488)))) ELT) (((-804 (-332)) $) NIL (|has| (-89 |#1|) (-557 (-804 (-332)))) ELT) (((-477) $) NIL (|has| (-89 |#1|) (-557 (-477))) ELT) (((-332) $) NIL (|has| (-89 |#1|) (-937)) ELT) (((-181) $) NIL (|has| (-89 |#1|) (-937)) ELT)) (-2622 (((-150 (-352 (-488))) $) NIL T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-825))) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ (-89 |#1|)) NIL T ELT) (($ (-1094)) NIL (|has| (-89 |#1|) (-954 (-1094))) ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-825))) (|has| (-89 |#1|) (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-3137 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-487)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3776 (((-352 (-488)) $ (-488)) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3389 (($ $) NIL (|has| (-89 |#1|) (-744)) ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| (-89 |#1|) (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| (-89 |#1|) (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| (-89 |#1|) (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| (-89 |#1|) (-815 (-1094))) ELT) (($ $) NIL (|has| (-89 |#1|) (-191)) ELT) (($ $ (-698)) NIL (|has| (-89 |#1|) (-191)) ELT)) (-2572 (((-85) $ $) NIL (|has| (-89 |#1|) (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| (-89 |#1|) (-760)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL (|has| (-89 |#1|) (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| (-89 |#1|) (-760)) ELT)) (-3956 (($ $ $) NIL T ELT) (($ (-89 |#1|) (-89 |#1|)) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ (-89 |#1|) $) NIL T ELT) (($ $ (-89 |#1|)) NIL T ELT))) +(((-90 |#1|) (-13 (-908 (-89 |#1|)) (-10 -8 (-15 -3776 ((-352 (-488)) $ (-488))) (-15 -2622 ((-150 (-352 (-488))) $)) (-15 -3736 ($ $)) (-15 -3736 ($ (-488) $)))) (-488)) (T -90)) +((-3776 (*1 *2 *1 *3) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-488)))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-150 (-352 (-488)))) (-5 *1 (-90 *3)) (-14 *3 (-488)))) (-3736 (*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-488)))) (-3736 (*1 *1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-90 *3)) (-14 *3 *2)))) +((-3794 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 59 T ELT) (($ $ #3="right" $) 61 T ELT)) (-3037 (((-587 $) $) 31 T ELT)) (-3033 (((-85) $ $) 36 T ELT)) (-3036 (((-587 |#2|) $) 25 T ELT)) (-3533 (((-85) $) 18 T ELT)) (-3806 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3639 (((-85) $) 55 T ELT)) (-3953 (((-776) $) 46 T ELT)) (-3528 (((-587 $) $) 32 T ELT)) (-3062 (((-85) $ $) 38 T ELT))) +(((-91 |#1| |#2|) (-10 -7 (-15 -3062 ((-85) |#1| |#1|)) (-15 -3953 ((-776) |#1|)) (-15 -3794 (|#1| |#1| #1="right" |#1|)) (-15 -3794 (|#1| |#1| #2="left" |#1|)) (-15 -3806 (|#1| |#1| #1#)) (-15 -3806 (|#1| |#1| #2#)) (-15 -3794 (|#2| |#1| #3="value" |#2|)) (-15 -3033 ((-85) |#1| |#1|)) (-15 -3036 ((-587 |#2|) |#1|)) (-15 -3639 ((-85) |#1|)) (-15 -3806 (|#2| |#1| #3#)) (-15 -3533 ((-85) |#1|)) (-15 -3037 ((-587 |#1|) |#1|)) (-15 -3528 ((-587 |#1|) |#1|))) (-92 |#2|) (-1133)) (T -91)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3408 ((|#1| $) 43 T ELT)) (-3031 ((|#1| $ |#1|) 34 (|has| $ (-1039 |#1|)) ELT)) (-1297 (($ $ $) 49 (|has| $ (-1039 |#1|)) ELT)) (-1298 (($ $ $) 51 (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1039 |#1|)) ELT) (($ $ "left" $) 52 (|has| $ (-1039 |#1|)) ELT) (($ $ "right" $) 50 (|has| $ (-1039 |#1|)) ELT)) (-3032 (($ $ (-587 $)) 36 (|has| $ (-1039 |#1|)) ELT)) (-3730 (($) 6 T CONST)) (-3143 (($ $) 54 T ELT)) (-3037 (((-587 $) $) 45 T ELT)) (-3033 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3144 (($ $) 56 T ELT)) (-3036 (((-587 |#1|) $) 40 T ELT)) (-3533 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#1| $ #1#) 42 T ELT) (($ $ "left") 55 T ELT) (($ $ "right") 53 T ELT)) (-3035 (((-488) $ $) 39 T ELT)) (-3639 (((-85) $) 41 T ELT)) (-3406 (($ $) 9 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-3528 (((-587 $) $) 46 T ELT)) (-3034 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-92 |#1|) (-113) (-1133)) (T -92)) +((-3144 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1133)))) (-3806 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1133)))) (-3143 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1133)))) (-3806 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1133)))) (-3794 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (-4 *1 (-1039 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1133)))) (-1298 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1133)))) (-3794 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (-4 *1 (-1039 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1133)))) (-1297 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1133))))) +(-13 (-927 |t#1|) (-10 -8 (-15 -3144 ($ $)) (-15 -3806 ($ $ "left")) (-15 -3143 ($ $)) (-15 -3806 ($ $ "right")) (IF (|has| $ (-1039 |t#1|)) (PROGN (-15 -3794 ($ $ "left" $)) (-15 -1298 ($ $ $)) (-15 -3794 ($ $ "right" $)) (-15 -1297 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-927 |#1|) . T) ((-1017) |has| |#1| (-1017)) ((-1133) . T)) +((-1301 (((-85) |#1|) 29 T ELT)) (-1300 (((-698) (-698)) 28 T ELT) (((-698)) 27 T ELT)) (-1299 (((-85) |#1| (-85)) 30 T ELT) (((-85) |#1|) 31 T ELT))) +(((-93 |#1|) (-10 -7 (-15 -1299 ((-85) |#1|)) (-15 -1299 ((-85) |#1| (-85))) (-15 -1300 ((-698))) (-15 -1300 ((-698) (-698))) (-15 -1301 ((-85) |#1|))) (-1159 (-488))) (T -93)) +((-1301 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1159 (-488))))) (-1300 (*1 *2 *2) (-12 (-5 *2 (-698)) (-5 *1 (-93 *3)) (-4 *3 (-1159 (-488))))) (-1300 (*1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-93 *3)) (-4 *3 (-1159 (-488))))) (-1299 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1159 (-488))))) (-1299 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1159 (-488)))))) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3408 ((|#1| $) 18 T ELT)) (-3424 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3031 ((|#1| $ |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-1297 (($ $ $) 21 (|has| $ (-1039 |#1|)) ELT)) (-1298 (($ $ $) 23 (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1039 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1039 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1039 |#1|)) ELT)) (-3032 (($ $ (-587 $)) NIL (|has| $ (-1039 |#1|)) ELT)) (-3730 (($) NIL T CONST)) (-3143 (($ $) 20 T ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3037 (((-587 $) $) NIL T ELT)) (-3033 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1306 (($ $ |#1| $) 27 T ELT)) (-2614 (((-587 |#1|) $) NIL T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3144 (($ $) 22 T ELT)) (-3036 (((-587 |#1|) $) NIL T ELT)) (-3533 (((-85) $) NIL T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-1302 (($ |#1| $) 28 T ELT)) (-3615 (($ |#1| $) 15 T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) 17 T ELT)) (-3571 (($) 11 T ELT)) (-3806 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3035 (((-488) $ $) NIL T ELT)) (-3639 (((-85) $) NIL T ELT)) (-1735 (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3953 (((-776) $) NIL (|has| |#1| (-556 (-776))) ELT)) (-3528 (((-587 $) $) NIL T ELT)) (-3034 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1303 (($ (-587 |#1|)) 16 T ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3062 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-94 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1303 ($ (-587 |#1|))) (-15 -3615 ($ |#1| $)) (-15 -1302 ($ |#1| $)) (-15 -3424 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-760)) (T -94)) +((-1303 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-760)) (-5 *1 (-94 *3)))) (-3615 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-760)))) (-1302 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-760)))) (-3424 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) (-5 *1 (-94 *3)) (-4 *3 (-760))))) +((-2318 (($ $) 13 T ELT)) (-2566 (($ $) 11 T ELT)) (-1304 (($ $ $) 23 T ELT)) (-1305 (($ $ $) 21 T ELT)) (-2316 (($ $ $) 19 T ELT)) (-2317 (($ $ $) 17 T ELT))) +(((-95 |#1|) (-10 -7 (-15 -1304 (|#1| |#1| |#1|)) (-15 -1305 (|#1| |#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2317 (|#1| |#1| |#1|)) (-15 -2316 (|#1| |#1| |#1|)) (-15 -2566 (|#1| |#1|))) (-96)) (T -95)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-2318 (($ $) 105 T ELT)) (-3327 (($ $ $) 34 T ELT)) (-2203 (((-1189) $ (-488) (-488)) 60 (|has| $ (-1039 (-85))) ELT)) (-1740 (((-85) $) 99 (|has| (-85) (-760)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) 93 T ELT)) (-1738 (($ $) 103 (-12 (|has| (-85) (-760)) (|has| $ (-1039 (-85)))) ELT) (($ (-1 (-85) (-85) (-85)) $) 102 (|has| $ (-1039 (-85))) ELT)) (-2915 (($ $) 98 (|has| (-85) (-760)) ELT) (($ (-1 (-85) (-85) (-85)) $) 92 T ELT)) (-3794 (((-85) $ (-1150 (-488)) (-85)) 78 (|has| $ (-1039 (-85))) ELT) (((-85) $ (-488) (-85)) 48 (|has| $ (-1039 (-85))) ELT)) (-3716 (($ (-1 (-85) (-85)) $) 64 (|has| $ (-320 (-85))) ELT)) (-3730 (($) 41 T CONST)) (-2302 (($ $) 101 (|has| $ (-1039 (-85))) ELT)) (-2303 (($ $) 91 T ELT)) (-1357 (($ $) 62 (-12 (|has| (-85) (-72)) (|has| $ (-320 (-85)))) ELT)) (-3412 (($ (-1 (-85) (-85)) $) 65 (|has| $ (-320 (-85))) ELT) (($ (-85) $) 63 (-12 (|has| (-85) (-72)) (|has| $ (-320 (-85)))) ELT)) (-3848 (((-85) (-1 (-85) (-85) (-85)) $) 84 T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) 83 T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) 79 (|has| (-85) (-72)) ELT)) (-1580 (((-85) $ (-488) (-85)) 47 (|has| $ (-1039 (-85))) ELT)) (-3118 (((-85) $ (-488)) 49 T ELT)) (-3425 (((-488) (-85) $ (-488)) 96 (|has| (-85) (-72)) ELT) (((-488) (-85) $) 95 (|has| (-85) (-72)) ELT) (((-488) (-1 (-85) (-85)) $) 94 T ELT)) (-2567 (($ $ $) 110 T ELT)) (-2566 (($ $) 108 T ELT)) (-1304 (($ $ $) 35 T ELT)) (-3620 (($ (-698) (-85)) 68 T ELT)) (-1305 (($ $ $) 36 T ELT)) (-2205 (((-488) $) 57 (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) 23 T ELT)) (-3524 (($ $ $) 97 (|has| (-85) (-760)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) 90 T ELT)) (-2614 (((-587 (-85)) $) 85 T ELT)) (-3251 (((-85) (-85) $) 80 (|has| (-85) (-72)) ELT)) (-2206 (((-488) $) 56 (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) 22 T ELT)) (-3332 (($ (-1 (-85) (-85)) $) 104 T ELT)) (-3849 (($ (-1 (-85) (-85) (-85)) $ $) 73 T ELT) (($ (-1 (-85) (-85)) $) 42 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2309 (($ $ $ (-488)) 77 T ELT) (($ (-85) $ (-488)) 76 T ELT)) (-2208 (((-587 (-488)) $) 54 T ELT)) (-2209 (((-85) (-488) $) 53 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3807 (((-85) $) 58 (|has| (-488) (-760)) ELT)) (-1734 (((-3 (-85) "failed") (-1 (-85) (-85)) $) 82 T ELT)) (-2204 (($ $ (-85)) 59 (|has| $ (-1039 (-85))) ELT)) (-1736 (((-85) (-1 (-85) (-85)) $) 87 T ELT)) (-3774 (($ $ (-587 (-85)) (-587 (-85))) 46 (-12 (|has| (-85) (-262 (-85))) (|has| (-85) (-1017))) ELT) (($ $ (-85) (-85)) 45 (-12 (|has| (-85) (-262 (-85))) (|has| (-85) (-1017))) ELT) (($ $ (-251 (-85))) 44 (-12 (|has| (-85) (-262 (-85))) (|has| (-85) (-1017))) ELT) (($ $ (-587 (-251 (-85)))) 43 (-12 (|has| (-85) (-262 (-85))) (|has| (-85) (-1017))) ELT)) (-1226 (((-85) $ $) 37 T ELT)) (-2207 (((-85) (-85) $) 55 (-12 (|has| $ (-320 (-85))) (|has| (-85) (-72))) ELT)) (-2210 (((-587 (-85)) $) 52 T ELT)) (-3409 (((-85) $) 40 T ELT)) (-3571 (($) 39 T ELT)) (-3806 (($ $ (-1150 (-488))) 67 T ELT) (((-85) $ (-488)) 51 T ELT) (((-85) $ (-488) (-85)) 50 T ELT)) (-2310 (($ $ (-1150 (-488))) 75 T ELT) (($ $ (-488)) 74 T ELT)) (-1735 (((-698) (-1 (-85) (-85)) $) 86 T ELT) (((-698) (-85) $) 81 (|has| (-85) (-72)) ELT)) (-1739 (($ $ $ (-488)) 100 (|has| $ (-1039 (-85))) ELT)) (-3406 (($ $) 38 T ELT)) (-3978 (((-477) $) 61 (|has| (-85) (-557 (-477))) ELT)) (-3536 (($ (-587 (-85))) 66 T ELT)) (-3808 (($ (-587 $)) 72 T ELT) (($ $ $) 71 T ELT) (($ (-85) $) 70 T ELT) (($ $ (-85)) 69 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-1737 (((-85) (-1 (-85) (-85)) $) 88 T ELT)) (-2568 (($ $ $) 109 T ELT)) (-2316 (($ $ $) 107 T ELT)) (-2572 (((-85) $ $) 21 T ELT)) (-2573 (((-85) $ $) 19 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 20 T ELT)) (-2691 (((-85) $ $) 18 T ELT)) (-2317 (($ $ $) 106 T ELT)) (-3964 (((-698) $) 89 T ELT))) (((-96) (-113)) (T -96)) -((-1303 (*1 *1 *1 *1) (-4 *1 (-96))) (-1302 (*1 *1 *1 *1) (-4 *1 (-96))) (-3324 (*1 *1 *1 *1) (-4 *1 (-96)))) -(-13 (-758) (-84) (-606) (-19 (-85)) (-10 -8 (-15 -1303 ($ $ $)) (-15 -1302 ($ $ $)) (-15 -3324 ($ $ $)))) -(((-34) . T) ((-72) . T) ((-84) . T) ((-554 (-774)) . T) ((-124 (-85)) . T) ((-555 (-475)) |has| (-85) (-555 (-475))) ((-241 (-486) (-85)) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) (-85)) . T) ((-260 (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ((-318 (-85)) . T) ((-324 (-85)) . T) ((-381 (-85)) . T) ((-430 (-85)) . T) ((-540 (-486) (-85)) . T) ((-457 (-85) (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ((-13) . T) ((-595 (-85)) . T) ((-606) . T) ((-19 (-85)) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1037 (-85)) . T) ((-1131) . T)) -((-3329 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3403 (($ $) 16 T ELT)) (-3961 (((-696) $) 25 T ELT))) -(((-97 |#1| |#2|) (-10 -7 (-15 -3329 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3961 ((-696) |#1|)) (-15 -3403 (|#1| |#1|))) (-98 |#2|) (-1015)) (T -97)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1037 |#1|)) ELT)) (-1295 (($ $ $) 49 (|has| $ (-1037 |#1|)) ELT)) (-1296 (($ $ $) 51 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1037 |#1|)) ELT) (($ $ #2="left" $) 52 (|has| $ (-1037 |#1|)) ELT) (($ $ #3="right" $) 50 (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) 36 (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-3140 (($ $) 54 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 71 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 67 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 66 T ELT)) (-3034 (((-585 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-1304 (($ $ |#1| $) 59 T ELT)) (-2611 (((-585 |#1|) $) 65 T ELT)) (-3248 (((-85) |#1| $) 70 (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 60 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3141 (($ $) 56 T ELT)) (-3033 (((-585 |#1|) $) 40 T ELT)) (-3530 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 63 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT) (($ $ #2#) 55 T ELT) (($ $ #3#) 53 T ELT)) (-3032 (((-486) $ $) 39 T ELT)) (-3636 (((-85) $) 41 T ELT)) (-1732 (((-696) |#1| $) 69 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 64 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) 46 T ELT)) (-3031 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 62 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) 61 T ELT))) -(((-98 |#1|) (-113) (-1015)) (T -98)) -((-1304 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1015))))) -(-13 (-92 |t#1|) (-318 |t#1|) (-1037 |t#1|) (-10 -8 (-15 -1304 ($ $ |t#1| $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-92 |#1|) . T) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-925 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 18 T ELT)) (-3028 ((|#1| $ |#1|) 22 (|has| $ (-1037 |#1|)) ELT)) (-1295 (($ $ $) 23 (|has| $ (-1037 |#1|)) ELT)) (-1296 (($ $ $) 21 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-3140 (($ $) 24 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3034 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1304 (($ $ |#1| $) NIL T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3141 (($ $) NIL T ELT)) (-3033 (((-585 |#1|) $) NIL T ELT)) (-3530 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3612 (($ |#1| $) 15 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 17 T ELT)) (-3568 (($) 11 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3032 (((-486) $ $) NIL T ELT)) (-3636 (((-85) $) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) 20 T ELT)) (-3950 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) NIL T ELT)) (-3031 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1305 (($ (-585 |#1|)) 16 T ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-99 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1305 ($ (-585 |#1|))) (-15 -3612 ($ |#1| $)))) (-758)) (T -99)) -((-1305 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-99 *3)))) (-3612 (*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-758))))) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 31 T ELT)) (-3028 ((|#1| $ |#1|) 33 (|has| $ (-1037 |#1|)) ELT)) (-1295 (($ $ $) 37 (|has| $ (-1037 |#1|)) ELT)) (-1296 (($ $ $) 35 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-3140 (($ $) 24 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3034 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1304 (($ $ |#1| $) 17 T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3141 (($ $) 23 T ELT)) (-3033 (((-585 |#1|) $) NIL T ELT)) (-3530 (((-85) $) 26 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 21 T ELT)) (-3568 (($) 13 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3032 (((-486) $ $) NIL T ELT)) (-3636 (((-85) $) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) NIL T ELT)) (-3031 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1306 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) 12 (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-100 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1306 ($ |#1|)) (-15 -1306 ($ $ |#1| $)))) (-1015)) (T -100)) -((-1306 (*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1015)))) (-1306 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1015))))) -((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) 32 T ELT)) (-3139 (((-696)) 17 T ELT)) (-3727 (($) 9 T CONST)) (-2997 (($) 27 T ELT)) (-2534 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2860 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-2012 (((-832) $) 25 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) 23 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1307 (($ (-696)) 8 T ELT)) (-3728 (($ $ $) 29 T ELT)) (-3729 (($ $ $) 28 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) 31 T ELT)) (-2569 (((-85) $ $) 14 T ELT)) (-2570 (((-85) $ $) 12 T ELT)) (-3059 (((-85) $ $) 10 T ELT)) (-2687 (((-85) $ $) 13 T ELT)) (-2688 (((-85) $ $) 11 T ELT)) (-2314 (($ $ $) 30 T ELT))) -(((-101) (-13 (-754) (-606) (-10 -8 (-15 -1307 ($ (-696))) (-15 -3729 ($ $ $)) (-15 -3728 ($ $ $)) (-15 -3727 ($) -3956)))) (T -101)) -((-1307 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-101)))) (-3729 (*1 *1 *1 *1) (-5 *1 (-101))) (-3728 (*1 *1 *1 *1) (-5 *1 (-101))) (-3727 (*1 *1) (-5 *1 (-101)))) -((-696) (|%ilt| |#1| 256)) -((-2571 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 (-101))) ELT)) (-1737 (((-85) (-1 (-85) (-101) (-101)) $) NIL T ELT) (((-85) $) NIL (|has| (-101) (-758)) ELT)) (-1735 (($ (-1 (-85) (-101) (-101)) $) NIL (|has| $ (-1037 (-101))) ELT) (($ $) NIL (-12 (|has| $ (-1037 (-101))) (|has| (-101) (-758))) ELT)) (-2912 (($ (-1 (-85) (-101) (-101)) $) NIL T ELT) (($ $) NIL (|has| (-101) (-758)) ELT)) (-3791 (((-101) $ (-486) (-101)) 26 (|has| $ (-1037 (-101))) ELT) (((-101) $ (-1148 (-486)) (-101)) NIL (|has| $ (-1037 (-101))) ELT)) (-1308 (((-696) $ (-696)) 35 T ELT)) (-3713 (($ (-1 (-85) (-101)) $) NIL (|has| $ (-318 (-101))) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 (-101))) ELT)) (-2300 (($ $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-101))) (|has| (-101) (-72))) ELT)) (-3409 (($ (-101) $) NIL (-12 (|has| $ (-318 (-101))) (|has| (-101) (-72))) ELT) (($ (-1 (-85) (-101)) $) NIL (|has| $ (-318 (-101))) ELT)) (-3845 (((-101) (-1 (-101) (-101) (-101)) $ (-101) (-101)) NIL (|has| (-101) (-72)) ELT) (((-101) (-1 (-101) (-101) (-101)) $ (-101)) NIL T ELT) (((-101) (-1 (-101) (-101) (-101)) $) NIL T ELT)) (-1577 (((-101) $ (-486) (-101)) 25 (|has| $ (-1037 (-101))) ELT)) (-3115 (((-101) $ (-486)) 20 T ELT)) (-3422 (((-486) (-1 (-85) (-101)) $) NIL T ELT) (((-486) (-101) $) NIL (|has| (-101) (-72)) ELT) (((-486) (-101) $ (-486)) NIL (|has| (-101) (-72)) ELT)) (-3617 (($ (-696) (-101)) 14 T ELT)) (-2202 (((-486) $) 27 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| (-101) (-758)) ELT)) (-3521 (($ (-1 (-85) (-101) (-101)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-101) (-758)) ELT)) (-2611 (((-585 (-101)) $) NIL T ELT)) (-3248 (((-85) (-101) $) NIL (|has| (-101) (-72)) ELT)) (-2203 (((-486) $) 30 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-101) (-758)) ELT)) (-3329 (($ (-1 (-101) (-101)) $) NIL T ELT)) (-3846 (($ (-1 (-101) (-101)) $) NIL T ELT) (($ (-1 (-101) (-101) (-101)) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| (-101) (-1015)) ELT)) (-2306 (($ (-101) $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| (-101) (-1015)) ELT)) (-3804 (((-101) $) NIL (|has| (-486) (-758)) ELT)) (-1731 (((-3 (-101) "failed") (-1 (-85) (-101)) $) NIL T ELT)) (-2201 (($ $ (-101)) NIL (|has| $ (-1037 (-101))) ELT)) (-1733 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-101)))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1015))) ELT) (($ $ (-249 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1015))) ELT) (($ $ (-101) (-101)) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1015))) ELT) (($ $ (-585 (-101)) (-585 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) (-101) $) NIL (-12 (|has| $ (-318 (-101))) (|has| (-101) (-72))) ELT)) (-2207 (((-585 (-101)) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) 12 T ELT)) (-3803 (((-101) $ (-486) (-101)) NIL T ELT) (((-101) $ (-486)) 23 T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-1732 (((-696) (-101) $) NIL (|has| (-101) (-72)) ELT) (((-696) (-1 (-85) (-101)) $) NIL T ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 (-101))) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-101) (-555 (-475))) ELT)) (-3533 (($ (-585 (-101))) 41 T ELT)) (-3805 (($ $ (-101)) NIL T ELT) (($ (-101) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-585 $)) NIL T ELT)) (-3950 (((-871 (-101)) $) 36 T ELT) (((-1075) $) 38 T ELT) (((-774) $) NIL (|has| (-101) (-554 (-774))) ELT)) (-1309 (((-696) $) 18 T ELT)) (-1310 (($ (-696)) 8 T ELT)) (-1267 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-1734 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| (-101) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-101) (-758)) ELT)) (-3059 (((-85) $ $) 33 (|has| (-101) (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-101) (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| (-101) (-758)) ELT)) (-3961 (((-696) $) 15 T ELT))) -(((-102) (-13 (-19 (-101)) (-554 (-871 (-101))) (-554 (-1075)) (-10 -8 (-15 -1310 ($ (-696))) (-15 -1309 ((-696) $)) (-15 -1308 ((-696) $ (-696)))))) (T -102)) -((-1310 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-102)))) (-1309 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-102)))) (-1308 (*1 *2 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-102))))) -((-2571 (((-85) $ $) NIL T ELT)) (-1311 (($) 6 T CONST)) (-1313 (($) 7 T CONST)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 14 T ELT)) (-1312 (($) 8 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 10 T ELT))) -(((-103) (-13 (-1015) (-10 -8 (-15 -1313 ($) -3956) (-15 -1312 ($) -3956) (-15 -1311 ($) -3956)))) (T -103)) -((-1313 (*1 *1) (-5 *1 (-103))) (-1312 (*1 *1) (-5 *1 (-103))) (-1311 (*1 *1) (-5 *1 (-103)))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT))) +((-1305 (*1 *1 *1 *1) (-4 *1 (-96))) (-1304 (*1 *1 *1 *1) (-4 *1 (-96))) (-3327 (*1 *1 *1 *1) (-4 *1 (-96)))) +(-13 (-760) (-84) (-608) (-19 (-85)) (-10 -8 (-15 -1305 ($ $ $)) (-15 -1304 ($ $ $)) (-15 -3327 ($ $ $)))) +(((-34) . T) ((-72) . T) ((-84) . T) ((-556 (-776)) . T) ((-124 (-85)) . T) ((-557 (-477)) |has| (-85) (-557 (-477))) ((-243 (-488) (-85)) . T) ((-243 (-1150 (-488)) $) . T) ((-245 (-488) (-85)) . T) ((-262 (-85)) -12 (|has| (-85) (-262 (-85))) (|has| (-85) (-1017))) ((-320 (-85)) . T) ((-326 (-85)) . T) ((-383 (-85)) . T) ((-432 (-85)) . T) ((-542 (-488) (-85)) . T) ((-459 (-85) (-85)) -12 (|has| (-85) (-262 (-85))) (|has| (-85) (-1017))) ((-13) . T) ((-597 (-85)) . T) ((-608) . T) ((-19 (-85)) . T) ((-760) . T) ((-763) . T) ((-1017) . T) ((-1039 (-85)) . T) ((-1133) . T)) +((-3332 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3406 (($ $) 16 T ELT)) (-3964 (((-698) $) 25 T ELT))) +(((-97 |#1| |#2|) (-10 -7 (-15 -3332 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3964 ((-698) |#1|)) (-15 -3406 (|#1| |#1|))) (-98 |#2|) (-1017)) (T -97)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3408 ((|#1| $) 43 T ELT)) (-3031 ((|#1| $ |#1|) 34 (|has| $ (-1039 |#1|)) ELT)) (-1297 (($ $ $) 49 (|has| $ (-1039 |#1|)) ELT)) (-1298 (($ $ $) 51 (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1039 |#1|)) ELT) (($ $ #2="left" $) 52 (|has| $ (-1039 |#1|)) ELT) (($ $ #3="right" $) 50 (|has| $ (-1039 |#1|)) ELT)) (-3032 (($ $ (-587 $)) 36 (|has| $ (-1039 |#1|)) ELT)) (-3730 (($) 6 T CONST)) (-3143 (($ $) 54 T ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 71 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 67 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 66 T ELT)) (-3037 (((-587 $) $) 45 T ELT)) (-3033 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-1306 (($ $ |#1| $) 59 T ELT)) (-2614 (((-587 |#1|) $) 65 T ELT)) (-3251 (((-85) |#1| $) 70 (|has| |#1| (-72)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 60 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3144 (($ $) 56 T ELT)) (-3036 (((-587 |#1|) $) 40 T ELT)) (-3533 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) 63 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#1| $ #1#) 42 T ELT) (($ $ #2#) 55 T ELT) (($ $ #3#) 53 T ELT)) (-3035 (((-488) $ $) 39 T ELT)) (-3639 (((-85) $) 41 T ELT)) (-1735 (((-698) |#1| $) 69 (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) 64 T ELT)) (-3406 (($ $) 9 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-3528 (((-587 $) $) 46 T ELT)) (-3034 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) 62 T ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) 61 T ELT))) +(((-98 |#1|) (-113) (-1017)) (T -98)) +((-1306 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1017))))) +(-13 (-92 |t#1|) (-320 |t#1|) (-1039 |t#1|) (-10 -8 (-15 -1306 ($ $ |t#1| $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-92 |#1|) . T) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-320 |#1|) . T) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-927 |#1|) . T) ((-1017) |has| |#1| (-1017)) ((-1039 |#1|) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3408 ((|#1| $) 18 T ELT)) (-3031 ((|#1| $ |#1|) 22 (|has| $ (-1039 |#1|)) ELT)) (-1297 (($ $ $) 23 (|has| $ (-1039 |#1|)) ELT)) (-1298 (($ $ $) 21 (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1039 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1039 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1039 |#1|)) ELT)) (-3032 (($ $ (-587 $)) NIL (|has| $ (-1039 |#1|)) ELT)) (-3730 (($) NIL T CONST)) (-3143 (($ $) 24 T ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3037 (((-587 $) $) NIL T ELT)) (-3033 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1306 (($ $ |#1| $) NIL T ELT)) (-2614 (((-587 |#1|) $) NIL T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3144 (($ $) NIL T ELT)) (-3036 (((-587 |#1|) $) NIL T ELT)) (-3533 (((-85) $) NIL T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-3615 (($ |#1| $) 15 T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) 17 T ELT)) (-3571 (($) 11 T ELT)) (-3806 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3035 (((-488) $ $) NIL T ELT)) (-3639 (((-85) $) NIL T ELT)) (-1735 (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) NIL T ELT)) (-3406 (($ $) 20 T ELT)) (-3953 (((-776) $) NIL (|has| |#1| (-556 (-776))) ELT)) (-3528 (((-587 $) $) NIL T ELT)) (-3034 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1307 (($ (-587 |#1|)) 16 T ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3062 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-99 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1307 ($ (-587 |#1|))) (-15 -3615 ($ |#1| $)))) (-760)) (T -99)) +((-1307 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-760)) (-5 *1 (-99 *3)))) (-3615 (*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-760))))) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3408 ((|#1| $) 31 T ELT)) (-3031 ((|#1| $ |#1|) 33 (|has| $ (-1039 |#1|)) ELT)) (-1297 (($ $ $) 37 (|has| $ (-1039 |#1|)) ELT)) (-1298 (($ $ $) 35 (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1039 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1039 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1039 |#1|)) ELT)) (-3032 (($ $ (-587 $)) NIL (|has| $ (-1039 |#1|)) ELT)) (-3730 (($) NIL T CONST)) (-3143 (($ $) 24 T ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3037 (((-587 $) $) NIL T ELT)) (-3033 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1306 (($ $ |#1| $) 17 T ELT)) (-2614 (((-587 |#1|) $) NIL T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3144 (($ $) 23 T ELT)) (-3036 (((-587 |#1|) $) NIL T ELT)) (-3533 (((-85) $) 26 T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) 21 T ELT)) (-3571 (($) 13 T ELT)) (-3806 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3035 (((-488) $ $) NIL T ELT)) (-3639 (((-85) $) NIL T ELT)) (-1735 (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3953 (((-776) $) NIL (|has| |#1| (-556 (-776))) ELT)) (-3528 (((-587 $) $) NIL T ELT)) (-3034 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1308 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3062 (((-85) $ $) 12 (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-100 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1308 ($ |#1|)) (-15 -1308 ($ $ |#1| $)))) (-1017)) (T -100)) +((-1308 (*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1017)))) (-1308 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1017))))) +((-2574 (((-85) $ $) NIL T ELT)) (-2318 (($ $) 32 T ELT)) (-3142 (((-698)) 17 T ELT)) (-3730 (($) 9 T CONST)) (-3000 (($) 27 T ELT)) (-2537 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2863 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-2015 (((-834) $) 25 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2405 (($ (-834)) 23 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1309 (($ (-698)) 8 T ELT)) (-3731 (($ $ $) 29 T ELT)) (-3732 (($ $ $) 28 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2316 (($ $ $) 31 T ELT)) (-2572 (((-85) $ $) 14 T ELT)) (-2573 (((-85) $ $) 12 T ELT)) (-3062 (((-85) $ $) 10 T ELT)) (-2690 (((-85) $ $) 13 T ELT)) (-2691 (((-85) $ $) 11 T ELT)) (-2317 (($ $ $) 30 T ELT))) +(((-101) (-13 (-756) (-608) (-10 -8 (-15 -1309 ($ (-698))) (-15 -3732 ($ $ $)) (-15 -3731 ($ $ $)) (-15 -3730 ($) -3959)))) (T -101)) +((-1309 (*1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-101)))) (-3732 (*1 *1 *1 *1) (-5 *1 (-101))) (-3731 (*1 *1 *1 *1) (-5 *1 (-101))) (-3730 (*1 *1) (-5 *1 (-101)))) +((-698) (|%ilt| |#1| 256)) +((-2574 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-2203 (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 (-101))) ELT)) (-1740 (((-85) (-1 (-85) (-101) (-101)) $) NIL T ELT) (((-85) $) NIL (|has| (-101) (-760)) ELT)) (-1738 (($ (-1 (-85) (-101) (-101)) $) NIL (|has| $ (-1039 (-101))) ELT) (($ $) NIL (-12 (|has| $ (-1039 (-101))) (|has| (-101) (-760))) ELT)) (-2915 (($ (-1 (-85) (-101) (-101)) $) NIL T ELT) (($ $) NIL (|has| (-101) (-760)) ELT)) (-3794 (((-101) $ (-488) (-101)) 26 (|has| $ (-1039 (-101))) ELT) (((-101) $ (-1150 (-488)) (-101)) NIL (|has| $ (-1039 (-101))) ELT)) (-1310 (((-698) $ (-698)) 35 T ELT)) (-3716 (($ (-1 (-85) (-101)) $) NIL (|has| $ (-320 (-101))) ELT)) (-3730 (($) NIL T CONST)) (-2302 (($ $) NIL (|has| $ (-1039 (-101))) ELT)) (-2303 (($ $) NIL T ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 (-101))) (|has| (-101) (-72))) ELT)) (-3412 (($ (-101) $) NIL (-12 (|has| $ (-320 (-101))) (|has| (-101) (-72))) ELT) (($ (-1 (-85) (-101)) $) NIL (|has| $ (-320 (-101))) ELT)) (-3848 (((-101) (-1 (-101) (-101) (-101)) $ (-101) (-101)) NIL (|has| (-101) (-72)) ELT) (((-101) (-1 (-101) (-101) (-101)) $ (-101)) NIL T ELT) (((-101) (-1 (-101) (-101) (-101)) $) NIL T ELT)) (-1580 (((-101) $ (-488) (-101)) 25 (|has| $ (-1039 (-101))) ELT)) (-3118 (((-101) $ (-488)) 20 T ELT)) (-3425 (((-488) (-1 (-85) (-101)) $) NIL T ELT) (((-488) (-101) $) NIL (|has| (-101) (-72)) ELT) (((-488) (-101) $ (-488)) NIL (|has| (-101) (-72)) ELT)) (-3620 (($ (-698) (-101)) 14 T ELT)) (-2205 (((-488) $) 27 (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL (|has| (-101) (-760)) ELT)) (-3524 (($ (-1 (-85) (-101) (-101)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-101) (-760)) ELT)) (-2614 (((-587 (-101)) $) NIL T ELT)) (-3251 (((-85) (-101) $) NIL (|has| (-101) (-72)) ELT)) (-2206 (((-488) $) 30 (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| (-101) (-760)) ELT)) (-3332 (($ (-1 (-101) (-101)) $) NIL T ELT)) (-3849 (($ (-1 (-101) (-101)) $) NIL T ELT) (($ (-1 (-101) (-101) (-101)) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL (|has| (-101) (-1017)) ELT)) (-2309 (($ (-101) $ (-488)) NIL T ELT) (($ $ $ (-488)) NIL T ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) NIL T ELT)) (-3249 (((-1037) $) NIL (|has| (-101) (-1017)) ELT)) (-3807 (((-101) $) NIL (|has| (-488) (-760)) ELT)) (-1734 (((-3 (-101) "failed") (-1 (-85) (-101)) $) NIL T ELT)) (-2204 (($ $ (-101)) NIL (|has| $ (-1039 (-101))) ELT)) (-1736 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 (-101)))) NIL (-12 (|has| (-101) (-262 (-101))) (|has| (-101) (-1017))) ELT) (($ $ (-251 (-101))) NIL (-12 (|has| (-101) (-262 (-101))) (|has| (-101) (-1017))) ELT) (($ $ (-101) (-101)) NIL (-12 (|has| (-101) (-262 (-101))) (|has| (-101) (-1017))) ELT) (($ $ (-587 (-101)) (-587 (-101))) NIL (-12 (|has| (-101) (-262 (-101))) (|has| (-101) (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) (-101) $) NIL (-12 (|has| $ (-320 (-101))) (|has| (-101) (-72))) ELT)) (-2210 (((-587 (-101)) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) 12 T ELT)) (-3806 (((-101) $ (-488) (-101)) NIL T ELT) (((-101) $ (-488)) 23 T ELT) (($ $ (-1150 (-488))) NIL T ELT)) (-2310 (($ $ (-488)) NIL T ELT) (($ $ (-1150 (-488))) NIL T ELT)) (-1735 (((-698) (-101) $) NIL (|has| (-101) (-72)) ELT) (((-698) (-1 (-85) (-101)) $) NIL T ELT)) (-1739 (($ $ $ (-488)) NIL (|has| $ (-1039 (-101))) ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) NIL (|has| (-101) (-557 (-477))) ELT)) (-3536 (($ (-587 (-101))) 41 T ELT)) (-3808 (($ $ (-101)) NIL T ELT) (($ (-101) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-587 $)) NIL T ELT)) (-3953 (((-873 (-101)) $) 36 T ELT) (((-1077) $) 38 T ELT) (((-776) $) NIL (|has| (-101) (-556 (-776))) ELT)) (-1311 (((-698) $) 18 T ELT)) (-1312 (($ (-698)) 8 T ELT)) (-1269 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-1737 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-2572 (((-85) $ $) NIL (|has| (-101) (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| (-101) (-760)) ELT)) (-3062 (((-85) $ $) 33 (|has| (-101) (-72)) ELT)) (-2690 (((-85) $ $) NIL (|has| (-101) (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| (-101) (-760)) ELT)) (-3964 (((-698) $) 15 T ELT))) +(((-102) (-13 (-19 (-101)) (-556 (-873 (-101))) (-556 (-1077)) (-10 -8 (-15 -1312 ($ (-698))) (-15 -1311 ((-698) $)) (-15 -1310 ((-698) $ (-698)))))) (T -102)) +((-1312 (*1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-102)))) (-1311 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-102)))) (-1310 (*1 *2 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-102))))) +((-2574 (((-85) $ $) NIL T ELT)) (-1313 (($) 6 T CONST)) (-1315 (($) 7 T CONST)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 14 T ELT)) (-1314 (($) 8 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 10 T ELT))) +(((-103) (-13 (-1017) (-10 -8 (-15 -1315 ($) -3959) (-15 -1314 ($) -3959) (-15 -1313 ($) -3959)))) (T -103)) +((-1315 (*1 *1) (-5 *1 (-103))) (-1314 (*1 *1) (-5 *1 (-103))) (-1313 (*1 *1) (-5 *1 (-103)))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-1218 (((-85) $ $) 20 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT))) (((-104) (-113)) (T -104)) -((-1314 (*1 *1 *1 *1) (|partial| -4 *1 (-104)))) -(-13 (-23) (-10 -8 (-15 -1314 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) 7 T ELT)) (-1315 (((-1187) $ (-696)) 17 T ELT)) (-3422 (((-696) $) 18 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) +((-1316 (*1 *1 *1 *1) (|partial| -4 *1 (-104)))) +(-13 (-23) (-10 -8 (-15 -1316 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) 7 T ELT)) (-1317 (((-1189) $ (-698)) 17 T ELT)) (-3425 (((-698) $) 18 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT))) (((-105) (-113)) (T -105)) -((-3422 (*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-696)))) (-1315 (*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-696)) (-5 *2 (-1187))))) -(-13 (-1015) (-10 -8 (-15 -3422 ((-696) $)) (-15 -1315 ((-1187) $ (-696))))) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 18 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-585 (-1051)) $) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-106) (-13 (-997) (-10 -8 (-15 -3236 ((-585 (-1051)) $))))) (T -106)) -((-3236 (*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-106))))) -((-2571 (((-85) $ $) 49 T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-696) #1="failed") $) 60 T ELT)) (-3159 (((-696) $) 58 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) 37 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1317 (((-85)) 61 T ELT)) (-1316 (((-85) (-85)) 63 T ELT)) (-2528 (((-85) $) 30 T ELT)) (-1318 (((-85) $) 57 T ELT)) (-3950 (((-774) $) 28 T ELT) (($ (-696)) 20 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 18 T CONST)) (-2669 (($) 19 T CONST)) (-1319 (($ (-696)) 21 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) 40 T ELT)) (-3059 (((-85) $ $) 32 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 35 T ELT)) (-3840 (((-3 $ #1#) $ $) 42 T ELT)) (-3842 (($ $ $) 38 T ELT)) (** (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-696) $) 48 T ELT) (($ (-832) $) NIL T ELT) (($ $ $) 45 T ELT))) -(((-107) (-13 (-758) (-23) (-665) (-952 (-696)) (-10 -8 (-6 (-4000 "*")) (-15 -3840 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1319 ($ (-696))) (-15 -2528 ((-85) $)) (-15 -1318 ((-85) $)) (-15 -1317 ((-85))) (-15 -1316 ((-85) (-85)))))) (T -107)) -((-3840 (*1 *1 *1 *1) (|partial| -5 *1 (-107))) (** (*1 *1 *1 *1) (-5 *1 (-107))) (-1319 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-107)))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1317 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1316 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) -((-2571 (((-85) $ $) NIL T ELT)) (-1320 (($ (-585 |#3|)) 63 T ELT)) (-3417 (($ $) 125 T ELT) (($ $ (-486) (-486)) 124 T ELT)) (-3727 (($) 17 T ELT)) (-3160 (((-3 |#3| "failed") $) 86 T ELT)) (-3159 ((|#3| $) NIL T ELT)) (-1324 (($ $ (-585 (-486))) 126 T ELT)) (-1321 (((-585 |#3|) $) 58 T ELT)) (-3111 (((-696) $) 68 T ELT)) (-3948 (($ $ $) 120 T ELT)) (-1322 (($) 67 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1323 (($) 16 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 ((|#3| $ (-486)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-486) (-486)) 73 T ELT) ((|#3| $ (-486) (-486) (-486)) 74 T ELT) ((|#3| $ (-486) (-486) (-486) (-486)) 75 T ELT) ((|#3| $ (-585 (-486))) 76 T ELT)) (-3952 (((-696) $) 69 T ELT)) (-1983 (($ $ (-486) $ (-486)) 121 T ELT) (($ $ (-486) (-486)) 123 T ELT)) (-3950 (((-774) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-197 |#2| |#3|)) 102 T ELT) (($ (-1058 |#2| |#3|)) 105 T ELT) (($ (-585 |#3|)) 77 T ELT) (($ (-585 $)) 83 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 96 T CONST)) (-2669 (($) 97 T CONST)) (-3059 (((-85) $ $) 107 T ELT)) (-3840 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3842 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-486)) 116 T ELT) (($ (-486) $) 115 T ELT) (($ $ $) 122 T ELT))) -(((-108 |#1| |#2| |#3|) (-13 (-406 |#3| (-696)) (-411 (-486) (-696)) (-241 (-486) |#3|) (-557 (-197 |#2| |#3|)) (-557 (-1058 |#2| |#3|)) (-557 (-585 |#3|)) (-557 (-585 $)) (-10 -8 (-15 -3111 ((-696) $)) (-15 -3803 (|#3| $)) (-15 -3803 (|#3| $ (-486) (-486))) (-15 -3803 (|#3| $ (-486) (-486) (-486))) (-15 -3803 (|#3| $ (-486) (-486) (-486) (-486))) (-15 -3803 (|#3| $ (-585 (-486)))) (-15 -3948 ($ $ $)) (-15 * ($ $ $)) (-15 -1983 ($ $ (-486) $ (-486))) (-15 -1983 ($ $ (-486) (-486))) (-15 -3417 ($ $)) (-15 -3417 ($ $ (-486) (-486))) (-15 -1324 ($ $ (-585 (-486)))) (-15 -1323 ($)) (-15 -1322 ($)) (-15 -1321 ((-585 |#3|) $)) (-15 -1320 ($ (-585 |#3|))) (-15 -3727 ($)))) (-486) (-696) (-146)) (T -108)) -((-3948 (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146)))) (-3111 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-486)) (-14 *4 *2) (-4 *5 (-146)))) (-3803 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-486)) (-14 *4 (-696)))) (-3803 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-486)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-696)))) (-3803 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-486)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-696)))) (-3803 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-486)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-696)))) (-3803 (*1 *2 *1 *3) (-12 (-5 *3 (-585 (-486))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 (-486)) (-14 *5 (-696)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146)))) (-1983 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-696)) (-4 *5 (-146)))) (-1983 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-696)) (-4 *5 (-146)))) (-3417 (*1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146)))) (-3417 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-696)) (-4 *5 (-146)))) (-1324 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-486)) (-14 *4 (-696)) (-4 *5 (-146)))) (-1323 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146)))) (-1322 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-585 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-486)) (-14 *4 (-696)) (-4 *5 (-146)))) (-1320 (*1 *1 *2) (-12 (-5 *2 (-585 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-486)) (-14 *4 (-696)))) (-3727 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146))))) -((-2417 (((-108 |#1| |#2| |#4|) (-585 |#4|) (-108 |#1| |#2| |#3|)) 14 T ELT)) (-3846 (((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)) 18 T ELT))) -(((-109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2417 ((-108 |#1| |#2| |#4|) (-585 |#4|) (-108 |#1| |#2| |#3|))) (-15 -3846 ((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)))) (-486) (-696) (-146) (-146)) (T -109)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-486)) (-14 *6 (-696)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-486)) (-14 *6 (-696)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3531 (((-1051) $) 12 T ELT)) (-3532 (((-1051) $) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 18 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-110) (-13 (-997) (-10 -8 (-15 -3532 ((-1051) $)) (-15 -3531 ((-1051) $))))) (T -110)) -((-3532 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-110)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-110))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1427 (((-161) $) 11 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 20 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-585 (-1051)) $) 13 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-111) (-13 (-997) (-10 -8 (-15 -1427 ((-161) $)) (-15 -3236 ((-585 (-1051)) $))))) (T -111)) -((-1427 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-111))))) -((-2571 (((-85) $ $) NIL T ELT)) (-1425 (((-585 (-776)) $) NIL T ELT)) (-3545 (((-448) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1427 (((-161) $) NIL T ELT)) (-2636 (((-85) $ (-448)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1426 (((-585 (-85)) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (((-157) $) 6 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2524 (((-55) $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-112) (-13 (-160) (-554 (-157)))) (T -112)) -NIL -((-1326 (((-585 (-158 (-112))) $) 13 T ELT)) (-1325 (((-585 (-158 (-112))) $) 14 T ELT)) (-1327 (((-585 (-751)) $) 10 T ELT)) (-1483 (((-112) $) 7 T ELT)) (-3950 (((-774) $) 16 T ELT))) -(((-113) (-13 (-554 (-774)) (-10 -8 (-15 -1483 ((-112) $)) (-15 -1327 ((-585 (-751)) $)) (-15 -1326 ((-585 (-158 (-112))) $)) (-15 -1325 ((-585 (-158 (-112))) $))))) (T -113)) -((-1483 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1327 (*1 *2 *1) (-12 (-5 *2 (-585 (-751))) (-5 *1 (-113)))) (-1326 (*1 *2 *1) (-12 (-5 *2 (-585 (-158 (-112)))) (-5 *1 (-113)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-585 (-158 (-112)))) (-5 *1 (-113))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3430 (($) 17 T CONST)) (-1807 (($) NIL (|has| (-117) (-320)) ELT)) (-3237 (($ $ $) 19 T ELT) (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT)) (-3239 (($ $ $) NIL T ELT)) (-3238 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| (-117) (-320)) ELT)) (-3242 (($) NIL T ELT) (($ (-585 (-117))) NIL T ELT)) (-1571 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3713 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-3408 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT) (($ (-117) $) 56 (|has| $ (-318 (-117))) ELT)) (-3409 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT) (($ (-117) $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-3845 (((-117) (-1 (-117) (-117) (-117)) $) NIL T ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL T ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (|has| (-117) (-72)) ELT)) (-2997 (($) NIL (|has| (-117) (-320)) ELT)) (-3244 (((-85) $ $) NIL T ELT)) (-2534 (((-117) $) NIL (|has| (-117) (-758)) ELT)) (-2611 (((-585 (-117)) $) 65 T ELT)) (-3248 (((-85) (-117) $) 29 (|has| (-117) (-72)) ELT)) (-2860 (((-117) $) NIL (|has| (-117) (-758)) ELT)) (-3329 (($ (-1 (-117) (-117)) $) 64 T ELT)) (-3846 (($ (-1 (-117) (-117)) $) 60 T ELT)) (-3432 (($) 18 T CONST)) (-2012 (((-832) $) NIL (|has| (-117) (-320)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3241 (($ $ $) 32 T ELT)) (-1276 (((-117) $) 57 T ELT)) (-3612 (($ (-117) $) 55 T ELT)) (-2402 (($ (-832)) NIL (|has| (-117) (-320)) ELT)) (-1330 (($) 16 T CONST)) (-3246 (((-1035) $) NIL T ELT)) (-1731 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-1277 (((-117) $) 58 T ELT)) (-1733 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3771 (($ $ (-585 (-117)) (-585 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-585 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) 53 T ELT)) (-1331 (($) 15 T CONST)) (-3240 (($ $ $) 34 T ELT) (($ $ (-117)) NIL T ELT)) (-1467 (($ (-585 (-117))) NIL T ELT) (($) NIL T ELT)) (-1732 (((-696) (-1 (-85) (-117)) $) NIL T ELT) (((-696) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-1075) $) 39 T ELT) (((-475) $) NIL (|has| (-117) (-555 (-475))) ELT) (((-585 (-117)) $) 37 T ELT)) (-3533 (($ (-585 (-117))) NIL T ELT)) (-1808 (($ $) 35 (|has| (-117) (-320)) ELT)) (-3950 (((-774) $) 51 T ELT)) (-1332 (($ (-1075)) 14 T ELT) (($ (-585 (-117))) 48 T ELT)) (-1809 (((-696) $) NIL T ELT)) (-3243 (($) 54 T ELT) (($ (-585 (-117))) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1278 (($ (-585 (-117))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-1328 (($) 21 T CONST)) (-1329 (($) 20 T CONST)) (-3059 (((-85) $ $) 26 T ELT)) (-3961 (((-696) $) 52 T ELT))) -(((-114) (-13 (-1015) (-555 (-1075)) (-369 (-117)) (-555 (-585 (-117))) (-10 -8 (-15 -1332 ($ (-1075))) (-15 -1332 ($ (-585 (-117)))) (-15 -1331 ($) -3956) (-15 -1330 ($) -3956) (-15 -3430 ($) -3956) (-15 -3432 ($) -3956) (-15 -1329 ($) -3956) (-15 -1328 ($) -3956)))) (T -114)) -((-1332 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-114)))) (-1332 (*1 *1 *2) (-12 (-5 *2 (-585 (-117))) (-5 *1 (-114)))) (-1331 (*1 *1) (-5 *1 (-114))) (-1330 (*1 *1) (-5 *1 (-114))) (-3430 (*1 *1) (-5 *1 (-114))) (-3432 (*1 *1) (-5 *1 (-114))) (-1329 (*1 *1) (-5 *1 (-114))) (-1328 (*1 *1) (-5 *1 (-114)))) -((-3744 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3742 ((|#1| |#3|) 9 T ELT)) (-3743 ((|#3| |#3|) 15 T ELT))) -(((-115 |#1| |#2| |#3|) (-10 -7 (-15 -3742 (|#1| |#3|)) (-15 -3743 (|#3| |#3|)) (-15 -3744 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-497) (-906 |#1|) (-324 |#2|)) (T -115)) -((-3744 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-324 *5)))) (-3743 (*1 *2 *2) (-12 (-4 *3 (-497)) (-4 *4 (-906 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-324 *4)))) (-3742 (*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-497)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-324 *4))))) -((-1370 (($ $ $) 8 T ELT)) (-1368 (($ $) 7 T ELT)) (-3104 (($ $ $) 6 T ELT))) +((-3425 (*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-698)))) (-1317 (*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-698)) (-5 *2 (-1189))))) +(-13 (-1017) (-10 -8 (-15 -3425 ((-698) $)) (-15 -1317 ((-1189) $ (-698))))) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 18 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-3239 (((-587 (-1053)) $) 12 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-106) (-13 (-999) (-10 -8 (-15 -3239 ((-587 (-1053)) $))))) (T -106)) +((-3239 (*1 *2 *1) (-12 (-5 *2 (-587 (-1053))) (-5 *1 (-106))))) +((-2574 (((-85) $ $) 49 T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-698) #1="failed") $) 60 T ELT)) (-3162 (((-698) $) 58 T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) 37 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1319 (((-85)) 61 T ELT)) (-1318 (((-85) (-85)) 63 T ELT)) (-2531 (((-85) $) 30 T ELT)) (-1320 (((-85) $) 57 T ELT)) (-3953 (((-776) $) 28 T ELT) (($ (-698)) 20 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) 18 T CONST)) (-2672 (($) 19 T CONST)) (-1321 (($ (-698)) 21 T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) 40 T ELT)) (-3062 (((-85) $ $) 32 T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 35 T ELT)) (-3843 (((-3 $ #1#) $ $) 42 T ELT)) (-3845 (($ $ $) 38 T ELT)) (** (($ $ (-698)) NIL T ELT) (($ $ (-834)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-698) $) 48 T ELT) (($ (-834) $) NIL T ELT) (($ $ $) 45 T ELT))) +(((-107) (-13 (-760) (-23) (-667) (-954 (-698)) (-10 -8 (-6 (-4003 "*")) (-15 -3843 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1321 ($ (-698))) (-15 -2531 ((-85) $)) (-15 -1320 ((-85) $)) (-15 -1319 ((-85))) (-15 -1318 ((-85) (-85)))))) (T -107)) +((-3843 (*1 *1 *1 *1) (|partial| -5 *1 (-107))) (** (*1 *1 *1 *1) (-5 *1 (-107))) (-1321 (*1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-107)))) (-2531 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1320 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1319 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1318 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) +((-2574 (((-85) $ $) NIL T ELT)) (-1322 (($ (-587 |#3|)) 63 T ELT)) (-3420 (($ $) 125 T ELT) (($ $ (-488) (-488)) 124 T ELT)) (-3730 (($) 17 T ELT)) (-3163 (((-3 |#3| "failed") $) 86 T ELT)) (-3162 ((|#3| $) NIL T ELT)) (-1326 (($ $ (-587 (-488))) 126 T ELT)) (-1323 (((-587 |#3|) $) 58 T ELT)) (-3114 (((-698) $) 68 T ELT)) (-3951 (($ $ $) 120 T ELT)) (-1324 (($) 67 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1325 (($) 16 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3806 ((|#3| $ (-488)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-488) (-488)) 73 T ELT) ((|#3| $ (-488) (-488) (-488)) 74 T ELT) ((|#3| $ (-488) (-488) (-488) (-488)) 75 T ELT) ((|#3| $ (-587 (-488))) 76 T ELT)) (-3955 (((-698) $) 69 T ELT)) (-1986 (($ $ (-488) $ (-488)) 121 T ELT) (($ $ (-488) (-488)) 123 T ELT)) (-3953 (((-776) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-199 |#2| |#3|)) 102 T ELT) (($ (-1060 |#2| |#3|)) 105 T ELT) (($ (-587 |#3|)) 77 T ELT) (($ (-587 $)) 83 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) 96 T CONST)) (-2672 (($) 97 T CONST)) (-3062 (((-85) $ $) 107 T ELT)) (-3843 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3845 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-488)) 116 T ELT) (($ (-488) $) 115 T ELT) (($ $ $) 122 T ELT))) +(((-108 |#1| |#2| |#3|) (-13 (-408 |#3| (-698)) (-413 (-488) (-698)) (-243 (-488) |#3|) (-559 (-199 |#2| |#3|)) (-559 (-1060 |#2| |#3|)) (-559 (-587 |#3|)) (-559 (-587 $)) (-10 -8 (-15 -3114 ((-698) $)) (-15 -3806 (|#3| $)) (-15 -3806 (|#3| $ (-488) (-488))) (-15 -3806 (|#3| $ (-488) (-488) (-488))) (-15 -3806 (|#3| $ (-488) (-488) (-488) (-488))) (-15 -3806 (|#3| $ (-587 (-488)))) (-15 -3951 ($ $ $)) (-15 * ($ $ $)) (-15 -1986 ($ $ (-488) $ (-488))) (-15 -1986 ($ $ (-488) (-488))) (-15 -3420 ($ $)) (-15 -3420 ($ $ (-488) (-488))) (-15 -1326 ($ $ (-587 (-488)))) (-15 -1325 ($)) (-15 -1324 ($)) (-15 -1323 ((-587 |#3|) $)) (-15 -1322 ($ (-587 |#3|))) (-15 -3730 ($)))) (-488) (-698) (-148)) (T -108)) +((-3951 (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-488)) (-14 *3 (-698)) (-4 *4 (-148)))) (-3114 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-488)) (-14 *4 *2) (-4 *5 (-148)))) (-3806 (*1 *2 *1) (-12 (-4 *2 (-148)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-488)) (-14 *4 (-698)))) (-3806 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-488)) (-4 *2 (-148)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-698)))) (-3806 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-488)) (-4 *2 (-148)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-698)))) (-3806 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-488)) (-4 *2 (-148)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-698)))) (-3806 (*1 *2 *1 *3) (-12 (-5 *3 (-587 (-488))) (-4 *2 (-148)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 (-488)) (-14 *5 (-698)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-488)) (-14 *3 (-698)) (-4 *4 (-148)))) (-1986 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-698)) (-4 *5 (-148)))) (-1986 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-698)) (-4 *5 (-148)))) (-3420 (*1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-488)) (-14 *3 (-698)) (-4 *4 (-148)))) (-3420 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-698)) (-4 *5 (-148)))) (-1326 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-488)) (-14 *4 (-698)) (-4 *5 (-148)))) (-1325 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-488)) (-14 *3 (-698)) (-4 *4 (-148)))) (-1324 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-488)) (-14 *3 (-698)) (-4 *4 (-148)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-587 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-488)) (-14 *4 (-698)) (-4 *5 (-148)))) (-1322 (*1 *1 *2) (-12 (-5 *2 (-587 *5)) (-4 *5 (-148)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-488)) (-14 *4 (-698)))) (-3730 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-488)) (-14 *3 (-698)) (-4 *4 (-148))))) +((-2420 (((-108 |#1| |#2| |#4|) (-587 |#4|) (-108 |#1| |#2| |#3|)) 14 T ELT)) (-3849 (((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)) 18 T ELT))) +(((-109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2420 ((-108 |#1| |#2| |#4|) (-587 |#4|) (-108 |#1| |#2| |#3|))) (-15 -3849 ((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)))) (-488) (-698) (-148) (-148)) (T -109)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-488)) (-14 *6 (-698)) (-4 *7 (-148)) (-4 *8 (-148)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-488)) (-14 *6 (-698)) (-4 *7 (-148)) (-4 *8 (-148)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3534 (((-1053) $) 12 T ELT)) (-3535 (((-1053) $) 10 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 18 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-110) (-13 (-999) (-10 -8 (-15 -3535 ((-1053) $)) (-15 -3534 ((-1053) $))))) (T -110)) +((-3535 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-110)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-110))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1430 (((-163) $) 11 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 20 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-3239 (((-587 (-1053)) $) 13 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-111) (-13 (-999) (-10 -8 (-15 -1430 ((-163) $)) (-15 -3239 ((-587 (-1053)) $))))) (T -111)) +((-1430 (*1 *2 *1) (-12 (-5 *2 (-163)) (-5 *1 (-111)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-587 (-1053))) (-5 *1 (-111))))) +((-2574 (((-85) $ $) NIL T ELT)) (-1428 (((-587 (-778)) $) NIL T ELT)) (-3548 (((-450) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1430 (((-163) $) NIL T ELT)) (-2639 (((-85) $ (-450)) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1429 (((-587 (-85)) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (((-159) $) 6 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2527 (((-55) $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-112) (-13 (-162) (-556 (-159)))) (T -112)) +NIL +((-1328 (((-587 (-160 (-112))) $) 13 T ELT)) (-1327 (((-587 (-160 (-112))) $) 14 T ELT)) (-1329 (((-587 (-753)) $) 10 T ELT)) (-1486 (((-112) $) 7 T ELT)) (-3953 (((-776) $) 16 T ELT))) +(((-113) (-13 (-556 (-776)) (-10 -8 (-15 -1486 ((-112) $)) (-15 -1329 ((-587 (-753)) $)) (-15 -1328 ((-587 (-160 (-112))) $)) (-15 -1327 ((-587 (-160 (-112))) $))))) (T -113)) +((-1486 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-587 (-753))) (-5 *1 (-113)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-587 (-160 (-112)))) (-5 *1 (-113)))) (-1327 (*1 *2 *1) (-12 (-5 *2 (-587 (-160 (-112)))) (-5 *1 (-113))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3433 (($) 17 T CONST)) (-1810 (($) NIL (|has| (-117) (-322)) ELT)) (-3240 (($ $ $) 19 T ELT) (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT)) (-3242 (($ $ $) NIL T ELT)) (-3241 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) NIL (|has| (-117) (-322)) ELT)) (-3245 (($) NIL T ELT) (($ (-587 (-117))) NIL T ELT)) (-1574 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-320 (-117))) ELT)) (-3716 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-320 (-117))) ELT)) (-3730 (($) NIL T CONST)) (-1357 (($ $) NIL (-12 (|has| $ (-320 (-117))) (|has| (-117) (-72))) ELT)) (-3411 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-320 (-117))) ELT) (($ (-117) $) 56 (|has| $ (-320 (-117))) ELT)) (-3412 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-320 (-117))) ELT) (($ (-117) $) NIL (-12 (|has| $ (-320 (-117))) (|has| (-117) (-72))) ELT)) (-3848 (((-117) (-1 (-117) (-117) (-117)) $) NIL T ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL T ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (|has| (-117) (-72)) ELT)) (-3000 (($) NIL (|has| (-117) (-322)) ELT)) (-3247 (((-85) $ $) NIL T ELT)) (-2537 (((-117) $) NIL (|has| (-117) (-760)) ELT)) (-2614 (((-587 (-117)) $) 65 T ELT)) (-3251 (((-85) (-117) $) 29 (|has| (-117) (-72)) ELT)) (-2863 (((-117) $) NIL (|has| (-117) (-760)) ELT)) (-3332 (($ (-1 (-117) (-117)) $) 64 T ELT)) (-3849 (($ (-1 (-117) (-117)) $) 60 T ELT)) (-3435 (($) 18 T CONST)) (-2015 (((-834) $) NIL (|has| (-117) (-322)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3244 (($ $ $) 32 T ELT)) (-1278 (((-117) $) 57 T ELT)) (-3615 (($ (-117) $) 55 T ELT)) (-2405 (($ (-834)) NIL (|has| (-117) (-322)) ELT)) (-1332 (($) 16 T CONST)) (-3249 (((-1037) $) NIL T ELT)) (-1734 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-1279 (((-117) $) 58 T ELT)) (-1736 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3774 (($ $ (-587 (-117)) (-587 (-117))) NIL (-12 (|has| (-117) (-262 (-117))) (|has| (-117) (-1017))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-262 (-117))) (|has| (-117) (-1017))) ELT) (($ $ (-251 (-117))) NIL (-12 (|has| (-117) (-262 (-117))) (|has| (-117) (-1017))) ELT) (($ $ (-587 (-251 (-117)))) NIL (-12 (|has| (-117) (-262 (-117))) (|has| (-117) (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) 53 T ELT)) (-1333 (($) 15 T CONST)) (-3243 (($ $ $) 34 T ELT) (($ $ (-117)) NIL T ELT)) (-1470 (($ (-587 (-117))) NIL T ELT) (($) NIL T ELT)) (-1735 (((-698) (-1 (-85) (-117)) $) NIL T ELT) (((-698) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-1077) $) 39 T ELT) (((-477) $) NIL (|has| (-117) (-557 (-477))) ELT) (((-587 (-117)) $) 37 T ELT)) (-3536 (($ (-587 (-117))) NIL T ELT)) (-1811 (($ $) 35 (|has| (-117) (-322)) ELT)) (-3953 (((-776) $) 51 T ELT)) (-1334 (($ (-1077)) 14 T ELT) (($ (-587 (-117))) 48 T ELT)) (-1812 (((-698) $) NIL T ELT)) (-3246 (($) 54 T ELT) (($ (-587 (-117))) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-1280 (($ (-587 (-117))) NIL T ELT)) (-1737 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-1330 (($) 21 T CONST)) (-1331 (($) 20 T CONST)) (-3062 (((-85) $ $) 26 T ELT)) (-3964 (((-698) $) 52 T ELT))) +(((-114) (-13 (-1017) (-557 (-1077)) (-371 (-117)) (-557 (-587 (-117))) (-10 -8 (-15 -1334 ($ (-1077))) (-15 -1334 ($ (-587 (-117)))) (-15 -1333 ($) -3959) (-15 -1332 ($) -3959) (-15 -3433 ($) -3959) (-15 -3435 ($) -3959) (-15 -1331 ($) -3959) (-15 -1330 ($) -3959)))) (T -114)) +((-1334 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-114)))) (-1334 (*1 *1 *2) (-12 (-5 *2 (-587 (-117))) (-5 *1 (-114)))) (-1333 (*1 *1) (-5 *1 (-114))) (-1332 (*1 *1) (-5 *1 (-114))) (-3433 (*1 *1) (-5 *1 (-114))) (-3435 (*1 *1) (-5 *1 (-114))) (-1331 (*1 *1) (-5 *1 (-114))) (-1330 (*1 *1) (-5 *1 (-114)))) +((-3747 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3745 ((|#1| |#3|) 9 T ELT)) (-3746 ((|#3| |#3|) 15 T ELT))) +(((-115 |#1| |#2| |#3|) (-10 -7 (-15 -3745 (|#1| |#3|)) (-15 -3746 (|#3| |#3|)) (-15 -3747 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-499) (-908 |#1|) (-326 |#2|)) (T -115)) +((-3747 (*1 *2 *3) (-12 (-4 *4 (-499)) (-4 *5 (-908 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-326 *5)))) (-3746 (*1 *2 *2) (-12 (-4 *3 (-499)) (-4 *4 (-908 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-326 *4)))) (-3745 (*1 *2 *3) (-12 (-4 *4 (-908 *2)) (-4 *2 (-499)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-326 *4))))) +((-1372 (($ $ $) 8 T ELT)) (-1370 (($ $) 7 T ELT)) (-3107 (($ $ $) 6 T ELT))) (((-116) (-113)) (T -116)) -((-1370 (*1 *1 *1 *1) (-4 *1 (-116))) (-1368 (*1 *1 *1) (-4 *1 (-116))) (-3104 (*1 *1 *1 *1) (-4 *1 (-116)))) -(-13 (-10 -8 (-15 -3104 ($ $ $)) (-15 -1368 ($ $)) (-15 -1370 ($ $ $)))) -((-2571 (((-85) $ $) NIL T ELT)) (-1340 (($) 30 T CONST)) (-1335 (((-85) $) 42 T ELT)) (-3430 (($ $) 52 T ELT)) (-1347 (($) 23 T CONST)) (-1519 (($) 21 T CONST)) (-3139 (((-696)) 13 T ELT)) (-2997 (($) 20 T ELT)) (-2582 (($) 22 T CONST)) (-1349 (((-696) $) 17 T ELT)) (-1346 (($) 24 T CONST)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1334 (((-85) $) 44 T ELT)) (-3432 (($ $) 53 T ELT)) (-2012 (((-832) $) 18 T ELT)) (-1344 (($) 26 T CONST)) (-3245 (((-1075) $) 50 T ELT)) (-2402 (($ (-832)) 16 T ELT)) (-1341 (($) 29 T CONST)) (-1337 (((-85) $) 40 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1343 (($) 27 T CONST)) (-1339 (($) 31 T CONST)) (-1338 (((-85) $) 38 T ELT)) (-3950 (((-774) $) 33 T ELT)) (-1348 (($ (-696)) 14 T ELT) (($ (-1075)) 51 T ELT)) (-1345 (($) 25 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-1342 (($) 28 T CONST)) (-1333 (((-85) $) 48 T ELT)) (-1336 (((-85) $) 46 T ELT)) (-2569 (((-85) $ $) 11 T ELT)) (-2570 (((-85) $ $) 9 T ELT)) (-3059 (((-85) $ $) 7 T ELT)) (-2687 (((-85) $ $) 10 T ELT)) (-2688 (((-85) $ $) 8 T ELT))) -(((-117) (-13 (-754) (-10 -8 (-15 -1349 ((-696) $)) (-15 -1348 ($ (-696))) (-15 -1348 ($ (-1075))) (-15 -1519 ($) -3956) (-15 -2582 ($) -3956) (-15 -1347 ($) -3956) (-15 -1346 ($) -3956) (-15 -1345 ($) -3956) (-15 -1344 ($) -3956) (-15 -1343 ($) -3956) (-15 -1342 ($) -3956) (-15 -1341 ($) -3956) (-15 -1340 ($) -3956) (-15 -1339 ($) -3956) (-15 -3430 ($ $)) (-15 -3432 ($ $)) (-15 -1338 ((-85) $)) (-15 -1337 ((-85) $)) (-15 -1336 ((-85) $)) (-15 -1335 ((-85) $)) (-15 -1334 ((-85) $)) (-15 -1333 ((-85) $))))) (T -117)) -((-1349 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-117)))) (-1348 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-117)))) (-1348 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-117)))) (-1519 (*1 *1) (-5 *1 (-117))) (-2582 (*1 *1) (-5 *1 (-117))) (-1347 (*1 *1) (-5 *1 (-117))) (-1346 (*1 *1) (-5 *1 (-117))) (-1345 (*1 *1) (-5 *1 (-117))) (-1344 (*1 *1) (-5 *1 (-117))) (-1343 (*1 *1) (-5 *1 (-117))) (-1342 (*1 *1) (-5 *1 (-117))) (-1341 (*1 *1) (-5 *1 (-117))) (-1340 (*1 *1) (-5 *1 (-117))) (-1339 (*1 *1) (-5 *1 (-117))) (-3430 (*1 *1 *1) (-5 *1 (-117))) (-3432 (*1 *1 *1) (-5 *1 (-117))) (-1338 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT)) (-2705 (((-634 $) $) 47 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) +((-1372 (*1 *1 *1 *1) (-4 *1 (-116))) (-1370 (*1 *1 *1) (-4 *1 (-116))) (-3107 (*1 *1 *1 *1) (-4 *1 (-116)))) +(-13 (-10 -8 (-15 -3107 ($ $ $)) (-15 -1370 ($ $)) (-15 -1372 ($ $ $)))) +((-2574 (((-85) $ $) NIL T ELT)) (-1342 (($) 30 T CONST)) (-1337 (((-85) $) 42 T ELT)) (-3433 (($ $) 52 T ELT)) (-1349 (($) 23 T CONST)) (-1522 (($) 21 T CONST)) (-3142 (((-698)) 13 T ELT)) (-3000 (($) 20 T ELT)) (-2585 (($) 22 T CONST)) (-1351 (((-698) $) 17 T ELT)) (-1348 (($) 24 T CONST)) (-2537 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2863 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1336 (((-85) $) 44 T ELT)) (-3435 (($ $) 53 T ELT)) (-2015 (((-834) $) 18 T ELT)) (-1346 (($) 26 T CONST)) (-3248 (((-1077) $) 50 T ELT)) (-2405 (($ (-834)) 16 T ELT)) (-1343 (($) 29 T CONST)) (-1339 (((-85) $) 40 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1345 (($) 27 T CONST)) (-1341 (($) 31 T CONST)) (-1340 (((-85) $) 38 T ELT)) (-3953 (((-776) $) 33 T ELT)) (-1350 (($ (-698)) 14 T ELT) (($ (-1077)) 51 T ELT)) (-1347 (($) 25 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-1344 (($) 28 T CONST)) (-1335 (((-85) $) 48 T ELT)) (-1338 (((-85) $) 46 T ELT)) (-2572 (((-85) $ $) 11 T ELT)) (-2573 (((-85) $ $) 9 T ELT)) (-3062 (((-85) $ $) 7 T ELT)) (-2690 (((-85) $ $) 10 T ELT)) (-2691 (((-85) $ $) 8 T ELT))) +(((-117) (-13 (-756) (-10 -8 (-15 -1351 ((-698) $)) (-15 -1350 ($ (-698))) (-15 -1350 ($ (-1077))) (-15 -1522 ($) -3959) (-15 -2585 ($) -3959) (-15 -1349 ($) -3959) (-15 -1348 ($) -3959) (-15 -1347 ($) -3959) (-15 -1346 ($) -3959) (-15 -1345 ($) -3959) (-15 -1344 ($) -3959) (-15 -1343 ($) -3959) (-15 -1342 ($) -3959) (-15 -1341 ($) -3959) (-15 -3433 ($ $)) (-15 -3435 ($ $)) (-15 -1340 ((-85) $)) (-15 -1339 ((-85) $)) (-15 -1338 ((-85) $)) (-15 -1337 ((-85) $)) (-15 -1336 ((-85) $)) (-15 -1335 ((-85) $))))) (T -117)) +((-1351 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-117)))) (-1350 (*1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-117)))) (-1350 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-117)))) (-1522 (*1 *1) (-5 *1 (-117))) (-2585 (*1 *1) (-5 *1 (-117))) (-1349 (*1 *1) (-5 *1 (-117))) (-1348 (*1 *1) (-5 *1 (-117))) (-1347 (*1 *1) (-5 *1 (-117))) (-1346 (*1 *1) (-5 *1 (-117))) (-1345 (*1 *1) (-5 *1 (-117))) (-1344 (*1 *1) (-5 *1 (-117))) (-1343 (*1 *1) (-5 *1 (-117))) (-1342 (*1 *1) (-5 *1 (-117))) (-1341 (*1 *1) (-5 *1 (-117))) (-3433 (*1 *1 *1) (-5 *1 (-117))) (-3435 (*1 *1 *1) (-5 *1 (-117))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1339 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1338 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT)) (-2708 (((-636 $) $) 47 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-118) (-113)) (T -118)) -((-2705 (*1 *2 *1) (-12 (-5 *2 (-634 *1)) (-4 *1 (-118))))) -(-13 (-963) (-10 -8 (-15 -2705 ((-634 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-2452 ((|#1| (-632 |#1|) |#1|) 19 T ELT))) -(((-119 |#1|) (-10 -7 (-15 -2452 (|#1| (-632 |#1|) |#1|))) (-146)) (T -119)) -((-2452 (*1 *2 *3 *2) (-12 (-5 *3 (-632 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) +((-2708 (*1 *2 *1) (-12 (-5 *2 (-636 *1)) (-4 *1 (-118))))) +(-13 (-965) (-10 -8 (-15 -2708 ((-636 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-559 (-488)) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 $) . T) ((-667) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-2455 ((|#1| (-634 |#1|) |#1|) 19 T ELT))) +(((-119 |#1|) (-10 -7 (-15 -2455 (|#1| (-634 |#1|) |#1|))) (-148)) (T -119)) +((-2455 (*1 *2 *3 *2) (-12 (-5 *3 (-634 *2)) (-4 *2 (-148)) (-5 *1 (-119 *2))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-120) (-113)) (T -120)) NIL -(-13 (-963)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-1352 (((-2 (|:| -2403 (-696)) (|:| -3958 (-350 |#2|)) (|:| |radicand| |#2|)) (-350 |#2|) (-696)) 76 T ELT)) (-1351 (((-3 (-2 (|:| |radicand| (-350 |#2|)) (|:| |deg| (-696))) "failed") |#3|) 56 T ELT)) (-1350 (((-2 (|:| -3958 (-350 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1353 ((|#1| |#3| |#3|) 44 T ELT)) (-3771 ((|#3| |#3| (-350 |#2|) (-350 |#2|)) 20 T ELT)) (-1354 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| |deg| (-696))) |#3| |#3|) 53 T ELT))) -(((-121 |#1| |#2| |#3|) (-10 -7 (-15 -1350 ((-2 (|:| -3958 (-350 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1351 ((-3 (-2 (|:| |radicand| (-350 |#2|)) (|:| |deg| (-696))) "failed") |#3|)) (-15 -1352 ((-2 (|:| -2403 (-696)) (|:| -3958 (-350 |#2|)) (|:| |radicand| |#2|)) (-350 |#2|) (-696))) (-15 -1353 (|#1| |#3| |#3|)) (-15 -3771 (|#3| |#3| (-350 |#2|) (-350 |#2|))) (-15 -1354 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| |deg| (-696))) |#3| |#3|))) (-1136) (-1157 |#1|) (-1157 (-350 |#2|))) (T -121)) -((-1354 (*1 *2 *3 *3) (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-350 *5)) (|:| |c2| (-350 *5)) (|:| |deg| (-696)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1157 (-350 *5))))) (-3771 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-350 *5)) (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1157 *3)))) (-1353 (*1 *2 *3 *3) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-1136)) (-5 *1 (-121 *2 *4 *3)) (-4 *3 (-1157 (-350 *4))))) (-1352 (*1 *2 *3 *4) (-12 (-5 *3 (-350 *6)) (-4 *5 (-1136)) (-4 *6 (-1157 *5)) (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3958 *3) (|:| |radicand| *6))) (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-696)) (-4 *7 (-1157 *3)))) (-1351 (*1 *2 *3) (|partial| -12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| |radicand| (-350 *5)) (|:| |deg| (-696)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1157 (-350 *5))))) (-1350 (*1 *2 *3) (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -3958 (-350 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1157 (-350 *5)))))) -((-2707 (((-3 (-585 (-1087 |#2|)) "failed") (-585 (-1087 |#2|)) (-1087 |#2|)) 35 T ELT))) -(((-122 |#1| |#2|) (-10 -7 (-15 -2707 ((-3 (-585 (-1087 |#2|)) "failed") (-585 (-1087 |#2|)) (-1087 |#2|)))) (-485) (-139 |#1|)) (T -122)) -((-2707 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1087 *5))) (-5 *3 (-1087 *5)) (-4 *5 (-139 *4)) (-4 *4 (-485)) (-5 *1 (-122 *4 *5))))) -((-3713 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-1355 (($ $) 21 T ELT)) (-3409 (($ (-1 (-85) |#2|) $) 14 T ELT) (($ |#2| $) 19 T ELT))) -(((-123 |#1| |#2|) (-10 -7 (-15 -1355 (|#1| |#1|)) (-15 -3409 (|#1| |#2| |#1|)) (-15 -3713 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3409 (|#1| (-1 (-85) |#2|) |#1|))) (-124 |#2|) (-1131)) (T -123)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 38 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-1355 (($ $) 36 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3409 (($ (-1 (-85) |#1|) $) 39 (|has| $ (-318 |#1|)) ELT) (($ |#1| $) 37 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 35 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 40 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) -(((-124 |#1|) (-113) (-1131)) (T -124)) -((-3533 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-4 *1 (-124 *3)))) (-3409 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-124 *3)) (-4 *3 (-1131)))) (-3713 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-124 *3)) (-4 *3 (-1131)))) (-3409 (*1 *1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1131)) (-4 *2 (-72)))) (-1355 (*1 *1 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1131)) (-4 *2 (-72))))) -(-13 (-430 |t#1|) (-10 -8 (-15 -3533 ($ (-585 |t#1|))) (IF (|has| $ (-318 |t#1|)) (PROGN (-15 -3409 ($ (-1 (-85) |t#1|) $)) (-15 -3713 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3409 ($ |t#1| $)) (-15 -1355 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) 113 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2896 (($ |#2| (-585 (-832))) 72 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1356 (($ (-832)) 58 T ELT)) (-3915 (((-107)) 23 T ELT)) (-3950 (((-774) $) 88 T ELT) (($ (-486)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3680 ((|#2| $ (-585 (-832))) 75 T ELT)) (-3129 (((-696)) 20 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 48 T CONST)) (-2669 (($) 52 T CONST)) (-3059 (((-85) $ $) 34 T ELT)) (-3953 (($ $ |#2|) NIL T ELT)) (-3840 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3842 (($ $ $) 39 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT))) -(((-125 |#1| |#2| |#3|) (-13 (-963) (-38 |#2|) (-1189 |#2|) (-10 -8 (-15 -1356 ($ (-832))) (-15 -2896 ($ |#2| (-585 (-832)))) (-15 -3680 (|#2| $ (-585 (-832)))) (-15 -3470 ((-3 $ "failed") $)))) (-832) (-312) (-908 |#1| |#2|)) (T -125)) -((-3470 (*1 *1 *1) (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-832)) (-4 *3 (-312)) (-14 *4 (-908 *2 *3)))) (-1356 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) (-14 *5 (-908 *3 *4)))) (-2896 (*1 *1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-832)) (-4 *2 (-312)) (-14 *5 (-908 *4 *2)))) (-3680 (*1 *2 *1 *3) (-12 (-5 *3 (-585 (-832))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-832)) (-14 *5 (-908 *4 *2))))) -((-1358 (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-585 (-585 (-856 (-179)))) (-179) (-179) (-179) (-179)) 59 T ELT)) (-1357 (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838) (-350 (-486)) (-350 (-486))) 95 T ELT) (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838)) 96 T ELT)) (-1511 (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-585 (-585 (-856 (-179))))) 99 T ELT) (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-585 (-856 (-179)))) 98 T ELT) (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838) (-350 (-486)) (-350 (-486))) 89 T ELT) (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838)) 90 T ELT))) -(((-126) (-10 -7 (-15 -1511 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838))) (-15 -1511 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838) (-350 (-486)) (-350 (-486)))) (-15 -1357 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838))) (-15 -1357 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838) (-350 (-486)) (-350 (-486)))) (-15 -1358 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-585 (-585 (-856 (-179)))) (-179) (-179) (-179) (-179))) (-15 -1511 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-585 (-856 (-179))))) (-15 -1511 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-585 (-585 (-856 (-179)))))))) (T -126)) -((-1511 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)) (-5 *3 (-585 (-585 (-856 (-179))))))) (-1511 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)) (-5 *3 (-585 (-856 (-179)))))) (-1358 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 *4)))) (|:| |xValues| (-1003 *4)) (|:| |yValues| (-1003 *4)))) (-5 *1 (-126)) (-5 *3 (-585 (-585 (-856 *4)))))) (-1357 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-838)) (-5 *4 (-350 (-486))) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)))) (-1357 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)))) (-1511 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-838)) (-5 *4 (-350 (-486))) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3184 (((-585 (-1051)) $) 20 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 27 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-1051) $) 10 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-127) (-13 (-997) (-10 -8 (-15 -3184 ((-585 (-1051)) $)) (-15 -3236 ((-1051) $))))) (T -127)) -((-3184 (*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-127)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-127))))) -((-1411 (((-585 (-142 |#2|)) |#1| |#2|) 50 T ELT))) -(((-128 |#1| |#2|) (-10 -7 (-15 -1411 ((-585 (-142 |#2|)) |#1| |#2|))) (-1157 (-142 (-486))) (-13 (-312) (-757))) (T -128)) -((-1411 (*1 *2 *3 *4) (-12 (-5 *2 (-585 (-142 *4))) (-5 *1 (-128 *3 *4)) (-4 *3 (-1157 (-142 (-486)))) (-4 *4 (-13 (-312) (-757)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3531 (((-1132) $) 13 T ELT)) (-3532 (((-1051) $) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 20 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-129) (-13 (-997) (-10 -8 (-15 -3532 ((-1051) $)) (-15 -3531 ((-1132) $))))) (T -129)) -((-3532 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-129)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-129))))) -((-2571 (((-85) $ $) NIL T ELT)) (-1360 (($) 38 T ELT)) (-3101 (($) 37 T ELT)) (-1359 (((-832)) 43 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2959 (((-486) $) 41 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3100 (($) 39 T ELT)) (-2958 (($ (-486)) 44 T ELT)) (-3950 (((-774) $) 50 T ELT)) (-3099 (($) 40 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 35 T ELT)) (-3842 (($ $ $) 32 T ELT)) (* (($ (-832) $) 42 T ELT) (($ (-179) $) 11 T ELT))) -(((-130) (-13 (-25) (-10 -8 (-15 * ($ (-832) $)) (-15 * ($ (-179) $)) (-15 -3842 ($ $ $)) (-15 -3101 ($)) (-15 -1360 ($)) (-15 -3100 ($)) (-15 -3099 ($)) (-15 -2959 ((-486) $)) (-15 -1359 ((-832))) (-15 -2958 ($ (-486)))))) (T -130)) -((-3842 (*1 *1 *1 *1) (-5 *1 (-130))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-130)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) (-3101 (*1 *1) (-5 *1 (-130))) (-1360 (*1 *1) (-5 *1 (-130))) (-3100 (*1 *1) (-5 *1 (-130))) (-3099 (*1 *1) (-5 *1 (-130))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-130)))) (-1359 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-130)))) (-2958 (*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-130))))) -((-1373 ((|#2| |#2| (-1006 |#2|)) 98 T ELT) ((|#2| |#2| (-1092)) 75 T ELT)) (-3948 ((|#2| |#2| (-1006 |#2|)) 97 T ELT) ((|#2| |#2| (-1092)) 74 T ELT)) (-1370 ((|#2| |#2| |#2|) 25 T ELT)) (-3598 (((-86) (-86)) 111 T ELT)) (-1367 ((|#2| (-585 |#2|)) 130 T ELT)) (-1364 ((|#2| (-585 |#2|)) 150 T ELT)) (-1363 ((|#2| (-585 |#2|)) 138 T ELT)) (-1361 ((|#2| |#2|) 136 T ELT)) (-1365 ((|#2| (-585 |#2|)) 124 T ELT)) (-1366 ((|#2| (-585 |#2|)) 125 T ELT)) (-1362 ((|#2| (-585 |#2|)) 148 T ELT)) (-1374 ((|#2| |#2| (-1092)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1368 ((|#2| |#2|) 21 T ELT)) (-3104 ((|#2| |#2| |#2|) 24 T ELT)) (-2256 (((-85) (-86)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) -(((-131 |#1| |#2|) (-10 -7 (-15 -2256 ((-85) (-86))) (-15 -3598 ((-86) (-86))) (-15 ** (|#2| |#2| |#2|)) (-15 -3104 (|#2| |#2| |#2|)) (-15 -1370 (|#2| |#2| |#2|)) (-15 -1368 (|#2| |#2|)) (-15 -1374 (|#2| |#2|)) (-15 -1374 (|#2| |#2| (-1092))) (-15 -1373 (|#2| |#2| (-1092))) (-15 -1373 (|#2| |#2| (-1006 |#2|))) (-15 -3948 (|#2| |#2| (-1092))) (-15 -3948 (|#2| |#2| (-1006 |#2|))) (-15 -1361 (|#2| |#2|)) (-15 -1362 (|#2| (-585 |#2|))) (-15 -1363 (|#2| (-585 |#2|))) (-15 -1364 (|#2| (-585 |#2|))) (-15 -1365 (|#2| (-585 |#2|))) (-15 -1366 (|#2| (-585 |#2|))) (-15 -1367 (|#2| (-585 |#2|)))) (-497) (-364 |#1|)) (T -131)) -((-1367 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-497)))) (-1366 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-497)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-497)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-497)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-497)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-497)))) (-1361 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3948 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-364 *4)) (-4 *4 (-497)) (-5 *1 (-131 *4 *2)))) (-3948 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1373 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-364 *4)) (-4 *4 (-497)) (-5 *1 (-131 *4 *2)))) (-1373 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1374 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1374 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-1368 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-1370 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3104 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-131 *3 *4)) (-4 *4 (-364 *3)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-364 *4))))) -((-1372 ((|#1| |#1| |#1|) 66 T ELT)) (-1371 ((|#1| |#1| |#1|) 63 T ELT)) (-1370 ((|#1| |#1| |#1|) 57 T ELT)) (-2893 ((|#1| |#1|) 43 T ELT)) (-1369 ((|#1| |#1| (-585 |#1|)) 55 T ELT)) (-1368 ((|#1| |#1|) 47 T ELT)) (-3104 ((|#1| |#1| |#1|) 51 T ELT))) -(((-132 |#1|) (-10 -7 (-15 -3104 (|#1| |#1| |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -1369 (|#1| |#1| (-585 |#1|))) (-15 -2893 (|#1| |#1|)) (-15 -1370 (|#1| |#1| |#1|)) (-15 -1371 (|#1| |#1| |#1|)) (-15 -1372 (|#1| |#1| |#1|))) (-485)) (T -132)) -((-1372 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485)))) (-1371 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485)))) (-1370 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485)))) (-2893 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485)))) (-1369 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-485)) (-5 *1 (-132 *2)))) (-1368 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485)))) (-3104 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485))))) -((-1373 (($ $ (-1092)) 12 T ELT) (($ $ (-1006 $)) 11 T ELT)) (-3948 (($ $ (-1092)) 10 T ELT) (($ $ (-1006 $)) 9 T ELT)) (-1370 (($ $ $) 8 T ELT)) (-1374 (($ $) 14 T ELT) (($ $ (-1092)) 13 T ELT)) (-1368 (($ $) 7 T ELT)) (-3104 (($ $ $) 6 T ELT))) +(-13 (-965)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-559 (-488)) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 $) . T) ((-667) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-1354 (((-2 (|:| -2406 (-698)) (|:| -3961 (-352 |#2|)) (|:| |radicand| |#2|)) (-352 |#2|) (-698)) 76 T ELT)) (-1353 (((-3 (-2 (|:| |radicand| (-352 |#2|)) (|:| |deg| (-698))) "failed") |#3|) 56 T ELT)) (-1352 (((-2 (|:| -3961 (-352 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1355 ((|#1| |#3| |#3|) 44 T ELT)) (-3774 ((|#3| |#3| (-352 |#2|) (-352 |#2|)) 20 T ELT)) (-1356 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-352 |#2|)) (|:| |c2| (-352 |#2|)) (|:| |deg| (-698))) |#3| |#3|) 53 T ELT))) +(((-121 |#1| |#2| |#3|) (-10 -7 (-15 -1352 ((-2 (|:| -3961 (-352 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1353 ((-3 (-2 (|:| |radicand| (-352 |#2|)) (|:| |deg| (-698))) "failed") |#3|)) (-15 -1354 ((-2 (|:| -2406 (-698)) (|:| -3961 (-352 |#2|)) (|:| |radicand| |#2|)) (-352 |#2|) (-698))) (-15 -1355 (|#1| |#3| |#3|)) (-15 -3774 (|#3| |#3| (-352 |#2|) (-352 |#2|))) (-15 -1356 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-352 |#2|)) (|:| |c2| (-352 |#2|)) (|:| |deg| (-698))) |#3| |#3|))) (-1138) (-1159 |#1|) (-1159 (-352 |#2|))) (T -121)) +((-1356 (*1 *2 *3 *3) (-12 (-4 *4 (-1138)) (-4 *5 (-1159 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-352 *5)) (|:| |c2| (-352 *5)) (|:| |deg| (-698)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1159 (-352 *5))))) (-3774 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-352 *5)) (-4 *4 (-1138)) (-4 *5 (-1159 *4)) (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1159 *3)))) (-1355 (*1 *2 *3 *3) (-12 (-4 *4 (-1159 *2)) (-4 *2 (-1138)) (-5 *1 (-121 *2 *4 *3)) (-4 *3 (-1159 (-352 *4))))) (-1354 (*1 *2 *3 *4) (-12 (-5 *3 (-352 *6)) (-4 *5 (-1138)) (-4 *6 (-1159 *5)) (-5 *2 (-2 (|:| -2406 (-698)) (|:| -3961 *3) (|:| |radicand| *6))) (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-698)) (-4 *7 (-1159 *3)))) (-1353 (*1 *2 *3) (|partial| -12 (-4 *4 (-1138)) (-4 *5 (-1159 *4)) (-5 *2 (-2 (|:| |radicand| (-352 *5)) (|:| |deg| (-698)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1159 (-352 *5))))) (-1352 (*1 *2 *3) (-12 (-4 *4 (-1138)) (-4 *5 (-1159 *4)) (-5 *2 (-2 (|:| -3961 (-352 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1159 (-352 *5)))))) +((-2710 (((-3 (-587 (-1089 |#2|)) "failed") (-587 (-1089 |#2|)) (-1089 |#2|)) 35 T ELT))) +(((-122 |#1| |#2|) (-10 -7 (-15 -2710 ((-3 (-587 (-1089 |#2|)) "failed") (-587 (-1089 |#2|)) (-1089 |#2|)))) (-487) (-141 |#1|)) (T -122)) +((-2710 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-1089 *5))) (-5 *3 (-1089 *5)) (-4 *5 (-141 *4)) (-4 *4 (-487)) (-5 *1 (-122 *4 *5))))) +((-3716 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-1357 (($ $) 21 T ELT)) (-3412 (($ (-1 (-85) |#2|) $) 14 T ELT) (($ |#2| $) 19 T ELT))) +(((-123 |#1| |#2|) (-10 -7 (-15 -1357 (|#1| |#1|)) (-15 -3412 (|#1| |#2| |#1|)) (-15 -3716 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3412 (|#1| (-1 (-85) |#2|) |#1|))) (-124 |#2|) (-1133)) (T -123)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) 38 (|has| $ (-320 |#1|)) ELT)) (-3730 (($) 6 T CONST)) (-1357 (($ $) 36 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-3412 (($ (-1 (-85) |#1|) $) 39 (|has| $ (-320 |#1|)) ELT) (($ |#1| $) 37 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 35 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 40 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-124 |#1|) (-113) (-1133)) (T -124)) +((-3536 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1133)) (-4 *1 (-124 *3)))) (-3412 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-320 *3)) (-4 *1 (-124 *3)) (-4 *3 (-1133)))) (-3716 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-320 *3)) (-4 *1 (-124 *3)) (-4 *3 (-1133)))) (-3412 (*1 *1 *2 *1) (-12 (-4 *1 (-320 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1133)) (-4 *2 (-72)))) (-1357 (*1 *1 *1) (-12 (-4 *1 (-320 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1133)) (-4 *2 (-72))))) +(-13 (-432 |t#1|) (-10 -8 (-15 -3536 ($ (-587 |t#1|))) (IF (|has| $ (-320 |t#1|)) (PROGN (-15 -3412 ($ (-1 (-85) |t#1|) $)) (-15 -3716 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3412 ($ |t#1| $)) (-15 -1357 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-557 (-477))) (-6 (-557 (-477))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-1017) |has| |#1| (-1017)) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3473 (((-3 $ #1#) $) 113 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2899 (($ |#2| (-587 (-834))) 72 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1358 (($ (-834)) 58 T ELT)) (-3918 (((-107)) 23 T ELT)) (-3953 (((-776) $) 88 T ELT) (($ (-488)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3683 ((|#2| $ (-587 (-834))) 75 T ELT)) (-3132 (((-698)) 20 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 48 T CONST)) (-2672 (($) 52 T CONST)) (-3062 (((-85) $ $) 34 T ELT)) (-3956 (($ $ |#2|) NIL T ELT)) (-3843 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3845 (($ $ $) 39 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT))) +(((-125 |#1| |#2| |#3|) (-13 (-965) (-38 |#2|) (-1191 |#2|) (-10 -8 (-15 -1358 ($ (-834))) (-15 -2899 ($ |#2| (-587 (-834)))) (-15 -3683 (|#2| $ (-587 (-834)))) (-15 -3473 ((-3 $ "failed") $)))) (-834) (-314) (-910 |#1| |#2|)) (T -125)) +((-3473 (*1 *1 *1) (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-834)) (-4 *3 (-314)) (-14 *4 (-910 *2 *3)))) (-1358 (*1 *1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-314)) (-14 *5 (-910 *3 *4)))) (-2899 (*1 *1 *2 *3) (-12 (-5 *3 (-587 (-834))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-834)) (-4 *2 (-314)) (-14 *5 (-910 *4 *2)))) (-3683 (*1 *2 *1 *3) (-12 (-5 *3 (-587 (-834))) (-4 *2 (-314)) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-834)) (-14 *5 (-910 *4 *2))))) +((-1360 (((-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181)))) (-587 (-587 (-858 (-181)))) (-181) (-181) (-181) (-181)) 59 T ELT)) (-1359 (((-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181)))) (-840) (-352 (-488)) (-352 (-488))) 95 T ELT) (((-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181)))) (-840)) 96 T ELT)) (-1514 (((-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181)))) (-587 (-587 (-858 (-181))))) 99 T ELT) (((-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181)))) (-587 (-858 (-181)))) 98 T ELT) (((-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181)))) (-840) (-352 (-488)) (-352 (-488))) 89 T ELT) (((-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181)))) (-840)) 90 T ELT))) +(((-126) (-10 -7 (-15 -1514 ((-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181)))) (-840))) (-15 -1514 ((-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181)))) (-840) (-352 (-488)) (-352 (-488)))) (-15 -1359 ((-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181)))) (-840))) (-15 -1359 ((-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181)))) (-840) (-352 (-488)) (-352 (-488)))) (-15 -1360 ((-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181)))) (-587 (-587 (-858 (-181)))) (-181) (-181) (-181) (-181))) (-15 -1514 ((-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181)))) (-587 (-858 (-181))))) (-15 -1514 ((-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181)))) (-587 (-587 (-858 (-181)))))))) (T -126)) +((-1514 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181))))) (-5 *1 (-126)) (-5 *3 (-587 (-587 (-858 (-181))))))) (-1514 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181))))) (-5 *1 (-126)) (-5 *3 (-587 (-858 (-181)))))) (-1360 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-181)) (-5 *2 (-2 (|:| |brans| (-587 (-587 (-858 *4)))) (|:| |xValues| (-1005 *4)) (|:| |yValues| (-1005 *4)))) (-5 *1 (-126)) (-5 *3 (-587 (-587 (-858 *4)))))) (-1359 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-840)) (-5 *4 (-352 (-488))) (-5 *2 (-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181))))) (-5 *1 (-126)))) (-1359 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181))))) (-5 *1 (-126)))) (-1514 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-840)) (-5 *4 (-352 (-488))) (-5 *2 (-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181))))) (-5 *1 (-126)))) (-1514 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-2 (|:| |brans| (-587 (-587 (-858 (-181))))) (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181))))) (-5 *1 (-126))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3187 (((-587 (-1053)) $) 20 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 27 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-3239 (((-1053) $) 10 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-127) (-13 (-999) (-10 -8 (-15 -3187 ((-587 (-1053)) $)) (-15 -3239 ((-1053) $))))) (T -127)) +((-3187 (*1 *2 *1) (-12 (-5 *2 (-587 (-1053))) (-5 *1 (-127)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-127))))) +((-1414 (((-587 (-144 |#2|)) |#1| |#2|) 50 T ELT))) +(((-128 |#1| |#2|) (-10 -7 (-15 -1414 ((-587 (-144 |#2|)) |#1| |#2|))) (-1159 (-144 (-488))) (-13 (-314) (-759))) (T -128)) +((-1414 (*1 *2 *3 *4) (-12 (-5 *2 (-587 (-144 *4))) (-5 *1 (-128 *3 *4)) (-4 *3 (-1159 (-144 (-488)))) (-4 *4 (-13 (-314) (-759)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3534 (((-1134) $) 13 T ELT)) (-3535 (((-1053) $) 10 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 20 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-129) (-13 (-999) (-10 -8 (-15 -3535 ((-1053) $)) (-15 -3534 ((-1134) $))))) (T -129)) +((-3535 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-129)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-129))))) +((-2574 (((-85) $ $) NIL T ELT)) (-1362 (($) 38 T ELT)) (-3104 (($) 37 T ELT)) (-1361 (((-834)) 43 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2962 (((-488) $) 41 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3103 (($) 39 T ELT)) (-2961 (($ (-488)) 44 T ELT)) (-3953 (((-776) $) 50 T ELT)) (-3102 (($) 40 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 35 T ELT)) (-3845 (($ $ $) 32 T ELT)) (* (($ (-834) $) 42 T ELT) (($ (-181) $) 11 T ELT))) +(((-130) (-13 (-25) (-10 -8 (-15 * ($ (-834) $)) (-15 * ($ (-181) $)) (-15 -3845 ($ $ $)) (-15 -3104 ($)) (-15 -1362 ($)) (-15 -3103 ($)) (-15 -3102 ($)) (-15 -2962 ((-488) $)) (-15 -1361 ((-834))) (-15 -2961 ($ (-488)))))) (T -130)) +((-3845 (*1 *1 *1 *1) (-5 *1 (-130))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-130)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-130)))) (-3104 (*1 *1) (-5 *1 (-130))) (-1362 (*1 *1) (-5 *1 (-130))) (-3103 (*1 *1) (-5 *1 (-130))) (-3102 (*1 *1) (-5 *1 (-130))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-130)))) (-1361 (*1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-130)))) (-2961 (*1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-130))))) +((-1375 ((|#2| |#2| (-1008 |#2|)) 98 T ELT) ((|#2| |#2| (-1094)) 75 T ELT)) (-3951 ((|#2| |#2| (-1008 |#2|)) 97 T ELT) ((|#2| |#2| (-1094)) 74 T ELT)) (-1372 ((|#2| |#2| |#2|) 25 T ELT)) (-3601 (((-86) (-86)) 111 T ELT)) (-1369 ((|#2| (-587 |#2|)) 130 T ELT)) (-1366 ((|#2| (-587 |#2|)) 150 T ELT)) (-1365 ((|#2| (-587 |#2|)) 138 T ELT)) (-1363 ((|#2| |#2|) 136 T ELT)) (-1367 ((|#2| (-587 |#2|)) 124 T ELT)) (-1368 ((|#2| (-587 |#2|)) 125 T ELT)) (-1364 ((|#2| (-587 |#2|)) 148 T ELT)) (-1376 ((|#2| |#2| (-1094)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1370 ((|#2| |#2|) 21 T ELT)) (-3107 ((|#2| |#2| |#2|) 24 T ELT)) (-2259 (((-85) (-86)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) +(((-131 |#1| |#2|) (-10 -7 (-15 -2259 ((-85) (-86))) (-15 -3601 ((-86) (-86))) (-15 ** (|#2| |#2| |#2|)) (-15 -3107 (|#2| |#2| |#2|)) (-15 -1372 (|#2| |#2| |#2|)) (-15 -1370 (|#2| |#2|)) (-15 -1376 (|#2| |#2|)) (-15 -1376 (|#2| |#2| (-1094))) (-15 -1375 (|#2| |#2| (-1094))) (-15 -1375 (|#2| |#2| (-1008 |#2|))) (-15 -3951 (|#2| |#2| (-1094))) (-15 -3951 (|#2| |#2| (-1008 |#2|))) (-15 -1363 (|#2| |#2|)) (-15 -1364 (|#2| (-587 |#2|))) (-15 -1365 (|#2| (-587 |#2|))) (-15 -1366 (|#2| (-587 |#2|))) (-15 -1367 (|#2| (-587 |#2|))) (-15 -1368 (|#2| (-587 |#2|))) (-15 -1369 (|#2| (-587 |#2|)))) (-499) (-366 |#1|)) (T -131)) +((-1369 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-366 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-499)))) (-1368 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-366 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-499)))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-366 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-499)))) (-1366 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-366 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-499)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-366 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-499)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-366 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-499)))) (-1363 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-131 *3 *2)) (-4 *2 (-366 *3)))) (-3951 (*1 *2 *2 *3) (-12 (-5 *3 (-1008 *2)) (-4 *2 (-366 *4)) (-4 *4 (-499)) (-5 *1 (-131 *4 *2)))) (-3951 (*1 *2 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-499)) (-5 *1 (-131 *4 *2)) (-4 *2 (-366 *4)))) (-1375 (*1 *2 *2 *3) (-12 (-5 *3 (-1008 *2)) (-4 *2 (-366 *4)) (-4 *4 (-499)) (-5 *1 (-131 *4 *2)))) (-1375 (*1 *2 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-499)) (-5 *1 (-131 *4 *2)) (-4 *2 (-366 *4)))) (-1376 (*1 *2 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-499)) (-5 *1 (-131 *4 *2)) (-4 *2 (-366 *4)))) (-1376 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-131 *3 *2)) (-4 *2 (-366 *3)))) (-1370 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-131 *3 *2)) (-4 *2 (-366 *3)))) (-1372 (*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-131 *3 *2)) (-4 *2 (-366 *3)))) (-3107 (*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-131 *3 *2)) (-4 *2 (-366 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-131 *3 *2)) (-4 *2 (-366 *3)))) (-3601 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-499)) (-5 *1 (-131 *3 *4)) (-4 *4 (-366 *3)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-499)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-366 *4))))) +((-1374 ((|#1| |#1| |#1|) 66 T ELT)) (-1373 ((|#1| |#1| |#1|) 63 T ELT)) (-1372 ((|#1| |#1| |#1|) 57 T ELT)) (-2896 ((|#1| |#1|) 43 T ELT)) (-1371 ((|#1| |#1| (-587 |#1|)) 55 T ELT)) (-1370 ((|#1| |#1|) 47 T ELT)) (-3107 ((|#1| |#1| |#1|) 51 T ELT))) +(((-132 |#1|) (-10 -7 (-15 -3107 (|#1| |#1| |#1|)) (-15 -1370 (|#1| |#1|)) (-15 -1371 (|#1| |#1| (-587 |#1|))) (-15 -2896 (|#1| |#1|)) (-15 -1372 (|#1| |#1| |#1|)) (-15 -1373 (|#1| |#1| |#1|)) (-15 -1374 (|#1| |#1| |#1|))) (-487)) (T -132)) +((-1374 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-487)))) (-1373 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-487)))) (-1372 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-487)))) (-2896 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-487)))) (-1371 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-487)) (-5 *1 (-132 *2)))) (-1370 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-487)))) (-3107 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-487))))) +((-1375 (($ $ (-1094)) 12 T ELT) (($ $ (-1008 $)) 11 T ELT)) (-3951 (($ $ (-1094)) 10 T ELT) (($ $ (-1008 $)) 9 T ELT)) (-1372 (($ $ $) 8 T ELT)) (-1376 (($ $) 14 T ELT) (($ $ (-1094)) 13 T ELT)) (-1370 (($ $) 7 T ELT)) (-3107 (($ $ $) 6 T ELT))) (((-133) (-113)) (T -133)) -((-1374 (*1 *1 *1) (-4 *1 (-133))) (-1374 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1092)))) (-1373 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1092)))) (-1373 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-133)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1092)))) (-3948 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-133))))) -(-13 (-116) (-10 -8 (-15 -1374 ($ $)) (-15 -1374 ($ $ (-1092))) (-15 -1373 ($ $ (-1092))) (-15 -1373 ($ $ (-1006 $))) (-15 -3948 ($ $ (-1092))) (-15 -3948 ($ $ (-1006 $))))) +((-1376 (*1 *1 *1) (-4 *1 (-133))) (-1376 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1094)))) (-1375 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1094)))) (-1375 (*1 *1 *1 *2) (-12 (-5 *2 (-1008 *1)) (-4 *1 (-133)))) (-3951 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1094)))) (-3951 (*1 *1 *1 *2) (-12 (-5 *2 (-1008 *1)) (-4 *1 (-133))))) +(-13 (-116) (-10 -8 (-15 -1376 ($ $)) (-15 -1376 ($ $ (-1094))) (-15 -1375 ($ $ (-1094))) (-15 -1375 ($ $ (-1008 $))) (-15 -3951 ($ $ (-1094))) (-15 -3951 ($ $ (-1008 $))))) (((-116) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-1375 (($ (-486)) 15 T ELT) (($ $ $) 16 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 19 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 11 T ELT))) -(((-134) (-13 (-1015) (-10 -8 (-15 -1375 ($ (-486))) (-15 -1375 ($ $ $))))) (T -134)) -((-1375 (*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-134)))) (-1375 (*1 *1 *1 *1) (-5 *1 (-134)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 16 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-585 (-1051)) $) 10 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-135) (-13 (-997) (-10 -8 (-15 -3236 ((-585 (-1051)) $))))) (T -135)) -((-3236 (*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-135))))) -((-3598 (((-86) (-1092)) 103 T ELT))) -(((-136) (-10 -7 (-15 -3598 ((-86) (-1092))))) (T -136)) -((-3598 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-86)) (-5 *1 (-136))))) -((-1596 ((|#3| |#3|) 19 T ELT))) -(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -1596 (|#3| |#3|))) (-963) (-1157 |#1|) (-1157 |#2|)) (T -137)) -((-1596 (*1 *2 *2) (-12 (-4 *3 (-963)) (-4 *4 (-1157 *3)) (-5 *1 (-137 *3 *4 *2)) (-4 *2 (-1157 *4))))) -((-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 222 T ELT)) (-3333 ((|#2| $) 102 T ELT)) (-3495 (($ $) 255 T ELT)) (-3642 (($ $) 249 T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1="failed") (-585 (-1087 $)) (-1087 $)) 47 T ELT)) (-3493 (($ $) 253 T ELT)) (-3641 (($ $) 247 T ELT)) (-3160 (((-3 (-486) #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3159 (((-486) $) NIL T ELT) (((-350 (-486)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2567 (($ $ $) 228 T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) 160 T ELT) (((-632 |#2|) (-632 $)) 154 T ELT)) (-3845 (($ (-1087 |#2|)) 125 T ELT) (((-3 $ #1#) (-350 (-1087 |#2|))) NIL T ELT)) (-3470 (((-3 $ #1#) $) 213 T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) 203 T ELT)) (-3026 (((-85) $) 198 T ELT)) (-3025 (((-350 (-486)) $) 201 T ELT)) (-3111 (((-832)) 96 T ELT)) (-2566 (($ $ $) 230 T ELT)) (-1376 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3630 (($) 244 T ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 192 T ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 197 T ELT)) (-3135 ((|#2| $) 100 T ELT)) (-2016 (((-1087 |#2|) $) 127 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3946 (($ $) 246 T ELT)) (-3082 (((-1087 |#2|) $) 126 T ELT)) (-2487 (($ $) 206 T ELT)) (-1378 (($) 103 T ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 95 T ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 64 T ELT)) (-3469 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3947 (($ $) 245 T ELT)) (-1608 (((-696) $) 225 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 234 T ELT)) (-3760 ((|#2| (-1181 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3761 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-3188 (((-1087 |#2|)) 120 T ELT)) (-3494 (($ $) 254 T ELT)) (-3637 (($ $) 248 T ELT)) (-3227 (((-1181 |#2|) $ (-1181 $)) 136 T ELT) (((-632 |#2|) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 |#2|) $) 116 T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-3975 (((-1181 |#2|) $) NIL T ELT) (($ (-1181 |#2|)) NIL T ELT) (((-1087 |#2|) $) NIL T ELT) (($ (-1087 |#2|)) NIL T ELT) (((-802 (-486)) $) 183 T ELT) (((-802 (-330)) $) 187 T ELT) (((-142 (-330)) $) 172 T ELT) (((-142 (-179)) $) 167 T ELT) (((-475) $) 179 T ELT)) (-3012 (($ $) 104 T ELT)) (-3950 (((-774) $) 143 T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ $) NIL T ELT)) (-2452 (((-1087 |#2|) $) 32 T ELT)) (-3129 (((-696)) 106 T CONST)) (-1267 (((-85) $ $) 13 T ELT)) (-3501 (($ $) 258 T ELT)) (-3489 (($ $) 252 T ELT)) (-3499 (($ $) 256 T ELT)) (-3487 (($ $) 250 T ELT)) (-2238 ((|#2| $) 241 T ELT)) (-3500 (($ $) 257 T ELT)) (-3488 (($ $) 251 T ELT)) (-3386 (($ $) 162 T ELT)) (-3059 (((-85) $ $) 110 T ELT)) (-3840 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 111 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-350 (-486))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT))) -(((-138 |#1| |#2|) (-10 -7 (-15 -3761 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -3950 (|#1| |#1|)) (-15 -3469 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2066 ((-2 (|:| -1777 |#1|) (|:| -3985 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1608 ((-696) |#1|)) (-15 -2882 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-15 -2566 (|#1| |#1| |#1|)) (-15 -2567 (|#1| |#1| |#1|)) (-15 -2487 (|#1| |#1|)) (-15 ** (|#1| |#1| (-486))) (-15 * (|#1| |#1| (-350 (-486)))) (-15 * (|#1| (-350 (-486)) |#1|)) (-15 -3950 (|#1| (-350 (-486)))) (-15 -3975 ((-475) |#1|)) (-15 -3975 ((-142 (-179)) |#1|)) (-15 -3975 ((-142 (-330)) |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3946 (|#1| |#1|)) (-15 -3947 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3630 (|#1|)) (-15 ** (|#1| |#1| (-350 (-486)))) (-15 -2709 ((-348 (-1087 |#1|)) (-1087 |#1|))) (-15 -2708 ((-348 (-1087 |#1|)) (-1087 |#1|))) (-15 -2707 ((-3 (-585 (-1087 |#1|)) #1#) (-585 (-1087 |#1|)) (-1087 |#1|))) (-15 -3027 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3025 ((-350 (-486)) |#1|)) (-15 -3026 ((-85) |#1|)) (-15 -1376 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2238 (|#2| |#1|)) (-15 -3386 (|#1| |#1|)) (-15 -3469 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3012 (|#1| |#1|)) (-15 -1378 (|#1|)) (-15 -3975 ((-802 (-330)) |#1|)) (-15 -3975 ((-802 (-486)) |#1|)) (-15 -2799 ((-800 (-330) |#1|) |#1| (-802 (-330)) (-800 (-330) |#1|))) (-15 -2799 ((-800 (-486) |#1|) |#1| (-802 (-486)) (-800 (-486) |#1|))) (-15 -3846 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3845 ((-3 |#1| #1#) (-350 (-1087 |#2|)))) (-15 -3082 ((-1087 |#2|) |#1|)) (-15 -3975 (|#1| (-1087 |#2|))) (-15 -3845 (|#1| (-1087 |#2|))) (-15 -3188 ((-1087 |#2|))) (-15 -2281 ((-632 |#2|) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-632 (-486)) (-632 |#1|))) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3975 ((-1087 |#2|) |#1|)) (-15 -3760 (|#2|)) (-15 -3975 (|#1| (-1181 |#2|))) (-15 -3975 ((-1181 |#2|) |#1|)) (-15 -3227 ((-632 |#2|) (-1181 |#1|))) (-15 -3227 ((-1181 |#2|) |#1|)) (-15 -2016 ((-1087 |#2|) |#1|)) (-15 -2452 ((-1087 |#2|) |#1|)) (-15 -3760 (|#2| (-1181 |#1|))) (-15 -3227 ((-632 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3227 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -3135 (|#2| |#1|)) (-15 -3333 (|#2| |#1|)) (-15 -3111 ((-832))) (-15 -3950 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3129 ((-696)) -3956) (-15 -3950 (|#1| (-486))) (-15 -3470 ((-3 |#1| #1#) |#1|)) (-15 ** (|#1| |#1| (-696))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-832))) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|)) (-15 -3842 (|#1| |#1| |#1|)) (-15 -3950 ((-774) |#1|)) (-15 -1267 ((-85) |#1| |#1|)) (-15 -3059 ((-85) |#1| |#1|))) (-139 |#2|) (-146)) (T -138)) -((-3129 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-696)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3111 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-832)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3760 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) (-3188 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1087 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 114 (OR (|has| |#1| (-497)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-2065 (($ $) 115 (OR (|has| |#1| (-497)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-2063 (((-85) $) 117 (OR (|has| |#1| (-497)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-1787 (((-632 |#1|) (-1181 $)) 61 T ELT) (((-632 |#1|)) 77 T ELT)) (-3333 ((|#1| $) 67 T ELT)) (-3495 (($ $) 250 (|has| |#1| (-1117)) ELT)) (-3642 (($ $) 233 (|has| |#1| (-1117)) ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) 167 (|has| |#1| (-299)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 264 (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-3778 (($ $) 134 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-3974 (((-348 $) $) 135 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-3040 (($ $) 263 (-12 (|has| |#1| (-917)) (|has| |#1| (-1117))) ELT)) (-2707 (((-3 (-585 (-1087 $)) "failed") (-585 (-1087 $)) (-1087 $)) 267 (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-1609 (((-85) $ $) 125 (|has| |#1| (-258)) ELT)) (-3139 (((-696)) 108 (|has| |#1| (-320)) ELT)) (-3493 (($ $) 249 (|has| |#1| (-1117)) ELT)) (-3641 (($ $) 234 (|has| |#1| (-1117)) ELT)) (-3497 (($ $) 248 (|has| |#1| (-1117)) ELT)) (-3640 (($ $) 235 (|has| |#1| (-1117)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-486) #1="failed") $) 194 (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) 192 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3159 (((-486) $) 193 (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) 191 (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 190 T ELT)) (-1797 (($ (-1181 |#1|) (-1181 $)) 63 T ELT) (($ (-1181 |#1|)) 80 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2567 (($ $ $) 129 (|has| |#1| (-258)) ELT)) (-1786 (((-632 |#1|) $ (-1181 $)) 68 T ELT) (((-632 |#1|) $) 75 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 186 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 185 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 184 T ELT) (((-632 |#1|) (-632 $)) 183 T ELT)) (-3845 (($ (-1087 |#1|)) 178 T ELT) (((-3 $ "failed") (-350 (-1087 |#1|))) 175 (|has| |#1| (-312)) ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3646 ((|#1| $) 275 T ELT)) (-3027 (((-3 (-350 (-486)) "failed") $) 268 (|has| |#1| (-485)) ELT)) (-3026 (((-85) $) 270 (|has| |#1| (-485)) ELT)) (-3025 (((-350 (-486)) $) 269 (|has| |#1| (-485)) ELT)) (-3111 (((-832)) 69 T ELT)) (-2997 (($) 111 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) 128 (|has| |#1| (-258)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 123 (|has| |#1| (-258)) ELT)) (-2836 (($) 169 (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1769 (($ $ (-696)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3726 (((-85) $) 136 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-1376 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 271 (-12 (|has| |#1| (-975)) (|has| |#1| (-1117))) ELT)) (-3630 (($) 260 (|has| |#1| (-1117)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 283 (|has| |#1| (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 282 (|has| |#1| (-798 (-330))) ELT)) (-3775 (((-832) $) 172 (|has| |#1| (-299)) ELT) (((-745 (-832)) $) 158 (|has| |#1| (-299)) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 262 (-12 (|has| |#1| (-917)) (|has| |#1| (-1117))) ELT)) (-3135 ((|#1| $) 66 T ELT)) (-3448 (((-634 $) $) 162 (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-585 $) #2="failed") (-585 $) $) 132 (|has| |#1| (-258)) ELT)) (-2016 (((-1087 |#1|) $) 59 (|has| |#1| (-312)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 284 T ELT)) (-2012 (((-832) $) 110 (|has| |#1| (-320)) ELT)) (-3946 (($ $) 257 (|has| |#1| (-1117)) ELT)) (-3082 (((-1087 |#1|) $) 176 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 188 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 187 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 182 T ELT) (((-632 |#1|) (-1181 $)) 181 T ELT)) (-1896 (($ (-585 $)) 121 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT) (($ $ $) 120 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3449 (($) 163 (|has| |#1| (-299)) CONST)) (-2402 (($ (-832)) 109 (|has| |#1| (-320)) ELT)) (-1378 (($) 279 T ELT)) (-3647 ((|#1| $) 276 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2411 (($) 180 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 122 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-3147 (($ (-585 $)) 119 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT) (($ $ $) 118 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) 166 (|has| |#1| (-299)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 266 (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 265 (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-3735 (((-348 $) $) 133 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 130 (|has| |#1| (-258)) ELT)) (-3469 (((-3 $ "failed") $ |#1|) 274 (|has| |#1| (-497)) ELT) (((-3 $ "failed") $ $) 113 (OR (|has| |#1| (-497)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 124 (|has| |#1| (-258)) ELT)) (-3947 (($ $) 258 (|has| |#1| (-1117)) ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) 290 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 289 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 288 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) 287 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) 286 (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) |#1|) 285 (|has| |#1| (-457 (-1092) |#1|)) ELT)) (-1608 (((-696) $) 126 (|has| |#1| (-258)) ELT)) (-3803 (($ $ |#1|) 291 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 127 (|has| |#1| (-258)) ELT)) (-3760 ((|#1| (-1181 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1770 (((-696) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-696) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3761 (($ $ (-1 |#1| |#1|)) 145 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 144 T ELT) (($ $ (-585 (-1092)) (-585 (-696))) 150 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092) (-696)) 149 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-585 (-1092))) 148 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092)) 146 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-696)) 156 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2565 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 154 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2565 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-2410 (((-632 |#1|) (-1181 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3188 (((-1087 |#1|)) 179 T ELT)) (-3498 (($ $) 247 (|has| |#1| (-1117)) ELT)) (-3639 (($ $) 236 (|has| |#1| (-1117)) ELT)) (-1675 (($) 168 (|has| |#1| (-299)) ELT)) (-3496 (($ $) 246 (|has| |#1| (-1117)) ELT)) (-3638 (($ $) 237 (|has| |#1| (-1117)) ELT)) (-3494 (($ $) 245 (|has| |#1| (-1117)) ELT)) (-3637 (($ $) 238 (|has| |#1| (-1117)) ELT)) (-3227 (((-1181 |#1|) $ (-1181 $)) 65 T ELT) (((-632 |#1|) (-1181 $) (-1181 $)) 64 T ELT) (((-1181 |#1|) $) 82 T ELT) (((-632 |#1|) (-1181 $)) 81 T ELT)) (-3975 (((-1181 |#1|) $) 79 T ELT) (($ (-1181 |#1|)) 78 T ELT) (((-1087 |#1|) $) 195 T ELT) (($ (-1087 |#1|)) 177 T ELT) (((-802 (-486)) $) 281 (|has| |#1| (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) 280 (|has| |#1| (-555 (-802 (-330)))) ELT) (((-142 (-330)) $) 232 (|has| |#1| (-935)) ELT) (((-142 (-179)) $) 231 (|has| |#1| (-935)) ELT) (((-475) $) 230 (|has| |#1| (-555 (-475))) ELT)) (-3012 (($ $) 278 T ELT)) (-2706 (((-3 (-1181 $) "failed") (-632 $)) 165 (OR (-2565 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) (|has| |#1| (-299))) ELT)) (-1377 (($ |#1| |#1|) 277 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-486))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) 112 (OR (|has| |#1| (-497)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-2705 (($ $) 164 (|has| |#1| (-299)) ELT) (((-634 $) $) 58 (OR (-2565 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) (|has| |#1| (-118))) ELT)) (-2452 (((-1087 |#1|) $) 60 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2014 (((-1181 $)) 83 T ELT)) (-3501 (($ $) 256 (|has| |#1| (-1117)) ELT)) (-3489 (($ $) 244 (|has| |#1| (-1117)) ELT)) (-2064 (((-85) $ $) 116 (OR (|has| |#1| (-497)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-3499 (($ $) 255 (|has| |#1| (-1117)) ELT)) (-3487 (($ $) 243 (|has| |#1| (-1117)) ELT)) (-3503 (($ $) 254 (|has| |#1| (-1117)) ELT)) (-3491 (($ $) 242 (|has| |#1| (-1117)) ELT)) (-2238 ((|#1| $) 272 (|has| |#1| (-1117)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3504 (($ $) 253 (|has| |#1| (-1117)) ELT)) (-3492 (($ $) 241 (|has| |#1| (-1117)) ELT)) (-3502 (($ $) 252 (|has| |#1| (-1117)) ELT)) (-3490 (($ $) 240 (|has| |#1| (-1117)) ELT)) (-3500 (($ $) 251 (|has| |#1| (-1117)) ELT)) (-3488 (($ $) 239 (|has| |#1| (-1117)) ELT)) (-3386 (($ $) 273 (|has| |#1| (-975)) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) 143 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 142 T ELT) (($ $ (-585 (-1092)) (-585 (-696))) 153 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092) (-696)) 152 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-585 (-1092))) 151 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092)) 147 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-696)) 157 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2565 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 155 (OR (-2565 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2565 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2565 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-350 (-486))) 261 (-12 (|has| |#1| (-917)) (|has| |#1| (-1117))) ELT) (($ $ $) 259 (|has| |#1| (-1117)) ELT) (($ $ (-486)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-350 (-486)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-350 (-486))) 139 (|has| |#1| (-312)) ELT))) -(((-139 |#1|) (-113) (-146)) (T -139)) -((-3135 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1378 (*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3012 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1377 (*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3469 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-497)))) (-3386 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-975)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1117)))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-975)) (-4 *3 (-1117)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-85)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-350 (-486))))) (-3027 (*1 *2 *1) (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-350 (-486)))))) -(-13 (-663 |t#1| (-1087 |t#1|)) (-355 |t#1|) (-184 |t#1|) (-288 |t#1|) (-343 |t#1|) (-796 |t#1|) (-329 |t#1|) (-146) (-10 -8 (-6 -1377) (-15 -1378 ($)) (-15 -3012 ($ $)) (-15 -1377 ($ |t#1| |t#1|)) (-15 -3647 (|t#1| $)) (-15 -3646 (|t#1| $)) (-15 -3135 (|t#1| $)) (IF (|has| |t#1| (-497)) (PROGN (-6 (-497)) (-15 -3469 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-258)) (-6 (-258)) |%noBranch|) (IF (|has| |t#1| (-6 -3997)) (-6 -3997) |%noBranch|) (IF (|has| |t#1| (-6 -3994)) (-6 -3994) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|) (IF (|has| |t#1| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-935)) (PROGN (-6 (-555 (-142 (-179)))) (-6 (-555 (-142 (-330))))) |%noBranch|) (IF (|has| |t#1| (-975)) (-15 -3386 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1117)) (PROGN (-6 (-1117)) (-15 -2238 (|t#1| $)) (IF (|has| |t#1| (-917)) (-6 (-917)) |%noBranch|) (IF (|has| |t#1| (-975)) (-15 -1376 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-485)) (PROGN (-15 -3026 ((-85) $)) (-15 -3025 ((-350 (-486)) $)) (-15 -3027 ((-3 (-350 (-486)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-823)) (IF (|has| |t#1| (-258)) (-6 (-823)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-497)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-35) |has| |#1| (-1117)) ((-66) |has| |#1| (-1117)) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-557 $) OR (|has| |#1| (-497)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-554 (-774)) . T) ((-146) . T) ((-555 (-142 (-179))) |has| |#1| (-935)) ((-555 (-142 (-330))) |has| |#1| (-935)) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-555 (-802 (-330))) |has| |#1| (-555 (-802 (-330)))) ((-555 (-802 (-486))) |has| |#1| (-555 (-802 (-486)))) ((-555 (-1087 |#1|)) . T) ((-186 $) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) OR (|has| |#1| (-299)) (|has| |#1| (-190))) ((-189) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-239) |has| |#1| (-1117)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-497)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-345) |has| |#1| (-299)) ((-320) OR (|has| |#1| (-299)) (|has| |#1| (-320))) ((-299) |has| |#1| (-299)) ((-322 |#1| (-1087 |#1|)) . T) ((-353 |#1| (-1087 |#1|)) . T) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-381 |#1|) . T) ((-393) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-434) |has| |#1| (-1117)) ((-457 (-1092) |#1|) |has| |#1| (-457 (-1092) |#1|)) ((-457 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-497) OR (|has| |#1| (-497)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-13) . T) ((-590 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-592 (-486)) |has| |#1| (-582 (-486))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-584 |#1|) . T) ((-584 $) OR (|has| |#1| (-497)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-582 (-486)) |has| |#1| (-582 (-486))) ((-582 |#1|) . T) ((-656 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-656 |#1|) . T) ((-656 $) OR (|has| |#1| (-497)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-663 |#1| (-1087 |#1|)) . T) ((-665) . T) ((-808 $ (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-811 (-1092)) |has| |#1| (-811 (-1092))) ((-813 (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-798 (-330)) |has| |#1| (-798 (-330))) ((-798 (-486)) |has| |#1| (-798 (-486))) ((-796 |#1|) . T) ((-823) -12 (|has| |#1| (-258)) (|has| |#1| (-823))) ((-834) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-917) -12 (|has| |#1| (-917)) (|has| |#1| (-1117))) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-965 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-965 |#1|) . T) ((-965 $) . T) ((-970 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-970 |#1|) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1068) |has| |#1| (-299)) ((-1117) |has| |#1| (-1117)) ((-1120) |has| |#1| (-1117)) ((-1131) . T) ((-1136) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823))))) -((-3735 (((-348 |#2|) |#2|) 67 T ELT))) -(((-140 |#1| |#2|) (-10 -7 (-15 -3735 ((-348 |#2|) |#2|))) (-258) (-1157 (-142 |#1|))) (T -140)) -((-3735 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-140 *4 *3)) (-4 *3 (-1157 (-142 *4)))))) -((-1381 (((-1051) (-1051) (-247)) 8 T ELT)) (-1379 (((-585 (-634 (-235))) (-1075)) 81 T ELT)) (-1380 (((-634 (-235)) (-1051)) 76 T ELT))) -(((-141) (-13 (-1131) (-10 -7 (-15 -1381 ((-1051) (-1051) (-247))) (-15 -1380 ((-634 (-235)) (-1051))) (-15 -1379 ((-585 (-634 (-235))) (-1075)))))) (T -141)) -((-1381 (*1 *2 *2 *3) (-12 (-5 *2 (-1051)) (-5 *3 (-247)) (-5 *1 (-141)))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-1051)) (-5 *2 (-634 (-235))) (-5 *1 (-141)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-585 (-634 (-235)))) (-5 *1 (-141))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 15 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-497))) ELT)) (-2065 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-497))) ELT)) (-2063 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-497))) ELT)) (-1787 (((-632 |#1|) (-1181 $)) NIL T ELT) (((-632 |#1|)) NIL T ELT)) (-3333 ((|#1| $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3642 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) NIL (|has| |#1| (-299)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-3778 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-3974 (((-348 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-3040 (($ $) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-1117))) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-258)) ELT)) (-3139 (((-696)) NIL (|has| |#1| (-320)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3641 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3640 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT)) (-1797 (($ (-1181 |#1|) (-1181 $)) NIL T ELT) (($ (-1181 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1786 (((-632 |#1|) $ (-1181 $)) NIL T ELT) (((-632 |#1|) $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3845 (($ (-1087 |#1|)) NIL T ELT) (((-3 $ #1#) (-350 (-1087 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3646 ((|#1| $) 20 T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-485)) ELT)) (-3026 (((-85) $) NIL (|has| |#1| (-485)) ELT)) (-3025 (((-350 (-486)) $) NIL (|has| |#1| (-485)) ELT)) (-3111 (((-832)) NIL T ELT)) (-2997 (($) NIL (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-258)) ELT)) (-2836 (($) NIL (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1769 (($ $ (-696)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3726 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-1376 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-975)) (|has| |#1| (-1117))) ELT)) (-3630 (($) NIL (|has| |#1| (-1117)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| |#1| (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| |#1| (-798 (-330))) ELT)) (-3775 (((-832) $) NIL (|has| |#1| (-299)) ELT) (((-745 (-832)) $) NIL (|has| |#1| (-299)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 17 T ELT)) (-3014 (($ $ (-486)) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-1117))) ELT)) (-3135 ((|#1| $) 30 T ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-258)) ELT)) (-2016 (((-1087 |#1|) $) NIL (|has| |#1| (-312)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-320)) ELT)) (-3946 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3082 (((-1087 |#1|) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3449 (($) NIL (|has| |#1| (-299)) CONST)) (-2402 (($ (-832)) NIL (|has| |#1| (-320)) ELT)) (-1378 (($) NIL T ELT)) (-3647 ((|#1| $) 21 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-258)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| |#1| (-299)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-3735 (((-348 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-497))) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-258)) ELT)) (-3947 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) NIL (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) |#1|) NIL (|has| |#1| (-457 (-1092) |#1|)) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-258)) ELT)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3760 ((|#1| (-1181 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1770 (((-696) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-696) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3761 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-2410 (((-632 |#1|) (-1181 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3188 (((-1087 |#1|)) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3639 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-1675 (($) NIL (|has| |#1| (-299)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3638 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3637 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3227 (((-1181 |#1|) $ (-1181 $)) NIL T ELT) (((-632 |#1|) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 |#1|) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-3975 (((-1181 |#1|) $) NIL T ELT) (($ (-1181 |#1|)) NIL T ELT) (((-1087 |#1|) $) NIL T ELT) (($ (-1087 |#1|)) NIL T ELT) (((-802 (-486)) $) NIL (|has| |#1| (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| |#1| (-555 (-802 (-330)))) ELT) (((-142 (-330)) $) NIL (|has| |#1| (-935)) ELT) (((-142 (-179)) $) NIL (|has| |#1| (-935)) ELT) (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3012 (($ $) 29 T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-299))) ELT)) (-1377 (($ |#1| |#1|) 19 T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-497))) ELT)) (-2705 (($ $) NIL (|has| |#1| (-299)) ELT) (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-2452 (((-1087 |#1|) $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-2064 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-497))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3503 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-2238 ((|#1| $) NIL (|has| |#1| (-1117)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3502 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3500 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-1117)) ELT)) (-3386 (($ $) NIL (|has| |#1| (-975)) ELT)) (-2663 (($) 8 T CONST)) (-2669 (($) 10 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 23 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-350 (-486))) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-1117))) ELT) (($ $ $) NIL (|has| |#1| (-1117)) ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-312)) ELT))) -(((-142 |#1|) (-139 |#1|) (-146)) (T -142)) -NIL -((-3846 (((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)) 14 T ELT))) -(((-143 |#1| |#2|) (-10 -7 (-15 -3846 ((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)))) (-146) (-146)) (T -143)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6))))) -((-3975 (((-802 |#1|) |#3|) 22 T ELT))) -(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -3975 ((-802 |#1|) |#3|))) (-1015) (-13 (-555 (-802 |#1|)) (-146)) (-139 |#2|)) (T -144)) -((-3975 (*1 *2 *3) (-12 (-4 *5 (-13 (-555 *2) (-146))) (-5 *2 (-802 *4)) (-5 *1 (-144 *4 *5 *3)) (-4 *4 (-1015)) (-4 *3 (-139 *5))))) -((-2571 (((-85) $ $) NIL T ELT)) (-1383 (((-85) $) 9 T ELT)) (-1382 (((-85) $ (-85)) 11 T ELT)) (-3617 (($) 13 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3403 (($ $) 14 T ELT)) (-3950 (((-774) $) 18 T ELT)) (-3705 (((-85) $) 8 T ELT)) (-3865 (((-85) $ (-85)) 10 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-145) (-13 (-1015) (-10 -8 (-15 -3617 ($)) (-15 -3705 ((-85) $)) (-15 -1383 ((-85) $)) (-15 -3865 ((-85) $ (-85))) (-15 -1382 ((-85) $ (-85))) (-15 -3403 ($ $))))) (T -145)) -((-3617 (*1 *1) (-5 *1 (-145))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3865 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1382 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3403 (*1 *1 *1) (-5 *1 (-145)))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-146) (-113)) (T -146)) -NIL -(-13 (-963) (-82 $ $) (-10 -7 (-6 (-4000 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-1701 (($ $) 6 T ELT))) -(((-147) (-113)) (T -147)) -((-1701 (*1 *1 *1) (-4 *1 (-147)))) -(-13 (-10 -8 (-15 -1701 ($ $)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 ((|#1| $) 79 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL T ELT)) (-1388 (($ $) 21 T ELT)) (-1392 (($ |#1| (-1071 |#1|)) 48 T ELT)) (-3470 (((-3 $ #1#) $) 123 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-1389 (((-1071 |#1|) $) 86 T ELT)) (-1391 (((-1071 |#1|) $) 83 T ELT)) (-1390 (((-1071 |#1|) $) 84 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1385 (((-1071 |#1|) $) 93 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-1896 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3772 (($ $ (-486)) 96 T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1384 (((-1071 |#1|) $) 94 T ELT)) (-1386 (((-1071 (-350 |#1|)) $) 14 T ELT)) (-2619 (($ (-350 |#1|)) 17 T ELT) (($ |#1| (-1071 |#1|) (-1071 |#1|)) 38 T ELT)) (-2894 (($ $) 98 T ELT)) (-3950 (((-774) $) 139 T ELT) (($ (-486)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-350 |#1|)) 36 T ELT) (($ (-350 (-486))) NIL T ELT) (($ $) NIL T ELT)) (-3129 (((-696)) 67 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-1387 (((-1071 (-350 |#1|)) $) 20 T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 103 T CONST)) (-2669 (($) 28 T CONST)) (-3059 (((-85) $ $) 35 T ELT)) (-3953 (($ $ $) 121 T ELT)) (-3840 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3842 (($ $ $) 107 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-350 |#1|) $) 117 T ELT) (($ $ (-350 |#1|)) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT))) -(((-148 |#1|) (-13 (-38 |#1|) (-38 (-350 |#1|)) (-312) (-10 -8 (-15 -2619 ($ (-350 |#1|))) (-15 -2619 ($ |#1| (-1071 |#1|) (-1071 |#1|))) (-15 -1392 ($ |#1| (-1071 |#1|))) (-15 -1391 ((-1071 |#1|) $)) (-15 -1390 ((-1071 |#1|) $)) (-15 -1389 ((-1071 |#1|) $)) (-15 -3132 (|#1| $)) (-15 -1388 ($ $)) (-15 -1387 ((-1071 (-350 |#1|)) $)) (-15 -1386 ((-1071 (-350 |#1|)) $)) (-15 -1385 ((-1071 |#1|) $)) (-15 -1384 ((-1071 |#1|) $)) (-15 -3772 ($ $ (-486))) (-15 -2894 ($ $)))) (-258)) (T -148)) -((-2619 (*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3)))) (-2619 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1071 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1392 (*1 *1 *2 *3) (-12 (-5 *3 (-1071 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3132 (*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1388 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-1071 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1071 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3772 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-2894 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258))))) -((-1393 (($ (-78) $) 15 T ELT)) (-3224 (((-634 (-78)) (-448) $) 14 T ELT)) (-3950 (((-774) $) 18 T ELT)) (-1394 (((-585 (-78)) $) 8 T ELT))) -(((-149) (-13 (-554 (-774)) (-10 -8 (-15 -1394 ((-585 (-78)) $)) (-15 -1393 ($ (-78) $)) (-15 -3224 ((-634 (-78)) (-448) $))))) (T -149)) -((-1394 (*1 *2 *1) (-12 (-5 *2 (-585 (-78))) (-5 *1 (-149)))) (-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149)))) (-3224 (*1 *2 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-78))) (-5 *1 (-149))))) -((-1407 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 38 T ELT)) (-1398 (((-856 |#1|) (-856 |#1|)) 22 T ELT)) (-1403 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 34 T ELT)) (-1396 (((-856 |#1|) (-856 |#1|)) 20 T ELT)) (-1401 (((-856 |#1|) (-856 |#1|)) 28 T ELT)) (-1400 (((-856 |#1|) (-856 |#1|)) 27 T ELT)) (-1399 (((-856 |#1|) (-856 |#1|)) 26 T ELT)) (-1404 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 35 T ELT)) (-1402 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 33 T ELT)) (-1644 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 32 T ELT)) (-1397 (((-856 |#1|) (-856 |#1|)) 21 T ELT)) (-1408 (((-1 (-856 |#1|) (-856 |#1|)) |#1| |#1|) 41 T ELT)) (-1395 (((-856 |#1|) (-856 |#1|)) 8 T ELT)) (-1406 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 37 T ELT)) (-1405 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 36 T ELT))) -(((-150 |#1|) (-10 -7 (-15 -1395 ((-856 |#1|) (-856 |#1|))) (-15 -1396 ((-856 |#1|) (-856 |#1|))) (-15 -1397 ((-856 |#1|) (-856 |#1|))) (-15 -1398 ((-856 |#1|) (-856 |#1|))) (-15 -1399 ((-856 |#1|) (-856 |#1|))) (-15 -1400 ((-856 |#1|) (-856 |#1|))) (-15 -1401 ((-856 |#1|) (-856 |#1|))) (-15 -1644 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1402 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1403 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1404 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1405 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1406 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1407 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1408 ((-1 (-856 |#1|) (-856 |#1|)) |#1| |#1|))) (-13 (-312) (-1117) (-917))) (T -150)) -((-1408 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1117) (-917))))) (-1407 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1117) (-917))))) (-1406 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1117) (-917))))) (-1405 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1117) (-917))))) (-1404 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1117) (-917))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1117) (-917))))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1117) (-917))))) (-1644 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1117) (-917))))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3)))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3)))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) (-5 *1 (-150 *3))))) -((-2452 ((|#2| |#3|) 28 T ELT))) -(((-151 |#1| |#2| |#3|) (-10 -7 (-15 -2452 (|#2| |#3|))) (-146) (-1157 |#1|) (-663 |#1| |#2|)) (T -151)) -((-2452 (*1 *2 *3) (-12 (-4 *4 (-146)) (-4 *2 (-1157 *4)) (-5 *1 (-151 *4 *2 *3)) (-4 *3 (-663 *4 *2))))) -((-2799 (((-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|)) 44 (|has| (-859 |#2|) (-798 |#1|)) ELT))) -(((-152 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-859 |#2|) (-798 |#1|)) (-15 -2799 ((-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|))) |%noBranch|)) (-1015) (-13 (-798 |#1|) (-146)) (-139 |#2|)) (T -152)) -((-2799 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 *3)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *3 (-139 *6)) (-4 (-859 *6) (-798 *5)) (-4 *6 (-13 (-798 *5) (-146))) (-5 *1 (-152 *5 *6 *3))))) -((-1410 (((-585 |#1|) (-585 |#1|) |#1|) 41 T ELT)) (-1409 (((-585 |#1|) |#1| (-585 |#1|)) 20 T ELT)) (-2079 (((-585 |#1|) (-585 (-585 |#1|)) (-585 |#1|)) 36 T ELT) ((|#1| (-585 |#1|) (-585 |#1|)) 32 T ELT))) -(((-153 |#1|) (-10 -7 (-15 -1409 ((-585 |#1|) |#1| (-585 |#1|))) (-15 -2079 (|#1| (-585 |#1|) (-585 |#1|))) (-15 -2079 ((-585 |#1|) (-585 (-585 |#1|)) (-585 |#1|))) (-15 -1410 ((-585 |#1|) (-585 |#1|) |#1|))) (-258)) (T -153)) -((-1410 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))) (-2079 (*1 *2 *3 *2) (-12 (-5 *3 (-585 (-585 *4))) (-5 *2 (-585 *4)) (-4 *4 (-258)) (-5 *1 (-153 *4)))) (-2079 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) (-1409 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3321 (((-1132) $) 14 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3209 (((-1051) $) 11 T ELT)) (-3950 (((-774) $) 21 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-154) (-13 (-997) (-10 -8 (-15 -3209 ((-1051) $)) (-15 -3321 ((-1132) $))))) (T -154)) -((-3209 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-154)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-154))))) -((-1419 (((-2 (|:| |start| |#2|) (|:| -1784 (-348 |#2|))) |#2|) 66 T ELT)) (-1418 ((|#1| |#1|) 58 T ELT)) (-1417 (((-142 |#1|) |#2|) 94 T ELT)) (-1416 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1415 ((|#2| |#2|) 91 T ELT)) (-1414 (((-348 |#2|) |#2| |#1|) 119 T ELT) (((-348 |#2|) |#2| |#1| (-85)) 88 T ELT)) (-3135 ((|#1| |#2|) 118 T ELT)) (-1413 ((|#2| |#2|) 131 T ELT)) (-3735 (((-348 |#2|) |#2|) 154 T ELT) (((-348 |#2|) |#2| |#1|) 33 T ELT) (((-348 |#2|) |#2| |#1| (-85)) 153 T ELT)) (-1412 (((-585 (-2 (|:| -1784 (-585 |#2|)) (|:| -1597 |#1|))) |#2| |#2|) 152 T ELT) (((-585 (-2 (|:| -1784 (-585 |#2|)) (|:| -1597 |#1|))) |#2| |#2| (-85)) 82 T ELT)) (-1411 (((-585 (-142 |#1|)) |#2| |#1|) 42 T ELT) (((-585 (-142 |#1|)) |#2|) 43 T ELT))) -(((-155 |#1| |#2|) (-10 -7 (-15 -1411 ((-585 (-142 |#1|)) |#2|)) (-15 -1411 ((-585 (-142 |#1|)) |#2| |#1|)) (-15 -1412 ((-585 (-2 (|:| -1784 (-585 |#2|)) (|:| -1597 |#1|))) |#2| |#2| (-85))) (-15 -1412 ((-585 (-2 (|:| -1784 (-585 |#2|)) (|:| -1597 |#1|))) |#2| |#2|)) (-15 -3735 ((-348 |#2|) |#2| |#1| (-85))) (-15 -3735 ((-348 |#2|) |#2| |#1|)) (-15 -3735 ((-348 |#2|) |#2|)) (-15 -1413 (|#2| |#2|)) (-15 -3135 (|#1| |#2|)) (-15 -1414 ((-348 |#2|) |#2| |#1| (-85))) (-15 -1414 ((-348 |#2|) |#2| |#1|)) (-15 -1415 (|#2| |#2|)) (-15 -1416 (|#1| |#2| |#1|)) (-15 -1416 (|#1| |#2|)) (-15 -1417 ((-142 |#1|) |#2|)) (-15 -1418 (|#1| |#1|)) (-15 -1419 ((-2 (|:| |start| |#2|) (|:| -1784 (-348 |#2|))) |#2|))) (-13 (-312) (-757)) (-1157 (-142 |#1|))) (T -155)) -((-1419 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-2 (|:| |start| *3) (|:| -1784 (-348 *3)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) (-1418 (*1 *2 *2) (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1157 (-142 *2))))) (-1417 (*1 *2 *3) (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-757))) (-4 *3 (-1157 *2)))) (-1416 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1157 (-142 *2))))) (-1416 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1157 (-142 *2))))) (-1415 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-757))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1157 (-142 *3))))) (-1414 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) (-1414 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) (-3135 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1157 (-142 *2))))) (-1413 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-757))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1157 (-142 *3))))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) (-3735 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) (-3735 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) (-1412 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-585 (-2 (|:| -1784 (-585 *3)) (|:| -1597 *4)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) (-1412 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-757))) (-5 *2 (-585 (-2 (|:| -1784 (-585 *3)) (|:| -1597 *5)))) (-5 *1 (-155 *5 *3)) (-4 *3 (-1157 (-142 *5))))) (-1411 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-585 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) (-1411 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-585 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4)))))) -((-1420 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1421 (((-696) |#2|) 18 T ELT)) (-1422 ((|#2| |#2| |#2|) 20 T ELT))) -(((-156 |#1| |#2|) (-10 -7 (-15 -1420 ((-3 |#2| "failed") |#2|)) (-15 -1421 ((-696) |#2|)) (-15 -1422 (|#2| |#2| |#2|))) (-1131) (-618 |#1|)) (T -156)) -((-1422 (*1 *2 *2 *2) (-12 (-4 *3 (-1131)) (-5 *1 (-156 *3 *2)) (-4 *2 (-618 *3)))) (-1421 (*1 *2 *3) (-12 (-4 *4 (-1131)) (-5 *2 (-696)) (-5 *1 (-156 *4 *3)) (-4 *3 (-618 *4)))) (-1420 (*1 *2 *2) (|partial| -12 (-4 *3 (-1131)) (-5 *1 (-156 *3 *2)) (-4 *2 (-618 *3))))) -((-2571 (((-85) $ $) NIL T ELT)) (-1425 (((-585 (-776)) $) NIL T ELT)) (-3545 (((-448) $) 8 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1427 (((-161) $) 10 T ELT)) (-2636 (((-85) $ (-448)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1423 (((-634 $) (-448)) 17 T ELT)) (-1426 (((-585 (-85)) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2524 (((-55) $) 12 T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-157) (-13 (-160) (-10 -8 (-15 -1423 ((-634 $) (-448)))))) (T -157)) -((-1423 (*1 *2 *3) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-157))) (-5 *1 (-157))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1483 ((|#1| $) 7 T ELT)) (-3950 (((-774) $) 14 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1424 (((-585 (-1097)) $) 10 T ELT)) (-3059 (((-85) $ $) 12 T ELT))) -(((-158 |#1|) (-13 (-1015) (-10 -8 (-15 -1483 (|#1| $)) (-15 -1424 ((-585 (-1097)) $)))) (-160)) (T -158)) -((-1483 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) (-1424 (*1 *2 *1) (-12 (-5 *2 (-585 (-1097))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) -((-1425 (((-585 (-776)) $) 16 T ELT)) (-1427 (((-161) $) 8 T ELT)) (-1426 (((-585 (-85)) $) 13 T ELT)) (-2524 (((-55) $) 10 T ELT))) -(((-159 |#1|) (-10 -7 (-15 -1425 ((-585 (-776)) |#1|)) (-15 -1426 ((-585 (-85)) |#1|)) (-15 -1427 ((-161) |#1|)) (-15 -2524 ((-55) |#1|))) (-160)) (T -159)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-1425 (((-585 (-776)) $) 22 T ELT)) (-3545 (((-448) $) 19 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1427 (((-161) $) 24 T ELT)) (-2636 (((-85) $ (-448)) 17 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1426 (((-585 (-85)) $) 23 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2524 (((-55) $) 18 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) -(((-160) (-113)) (T -160)) -((-1427 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-585 (-85))))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-585 (-776)))))) -(-13 (-749 (-448)) (-10 -8 (-15 -1427 ((-161) $)) (-15 -1426 ((-585 (-85)) $)) (-15 -1425 ((-585 (-776)) $)))) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-749 (-448)) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3950 (((-774) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 10 T ELT))) -(((-161) (-13 (-1015) (-10 -8 (-15 -9 ($) -3956) (-15 -8 ($) -3956) (-15 -7 ($) -3956)))) (T -161)) -((-9 (*1 *1) (-5 *1 (-161))) (-8 (*1 *1) (-5 *1 (-161))) (-7 (*1 *1) (-5 *1 (-161)))) -((-3645 ((|#2| |#2|) 28 T ELT)) (-3648 (((-85) |#2|) 19 T ELT)) (-3646 (((-265 |#1|) |#2|) 12 T ELT)) (-3647 (((-265 |#1|) |#2|) 14 T ELT)) (-3643 ((|#2| |#2| (-1092)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3649 (((-142 (-265 |#1|)) |#2|) 10 T ELT)) (-3644 ((|#2| |#2| (-1092)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) -(((-162 |#1| |#2|) (-10 -7 (-15 -3643 (|#2| |#2|)) (-15 -3643 (|#2| |#2| (-1092))) (-15 -3644 (|#2| |#2|)) (-15 -3644 (|#2| |#2| (-1092))) (-15 -3646 ((-265 |#1|) |#2|)) (-15 -3647 ((-265 |#1|) |#2|)) (-15 -3648 ((-85) |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3649 ((-142 (-265 |#1|)) |#2|))) (-13 (-497) (-952 (-486))) (-13 (-27) (-1117) (-364 (-142 |#1|)))) (T -162)) -((-3649 (*1 *2 *3) (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-142 (-265 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 (-142 *4)))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 (-142 *3)))))) (-3648 (*1 *2 *3) (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 (-142 *4)))))) (-3647 (*1 *2 *3) (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 (-142 *4)))))) (-3646 (*1 *2 *3) (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 (-142 *4)))))) (-3644 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 (-142 *4)))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 (-142 *3)))))) (-3643 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 (-142 *4)))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 (-142 *3))))))) -((-1431 (((-1181 (-632 (-859 |#1|))) (-1181 (-632 |#1|))) 26 T ELT)) (-3950 (((-1181 (-632 (-350 (-859 |#1|)))) (-1181 (-632 |#1|))) 37 T ELT))) -(((-163 |#1|) (-10 -7 (-15 -1431 ((-1181 (-632 (-859 |#1|))) (-1181 (-632 |#1|)))) (-15 -3950 ((-1181 (-632 (-350 (-859 |#1|)))) (-1181 (-632 |#1|))))) (-146)) (T -163)) -((-3950 (*1 *2 *3) (-12 (-5 *3 (-1181 (-632 *4))) (-4 *4 (-146)) (-5 *2 (-1181 (-632 (-350 (-859 *4))))) (-5 *1 (-163 *4)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-1181 (-632 *4))) (-4 *4 (-146)) (-5 *2 (-1181 (-632 (-859 *4)))) (-5 *1 (-163 *4))))) -((-1439 (((-1094 (-350 (-486))) (-1094 (-350 (-486))) (-1094 (-350 (-486)))) 93 T ELT)) (-1441 (((-1094 (-350 (-486))) (-585 (-486)) (-585 (-486))) 109 T ELT)) (-1432 (((-1094 (-350 (-486))) (-832)) 54 T ELT)) (-3858 (((-1094 (-350 (-486))) (-832)) 79 T ELT)) (-3771 (((-350 (-486)) (-1094 (-350 (-486)))) 89 T ELT)) (-1433 (((-1094 (-350 (-486))) (-696)) 37 T ELT)) (-1436 (((-1094 (-350 (-486))) (-832)) 66 T ELT)) (-1435 (((-1094 (-350 (-486))) (-832)) 61 T ELT)) (-1438 (((-1094 (-350 (-486))) (-1094 (-350 (-486))) (-1094 (-350 (-486)))) 87 T ELT)) (-2894 (((-1094 (-350 (-486))) (-696)) 29 T ELT)) (-1437 (((-350 (-486)) (-1094 (-350 (-486))) (-1094 (-350 (-486)))) 91 T ELT)) (-1434 (((-1094 (-350 (-486))) (-696)) 35 T ELT)) (-1440 (((-1094 (-350 (-486))) (-585 (-832))) 103 T ELT))) -(((-164) (-10 -7 (-15 -2894 ((-1094 (-350 (-486))) (-696))) (-15 -1432 ((-1094 (-350 (-486))) (-832))) (-15 -1433 ((-1094 (-350 (-486))) (-696))) (-15 -1434 ((-1094 (-350 (-486))) (-696))) (-15 -1435 ((-1094 (-350 (-486))) (-832))) (-15 -1436 ((-1094 (-350 (-486))) (-832))) (-15 -3858 ((-1094 (-350 (-486))) (-832))) (-15 -1437 ((-350 (-486)) (-1094 (-350 (-486))) (-1094 (-350 (-486))))) (-15 -1438 ((-1094 (-350 (-486))) (-1094 (-350 (-486))) (-1094 (-350 (-486))))) (-15 -3771 ((-350 (-486)) (-1094 (-350 (-486))))) (-15 -1439 ((-1094 (-350 (-486))) (-1094 (-350 (-486))) (-1094 (-350 (-486))))) (-15 -1440 ((-1094 (-350 (-486))) (-585 (-832)))) (-15 -1441 ((-1094 (-350 (-486))) (-585 (-486)) (-585 (-486)))))) (T -164)) -((-1441 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-1440 (*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-1439 (*1 *2 *2 *2) (-12 (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-3771 (*1 *2 *3) (-12 (-5 *3 (-1094 (-350 (-486)))) (-5 *2 (-350 (-486))) (-5 *1 (-164)))) (-1438 (*1 *2 *2 *2) (-12 (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-1437 (*1 *2 *3 *3) (-12 (-5 *3 (-1094 (-350 (-486)))) (-5 *2 (-350 (-486))) (-5 *1 (-164)))) (-3858 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-1436 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) -((-1443 (((-348 (-1087 (-486))) (-486)) 38 T ELT)) (-1442 (((-585 (-1087 (-486))) (-486)) 33 T ELT)) (-2804 (((-1087 (-486)) (-486)) 28 T ELT))) -(((-165) (-10 -7 (-15 -1442 ((-585 (-1087 (-486))) (-486))) (-15 -2804 ((-1087 (-486)) (-486))) (-15 -1443 ((-348 (-1087 (-486))) (-486))))) (T -165)) -((-1443 (*1 *2 *3) (-12 (-5 *2 (-348 (-1087 (-486)))) (-5 *1 (-165)) (-5 *3 (-486)))) (-2804 (*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-165)) (-5 *3 (-486)))) (-1442 (*1 *2 *3) (-12 (-5 *2 (-585 (-1087 (-486)))) (-5 *1 (-165)) (-5 *3 (-486))))) -((-2571 (((-85) $ $) NIL T ELT)) (-1444 ((|#2| $ (-696) |#2|) 11 T ELT)) (-3115 ((|#2| $ (-696)) 10 T ELT)) (-3617 (($) 8 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 23 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 13 T ELT))) -(((-166 |#1| |#2|) (-13 (-1015) (-10 -8 (-15 -3617 ($)) (-15 -3115 (|#2| $ (-696))) (-15 -1444 (|#2| $ (-696) |#2|)))) (-832) (-1015)) (T -166)) -((-3617 (*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-832)) (-4 *3 (-1015)))) (-3115 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *2 (-1015)) (-5 *1 (-166 *4 *2)) (-14 *4 (-832)))) (-1444 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-166 *4 *2)) (-14 *4 (-832)) (-4 *2 (-1015))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1965 (((-1187) $) 36 T ELT) (((-1187) $ (-832) (-832)) 40 T ELT)) (-3803 (($ $ (-904)) 19 T ELT) (((-203 (-1075)) $ (-1092)) 15 T ELT)) (-3620 (((-1187) $) 34 T ELT)) (-3950 (((-774) $) 31 T ELT) (($ (-585 |#1|)) 8 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) 26 T ELT)) (-3842 (($ $ $) 22 T ELT))) -(((-167 |#1|) (-13 (-1015) (-557 (-585 |#1|)) (-10 -8 (-15 -3803 ($ $ (-904))) (-15 -3803 ((-203 (-1075)) $ (-1092))) (-15 -3842 ($ $ $)) (-15 -3840 ($ $ $)) (-15 -3620 ((-1187) $)) (-15 -1965 ((-1187) $)) (-15 -1965 ((-1187) $ (-832) (-832))))) (-13 (-758) (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 ((-1187) $)) (-15 -1965 ((-1187) $))))) (T -167)) -((-3803 (*1 *1 *1 *2) (-12 (-5 *2 (-904)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 ((-1187) $)) (-15 -1965 ((-1187) $))))))) (-3803 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-203 (-1075))) (-5 *1 (-167 *4)) (-4 *4 (-13 (-758) (-10 -8 (-15 -3803 ((-1075) $ *3)) (-15 -3620 ((-1187) $)) (-15 -1965 ((-1187) $))))))) (-3842 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-758) (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 ((-1187) $)) (-15 -1965 ((-1187) $))))))) (-3840 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-758) (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 ((-1187) $)) (-15 -1965 ((-1187) $))))))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 (*2 $)) (-15 -1965 (*2 $))))))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 (*2 $)) (-15 -1965 (*2 $))))))) (-1965 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1187)) (-5 *1 (-167 *4)) (-4 *4 (-13 (-758) (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 (*2 $)) (-15 -1965 (*2 $)))))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) 10 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2854 (($ (-579 |#1|)) 11 T ELT)) (-3950 (((-774) $) 18 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT))) -(((-168 |#1|) (-13 (-754) (-10 -8 (-15 -2854 ($ (-579 |#1|))))) (-585 (-1092))) (T -168)) -((-2854 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-14 *3 (-585 (-1092))) (-5 *1 (-168 *3))))) -((-1445 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) -(((-169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1445 (|#2| |#4| (-1 |#2| |#2|)))) (-312) (-1157 |#1|) (-1157 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -169)) -((-1445 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1157 (-350 *2))) (-4 *2 (-1157 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6))))) -((-1449 ((|#2| |#2| (-696) |#2|) 55 T ELT)) (-1448 ((|#2| |#2| (-696) |#2|) 51 T ELT)) (-2373 (((-585 |#2|) (-585 (-2 (|:| |deg| (-696)) (|:| -2578 |#2|)))) 79 T ELT)) (-1447 (((-585 (-2 (|:| |deg| (-696)) (|:| -2578 |#2|))) |#2|) 72 T ELT)) (-1450 (((-85) |#2|) 70 T ELT)) (-3736 (((-348 |#2|) |#2|) 92 T ELT)) (-3735 (((-348 |#2|) |#2|) 91 T ELT)) (-2374 ((|#2| |#2| (-696) |#2|) 49 T ELT)) (-1446 (((-2 (|:| |cont| |#1|) (|:| -1784 (-585 (-2 (|:| |irr| |#2|) (|:| -2397 (-486)))))) |#2| (-85)) 86 T ELT))) -(((-170 |#1| |#2|) (-10 -7 (-15 -3735 ((-348 |#2|) |#2|)) (-15 -3736 ((-348 |#2|) |#2|)) (-15 -1446 ((-2 (|:| |cont| |#1|) (|:| -1784 (-585 (-2 (|:| |irr| |#2|) (|:| -2397 (-486)))))) |#2| (-85))) (-15 -1447 ((-585 (-2 (|:| |deg| (-696)) (|:| -2578 |#2|))) |#2|)) (-15 -2373 ((-585 |#2|) (-585 (-2 (|:| |deg| (-696)) (|:| -2578 |#2|))))) (-15 -2374 (|#2| |#2| (-696) |#2|)) (-15 -1448 (|#2| |#2| (-696) |#2|)) (-15 -1449 (|#2| |#2| (-696) |#2|)) (-15 -1450 ((-85) |#2|))) (-299) (-1157 |#1|)) (T -170)) -((-1450 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1157 *4)))) (-1449 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1157 *4)))) (-1448 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1157 *4)))) (-2374 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1157 *4)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| |deg| (-696)) (|:| -2578 *5)))) (-4 *5 (-1157 *4)) (-4 *4 (-299)) (-5 *2 (-585 *5)) (-5 *1 (-170 *4 *5)))) (-1447 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-585 (-2 (|:| |deg| (-696)) (|:| -2578 *3)))) (-5 *1 (-170 *4 *3)) (-4 *3 (-1157 *4)))) (-1446 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-299)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1784 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-486))))))) (-5 *1 (-170 *5 *3)) (-4 *3 (-1157 *5)))) (-3736 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1157 *4)))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1157 *4))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 (((-486) $) NIL (|has| (-486) (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| (-486) (-742)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL (|has| (-486) (-952 (-1092))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| (-486) (-952 (-486))) ELT) (((-3 (-486) #1#) $) NIL (|has| (-486) (-952 (-486))) ELT)) (-3159 (((-486) $) NIL T ELT) (((-1092) $) NIL (|has| (-486) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL (|has| (-486) (-952 (-486))) ELT) (((-486) $) NIL (|has| (-486) (-952 (-486))) ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-486)) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-486) (-485)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| (-486) (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| (-486) (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| (-486) (-798 (-330))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-486) $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| (-486) (-1068)) ELT)) (-3190 (((-85) $) NIL (|has| (-486) (-742)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-486) (-758)) ELT)) (-3846 (($ (-1 (-486) (-486)) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL T ELT) (((-632 (-486)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-486) (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-486) (-258)) ELT) (((-350 (-486)) $) NIL T ELT)) (-3133 (((-486) $) NIL (|has| (-486) (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3771 (($ $ (-585 (-486)) (-585 (-486))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-486) (-486)) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-249 (-486))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-585 (-249 (-486)))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-585 (-1092)) (-585 (-486))) NIL (|has| (-486) (-457 (-1092) (-486))) ELT) (($ $ (-1092) (-486)) NIL (|has| (-486) (-457 (-1092) (-486))) ELT)) (-1608 (((-696) $) NIL T ELT)) (-3803 (($ $ (-486)) NIL (|has| (-486) (-241 (-486) (-486))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-486) (-486))) NIL T ELT) (($ $ (-1 (-486) (-486)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $) NIL (|has| (-486) (-189)) ELT) (($ $ (-696)) NIL (|has| (-486) (-189)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-486) $) NIL T ELT)) (-1451 (($ (-350 (-486))) 9 T ELT)) (-3975 (((-802 (-486)) $) NIL (|has| (-486) (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| (-486) (-555 (-802 (-330)))) ELT) (((-475) $) NIL (|has| (-486) (-555 (-475))) ELT) (((-330) $) NIL (|has| (-486) (-935)) ELT) (((-179) $) NIL (|has| (-486) (-935)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-486) (-823))) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) 8 T ELT) (($ (-486)) NIL T ELT) (($ (-1092)) NIL (|has| (-486) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL T ELT) (((-919 10) $) 10 T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-486) (-823))) (|has| (-486) (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-3134 (((-486) $) NIL (|has| (-486) (-485)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-486) (-742)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-486) (-486))) NIL T ELT) (($ $ (-1 (-486) (-486)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $) NIL (|has| (-486) (-189)) ELT) (($ $ (-696)) NIL (|has| (-486) (-189)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-3953 (($ $ $) NIL T ELT) (($ (-486) (-486)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ (-486)) NIL T ELT))) -(((-171) (-13 (-906 (-486)) (-554 (-350 (-486))) (-554 (-919 10)) (-10 -8 (-15 -3131 ((-350 (-486)) $)) (-15 -1451 ($ (-350 (-486))))))) (T -171)) -((-3131 (*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-171)))) (-1451 (*1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-171))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3322 (((-1030) $) 14 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3181 (((-424) $) 11 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 24 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-1051) $) 16 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-172) (-13 (-997) (-10 -8 (-15 -3181 ((-424) $)) (-15 -3322 ((-1030) $)) (-15 -3236 ((-1051) $))))) (T -172)) -((-3181 (*1 *2 *1) (-12 (-5 *2 (-424)) (-5 *1 (-172)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-172)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-172))))) -((-3815 (((-3 (|:| |f1| (-752 |#2|)) (|:| |f2| (-585 (-752 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1006 (-752 |#2|)) (-1075)) 29 T ELT) (((-3 (|:| |f1| (-752 |#2|)) (|:| |f2| (-585 (-752 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1006 (-752 |#2|))) 25 T ELT)) (-1452 (((-3 (|:| |f1| (-752 |#2|)) (|:| |f2| (-585 (-752 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1092) (-752 |#2|) (-752 |#2|) (-85)) 17 T ELT))) -(((-173 |#1| |#2|) (-10 -7 (-15 -3815 ((-3 (|:| |f1| (-752 |#2|)) (|:| |f2| (-585 (-752 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1006 (-752 |#2|)))) (-15 -3815 ((-3 (|:| |f1| (-752 |#2|)) (|:| |f2| (-585 (-752 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1006 (-752 |#2|)) (-1075))) (-15 -1452 ((-3 (|:| |f1| (-752 |#2|)) (|:| |f2| (-585 (-752 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1092) (-752 |#2|) (-752 |#2|) (-85)))) (-13 (-258) (-120) (-952 (-486)) (-582 (-486))) (-13 (-1117) (-873) (-29 |#1|))) (T -173)) -((-1452 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1092)) (-5 *6 (-85)) (-4 *7 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-4 *3 (-13 (-1117) (-873) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-752 *3)) (|:| |f2| (-585 (-752 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *7 *3)) (-5 *5 (-752 *3)))) (-3815 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1006 (-752 *3))) (-5 *5 (-1075)) (-4 *3 (-13 (-1117) (-873) (-29 *6))) (-4 *6 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 (|:| |f1| (-752 *3)) (|:| |f2| (-585 (-752 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) (-3815 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-752 *3))) (-4 *3 (-13 (-1117) (-873) (-29 *5))) (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 (|:| |f1| (-752 *3)) (|:| |f2| (-585 (-752 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5 *3))))) -((-3815 (((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-350 (-859 |#1|)) (-1006 (-752 (-350 (-859 |#1|)))) (-1075)) 49 T ELT) (((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-859 |#1|)) (-1006 (-752 (-350 (-859 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-859 |#1|)) (-1006 (-752 (-265 |#1|))) (-1075)) 50 T ELT) (((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-859 |#1|)) (-1006 (-752 (-265 |#1|)))) 22 T ELT))) -(((-174 |#1|) (-10 -7 (-15 -3815 ((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-350 (-859 |#1|)) (-1006 (-752 (-265 |#1|))))) (-15 -3815 ((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-859 |#1|)) (-1006 (-752 (-265 |#1|))) (-1075))) (-15 -3815 ((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-859 |#1|)) (-1006 (-752 (-350 (-859 |#1|)))))) (-15 -3815 ((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-859 |#1|)) (-1006 (-752 (-350 (-859 |#1|)))) (-1075)))) (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (T -174)) -((-3815 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1006 (-752 (-350 (-859 *6))))) (-5 *5 (-1075)) (-5 *3 (-350 (-859 *6))) (-4 *6 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 (|:| |f1| (-752 (-265 *6))) (|:| |f2| (-585 (-752 (-265 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-174 *6)))) (-3815 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-752 (-350 (-859 *5))))) (-5 *3 (-350 (-859 *5))) (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 (|:| |f1| (-752 (-265 *5))) (|:| |f2| (-585 (-752 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))) (-3815 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-350 (-859 *6))) (-5 *4 (-1006 (-752 (-265 *6)))) (-5 *5 (-1075)) (-4 *6 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 (|:| |f1| (-752 (-265 *6))) (|:| |f2| (-585 (-752 (-265 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *6)))) (-3815 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1006 (-752 (-265 *5)))) (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 (|:| |f1| (-752 (-265 *5))) (|:| |f2| (-585 (-752 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5))))) -((-3845 (((-2 (|:| -2006 (-1087 |#1|)) (|:| |deg| (-832))) (-1087 |#1|)) 26 T ELT)) (-3966 (((-585 (-265 |#2|)) (-265 |#2|) (-832)) 51 T ELT))) -(((-175 |#1| |#2|) (-10 -7 (-15 -3845 ((-2 (|:| -2006 (-1087 |#1|)) (|:| |deg| (-832))) (-1087 |#1|))) (-15 -3966 ((-585 (-265 |#2|)) (-265 |#2|) (-832)))) (-963) (-497)) (T -175)) -((-3966 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-4 *6 (-497)) (-5 *2 (-585 (-265 *6))) (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-963)))) (-3845 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-2 (|:| -2006 (-1087 *4)) (|:| |deg| (-832)))) (-5 *1 (-175 *4 *5)) (-5 *3 (-1087 *4)) (-4 *5 (-497))))) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1496 ((|#1| $) NIL T ELT)) (-3326 ((|#1| $) 31 T ELT)) (-3727 (($) NIL T CONST)) (-3005 (($ $) NIL T ELT)) (-2299 (($ $) 40 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3328 ((|#1| |#1| $) NIL T ELT)) (-3327 ((|#1| $) NIL T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3836 (((-696) $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) NIL T ELT)) (-1494 ((|#1| |#1| $) 36 T ELT)) (-1493 ((|#1| |#1| $) 38 T ELT)) (-3612 (($ |#1| $) NIL T ELT)) (-2606 (((-696) $) 34 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3004 ((|#1| $) NIL T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1492 ((|#1| $) 32 T ELT)) (-1491 ((|#1| $) 30 T ELT)) (-1277 ((|#1| $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3007 ((|#1| |#1| $) NIL T ELT)) (-3406 (((-85) $) 9 T ELT)) (-3568 (($) NIL T ELT)) (-3006 ((|#1| $) NIL T ELT)) (-1497 (($) NIL T ELT) (($ (-585 |#1|)) 17 T ELT)) (-3325 (((-696) $) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1495 ((|#1| $) 14 T ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) NIL T ELT)) (-3003 ((|#1| $) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-176 |#1|) (-13 (-214 |#1|) (-10 -8 (-15 -1497 ($ (-585 |#1|))))) (-1015)) (T -176)) -((-1497 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-176 *3))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1454 (($ (-265 |#1|)) 24 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2667 (((-85) $) NIL T ELT)) (-3160 (((-3 (-265 |#1|) #1#) $) NIL T ELT)) (-3159 (((-265 |#1|) $) NIL T ELT)) (-3962 (($ $) 32 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3846 (($ (-1 (-265 |#1|) (-265 |#1|)) $) NIL T ELT)) (-3177 (((-265 |#1|) $) NIL T ELT)) (-1456 (($ $) 31 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1455 (((-85) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($ (-696)) NIL T ELT)) (-1453 (($ $) 33 T ELT)) (-3952 (((-486) $) NIL T ELT)) (-3950 (((-774) $) 65 T ELT) (($ (-486)) NIL T ELT) (($ (-265 |#1|)) NIL T ELT)) (-3680 (((-265 |#1|) $ $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 26 T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-85) $ $) 29 T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 20 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-265 |#1|) $) 19 T ELT))) -(((-177 |#1| |#2|) (-13 (-562 (-265 |#1|)) (-952 (-265 |#1|)) (-381 (-265 |#1|)) (-10 -8 (-15 -3177 ((-265 |#1|) $)) (-15 -1456 ($ $)) (-15 -3962 ($ $)) (-15 -3680 ((-265 |#1|) $ $)) (-15 -2411 ($ (-696))) (-15 -1455 ((-85) $)) (-15 -2667 ((-85) $)) (-15 -3952 ((-486) $)) (-15 -1454 ($ (-265 |#1|))) (-15 -1453 ($ $)))) (-13 (-963) (-758)) (-585 (-1092))) (T -177)) -((-3177 (*1 *2 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) (-14 *4 (-585 (-1092))))) (-1456 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-963) (-758))) (-14 *3 (-585 (-1092))))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-963) (-758))) (-14 *3 (-585 (-1092))))) (-3680 (*1 *2 *1 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) (-14 *4 (-585 (-1092))))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) (-14 *4 (-585 (-1092))))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) (-14 *4 (-585 (-1092))))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) (-14 *4 (-585 (-1092))))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) (-14 *4 (-585 (-1092))))) (-1454 (*1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-963) (-758))) (-5 *1 (-177 *3 *4)) (-14 *4 (-585 (-1092))))) (-1453 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-963) (-758))) (-14 *3 (-585 (-1092)))))) -((-1457 (((-85) (-1075)) 26 T ELT)) (-1458 (((-3 (-752 |#2|) #1="failed") (-552 |#2|) |#2| (-752 |#2|) (-752 |#2|) (-85)) 35 T ELT)) (-1459 (((-3 (-85) #1#) (-1087 |#2|) (-752 |#2|) (-752 |#2|) (-85)) 83 T ELT) (((-3 (-85) #1#) (-859 |#1|) (-1092) (-752 |#2|) (-752 |#2|) (-85)) 84 T ELT))) -(((-178 |#1| |#2|) (-10 -7 (-15 -1457 ((-85) (-1075))) (-15 -1458 ((-3 (-752 |#2|) #1="failed") (-552 |#2|) |#2| (-752 |#2|) (-752 |#2|) (-85))) (-15 -1459 ((-3 (-85) #1#) (-859 |#1|) (-1092) (-752 |#2|) (-752 |#2|) (-85))) (-15 -1459 ((-3 (-85) #1#) (-1087 |#2|) (-752 |#2|) (-752 |#2|) (-85)))) (-13 (-393) (-952 (-486)) (-582 (-486))) (-13 (-1117) (-29 |#1|))) (T -178)) -((-1459 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1087 *6)) (-5 *4 (-752 *6)) (-4 *6 (-13 (-1117) (-29 *5))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-178 *5 *6)))) (-1459 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-859 *6)) (-5 *4 (-1092)) (-5 *5 (-752 *7)) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-4 *7 (-13 (-1117) (-29 *6))) (-5 *1 (-178 *6 *7)))) (-1458 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-752 *4)) (-5 *3 (-552 *4)) (-5 *5 (-85)) (-4 *4 (-13 (-1117) (-29 *6))) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-178 *6 *4)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1117) (-29 *4)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 86 T ELT)) (-3132 (((-486) $) 18 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3495 (($ $) 73 T ELT)) (-3642 (($ $) 61 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-3040 (($ $) 52 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3493 (($ $) 71 T ELT)) (-3641 (($ $) 59 T ELT)) (-3626 (((-486) $) 83 T ELT)) (-3497 (($ $) 76 T ELT)) (-3640 (($ $) 63 T ELT)) (-3727 (($) NIL T CONST)) (-3130 (($ $) NIL T ELT)) (-3160 (((-3 (-486) #1#) $) 116 T ELT) (((-3 (-350 (-486)) #1#) $) 113 T ELT)) (-3159 (((-486) $) 114 T ELT) (((-350 (-486)) $) 111 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 91 T ELT)) (-1749 (((-350 (-486)) $ (-696)) 106 T ELT) (((-350 (-486)) $ (-696) (-696)) 105 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-1773 (((-832)) 12 T ELT) (((-832) (-832)) NIL (|has| $ (-6 -3989)) ELT)) (-3189 (((-85) $) 107 T ELT)) (-3630 (($) 31 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL T ELT)) (-3775 (((-486) $) 25 T ELT)) (-1216 (((-85) $ $) 141 T ELT)) (-2412 (((-85) $) 87 T ELT)) (-3014 (($ $ (-486)) NIL T ELT)) (-3135 (($ $) NIL T ELT)) (-3190 (((-85) $) 85 T ELT)) (-1460 (((-85) $) 140 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) 49 T ELT) (($) 21 (-12 (-2563 (|has| $ (-6 -3981))) (-2563 (|has| $ (-6 -3989)))) ELT)) (-2860 (($ $ $) 48 T ELT) (($) 20 (-12 (-2563 (|has| $ (-6 -3981))) (-2563 (|has| $ (-6 -3989)))) ELT)) (-1775 (((-486) $) 10 T ELT)) (-1748 (($ $) 16 T ELT)) (-1747 (($ $) 53 T ELT)) (-3946 (($ $) 58 T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-1772 (((-832) (-486)) NIL (|has| $ (-6 -3989)) ELT)) (-3246 (((-1035) $) 89 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL T ELT)) (-3133 (($ $) NIL T ELT)) (-3257 (($ (-486) (-486)) NIL T ELT) (($ (-486) (-486) (-832)) 98 T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2403 (((-486) $) 11 T ELT)) (-1746 (($) 30 T ELT)) (-3947 (($ $) 57 T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2618 (((-832)) NIL T ELT) (((-832) (-832)) NIL (|has| $ (-6 -3989)) ELT)) (-3761 (($ $) 92 T ELT) (($ $ (-696)) NIL T ELT)) (-1771 (((-832) (-486)) NIL (|has| $ (-6 -3989)) ELT)) (-3498 (($ $) 74 T ELT)) (-3639 (($ $) 64 T ELT)) (-3496 (($ $) 75 T ELT)) (-3638 (($ $) 62 T ELT)) (-3494 (($ $) 72 T ELT)) (-3637 (($ $) 60 T ELT)) (-3975 (((-330) $) 102 T ELT) (((-179) $) 99 T ELT) (((-802 (-330)) $) NIL T ELT) (((-475) $) 38 T ELT)) (-3950 (((-774) $) 35 T ELT) (($ (-486)) 56 T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-486)) 56 T ELT) (($ (-350 (-486))) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-3134 (($ $) NIL T ELT)) (-1774 (((-832)) 19 T ELT) (((-832) (-832)) NIL (|has| $ (-6 -3989)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2697 (((-832)) 7 T ELT)) (-3501 (($ $) 79 T ELT)) (-3489 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 77 T ELT)) (-3487 (($ $) 65 T ELT)) (-3503 (($ $) 82 T ELT)) (-3491 (($ $) 70 T ELT)) (-3128 (((-85) $ $) 143 T ELT)) (-3504 (($ $) 80 T ELT)) (-3492 (($ $) 68 T ELT)) (-3502 (($ $) 81 T ELT)) (-3490 (($ $) 69 T ELT)) (-3500 (($ $) 78 T ELT)) (-3488 (($ $) 66 T ELT)) (-3386 (($ $) 108 T ELT)) (-2663 (($) 27 T CONST)) (-2669 (($) 28 T CONST)) (-3390 (($ $) 95 T ELT)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3387 (($ $ $) 97 T ELT)) (-2569 (((-85) $ $) 42 T ELT)) (-2570 (((-85) $ $) 40 T ELT)) (-3059 (((-85) $ $) 50 T ELT)) (-2687 (((-85) $ $) 41 T ELT)) (-2688 (((-85) $ $) 39 T ELT)) (-3953 (($ $ $) 29 T ELT) (($ $ (-486)) 51 T ELT)) (-3840 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3842 (($ $ $) 44 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 54 T ELT) (($ $ (-350 (-486))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT))) -(((-179) (-13 (-347) (-190) (-1117) (-555 (-475)) (-10 -8 (-15 -3953 ($ $ (-486))) (-15 ** ($ $ $)) (-15 -1746 ($)) (-15 -1748 ($ $)) (-15 -1747 ($ $)) (-15 -3489 ($ $ $)) (-15 -3390 ($ $)) (-15 -3387 ($ $ $)) (-15 -1749 ((-350 (-486)) $ (-696))) (-15 -1749 ((-350 (-486)) $ (-696) (-696))) (-15 -1460 ((-85) $))))) (T -179)) -((** (*1 *1 *1 *1) (-5 *1 (-179))) (-3953 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-179)))) (-1746 (*1 *1) (-5 *1 (-179))) (-1748 (*1 *1 *1) (-5 *1 (-179))) (-1747 (*1 *1 *1) (-5 *1 (-179))) (-3489 (*1 *1 *1 *1) (-5 *1 (-179))) (-3390 (*1 *1 *1) (-5 *1 (-179))) (-3387 (*1 *1 *1 *1) (-5 *1 (-179))) (-1749 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-350 (-486))) (-5 *1 (-179)))) (-1749 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-350 (-486))) (-5 *1 (-179)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) -((-3389 (((-142 (-179)) (-696) (-142 (-179))) 11 T ELT) (((-179) (-696) (-179)) 12 T ELT)) (-1461 (((-142 (-179)) (-142 (-179))) 13 T ELT) (((-179) (-179)) 14 T ELT)) (-1462 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 19 T ELT) (((-179) (-179) (-179)) 22 T ELT)) (-3388 (((-142 (-179)) (-142 (-179))) 27 T ELT) (((-179) (-179)) 26 T ELT)) (-3392 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 57 T ELT) (((-179) (-179) (-179)) 49 T ELT)) (-3394 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 62 T ELT) (((-179) (-179) (-179)) 60 T ELT)) (-3391 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 15 T ELT) (((-179) (-179) (-179)) 16 T ELT)) (-3393 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 17 T ELT) (((-179) (-179) (-179)) 18 T ELT)) (-3396 (((-142 (-179)) (-142 (-179))) 74 T ELT) (((-179) (-179)) 73 T ELT)) (-3395 (((-179) (-179)) 68 T ELT) (((-142 (-179)) (-142 (-179))) 72 T ELT)) (-3390 (((-142 (-179)) (-142 (-179))) 8 T ELT) (((-179) (-179)) 9 T ELT)) (-3387 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 35 T ELT) (((-179) (-179) (-179)) 31 T ELT))) -(((-180) (-10 -7 (-15 -3390 ((-179) (-179))) (-15 -3390 ((-142 (-179)) (-142 (-179)))) (-15 -3387 ((-179) (-179) (-179))) (-15 -3387 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -1461 ((-179) (-179))) (-15 -1461 ((-142 (-179)) (-142 (-179)))) (-15 -3388 ((-179) (-179))) (-15 -3388 ((-142 (-179)) (-142 (-179)))) (-15 -3389 ((-179) (-696) (-179))) (-15 -3389 ((-142 (-179)) (-696) (-142 (-179)))) (-15 -3391 ((-179) (-179) (-179))) (-15 -3391 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3392 ((-179) (-179) (-179))) (-15 -3392 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3393 ((-179) (-179) (-179))) (-15 -3393 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3394 ((-179) (-179) (-179))) (-15 -3394 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3395 ((-142 (-179)) (-142 (-179)))) (-15 -3395 ((-179) (-179))) (-15 -3396 ((-179) (-179))) (-15 -3396 ((-142 (-179)) (-142 (-179)))) (-15 -1462 ((-179) (-179) (-179))) (-15 -1462 ((-142 (-179)) (-142 (-179)) (-142 (-179)))))) (T -180)) -((-1462 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1462 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3396 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3396 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3395 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3395 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3394 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3394 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3393 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3393 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3392 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3392 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3389 (*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-696)) (-5 *1 (-180)))) (-3389 (*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-696)) (-5 *1 (-180)))) (-3388 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3388 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-1461 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1461 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3387 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3387 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3390 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3390 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3841 (($ (-696) (-696)) NIL T ELT)) (-2352 (($ $ $) NIL T ELT)) (-3417 (($ (-1181 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3877 (($ |#1| |#1| |#1|) 33 T ELT)) (-3123 (((-85) $) NIL T ELT)) (-2351 (($ $ (-486) (-486)) NIL T ELT)) (-2350 (($ $ (-486) (-486)) NIL T ELT)) (-2349 (($ $ (-486) (-486) (-486) (-486)) NIL T ELT)) (-2354 (($ $) NIL T ELT)) (-3125 (((-85) $) NIL T ELT)) (-2348 (($ $ (-486) (-486) $) NIL T ELT)) (-3791 ((|#1| $ (-486) (-486) |#1|) NIL T ELT) (($ $ (-585 (-486)) (-585 (-486)) $) NIL T ELT)) (-1259 (($ $ (-486) (-1181 |#1|)) NIL T ELT)) (-1258 (($ $ (-486) (-1181 |#1|)) NIL T ELT)) (-3851 (($ |#1| |#1| |#1|) 32 T ELT)) (-3336 (($ (-696) |#1|) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3112 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3114 (((-1181 |#1|) $ (-486)) NIL T ELT)) (-1463 (($ |#1|) 31 T ELT)) (-1464 (($ |#1|) 30 T ELT)) (-1465 (($ |#1|) 29 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-3111 (((-696) $) NIL (|has| |#1| (-497)) ELT)) (-1577 ((|#1| $ (-486) (-486) |#1|) NIL T ELT)) (-3115 ((|#1| $ (-486) (-486)) NIL T ELT)) (-3110 (((-696) $) NIL (|has| |#1| (-497)) ELT)) (-3109 (((-585 (-1181 |#1|)) $) NIL (|has| |#1| (-497)) ELT)) (-3117 (((-696) $) NIL T ELT)) (-3617 (($ (-696) (-696) |#1|) NIL T ELT)) (-3116 (((-696) $) NIL T ELT)) (-3330 ((|#1| $) NIL (|has| |#1| (-6 (-4000 #1="*"))) ELT)) (-3121 (((-486) $) NIL T ELT)) (-3119 (((-486) $) NIL T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3120 (((-486) $) NIL T ELT)) (-3118 (((-486) $) NIL T ELT)) (-3126 (($ (-585 (-585 |#1|))) 11 T ELT) (($ (-696) (-696) (-1 |#1| (-486) (-486))) NIL T ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3597 (((-585 (-585 |#1|)) $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3593 (((-3 $ #2="failed") $) NIL (|has| |#1| (-312)) ELT)) (-1466 (($) 12 T ELT)) (-2353 (($ $ $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1731 (((-3 |#1| #2#) (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL T ELT)) (-3469 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-497)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-486) (-486)) NIL T ELT) ((|#1| $ (-486) (-486) |#1|) NIL T ELT) (($ $ (-585 (-486)) (-585 (-486))) NIL T ELT)) (-3335 (($ (-585 |#1|)) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3124 (((-85) $) NIL T ELT)) (-3331 ((|#1| $) NIL (|has| |#1| (-6 (-4000 #1#))) ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) NIL T ELT) (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3403 (($ $) NIL T ELT)) (-3113 (((-1181 |#1|) $ (-486)) NIL T ELT)) (-3950 (($ (-1181 |#1|)) NIL T ELT) (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-486) $) NIL T ELT) (((-1181 |#1|) $ (-1181 |#1|)) 15 T ELT) (((-1181 |#1|) (-1181 |#1|) $) NIL T ELT) (((-856 |#1|) $ (-856 |#1|)) 21 T ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-181 |#1|) (-13 (-629 |#1| (-1181 |#1|) (-1181 |#1|)) (-10 -8 (-15 * ((-856 |#1|) $ (-856 |#1|))) (-15 -1466 ($)) (-15 -1465 ($ |#1|)) (-15 -1464 ($ |#1|)) (-15 -1463 ($ |#1|)) (-15 -3851 ($ |#1| |#1| |#1|)) (-15 -3877 ($ |#1| |#1| |#1|)))) (-13 (-312) (-1117))) (T -181)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117))) (-5 *1 (-181 *3)))) (-1466 (*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117))))) (-1465 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117))))) (-1464 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117))))) (-1463 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117))))) (-3851 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117))))) (-3877 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117)))))) -((-1571 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-3408 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 28 T ELT)) (-1467 (($) NIL T ELT) (($ (-585 |#2|)) 11 T ELT)) (-3059 (((-85) $ $) 26 T ELT))) -(((-182 |#1| |#2|) (-10 -7 (-15 -3059 ((-85) |#1| |#1|)) (-15 -1571 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3408 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3408 (|#1| |#2| |#1|)) (-15 -1467 (|#1| (-585 |#2|))) (-15 -1467 (|#1|))) (-183 |#2|) (-1015)) (T -182)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 42 (|has| $ (-318 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-1355 (($ $) 51 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 44 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 43 (|has| $ (-318 |#1|)) ELT)) (-3409 (($ |#1| $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-1277 ((|#1| $) 37 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-1467 (($) 46 T ELT) (($ (-585 |#1|)) 45 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 52 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 47 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) -(((-183 |#1|) (-113) (-1015)) (T -183)) -NIL -(-13 (-193 |t#1|)) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3761 (($ $ (-1 |#1| |#1|) (-696)) 65 T ELT) (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1092)) 63 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 61 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 60 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 59 (|has| |#1| (-813 (-1092))) ELT) (($ $) 55 (|has| |#1| (-189)) ELT) (($ $ (-696)) 53 (|has| |#1| (-189)) ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 |#1| |#1|) (-696)) 67 T ELT) (($ $ (-1 |#1| |#1|)) 66 T ELT) (($ $ (-1092)) 62 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 58 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 57 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 56 (|has| |#1| (-813 (-1092))) ELT) (($ $) 54 (|has| |#1| (-189)) ELT) (($ $ (-696)) 52 (|has| |#1| (-189)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-184 |#1|) (-113) (-963)) (T -184)) -NIL -(-13 (-963) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-190)) (-6 (-190)) |%noBranch|) (IF (|has| |t#1| (-811 (-1092))) (-6 (-811 (-1092))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-808 $ (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-811 (-1092)) |has| |#1| (-811 (-1092))) ((-813 (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-2672 ((|#2| $) 9 T ELT))) -(((-185 |#1| |#2|) (-10 -7 (-15 -2672 (|#2| |#1|))) (-186 |#2|) (-1131)) (T -185)) -NIL -((-3761 ((|#1| $) 7 T ELT)) (-2672 ((|#1| $) 6 T ELT))) -(((-186 |#1|) (-113) (-1131)) (T -186)) -((-3761 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1131)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1131))))) -(-13 (-1131) (-10 -8 (-15 -3761 (|t#1| $)) (-15 -2672 (|t#1| $)))) -(((-13) . T) ((-1131) . T)) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3761 (($ $ (-696)) 43 T ELT) (($ $) 41 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-2672 (($ $ (-696)) 44 T ELT) (($ $) 42 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-187 |#1|) (-113) (-963)) (T -187)) -NIL -(-13 (-82 |t#1| |t#1|) (-189) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-656 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) -((-3761 (($ $) NIL T ELT) (($ $ (-696)) 9 T ELT)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) 11 T ELT))) -(((-188 |#1|) (-10 -7 (-15 -2672 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1| (-696))) (-15 -2672 (|#1| |#1|)) (-15 -3761 (|#1| |#1|))) (-189)) (T -188)) -NIL -((-3761 (($ $) 7 T ELT) (($ $ (-696)) 10 T ELT)) (-2672 (($ $) 6 T ELT) (($ $ (-696)) 9 T ELT))) -(((-189) (-113)) (T -189)) -((-3761 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-696)))) (-2672 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-696))))) -(-13 (-186 $) (-10 -8 (-15 -3761 ($ $ (-696))) (-15 -2672 ($ $ (-696))))) -(((-186 $) . T) ((-13) . T) ((-1131) . T)) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3761 (($ $ (-696)) 50 T ELT) (($ $) 48 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-696)) 51 T ELT) (($ $) 49 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-190) (-113)) (T -190)) -NIL -(-13 (-963) (-189)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 31 T ELT)) (-3727 (($) 30 T CONST)) (-3470 (((-3 $ "failed") $) 36 T ELT)) (-3189 (((-85) $) 28 T ELT)) (-1216 (((-85) $ $) 33 T ELT)) (-2412 (((-85) $) 38 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 29 T CONST)) (-2669 (($) 39 T CONST)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (-3842 (($ $ $) 25 T ELT)) (** (($ $ (-832)) 40 T ELT) (($ $ (-696)) 37 T ELT)) (* (($ (-832) $) 26 T ELT) (($ (-696) $) 32 T ELT) (($ $ $) 41 T ELT))) +((-2574 (((-85) $ $) NIL T ELT)) (-1377 (($ (-488)) 15 T ELT) (($ $ $) 16 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 19 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 11 T ELT))) +(((-134) (-13 (-1017) (-10 -8 (-15 -1377 ($ (-488))) (-15 -1377 ($ $ $))))) (T -134)) +((-1377 (*1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-134)))) (-1377 (*1 *1 *1 *1) (-5 *1 (-134)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 16 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-3239 (((-587 (-1053)) $) 10 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-135) (-13 (-999) (-10 -8 (-15 -3239 ((-587 (-1053)) $))))) (T -135)) +((-3239 (*1 *2 *1) (-12 (-5 *2 (-587 (-1053))) (-5 *1 (-135))))) +((-3601 (((-86) (-1094)) 103 T ELT))) +(((-136) (-10 -7 (-15 -3601 ((-86) (-1094))))) (T -136)) +((-3601 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-86)) (-5 *1 (-136))))) +((-1599 ((|#3| |#3|) 19 T ELT))) +(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -1599 (|#3| |#3|))) (-965) (-1159 |#1|) (-1159 |#2|)) (T -137)) +((-1599 (*1 *2 *2) (-12 (-4 *3 (-965)) (-4 *4 (-1159 *3)) (-5 *1 (-137 *3 *4 *2)) (-4 *2 (-1159 *4))))) +((-3806 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1378 (($ (-1 |#1| |#1| |#1|)) 9 T ELT)) (-3953 (((-79 |#1|) $) 10 T ELT))) +(((-138 |#1|) (-13 (-139 |#1|) (-556 (-79 |#1|)) (-10 -8 (-15 -1378 ($ (-1 |#1| |#1| |#1|))))) (-72)) (T -138)) +((-1378 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-138 *3))))) +((-3806 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-139 |#1|) (-113) (-72)) (T -139)) +NIL +(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |commutativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|)) (-3062 (|f| |x| |y|) (|f| |y| |x|))))))) +(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1133) . T)) +((-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 222 T ELT)) (-3336 ((|#2| $) 102 T ELT)) (-3498 (($ $) 255 T ELT)) (-3645 (($ $) 249 T ELT)) (-2710 (((-3 (-587 (-1089 $)) #1="failed") (-587 (-1089 $)) (-1089 $)) 47 T ELT)) (-3496 (($ $) 253 T ELT)) (-3644 (($ $) 247 T ELT)) (-3163 (((-3 (-488) #1#) $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3162 (((-488) $) NIL T ELT) (((-352 (-488)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2570 (($ $ $) 228 T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL T ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL T ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 $) (-1183 $)) 160 T ELT) (((-634 |#2|) (-634 $)) 154 T ELT)) (-3848 (($ (-1089 |#2|)) 125 T ELT) (((-3 $ #1#) (-352 (-1089 |#2|))) NIL T ELT)) (-3473 (((-3 $ #1#) $) 213 T ELT)) (-3030 (((-3 (-352 (-488)) #1#) $) 203 T ELT)) (-3029 (((-85) $) 198 T ELT)) (-3028 (((-352 (-488)) $) 201 T ELT)) (-3114 (((-834)) 96 T ELT)) (-2569 (($ $ $) 230 T ELT)) (-1379 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3633 (($) 244 T ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) 192 T ELT) (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) 197 T ELT)) (-3138 ((|#2| $) 100 T ELT)) (-2019 (((-1089 |#2|) $) 127 T ELT)) (-3849 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3949 (($ $) 246 T ELT)) (-3085 (((-1089 |#2|) $) 126 T ELT)) (-2490 (($ $) 206 T ELT)) (-1381 (($) 103 T ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) 95 T ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) 64 T ELT)) (-3472 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3950 (($ $) 245 T ELT)) (-1611 (((-698) $) 225 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 234 T ELT)) (-3763 ((|#2| (-1183 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3764 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-698)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094))) NIL T ELT) (($ $ (-1094)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $) NIL T ELT)) (-3191 (((-1089 |#2|)) 120 T ELT)) (-3497 (($ $) 254 T ELT)) (-3640 (($ $) 248 T ELT)) (-3230 (((-1183 |#2|) $ (-1183 $)) 136 T ELT) (((-634 |#2|) (-1183 $) (-1183 $)) NIL T ELT) (((-1183 |#2|) $) 116 T ELT) (((-634 |#2|) (-1183 $)) NIL T ELT)) (-3978 (((-1183 |#2|) $) NIL T ELT) (($ (-1183 |#2|)) NIL T ELT) (((-1089 |#2|) $) NIL T ELT) (($ (-1089 |#2|)) NIL T ELT) (((-804 (-488)) $) 183 T ELT) (((-804 (-332)) $) 187 T ELT) (((-144 (-332)) $) 172 T ELT) (((-144 (-181)) $) 167 T ELT) (((-477) $) 179 T ELT)) (-3015 (($ $) 104 T ELT)) (-3953 (((-776) $) 143 T ELT) (($ (-488)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ $) NIL T ELT)) (-2455 (((-1089 |#2|) $) 32 T ELT)) (-3132 (((-698)) 106 T CONST)) (-1269 (((-85) $ $) 13 T ELT)) (-3504 (($ $) 258 T ELT)) (-3492 (($ $) 252 T ELT)) (-3502 (($ $) 256 T ELT)) (-3490 (($ $) 250 T ELT)) (-2241 ((|#2| $) 241 T ELT)) (-3503 (($ $) 257 T ELT)) (-3491 (($ $) 251 T ELT)) (-3389 (($ $) 162 T ELT)) (-3062 (((-85) $ $) 110 T ELT)) (-3843 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 111 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-352 (-488))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT))) +(((-140 |#1| |#2|) (-10 -7 (-15 -3764 (|#1| |#1|)) (-15 -3764 (|#1| |#1| (-698))) (-15 -3764 (|#1| |#1| (-1094))) (-15 -3764 (|#1| |#1| (-587 (-1094)))) (-15 -3764 (|#1| |#1| (-1094) (-698))) (-15 -3764 (|#1| |#1| (-587 (-1094)) (-587 (-698)))) (-15 -3953 (|#1| |#1|)) (-15 -3472 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2069 ((-2 (|:| -1780 |#1|) (|:| -3988 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1611 ((-698) |#1|)) (-15 -2885 ((-2 (|:| -1977 |#1|) (|:| -2908 |#1|)) |#1| |#1|)) (-15 -2569 (|#1| |#1| |#1|)) (-15 -2570 (|#1| |#1| |#1|)) (-15 -2490 (|#1| |#1|)) (-15 ** (|#1| |#1| (-488))) (-15 * (|#1| |#1| (-352 (-488)))) (-15 * (|#1| (-352 (-488)) |#1|)) (-15 -3953 (|#1| (-352 (-488)))) (-15 -3978 ((-477) |#1|)) (-15 -3978 ((-144 (-181)) |#1|)) (-15 -3978 ((-144 (-332)) |#1|)) (-15 -3645 (|#1| |#1|)) (-15 -3644 (|#1| |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3503 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -3504 (|#1| |#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3950 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3633 (|#1|)) (-15 ** (|#1| |#1| (-352 (-488)))) (-15 -2712 ((-350 (-1089 |#1|)) (-1089 |#1|))) (-15 -2711 ((-350 (-1089 |#1|)) (-1089 |#1|))) (-15 -2710 ((-3 (-587 (-1089 |#1|)) #1#) (-587 (-1089 |#1|)) (-1089 |#1|))) (-15 -3030 ((-3 (-352 (-488)) #1#) |#1|)) (-15 -3028 ((-352 (-488)) |#1|)) (-15 -3029 ((-85) |#1|)) (-15 -1379 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2241 (|#2| |#1|)) (-15 -3389 (|#1| |#1|)) (-15 -3472 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3015 (|#1| |#1|)) (-15 -1381 (|#1|)) (-15 -3978 ((-804 (-332)) |#1|)) (-15 -3978 ((-804 (-488)) |#1|)) (-15 -2802 ((-802 (-332) |#1|) |#1| (-804 (-332)) (-802 (-332) |#1|))) (-15 -2802 ((-802 (-488) |#1|) |#1| (-804 (-488)) (-802 (-488) |#1|))) (-15 -3849 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3764 (|#1| |#1| (-1 |#2| |#2|) (-698))) (-15 -3764 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3848 ((-3 |#1| #1#) (-352 (-1089 |#2|)))) (-15 -3085 ((-1089 |#2|) |#1|)) (-15 -3978 (|#1| (-1089 |#2|))) (-15 -3848 (|#1| (-1089 |#2|))) (-15 -3191 ((-1089 |#2|))) (-15 -2284 ((-634 |#2|) (-634 |#1|))) (-15 -2284 ((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 |#1|) (-1183 |#1|))) (-15 -2284 ((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 |#1|) (-1183 |#1|))) (-15 -2284 ((-634 (-488)) (-634 |#1|))) (-15 -3163 ((-3 |#2| #1#) |#1|)) (-15 -3162 (|#2| |#1|)) (-15 -3162 ((-352 (-488)) |#1|)) (-15 -3163 ((-3 (-352 (-488)) #1#) |#1|)) (-15 -3162 ((-488) |#1|)) (-15 -3163 ((-3 (-488) #1#) |#1|)) (-15 -3978 ((-1089 |#2|) |#1|)) (-15 -3763 (|#2|)) (-15 -3978 (|#1| (-1183 |#2|))) (-15 -3978 ((-1183 |#2|) |#1|)) (-15 -3230 ((-634 |#2|) (-1183 |#1|))) (-15 -3230 ((-1183 |#2|) |#1|)) (-15 -2019 ((-1089 |#2|) |#1|)) (-15 -2455 ((-1089 |#2|) |#1|)) (-15 -3763 (|#2| (-1183 |#1|))) (-15 -3230 ((-634 |#2|) (-1183 |#1|) (-1183 |#1|))) (-15 -3230 ((-1183 |#2|) |#1| (-1183 |#1|))) (-15 -3138 (|#2| |#1|)) (-15 -3336 (|#2| |#1|)) (-15 -3114 ((-834))) (-15 -3953 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3132 ((-698)) -3959) (-15 -3953 (|#1| (-488))) (-15 -3473 ((-3 |#1| #1#) |#1|)) (-15 ** (|#1| |#1| (-698))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-834))) (-15 -3843 (|#1| |#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 * (|#1| (-488) |#1|)) (-15 * (|#1| (-698) |#1|)) (-15 * (|#1| (-834) |#1|)) (-15 -3845 (|#1| |#1| |#1|)) (-15 -3953 ((-776) |#1|)) (-15 -1269 ((-85) |#1| |#1|)) (-15 -3062 ((-85) |#1| |#1|))) (-141 |#2|) (-148)) (T -140)) +((-3132 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-698)) (-5 *1 (-140 *3 *4)) (-4 *3 (-141 *4)))) (-3114 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-834)) (-5 *1 (-140 *3 *4)) (-4 *3 (-141 *4)))) (-3763 (*1 *2) (-12 (-4 *2 (-148)) (-5 *1 (-140 *3 *2)) (-4 *3 (-141 *2)))) (-3191 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-1089 *4)) (-5 *1 (-140 *3 *4)) (-4 *3 (-141 *4))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 114 (OR (|has| |#1| (-499)) (-12 (|has| |#1| (-260)) (|has| |#1| (-825)))) ELT)) (-2068 (($ $) 115 (OR (|has| |#1| (-499)) (-12 (|has| |#1| (-260)) (|has| |#1| (-825)))) ELT)) (-2066 (((-85) $) 117 (OR (|has| |#1| (-499)) (-12 (|has| |#1| (-260)) (|has| |#1| (-825)))) ELT)) (-1790 (((-634 |#1|) (-1183 $)) 61 T ELT) (((-634 |#1|)) 77 T ELT)) (-3336 ((|#1| $) 67 T ELT)) (-3498 (($ $) 250 (|has| |#1| (-1119)) ELT)) (-3645 (($ $) 233 (|has| |#1| (-1119)) ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) 167 (|has| |#1| (-301)) ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) 264 (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) ELT)) (-3781 (($ $) 134 (OR (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) (|has| |#1| (-314))) ELT)) (-3977 (((-350 $) $) 135 (OR (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) (|has| |#1| (-314))) ELT)) (-3043 (($ $) 263 (-12 (|has| |#1| (-919)) (|has| |#1| (-1119))) ELT)) (-2710 (((-3 (-587 (-1089 $)) "failed") (-587 (-1089 $)) (-1089 $)) 267 (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) ELT)) (-1612 (((-85) $ $) 125 (|has| |#1| (-260)) ELT)) (-3142 (((-698)) 108 (|has| |#1| (-322)) ELT)) (-3496 (($ $) 249 (|has| |#1| (-1119)) ELT)) (-3644 (($ $) 234 (|has| |#1| (-1119)) ELT)) (-3500 (($ $) 248 (|has| |#1| (-1119)) ELT)) (-3643 (($ $) 235 (|has| |#1| (-1119)) ELT)) (-3730 (($) 23 T CONST)) (-3163 (((-3 (-488) #1="failed") $) 194 (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) 192 (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3162 (((-488) $) 193 (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) 191 (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) 190 T ELT)) (-1800 (($ (-1183 |#1|) (-1183 $)) 63 T ELT) (($ (-1183 |#1|)) 80 T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-301)) ELT)) (-2570 (($ $ $) 129 (|has| |#1| (-260)) ELT)) (-1789 (((-634 |#1|) $ (-1183 $)) 68 T ELT) (((-634 |#1|) $) 75 T ELT)) (-2284 (((-634 (-488)) (-634 $)) 186 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) 185 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) 184 T ELT) (((-634 |#1|) (-634 $)) 183 T ELT)) (-3848 (($ (-1089 |#1|)) 178 T ELT) (((-3 $ "failed") (-352 (-1089 |#1|))) 175 (|has| |#1| (-314)) ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3649 ((|#1| $) 275 T ELT)) (-3030 (((-3 (-352 (-488)) "failed") $) 268 (|has| |#1| (-487)) ELT)) (-3029 (((-85) $) 270 (|has| |#1| (-487)) ELT)) (-3028 (((-352 (-488)) $) 269 (|has| |#1| (-487)) ELT)) (-3114 (((-834)) 69 T ELT)) (-3000 (($) 111 (|has| |#1| (-322)) ELT)) (-2569 (($ $ $) 128 (|has| |#1| (-260)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 123 (|has| |#1| (-260)) ELT)) (-2839 (($) 169 (|has| |#1| (-301)) ELT)) (-1684 (((-85) $) 170 (|has| |#1| (-301)) ELT)) (-1772 (($ $ (-698)) 161 (|has| |#1| (-301)) ELT) (($ $) 160 (|has| |#1| (-301)) ELT)) (-3729 (((-85) $) 136 (OR (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) (|has| |#1| (-314))) ELT)) (-1379 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 271 (-12 (|has| |#1| (-977)) (|has| |#1| (-1119))) ELT)) (-3633 (($) 260 (|has| |#1| (-1119)) ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) 283 (|has| |#1| (-800 (-488))) ELT) (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) 282 (|has| |#1| (-800 (-332))) ELT)) (-3778 (((-834) $) 172 (|has| |#1| (-301)) ELT) (((-747 (-834)) $) 158 (|has| |#1| (-301)) ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3017 (($ $ (-488)) 262 (-12 (|has| |#1| (-919)) (|has| |#1| (-1119))) ELT)) (-3138 ((|#1| $) 66 T ELT)) (-3451 (((-636 $) $) 162 (|has| |#1| (-301)) ELT)) (-1609 (((-3 (-587 $) #2="failed") (-587 $) $) 132 (|has| |#1| (-260)) ELT)) (-2019 (((-1089 |#1|) $) 59 (|has| |#1| (-314)) ELT)) (-3849 (($ (-1 |#1| |#1|) $) 284 T ELT)) (-2015 (((-834) $) 110 (|has| |#1| (-322)) ELT)) (-3949 (($ $) 257 (|has| |#1| (-1119)) ELT)) (-3085 (((-1089 |#1|) $) 176 T ELT)) (-2285 (((-634 (-488)) (-1183 $)) 188 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) 187 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) 182 T ELT) (((-634 |#1|) (-1183 $)) 181 T ELT)) (-1899 (($ (-587 $)) 121 (OR (|has| |#1| (-260)) (-12 (|has| |#1| (-260)) (|has| |#1| (-825)))) ELT) (($ $ $) 120 (OR (|has| |#1| (-260)) (-12 (|has| |#1| (-260)) (|has| |#1| (-825)))) ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 137 (|has| |#1| (-314)) ELT)) (-3452 (($) 163 (|has| |#1| (-301)) CONST)) (-2405 (($ (-834)) 109 (|has| |#1| (-322)) ELT)) (-1381 (($) 279 T ELT)) (-3650 ((|#1| $) 276 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2414 (($) 180 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 122 (OR (|has| |#1| (-260)) (-12 (|has| |#1| (-260)) (|has| |#1| (-825)))) ELT)) (-3150 (($ (-587 $)) 119 (OR (|has| |#1| (-260)) (-12 (|has| |#1| (-260)) (|has| |#1| (-825)))) ELT) (($ $ $) 118 (OR (|has| |#1| (-260)) (-12 (|has| |#1| (-260)) (|has| |#1| (-825)))) ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) 166 (|has| |#1| (-301)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) 266 (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) 265 (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) ELT)) (-3738 (((-350 $) $) 133 (OR (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) (|has| |#1| (-314))) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-260)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 130 (|has| |#1| (-260)) ELT)) (-3472 (((-3 $ "failed") $ |#1|) 274 (|has| |#1| (-499)) ELT) (((-3 $ "failed") $ $) 113 (OR (|has| |#1| (-499)) (-12 (|has| |#1| (-260)) (|has| |#1| (-825)))) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 124 (|has| |#1| (-260)) ELT)) (-3950 (($ $) 258 (|has| |#1| (-1119)) ELT)) (-3774 (($ $ (-587 |#1|) (-587 |#1|)) 290 (|has| |#1| (-262 |#1|)) ELT) (($ $ |#1| |#1|) 289 (|has| |#1| (-262 |#1|)) ELT) (($ $ (-251 |#1|)) 288 (|has| |#1| (-262 |#1|)) ELT) (($ $ (-587 (-251 |#1|))) 287 (|has| |#1| (-262 |#1|)) ELT) (($ $ (-587 (-1094)) (-587 |#1|)) 286 (|has| |#1| (-459 (-1094) |#1|)) ELT) (($ $ (-1094) |#1|) 285 (|has| |#1| (-459 (-1094) |#1|)) ELT)) (-1611 (((-698) $) 126 (|has| |#1| (-260)) ELT)) (-3806 (($ $ |#1|) 291 (|has| |#1| (-243 |#1| |#1|)) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 127 (|has| |#1| (-260)) ELT)) (-3763 ((|#1| (-1183 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1773 (((-698) $) 171 (|has| |#1| (-301)) ELT) (((-3 (-698) "failed") $ $) 159 (|has| |#1| (-301)) ELT)) (-3764 (($ $ (-1 |#1| |#1|)) 145 T ELT) (($ $ (-1 |#1| |#1|) (-698)) 144 T ELT) (($ $ (-587 (-1094)) (-587 (-698))) 150 (OR (-2568 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))) (-2568 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094)))) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-1094) (-698)) 149 (OR (-2568 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))) (-2568 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094)))) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-587 (-1094))) 148 (OR (-2568 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))) (-2568 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094)))) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-1094)) 146 (OR (-2568 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))) (-2568 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094)))) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-698)) 156 (OR (-2568 (|has| |#1| (-314)) (|has| |#1| (-191))) (-2568 (|has| |#1| (-314)) (|has| |#1| (-192))) (|has| |#1| (-191)) (-2568 (|has| |#1| (-191)) (|has| |#1| (-314)))) ELT) (($ $) 154 (OR (-2568 (|has| |#1| (-314)) (|has| |#1| (-191))) (-2568 (|has| |#1| (-314)) (|has| |#1| (-192))) (|has| |#1| (-191)) (-2568 (|has| |#1| (-191)) (|has| |#1| (-314)))) ELT)) (-2413 (((-634 |#1|) (-1183 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-314)) ELT)) (-3191 (((-1089 |#1|)) 179 T ELT)) (-3501 (($ $) 247 (|has| |#1| (-1119)) ELT)) (-3642 (($ $) 236 (|has| |#1| (-1119)) ELT)) (-1678 (($) 168 (|has| |#1| (-301)) ELT)) (-3499 (($ $) 246 (|has| |#1| (-1119)) ELT)) (-3641 (($ $) 237 (|has| |#1| (-1119)) ELT)) (-3497 (($ $) 245 (|has| |#1| (-1119)) ELT)) (-3640 (($ $) 238 (|has| |#1| (-1119)) ELT)) (-3230 (((-1183 |#1|) $ (-1183 $)) 65 T ELT) (((-634 |#1|) (-1183 $) (-1183 $)) 64 T ELT) (((-1183 |#1|) $) 82 T ELT) (((-634 |#1|) (-1183 $)) 81 T ELT)) (-3978 (((-1183 |#1|) $) 79 T ELT) (($ (-1183 |#1|)) 78 T ELT) (((-1089 |#1|) $) 195 T ELT) (($ (-1089 |#1|)) 177 T ELT) (((-804 (-488)) $) 281 (|has| |#1| (-557 (-804 (-488)))) ELT) (((-804 (-332)) $) 280 (|has| |#1| (-557 (-804 (-332)))) ELT) (((-144 (-332)) $) 232 (|has| |#1| (-937)) ELT) (((-144 (-181)) $) 231 (|has| |#1| (-937)) ELT) (((-477) $) 230 (|has| |#1| (-557 (-477))) ELT)) (-3015 (($ $) 278 T ELT)) (-2709 (((-3 (-1183 $) "failed") (-634 $)) 165 (OR (-2568 (|has| $ (-118)) (-12 (|has| |#1| (-260)) (|has| |#1| (-825)))) (|has| |#1| (-301))) ELT)) (-1380 (($ |#1| |#1|) 277 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-352 (-488))) 107 (OR (|has| |#1| (-314)) (|has| |#1| (-954 (-352 (-488))))) ELT) (($ $) 112 (OR (|has| |#1| (-499)) (-12 (|has| |#1| (-260)) (|has| |#1| (-825)))) ELT)) (-2708 (($ $) 164 (|has| |#1| (-301)) ELT) (((-636 $) $) 58 (OR (-2568 (|has| $ (-118)) (-12 (|has| |#1| (-260)) (|has| |#1| (-825)))) (|has| |#1| (-118))) ELT)) (-2455 (((-1089 |#1|) $) 60 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2017 (((-1183 $)) 83 T ELT)) (-3504 (($ $) 256 (|has| |#1| (-1119)) ELT)) (-3492 (($ $) 244 (|has| |#1| (-1119)) ELT)) (-2067 (((-85) $ $) 116 (OR (|has| |#1| (-499)) (-12 (|has| |#1| (-260)) (|has| |#1| (-825)))) ELT)) (-3502 (($ $) 255 (|has| |#1| (-1119)) ELT)) (-3490 (($ $) 243 (|has| |#1| (-1119)) ELT)) (-3506 (($ $) 254 (|has| |#1| (-1119)) ELT)) (-3494 (($ $) 242 (|has| |#1| (-1119)) ELT)) (-2241 ((|#1| $) 272 (|has| |#1| (-1119)) ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-3507 (($ $) 253 (|has| |#1| (-1119)) ELT)) (-3495 (($ $) 241 (|has| |#1| (-1119)) ELT)) (-3505 (($ $) 252 (|has| |#1| (-1119)) ELT)) (-3493 (($ $) 240 (|has| |#1| (-1119)) ELT)) (-3503 (($ $) 251 (|has| |#1| (-1119)) ELT)) (-3491 (($ $) 239 (|has| |#1| (-1119)) ELT)) (-3389 (($ $) 273 (|has| |#1| (-977)) ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-1 |#1| |#1|)) 143 T ELT) (($ $ (-1 |#1| |#1|) (-698)) 142 T ELT) (($ $ (-587 (-1094)) (-587 (-698))) 153 (OR (-2568 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))) (-2568 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094)))) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-1094) (-698)) 152 (OR (-2568 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))) (-2568 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094)))) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-587 (-1094))) 151 (OR (-2568 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))) (-2568 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094)))) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-1094)) 147 (OR (-2568 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))) (-2568 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094)))) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-698)) 157 (OR (-2568 (|has| |#1| (-314)) (|has| |#1| (-191))) (-2568 (|has| |#1| (-314)) (|has| |#1| (-192))) (|has| |#1| (-191)) (-2568 (|has| |#1| (-191)) (|has| |#1| (-314)))) ELT) (($ $) 155 (OR (-2568 (|has| |#1| (-314)) (|has| |#1| (-191))) (-2568 (|has| |#1| (-314)) (|has| |#1| (-192))) (|has| |#1| (-191)) (-2568 (|has| |#1| (-191)) (|has| |#1| (-314)))) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ $) 141 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-352 (-488))) 261 (-12 (|has| |#1| (-919)) (|has| |#1| (-1119))) ELT) (($ $ $) 259 (|has| |#1| (-1119)) ELT) (($ $ (-488)) 138 (|has| |#1| (-314)) ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-352 (-488)) $) 140 (|has| |#1| (-314)) ELT) (($ $ (-352 (-488))) 139 (|has| |#1| (-314)) ELT))) +(((-141 |#1|) (-113) (-148)) (T -141)) +((-3138 (*1 *2 *1) (-12 (-4 *1 (-141 *2)) (-4 *2 (-148)))) (-1381 (*1 *1) (-12 (-4 *1 (-141 *2)) (-4 *2 (-148)))) (-3015 (*1 *1 *1) (-12 (-4 *1 (-141 *2)) (-4 *2 (-148)))) (-1380 (*1 *1 *2 *2) (-12 (-4 *1 (-141 *2)) (-4 *2 (-148)))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-141 *2)) (-4 *2 (-148)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-141 *2)) (-4 *2 (-148)))) (-3472 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-141 *2)) (-4 *2 (-148)) (-4 *2 (-499)))) (-3389 (*1 *1 *1) (-12 (-4 *1 (-141 *2)) (-4 *2 (-148)) (-4 *2 (-977)))) (-2241 (*1 *2 *1) (-12 (-4 *1 (-141 *2)) (-4 *2 (-148)) (-4 *2 (-1119)))) (-1379 (*1 *2 *1) (-12 (-4 *1 (-141 *3)) (-4 *3 (-148)) (-4 *3 (-977)) (-4 *3 (-1119)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3029 (*1 *2 *1) (-12 (-4 *1 (-141 *3)) (-4 *3 (-148)) (-4 *3 (-487)) (-5 *2 (-85)))) (-3028 (*1 *2 *1) (-12 (-4 *1 (-141 *3)) (-4 *3 (-148)) (-4 *3 (-487)) (-5 *2 (-352 (-488))))) (-3030 (*1 *2 *1) (|partial| -12 (-4 *1 (-141 *3)) (-4 *3 (-148)) (-4 *3 (-487)) (-5 *2 (-352 (-488)))))) +(-13 (-665 |t#1| (-1089 |t#1|)) (-357 |t#1|) (-186 |t#1|) (-290 |t#1|) (-345 |t#1|) (-798 |t#1|) (-331 |t#1|) (-148) (-10 -8 (-6 -1380) (-15 -1381 ($)) (-15 -3015 ($ $)) (-15 -1380 ($ |t#1| |t#1|)) (-15 -3650 (|t#1| $)) (-15 -3649 (|t#1| $)) (-15 -3138 (|t#1| $)) (IF (|has| |t#1| (-499)) (PROGN (-6 (-499)) (-15 -3472 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-260)) (-6 (-260)) |%noBranch|) (IF (|has| |t#1| (-6 -4000)) (-6 -4000) |%noBranch|) (IF (|has| |t#1| (-6 -3997)) (-6 -3997) |%noBranch|) (IF (|has| |t#1| (-314)) (-6 (-314)) |%noBranch|) (IF (|has| |t#1| (-557 (-477))) (-6 (-557 (-477))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-937)) (PROGN (-6 (-557 (-144 (-181)))) (-6 (-557 (-144 (-332))))) |%noBranch|) (IF (|has| |t#1| (-977)) (-15 -3389 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1119)) (PROGN (-6 (-1119)) (-15 -2241 (|t#1| $)) (IF (|has| |t#1| (-919)) (-6 (-919)) |%noBranch|) (IF (|has| |t#1| (-977)) (-15 -1379 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-487)) (PROGN (-15 -3029 ((-85) $)) (-15 -3028 ((-352 (-488)) $)) (-15 -3030 ((-3 (-352 (-488)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-825)) (IF (|has| |t#1| (-260)) (-6 (-825)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-352 (-488))) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-499)) (|has| |#1| (-301)) (|has| |#1| (-314)) (|has| |#1| (-260))) ((-35) |has| |#1| (-1119)) ((-66) |has| |#1| (-1119)) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-301)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) OR (|has| |#1| (-954 (-352 (-488)))) (|has| |#1| (-301)) (|has| |#1| (-314))) ((-559 (-488)) . T) ((-559 |#1|) . T) ((-559 $) OR (|has| |#1| (-499)) (|has| |#1| (-301)) (|has| |#1| (-314)) (|has| |#1| (-260))) ((-556 (-776)) . T) ((-148) . T) ((-557 (-144 (-181))) |has| |#1| (-937)) ((-557 (-144 (-332))) |has| |#1| (-937)) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-557 (-804 (-332))) |has| |#1| (-557 (-804 (-332)))) ((-557 (-804 (-488))) |has| |#1| (-557 (-804 (-488)))) ((-557 (-1089 |#1|)) . T) ((-188 $) OR (|has| |#1| (-301)) (|has| |#1| (-191)) (|has| |#1| (-192))) ((-186 |#1|) . T) ((-192) OR (|has| |#1| (-301)) (|has| |#1| (-192))) ((-191) OR (|has| |#1| (-301)) (|has| |#1| (-191)) (|has| |#1| (-192))) ((-227 |#1|) . T) ((-203) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-241) |has| |#1| (-1119)) ((-243 |#1| $) |has| |#1| (-243 |#1| |#1|)) ((-248) OR (|has| |#1| (-499)) (|has| |#1| (-301)) (|has| |#1| (-314)) (|has| |#1| (-260))) ((-260) OR (|has| |#1| (-301)) (|has| |#1| (-314)) (|has| |#1| (-260))) ((-262 |#1|) |has| |#1| (-262 |#1|)) ((-314) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-347) |has| |#1| (-301)) ((-322) OR (|has| |#1| (-301)) (|has| |#1| (-322))) ((-301) |has| |#1| (-301)) ((-324 |#1| (-1089 |#1|)) . T) ((-355 |#1| (-1089 |#1|)) . T) ((-290 |#1|) . T) ((-331 |#1|) . T) ((-345 |#1|) . T) ((-357 |#1|) . T) ((-383 |#1|) . T) ((-395) OR (|has| |#1| (-301)) (|has| |#1| (-314)) (|has| |#1| (-260))) ((-436) |has| |#1| (-1119)) ((-459 (-1094) |#1|) |has| |#1| (-459 (-1094) |#1|)) ((-459 |#1| |#1|) |has| |#1| (-262 |#1|)) ((-499) OR (|has| |#1| (-499)) (|has| |#1| (-301)) (|has| |#1| (-314)) (|has| |#1| (-260))) ((-13) . T) ((-592 (-352 (-488))) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 (-352 (-488))) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-594 (-488)) |has| |#1| (-584 (-488))) ((-594 |#1|) . T) ((-594 $) . T) ((-586 (-352 (-488))) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-586 |#1|) . T) ((-586 $) OR (|has| |#1| (-499)) (|has| |#1| (-301)) (|has| |#1| (-314)) (|has| |#1| (-260))) ((-584 (-488)) |has| |#1| (-584 (-488))) ((-584 |#1|) . T) ((-658 (-352 (-488))) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-658 |#1|) . T) ((-658 $) OR (|has| |#1| (-499)) (|has| |#1| (-301)) (|has| |#1| (-314)) (|has| |#1| (-260))) ((-665 |#1| (-1089 |#1|)) . T) ((-667) . T) ((-810 $ (-1094)) OR (|has| |#1| (-815 (-1094))) (|has| |#1| (-813 (-1094)))) ((-813 (-1094)) |has| |#1| (-813 (-1094))) ((-815 (-1094)) OR (|has| |#1| (-815 (-1094))) (|has| |#1| (-813 (-1094)))) ((-800 (-332)) |has| |#1| (-800 (-332))) ((-800 (-488)) |has| |#1| (-800 (-488))) ((-798 |#1|) . T) ((-825) -12 (|has| |#1| (-260)) (|has| |#1| (-825))) ((-836) OR (|has| |#1| (-301)) (|has| |#1| (-314)) (|has| |#1| (-260))) ((-919) -12 (|has| |#1| (-919)) (|has| |#1| (-1119))) ((-954 (-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((-954 (-488)) |has| |#1| (-954 (-488))) ((-954 |#1|) . T) ((-967 (-352 (-488))) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-967 |#1|) . T) ((-967 $) . T) ((-972 (-352 (-488))) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-972 |#1|) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1070) |has| |#1| (-301)) ((-1119) |has| |#1| (-1119)) ((-1122) |has| |#1| (-1119)) ((-1133) . T) ((-1138) OR (|has| |#1| (-301)) (|has| |#1| (-314)) (-12 (|has| |#1| (-260)) (|has| |#1| (-825))))) +((-3738 (((-350 |#2|) |#2|) 67 T ELT))) +(((-142 |#1| |#2|) (-10 -7 (-15 -3738 ((-350 |#2|) |#2|))) (-260) (-1159 (-144 |#1|))) (T -142)) +((-3738 (*1 *2 *3) (-12 (-4 *4 (-260)) (-5 *2 (-350 *3)) (-5 *1 (-142 *4 *3)) (-4 *3 (-1159 (-144 *4)))))) +((-1384 (((-1053) (-1053) (-249)) 8 T ELT)) (-1382 (((-587 (-636 (-237))) (-1077)) 81 T ELT)) (-1383 (((-636 (-237)) (-1053)) 76 T ELT))) +(((-143) (-13 (-1133) (-10 -7 (-15 -1384 ((-1053) (-1053) (-249))) (-15 -1383 ((-636 (-237)) (-1053))) (-15 -1382 ((-587 (-636 (-237))) (-1077)))))) (T -143)) +((-1384 (*1 *2 *2 *3) (-12 (-5 *2 (-1053)) (-5 *3 (-249)) (-5 *1 (-143)))) (-1383 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-636 (-237))) (-5 *1 (-143)))) (-1382 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-587 (-636 (-237)))) (-5 *1 (-143))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 15 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) (|has| |#1| (-499))) ELT)) (-2068 (($ $) NIL (OR (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) (|has| |#1| (-499))) ELT)) (-2066 (((-85) $) NIL (OR (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) (|has| |#1| (-499))) ELT)) (-1790 (((-634 |#1|) (-1183 $)) NIL T ELT) (((-634 |#1|)) NIL T ELT)) (-3336 ((|#1| $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3645 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) NIL (|has| |#1| (-301)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) ELT)) (-3781 (($ $) NIL (OR (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) (|has| |#1| (-314))) ELT)) (-3977 (((-350 $) $) NIL (OR (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) (|has| |#1| (-314))) ELT)) (-3043 (($ $) NIL (-12 (|has| |#1| (-919)) (|has| |#1| (-1119))) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) ELT)) (-1612 (((-85) $ $) NIL (|has| |#1| (-260)) ELT)) (-3142 (((-698)) NIL (|has| |#1| (-322)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3644 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3500 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3643 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3162 (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) NIL T ELT)) (-1800 (($ (-1183 |#1|) (-1183 $)) NIL T ELT) (($ (-1183 |#1|)) NIL T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-301)) ELT)) (-2570 (($ $ $) NIL (|has| |#1| (-260)) ELT)) (-1789 (((-634 |#1|) $ (-1183 $)) NIL T ELT) (((-634 |#1|) $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#1|) (-634 $)) NIL T ELT)) (-3848 (($ (-1089 |#1|)) NIL T ELT) (((-3 $ #1#) (-352 (-1089 |#1|))) NIL (|has| |#1| (-314)) ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3649 ((|#1| $) 20 T ELT)) (-3030 (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-487)) ELT)) (-3029 (((-85) $) NIL (|has| |#1| (-487)) ELT)) (-3028 (((-352 (-488)) $) NIL (|has| |#1| (-487)) ELT)) (-3114 (((-834)) NIL T ELT)) (-3000 (($) NIL (|has| |#1| (-322)) ELT)) (-2569 (($ $ $) NIL (|has| |#1| (-260)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL (|has| |#1| (-260)) ELT)) (-2839 (($) NIL (|has| |#1| (-301)) ELT)) (-1684 (((-85) $) NIL (|has| |#1| (-301)) ELT)) (-1772 (($ $ (-698)) NIL (|has| |#1| (-301)) ELT) (($ $) NIL (|has| |#1| (-301)) ELT)) (-3729 (((-85) $) NIL (OR (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) (|has| |#1| (-314))) ELT)) (-1379 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-977)) (|has| |#1| (-1119))) ELT)) (-3633 (($) NIL (|has| |#1| (-1119)) ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (|has| |#1| (-800 (-488))) ELT) (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (|has| |#1| (-800 (-332))) ELT)) (-3778 (((-834) $) NIL (|has| |#1| (-301)) ELT) (((-747 (-834)) $) NIL (|has| |#1| (-301)) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) 17 T ELT)) (-3017 (($ $ (-488)) NIL (-12 (|has| |#1| (-919)) (|has| |#1| (-1119))) ELT)) (-3138 ((|#1| $) 30 T ELT)) (-3451 (((-636 $) $) NIL (|has| |#1| (-301)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL (|has| |#1| (-260)) ELT)) (-2019 (((-1089 |#1|) $) NIL (|has| |#1| (-314)) ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2015 (((-834) $) NIL (|has| |#1| (-322)) ELT)) (-3949 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3085 (((-1089 |#1|) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) NIL T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-260)) ELT) (($ $ $) NIL (|has| |#1| (-260)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3452 (($) NIL (|has| |#1| (-301)) CONST)) (-2405 (($ (-834)) NIL (|has| |#1| (-322)) ELT)) (-1381 (($) NIL T ELT)) (-3650 ((|#1| $) 21 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2414 (($) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#1| (-260)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-260)) ELT) (($ $ $) NIL (|has| |#1| (-260)) ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) NIL (|has| |#1| (-301)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) ELT)) (-3738 (((-350 $) $) NIL (OR (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) (|has| |#1| (-314))) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-260)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-260)) ELT)) (-3472 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-499)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) (|has| |#1| (-499))) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL (|has| |#1| (-260)) ELT)) (-3950 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3774 (($ $ (-587 |#1|) (-587 |#1|)) NIL (|has| |#1| (-262 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-262 |#1|)) ELT) (($ $ (-251 |#1|)) NIL (|has| |#1| (-262 |#1|)) ELT) (($ $ (-587 (-251 |#1|))) NIL (|has| |#1| (-262 |#1|)) ELT) (($ $ (-587 (-1094)) (-587 |#1|)) NIL (|has| |#1| (-459 (-1094) |#1|)) ELT) (($ $ (-1094) |#1|) NIL (|has| |#1| (-459 (-1094) |#1|)) ELT)) (-1611 (((-698) $) NIL (|has| |#1| (-260)) ELT)) (-3806 (($ $ |#1|) NIL (|has| |#1| (-243 |#1| |#1|)) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-260)) ELT)) (-3763 ((|#1| (-1183 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1773 (((-698) $) NIL (|has| |#1| (-301)) ELT) (((-3 (-698) #1#) $ $) NIL (|has| |#1| (-301)) ELT)) (-3764 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (OR (-12 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094)))) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-1094) (-698)) NIL (OR (-12 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094)))) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-587 (-1094))) NIL (OR (-12 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094)))) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094)))) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-698)) NIL (OR (-12 (|has| |#1| (-192)) (|has| |#1| (-314))) (|has| |#1| (-191))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-192)) (|has| |#1| (-314))) (|has| |#1| (-191))) ELT)) (-2413 (((-634 |#1|) (-1183 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-314)) ELT)) (-3191 (((-1089 |#1|)) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3642 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-1678 (($) NIL (|has| |#1| (-301)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3641 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3640 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3230 (((-1183 |#1|) $ (-1183 $)) NIL T ELT) (((-634 |#1|) (-1183 $) (-1183 $)) NIL T ELT) (((-1183 |#1|) $) NIL T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-3978 (((-1183 |#1|) $) NIL T ELT) (($ (-1183 |#1|)) NIL T ELT) (((-1089 |#1|) $) NIL T ELT) (($ (-1089 |#1|)) NIL T ELT) (((-804 (-488)) $) NIL (|has| |#1| (-557 (-804 (-488)))) ELT) (((-804 (-332)) $) NIL (|has| |#1| (-557 (-804 (-332)))) ELT) (((-144 (-332)) $) NIL (|has| |#1| (-937)) ELT) (((-144 (-181)) $) NIL (|has| |#1| (-937)) ELT) (((-477) $) NIL (|has| |#1| (-557 (-477))) ELT)) (-3015 (($ $) 29 T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-260)) (|has| |#1| (-825))) (|has| |#1| (-301))) ELT)) (-1380 (($ |#1| |#1|) 19 T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-352 (-488))) NIL (OR (|has| |#1| (-314)) (|has| |#1| (-954 (-352 (-488))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) (|has| |#1| (-499))) ELT)) (-2708 (($ $) NIL (|has| |#1| (-301)) ELT) (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-260)) (|has| |#1| (-825))) (|has| |#1| (-118))) ELT)) (-2455 (((-1089 |#1|) $) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 $)) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-2067 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-260)) (|has| |#1| (-825))) (|has| |#1| (-499))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3506 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-2241 ((|#1| $) NIL (|has| |#1| (-1119)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3507 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3505 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3503 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3389 (($ $) NIL (|has| |#1| (-977)) ELT)) (-2666 (($) 8 T CONST)) (-2672 (($) 10 T CONST)) (-2675 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (OR (-12 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094)))) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-1094) (-698)) NIL (OR (-12 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094)))) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-587 (-1094))) NIL (OR (-12 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094)))) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094)))) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-698)) NIL (OR (-12 (|has| |#1| (-192)) (|has| |#1| (-314))) (|has| |#1| (-191))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-192)) (|has| |#1| (-314))) (|has| |#1| (-191))) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 23 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-352 (-488))) NIL (-12 (|has| |#1| (-919)) (|has| |#1| (-1119))) ELT) (($ $ $) NIL (|has| |#1| (-1119)) ELT) (($ $ (-488)) NIL (|has| |#1| (-314)) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-314)) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-314)) ELT))) +(((-144 |#1|) (-141 |#1|) (-148)) (T -144)) +NIL +((-3849 (((-144 |#2|) (-1 |#2| |#1|) (-144 |#1|)) 14 T ELT))) +(((-145 |#1| |#2|) (-10 -7 (-15 -3849 ((-144 |#2|) (-1 |#2| |#1|) (-144 |#1|)))) (-148) (-148)) (T -145)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-144 *5)) (-4 *5 (-148)) (-4 *6 (-148)) (-5 *2 (-144 *6)) (-5 *1 (-145 *5 *6))))) +((-3978 (((-804 |#1|) |#3|) 22 T ELT))) +(((-146 |#1| |#2| |#3|) (-10 -7 (-15 -3978 ((-804 |#1|) |#3|))) (-1017) (-13 (-557 (-804 |#1|)) (-148)) (-141 |#2|)) (T -146)) +((-3978 (*1 *2 *3) (-12 (-4 *5 (-13 (-557 *2) (-148))) (-5 *2 (-804 *4)) (-5 *1 (-146 *4 *5 *3)) (-4 *4 (-1017)) (-4 *3 (-141 *5))))) +((-2574 (((-85) $ $) NIL T ELT)) (-1386 (((-85) $) 9 T ELT)) (-1385 (((-85) $ (-85)) 11 T ELT)) (-3620 (($) 13 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3406 (($ $) 14 T ELT)) (-3953 (((-776) $) 18 T ELT)) (-3708 (((-85) $) 8 T ELT)) (-3868 (((-85) $ (-85)) 10 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-147) (-13 (-1017) (-10 -8 (-15 -3620 ($)) (-15 -3708 ((-85) $)) (-15 -1386 ((-85) $)) (-15 -3868 ((-85) $ (-85))) (-15 -1385 ((-85) $ (-85))) (-15 -3406 ($ $))))) (T -147)) +((-3620 (*1 *1) (-5 *1 (-147))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-147)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-147)))) (-3868 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-147)))) (-1385 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-147)))) (-3406 (*1 *1 *1) (-5 *1 (-147)))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-148) (-113)) (T -148)) +NIL +(-13 (-965) (-82 $ $) (-10 -7 (-6 (-4003 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-559 (-488)) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 $) . T) ((-667) . T) ((-967 $) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-1704 (($ $) 6 T ELT))) +(((-149) (-113)) (T -149)) +((-1704 (*1 *1 *1) (-4 *1 (-149)))) +(-13 (-10 -8 (-15 -1704 ($ $)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3135 ((|#1| $) 79 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2570 (($ $ $) NIL T ELT)) (-1391 (($ $) 21 T ELT)) (-1395 (($ |#1| (-1073 |#1|)) 48 T ELT)) (-3473 (((-3 $ #1#) $) 123 T ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-1392 (((-1073 |#1|) $) 86 T ELT)) (-1394 (((-1073 |#1|) $) 83 T ELT)) (-1393 (((-1073 |#1|) $) 84 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-1388 (((-1073 |#1|) $) 93 T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-1899 (($ (-587 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ (-587 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT)) (-3775 (($ $ (-488)) 96 T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-1387 (((-1073 |#1|) $) 94 T ELT)) (-1389 (((-1073 (-352 |#1|)) $) 14 T ELT)) (-2622 (($ (-352 |#1|)) 17 T ELT) (($ |#1| (-1073 |#1|) (-1073 |#1|)) 38 T ELT)) (-2897 (($ $) 98 T ELT)) (-3953 (((-776) $) 139 T ELT) (($ (-488)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-352 |#1|)) 36 T ELT) (($ (-352 (-488))) NIL T ELT) (($ $) NIL T ELT)) (-3132 (((-698)) 67 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-1390 (((-1073 (-352 |#1|)) $) 20 T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 103 T CONST)) (-2672 (($) 28 T CONST)) (-3062 (((-85) $ $) 35 T ELT)) (-3956 (($ $ $) 121 T ELT)) (-3843 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3845 (($ $ $) 107 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-352 |#1|) $) 117 T ELT) (($ $ (-352 |#1|)) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT))) +(((-150 |#1|) (-13 (-38 |#1|) (-38 (-352 |#1|)) (-314) (-10 -8 (-15 -2622 ($ (-352 |#1|))) (-15 -2622 ($ |#1| (-1073 |#1|) (-1073 |#1|))) (-15 -1395 ($ |#1| (-1073 |#1|))) (-15 -1394 ((-1073 |#1|) $)) (-15 -1393 ((-1073 |#1|) $)) (-15 -1392 ((-1073 |#1|) $)) (-15 -3135 (|#1| $)) (-15 -1391 ($ $)) (-15 -1390 ((-1073 (-352 |#1|)) $)) (-15 -1389 ((-1073 (-352 |#1|)) $)) (-15 -1388 ((-1073 |#1|) $)) (-15 -1387 ((-1073 |#1|) $)) (-15 -3775 ($ $ (-488))) (-15 -2897 ($ $)))) (-260)) (T -150)) +((-2622 (*1 *1 *2) (-12 (-5 *2 (-352 *3)) (-4 *3 (-260)) (-5 *1 (-150 *3)))) (-2622 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1073 *2)) (-4 *2 (-260)) (-5 *1 (-150 *2)))) (-1395 (*1 *1 *2 *3) (-12 (-5 *3 (-1073 *2)) (-4 *2 (-260)) (-5 *1 (-150 *2)))) (-1394 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-150 *3)) (-4 *3 (-260)))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-150 *3)) (-4 *3 (-260)))) (-1392 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-150 *3)) (-4 *3 (-260)))) (-3135 (*1 *2 *1) (-12 (-5 *1 (-150 *2)) (-4 *2 (-260)))) (-1391 (*1 *1 *1) (-12 (-5 *1 (-150 *2)) (-4 *2 (-260)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-1073 (-352 *3))) (-5 *1 (-150 *3)) (-4 *3 (-260)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-1073 (-352 *3))) (-5 *1 (-150 *3)) (-4 *3 (-260)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-150 *3)) (-4 *3 (-260)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-150 *3)) (-4 *3 (-260)))) (-3775 (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-150 *3)) (-4 *3 (-260)))) (-2897 (*1 *1 *1) (-12 (-5 *1 (-150 *2)) (-4 *2 (-260))))) +((-1396 (($ (-78) $) 15 T ELT)) (-3227 (((-636 (-78)) (-450) $) 14 T ELT)) (-3953 (((-776) $) 18 T ELT)) (-1397 (((-587 (-78)) $) 8 T ELT))) +(((-151) (-13 (-556 (-776)) (-10 -8 (-15 -1397 ((-587 (-78)) $)) (-15 -1396 ($ (-78) $)) (-15 -3227 ((-636 (-78)) (-450) $))))) (T -151)) +((-1397 (*1 *2 *1) (-12 (-5 *2 (-587 (-78))) (-5 *1 (-151)))) (-1396 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-151)))) (-3227 (*1 *2 *3 *1) (-12 (-5 *3 (-450)) (-5 *2 (-636 (-78))) (-5 *1 (-151))))) +((-1410 (((-1 (-858 |#1|) (-858 |#1|)) |#1|) 38 T ELT)) (-1401 (((-858 |#1|) (-858 |#1|)) 22 T ELT)) (-1406 (((-1 (-858 |#1|) (-858 |#1|)) |#1|) 34 T ELT)) (-1399 (((-858 |#1|) (-858 |#1|)) 20 T ELT)) (-1404 (((-858 |#1|) (-858 |#1|)) 28 T ELT)) (-1403 (((-858 |#1|) (-858 |#1|)) 27 T ELT)) (-1402 (((-858 |#1|) (-858 |#1|)) 26 T ELT)) (-1407 (((-1 (-858 |#1|) (-858 |#1|)) |#1|) 35 T ELT)) (-1405 (((-1 (-858 |#1|) (-858 |#1|)) |#1|) 33 T ELT)) (-1647 (((-1 (-858 |#1|) (-858 |#1|)) |#1|) 32 T ELT)) (-1400 (((-858 |#1|) (-858 |#1|)) 21 T ELT)) (-1411 (((-1 (-858 |#1|) (-858 |#1|)) |#1| |#1|) 41 T ELT)) (-1398 (((-858 |#1|) (-858 |#1|)) 8 T ELT)) (-1409 (((-1 (-858 |#1|) (-858 |#1|)) |#1|) 37 T ELT)) (-1408 (((-1 (-858 |#1|) (-858 |#1|)) |#1|) 36 T ELT))) +(((-152 |#1|) (-10 -7 (-15 -1398 ((-858 |#1|) (-858 |#1|))) (-15 -1399 ((-858 |#1|) (-858 |#1|))) (-15 -1400 ((-858 |#1|) (-858 |#1|))) (-15 -1401 ((-858 |#1|) (-858 |#1|))) (-15 -1402 ((-858 |#1|) (-858 |#1|))) (-15 -1403 ((-858 |#1|) (-858 |#1|))) (-15 -1404 ((-858 |#1|) (-858 |#1|))) (-15 -1647 ((-1 (-858 |#1|) (-858 |#1|)) |#1|)) (-15 -1405 ((-1 (-858 |#1|) (-858 |#1|)) |#1|)) (-15 -1406 ((-1 (-858 |#1|) (-858 |#1|)) |#1|)) (-15 -1407 ((-1 (-858 |#1|) (-858 |#1|)) |#1|)) (-15 -1408 ((-1 (-858 |#1|) (-858 |#1|)) |#1|)) (-15 -1409 ((-1 (-858 |#1|) (-858 |#1|)) |#1|)) (-15 -1410 ((-1 (-858 |#1|) (-858 |#1|)) |#1|)) (-15 -1411 ((-1 (-858 |#1|) (-858 |#1|)) |#1| |#1|))) (-13 (-314) (-1119) (-919))) (T -152)) +((-1411 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-858 *3) (-858 *3))) (-5 *1 (-152 *3)) (-4 *3 (-13 (-314) (-1119) (-919))))) (-1410 (*1 *2 *3) (-12 (-5 *2 (-1 (-858 *3) (-858 *3))) (-5 *1 (-152 *3)) (-4 *3 (-13 (-314) (-1119) (-919))))) (-1409 (*1 *2 *3) (-12 (-5 *2 (-1 (-858 *3) (-858 *3))) (-5 *1 (-152 *3)) (-4 *3 (-13 (-314) (-1119) (-919))))) (-1408 (*1 *2 *3) (-12 (-5 *2 (-1 (-858 *3) (-858 *3))) (-5 *1 (-152 *3)) (-4 *3 (-13 (-314) (-1119) (-919))))) (-1407 (*1 *2 *3) (-12 (-5 *2 (-1 (-858 *3) (-858 *3))) (-5 *1 (-152 *3)) (-4 *3 (-13 (-314) (-1119) (-919))))) (-1406 (*1 *2 *3) (-12 (-5 *2 (-1 (-858 *3) (-858 *3))) (-5 *1 (-152 *3)) (-4 *3 (-13 (-314) (-1119) (-919))))) (-1405 (*1 *2 *3) (-12 (-5 *2 (-1 (-858 *3) (-858 *3))) (-5 *1 (-152 *3)) (-4 *3 (-13 (-314) (-1119) (-919))))) (-1647 (*1 *2 *3) (-12 (-5 *2 (-1 (-858 *3) (-858 *3))) (-5 *1 (-152 *3)) (-4 *3 (-13 (-314) (-1119) (-919))))) (-1404 (*1 *2 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-13 (-314) (-1119) (-919))) (-5 *1 (-152 *3)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-13 (-314) (-1119) (-919))) (-5 *1 (-152 *3)))) (-1402 (*1 *2 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-13 (-314) (-1119) (-919))) (-5 *1 (-152 *3)))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-13 (-314) (-1119) (-919))) (-5 *1 (-152 *3)))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-13 (-314) (-1119) (-919))) (-5 *1 (-152 *3)))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-13 (-314) (-1119) (-919))) (-5 *1 (-152 *3)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-13 (-314) (-1119) (-919))) (-5 *1 (-152 *3))))) +((-2455 ((|#2| |#3|) 28 T ELT))) +(((-153 |#1| |#2| |#3|) (-10 -7 (-15 -2455 (|#2| |#3|))) (-148) (-1159 |#1|) (-665 |#1| |#2|)) (T -153)) +((-2455 (*1 *2 *3) (-12 (-4 *4 (-148)) (-4 *2 (-1159 *4)) (-5 *1 (-153 *4 *2 *3)) (-4 *3 (-665 *4 *2))))) +((-2802 (((-802 |#1| |#3|) |#3| (-804 |#1|) (-802 |#1| |#3|)) 44 (|has| (-861 |#2|) (-800 |#1|)) ELT))) +(((-154 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-861 |#2|) (-800 |#1|)) (-15 -2802 ((-802 |#1| |#3|) |#3| (-804 |#1|) (-802 |#1| |#3|))) |%noBranch|)) (-1017) (-13 (-800 |#1|) (-148)) (-141 |#2|)) (T -154)) +((-2802 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-802 *5 *3)) (-5 *4 (-804 *5)) (-4 *5 (-1017)) (-4 *3 (-141 *6)) (-4 (-861 *6) (-800 *5)) (-4 *6 (-13 (-800 *5) (-148))) (-5 *1 (-154 *5 *6 *3))))) +((-1413 (((-587 |#1|) (-587 |#1|) |#1|) 41 T ELT)) (-1412 (((-587 |#1|) |#1| (-587 |#1|)) 20 T ELT)) (-2082 (((-587 |#1|) (-587 (-587 |#1|)) (-587 |#1|)) 36 T ELT) ((|#1| (-587 |#1|) (-587 |#1|)) 32 T ELT))) +(((-155 |#1|) (-10 -7 (-15 -1412 ((-587 |#1|) |#1| (-587 |#1|))) (-15 -2082 (|#1| (-587 |#1|) (-587 |#1|))) (-15 -2082 ((-587 |#1|) (-587 (-587 |#1|)) (-587 |#1|))) (-15 -1413 ((-587 |#1|) (-587 |#1|) |#1|))) (-260)) (T -155)) +((-1413 (*1 *2 *2 *3) (-12 (-5 *2 (-587 *3)) (-4 *3 (-260)) (-5 *1 (-155 *3)))) (-2082 (*1 *2 *3 *2) (-12 (-5 *3 (-587 (-587 *4))) (-5 *2 (-587 *4)) (-4 *4 (-260)) (-5 *1 (-155 *4)))) (-2082 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *2)) (-5 *1 (-155 *2)) (-4 *2 (-260)))) (-1412 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-260)) (-5 *1 (-155 *3))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3324 (((-1134) $) 14 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3212 (((-1053) $) 11 T ELT)) (-3953 (((-776) $) 21 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-156) (-13 (-999) (-10 -8 (-15 -3212 ((-1053) $)) (-15 -3324 ((-1134) $))))) (T -156)) +((-3212 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-156)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-156))))) +((-1422 (((-2 (|:| |start| |#2|) (|:| -1787 (-350 |#2|))) |#2|) 66 T ELT)) (-1421 ((|#1| |#1|) 58 T ELT)) (-1420 (((-144 |#1|) |#2|) 94 T ELT)) (-1419 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1418 ((|#2| |#2|) 91 T ELT)) (-1417 (((-350 |#2|) |#2| |#1|) 119 T ELT) (((-350 |#2|) |#2| |#1| (-85)) 88 T ELT)) (-3138 ((|#1| |#2|) 118 T ELT)) (-1416 ((|#2| |#2|) 131 T ELT)) (-3738 (((-350 |#2|) |#2|) 154 T ELT) (((-350 |#2|) |#2| |#1|) 33 T ELT) (((-350 |#2|) |#2| |#1| (-85)) 153 T ELT)) (-1415 (((-587 (-2 (|:| -1787 (-587 |#2|)) (|:| -1600 |#1|))) |#2| |#2|) 152 T ELT) (((-587 (-2 (|:| -1787 (-587 |#2|)) (|:| -1600 |#1|))) |#2| |#2| (-85)) 82 T ELT)) (-1414 (((-587 (-144 |#1|)) |#2| |#1|) 42 T ELT) (((-587 (-144 |#1|)) |#2|) 43 T ELT))) +(((-157 |#1| |#2|) (-10 -7 (-15 -1414 ((-587 (-144 |#1|)) |#2|)) (-15 -1414 ((-587 (-144 |#1|)) |#2| |#1|)) (-15 -1415 ((-587 (-2 (|:| -1787 (-587 |#2|)) (|:| -1600 |#1|))) |#2| |#2| (-85))) (-15 -1415 ((-587 (-2 (|:| -1787 (-587 |#2|)) (|:| -1600 |#1|))) |#2| |#2|)) (-15 -3738 ((-350 |#2|) |#2| |#1| (-85))) (-15 -3738 ((-350 |#2|) |#2| |#1|)) (-15 -3738 ((-350 |#2|) |#2|)) (-15 -1416 (|#2| |#2|)) (-15 -3138 (|#1| |#2|)) (-15 -1417 ((-350 |#2|) |#2| |#1| (-85))) (-15 -1417 ((-350 |#2|) |#2| |#1|)) (-15 -1418 (|#2| |#2|)) (-15 -1419 (|#1| |#2| |#1|)) (-15 -1419 (|#1| |#2|)) (-15 -1420 ((-144 |#1|) |#2|)) (-15 -1421 (|#1| |#1|)) (-15 -1422 ((-2 (|:| |start| |#2|) (|:| -1787 (-350 |#2|))) |#2|))) (-13 (-314) (-759)) (-1159 (-144 |#1|))) (T -157)) +((-1422 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-759))) (-5 *2 (-2 (|:| |start| *3) (|:| -1787 (-350 *3)))) (-5 *1 (-157 *4 *3)) (-4 *3 (-1159 (-144 *4))))) (-1421 (*1 *2 *2) (-12 (-4 *2 (-13 (-314) (-759))) (-5 *1 (-157 *2 *3)) (-4 *3 (-1159 (-144 *2))))) (-1420 (*1 *2 *3) (-12 (-5 *2 (-144 *4)) (-5 *1 (-157 *4 *3)) (-4 *4 (-13 (-314) (-759))) (-4 *3 (-1159 *2)))) (-1419 (*1 *2 *3) (-12 (-4 *2 (-13 (-314) (-759))) (-5 *1 (-157 *2 *3)) (-4 *3 (-1159 (-144 *2))))) (-1419 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-314) (-759))) (-5 *1 (-157 *2 *3)) (-4 *3 (-1159 (-144 *2))))) (-1418 (*1 *2 *2) (-12 (-4 *3 (-13 (-314) (-759))) (-5 *1 (-157 *3 *2)) (-4 *2 (-1159 (-144 *3))))) (-1417 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-314) (-759))) (-5 *2 (-350 *3)) (-5 *1 (-157 *4 *3)) (-4 *3 (-1159 (-144 *4))))) (-1417 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-314) (-759))) (-5 *2 (-350 *3)) (-5 *1 (-157 *4 *3)) (-4 *3 (-1159 (-144 *4))))) (-3138 (*1 *2 *3) (-12 (-4 *2 (-13 (-314) (-759))) (-5 *1 (-157 *2 *3)) (-4 *3 (-1159 (-144 *2))))) (-1416 (*1 *2 *2) (-12 (-4 *3 (-13 (-314) (-759))) (-5 *1 (-157 *3 *2)) (-4 *2 (-1159 (-144 *3))))) (-3738 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-759))) (-5 *2 (-350 *3)) (-5 *1 (-157 *4 *3)) (-4 *3 (-1159 (-144 *4))))) (-3738 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-314) (-759))) (-5 *2 (-350 *3)) (-5 *1 (-157 *4 *3)) (-4 *3 (-1159 (-144 *4))))) (-3738 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-314) (-759))) (-5 *2 (-350 *3)) (-5 *1 (-157 *4 *3)) (-4 *3 (-1159 (-144 *4))))) (-1415 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-314) (-759))) (-5 *2 (-587 (-2 (|:| -1787 (-587 *3)) (|:| -1600 *4)))) (-5 *1 (-157 *4 *3)) (-4 *3 (-1159 (-144 *4))))) (-1415 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-314) (-759))) (-5 *2 (-587 (-2 (|:| -1787 (-587 *3)) (|:| -1600 *5)))) (-5 *1 (-157 *5 *3)) (-4 *3 (-1159 (-144 *5))))) (-1414 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-314) (-759))) (-5 *2 (-587 (-144 *4))) (-5 *1 (-157 *4 *3)) (-4 *3 (-1159 (-144 *4))))) (-1414 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-759))) (-5 *2 (-587 (-144 *4))) (-5 *1 (-157 *4 *3)) (-4 *3 (-1159 (-144 *4)))))) +((-1423 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1424 (((-698) |#2|) 18 T ELT)) (-1425 ((|#2| |#2| |#2|) 20 T ELT))) +(((-158 |#1| |#2|) (-10 -7 (-15 -1423 ((-3 |#2| "failed") |#2|)) (-15 -1424 ((-698) |#2|)) (-15 -1425 (|#2| |#2| |#2|))) (-1133) (-620 |#1|)) (T -158)) +((-1425 (*1 *2 *2 *2) (-12 (-4 *3 (-1133)) (-5 *1 (-158 *3 *2)) (-4 *2 (-620 *3)))) (-1424 (*1 *2 *3) (-12 (-4 *4 (-1133)) (-5 *2 (-698)) (-5 *1 (-158 *4 *3)) (-4 *3 (-620 *4)))) (-1423 (*1 *2 *2) (|partial| -12 (-4 *3 (-1133)) (-5 *1 (-158 *3 *2)) (-4 *2 (-620 *3))))) +((-2574 (((-85) $ $) NIL T ELT)) (-1428 (((-587 (-778)) $) NIL T ELT)) (-3548 (((-450) $) 8 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1430 (((-163) $) 10 T ELT)) (-2639 (((-85) $ (-450)) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1426 (((-636 $) (-450)) 17 T ELT)) (-1429 (((-587 (-85)) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2527 (((-55) $) 12 T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-159) (-13 (-162) (-10 -8 (-15 -1426 ((-636 $) (-450)))))) (T -159)) +((-1426 (*1 *2 *3) (-12 (-5 *3 (-450)) (-5 *2 (-636 (-159))) (-5 *1 (-159))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1486 ((|#1| $) 7 T ELT)) (-3953 (((-776) $) 14 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-1427 (((-587 (-1099)) $) 10 T ELT)) (-3062 (((-85) $ $) 12 T ELT))) +(((-160 |#1|) (-13 (-1017) (-10 -8 (-15 -1486 (|#1| $)) (-15 -1427 ((-587 (-1099)) $)))) (-162)) (T -160)) +((-1486 (*1 *2 *1) (-12 (-5 *1 (-160 *2)) (-4 *2 (-162)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-587 (-1099))) (-5 *1 (-160 *3)) (-4 *3 (-162))))) +((-1428 (((-587 (-778)) $) 16 T ELT)) (-1430 (((-163) $) 8 T ELT)) (-1429 (((-587 (-85)) $) 13 T ELT)) (-2527 (((-55) $) 10 T ELT))) +(((-161 |#1|) (-10 -7 (-15 -1428 ((-587 (-778)) |#1|)) (-15 -1429 ((-587 (-85)) |#1|)) (-15 -1430 ((-163) |#1|)) (-15 -2527 ((-55) |#1|))) (-162)) (T -161)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-1428 (((-587 (-778)) $) 22 T ELT)) (-3548 (((-450) $) 19 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-1430 (((-163) $) 24 T ELT)) (-2639 (((-85) $ (-450)) 17 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-1429 (((-587 (-85)) $) 23 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2527 (((-55) $) 18 T ELT)) (-3062 (((-85) $ $) 8 T ELT))) +(((-162) (-113)) (T -162)) +((-1430 (*1 *2 *1) (-12 (-4 *1 (-162)) (-5 *2 (-163)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-162)) (-5 *2 (-587 (-85))))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-162)) (-5 *2 (-587 (-778)))))) +(-13 (-751 (-450)) (-10 -8 (-15 -1430 ((-163) $)) (-15 -1429 ((-587 (-85)) $)) (-15 -1428 ((-587 (-778)) $)))) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-751 (-450)) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3953 (((-776) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 10 T ELT))) +(((-163) (-13 (-1017) (-10 -8 (-15 -9 ($) -3959) (-15 -8 ($) -3959) (-15 -7 ($) -3959)))) (T -163)) +((-9 (*1 *1) (-5 *1 (-163))) (-8 (*1 *1) (-5 *1 (-163))) (-7 (*1 *1) (-5 *1 (-163)))) +((-3648 ((|#2| |#2|) 28 T ELT)) (-3651 (((-85) |#2|) 19 T ELT)) (-3649 (((-267 |#1|) |#2|) 12 T ELT)) (-3650 (((-267 |#1|) |#2|) 14 T ELT)) (-3646 ((|#2| |#2| (-1094)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3652 (((-144 (-267 |#1|)) |#2|) 10 T ELT)) (-3647 ((|#2| |#2| (-1094)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) +(((-164 |#1| |#2|) (-10 -7 (-15 -3646 (|#2| |#2|)) (-15 -3646 (|#2| |#2| (-1094))) (-15 -3647 (|#2| |#2|)) (-15 -3647 (|#2| |#2| (-1094))) (-15 -3649 ((-267 |#1|) |#2|)) (-15 -3650 ((-267 |#1|) |#2|)) (-15 -3651 ((-85) |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3652 ((-144 (-267 |#1|)) |#2|))) (-13 (-499) (-954 (-488))) (-13 (-27) (-1119) (-366 (-144 |#1|)))) (T -164)) +((-3652 (*1 *2 *3) (-12 (-4 *4 (-13 (-499) (-954 (-488)))) (-5 *2 (-144 (-267 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 (-144 *4)))))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-13 (-499) (-954 (-488)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1119) (-366 (-144 *3)))))) (-3651 (*1 *2 *3) (-12 (-4 *4 (-13 (-499) (-954 (-488)))) (-5 *2 (-85)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 (-144 *4)))))) (-3650 (*1 *2 *3) (-12 (-4 *4 (-13 (-499) (-954 (-488)))) (-5 *2 (-267 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 (-144 *4)))))) (-3649 (*1 *2 *3) (-12 (-4 *4 (-13 (-499) (-954 (-488)))) (-5 *2 (-267 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 (-144 *4)))))) (-3647 (*1 *2 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-499) (-954 (-488)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1119) (-366 (-144 *4)))))) (-3647 (*1 *2 *2) (-12 (-4 *3 (-13 (-499) (-954 (-488)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1119) (-366 (-144 *3)))))) (-3646 (*1 *2 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-499) (-954 (-488)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1119) (-366 (-144 *4)))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-13 (-499) (-954 (-488)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1119) (-366 (-144 *3))))))) +((-1434 (((-1183 (-634 (-861 |#1|))) (-1183 (-634 |#1|))) 26 T ELT)) (-3953 (((-1183 (-634 (-352 (-861 |#1|)))) (-1183 (-634 |#1|))) 37 T ELT))) +(((-165 |#1|) (-10 -7 (-15 -1434 ((-1183 (-634 (-861 |#1|))) (-1183 (-634 |#1|)))) (-15 -3953 ((-1183 (-634 (-352 (-861 |#1|)))) (-1183 (-634 |#1|))))) (-148)) (T -165)) +((-3953 (*1 *2 *3) (-12 (-5 *3 (-1183 (-634 *4))) (-4 *4 (-148)) (-5 *2 (-1183 (-634 (-352 (-861 *4))))) (-5 *1 (-165 *4)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-1183 (-634 *4))) (-4 *4 (-148)) (-5 *2 (-1183 (-634 (-861 *4)))) (-5 *1 (-165 *4))))) +((-1442 (((-1096 (-352 (-488))) (-1096 (-352 (-488))) (-1096 (-352 (-488)))) 93 T ELT)) (-1444 (((-1096 (-352 (-488))) (-587 (-488)) (-587 (-488))) 109 T ELT)) (-1435 (((-1096 (-352 (-488))) (-834)) 54 T ELT)) (-3861 (((-1096 (-352 (-488))) (-834)) 79 T ELT)) (-3774 (((-352 (-488)) (-1096 (-352 (-488)))) 89 T ELT)) (-1436 (((-1096 (-352 (-488))) (-698)) 37 T ELT)) (-1439 (((-1096 (-352 (-488))) (-834)) 66 T ELT)) (-1438 (((-1096 (-352 (-488))) (-834)) 61 T ELT)) (-1441 (((-1096 (-352 (-488))) (-1096 (-352 (-488))) (-1096 (-352 (-488)))) 87 T ELT)) (-2897 (((-1096 (-352 (-488))) (-698)) 29 T ELT)) (-1440 (((-352 (-488)) (-1096 (-352 (-488))) (-1096 (-352 (-488)))) 91 T ELT)) (-1437 (((-1096 (-352 (-488))) (-698)) 35 T ELT)) (-1443 (((-1096 (-352 (-488))) (-587 (-834))) 103 T ELT))) +(((-166) (-10 -7 (-15 -2897 ((-1096 (-352 (-488))) (-698))) (-15 -1435 ((-1096 (-352 (-488))) (-834))) (-15 -1436 ((-1096 (-352 (-488))) (-698))) (-15 -1437 ((-1096 (-352 (-488))) (-698))) (-15 -1438 ((-1096 (-352 (-488))) (-834))) (-15 -1439 ((-1096 (-352 (-488))) (-834))) (-15 -3861 ((-1096 (-352 (-488))) (-834))) (-15 -1440 ((-352 (-488)) (-1096 (-352 (-488))) (-1096 (-352 (-488))))) (-15 -1441 ((-1096 (-352 (-488))) (-1096 (-352 (-488))) (-1096 (-352 (-488))))) (-15 -3774 ((-352 (-488)) (-1096 (-352 (-488))))) (-15 -1442 ((-1096 (-352 (-488))) (-1096 (-352 (-488))) (-1096 (-352 (-488))))) (-15 -1443 ((-1096 (-352 (-488))) (-587 (-834)))) (-15 -1444 ((-1096 (-352 (-488))) (-587 (-488)) (-587 (-488)))))) (T -166)) +((-1444 (*1 *2 *3 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166)))) (-1443 (*1 *2 *3) (-12 (-5 *3 (-587 (-834))) (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166)))) (-1442 (*1 *2 *2 *2) (-12 (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166)))) (-3774 (*1 *2 *3) (-12 (-5 *3 (-1096 (-352 (-488)))) (-5 *2 (-352 (-488))) (-5 *1 (-166)))) (-1441 (*1 *2 *2 *2) (-12 (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166)))) (-1440 (*1 *2 *3 *3) (-12 (-5 *3 (-1096 (-352 (-488)))) (-5 *2 (-352 (-488))) (-5 *1 (-166)))) (-3861 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166)))) (-1439 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166)))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166)))) (-1437 (*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166)))) (-1436 (*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166)))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166)))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166))))) +((-1446 (((-350 (-1089 (-488))) (-488)) 38 T ELT)) (-1445 (((-587 (-1089 (-488))) (-488)) 33 T ELT)) (-2807 (((-1089 (-488)) (-488)) 28 T ELT))) +(((-167) (-10 -7 (-15 -1445 ((-587 (-1089 (-488))) (-488))) (-15 -2807 ((-1089 (-488)) (-488))) (-15 -1446 ((-350 (-1089 (-488))) (-488))))) (T -167)) +((-1446 (*1 *2 *3) (-12 (-5 *2 (-350 (-1089 (-488)))) (-5 *1 (-167)) (-5 *3 (-488)))) (-2807 (*1 *2 *3) (-12 (-5 *2 (-1089 (-488))) (-5 *1 (-167)) (-5 *3 (-488)))) (-1445 (*1 *2 *3) (-12 (-5 *2 (-587 (-1089 (-488)))) (-5 *1 (-167)) (-5 *3 (-488))))) +((-2574 (((-85) $ $) NIL T ELT)) (-1447 ((|#2| $ (-698) |#2|) 11 T ELT)) (-3118 ((|#2| $ (-698)) 10 T ELT)) (-3620 (($) 8 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 23 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 13 T ELT))) +(((-168 |#1| |#2|) (-13 (-1017) (-10 -8 (-15 -3620 ($)) (-15 -3118 (|#2| $ (-698))) (-15 -1447 (|#2| $ (-698) |#2|)))) (-834) (-1017)) (T -168)) +((-3620 (*1 *1) (-12 (-5 *1 (-168 *2 *3)) (-14 *2 (-834)) (-4 *3 (-1017)))) (-3118 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-4 *2 (-1017)) (-5 *1 (-168 *4 *2)) (-14 *4 (-834)))) (-1447 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-698)) (-5 *1 (-168 *4 *2)) (-14 *4 (-834)) (-4 *2 (-1017))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1968 (((-1189) $) 36 T ELT) (((-1189) $ (-834) (-834)) 40 T ELT)) (-3806 (($ $ (-906)) 19 T ELT) (((-205 (-1077)) $ (-1094)) 15 T ELT)) (-3623 (((-1189) $) 34 T ELT)) (-3953 (((-776) $) 31 T ELT) (($ (-587 |#1|)) 8 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $ $) 26 T ELT)) (-3845 (($ $ $) 22 T ELT))) +(((-169 |#1|) (-13 (-1017) (-559 (-587 |#1|)) (-10 -8 (-15 -3806 ($ $ (-906))) (-15 -3806 ((-205 (-1077)) $ (-1094))) (-15 -3845 ($ $ $)) (-15 -3843 ($ $ $)) (-15 -3623 ((-1189) $)) (-15 -1968 ((-1189) $)) (-15 -1968 ((-1189) $ (-834) (-834))))) (-13 (-760) (-10 -8 (-15 -3806 ((-1077) $ (-1094))) (-15 -3623 ((-1189) $)) (-15 -1968 ((-1189) $))))) (T -169)) +((-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-169 *3)) (-4 *3 (-13 (-760) (-10 -8 (-15 -3806 ((-1077) $ (-1094))) (-15 -3623 ((-1189) $)) (-15 -1968 ((-1189) $))))))) (-3806 (*1 *2 *1 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-205 (-1077))) (-5 *1 (-169 *4)) (-4 *4 (-13 (-760) (-10 -8 (-15 -3806 ((-1077) $ *3)) (-15 -3623 ((-1189) $)) (-15 -1968 ((-1189) $))))))) (-3845 (*1 *1 *1 *1) (-12 (-5 *1 (-169 *2)) (-4 *2 (-13 (-760) (-10 -8 (-15 -3806 ((-1077) $ (-1094))) (-15 -3623 ((-1189) $)) (-15 -1968 ((-1189) $))))))) (-3843 (*1 *1 *1 *1) (-12 (-5 *1 (-169 *2)) (-4 *2 (-13 (-760) (-10 -8 (-15 -3806 ((-1077) $ (-1094))) (-15 -3623 ((-1189) $)) (-15 -1968 ((-1189) $))))))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-169 *3)) (-4 *3 (-13 (-760) (-10 -8 (-15 -3806 ((-1077) $ (-1094))) (-15 -3623 (*2 $)) (-15 -1968 (*2 $))))))) (-1968 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-169 *3)) (-4 *3 (-13 (-760) (-10 -8 (-15 -3806 ((-1077) $ (-1094))) (-15 -3623 (*2 $)) (-15 -1968 (*2 $))))))) (-1968 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1189)) (-5 *1 (-169 *4)) (-4 *4 (-13 (-760) (-10 -8 (-15 -3806 ((-1077) $ (-1094))) (-15 -3623 (*2 $)) (-15 -1968 (*2 $)))))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) NIL T ELT)) (-3000 (($) NIL T ELT)) (-2537 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2863 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2015 (((-834) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2405 (($ (-834)) 10 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2857 (($ (-581 |#1|)) 11 T ELT)) (-3953 (((-776) $) 18 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) NIL T ELT))) +(((-170 |#1|) (-13 (-756) (-10 -8 (-15 -2857 ($ (-581 |#1|))))) (-587 (-1094))) (T -170)) +((-2857 (*1 *1 *2) (-12 (-5 *2 (-581 *3)) (-14 *3 (-587 (-1094))) (-5 *1 (-170 *3))))) +((-1448 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) +(((-171 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1448 (|#2| |#4| (-1 |#2| |#2|)))) (-314) (-1159 |#1|) (-1159 (-352 |#2|)) (-293 |#1| |#2| |#3|)) (T -171)) +((-1448 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-314)) (-4 *6 (-1159 (-352 *2))) (-4 *2 (-1159 *5)) (-5 *1 (-171 *5 *2 *6 *3)) (-4 *3 (-293 *5 *2 *6))))) +((-1452 ((|#2| |#2| (-698) |#2|) 55 T ELT)) (-1451 ((|#2| |#2| (-698) |#2|) 51 T ELT)) (-2376 (((-587 |#2|) (-587 (-2 (|:| |deg| (-698)) (|:| -2581 |#2|)))) 79 T ELT)) (-1450 (((-587 (-2 (|:| |deg| (-698)) (|:| -2581 |#2|))) |#2|) 72 T ELT)) (-1453 (((-85) |#2|) 70 T ELT)) (-3739 (((-350 |#2|) |#2|) 92 T ELT)) (-3738 (((-350 |#2|) |#2|) 91 T ELT)) (-2377 ((|#2| |#2| (-698) |#2|) 49 T ELT)) (-1449 (((-2 (|:| |cont| |#1|) (|:| -1787 (-587 (-2 (|:| |irr| |#2|) (|:| -2400 (-488)))))) |#2| (-85)) 86 T ELT))) +(((-172 |#1| |#2|) (-10 -7 (-15 -3738 ((-350 |#2|) |#2|)) (-15 -3739 ((-350 |#2|) |#2|)) (-15 -1449 ((-2 (|:| |cont| |#1|) (|:| -1787 (-587 (-2 (|:| |irr| |#2|) (|:| -2400 (-488)))))) |#2| (-85))) (-15 -1450 ((-587 (-2 (|:| |deg| (-698)) (|:| -2581 |#2|))) |#2|)) (-15 -2376 ((-587 |#2|) (-587 (-2 (|:| |deg| (-698)) (|:| -2581 |#2|))))) (-15 -2377 (|#2| |#2| (-698) |#2|)) (-15 -1451 (|#2| |#2| (-698) |#2|)) (-15 -1452 (|#2| |#2| (-698) |#2|)) (-15 -1453 ((-85) |#2|))) (-301) (-1159 |#1|)) (T -172)) +((-1453 (*1 *2 *3) (-12 (-4 *4 (-301)) (-5 *2 (-85)) (-5 *1 (-172 *4 *3)) (-4 *3 (-1159 *4)))) (-1452 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-698)) (-4 *4 (-301)) (-5 *1 (-172 *4 *2)) (-4 *2 (-1159 *4)))) (-1451 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-698)) (-4 *4 (-301)) (-5 *1 (-172 *4 *2)) (-4 *2 (-1159 *4)))) (-2377 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-698)) (-4 *4 (-301)) (-5 *1 (-172 *4 *2)) (-4 *2 (-1159 *4)))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| |deg| (-698)) (|:| -2581 *5)))) (-4 *5 (-1159 *4)) (-4 *4 (-301)) (-5 *2 (-587 *5)) (-5 *1 (-172 *4 *5)))) (-1450 (*1 *2 *3) (-12 (-4 *4 (-301)) (-5 *2 (-587 (-2 (|:| |deg| (-698)) (|:| -2581 *3)))) (-5 *1 (-172 *4 *3)) (-4 *3 (-1159 *4)))) (-1449 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-301)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1787 (-587 (-2 (|:| |irr| *3) (|:| -2400 (-488))))))) (-5 *1 (-172 *5 *3)) (-4 *3 (-1159 *5)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-301)) (-5 *2 (-350 *3)) (-5 *1 (-172 *4 *3)) (-4 *3 (-1159 *4)))) (-3738 (*1 *2 *3) (-12 (-4 *4 (-301)) (-5 *2 (-350 *3)) (-5 *1 (-172 *4 *3)) (-4 *3 (-1159 *4))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3135 (((-488) $) NIL (|has| (-488) (-260)) ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-488) (-825)) ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| (-488) (-825)) ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3629 (((-488) $) NIL (|has| (-488) (-744)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL T ELT) (((-3 (-1094) #1#) $) NIL (|has| (-488) (-954 (-1094))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| (-488) (-954 (-488))) ELT) (((-3 (-488) #1#) $) NIL (|has| (-488) (-954 (-488))) ELT)) (-3162 (((-488) $) NIL T ELT) (((-1094) $) NIL (|has| (-488) (-954 (-1094))) ELT) (((-352 (-488)) $) NIL (|has| (-488) (-954 (-488))) ELT) (((-488) $) NIL (|has| (-488) (-954 (-488))) ELT)) (-2570 (($ $ $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| (-488) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| (-488) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL T ELT) (((-634 (-488)) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3000 (($) NIL (|has| (-488) (-487)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-3192 (((-85) $) NIL (|has| (-488) (-744)) ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (|has| (-488) (-800 (-488))) ELT) (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (|has| (-488) (-800 (-332))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3002 (($ $) NIL T ELT)) (-3004 (((-488) $) NIL T ELT)) (-3451 (((-636 $) $) NIL (|has| (-488) (-1070)) ELT)) (-3193 (((-85) $) NIL (|has| (-488) (-744)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2537 (($ $ $) NIL (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| (-488) (-760)) ELT)) (-3849 (($ (-1 (-488) (-488)) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| (-488) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| (-488) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL T ELT) (((-634 (-488)) (-1183 $)) NIL T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3452 (($) NIL (|has| (-488) (-1070)) CONST)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3134 (($ $) NIL (|has| (-488) (-260)) ELT) (((-352 (-488)) $) NIL T ELT)) (-3136 (((-488) $) NIL (|has| (-488) (-487)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-488) (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-488) (-825)) ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-3774 (($ $ (-587 (-488)) (-587 (-488))) NIL (|has| (-488) (-262 (-488))) ELT) (($ $ (-488) (-488)) NIL (|has| (-488) (-262 (-488))) ELT) (($ $ (-251 (-488))) NIL (|has| (-488) (-262 (-488))) ELT) (($ $ (-587 (-251 (-488)))) NIL (|has| (-488) (-262 (-488))) ELT) (($ $ (-587 (-1094)) (-587 (-488))) NIL (|has| (-488) (-459 (-1094) (-488))) ELT) (($ $ (-1094) (-488)) NIL (|has| (-488) (-459 (-1094) (-488))) ELT)) (-1611 (((-698) $) NIL T ELT)) (-3806 (($ $ (-488)) NIL (|has| (-488) (-243 (-488) (-488))) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-3764 (($ $ (-1 (-488) (-488))) NIL T ELT) (($ $ (-1 (-488) (-488)) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $) NIL (|has| (-488) (-191)) ELT) (($ $ (-698)) NIL (|has| (-488) (-191)) ELT)) (-3001 (($ $) NIL T ELT)) (-3003 (((-488) $) NIL T ELT)) (-1454 (($ (-352 (-488))) 9 T ELT)) (-3978 (((-804 (-488)) $) NIL (|has| (-488) (-557 (-804 (-488)))) ELT) (((-804 (-332)) $) NIL (|has| (-488) (-557 (-804 (-332)))) ELT) (((-477) $) NIL (|has| (-488) (-557 (-477))) ELT) (((-332) $) NIL (|has| (-488) (-937)) ELT) (((-181) $) NIL (|has| (-488) (-937)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| (-488) (-825))) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) 8 T ELT) (($ (-488)) NIL T ELT) (($ (-1094)) NIL (|has| (-488) (-954 (-1094))) ELT) (((-352 (-488)) $) NIL T ELT) (((-921 10) $) 10 T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-488) (-825))) (|has| (-488) (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-3137 (((-488) $) NIL (|has| (-488) (-487)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3389 (($ $) NIL (|has| (-488) (-744)) ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $ (-1 (-488) (-488))) NIL T ELT) (($ $ (-1 (-488) (-488)) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $) NIL (|has| (-488) (-191)) ELT) (($ $ (-698)) NIL (|has| (-488) (-191)) ELT)) (-2572 (((-85) $ $) NIL (|has| (-488) (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| (-488) (-760)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL (|has| (-488) (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| (-488) (-760)) ELT)) (-3956 (($ $ $) NIL T ELT) (($ (-488) (-488)) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ (-488)) NIL T ELT))) +(((-173) (-13 (-908 (-488)) (-556 (-352 (-488))) (-556 (-921 10)) (-10 -8 (-15 -3134 ((-352 (-488)) $)) (-15 -1454 ($ (-352 (-488))))))) (T -173)) +((-3134 (*1 *2 *1) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-173)))) (-1454 (*1 *1 *2) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-173))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3325 (((-1032) $) 14 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3184 (((-426) $) 11 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 24 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-3239 (((-1053) $) 16 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-174) (-13 (-999) (-10 -8 (-15 -3184 ((-426) $)) (-15 -3325 ((-1032) $)) (-15 -3239 ((-1053) $))))) (T -174)) +((-3184 (*1 *2 *1) (-12 (-5 *2 (-426)) (-5 *1 (-174)))) (-3325 (*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-174)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-174))))) +((-3818 (((-3 (|:| |f1| (-754 |#2|)) (|:| |f2| (-587 (-754 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1008 (-754 |#2|)) (-1077)) 29 T ELT) (((-3 (|:| |f1| (-754 |#2|)) (|:| |f2| (-587 (-754 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1008 (-754 |#2|))) 25 T ELT)) (-1455 (((-3 (|:| |f1| (-754 |#2|)) (|:| |f2| (-587 (-754 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1094) (-754 |#2|) (-754 |#2|) (-85)) 17 T ELT))) +(((-175 |#1| |#2|) (-10 -7 (-15 -3818 ((-3 (|:| |f1| (-754 |#2|)) (|:| |f2| (-587 (-754 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1008 (-754 |#2|)))) (-15 -3818 ((-3 (|:| |f1| (-754 |#2|)) (|:| |f2| (-587 (-754 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1008 (-754 |#2|)) (-1077))) (-15 -1455 ((-3 (|:| |f1| (-754 |#2|)) (|:| |f2| (-587 (-754 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1094) (-754 |#2|) (-754 |#2|) (-85)))) (-13 (-260) (-120) (-954 (-488)) (-584 (-488))) (-13 (-1119) (-875) (-29 |#1|))) (T -175)) +((-1455 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1094)) (-5 *6 (-85)) (-4 *7 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-4 *3 (-13 (-1119) (-875) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-754 *3)) (|:| |f2| (-587 (-754 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-175 *7 *3)) (-5 *5 (-754 *3)))) (-3818 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1008 (-754 *3))) (-5 *5 (-1077)) (-4 *3 (-13 (-1119) (-875) (-29 *6))) (-4 *6 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 (-3 (|:| |f1| (-754 *3)) (|:| |f2| (-587 (-754 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-175 *6 *3)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *4 (-1008 (-754 *3))) (-4 *3 (-13 (-1119) (-875) (-29 *5))) (-4 *5 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 (-3 (|:| |f1| (-754 *3)) (|:| |f2| (-587 (-754 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-175 *5 *3))))) +((-3818 (((-3 (|:| |f1| (-754 (-267 |#1|))) (|:| |f2| (-587 (-754 (-267 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-352 (-861 |#1|)) (-1008 (-754 (-352 (-861 |#1|)))) (-1077)) 49 T ELT) (((-3 (|:| |f1| (-754 (-267 |#1|))) (|:| |f2| (-587 (-754 (-267 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-352 (-861 |#1|)) (-1008 (-754 (-352 (-861 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-754 (-267 |#1|))) (|:| |f2| (-587 (-754 (-267 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-352 (-861 |#1|)) (-1008 (-754 (-267 |#1|))) (-1077)) 50 T ELT) (((-3 (|:| |f1| (-754 (-267 |#1|))) (|:| |f2| (-587 (-754 (-267 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-352 (-861 |#1|)) (-1008 (-754 (-267 |#1|)))) 22 T ELT))) +(((-176 |#1|) (-10 -7 (-15 -3818 ((-3 (|:| |f1| (-754 (-267 |#1|))) (|:| |f2| (-587 (-754 (-267 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-352 (-861 |#1|)) (-1008 (-754 (-267 |#1|))))) (-15 -3818 ((-3 (|:| |f1| (-754 (-267 |#1|))) (|:| |f2| (-587 (-754 (-267 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-352 (-861 |#1|)) (-1008 (-754 (-267 |#1|))) (-1077))) (-15 -3818 ((-3 (|:| |f1| (-754 (-267 |#1|))) (|:| |f2| (-587 (-754 (-267 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-352 (-861 |#1|)) (-1008 (-754 (-352 (-861 |#1|)))))) (-15 -3818 ((-3 (|:| |f1| (-754 (-267 |#1|))) (|:| |f2| (-587 (-754 (-267 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-352 (-861 |#1|)) (-1008 (-754 (-352 (-861 |#1|)))) (-1077)))) (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (T -176)) +((-3818 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1008 (-754 (-352 (-861 *6))))) (-5 *5 (-1077)) (-5 *3 (-352 (-861 *6))) (-4 *6 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 (-3 (|:| |f1| (-754 (-267 *6))) (|:| |f2| (-587 (-754 (-267 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-176 *6)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *4 (-1008 (-754 (-352 (-861 *5))))) (-5 *3 (-352 (-861 *5))) (-4 *5 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 (-3 (|:| |f1| (-754 (-267 *5))) (|:| |f2| (-587 (-754 (-267 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-176 *5)))) (-3818 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-352 (-861 *6))) (-5 *4 (-1008 (-754 (-267 *6)))) (-5 *5 (-1077)) (-4 *6 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 (-3 (|:| |f1| (-754 (-267 *6))) (|:| |f2| (-587 (-754 (-267 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-176 *6)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-1008 (-754 (-267 *5)))) (-4 *5 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 (-3 (|:| |f1| (-754 (-267 *5))) (|:| |f2| (-587 (-754 (-267 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-176 *5))))) +((-3848 (((-2 (|:| -2009 (-1089 |#1|)) (|:| |deg| (-834))) (-1089 |#1|)) 26 T ELT)) (-3969 (((-587 (-267 |#2|)) (-267 |#2|) (-834)) 51 T ELT))) +(((-177 |#1| |#2|) (-10 -7 (-15 -3848 ((-2 (|:| -2009 (-1089 |#1|)) (|:| |deg| (-834))) (-1089 |#1|))) (-15 -3969 ((-587 (-267 |#2|)) (-267 |#2|) (-834)))) (-965) (-499)) (T -177)) +((-3969 (*1 *2 *3 *4) (-12 (-5 *4 (-834)) (-4 *6 (-499)) (-5 *2 (-587 (-267 *6))) (-5 *1 (-177 *5 *6)) (-5 *3 (-267 *6)) (-4 *5 (-965)))) (-3848 (*1 *2 *3) (-12 (-4 *4 (-965)) (-5 *2 (-2 (|:| -2009 (-1089 *4)) (|:| |deg| (-834)))) (-5 *1 (-177 *4 *5)) (-5 *3 (-1089 *4)) (-4 *5 (-499))))) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1499 ((|#1| $) NIL T ELT)) (-3329 ((|#1| $) 31 T ELT)) (-3730 (($) NIL T CONST)) (-3008 (($ $) NIL T ELT)) (-2302 (($ $) 40 T ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3331 ((|#1| |#1| $) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT)) (-2614 (((-587 |#1|) $) NIL T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3839 (((-698) $) NIL T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-1278 ((|#1| $) NIL T ELT)) (-1497 ((|#1| |#1| $) 36 T ELT)) (-1496 ((|#1| |#1| $) 38 T ELT)) (-3615 (($ |#1| $) NIL T ELT)) (-2609 (((-698) $) 34 T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-3007 ((|#1| $) NIL T ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1495 ((|#1| $) 32 T ELT)) (-1494 ((|#1| $) 30 T ELT)) (-1279 ((|#1| $) NIL T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3010 ((|#1| |#1| $) NIL T ELT)) (-3409 (((-85) $) 9 T ELT)) (-3571 (($) NIL T ELT)) (-3009 ((|#1| $) NIL T ELT)) (-1500 (($) NIL T ELT) (($ (-587 |#1|)) 17 T ELT)) (-3328 (((-698) $) NIL T ELT)) (-1735 (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3953 (((-776) $) NIL (|has| |#1| (-556 (-776))) ELT)) (-1498 ((|#1| $) 14 T ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1280 (($ (-587 |#1|)) NIL T ELT)) (-3006 ((|#1| $) NIL T ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3062 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-178 |#1|) (-13 (-216 |#1|) (-10 -8 (-15 -1500 ($ (-587 |#1|))))) (-1017)) (T -178)) +((-1500 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-5 *1 (-178 *3))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1457 (($ (-267 |#1|)) 24 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2670 (((-85) $) NIL T ELT)) (-3163 (((-3 (-267 |#1|) #1#) $) NIL T ELT)) (-3162 (((-267 |#1|) $) NIL T ELT)) (-3965 (($ $) 32 T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3849 (($ (-1 (-267 |#1|) (-267 |#1|)) $) NIL T ELT)) (-3180 (((-267 |#1|) $) NIL T ELT)) (-1459 (($ $) 31 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1458 (((-85) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2414 (($ (-698)) NIL T ELT)) (-1456 (($ $) 33 T ELT)) (-3955 (((-488) $) NIL T ELT)) (-3953 (((-776) $) 65 T ELT) (($ (-488)) NIL T ELT) (($ (-267 |#1|)) NIL T ELT)) (-3683 (((-267 |#1|) $ $) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 26 T CONST)) (-2672 (($) NIL T CONST)) (-3062 (((-85) $ $) 29 T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 20 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-267 |#1|) $) 19 T ELT))) +(((-179 |#1| |#2|) (-13 (-564 (-267 |#1|)) (-954 (-267 |#1|)) (-383 (-267 |#1|)) (-10 -8 (-15 -3180 ((-267 |#1|) $)) (-15 -1459 ($ $)) (-15 -3965 ($ $)) (-15 -3683 ((-267 |#1|) $ $)) (-15 -2414 ($ (-698))) (-15 -1458 ((-85) $)) (-15 -2670 ((-85) $)) (-15 -3955 ((-488) $)) (-15 -1457 ($ (-267 |#1|))) (-15 -1456 ($ $)))) (-13 (-965) (-760)) (-587 (-1094))) (T -179)) +((-3180 (*1 *2 *1) (-12 (-5 *2 (-267 *3)) (-5 *1 (-179 *3 *4)) (-4 *3 (-13 (-965) (-760))) (-14 *4 (-587 (-1094))))) (-1459 (*1 *1 *1) (-12 (-5 *1 (-179 *2 *3)) (-4 *2 (-13 (-965) (-760))) (-14 *3 (-587 (-1094))))) (-3965 (*1 *1 *1) (-12 (-5 *1 (-179 *2 *3)) (-4 *2 (-13 (-965) (-760))) (-14 *3 (-587 (-1094))))) (-3683 (*1 *2 *1 *1) (-12 (-5 *2 (-267 *3)) (-5 *1 (-179 *3 *4)) (-4 *3 (-13 (-965) (-760))) (-14 *4 (-587 (-1094))))) (-2414 (*1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-179 *3 *4)) (-4 *3 (-13 (-965) (-760))) (-14 *4 (-587 (-1094))))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179 *3 *4)) (-4 *3 (-13 (-965) (-760))) (-14 *4 (-587 (-1094))))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179 *3 *4)) (-4 *3 (-13 (-965) (-760))) (-14 *4 (-587 (-1094))))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-179 *3 *4)) (-4 *3 (-13 (-965) (-760))) (-14 *4 (-587 (-1094))))) (-1457 (*1 *1 *2) (-12 (-5 *2 (-267 *3)) (-4 *3 (-13 (-965) (-760))) (-5 *1 (-179 *3 *4)) (-14 *4 (-587 (-1094))))) (-1456 (*1 *1 *1) (-12 (-5 *1 (-179 *2 *3)) (-4 *2 (-13 (-965) (-760))) (-14 *3 (-587 (-1094)))))) +((-1460 (((-85) (-1077)) 26 T ELT)) (-1461 (((-3 (-754 |#2|) #1="failed") (-554 |#2|) |#2| (-754 |#2|) (-754 |#2|) (-85)) 35 T ELT)) (-1462 (((-3 (-85) #1#) (-1089 |#2|) (-754 |#2|) (-754 |#2|) (-85)) 83 T ELT) (((-3 (-85) #1#) (-861 |#1|) (-1094) (-754 |#2|) (-754 |#2|) (-85)) 84 T ELT))) +(((-180 |#1| |#2|) (-10 -7 (-15 -1460 ((-85) (-1077))) (-15 -1461 ((-3 (-754 |#2|) #1="failed") (-554 |#2|) |#2| (-754 |#2|) (-754 |#2|) (-85))) (-15 -1462 ((-3 (-85) #1#) (-861 |#1|) (-1094) (-754 |#2|) (-754 |#2|) (-85))) (-15 -1462 ((-3 (-85) #1#) (-1089 |#2|) (-754 |#2|) (-754 |#2|) (-85)))) (-13 (-395) (-954 (-488)) (-584 (-488))) (-13 (-1119) (-29 |#1|))) (T -180)) +((-1462 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1089 *6)) (-5 *4 (-754 *6)) (-4 *6 (-13 (-1119) (-29 *5))) (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-180 *5 *6)))) (-1462 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-861 *6)) (-5 *4 (-1094)) (-5 *5 (-754 *7)) (-4 *6 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-4 *7 (-13 (-1119) (-29 *6))) (-5 *1 (-180 *6 *7)))) (-1461 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-754 *4)) (-5 *3 (-554 *4)) (-5 *5 (-85)) (-4 *4 (-13 (-1119) (-29 *6))) (-4 *6 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-180 *6 *4)))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-85)) (-5 *1 (-180 *4 *5)) (-4 *5 (-13 (-1119) (-29 *4)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 86 T ELT)) (-3135 (((-488) $) 18 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3498 (($ $) 73 T ELT)) (-3645 (($ $) 61 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-3043 (($ $) 52 T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3496 (($ $) 71 T ELT)) (-3644 (($ $) 59 T ELT)) (-3629 (((-488) $) 83 T ELT)) (-3500 (($ $) 76 T ELT)) (-3643 (($ $) 63 T ELT)) (-3730 (($) NIL T CONST)) (-3133 (($ $) NIL T ELT)) (-3163 (((-3 (-488) #1#) $) 116 T ELT) (((-3 (-352 (-488)) #1#) $) 113 T ELT)) (-3162 (((-488) $) 114 T ELT) (((-352 (-488)) $) 111 T ELT)) (-2570 (($ $ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) 91 T ELT)) (-1752 (((-352 (-488)) $ (-698)) 106 T ELT) (((-352 (-488)) $ (-698) (-698)) 105 T ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-1776 (((-834)) 12 T ELT) (((-834) (-834)) NIL (|has| $ (-6 -3992)) ELT)) (-3192 (((-85) $) 107 T ELT)) (-3633 (($) 31 T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL T ELT)) (-3778 (((-488) $) 25 T ELT)) (-1218 (((-85) $ $) 141 T ELT)) (-2415 (((-85) $) 87 T ELT)) (-3017 (($ $ (-488)) NIL T ELT)) (-3138 (($ $) NIL T ELT)) (-3193 (((-85) $) 85 T ELT)) (-1463 (((-85) $) 140 T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2537 (($ $ $) 49 T ELT) (($) 21 (-12 (-2566 (|has| $ (-6 -3984))) (-2566 (|has| $ (-6 -3992)))) ELT)) (-2863 (($ $ $) 48 T ELT) (($) 20 (-12 (-2566 (|has| $ (-6 -3984))) (-2566 (|has| $ (-6 -3992)))) ELT)) (-1778 (((-488) $) 10 T ELT)) (-1751 (($ $) 16 T ELT)) (-1750 (($ $) 53 T ELT)) (-3949 (($ $) 58 T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-1775 (((-834) (-488)) NIL (|has| $ (-6 -3992)) ELT)) (-3249 (((-1037) $) 89 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3134 (($ $) NIL T ELT)) (-3136 (($ $) NIL T ELT)) (-3260 (($ (-488) (-488)) NIL T ELT) (($ (-488) (-488) (-834)) 98 T ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-2406 (((-488) $) 11 T ELT)) (-1749 (($) 30 T ELT)) (-3950 (($ $) 57 T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-2621 (((-834)) NIL T ELT) (((-834) (-834)) NIL (|has| $ (-6 -3992)) ELT)) (-3764 (($ $) 92 T ELT) (($ $ (-698)) NIL T ELT)) (-1774 (((-834) (-488)) NIL (|has| $ (-6 -3992)) ELT)) (-3501 (($ $) 74 T ELT)) (-3642 (($ $) 64 T ELT)) (-3499 (($ $) 75 T ELT)) (-3641 (($ $) 62 T ELT)) (-3497 (($ $) 72 T ELT)) (-3640 (($ $) 60 T ELT)) (-3978 (((-332) $) 102 T ELT) (((-181) $) 99 T ELT) (((-804 (-332)) $) NIL T ELT) (((-477) $) 38 T ELT)) (-3953 (((-776) $) 35 T ELT) (($ (-488)) 56 T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ (-488)) 56 T ELT) (($ (-352 (-488))) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-3137 (($ $) NIL T ELT)) (-1777 (((-834)) 19 T ELT) (((-834) (-834)) NIL (|has| $ (-6 -3992)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2700 (((-834)) 7 T ELT)) (-3504 (($ $) 79 T ELT)) (-3492 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 77 T ELT)) (-3490 (($ $) 65 T ELT)) (-3506 (($ $) 82 T ELT)) (-3494 (($ $) 70 T ELT)) (-3131 (((-85) $ $) 143 T ELT)) (-3507 (($ $) 80 T ELT)) (-3495 (($ $) 68 T ELT)) (-3505 (($ $) 81 T ELT)) (-3493 (($ $) 69 T ELT)) (-3503 (($ $) 78 T ELT)) (-3491 (($ $) 66 T ELT)) (-3389 (($ $) 108 T ELT)) (-2666 (($) 27 T CONST)) (-2672 (($) 28 T CONST)) (-3393 (($ $) 95 T ELT)) (-2675 (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-3390 (($ $ $) 97 T ELT)) (-2572 (((-85) $ $) 42 T ELT)) (-2573 (((-85) $ $) 40 T ELT)) (-3062 (((-85) $ $) 50 T ELT)) (-2690 (((-85) $ $) 41 T ELT)) (-2691 (((-85) $ $) 39 T ELT)) (-3956 (($ $ $) 29 T ELT) (($ $ (-488)) 51 T ELT)) (-3843 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3845 (($ $ $) 44 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) 54 T ELT) (($ $ (-352 (-488))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT))) +(((-181) (-13 (-349) (-192) (-1119) (-557 (-477)) (-10 -8 (-15 -3956 ($ $ (-488))) (-15 ** ($ $ $)) (-15 -1749 ($)) (-15 -1751 ($ $)) (-15 -1750 ($ $)) (-15 -3492 ($ $ $)) (-15 -3393 ($ $)) (-15 -3390 ($ $ $)) (-15 -1752 ((-352 (-488)) $ (-698))) (-15 -1752 ((-352 (-488)) $ (-698) (-698))) (-15 -1463 ((-85) $))))) (T -181)) +((** (*1 *1 *1 *1) (-5 *1 (-181))) (-3956 (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-181)))) (-1749 (*1 *1) (-5 *1 (-181))) (-1751 (*1 *1 *1) (-5 *1 (-181))) (-1750 (*1 *1 *1) (-5 *1 (-181))) (-3492 (*1 *1 *1 *1) (-5 *1 (-181))) (-3393 (*1 *1 *1) (-5 *1 (-181))) (-3390 (*1 *1 *1 *1) (-5 *1 (-181))) (-1752 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-5 *2 (-352 (-488))) (-5 *1 (-181)))) (-1752 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-698)) (-5 *2 (-352 (-488))) (-5 *1 (-181)))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-181))))) +((-3392 (((-144 (-181)) (-698) (-144 (-181))) 11 T ELT) (((-181) (-698) (-181)) 12 T ELT)) (-1464 (((-144 (-181)) (-144 (-181))) 13 T ELT) (((-181) (-181)) 14 T ELT)) (-1465 (((-144 (-181)) (-144 (-181)) (-144 (-181))) 19 T ELT) (((-181) (-181) (-181)) 22 T ELT)) (-3391 (((-144 (-181)) (-144 (-181))) 27 T ELT) (((-181) (-181)) 26 T ELT)) (-3395 (((-144 (-181)) (-144 (-181)) (-144 (-181))) 57 T ELT) (((-181) (-181) (-181)) 49 T ELT)) (-3397 (((-144 (-181)) (-144 (-181)) (-144 (-181))) 62 T ELT) (((-181) (-181) (-181)) 60 T ELT)) (-3394 (((-144 (-181)) (-144 (-181)) (-144 (-181))) 15 T ELT) (((-181) (-181) (-181)) 16 T ELT)) (-3396 (((-144 (-181)) (-144 (-181)) (-144 (-181))) 17 T ELT) (((-181) (-181) (-181)) 18 T ELT)) (-3399 (((-144 (-181)) (-144 (-181))) 74 T ELT) (((-181) (-181)) 73 T ELT)) (-3398 (((-181) (-181)) 68 T ELT) (((-144 (-181)) (-144 (-181))) 72 T ELT)) (-3393 (((-144 (-181)) (-144 (-181))) 8 T ELT) (((-181) (-181)) 9 T ELT)) (-3390 (((-144 (-181)) (-144 (-181)) (-144 (-181))) 35 T ELT) (((-181) (-181) (-181)) 31 T ELT))) +(((-182) (-10 -7 (-15 -3393 ((-181) (-181))) (-15 -3393 ((-144 (-181)) (-144 (-181)))) (-15 -3390 ((-181) (-181) (-181))) (-15 -3390 ((-144 (-181)) (-144 (-181)) (-144 (-181)))) (-15 -1464 ((-181) (-181))) (-15 -1464 ((-144 (-181)) (-144 (-181)))) (-15 -3391 ((-181) (-181))) (-15 -3391 ((-144 (-181)) (-144 (-181)))) (-15 -3392 ((-181) (-698) (-181))) (-15 -3392 ((-144 (-181)) (-698) (-144 (-181)))) (-15 -3394 ((-181) (-181) (-181))) (-15 -3394 ((-144 (-181)) (-144 (-181)) (-144 (-181)))) (-15 -3395 ((-181) (-181) (-181))) (-15 -3395 ((-144 (-181)) (-144 (-181)) (-144 (-181)))) (-15 -3396 ((-181) (-181) (-181))) (-15 -3396 ((-144 (-181)) (-144 (-181)) (-144 (-181)))) (-15 -3397 ((-181) (-181) (-181))) (-15 -3397 ((-144 (-181)) (-144 (-181)) (-144 (-181)))) (-15 -3398 ((-144 (-181)) (-144 (-181)))) (-15 -3398 ((-181) (-181))) (-15 -3399 ((-181) (-181))) (-15 -3399 ((-144 (-181)) (-144 (-181)))) (-15 -1465 ((-181) (-181) (-181))) (-15 -1465 ((-144 (-181)) (-144 (-181)) (-144 (-181)))))) (T -182)) +((-1465 (*1 *2 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) (-1465 (*1 *2 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) (-3399 (*1 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) (-3399 (*1 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) (-3398 (*1 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) (-3398 (*1 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) (-3397 (*1 *2 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) (-3397 (*1 *2 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) (-3396 (*1 *2 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) (-3396 (*1 *2 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) (-3395 (*1 *2 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) (-3395 (*1 *2 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) (-3394 (*1 *2 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) (-3394 (*1 *2 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) (-3392 (*1 *2 *3 *2) (-12 (-5 *2 (-144 (-181))) (-5 *3 (-698)) (-5 *1 (-182)))) (-3392 (*1 *2 *3 *2) (-12 (-5 *2 (-181)) (-5 *3 (-698)) (-5 *1 (-182)))) (-3391 (*1 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) (-3391 (*1 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) (-1464 (*1 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) (-1464 (*1 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) (-3393 (*1 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) (-3393 (*1 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182))))) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3844 (($ (-698) (-698)) NIL T ELT)) (-2355 (($ $ $) NIL T ELT)) (-3420 (($ (-1183 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3880 (($ |#1| |#1| |#1|) 33 T ELT)) (-3126 (((-85) $) NIL T ELT)) (-2354 (($ $ (-488) (-488)) NIL T ELT)) (-2353 (($ $ (-488) (-488)) NIL T ELT)) (-2352 (($ $ (-488) (-488) (-488) (-488)) NIL T ELT)) (-2357 (($ $) NIL T ELT)) (-3128 (((-85) $) NIL T ELT)) (-2351 (($ $ (-488) (-488) $) NIL T ELT)) (-3794 ((|#1| $ (-488) (-488) |#1|) NIL T ELT) (($ $ (-587 (-488)) (-587 (-488)) $) NIL T ELT)) (-1261 (($ $ (-488) (-1183 |#1|)) NIL T ELT)) (-1260 (($ $ (-488) (-1183 |#1|)) NIL T ELT)) (-3854 (($ |#1| |#1| |#1|) 32 T ELT)) (-3339 (($ (-698) |#1|) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3115 (($ $) NIL (|has| |#1| (-260)) ELT)) (-3117 (((-1183 |#1|) $ (-488)) NIL T ELT)) (-1466 (($ |#1|) 31 T ELT)) (-1467 (($ |#1|) 30 T ELT)) (-1468 (($ |#1|) 29 T ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-3114 (((-698) $) NIL (|has| |#1| (-499)) ELT)) (-1580 ((|#1| $ (-488) (-488) |#1|) NIL T ELT)) (-3118 ((|#1| $ (-488) (-488)) NIL T ELT)) (-3113 (((-698) $) NIL (|has| |#1| (-499)) ELT)) (-3112 (((-587 (-1183 |#1|)) $) NIL (|has| |#1| (-499)) ELT)) (-3120 (((-698) $) NIL T ELT)) (-3620 (($ (-698) (-698) |#1|) NIL T ELT)) (-3119 (((-698) $) NIL T ELT)) (-3333 ((|#1| $) NIL (|has| |#1| (-6 (-4003 #1="*"))) ELT)) (-3124 (((-488) $) NIL T ELT)) (-3122 (((-488) $) NIL T ELT)) (-2614 (((-587 |#1|) $) NIL T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3123 (((-488) $) NIL T ELT)) (-3121 (((-488) $) NIL T ELT)) (-3129 (($ (-587 (-587 |#1|))) 11 T ELT) (($ (-698) (-698) (-1 |#1| (-488) (-488))) NIL T ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3600 (((-587 (-587 |#1|)) $) NIL T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-3596 (((-3 $ #2="failed") $) NIL (|has| |#1| (-314)) ELT)) (-1469 (($) 12 T ELT)) (-2356 (($ $ $) NIL T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-1734 (((-3 |#1| #2#) (-1 (-85) |#1|) $) NIL T ELT)) (-2204 (($ $ |#1|) NIL T ELT)) (-3472 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-499)) ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#1| $ (-488) (-488)) NIL T ELT) ((|#1| $ (-488) (-488) |#1|) NIL T ELT) (($ $ (-587 (-488)) (-587 (-488))) NIL T ELT)) (-3338 (($ (-587 |#1|)) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3127 (((-85) $) NIL T ELT)) (-3334 ((|#1| $) NIL (|has| |#1| (-6 (-4003 #1#))) ELT)) (-1735 (((-698) (-1 (-85) |#1|) $) NIL T ELT) (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3406 (($ $) NIL T ELT)) (-3116 (((-1183 |#1|) $ (-488)) NIL T ELT)) (-3953 (($ (-1183 |#1|)) NIL T ELT) (((-776) $) NIL (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3125 (((-85) $) NIL T ELT)) (-3062 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL (|has| |#1| (-314)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-488) $) NIL T ELT) (((-1183 |#1|) $ (-1183 |#1|)) 15 T ELT) (((-1183 |#1|) (-1183 |#1|) $) NIL T ELT) (((-858 |#1|) $ (-858 |#1|)) 21 T ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-183 |#1|) (-13 (-631 |#1| (-1183 |#1|) (-1183 |#1|)) (-10 -8 (-15 * ((-858 |#1|) $ (-858 |#1|))) (-15 -1469 ($)) (-15 -1468 ($ |#1|)) (-15 -1467 ($ |#1|)) (-15 -1466 ($ |#1|)) (-15 -3854 ($ |#1| |#1| |#1|)) (-15 -3880 ($ |#1| |#1| |#1|)))) (-13 (-314) (-1119))) (T -183)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-13 (-314) (-1119))) (-5 *1 (-183 *3)))) (-1469 (*1 *1) (-12 (-5 *1 (-183 *2)) (-4 *2 (-13 (-314) (-1119))))) (-1468 (*1 *1 *2) (-12 (-5 *1 (-183 *2)) (-4 *2 (-13 (-314) (-1119))))) (-1467 (*1 *1 *2) (-12 (-5 *1 (-183 *2)) (-4 *2 (-13 (-314) (-1119))))) (-1466 (*1 *1 *2) (-12 (-5 *1 (-183 *2)) (-4 *2 (-13 (-314) (-1119))))) (-3854 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-183 *2)) (-4 *2 (-13 (-314) (-1119))))) (-3880 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-183 *2)) (-4 *2 (-13 (-314) (-1119)))))) +((-1574 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-3411 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 28 T ELT)) (-1470 (($) NIL T ELT) (($ (-587 |#2|)) 11 T ELT)) (-3062 (((-85) $ $) 26 T ELT))) +(((-184 |#1| |#2|) (-10 -7 (-15 -3062 ((-85) |#1| |#1|)) (-15 -1574 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3411 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3411 (|#1| |#2| |#1|)) (-15 -1470 (|#1| (-587 |#2|))) (-15 -1470 (|#1|))) (-185 |#2|) (-1017)) (T -184)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1574 (($ (-1 (-85) |#1|) $) 42 (|has| $ (-320 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-320 |#1|)) ELT)) (-3730 (($) 6 T CONST)) (-1357 (($ $) 51 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-3411 (($ |#1| $) 44 (|has| $ (-320 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 43 (|has| $ (-320 |#1|)) ELT)) (-3412 (($ |#1| $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 48 (|has| $ (-320 |#1|)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-1278 ((|#1| $) 35 T ELT)) (-3615 (($ |#1| $) 36 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-1279 ((|#1| $) 37 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-1470 (($) 46 T ELT) (($ (-587 |#1|)) 45 T ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 52 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 47 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1280 (($ (-587 |#1|)) 38 T ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-185 |#1|) (-113) (-1017)) (T -185)) +NIL +(-13 (-195 |t#1|)) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-124 |#1|) . T) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-195 |#1|) . T) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-1017) |has| |#1| (-1017)) ((-1039 |#1|) . T) ((-1133) . T)) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3764 (($ $ (-1 |#1| |#1|) (-698)) 65 T ELT) (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1094)) 63 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) 61 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) 60 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 59 (|has| |#1| (-815 (-1094))) ELT) (($ $) 55 (|has| |#1| (-191)) ELT) (($ $ (-698)) 53 (|has| |#1| (-191)) ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-1 |#1| |#1|) (-698)) 67 T ELT) (($ $ (-1 |#1| |#1|)) 66 T ELT) (($ $ (-1094)) 62 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) 58 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) 57 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 56 (|has| |#1| (-815 (-1094))) ELT) (($ $) 54 (|has| |#1| (-191)) ELT) (($ $ (-698)) 52 (|has| |#1| (-191)) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-186 |#1|) (-113) (-965)) (T -186)) +NIL +(-13 (-965) (-227 |t#1|) (-10 -7 (IF (|has| |t#1| (-192)) (-6 (-192)) |%noBranch|) (IF (|has| |t#1| (-813 (-1094))) (-6 (-813 (-1094))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-559 (-488)) . T) ((-556 (-776)) . T) ((-188 $) OR (|has| |#1| (-191)) (|has| |#1| (-192))) ((-192) |has| |#1| (-192)) ((-191) OR (|has| |#1| (-191)) (|has| |#1| (-192))) ((-227 |#1|) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 $) . T) ((-667) . T) ((-810 $ (-1094)) OR (|has| |#1| (-815 (-1094))) (|has| |#1| (-813 (-1094)))) ((-813 (-1094)) |has| |#1| (-813 (-1094))) ((-815 (-1094)) OR (|has| |#1| (-815 (-1094))) (|has| |#1| (-813 (-1094)))) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-2675 ((|#2| $) 9 T ELT))) +(((-187 |#1| |#2|) (-10 -7 (-15 -2675 (|#2| |#1|))) (-188 |#2|) (-1133)) (T -187)) +NIL +((-3764 ((|#1| $) 7 T ELT)) (-2675 ((|#1| $) 6 T ELT))) +(((-188 |#1|) (-113) (-1133)) (T -188)) +((-3764 (*1 *2 *1) (-12 (-4 *1 (-188 *2)) (-4 *2 (-1133)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-188 *2)) (-4 *2 (-1133))))) +(-13 (-1133) (-10 -8 (-15 -3764 (|t#1| $)) (-15 -2675 (|t#1| $)))) +(((-13) . T) ((-1133) . T)) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-1218 (((-85) $ $) 20 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3764 (($ $ (-698)) 43 T ELT) (($ $) 41 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-2675 (($ $ (-698)) 44 T ELT) (($ $) 42 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-189 |#1|) (-113) (-965)) (T -189)) +NIL +(-13 (-82 |t#1| |t#1|) (-191) (-10 -7 (IF (|has| |t#1| (-148)) (-6 (-658 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-776)) . T) ((-188 $) . T) ((-191) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-594 |#1|) . T) ((-586 |#1|) |has| |#1| (-148)) ((-658 |#1|) |has| |#1| (-148)) ((-967 |#1|) . T) ((-972 |#1|) . T) ((-1017) . T) ((-1133) . T)) +((-3764 (($ $) NIL T ELT) (($ $ (-698)) 9 T ELT)) (-2675 (($ $) NIL T ELT) (($ $ (-698)) 11 T ELT))) +(((-190 |#1|) (-10 -7 (-15 -2675 (|#1| |#1| (-698))) (-15 -3764 (|#1| |#1| (-698))) (-15 -2675 (|#1| |#1|)) (-15 -3764 (|#1| |#1|))) (-191)) (T -190)) +NIL +((-3764 (($ $) 7 T ELT) (($ $ (-698)) 10 T ELT)) (-2675 (($ $) 6 T ELT) (($ $ (-698)) 9 T ELT))) (((-191) (-113)) (T -191)) -NIL -(-13 (-718) (-1063)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-665) . T) ((-718) . T) ((-720) . T) ((-758) . T) ((-761) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-1467 (($) 12 T ELT) (($ (-585 |#2|)) NIL T ELT)) (-3403 (($ $) 14 T ELT)) (-3533 (($ (-585 |#2|)) 10 T ELT)) (-3950 (((-774) $) 21 T ELT))) -(((-192 |#1| |#2|) (-10 -7 (-15 -3950 ((-774) |#1|)) (-15 -1467 (|#1| (-585 |#2|))) (-15 -1467 (|#1|)) (-15 -3533 (|#1| (-585 |#2|))) (-15 -3403 (|#1| |#1|))) (-193 |#2|) (-1015)) (T -192)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 42 (|has| $ (-318 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-1355 (($ $) 51 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 44 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 43 (|has| $ (-318 |#1|)) ELT)) (-3409 (($ |#1| $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-1277 ((|#1| $) 37 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-1467 (($) 46 T ELT) (($ (-585 |#1|)) 45 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 52 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 47 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) -(((-193 |#1|) (-113) (-1015)) (T -193)) -((-1467 (*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1015)))) (-1467 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-193 *3)))) (-3408 (*1 *1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-193 *2)) (-4 *2 (-1015)))) (-3408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-193 *3)) (-4 *3 (-1015)))) (-1571 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-193 *3)) (-4 *3 (-1015))))) -(-13 (-76 |t#1|) (-124 |t#1|) (-10 -8 (-15 -1467 ($)) (-15 -1467 ($ (-585 |t#1|))) (IF (|has| $ (-318 |t#1|)) (PROGN (-15 -3408 ($ |t#1| $)) (-15 -3408 ($ (-1 (-85) |t#1|) $)) (-15 -1571 ($ (-1 (-85) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) -((-1468 (((-2 (|:| |varOrder| (-585 (-1092))) (|:| |inhom| (-3 (-585 (-1181 (-696))) "failed")) (|:| |hom| (-585 (-1181 (-696))))) (-249 (-859 (-486)))) 42 T ELT))) -(((-194) (-10 -7 (-15 -1468 ((-2 (|:| |varOrder| (-585 (-1092))) (|:| |inhom| (-3 (-585 (-1181 (-696))) "failed")) (|:| |hom| (-585 (-1181 (-696))))) (-249 (-859 (-486))))))) (T -194)) -((-1468 (*1 *2 *3) (-12 (-5 *3 (-249 (-859 (-486)))) (-5 *2 (-2 (|:| |varOrder| (-585 (-1092))) (|:| |inhom| (-3 (-585 (-1181 (-696))) "failed")) (|:| |hom| (-585 (-1181 (-696)))))) (-5 *1 (-194))))) -((-3139 (((-696)) 56 T ELT)) (-2281 (((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1181 |#3|))) (-632 $) (-1181 $)) 53 T ELT) (((-632 |#3|) (-632 $)) 44 T ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-486)) (-632 $)) NIL T ELT)) (-3915 (((-107)) 62 T ELT)) (-3761 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-3950 (((-1181 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-774) $) NIL T ELT) (($ (-486)) 12 T ELT) (($ (-350 (-486))) NIL T ELT)) (-3129 (((-696)) 15 T CONST)) (-3953 (($ $ |#3|) 59 T ELT))) -(((-195 |#1| |#2| |#3|) (-10 -7 (-15 -3950 (|#1| (-350 (-486)))) (-15 -3950 (|#1| (-486))) (-15 -3761 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -3950 ((-774) |#1|)) (-15 -3129 ((-696)) -3956) (-15 -2281 ((-632 (-486)) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 |#1|) (-1181 |#1|))) (-15 -3950 (|#1| |#3|)) (-15 -3761 (|#1| |#1| (-1 |#3| |#3|) (-696))) (-15 -3761 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2281 ((-632 |#3|) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1181 |#3|))) (-632 |#1|) (-1181 |#1|))) (-15 -3139 ((-696))) (-15 -3953 (|#1| |#1| |#3|)) (-15 -3915 ((-107))) (-15 -3950 ((-1181 |#3|) |#1|))) (-196 |#2| |#3|) (-696) (-1131)) (T -195)) -((-3915 (*1 *2) (-12 (-14 *4 (-696)) (-4 *5 (-1131)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3139 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1131)) (-5 *2 (-696)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3129 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1131)) (-5 *2 (-696)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5))))) -((-2571 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-3191 (((-85) $) 72 (|has| |#2| (-23)) ELT)) (-3710 (($ (-832)) 128 (|has| |#2| (-963)) ELT)) (-2200 (((-1187) $ (-486) (-486)) 35 (|has| $ (-1037 |#2|)) ELT)) (-2486 (($ $ $) 124 (|has| |#2| (-719)) ELT)) (-1314 (((-3 $ "failed") $ $) 75 (|has| |#2| (-104)) ELT)) (-3139 (((-696)) 113 (|has| |#2| (-320)) ELT)) (-3791 ((|#2| $ (-486) |#2|) 47 (|has| $ (-1037 |#2|)) ELT)) (-3727 (($) 6 T CONST)) (-3160 (((-3 (-486) #1="failed") $) 67 (-2565 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) ELT) (((-3 (-350 (-486)) #1#) $) 64 (-2565 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) (((-3 |#2| #1#) $) 61 (|has| |#2| (-1015)) ELT)) (-3159 (((-486) $) 66 (-2565 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) ELT) (((-350 (-486)) $) 63 (-2565 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) ((|#2| $) 62 (|has| |#2| (-1015)) ELT)) (-2281 (((-632 (-486)) (-632 $)) 110 (-2565 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 109 (-2565 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) 108 (|has| |#2| (-963)) ELT) (((-632 |#2|) (-632 $)) 107 (|has| |#2| (-963)) ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 141 (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 137 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 136 T ELT)) (-3470 (((-3 $ "failed") $) 87 (|has| |#2| (-963)) ELT)) (-2997 (($) 116 (|has| |#2| (-320)) ELT)) (-1577 ((|#2| $ (-486) |#2|) 48 (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ (-486)) 46 T ELT)) (-3189 (((-85) $) 123 (|has| |#2| (-719)) ELT)) (-1216 (((-85) $ $) 74 (|has| |#2| (-23)) ELT)) (-2412 (((-85) $) 85 (|has| |#2| (-963)) ELT)) (-2202 (((-486) $) 38 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) 117 (|has| |#2| (-758)) ELT)) (-2611 (((-585 |#2|) $) 135 T ELT)) (-3248 (((-85) |#2| $) 140 (|has| |#2| (-72)) ELT)) (-2203 (((-486) $) 39 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) 118 (|has| |#2| (-758)) ELT)) (-3846 (($ (-1 |#2| |#2|) $) 26 T ELT)) (-2012 (((-832) $) 115 (|has| |#2| (-320)) ELT)) (-2282 (((-632 (-486)) (-1181 $)) 112 (-2565 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 111 (-2565 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) 106 (|has| |#2| (-963)) ELT) (((-632 |#2|) (-1181 $)) 105 (|has| |#2| (-963)) ELT)) (-3245 (((-1075) $) 21 (|has| |#2| (-1015)) ELT)) (-2205 (((-585 (-486)) $) 41 T ELT)) (-2206 (((-85) (-486) $) 42 T ELT)) (-2402 (($ (-832)) 114 (|has| |#2| (-320)) ELT)) (-3246 (((-1035) $) 20 (|has| |#2| (-1015)) ELT)) (-3804 ((|#2| $) 37 (|has| (-486) (-758)) ELT)) (-1731 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 138 T ELT)) (-2201 (($ $ |#2|) 36 (|has| $ (-1037 |#2|)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 133 T ELT)) (-3771 (($ $ (-585 (-249 |#2|))) 25 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 22 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#2| $) 40 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) 43 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#2| $ (-486) |#2|) 45 T ELT) ((|#2| $ (-486)) 44 T ELT)) (-3839 ((|#2| $ $) 127 (|has| |#2| (-963)) ELT)) (-1469 (($ (-1181 |#2|)) 129 T ELT)) (-3915 (((-107)) 126 (|has| |#2| (-312)) ELT)) (-3761 (($ $ (-696)) 103 (-2565 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) 101 (-2565 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 97 (-2565 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092) (-696)) 96 (-2565 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092))) 95 (-2565 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092)) 93 (-2565 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) 91 (|has| |#2| (-963)) ELT)) (-1732 (((-696) |#2| $) 139 (|has| |#2| (-72)) ELT) (((-696) (-1 (-85) |#2|) $) 134 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-1181 |#2|) $) 130 T ELT) (($ (-486)) 68 (OR (-2565 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ELT) (($ (-350 (-486))) 65 (-2565 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) (($ |#2|) 60 (|has| |#2| (-1015)) ELT) (((-774) $) 16 (|has| |#2| (-554 (-774))) ELT)) (-3129 (((-696)) 88 (|has| |#2| (-963)) CONST)) (-1267 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) 132 T ELT)) (-3128 (((-85) $ $) 83 (|has| |#2| (-963)) ELT)) (-2663 (($) 71 (|has| |#2| (-23)) CONST)) (-2669 (($) 84 (|has| |#2| (-963)) CONST)) (-2672 (($ $ (-696)) 104 (-2565 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) 102 (-2565 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 100 (-2565 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092) (-696)) 99 (-2565 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092))) 98 (-2565 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092)) 94 (-2565 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) 90 (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) 89 (|has| |#2| (-963)) ELT)) (-2569 (((-85) $ $) 119 (|has| |#2| (-758)) ELT)) (-2570 (((-85) $ $) 121 (|has| |#2| (-758)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#2| (-72)) ELT)) (-2687 (((-85) $ $) 120 (|has| |#2| (-758)) ELT)) (-2688 (((-85) $ $) 122 (|has| |#2| (-758)) ELT)) (-3953 (($ $ |#2|) 125 (|has| |#2| (-312)) ELT)) (-3840 (($ $ $) 78 (|has| |#2| (-21)) ELT) (($ $) 77 (|has| |#2| (-21)) ELT)) (-3842 (($ $ $) 69 (|has| |#2| (-25)) ELT)) (** (($ $ (-696)) 86 (|has| |#2| (-963)) ELT) (($ $ (-832)) 81 (|has| |#2| (-963)) ELT)) (* (($ $ $) 82 (|has| |#2| (-963)) ELT) (($ $ |#2|) 80 (|has| |#2| (-665)) ELT) (($ |#2| $) 79 (|has| |#2| (-665)) ELT) (($ (-486) $) 76 (|has| |#2| (-21)) ELT) (($ (-696) $) 73 (|has| |#2| (-23)) ELT) (($ (-832) $) 70 (|has| |#2| (-25)) ELT)) (-3961 (((-696) $) 131 T ELT))) -(((-196 |#1| |#2|) (-113) (-696) (-1131)) (T -196)) -((-1469 (*1 *1 *2) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1131)) (-4 *1 (-196 *3 *4)))) (-3710 (*1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-196 *3 *4)) (-4 *4 (-963)) (-4 *4 (-1131)))) (-3839 (*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1131)) (-4 *2 (-963))))) -(-13 (-540 (-486) |t#2|) (-318 |t#2|) (-554 (-1181 |t#2|)) (-10 -8 (-15 -1469 ($ (-1181 |t#2|))) (IF (|has| |t#2| (-1015)) (-6 (-355 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-963)) (PROGN (-6 (-82 |t#2| |t#2|)) (-6 (-184 |t#2|)) (-6 (-329 |t#2|)) (-15 -3710 ($ (-832))) (-15 -3839 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-104)) (-6 (-104)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-665)) (-6 (-584 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#2| (-146)) (-6 (-656 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3995)) (-6 -3995) |%noBranch|) (IF (|has| |t#2| (-758)) (-6 (-758)) |%noBranch|) (IF (|has| |t#2| (-719)) (-6 (-719)) |%noBranch|) (IF (|has| |t#2| (-312)) (-6 (-1189 |t#2|)) |%noBranch|))) -(((-21) OR (|has| |#2| (-963)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-963)) (|has| |#2| (-719)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-963)) (|has| |#2| (-719)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1015)) (|has| |#2| (-963)) (|has| |#2| (-758)) (|has| |#2| (-719)) (|has| |#2| (-665)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-82 |#2| |#2|) OR (|has| |#2| (-963)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-104) OR (|has| |#2| (-963)) (|has| |#2| (-719)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-21))) ((-557 (-350 (-486))) -12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ((-557 (-486)) OR (|has| |#2| (-963)) (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015)))) ((-557 |#2|) |has| |#2| (-1015)) ((-554 (-774)) OR (|has| |#2| (-1015)) (|has| |#2| (-963)) (|has| |#2| (-758)) (|has| |#2| (-719)) (|has| |#2| (-665)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-554 (-774))) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-554 (-1181 |#2|)) . T) ((-186 $) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) (-12 (|has| |#2| (-190)) (|has| |#2| (-963)))) ((-184 |#2|) |has| |#2| (-963)) ((-190) -12 (|has| |#2| (-190)) (|has| |#2| (-963))) ((-189) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) (-12 (|has| |#2| (-190)) (|has| |#2| (-963)))) ((-225 |#2|) |has| |#2| (-963)) ((-241 (-486) |#2|) . T) ((-243 (-486) |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-320) |has| |#2| (-320)) ((-318 |#2|) . T) ((-329 |#2|) |has| |#2| (-963)) ((-355 |#2|) |has| |#2| (-1015)) ((-381 |#2|) . T) ((-430 |#2|) . T) ((-540 (-486) |#2|) . T) ((-457 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-13) . T) ((-590 (-486)) OR (|has| |#2| (-963)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-590 |#2|) OR (|has| |#2| (-963)) (|has| |#2| (-665)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-590 $) |has| |#2| (-963)) ((-592 (-486)) -12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ((-592 |#2|) OR (|has| |#2| (-963)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-592 $) |has| |#2| (-963)) ((-584 |#2|) OR (|has| |#2| (-665)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-582 (-486)) -12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ((-582 |#2|) |has| |#2| (-963)) ((-656 |#2|) OR (|has| |#2| (-312)) (|has| |#2| (-146))) ((-665) |has| |#2| (-963)) ((-718) |has| |#2| (-719)) ((-719) |has| |#2| (-719)) ((-720) |has| |#2| (-719)) ((-723) |has| |#2| (-719)) ((-758) OR (|has| |#2| (-758)) (|has| |#2| (-719))) ((-761) OR (|has| |#2| (-758)) (|has| |#2| (-719))) ((-808 $ (-1092)) OR (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) (-12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963)))) ((-811 (-1092)) -12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963))) ((-813 (-1092)) OR (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) (-12 (|has| |#2| (-811 (-1092))) (|has| |#2| (-963)))) ((-952 (-350 (-486))) -12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ((-952 (-486)) -12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) ((-952 |#2|) |has| |#2| (-1015)) ((-965 |#2|) OR (|has| |#2| (-963)) (|has| |#2| (-665)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-970 |#2|) OR (|has| |#2| (-963)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-963) |has| |#2| (-963)) ((-972) |has| |#2| (-963)) ((-1027) |has| |#2| (-963)) ((-1063) |has| |#2| (-963)) ((-1015) OR (|has| |#2| (-1015)) (|has| |#2| (-963)) (|has| |#2| (-758)) (|has| |#2| (-719)) (|has| |#2| (-665)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1131) . T) ((-1189 |#2|) |has| |#2| (-312))) -((-2571 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3191 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3710 (($ (-832)) 63 (|has| |#2| (-963)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#2|)) ELT)) (-2486 (($ $ $) 69 (|has| |#2| (-719)) ELT)) (-1314 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-104)) ELT)) (-3139 (((-696)) NIL (|has| |#2| (-320)) ELT)) (-3791 ((|#2| $ (-486) |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (-12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1015)) ELT)) (-3159 (((-486) $) NIL (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) ELT) (((-350 (-486)) $) NIL (-12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) ((|#2| $) 29 (|has| |#2| (-1015)) ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL (|has| |#2| (-963)) ELT) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-963)) ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 59 (|has| |#2| (-963)) ELT)) (-2997 (($) NIL (|has| |#2| (-320)) ELT)) (-1577 ((|#2| $ (-486) |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ (-486)) 57 T ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-719)) ELT)) (-1216 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2412 (((-85) $) NIL (|has| |#2| (-963)) ELT)) (-2202 (((-486) $) 20 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-2611 (((-585 |#2|) $) 14 T ELT)) (-3248 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#2| (-320)) ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL (|has| |#2| (-963)) ELT) (((-632 |#2|) (-1181 $)) NIL (|has| |#2| (-963)) ELT)) (-3245 (((-1075) $) NIL (|has| |#2| (-1015)) ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-2402 (($ (-832)) NIL (|has| |#2| (-320)) ELT)) (-3246 (((-1035) $) NIL (|has| |#2| (-1015)) ELT)) (-3804 ((|#2| $) NIL (|has| (-486) (-758)) ELT)) (-1731 (((-3 |#2| #1#) (-1 (-85) |#2|) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-3771 (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ (-486) |#2|) NIL T ELT) ((|#2| $ (-486)) 21 T ELT)) (-3839 ((|#2| $ $) NIL (|has| |#2| (-963)) ELT)) (-1469 (($ (-1181 |#2|)) 18 T ELT)) (-3915 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3761 (($ $ (-696)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#2| (-963)) ELT)) (-1732 (((-696) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-696) (-1 (-85) |#2|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-1181 |#2|) $) 9 T ELT) (($ (-486)) NIL (OR (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ELT) (($ (-350 (-486))) NIL (-12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) (($ |#2|) 12 (|has| |#2| (-1015)) ELT) (((-774) $) NIL (|has| |#2| (-554 (-774))) ELT)) (-3129 (((-696)) NIL (|has| |#2| (-963)) CONST)) (-1267 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3128 (((-85) $ $) NIL (|has| |#2| (-963)) ELT)) (-2663 (($) 37 (|has| |#2| (-23)) CONST)) (-2669 (($) 41 (|has| |#2| (-963)) CONST)) (-2672 (($ $ (-696)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#2| (-963)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-3059 (((-85) $ $) 28 (|has| |#2| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2688 (((-85) $ $) 67 (|has| |#2| (-758)) ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3842 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-696)) NIL (|has| |#2| (-963)) ELT) (($ $ (-832)) NIL (|has| |#2| (-963)) ELT)) (* (($ $ $) 47 (|has| |#2| (-963)) ELT) (($ $ |#2|) 45 (|has| |#2| (-665)) ELT) (($ |#2| $) 46 (|has| |#2| (-665)) ELT) (($ (-486) $) NIL (|has| |#2| (-21)) ELT) (($ (-696) $) NIL (|has| |#2| (-23)) ELT) (($ (-832) $) NIL (|has| |#2| (-25)) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-197 |#1| |#2|) (-196 |#1| |#2|) (-696) (-1131)) (T -197)) -NIL -((-3844 (((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 21 T ELT)) (-3845 ((|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 23 T ELT)) (-3846 (((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)) 18 T ELT))) -(((-198 |#1| |#2| |#3|) (-10 -7 (-15 -3844 ((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3845 (|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3846 ((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)))) (-696) (-1131) (-1131)) (T -198)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-696)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) (-3845 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-696)) (-4 *6 (-1131)) (-4 *2 (-1131)) (-5 *1 (-198 *5 *6 *2)))) (-3844 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-696)) (-4 *7 (-1131)) (-4 *5 (-1131)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5))))) -((-1473 (((-486) (-585 (-1075))) 36 T ELT) (((-486) (-1075)) 29 T ELT)) (-1472 (((-1187) (-585 (-1075))) 40 T ELT) (((-1187) (-1075)) 39 T ELT)) (-1470 (((-1075)) 16 T ELT)) (-1471 (((-1075) (-486) (-1075)) 23 T ELT)) (-3776 (((-585 (-1075)) (-585 (-1075)) (-486) (-1075)) 37 T ELT) (((-1075) (-1075) (-486) (-1075)) 35 T ELT)) (-2623 (((-585 (-1075)) (-585 (-1075))) 15 T ELT) (((-585 (-1075)) (-1075)) 11 T ELT))) -(((-199) (-10 -7 (-15 -2623 ((-585 (-1075)) (-1075))) (-15 -2623 ((-585 (-1075)) (-585 (-1075)))) (-15 -1470 ((-1075))) (-15 -1471 ((-1075) (-486) (-1075))) (-15 -3776 ((-1075) (-1075) (-486) (-1075))) (-15 -3776 ((-585 (-1075)) (-585 (-1075)) (-486) (-1075))) (-15 -1472 ((-1187) (-1075))) (-15 -1472 ((-1187) (-585 (-1075)))) (-15 -1473 ((-486) (-1075))) (-15 -1473 ((-486) (-585 (-1075)))))) (T -199)) -((-1473 (*1 *2 *3) (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-486)) (-5 *1 (-199)))) (-1473 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-486)) (-5 *1 (-199)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-1187)) (-5 *1 (-199)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-199)))) (-3776 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-585 (-1075))) (-5 *3 (-486)) (-5 *4 (-1075)) (-5 *1 (-199)))) (-3776 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-486)) (-5 *1 (-199)))) (-1471 (*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-486)) (-5 *1 (-199)))) (-1470 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-199)))) (-2623 (*1 *2 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-199)))) (-2623 (*1 *2 *3) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-199)) (-5 *3 (-1075))))) -((** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 18 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-350 (-486)) $) 25 T ELT) (($ $ (-350 (-486))) NIL T ELT))) -(((-200 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-486))) (-15 * (|#1| |#1| (-350 (-486)))) (-15 * (|#1| (-350 (-486)) |#1|)) (-15 ** (|#1| |#1| (-696))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-832))) (-15 * (|#1| (-486) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|))) (-201)) (T -200)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 55 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 (-486))) 59 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 56 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-350 (-486)) $) 58 T ELT) (($ $ (-350 (-486))) 57 T ELT))) -(((-201) (-113)) (T -201)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-486)))) (-2487 (*1 *1 *1) (-4 *1 (-201)))) -(-13 (-246) (-38 (-350 (-486))) (-10 -8 (-15 ** ($ $ (-486))) (-15 -2487 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-246) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-656 (-350 (-486))) . T) ((-665) . T) ((-965 (-350 (-486))) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3800 (($ $) 54 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1037 |#1|)) ELT)) (-1475 (($ $ $) 50 (|has| $ (-1037 |#1|)) ELT)) (-1474 (($ $ $) 49 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) 36 (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-1477 (($ $) 53 T ELT)) (-3034 (((-585 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-1476 (($ $) 52 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3033 (((-585 |#1|) $) 40 T ELT)) (-3530 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3801 ((|#1| $) 56 T ELT)) (-3181 (($ $) 55 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT)) (-3032 (((-486) $ $) 39 T ELT)) (-3636 (((-85) $) 41 T ELT)) (-3403 (($ $) 9 T ELT)) (-3794 (($ $ $) 51 (|has| $ (-1037 |#1|)) ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) 46 T ELT)) (-3031 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) -(((-202 |#1|) (-113) (-1131)) (T -202)) -((-3801 (*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131)))) (-3181 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131)))) (-3800 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131)))) (-1477 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131)))) (-1476 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131)))) (-3794 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1131)))) (-1475 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1131)))) (-1474 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1131))))) -(-13 (-925 |t#1|) (-10 -8 (-15 -3801 (|t#1| $)) (-15 -3181 ($ $)) (-15 -3800 ($ $)) (-15 -1477 ($ $)) (-15 -1476 ($ $)) (IF (|has| $ (-1037 |t#1|)) (PROGN (-15 -3794 ($ $ $)) (-15 -1475 ($ $ $)) (-15 -1474 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-925 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1131) . T)) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) NIL T ELT)) (-3798 ((|#1| $) NIL T ELT)) (-3800 (($ $) NIL T ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3788 (($ $ (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) $) NIL (|has| |#1| (-758)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1735 (($ $) NIL (-12 (|has| $ (-1037 |#1|)) (|has| |#1| (-758))) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1037 |#1|)) ELT)) (-2912 (($ $) 10 (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3445 (((-85) $ (-696)) NIL T ELT)) (-3028 ((|#1| $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3790 (($ $ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-3789 ((|#1| $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) NIL (|has| $ (-1037 |#1|)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3799 ((|#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-3802 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2370 (($ $) NIL (|has| |#1| (-72)) ELT)) (-1355 (($ $) 7 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3409 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1577 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) NIL T ELT)) (-3446 (((-85) $) NIL T ELT)) (-3422 (((-486) |#1| $ (-486)) NIL (|has| |#1| (-72)) ELT) (((-486) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-486) (-1 (-85) |#1|) $) NIL T ELT)) (-3034 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3617 (($ (-696) |#1|) NIL T ELT)) (-3722 (((-85) $ (-696)) NIL T ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3521 (($ $ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3537 (($ |#1|) NIL T ELT)) (-3719 (((-85) $ (-696)) NIL T ELT)) (-3033 (((-585 |#1|) $) NIL T ELT)) (-3530 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3801 ((|#1| $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3612 (($ $ $ (-486)) NIL T ELT) (($ |#1| $ (-486)) NIL T ELT)) (-2306 (($ $ $ (-486)) NIL T ELT) (($ |#1| $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3447 (((-85) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT) ((|#1| $ (-486)) NIL T ELT) ((|#1| $ (-486) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-696) $ "count") 16 T ELT)) (-3032 (((-486) $ $) NIL T ELT)) (-1572 (($ $ (-1148 (-486))) NIL T ELT) (($ $ (-486)) NIL T ELT)) (-2307 (($ $ (-1148 (-486))) NIL T ELT) (($ $ (-486)) NIL T ELT)) (-1478 (($ (-585 |#1|)) 22 T ELT)) (-3636 (((-85) $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-3793 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-3796 (((-696) $) NIL T ELT)) (-3797 (($ $) NIL T ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) NIL T ELT) (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) NIL T ELT)) (-3794 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3805 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-585 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3950 (($ (-585 |#1|)) 17 T ELT) (((-585 |#1|) $) 18 T ELT) (((-774) $) 21 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) NIL T ELT)) (-3031 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3961 (((-696) $) 14 T ELT))) -(((-203 |#1|) (-13 (-610 |#1|) (-431 (-585 |#1|)) (-10 -8 (-15 -1478 ($ (-585 |#1|))) (-15 -3803 ($ $ "unique")) (-15 -3803 ($ $ "sort")) (-15 -3803 ((-696) $ "count")))) (-758)) (T -203)) -((-1478 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-203 *3)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-758)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-758)))) (-3803 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-696)) (-5 *1 (-203 *4)) (-4 *4 (-758))))) -((-1479 (((-3 (-696) "failed") |#1| |#1| (-696)) 40 T ELT))) -(((-204 |#1|) (-10 -7 (-15 -1479 ((-3 (-696) "failed") |#1| |#1| (-696)))) (-13 (-665) (-320) (-10 -7 (-15 ** (|#1| |#1| (-486)))))) (T -204)) -((-1479 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-696)) (-4 *3 (-13 (-665) (-320) (-10 -7 (-15 ** (*3 *3 (-486)))))) (-5 *1 (-204 *3))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3761 (($ $) 60 (|has| |#1| (-189)) ELT) (($ $ (-696)) 58 (|has| |#1| (-189)) ELT) (($ $ (-1092)) 56 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 54 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 53 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 52 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1 |#1| |#1|) (-696)) 46 T ELT) (($ $ (-1 |#1| |#1|)) 45 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-2672 (($ $) 59 (|has| |#1| (-189)) ELT) (($ $ (-696)) 57 (|has| |#1| (-189)) ELT) (($ $ (-1092)) 55 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 51 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 50 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 49 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1 |#1| |#1|) (-696)) 48 T ELT) (($ $ (-1 |#1| |#1|)) 47 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-205 |#1|) (-113) (-963)) (T -205)) -NIL -(-13 (-82 |t#1| |t#1|) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-189)) (-6 (-187 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-813 (-1092))) (-6 (-810 |t#1| (-1092))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-186 $) |has| |#1| (-189)) ((-187 |#1|) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-225 |#1|) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-813 (-1092)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-656 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-813 (-1092)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-808 $ (-1092)) |has| |#1| (-813 (-1092))) ((-810 |#1| (-1092)) |has| |#1| (-813 (-1092))) ((-813 (-1092)) |has| |#1| (-813 (-1092))) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-775 |#1|)) $) NIL T ELT)) (-3086 (((-1087 $) $ (-775 |#1|)) NIL T ELT) (((-1087 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#2| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#2| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-775 |#1|))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#2| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#2| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-775 |#1|) $) NIL T ELT)) (-3759 (($ $ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1942 (($ $ (-585 (-486))) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#2| (-393)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#2| (-823)) ELT)) (-1625 (($ $ |#2| (-197 (-3961 |#1|) (-696)) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-330))) (|has| |#2| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-486))) (|has| |#2| (-798 (-486)))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3087 (($ (-1087 |#2|) (-775 |#1|)) NIL T ELT) (($ (-1087 $) (-775 |#1|)) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#2| (-197 (-3961 |#1|) (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-775 |#1|)) NIL T ELT)) (-2823 (((-197 (-3961 |#1|) (-696)) $) NIL T ELT) (((-696) $ (-775 |#1|)) NIL T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) NIL T ELT)) (-1626 (($ (-1 (-197 (-3961 |#1|) (-696)) (-197 (-3961 |#1|) (-696))) $) NIL T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3085 (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) NIL (|has| |#2| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-775 |#1|)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#2| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#2| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) NIL (|has| |#2| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#2| (-823)) ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-775 |#1|) |#2|) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 |#2|)) NIL T ELT) (($ $ (-775 |#1|) $) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 $)) NIL T ELT)) (-3760 (($ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3761 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3952 (((-197 (-3961 |#1|) (-696)) $) NIL T ELT) (((-696) $ (-775 |#1|)) NIL T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-330)))) (|has| |#2| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-486)))) (|has| |#2| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-775 |#1|) (-555 (-475))) (|has| |#2| (-555 (-475)))) ELT)) (-2820 ((|#2| $) NIL (|has| |#2| (-393)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-823))) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-775 |#1|)) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#2| (-497)) ELT)) (-3820 (((-585 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-197 (-3961 |#1|) (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#2| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#2| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#2| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-206 |#1| |#2|) (-13 (-863 |#2| (-197 (-3961 |#1|) (-696)) (-775 |#1|)) (-10 -8 (-15 -1942 ($ $ (-585 (-486)))))) (-585 (-1092)) (-963)) (T -206)) -((-1942 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-206 *3 *4)) (-14 *3 (-585 (-1092))) (-4 *4 (-963))))) -((-2571 (((-85) $ $) NIL T ELT)) (-1480 (((-1187) $) 17 T ELT)) (-1482 (((-158 (-208)) $) 11 T ELT)) (-1481 (($ (-158 (-208))) 12 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1483 (((-208) $) 7 T ELT)) (-3950 (((-774) $) 9 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 15 T ELT))) -(((-207) (-13 (-1015) (-10 -8 (-15 -1483 ((-208) $)) (-15 -1482 ((-158 (-208)) $)) (-15 -1481 ($ (-158 (-208)))) (-15 -1480 ((-1187) $))))) (T -207)) -((-1483 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207)))) (-1482 (*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1481 (*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-207))))) -((-2571 (((-85) $ $) NIL T ELT)) (-1425 (((-585 (-776)) $) NIL T ELT)) (-3545 (((-448) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1427 (((-161) $) NIL T ELT)) (-2636 (((-85) $ (-448)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1484 (((-282) $) 7 T ELT)) (-1426 (((-585 (-85)) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (((-157) $) 8 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2524 (((-55) $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-208) (-13 (-160) (-554 (-157)) (-10 -8 (-15 -1484 ((-282) $))))) (T -208)) -((-1484 (*1 *2 *1) (-12 (-5 *2 (-282)) (-5 *1 (-208))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 (((-1097) $ (-696)) 14 T ELT)) (-3950 (((-774) $) 20 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 17 T ELT)) (-3961 (((-696) $) 11 T ELT))) -(((-209) (-13 (-1015) (-241 (-696) (-1097)) (-10 -8 (-15 -3961 ((-696) $))))) (T -209)) -((-3961 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-209))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3710 (($ (-832)) NIL (|has| |#4| (-963)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#4|)) ELT)) (-2486 (($ $ $) NIL (|has| |#4| (-719)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| |#4| (-320)) ELT)) (-3791 ((|#4| $ (-486) |#4|) NIL (|has| $ (-1037 |#4|)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1015)) ELT) (((-3 (-486) #1#) $) NIL (-12 (|has| |#4| (-952 (-486))) (|has| |#4| (-1015))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (-12 (|has| |#4| (-952 (-350 (-486)))) (|has| |#4| (-1015))) ELT)) (-3159 ((|#4| $) NIL (|has| |#4| (-1015)) ELT) (((-486) $) NIL (-12 (|has| |#4| (-952 (-486))) (|has| |#4| (-1015))) ELT) (((-350 (-486)) $) NIL (-12 (|has| |#4| (-952 (-350 (-486)))) (|has| |#4| (-1015))) ELT)) (-2281 (((-2 (|:| |mat| (-632 |#4|)) (|:| |vec| (-1181 |#4|))) (-632 $) (-1181 $)) NIL (|has| |#4| (-963)) ELT) (((-632 |#4|) (-632 $)) NIL (|has| |#4| (-963)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| |#4| (-582 (-486))) (|has| |#4| (-963))) ELT) (((-632 (-486)) (-632 $)) NIL (-12 (|has| |#4| (-582 (-486))) (|has| |#4| (-963))) ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| |#4| (-963)) ELT)) (-2997 (($) NIL (|has| |#4| (-320)) ELT)) (-1577 ((|#4| $ (-486) |#4|) NIL (|has| $ (-1037 |#4|)) ELT)) (-3115 ((|#4| $ (-486)) NIL T ELT)) (-3189 (((-85) $) NIL (|has| |#4| (-719)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL (|has| |#4| (-963)) ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#4| (-758)) ELT)) (-2611 (((-585 |#4|) $) NIL T ELT)) (-3248 (((-85) |#4| $) NIL (|has| |#4| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#4| (-758)) ELT)) (-3846 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#4| (-320)) ELT)) (-2282 (((-2 (|:| |mat| (-632 |#4|)) (|:| |vec| (-1181 |#4|))) (-1181 $) $) NIL (|has| |#4| (-963)) ELT) (((-632 |#4|) (-1181 $)) NIL (|has| |#4| (-963)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| |#4| (-582 (-486))) (|has| |#4| (-963))) ELT) (((-632 (-486)) (-1181 $)) NIL (-12 (|has| |#4| (-582 (-486))) (|has| |#4| (-963))) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-2402 (($ (-832)) NIL (|has| |#4| (-320)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 ((|#4| $) NIL (|has| (-486) (-758)) ELT)) (-1731 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-2201 (($ $ |#4|) NIL (|has| $ (-1037 |#4|)) ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-2207 (((-585 |#4|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#4| $ (-486) |#4|) NIL T ELT) ((|#4| $ (-486)) 12 T ELT)) (-3839 ((|#4| $ $) NIL (|has| |#4| (-963)) ELT)) (-1469 (($ (-1181 |#4|)) NIL T ELT)) (-3915 (((-107)) NIL (|has| |#4| (-312)) ELT)) (-3761 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-963)) ELT) (($ $ (-1 |#4| |#4|) (-696)) NIL (|has| |#4| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963)))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963)))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-963))) (-12 (|has| |#4| (-189)) (|has| |#4| (-963)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-963))) (-12 (|has| |#4| (-189)) (|has| |#4| (-963)))) ELT)) (-1732 (((-696) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-1181 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1015)) ELT) (((-774) $) NIL T ELT) (($ (-486)) NIL (OR (-12 (|has| |#4| (-952 (-486))) (|has| |#4| (-1015))) (|has| |#4| (-963))) ELT) (($ (-350 (-486))) NIL (-12 (|has| |#4| (-952 (-350 (-486)))) (|has| |#4| (-1015))) ELT)) (-3129 (((-696)) NIL (|has| |#4| (-963)) CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3128 (((-85) $ $) NIL (|has| |#4| (-963)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL (|has| |#4| (-963)) CONST)) (-2672 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-963)) ELT) (($ $ (-1 |#4| |#4|) (-696)) NIL (|has| |#4| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963)))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963)))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#4| (-811 (-1092))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1092))) (|has| |#4| (-963)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-963))) (-12 (|has| |#4| (-189)) (|has| |#4| (-963)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-963))) (-12 (|has| |#4| (-189)) (|has| |#4| (-963)))) ELT)) (-2569 (((-85) $ $) NIL (|has| |#4| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#4| (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| |#4| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#4| (-758)) ELT)) (-3953 (($ $ |#4|) NIL (|has| |#4| (-312)) ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-696)) NIL (|has| |#4| (-963)) ELT) (($ $ (-832)) NIL (|has| |#4| (-963)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-486) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-832) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-665)) ELT) (($ |#4| $) NIL (|has| |#4| (-665)) ELT) (($ $ $) NIL (|has| |#4| (-963)) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-210 |#1| |#2| |#3| |#4|) (-13 (-196 |#1| |#4|) (-592 |#2|) (-592 |#3|)) (-832) (-963) (-1039 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-592 |#2|)) (T -210)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3710 (($ (-832)) NIL (|has| |#3| (-963)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#3|)) ELT)) (-2486 (($ $ $) NIL (|has| |#3| (-719)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| |#3| (-320)) ELT)) (-3791 ((|#3| $ (-486) |#3|) NIL (|has| $ (-1037 |#3|)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1015)) ELT) (((-3 (-486) #1#) $) NIL (-12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (-12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015))) ELT)) (-3159 ((|#3| $) NIL (|has| |#3| (-1015)) ELT) (((-486) $) NIL (-12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) ELT) (((-350 (-486)) $) NIL (-12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015))) ELT)) (-2281 (((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1181 |#3|))) (-632 $) (-1181 $)) NIL (|has| |#3| (-963)) ELT) (((-632 |#3|) (-632 $)) NIL (|has| |#3| (-963)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963))) ELT) (((-632 (-486)) (-632 $)) NIL (-12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963))) ELT)) (-3845 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| |#3| (-963)) ELT)) (-2997 (($) NIL (|has| |#3| (-320)) ELT)) (-1577 ((|#3| $ (-486) |#3|) NIL (|has| $ (-1037 |#3|)) ELT)) (-3115 ((|#3| $ (-486)) NIL T ELT)) (-3189 (((-85) $) NIL (|has| |#3| (-719)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL (|has| |#3| (-963)) ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#3| (-758)) ELT)) (-2611 (((-585 |#3|) $) NIL T ELT)) (-3248 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#3| (-758)) ELT)) (-3846 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#3| (-320)) ELT)) (-2282 (((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1181 |#3|))) (-1181 $) $) NIL (|has| |#3| (-963)) ELT) (((-632 |#3|) (-1181 $)) NIL (|has| |#3| (-963)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963))) ELT) (((-632 (-486)) (-1181 $)) NIL (-12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963))) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-2402 (($ (-832)) NIL (|has| |#3| (-320)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 ((|#3| $) NIL (|has| (-486) (-758)) ELT)) (-1731 (((-3 |#3| #1#) (-1 (-85) |#3|) $) NIL T ELT)) (-2201 (($ $ |#3|) NIL (|has| $ (-1037 |#3|)) ELT)) (-1733 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-585 |#3|) (-585 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#3| $) NIL (-12 (|has| $ (-318 |#3|)) (|has| |#3| (-72))) ELT)) (-2207 (((-585 |#3|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#3| $ (-486) |#3|) NIL T ELT) ((|#3| $ (-486)) 11 T ELT)) (-3839 ((|#3| $ $) NIL (|has| |#3| (-963)) ELT)) (-1469 (($ (-1181 |#3|)) NIL T ELT)) (-3915 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3761 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-963)) ELT) (($ $ (-1 |#3| |#3|) (-696)) NIL (|has| |#3| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963)))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963)))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963)))) ELT)) (-1732 (((-696) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-696) (-1 (-85) |#3|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-1181 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1015)) ELT) (((-774) $) NIL T ELT) (($ (-486)) NIL (OR (-12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) (|has| |#3| (-963))) ELT) (($ (-350 (-486))) NIL (-12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015))) ELT)) (-3129 (((-696)) NIL (|has| |#3| (-963)) CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3128 (((-85) $ $) NIL (|has| |#3| (-963)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL (|has| |#3| (-963)) CONST)) (-2672 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-963)) ELT) (($ $ (-1 |#3| |#3|) (-696)) NIL (|has| |#3| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963)))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963)))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#3| (-811 (-1092))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963)))) ELT)) (-2569 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-3953 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-696)) NIL (|has| |#3| (-963)) ELT) (($ $ (-832)) NIL (|has| |#3| (-963)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-486) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-832) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-665)) ELT) (($ |#3| $) NIL (|has| |#3| (-665)) ELT) (($ $ $) NIL (|has| |#3| (-963)) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-211 |#1| |#2| |#3|) (-13 (-196 |#1| |#3|) (-592 |#2|)) (-696) (-963) (-592 |#2|)) (T -211)) -NIL -((-1489 (((-585 (-696)) $) 56 T ELT) (((-585 (-696)) $ |#3|) 59 T ELT)) (-1523 (((-696) $) 58 T ELT) (((-696) $ |#3|) 61 T ELT)) (-1485 (($ $) 76 T ELT)) (-3160 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 (-486) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3775 (((-696) $ |#3|) 43 T ELT) (((-696) $) 38 T ELT)) (-1524 (((-1 $ (-696)) |#3|) 15 T ELT) (((-1 $ (-696)) $) 88 T ELT)) (-1487 ((|#4| $) 69 T ELT)) (-1488 (((-85) $) 67 T ELT)) (-1486 (($ $) 75 T ELT)) (-3771 (($ $ (-585 (-249 $))) 111 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-585 |#4|) (-585 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-585 |#4|) (-585 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-585 |#3|) (-585 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-585 |#3|) (-585 |#2|)) 97 T ELT)) (-3761 (($ $ (-585 |#4|) (-585 (-696))) NIL T ELT) (($ $ |#4| (-696)) NIL T ELT) (($ $ (-585 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-1490 (((-585 |#3|) $) 86 T ELT)) (-3952 ((|#5| $) NIL T ELT) (((-696) $ |#4|) NIL T ELT) (((-585 (-696)) $ (-585 |#4|)) NIL T ELT) (((-696) $ |#3|) 49 T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-350 (-486))) NIL T ELT) (($ $) NIL T ELT))) -(((-212 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -3950 (|#1| |#1|)) (-15 -3950 (|#1| (-350 (-486)))) (-15 -3771 (|#1| |#1| (-585 |#3|) (-585 |#2|))) (-15 -3771 (|#1| |#1| |#3| |#2|)) (-15 -3771 (|#1| |#1| (-585 |#3|) (-585 |#1|))) (-15 -3771 (|#1| |#1| |#3| |#1|)) (-15 -1524 ((-1 |#1| (-696)) |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -1486 (|#1| |#1|)) (-15 -1487 (|#4| |#1|)) (-15 -1488 ((-85) |#1|)) (-15 -1523 ((-696) |#1| |#3|)) (-15 -1489 ((-585 (-696)) |#1| |#3|)) (-15 -1523 ((-696) |#1|)) (-15 -1489 ((-585 (-696)) |#1|)) (-15 -3952 ((-696) |#1| |#3|)) (-15 -3775 ((-696) |#1|)) (-15 -3775 ((-696) |#1| |#3|)) (-15 -1490 ((-585 |#3|) |#1|)) (-15 -1524 ((-1 |#1| (-696)) |#3|)) (-15 -3950 (|#1| |#3|)) (-15 -3160 ((-3 |#3| #1="failed") |#1|)) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3952 ((-585 (-696)) |#1| (-585 |#4|))) (-15 -3952 ((-696) |#1| |#4|)) (-15 -3950 (|#1| |#4|)) (-15 -3160 ((-3 |#4| #1#) |#1|)) (-15 -3771 (|#1| |#1| (-585 |#4|) (-585 |#1|))) (-15 -3771 (|#1| |#1| |#4| |#1|)) (-15 -3771 (|#1| |#1| (-585 |#4|) (-585 |#2|))) (-15 -3771 (|#1| |#1| |#4| |#2|)) (-15 -3771 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -3771 (|#1| |#1| |#1| |#1|)) (-15 -3771 (|#1| |#1| (-249 |#1|))) (-15 -3771 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -3952 (|#5| |#1|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3950 (|#1| |#2|)) (-15 -3761 (|#1| |#1| |#4|)) (-15 -3761 (|#1| |#1| (-585 |#4|))) (-15 -3761 (|#1| |#1| |#4| (-696))) (-15 -3761 (|#1| |#1| (-585 |#4|) (-585 (-696)))) (-15 -3950 (|#1| (-486))) (-15 -3950 ((-774) |#1|))) (-213 |#2| |#3| |#4| |#5|) (-963) (-758) (-228 |#3|) (-719)) (T -212)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1489 (((-585 (-696)) $) 252 T ELT) (((-585 (-696)) $ |#2|) 250 T ELT)) (-1523 (((-696) $) 251 T ELT) (((-696) $ |#2|) 249 T ELT)) (-3084 (((-585 |#3|) $) 124 T ELT)) (-3086 (((-1087 $) $ |#3|) 139 T ELT) (((-1087 |#1|) $) 138 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 101 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 102 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 104 (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) 126 T ELT) (((-696) $ (-585 |#3|)) 125 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 114 (|has| |#1| (-823)) ELT)) (-3778 (($ $) 112 (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) 111 (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1="failed") (-585 (-1087 $)) (-1087 $)) 117 (|has| |#1| (-823)) ELT)) (-1485 (($ $) 245 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| #2="failed") $) 182 T ELT) (((-3 (-350 (-486)) #2#) $) 179 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #2#) $) 177 (|has| |#1| (-952 (-486))) ELT) (((-3 |#3| #2#) $) 154 T ELT) (((-3 |#2| #2#) $) 259 T ELT)) (-3159 ((|#1| $) 181 T ELT) (((-350 (-486)) $) 180 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) 178 (|has| |#1| (-952 (-486))) ELT) ((|#3| $) 155 T ELT) ((|#2| $) 260 T ELT)) (-3759 (($ $ $ |#3|) 122 (|has| |#1| (-146)) ELT)) (-3962 (($ $) 172 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 150 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 149 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 148 T ELT) (((-632 |#1|) (-632 $)) 147 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3506 (($ $) 194 (|has| |#1| (-393)) ELT) (($ $ |#3|) 119 (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) 123 T ELT)) (-3726 (((-85) $) 110 (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| |#4| $) 190 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 98 (-12 (|has| |#3| (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 97 (-12 (|has| |#3| (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-3775 (((-696) $ |#2|) 255 T ELT) (((-696) $) 254 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2422 (((-696) $) 187 T ELT)) (-3087 (($ (-1087 |#1|) |#3|) 131 T ELT) (($ (-1087 $) |#3|) 130 T ELT)) (-2824 (((-585 $) $) 140 T ELT)) (-3941 (((-85) $) 170 T ELT)) (-2896 (($ |#1| |#4|) 171 T ELT) (($ $ |#3| (-696)) 133 T ELT) (($ $ (-585 |#3|) (-585 (-696))) 132 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#3|) 134 T ELT)) (-2823 ((|#4| $) 188 T ELT) (((-696) $ |#3|) 136 T ELT) (((-585 (-696)) $ (-585 |#3|)) 135 T ELT)) (-1626 (($ (-1 |#4| |#4|) $) 189 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-1524 (((-1 $ (-696)) |#2|) 257 T ELT) (((-1 $ (-696)) $) 244 (|has| |#1| (-190)) ELT)) (-3085 (((-3 |#3| #3="failed") $) 137 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 152 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 151 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 146 T ELT) (((-632 |#1|) (-1181 $)) 145 T ELT)) (-2897 (($ $) 168 T ELT)) (-3177 ((|#1| $) 167 T ELT)) (-1487 ((|#3| $) 247 T ELT)) (-1896 (($ (-585 $)) 108 (|has| |#1| (-393)) ELT) (($ $ $) 107 (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1488 (((-85) $) 248 T ELT)) (-2826 (((-3 (-585 $) #3#) $) 128 T ELT)) (-2825 (((-3 (-585 $) #3#) $) 129 T ELT)) (-2827 (((-3 (-2 (|:| |var| |#3|) (|:| -2403 (-696))) #3#) $) 127 T ELT)) (-1486 (($ $) 246 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1802 (((-85) $) 184 T ELT)) (-1801 ((|#1| $) 185 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 109 (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) 106 (|has| |#1| (-393)) ELT) (($ $ $) 105 (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 116 (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 115 (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) 113 (|has| |#1| (-823)) ELT)) (-3469 (((-3 $ "failed") $ |#1|) 192 (|has| |#1| (-497)) ELT) (((-3 $ "failed") $ $) 100 (|has| |#1| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) 163 T ELT) (($ $ (-249 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-585 $) (-585 $)) 160 T ELT) (($ $ |#3| |#1|) 159 T ELT) (($ $ (-585 |#3|) (-585 |#1|)) 158 T ELT) (($ $ |#3| $) 157 T ELT) (($ $ (-585 |#3|) (-585 $)) 156 T ELT) (($ $ |#2| $) 243 (|has| |#1| (-190)) ELT) (($ $ (-585 |#2|) (-585 $)) 242 (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) 241 (|has| |#1| (-190)) ELT) (($ $ (-585 |#2|) (-585 |#1|)) 240 (|has| |#1| (-190)) ELT)) (-3760 (($ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 |#3|) (-585 (-696))) 52 T ELT) (($ $ |#3| (-696)) 51 T ELT) (($ $ (-585 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT) (($ $ (-1 |#1| |#1|)) 264 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 263 T ELT) (($ $) 239 (|has| |#1| (-189)) ELT) (($ $ (-696)) 237 (|has| |#1| (-189)) ELT) (($ $ (-1092)) 235 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 233 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 232 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 231 (|has| |#1| (-813 (-1092))) ELT)) (-1490 (((-585 |#2|) $) 256 T ELT)) (-3952 ((|#4| $) 169 T ELT) (((-696) $ |#3|) 144 T ELT) (((-585 (-696)) $ (-585 |#3|)) 143 T ELT) (((-696) $ |#2|) 253 T ELT)) (-3975 (((-802 (-330)) $) 96 (-12 (|has| |#3| (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) 95 (-12 (|has| |#3| (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) 94 (-12 (|has| |#3| (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT)) (-2820 ((|#1| $) 193 (|has| |#1| (-393)) ELT) (($ $ |#3|) 120 (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) 118 (-2565 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 183 T ELT) (($ |#3|) 153 T ELT) (($ |#2|) 258 T ELT) (($ (-350 (-486))) 92 (OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ELT) (($ $) 99 (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) 186 T ELT)) (-3680 ((|#1| $ |#4|) 173 T ELT) (($ $ |#3| (-696)) 142 T ELT) (($ $ (-585 |#3|) (-585 (-696))) 141 T ELT)) (-2705 (((-634 $) $) 93 (OR (-2565 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) 40 T CONST)) (-1624 (($ $ $ (-696)) 191 (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 103 (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-585 |#3|) (-585 (-696))) 55 T ELT) (($ $ |#3| (-696)) 54 T ELT) (($ $ (-585 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT) (($ $ (-1 |#1| |#1|)) 262 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 261 T ELT) (($ $) 238 (|has| |#1| (-189)) ELT) (($ $ (-696)) 236 (|has| |#1| (-189)) ELT) (($ $ (-1092)) 234 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 230 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 229 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 228 (|has| |#1| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 174 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 176 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) 175 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 165 T ELT) (($ $ |#1|) 164 T ELT))) -(((-213 |#1| |#2| |#3| |#4|) (-113) (-963) (-758) (-228 |t#2|) (-719)) (T -213)) -((-1524 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *3 (-758)) (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-1 *1 (-696))) (-4 *1 (-213 *4 *3 *5 *6)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-585 *4)))) (-3775 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-696)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-696)))) (-3952 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-696)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-585 (-696))))) (-1523 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-696)))) (-1489 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-585 (-696))))) (-1523 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-696)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-85)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-719)) (-4 *2 (-228 *4)))) (-1486 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-963)) (-4 *3 (-758)) (-4 *4 (-228 *3)) (-4 *5 (-719)))) (-1485 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-963)) (-4 *3 (-758)) (-4 *4 (-228 *3)) (-4 *5 (-719)))) (-1524 (*1 *2 *1) (-12 (-4 *3 (-190)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-1 *1 (-696))) (-4 *1 (-213 *3 *4 *5 *6))))) -(-13 (-863 |t#1| |t#4| |t#3|) (-184 |t#1|) (-952 |t#2|) (-10 -8 (-15 -1524 ((-1 $ (-696)) |t#2|)) (-15 -1490 ((-585 |t#2|) $)) (-15 -3775 ((-696) $ |t#2|)) (-15 -3775 ((-696) $)) (-15 -3952 ((-696) $ |t#2|)) (-15 -1489 ((-585 (-696)) $)) (-15 -1523 ((-696) $)) (-15 -1489 ((-585 (-696)) $ |t#2|)) (-15 -1523 ((-696) $ |t#2|)) (-15 -1488 ((-85) $)) (-15 -1487 (|t#3| $)) (-15 -1486 ($ $)) (-15 -1485 ($ $)) (IF (|has| |t#1| (-190)) (PROGN (-6 (-457 |t#2| |t#1|)) (-6 (-457 |t#2| $)) (-6 (-260 $)) (-15 -1524 ((-1 $ (-696)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-557 |#2|) . T) ((-557 |#3|) . T) ((-557 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-555 (-475)) -12 (|has| |#1| (-555 (-475))) (|has| |#3| (-555 (-475)))) ((-555 (-802 (-330))) -12 (|has| |#1| (-555 (-802 (-330)))) (|has| |#3| (-555 (-802 (-330))))) ((-555 (-802 (-486))) -12 (|has| |#1| (-555 (-802 (-486)))) (|has| |#3| (-555 (-802 (-486))))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-246) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-260 $) . T) ((-277 |#1| |#4|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-381 |#1|) . T) ((-393) OR (|has| |#1| (-823)) (|has| |#1| (-393))) ((-457 |#2| |#1|) |has| |#1| (-190)) ((-457 |#2| $) |has| |#1| (-190)) ((-457 |#3| |#1|) . T) ((-457 |#3| $) . T) ((-457 $ $) . T) ((-497) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 (-486)) |has| |#1| (-582 (-486))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-582 (-486)) |has| |#1| (-582 (-486))) ((-582 |#1|) . T) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-665) . T) ((-808 $ (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-808 $ |#3|) . T) ((-811 (-1092)) |has| |#1| (-811 (-1092))) ((-811 |#3|) . T) ((-813 (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-813 |#3|) . T) ((-798 (-330)) -12 (|has| |#1| (-798 (-330))) (|has| |#3| (-798 (-330)))) ((-798 (-486)) -12 (|has| |#1| (-798 (-486))) (|has| |#3| (-798 (-486)))) ((-863 |#1| |#4| |#3|) . T) ((-823) |has| |#1| (-823)) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-952 |#2|) . T) ((-952 |#3|) . T) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) |has| |#1| (-823))) -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1496 ((|#1| $) 64 T ELT)) (-3326 ((|#1| $) 42 T ELT)) (-3727 (($) 6 T CONST)) (-3005 (($ $) 70 T ELT)) (-2299 (($ $) 58 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 55 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 51 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 50 T ELT)) (-3328 ((|#1| |#1| $) 44 T ELT)) (-3327 ((|#1| $) 43 T ELT)) (-2611 (((-585 |#1|) $) 49 T ELT)) (-3248 (((-85) |#1| $) 54 (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3836 (((-696) $) 71 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 35 T ELT)) (-1494 ((|#1| |#1| $) 62 T ELT)) (-1493 ((|#1| |#1| $) 61 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-2606 (((-696) $) 65 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3004 ((|#1| $) 72 T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 52 T ELT)) (-1492 ((|#1| $) 60 T ELT)) (-1491 ((|#1| $) 59 T ELT)) (-1277 ((|#1| $) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 47 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3007 ((|#1| |#1| $) 68 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3006 ((|#1| $) 69 T ELT)) (-1497 (($) 67 T ELT) (($ (-585 |#1|)) 66 T ELT)) (-3325 (((-696) $) 41 T ELT)) (-1732 (((-696) |#1| $) 53 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 48 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1495 ((|#1| $) 63 T ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-3003 ((|#1| $) 73 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 46 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) 45 T ELT))) -(((-214 |#1|) (-113) (-1131)) (T -214)) -((-1497 (*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131)))) (-1497 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-4 *1 (-214 *3)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1131)) (-5 *2 (-696)))) (-1496 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131)))) (-1495 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131)))) (-1494 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131)))) (-1493 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131)))) (-2299 (*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131))))) -(-13 (-1036 |t#1|) (-910 |t#1|) (-10 -8 (-15 -1497 ($)) (-15 -1497 ($ (-585 |t#1|))) (-15 -2606 ((-696) $)) (-15 -1496 (|t#1| $)) (-15 -1495 (|t#1| $)) (-15 -1494 (|t#1| |t#1| $)) (-15 -1493 (|t#1| |t#1| $)) (-15 -1492 (|t#1| $)) (-15 -1491 (|t#1| $)) (-15 -2299 ($ $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-910 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1036 |#1|) . T) ((-1131) . T)) -((-1498 (((-1049 (-179)) (-794 |#1|) (-1006 (-330)) (-1006 (-330))) 75 T ELT) (((-1049 (-179)) (-794 |#1|) (-1006 (-330)) (-1006 (-330)) (-585 (-221))) 74 T ELT) (((-1049 (-179)) |#1| (-1006 (-330)) (-1006 (-330))) 65 T ELT) (((-1049 (-179)) |#1| (-1006 (-330)) (-1006 (-330)) (-585 (-221))) 64 T ELT) (((-1049 (-179)) (-791 |#1|) (-1006 (-330))) 56 T ELT) (((-1049 (-179)) (-791 |#1|) (-1006 (-330)) (-585 (-221))) 55 T ELT)) (-1505 (((-1185) (-794 |#1|) (-1006 (-330)) (-1006 (-330))) 78 T ELT) (((-1185) (-794 |#1|) (-1006 (-330)) (-1006 (-330)) (-585 (-221))) 77 T ELT) (((-1185) |#1| (-1006 (-330)) (-1006 (-330))) 68 T ELT) (((-1185) |#1| (-1006 (-330)) (-1006 (-330)) (-585 (-221))) 67 T ELT) (((-1185) (-791 |#1|) (-1006 (-330))) 60 T ELT) (((-1185) (-791 |#1|) (-1006 (-330)) (-585 (-221))) 59 T ELT) (((-1184) (-789 |#1|) (-1006 (-330))) 47 T ELT) (((-1184) (-789 |#1|) (-1006 (-330)) (-585 (-221))) 46 T ELT) (((-1184) |#1| (-1006 (-330))) 38 T ELT) (((-1184) |#1| (-1006 (-330)) (-585 (-221))) 36 T ELT))) -(((-215 |#1|) (-10 -7 (-15 -1505 ((-1184) |#1| (-1006 (-330)) (-585 (-221)))) (-15 -1505 ((-1184) |#1| (-1006 (-330)))) (-15 -1505 ((-1184) (-789 |#1|) (-1006 (-330)) (-585 (-221)))) (-15 -1505 ((-1184) (-789 |#1|) (-1006 (-330)))) (-15 -1505 ((-1185) (-791 |#1|) (-1006 (-330)) (-585 (-221)))) (-15 -1505 ((-1185) (-791 |#1|) (-1006 (-330)))) (-15 -1498 ((-1049 (-179)) (-791 |#1|) (-1006 (-330)) (-585 (-221)))) (-15 -1498 ((-1049 (-179)) (-791 |#1|) (-1006 (-330)))) (-15 -1505 ((-1185) |#1| (-1006 (-330)) (-1006 (-330)) (-585 (-221)))) (-15 -1505 ((-1185) |#1| (-1006 (-330)) (-1006 (-330)))) (-15 -1498 ((-1049 (-179)) |#1| (-1006 (-330)) (-1006 (-330)) (-585 (-221)))) (-15 -1498 ((-1049 (-179)) |#1| (-1006 (-330)) (-1006 (-330)))) (-15 -1505 ((-1185) (-794 |#1|) (-1006 (-330)) (-1006 (-330)) (-585 (-221)))) (-15 -1505 ((-1185) (-794 |#1|) (-1006 (-330)) (-1006 (-330)))) (-15 -1498 ((-1049 (-179)) (-794 |#1|) (-1006 (-330)) (-1006 (-330)) (-585 (-221)))) (-15 -1498 ((-1049 (-179)) (-794 |#1|) (-1006 (-330)) (-1006 (-330))))) (-13 (-555 (-475)) (-1015))) (T -215)) -((-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-794 *5)) (-5 *4 (-1006 (-330))) (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1049 (-179))) (-5 *1 (-215 *5)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-794 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1049 (-179))) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-794 *5)) (-5 *4 (-1006 (-330))) (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1185)) (-5 *1 (-215 *5)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-794 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1185)) (-5 *1 (-215 *6)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1006 (-330))) (-5 *2 (-1049 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-475)) (-1015))))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-475)) (-1015))))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1006 (-330))) (-5 *2 (-1185)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-475)) (-1015))))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-475)) (-1015))))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-791 *5)) (-5 *4 (-1006 (-330))) (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1049 (-179))) (-5 *1 (-215 *5)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-791 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1049 (-179))) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-791 *5)) (-5 *4 (-1006 (-330))) (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1185)) (-5 *1 (-215 *5)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-791 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1185)) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-789 *5)) (-5 *4 (-1006 (-330))) (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1184)) (-5 *1 (-215 *5)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1184)) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-330))) (-5 *2 (-1184)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-475)) (-1015))))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-475)) (-1015)))))) -((-1499 (((-1 (-856 (-179)) (-179) (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 158 T ELT)) (-1498 (((-1049 (-179)) (-794 (-1 (-179) (-179) (-179))) (-1003 (-330)) (-1003 (-330))) 178 T ELT) (((-1049 (-179)) (-794 (-1 (-179) (-179) (-179))) (-1003 (-330)) (-1003 (-330)) (-585 (-221))) 176 T ELT) (((-1049 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-330)) (-1003 (-330))) 181 T ELT) (((-1049 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-330)) (-1003 (-330)) (-585 (-221))) 177 T ELT) (((-1049 (-179)) (-1 (-179) (-179) (-179)) (-1003 (-330)) (-1003 (-330))) 169 T ELT) (((-1049 (-179)) (-1 (-179) (-179) (-179)) (-1003 (-330)) (-1003 (-330)) (-585 (-221))) 168 T ELT) (((-1049 (-179)) (-1 (-856 (-179)) (-179)) (-1003 (-330))) 150 T ELT) (((-1049 (-179)) (-1 (-856 (-179)) (-179)) (-1003 (-330)) (-585 (-221))) 148 T ELT) (((-1049 (-179)) (-791 (-1 (-179) (-179))) (-1003 (-330))) 149 T ELT) (((-1049 (-179)) (-791 (-1 (-179) (-179))) (-1003 (-330)) (-585 (-221))) 146 T ELT)) (-1505 (((-1185) (-794 (-1 (-179) (-179) (-179))) (-1003 (-330)) (-1003 (-330))) 180 T ELT) (((-1185) (-794 (-1 (-179) (-179) (-179))) (-1003 (-330)) (-1003 (-330)) (-585 (-221))) 179 T ELT) (((-1185) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-330)) (-1003 (-330))) 183 T ELT) (((-1185) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-330)) (-1003 (-330)) (-585 (-221))) 182 T ELT) (((-1185) (-1 (-179) (-179) (-179)) (-1003 (-330)) (-1003 (-330))) 171 T ELT) (((-1185) (-1 (-179) (-179) (-179)) (-1003 (-330)) (-1003 (-330)) (-585 (-221))) 170 T ELT) (((-1185) (-1 (-856 (-179)) (-179)) (-1003 (-330))) 156 T ELT) (((-1185) (-1 (-856 (-179)) (-179)) (-1003 (-330)) (-585 (-221))) 155 T ELT) (((-1185) (-791 (-1 (-179) (-179))) (-1003 (-330))) 154 T ELT) (((-1185) (-791 (-1 (-179) (-179))) (-1003 (-330)) (-585 (-221))) 153 T ELT) (((-1184) (-789 (-1 (-179) (-179))) (-1003 (-330))) 118 T ELT) (((-1184) (-789 (-1 (-179) (-179))) (-1003 (-330)) (-585 (-221))) 117 T ELT) (((-1184) (-1 (-179) (-179)) (-1003 (-330))) 112 T ELT) (((-1184) (-1 (-179) (-179)) (-1003 (-330)) (-585 (-221))) 110 T ELT))) -(((-216) (-10 -7 (-15 -1505 ((-1184) (-1 (-179) (-179)) (-1003 (-330)) (-585 (-221)))) (-15 -1505 ((-1184) (-1 (-179) (-179)) (-1003 (-330)))) (-15 -1505 ((-1184) (-789 (-1 (-179) (-179))) (-1003 (-330)) (-585 (-221)))) (-15 -1505 ((-1184) (-789 (-1 (-179) (-179))) (-1003 (-330)))) (-15 -1505 ((-1185) (-791 (-1 (-179) (-179))) (-1003 (-330)) (-585 (-221)))) (-15 -1505 ((-1185) (-791 (-1 (-179) (-179))) (-1003 (-330)))) (-15 -1505 ((-1185) (-1 (-856 (-179)) (-179)) (-1003 (-330)) (-585 (-221)))) (-15 -1505 ((-1185) (-1 (-856 (-179)) (-179)) (-1003 (-330)))) (-15 -1498 ((-1049 (-179)) (-791 (-1 (-179) (-179))) (-1003 (-330)) (-585 (-221)))) (-15 -1498 ((-1049 (-179)) (-791 (-1 (-179) (-179))) (-1003 (-330)))) (-15 -1498 ((-1049 (-179)) (-1 (-856 (-179)) (-179)) (-1003 (-330)) (-585 (-221)))) (-15 -1498 ((-1049 (-179)) (-1 (-856 (-179)) (-179)) (-1003 (-330)))) (-15 -1505 ((-1185) (-1 (-179) (-179) (-179)) (-1003 (-330)) (-1003 (-330)) (-585 (-221)))) (-15 -1505 ((-1185) (-1 (-179) (-179) (-179)) (-1003 (-330)) (-1003 (-330)))) (-15 -1498 ((-1049 (-179)) (-1 (-179) (-179) (-179)) (-1003 (-330)) (-1003 (-330)) (-585 (-221)))) (-15 -1498 ((-1049 (-179)) (-1 (-179) (-179) (-179)) (-1003 (-330)) (-1003 (-330)))) (-15 -1505 ((-1185) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-330)) (-1003 (-330)) (-585 (-221)))) (-15 -1505 ((-1185) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-330)) (-1003 (-330)))) (-15 -1498 ((-1049 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-330)) (-1003 (-330)) (-585 (-221)))) (-15 -1498 ((-1049 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-330)) (-1003 (-330)))) (-15 -1505 ((-1185) (-794 (-1 (-179) (-179) (-179))) (-1003 (-330)) (-1003 (-330)) (-585 (-221)))) (-15 -1505 ((-1185) (-794 (-1 (-179) (-179) (-179))) (-1003 (-330)) (-1003 (-330)))) (-15 -1498 ((-1049 (-179)) (-794 (-1 (-179) (-179) (-179))) (-1003 (-330)) (-1003 (-330)) (-585 (-221)))) (-15 -1498 ((-1049 (-179)) (-794 (-1 (-179) (-179) (-179))) (-1003 (-330)) (-1003 (-330)))) (-15 -1499 ((-1 (-856 (-179)) (-179) (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -216)) -((-1499 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-856 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-216))))) -((-1505 (((-1184) (-249 |#2|) (-1092) (-1092) (-585 (-221))) 102 T ELT))) -(((-217 |#1| |#2|) (-10 -7 (-15 -1505 ((-1184) (-249 |#2|) (-1092) (-1092) (-585 (-221))))) (-13 (-497) (-758) (-952 (-486))) (-364 |#1|)) (T -217)) -((-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-1092)) (-5 *5 (-585 (-221))) (-4 *7 (-364 *6)) (-4 *6 (-13 (-497) (-758) (-952 (-486)))) (-5 *2 (-1184)) (-5 *1 (-217 *6 *7))))) -((-1502 (((-486) (-486)) 71 T ELT)) (-1503 (((-486) (-486)) 72 T ELT)) (-1504 (((-179) (-179)) 73 T ELT)) (-1501 (((-1185) (-1 (-142 (-179)) (-142 (-179))) (-1003 (-179)) (-1003 (-179))) 70 T ELT)) (-1500 (((-1185) (-1 (-142 (-179)) (-142 (-179))) (-1003 (-179)) (-1003 (-179)) (-85)) 68 T ELT))) -(((-218) (-10 -7 (-15 -1500 ((-1185) (-1 (-142 (-179)) (-142 (-179))) (-1003 (-179)) (-1003 (-179)) (-85))) (-15 -1501 ((-1185) (-1 (-142 (-179)) (-142 (-179))) (-1003 (-179)) (-1003 (-179)))) (-15 -1502 ((-486) (-486))) (-15 -1503 ((-486) (-486))) (-15 -1504 ((-179) (-179))))) (T -218)) -((-1504 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218)))) (-1503 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-218)))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-218)))) (-1501 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1003 (-179))) (-5 *2 (-1185)) (-5 *1 (-218)))) (-1500 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1003 (-179))) (-5 *5 (-85)) (-5 *2 (-1185)) (-5 *1 (-218))))) -((-3950 (((-1006 (-330)) (-1006 (-265 |#1|))) 16 T ELT))) -(((-219 |#1|) (-10 -7 (-15 -3950 ((-1006 (-330)) (-1006 (-265 |#1|))))) (-13 (-758) (-497) (-555 (-330)))) (T -219)) -((-3950 (*1 *2 *3) (-12 (-5 *3 (-1006 (-265 *4))) (-4 *4 (-13 (-758) (-497) (-555 (-330)))) (-5 *2 (-1006 (-330))) (-5 *1 (-219 *4))))) -((-1505 (((-1185) (-585 (-179)) (-585 (-179)) (-585 (-179)) (-585 (-221))) 23 T ELT) (((-1185) (-585 (-179)) (-585 (-179)) (-585 (-179))) 24 T ELT) (((-1184) (-585 (-856 (-179))) (-585 (-221))) 16 T ELT) (((-1184) (-585 (-856 (-179)))) 17 T ELT) (((-1184) (-585 (-179)) (-585 (-179)) (-585 (-221))) 20 T ELT) (((-1184) (-585 (-179)) (-585 (-179))) 21 T ELT))) -(((-220) (-10 -7 (-15 -1505 ((-1184) (-585 (-179)) (-585 (-179)))) (-15 -1505 ((-1184) (-585 (-179)) (-585 (-179)) (-585 (-221)))) (-15 -1505 ((-1184) (-585 (-856 (-179))))) (-15 -1505 ((-1184) (-585 (-856 (-179))) (-585 (-221)))) (-15 -1505 ((-1185) (-585 (-179)) (-585 (-179)) (-585 (-179)))) (-15 -1505 ((-1185) (-585 (-179)) (-585 (-179)) (-585 (-179)) (-585 (-221)))))) (T -220)) -((-1505 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-585 (-179))) (-5 *4 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-585 (-179))) (-5 *2 (-1185)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-856 (-179)))) (-5 *4 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-220)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-585 (-856 (-179)))) (-5 *2 (-1184)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-585 (-179))) (-5 *4 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-179))) (-5 *2 (-1184)) (-5 *1 (-220))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3885 (($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3851 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 24 T ELT)) (-1518 (($ (-832)) 81 T ELT)) (-1517 (($ (-832)) 80 T ELT)) (-1777 (($ (-585 (-330))) 87 T ELT)) (-1521 (($ (-330)) 66 T ELT)) (-1520 (($ (-832)) 82 T ELT)) (-1514 (($ (-85)) 33 T ELT)) (-3887 (($ (-1075)) 28 T ELT)) (-1513 (($ (-1075)) 29 T ELT)) (-1519 (($ (-1049 (-179))) 76 T ELT)) (-1933 (($ (-585 (-1003 (-330)))) 72 T ELT)) (-1507 (($ (-585 (-1003 (-330)))) 68 T ELT) (($ (-585 (-1003 (-350 (-486))))) 71 T ELT)) (-1510 (($ (-330)) 38 T ELT) (($ (-785)) 42 T ELT)) (-1506 (((-85) (-585 $) (-1092)) 100 T ELT)) (-1522 (((-3 (-51) "failed") (-585 $) (-1092)) 102 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1509 (($ (-330)) 43 T ELT) (($ (-785)) 44 T ELT)) (-3227 (($ (-1 (-856 (-179)) (-856 (-179)))) 65 T ELT)) (-2268 (($ (-1 (-856 (-179)) (-856 (-179)))) 83 T ELT)) (-1508 (($ (-1 (-179) (-179))) 48 T ELT) (($ (-1 (-179) (-179) (-179))) 52 T ELT) (($ (-1 (-179) (-179) (-179) (-179))) 56 T ELT)) (-3950 (((-774) $) 93 T ELT)) (-1511 (($ (-85)) 34 T ELT) (($ (-585 (-1003 (-330)))) 60 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1928 (($ (-85)) 35 T ELT)) (-3059 (((-85) $ $) 97 T ELT))) -(((-221) (-13 (-1015) (-10 -8 (-15 -1928 ($ (-85))) (-15 -1511 ($ (-85))) (-15 -3885 ($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3851 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3887 ($ (-1075))) (-15 -1513 ($ (-1075))) (-15 -1514 ($ (-85))) (-15 -1511 ($ (-585 (-1003 (-330))))) (-15 -3227 ($ (-1 (-856 (-179)) (-856 (-179))))) (-15 -1510 ($ (-330))) (-15 -1510 ($ (-785))) (-15 -1509 ($ (-330))) (-15 -1509 ($ (-785))) (-15 -1508 ($ (-1 (-179) (-179)))) (-15 -1508 ($ (-1 (-179) (-179) (-179)))) (-15 -1508 ($ (-1 (-179) (-179) (-179) (-179)))) (-15 -1521 ($ (-330))) (-15 -1507 ($ (-585 (-1003 (-330))))) (-15 -1507 ($ (-585 (-1003 (-350 (-486)))))) (-15 -1933 ($ (-585 (-1003 (-330))))) (-15 -1519 ($ (-1049 (-179)))) (-15 -1517 ($ (-832))) (-15 -1518 ($ (-832))) (-15 -1520 ($ (-832))) (-15 -2268 ($ (-1 (-856 (-179)) (-856 (-179))))) (-15 -1777 ($ (-585 (-330)))) (-15 -1522 ((-3 (-51) "failed") (-585 $) (-1092))) (-15 -1506 ((-85) (-585 $) (-1092)))))) (T -221)) -((-1928 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-3885 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3851 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-221)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-221)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-221)))) (-3227 (*1 *1 *2) (-12 (-5 *2 (-1 (-856 (-179)) (-856 (-179)))) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) (-1521 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-350 (-486))))) (-5 *1 (-221)))) (-1933 (*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-221)))) (-1519 (*1 *1 *2) (-12 (-5 *2 (-1049 (-179))) (-5 *1 (-221)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-221)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-221)))) (-1520 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-221)))) (-2268 (*1 *1 *2) (-12 (-5 *2 (-1 (-856 (-179)) (-856 (-179)))) (-5 *1 (-221)))) (-1777 (*1 *1 *2) (-12 (-5 *2 (-585 (-330))) (-5 *1 (-221)))) (-1522 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-585 (-221))) (-5 *4 (-1092)) (-5 *2 (-51)) (-5 *1 (-221)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-221))) (-5 *4 (-1092)) (-5 *2 (-85)) (-5 *1 (-221))))) -((-3885 (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3851 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-585 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3851 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 25 T ELT)) (-1518 (((-832) (-585 (-221)) (-832)) 52 T ELT)) (-1517 (((-832) (-585 (-221)) (-832)) 51 T ELT)) (-3855 (((-585 (-330)) (-585 (-221)) (-585 (-330))) 68 T ELT)) (-1521 (((-330) (-585 (-221)) (-330)) 57 T ELT)) (-1520 (((-832) (-585 (-221)) (-832)) 53 T ELT)) (-1514 (((-85) (-585 (-221)) (-85)) 27 T ELT)) (-3887 (((-1075) (-585 (-221)) (-1075)) 19 T ELT)) (-1513 (((-1075) (-585 (-221)) (-1075)) 26 T ELT)) (-1519 (((-1049 (-179)) (-585 (-221))) 46 T ELT)) (-1933 (((-585 (-1003 (-330))) (-585 (-221)) (-585 (-1003 (-330)))) 40 T ELT)) (-1515 (((-785) (-585 (-221)) (-785)) 32 T ELT)) (-1516 (((-785) (-585 (-221)) (-785)) 33 T ELT)) (-2268 (((-1 (-856 (-179)) (-856 (-179))) (-585 (-221)) (-1 (-856 (-179)) (-856 (-179)))) 63 T ELT)) (-1512 (((-85) (-585 (-221)) (-85)) 14 T ELT)) (-1928 (((-85) (-585 (-221)) (-85)) 13 T ELT))) -(((-222) (-10 -7 (-15 -1928 ((-85) (-585 (-221)) (-85))) (-15 -1512 ((-85) (-585 (-221)) (-85))) (-15 -3885 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3851 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-585 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3851 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3887 ((-1075) (-585 (-221)) (-1075))) (-15 -1513 ((-1075) (-585 (-221)) (-1075))) (-15 -1514 ((-85) (-585 (-221)) (-85))) (-15 -1515 ((-785) (-585 (-221)) (-785))) (-15 -1516 ((-785) (-585 (-221)) (-785))) (-15 -1933 ((-585 (-1003 (-330))) (-585 (-221)) (-585 (-1003 (-330))))) (-15 -1517 ((-832) (-585 (-221)) (-832))) (-15 -1518 ((-832) (-585 (-221)) (-832))) (-15 -1519 ((-1049 (-179)) (-585 (-221)))) (-15 -1520 ((-832) (-585 (-221)) (-832))) (-15 -1521 ((-330) (-585 (-221)) (-330))) (-15 -2268 ((-1 (-856 (-179)) (-856 (-179))) (-585 (-221)) (-1 (-856 (-179)) (-856 (-179))))) (-15 -3855 ((-585 (-330)) (-585 (-221)) (-585 (-330)))))) (T -222)) -((-3855 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-330))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-2268 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-856 (-179)) (-856 (-179)))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1521 (*1 *2 *3 *2) (-12 (-5 *2 (-330)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1520 (*1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1519 (*1 *2 *3) (-12 (-5 *3 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-222)))) (-1518 (*1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1517 (*1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1933 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1516 (*1 *2 *3 *2) (-12 (-5 *2 (-785)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1515 (*1 *2 *3 *2) (-12 (-5 *2 (-785)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1514 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1513 (*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-3887 (*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-3885 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3851 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1512 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1928 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) -((-1522 (((-3 |#1| "failed") (-585 (-221)) (-1092)) 17 T ELT))) -(((-223 |#1|) (-10 -7 (-15 -1522 ((-3 |#1| "failed") (-585 (-221)) (-1092)))) (-1131)) (T -223)) -((-1522 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-585 (-221))) (-5 *4 (-1092)) (-5 *1 (-223 *2)) (-4 *2 (-1131))))) -((-3761 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-696)) 11 T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) 19 T ELT) (($ $ (-696)) NIL T ELT) (($ $) 16 T ELT)) (-2672 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-696)) 14 T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT))) -(((-224 |#1| |#2|) (-10 -7 (-15 -3761 (|#1| |#1|)) (-15 -2672 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-696))) (-15 -2672 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -2672 (|#1| |#1| (-1092))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -2672 (|#1| |#1| (-585 (-1092)))) (-15 -2672 (|#1| |#1| (-1092) (-696))) (-15 -2672 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -2672 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -2672 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1131)) (T -224)) -NIL -((-3761 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 22 T ELT) (($ $ (-585 (-1092)) (-585 (-696))) 16 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 15 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 14 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092)) 12 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-696)) 10 (|has| |#1| (-189)) ELT) (($ $) 8 (|has| |#1| (-189)) ELT)) (-2672 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 20 T ELT) (($ $ (-585 (-1092)) (-585 (-696))) 19 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 18 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 17 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092)) 13 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-696)) 11 (|has| |#1| (-189)) ELT) (($ $) 9 (|has| |#1| (-189)) ELT))) -(((-225 |#1|) (-113) (-1131)) (T -225)) -((-3761 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1131)))) (-3761 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-696)) (-4 *1 (-225 *4)) (-4 *4 (-1131)))) (-2672 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1131)))) (-2672 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-696)) (-4 *1 (-225 *4)) (-4 *4 (-1131))))) -(-13 (-1131) (-10 -8 (-15 -3761 ($ $ (-1 |t#1| |t#1|))) (-15 -3761 ($ $ (-1 |t#1| |t#1|) (-696))) (-15 -2672 ($ $ (-1 |t#1| |t#1|))) (-15 -2672 ($ $ (-1 |t#1| |t#1|) (-696))) (IF (|has| |t#1| (-189)) (-6 (-189)) |%noBranch|) (IF (|has| |t#1| (-813 (-1092))) (-6 (-813 (-1092))) |%noBranch|))) -(((-186 $) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-13) . T) ((-808 $ (-1092)) |has| |#1| (-813 (-1092))) ((-813 (-1092)) |has| |#1| (-813 (-1092))) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1489 (((-585 (-696)) $) NIL T ELT) (((-585 (-696)) $ |#2|) NIL T ELT)) (-1523 (((-696) $) NIL T ELT) (((-696) $ |#2|) NIL T ELT)) (-3084 (((-585 |#3|) $) NIL T ELT)) (-3086 (((-1087 $) $ |#3|) NIL T ELT) (((-1087 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 |#3|)) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-1485 (($ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1041 |#1| |#2|) #1#) $) 23 T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1041 |#1| |#2|) $) NIL T ELT)) (-3759 (($ $ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT) (($ $ |#3|) NIL (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| (-471 |#3|) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| |#1| (-798 (-330))) (|has| |#3| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| |#1| (-798 (-486))) (|has| |#3| (-798 (-486)))) ELT)) (-3775 (((-696) $ |#2|) NIL T ELT) (((-696) $) 10 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3087 (($ (-1087 |#1|) |#3|) NIL T ELT) (($ (-1087 $) |#3|) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-471 |#3|)) NIL T ELT) (($ $ |#3| (-696)) NIL T ELT) (($ $ (-585 |#3|) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#3|) NIL T ELT)) (-2823 (((-471 |#3|) $) NIL T ELT) (((-696) $ |#3|) NIL T ELT) (((-585 (-696)) $ (-585 |#3|)) NIL T ELT)) (-1626 (($ (-1 (-471 |#3|) (-471 |#3|)) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1524 (((-1 $ (-696)) |#2|) NIL T ELT) (((-1 $ (-696)) $) NIL (|has| |#1| (-190)) ELT)) (-3085 (((-3 |#3| #1#) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1487 ((|#3| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1488 (((-85) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| |#3|) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-1486 (($ $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-823)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-585 |#3|) (-585 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-585 |#3|) (-585 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-190)) ELT) (($ $ (-585 |#2|) (-585 $)) NIL (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-585 |#2|) (-585 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3760 (($ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 |#3|) (-585 (-696))) NIL T ELT) (($ $ |#3| (-696)) NIL T ELT) (($ $ (-585 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-1490 (((-585 |#2|) $) NIL T ELT)) (-3952 (((-471 |#3|) $) NIL T ELT) (((-696) $ |#3|) NIL T ELT) (((-585 (-696)) $ (-585 |#3|)) NIL T ELT) (((-696) $ |#2|) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| |#1| (-555 (-802 (-330)))) (|has| |#3| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| |#1| (-555 (-802 (-486)))) (|has| |#3| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| |#1| (-555 (-475))) (|has| |#3| (-555 (-475)))) ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT) (($ $ |#3|) NIL (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1041 |#1| |#2|)) 32 T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-471 |#3|)) NIL T ELT) (($ $ |#3| (-696)) NIL T ELT) (($ $ (-585 |#3|) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-585 |#3|) (-585 (-696))) NIL T ELT) (($ $ |#3| (-696)) NIL T ELT) (($ $ (-585 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-226 |#1| |#2| |#3|) (-13 (-213 |#1| |#2| |#3| (-471 |#3|)) (-952 (-1041 |#1| |#2|))) (-963) (-758) (-228 |#2|)) (T -226)) -NIL -((-1523 (((-696) $) 37 T ELT)) (-3160 (((-3 |#2| "failed") $) 22 T ELT)) (-3159 ((|#2| $) 33 T ELT)) (-3761 (($ $ (-696)) 18 T ELT) (($ $) 14 T ELT)) (-3950 (((-774) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3059 (((-85) $ $) 26 T ELT)) (-2688 (((-85) $ $) 36 T ELT))) -(((-227 |#1| |#2|) (-10 -7 (-15 -1523 ((-696) |#1|)) (-15 -3950 (|#1| |#2|)) (-15 -3160 ((-3 |#2| "failed") |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3761 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-696))) (-15 -2688 ((-85) |#1| |#1|)) (-15 -3950 ((-774) |#1|)) (-15 -3059 ((-85) |#1| |#1|))) (-228 |#2|) (-758)) (T -227)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-1523 (((-696) $) 26 T ELT)) (-3834 ((|#1| $) 27 T ELT)) (-3160 (((-3 |#1| "failed") $) 31 T ELT)) (-3159 ((|#1| $) 32 T ELT)) (-3775 (((-696) $) 28 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-1524 (($ |#1| (-696)) 29 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3761 (($ $ (-696)) 35 T ELT) (($ $) 33 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2672 (($ $ (-696)) 36 T ELT) (($ $) 34 T ELT)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT))) -(((-228 |#1|) (-113) (-758)) (T -228)) -((-1524 (*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-228 *2)) (-4 *2 (-758)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-758)) (-5 *2 (-696)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-758)))) (-1523 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-758)) (-5 *2 (-696))))) -(-13 (-758) (-189) (-952 |t#1|) (-10 -8 (-15 -1524 ($ |t#1| (-696))) (-15 -3775 ((-696) $)) (-15 -3834 (|t#1| $)) (-15 -1523 ((-696) $)))) -(((-72) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-758) . T) ((-761) . T) ((-952 |#1|) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1526 (((-585 (-486)) $) 28 T ELT)) (-3952 (((-696) $) 26 T ELT)) (-3950 (((-774) $) 32 T ELT) (($ (-585 (-486))) 22 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1525 (($ (-696)) 29 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 11 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 18 T ELT))) -(((-229) (-13 (-758) (-10 -8 (-15 -3950 ($ (-585 (-486)))) (-15 -3952 ((-696) $)) (-15 -1526 ((-585 (-486)) $)) (-15 -1525 ($ (-696)))))) (T -229)) -((-3950 (*1 *1 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-229)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-229)))) (-1526 (*1 *2 *1) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-229)))) (-1525 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-229))))) -((-3495 ((|#2| |#2|) 77 T ELT)) (-3642 ((|#2| |#2|) 65 T ELT)) (-1555 (((-3 |#2| "failed") |#2| (-585 (-2 (|:| |func| |#2|) (|:| |pole| (-85))))) 123 T ELT)) (-3493 ((|#2| |#2|) 75 T ELT)) (-3641 ((|#2| |#2|) 63 T ELT)) (-3497 ((|#2| |#2|) 79 T ELT)) (-3640 ((|#2| |#2|) 67 T ELT)) (-3630 ((|#2|) 46 T ELT)) (-3598 (((-86) (-86)) 97 T ELT)) (-3946 ((|#2| |#2|) 61 T ELT)) (-1556 (((-85) |#2|) 146 T ELT)) (-1545 ((|#2| |#2|) 193 T ELT)) (-1533 ((|#2| |#2|) 169 T ELT)) (-1528 ((|#2|) 59 T ELT)) (-1527 ((|#2|) 58 T ELT)) (-1543 ((|#2| |#2|) 189 T ELT)) (-1531 ((|#2| |#2|) 165 T ELT)) (-1547 ((|#2| |#2|) 197 T ELT)) (-1535 ((|#2| |#2|) 173 T ELT)) (-1530 ((|#2| |#2|) 161 T ELT)) (-1529 ((|#2| |#2|) 163 T ELT)) (-1548 ((|#2| |#2|) 199 T ELT)) (-1536 ((|#2| |#2|) 175 T ELT)) (-1546 ((|#2| |#2|) 195 T ELT)) (-1534 ((|#2| |#2|) 171 T ELT)) (-1544 ((|#2| |#2|) 191 T ELT)) (-1532 ((|#2| |#2|) 167 T ELT)) (-1551 ((|#2| |#2|) 205 T ELT)) (-1539 ((|#2| |#2|) 181 T ELT)) (-1549 ((|#2| |#2|) 201 T ELT)) (-1537 ((|#2| |#2|) 177 T ELT)) (-1553 ((|#2| |#2|) 209 T ELT)) (-1541 ((|#2| |#2|) 185 T ELT)) (-1554 ((|#2| |#2|) 211 T ELT)) (-1542 ((|#2| |#2|) 187 T ELT)) (-1552 ((|#2| |#2|) 207 T ELT)) (-1540 ((|#2| |#2|) 183 T ELT)) (-1550 ((|#2| |#2|) 203 T ELT)) (-1538 ((|#2| |#2|) 179 T ELT)) (-3947 ((|#2| |#2|) 62 T ELT)) (-3498 ((|#2| |#2|) 80 T ELT)) (-3639 ((|#2| |#2|) 68 T ELT)) (-3496 ((|#2| |#2|) 78 T ELT)) (-3638 ((|#2| |#2|) 66 T ELT)) (-3494 ((|#2| |#2|) 76 T ELT)) (-3637 ((|#2| |#2|) 64 T ELT)) (-2256 (((-85) (-86)) 95 T ELT)) (-3501 ((|#2| |#2|) 83 T ELT)) (-3489 ((|#2| |#2|) 71 T ELT)) (-3499 ((|#2| |#2|) 81 T ELT)) (-3487 ((|#2| |#2|) 69 T ELT)) (-3503 ((|#2| |#2|) 85 T ELT)) (-3491 ((|#2| |#2|) 73 T ELT)) (-3504 ((|#2| |#2|) 86 T ELT)) (-3492 ((|#2| |#2|) 74 T ELT)) (-3502 ((|#2| |#2|) 84 T ELT)) (-3490 ((|#2| |#2|) 72 T ELT)) (-3500 ((|#2| |#2|) 82 T ELT)) (-3488 ((|#2| |#2|) 70 T ELT))) -(((-230 |#1| |#2|) (-10 -7 (-15 -3947 (|#2| |#2|)) (-15 -3946 (|#2| |#2|)) (-15 -3641 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3642 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -3490 (|#2| |#2|)) (-15 -3491 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3495 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -3500 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -3503 (|#2| |#2|)) (-15 -3504 (|#2| |#2|)) (-15 -3630 (|#2|)) (-15 -2256 ((-85) (-86))) (-15 -3598 ((-86) (-86))) (-15 -1527 (|#2|)) (-15 -1528 (|#2|)) (-15 -1529 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1552 (|#2| |#2|)) (-15 -1553 (|#2| |#2|)) (-15 -1554 (|#2| |#2|)) (-15 -1555 ((-3 |#2| "failed") |#2| (-585 (-2 (|:| |func| |#2|) (|:| |pole| (-85)))))) (-15 -1556 ((-85) |#2|))) (-497) (-13 (-364 |#1|) (-917))) (T -230)) -((-1556 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) (-4 *3 (-13 (-364 *4) (-917))))) (-1555 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-585 (-2 (|:| |func| *2) (|:| |pole| (-85))))) (-4 *2 (-13 (-364 *4) (-917))) (-4 *4 (-497)) (-5 *1 (-230 *4 *2)))) (-1554 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1553 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-1528 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-917))) (-5 *1 (-230 *3 *2)) (-4 *3 (-497)))) (-1527 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-917))) (-5 *1 (-230 *3 *2)) (-4 *3 (-497)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-230 *3 *4)) (-4 *4 (-13 (-364 *3) (-917))))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) (-4 *5 (-13 (-364 *4) (-917))))) (-3630 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-917))) (-5 *1 (-230 *3 *2)) (-4 *3 (-497)))) (-3504 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) (-3947 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) -((-1559 (((-3 |#2| "failed") (-585 (-552 |#2|)) |#2| (-1092)) 151 T ELT)) (-1561 ((|#2| (-350 (-486)) |#2|) 49 T ELT)) (-1560 ((|#2| |#2| (-552 |#2|)) 144 T ELT)) (-1557 (((-2 (|:| |func| |#2|) (|:| |kers| (-585 (-552 |#2|))) (|:| |vals| (-585 |#2|))) |#2| (-1092)) 143 T ELT)) (-1558 ((|#2| |#2| (-1092)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2446 ((|#2| |#2| (-1092)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) -(((-231 |#1| |#2|) (-10 -7 (-15 -2446 (|#2| |#2|)) (-15 -2446 (|#2| |#2| (-1092))) (-15 -1557 ((-2 (|:| |func| |#2|) (|:| |kers| (-585 (-552 |#2|))) (|:| |vals| (-585 |#2|))) |#2| (-1092))) (-15 -1558 (|#2| |#2|)) (-15 -1558 (|#2| |#2| (-1092))) (-15 -1559 ((-3 |#2| "failed") (-585 (-552 |#2|)) |#2| (-1092))) (-15 -1560 (|#2| |#2| (-552 |#2|))) (-15 -1561 (|#2| (-350 (-486)) |#2|))) (-13 (-497) (-952 (-486)) (-582 (-486))) (-13 (-27) (-1117) (-364 |#1|))) (T -231)) -((-1561 (*1 *2 *3 *2) (-12 (-5 *3 (-350 (-486))) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4))))) (-1560 (*1 *2 *2 *3) (-12 (-5 *3 (-552 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4))) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *4 *2)))) (-1559 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-585 (-552 *2))) (-5 *4 (-1092)) (-4 *2 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *5 *2)))) (-1558 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4))))) (-1558 (*1 *2 *2) (-12 (-4 *3 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *3))))) (-1557 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-585 (-552 *3))) (|:| |vals| (-585 *3)))) (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) (-2446 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4))))) (-2446 (*1 *2 *2) (-12 (-4 *3 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *3)))))) -((-2978 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3495 ((|#3| |#3|) 142 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3642 ((|#3| |#3|) 132 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3493 ((|#3| |#3|) 140 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3641 ((|#3| |#3|) 130 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3497 ((|#3| |#3|) 144 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3640 ((|#3| |#3|) 134 T ELT)) (-2961 (((-3 |#3| #1#) |#3| (-696)) 41 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3946 ((|#3| |#3|) 129 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3947 ((|#3| |#3|) 128 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3498 ((|#3| |#3|) 145 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3639 ((|#3| |#3|) 135 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3496 ((|#3| |#3|) 143 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3638 ((|#3| |#3|) 133 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3494 ((|#3| |#3|) 141 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3637 ((|#3| |#3|) 131 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3501 ((|#3| |#3|) 148 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3489 ((|#3| |#3|) 152 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3499 ((|#3| |#3|) 146 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3487 ((|#3| |#3|) 136 T ELT)) (-2986 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3503 ((|#3| |#3|) 150 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3491 ((|#3| |#3|) 138 T ELT)) (-2987 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3504 ((|#3| |#3|) 151 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3492 ((|#3| |#3|) 139 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3502 ((|#3| |#3|) 149 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3490 ((|#3| |#3|) 153 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3500 ((|#3| |#3|) 147 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3488 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-350 (-486))) 47 (|has| |#1| (-312)) ELT))) -(((-232 |#1| |#2| |#3|) (-13 (-898 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-350 (-486)))) |%noBranch|) (-15 -3947 (|#3| |#3|)) (-15 -3946 (|#3| |#3|)) (-15 -3641 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3642 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)) (-15 -3503 (|#3| |#3|)) (-15 -3504 (|#3| |#3|)))) (-38 (-350 (-486))) (-1174 |#1|) (-1145 |#1| |#2|)) (T -232)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-486))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1174 *4)) (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1145 *4 *5)))) (-3947 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4)))) (-3504 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1145 *3 *4))))) -((-2978 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3495 ((|#3| |#3|) 137 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3642 ((|#3| |#3|) 125 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3493 ((|#3| |#3|) 135 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3641 ((|#3| |#3|) 123 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3497 ((|#3| |#3|) 139 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3640 ((|#3| |#3|) 127 T ELT)) (-2961 (((-3 |#3| #1#) |#3| (-696)) 38 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3946 ((|#3| |#3|) 111 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3947 ((|#3| |#3|) 122 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3498 ((|#3| |#3|) 140 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3639 ((|#3| |#3|) 128 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3496 ((|#3| |#3|) 138 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3638 ((|#3| |#3|) 126 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3494 ((|#3| |#3|) 136 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3637 ((|#3| |#3|) 124 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3501 ((|#3| |#3|) 143 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3489 ((|#3| |#3|) 131 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3499 ((|#3| |#3|) 141 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3487 ((|#3| |#3|) 129 T ELT)) (-2986 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3503 ((|#3| |#3|) 145 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3491 ((|#3| |#3|) 133 T ELT)) (-2987 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3504 ((|#3| |#3|) 146 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3492 ((|#3| |#3|) 134 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3502 ((|#3| |#3|) 144 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3490 ((|#3| |#3|) 132 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3500 ((|#3| |#3|) 142 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3488 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-350 (-486))) 44 (|has| |#1| (-312)) ELT))) -(((-233 |#1| |#2| |#3| |#4|) (-13 (-898 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-350 (-486)))) |%noBranch|) (-15 -3947 (|#3| |#3|)) (-15 -3946 (|#3| |#3|)) (-15 -3641 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3642 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)) (-15 -3503 (|#3| |#3|)) (-15 -3504 (|#3| |#3|)))) (-38 (-350 (-486))) (-1143 |#1|) (-1166 |#1| |#2|) (-898 |#2|)) (T -233)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-486))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1143 *4)) (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1166 *4 *5)) (-4 *6 (-898 *5)))) (-3947 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) (-3504 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4))))) -((-1564 (((-85) $) 20 T ELT)) (-1566 (((-1097) $) 9 T ELT)) (-3572 (((-3 (-448) #1="failed") $) 15 T ELT)) (-3571 (((-3 (-585 $) #1#) $) NIL T ELT)) (-1563 (((-3 (-448) #1#) $) 21 T ELT)) (-1565 (((-3 (-1017) #1#) $) 19 T ELT)) (-3957 (((-85) $) 17 T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1562 (((-85) $) 10 T ELT))) -(((-234) (-13 (-554 (-774)) (-10 -8 (-15 -1566 ((-1097) $)) (-15 -3957 ((-85) $)) (-15 -1565 ((-3 (-1017) #1="failed") $)) (-15 -1564 ((-85) $)) (-15 -1563 ((-3 (-448) #1#) $)) (-15 -1562 ((-85) $)) (-15 -3572 ((-3 (-448) #1#) $)) (-15 -3571 ((-3 (-585 $) #1#) $))))) (T -234)) -((-1566 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-234)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1565 (*1 *2 *1) (|partial| -12 (-5 *2 (-1017)) (-5 *1 (-234)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1563 (*1 *2 *1) (|partial| -12 (-5 *2 (-448)) (-5 *1 (-234)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-3572 (*1 *2 *1) (|partial| -12 (-5 *2 (-448)) (-5 *1 (-234)))) (-3571 (*1 *2 *1) (|partial| -12 (-5 *2 (-585 (-234))) (-5 *1 (-234))))) -((-1568 (((-534) $) 10 T ELT)) (-1569 (((-524) $) 8 T ELT)) (-1567 (((-247) $) 12 T ELT)) (-1570 (($ (-524) (-534) (-247)) NIL T ELT)) (-3950 (((-774) $) 19 T ELT))) -(((-235) (-13 (-554 (-774)) (-10 -8 (-15 -1570 ($ (-524) (-534) (-247))) (-15 -1569 ((-524) $)) (-15 -1568 ((-534) $)) (-15 -1567 ((-247) $))))) (T -235)) -((-1570 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-524)) (-5 *3 (-534)) (-5 *4 (-247)) (-5 *1 (-235)))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-524)) (-5 *1 (-235)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-534)) (-5 *1 (-235)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-247)) (-5 *1 (-235))))) -((-3713 (($ (-1 (-85) |#2|) $) 24 T ELT)) (-1355 (($ $) 38 T ELT)) (-3408 (($ (-1 (-85) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3409 (($ |#2| $) 34 T ELT) (($ (-1 (-85) |#2|) $) 18 T ELT)) (-2859 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2306 (($ |#2| $ (-486)) 20 T ELT) (($ $ $ (-486)) 22 T ELT)) (-2307 (($ $ (-486)) 11 T ELT) (($ $ (-1148 (-486))) 14 T ELT)) (-3794 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3805 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-585 $)) NIL T ELT))) -(((-236 |#1| |#2|) (-10 -7 (-15 -2859 (|#1| |#1| |#1|)) (-15 -3408 (|#1| |#2| |#1|)) (-15 -2859 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3408 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3794 (|#1| |#1| |#1|)) (-15 -3794 (|#1| |#1| |#2|)) (-15 -2306 (|#1| |#1| |#1| (-486))) (-15 -2306 (|#1| |#2| |#1| (-486))) (-15 -2307 (|#1| |#1| (-1148 (-486)))) (-15 -2307 (|#1| |#1| (-486))) (-15 -3805 (|#1| (-585 |#1|))) (-15 -3805 (|#1| |#1| |#1|)) (-15 -3805 (|#1| |#2| |#1|)) (-15 -3805 (|#1| |#1| |#2|)) (-15 -3409 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3713 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3409 (|#1| |#2| |#1|)) (-15 -1355 (|#1| |#1|))) (-237 |#2|) (-1131)) (T -236)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) 35 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ (-486) |#1|) 47 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 83 T ELT)) (-3713 (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2370 (($ $) 81 (|has| |#1| (-72)) ELT)) (-1355 (($ $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ (-1 (-85) |#1|) $) 87 T ELT) (($ |#1| $) 82 (|has| |#1| (-72)) ELT)) (-3409 (($ |#1| $) 70 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 68 (|has| $ (-318 |#1|)) ELT)) (-1577 ((|#1| $ (-486) |#1|) 48 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 46 T ELT)) (-3617 (($ (-696) |#1|) 65 T ELT)) (-2202 (((-486) $) 38 (|has| (-486) (-758)) ELT)) (-2859 (($ (-1 (-85) |#1| |#1|) $ $) 84 T ELT) (($ $ $) 80 (|has| |#1| (-758)) ELT)) (-2203 (((-486) $) 39 (|has| (-486) (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3612 (($ |#1| $ (-486)) 86 T ELT) (($ $ $ (-486)) 85 T ELT)) (-2306 (($ |#1| $ (-486)) 57 T ELT) (($ $ $ (-486)) 56 T ELT)) (-2205 (((-585 (-486)) $) 41 T ELT)) (-2206 (((-85) (-486) $) 42 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 37 (|has| (-486) (-758)) ELT)) (-2201 (($ $ |#1|) 36 (|has| $ (-1037 |#1|)) ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) 43 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-486) |#1|) 45 T ELT) ((|#1| $ (-486)) 44 T ELT) (($ $ (-1148 (-486))) 66 T ELT)) (-1572 (($ $ (-486)) 89 T ELT) (($ $ (-1148 (-486))) 88 T ELT)) (-2307 (($ $ (-486)) 59 T ELT) (($ $ (-1148 (-486))) 58 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 72 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 67 T ELT)) (-3794 (($ $ |#1|) 91 T ELT) (($ $ $) 90 T ELT)) (-3805 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) -(((-237 |#1|) (-113) (-1131)) (T -237)) -((-3794 (*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)))) (-3794 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)))) (-1572 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) (-1572 (*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-486))) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) (-3408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) (-3612 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-237 *2)) (-4 *2 (-1131)))) (-3612 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) (-2859 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) (-1571 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) (-3408 (*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)) (-4 *2 (-72)))) (-2370 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)) (-4 *2 (-72)))) (-2859 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)) (-4 *2 (-758))))) -(-13 (-595 |t#1|) (-1037 |t#1|) (-10 -8 (-15 -3794 ($ $ |t#1|)) (-15 -3794 ($ $ $)) (-15 -1572 ($ $ (-486))) (-15 -1572 ($ $ (-1148 (-486)))) (-15 -3408 ($ (-1 (-85) |t#1|) $)) (-15 -3612 ($ |t#1| $ (-486))) (-15 -3612 ($ $ $ (-486))) (-15 -2859 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -1571 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3408 ($ |t#1| $)) (-15 -2370 ($ $))) |%noBranch|) (IF (|has| |t#1| (-758)) (-15 -2859 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 (-486) |#1|) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-540 (-486) |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) +((-3764 (*1 *1 *1 *2) (-12 (-4 *1 (-191)) (-5 *2 (-698)))) (-2675 (*1 *1 *1 *2) (-12 (-4 *1 (-191)) (-5 *2 (-698))))) +(-13 (-188 $) (-10 -8 (-15 -3764 ($ $ (-698))) (-15 -2675 ($ $ (-698))))) +(((-188 $) . T) ((-13) . T) ((-1133) . T)) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3764 (($ $ (-698)) 50 T ELT) (($ $) 48 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-698)) 51 T ELT) (($ $) 49 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-192) (-113)) (T -192)) +NIL +(-13 (-965) (-191)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-559 (-488)) . T) ((-556 (-776)) . T) ((-188 $) . T) ((-191) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 $) . T) ((-667) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 31 T ELT)) (-3730 (($) 30 T CONST)) (-3473 (((-3 $ "failed") $) 36 T ELT)) (-3192 (((-85) $) 28 T ELT)) (-1218 (((-85) $ $) 33 T ELT)) (-2415 (((-85) $) 38 T ELT)) (-2537 (($ $ $) 23 T ELT)) (-2863 (($ $ $) 22 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 29 T CONST)) (-2672 (($) 39 T CONST)) (-2572 (((-85) $ $) 21 T ELT)) (-2573 (((-85) $ $) 19 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 20 T ELT)) (-2691 (((-85) $ $) 18 T ELT)) (-3845 (($ $ $) 25 T ELT)) (** (($ $ (-834)) 40 T ELT) (($ $ (-698)) 37 T ELT)) (* (($ (-834) $) 26 T ELT) (($ (-698) $) 32 T ELT) (($ $ $) 41 T ELT))) +(((-193) (-113)) (T -193)) +NIL +(-13 (-720) (-1065)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-667) . T) ((-720) . T) ((-722) . T) ((-760) . T) ((-763) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-1470 (($) 12 T ELT) (($ (-587 |#2|)) NIL T ELT)) (-3406 (($ $) 14 T ELT)) (-3536 (($ (-587 |#2|)) 10 T ELT)) (-3953 (((-776) $) 21 T ELT))) +(((-194 |#1| |#2|) (-10 -7 (-15 -3953 ((-776) |#1|)) (-15 -1470 (|#1| (-587 |#2|))) (-15 -1470 (|#1|)) (-15 -3536 (|#1| (-587 |#2|))) (-15 -3406 (|#1| |#1|))) (-195 |#2|) (-1017)) (T -194)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1574 (($ (-1 (-85) |#1|) $) 42 (|has| $ (-320 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-320 |#1|)) ELT)) (-3730 (($) 6 T CONST)) (-1357 (($ $) 51 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-3411 (($ |#1| $) 44 (|has| $ (-320 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 43 (|has| $ (-320 |#1|)) ELT)) (-3412 (($ |#1| $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 48 (|has| $ (-320 |#1|)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-1278 ((|#1| $) 35 T ELT)) (-3615 (($ |#1| $) 36 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-1279 ((|#1| $) 37 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-1470 (($) 46 T ELT) (($ (-587 |#1|)) 45 T ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 52 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 47 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1280 (($ (-587 |#1|)) 38 T ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-195 |#1|) (-113) (-1017)) (T -195)) +((-1470 (*1 *1) (-12 (-4 *1 (-195 *2)) (-4 *2 (-1017)))) (-1470 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-4 *1 (-195 *3)))) (-3411 (*1 *1 *2 *1) (-12 (-4 *1 (-320 *2)) (-4 *1 (-195 *2)) (-4 *2 (-1017)))) (-3411 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-320 *3)) (-4 *1 (-195 *3)) (-4 *3 (-1017)))) (-1574 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-320 *3)) (-4 *1 (-195 *3)) (-4 *3 (-1017))))) +(-13 (-76 |t#1|) (-124 |t#1|) (-10 -8 (-15 -1470 ($)) (-15 -1470 ($ (-587 |t#1|))) (IF (|has| $ (-320 |t#1|)) (PROGN (-15 -3411 ($ |t#1| $)) (-15 -3411 ($ (-1 (-85) |t#1|) $)) (-15 -1574 ($ (-1 (-85) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-124 |#1|) . T) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-1017) |has| |#1| (-1017)) ((-1039 |#1|) . T) ((-1133) . T)) +((-1471 (((-2 (|:| |varOrder| (-587 (-1094))) (|:| |inhom| (-3 (-587 (-1183 (-698))) "failed")) (|:| |hom| (-587 (-1183 (-698))))) (-251 (-861 (-488)))) 42 T ELT))) +(((-196) (-10 -7 (-15 -1471 ((-2 (|:| |varOrder| (-587 (-1094))) (|:| |inhom| (-3 (-587 (-1183 (-698))) "failed")) (|:| |hom| (-587 (-1183 (-698))))) (-251 (-861 (-488))))))) (T -196)) +((-1471 (*1 *2 *3) (-12 (-5 *3 (-251 (-861 (-488)))) (-5 *2 (-2 (|:| |varOrder| (-587 (-1094))) (|:| |inhom| (-3 (-587 (-1183 (-698))) "failed")) (|:| |hom| (-587 (-1183 (-698)))))) (-5 *1 (-196))))) +((-3142 (((-698)) 56 T ELT)) (-2284 (((-2 (|:| |mat| (-634 |#3|)) (|:| |vec| (-1183 |#3|))) (-634 $) (-1183 $)) 53 T ELT) (((-634 |#3|) (-634 $)) 44 T ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL T ELT) (((-634 (-488)) (-634 $)) NIL T ELT)) (-3918 (((-107)) 62 T ELT)) (-3764 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-698)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094))) NIL T ELT) (($ $ (-1094)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $) NIL T ELT)) (-3953 (((-1183 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-776) $) NIL T ELT) (($ (-488)) 12 T ELT) (($ (-352 (-488))) NIL T ELT)) (-3132 (((-698)) 15 T CONST)) (-3956 (($ $ |#3|) 59 T ELT))) +(((-197 |#1| |#2| |#3|) (-10 -7 (-15 -3953 (|#1| (-352 (-488)))) (-15 -3953 (|#1| (-488))) (-15 -3764 (|#1| |#1|)) (-15 -3764 (|#1| |#1| (-698))) (-15 -3764 (|#1| |#1| (-1094))) (-15 -3764 (|#1| |#1| (-587 (-1094)))) (-15 -3764 (|#1| |#1| (-1094) (-698))) (-15 -3764 (|#1| |#1| (-587 (-1094)) (-587 (-698)))) (-15 -3953 ((-776) |#1|)) (-15 -3132 ((-698)) -3959) (-15 -2284 ((-634 (-488)) (-634 |#1|))) (-15 -2284 ((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 |#1|) (-1183 |#1|))) (-15 -3953 (|#1| |#3|)) (-15 -3764 (|#1| |#1| (-1 |#3| |#3|) (-698))) (-15 -3764 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2284 ((-634 |#3|) (-634 |#1|))) (-15 -2284 ((-2 (|:| |mat| (-634 |#3|)) (|:| |vec| (-1183 |#3|))) (-634 |#1|) (-1183 |#1|))) (-15 -3142 ((-698))) (-15 -3956 (|#1| |#1| |#3|)) (-15 -3918 ((-107))) (-15 -3953 ((-1183 |#3|) |#1|))) (-198 |#2| |#3|) (-698) (-1133)) (T -197)) +((-3918 (*1 *2) (-12 (-14 *4 (-698)) (-4 *5 (-1133)) (-5 *2 (-107)) (-5 *1 (-197 *3 *4 *5)) (-4 *3 (-198 *4 *5)))) (-3142 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1133)) (-5 *2 (-698)) (-5 *1 (-197 *3 *4 *5)) (-4 *3 (-198 *4 *5)))) (-3132 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1133)) (-5 *2 (-698)) (-5 *1 (-197 *3 *4 *5)) (-4 *3 (-198 *4 *5))))) +((-2574 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-3194 (((-85) $) 72 (|has| |#2| (-23)) ELT)) (-3713 (($ (-834)) 128 (|has| |#2| (-965)) ELT)) (-2203 (((-1189) $ (-488) (-488)) 35 (|has| $ (-1039 |#2|)) ELT)) (-2489 (($ $ $) 124 (|has| |#2| (-721)) ELT)) (-1316 (((-3 $ "failed") $ $) 75 (|has| |#2| (-104)) ELT)) (-3142 (((-698)) 113 (|has| |#2| (-322)) ELT)) (-3794 ((|#2| $ (-488) |#2|) 47 (|has| $ (-1039 |#2|)) ELT)) (-3730 (($) 6 T CONST)) (-3163 (((-3 (-488) #1="failed") $) 67 (-2568 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017))) ELT) (((-3 (-352 (-488)) #1#) $) 64 (-2568 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017))) ELT) (((-3 |#2| #1#) $) 61 (|has| |#2| (-1017)) ELT)) (-3162 (((-488) $) 66 (-2568 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017))) ELT) (((-352 (-488)) $) 63 (-2568 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017))) ELT) ((|#2| $) 62 (|has| |#2| (-1017)) ELT)) (-2284 (((-634 (-488)) (-634 $)) 110 (-2568 (|has| |#2| (-584 (-488))) (|has| |#2| (-965))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) 109 (-2568 (|has| |#2| (-584 (-488))) (|has| |#2| (-965))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 $) (-1183 $)) 108 (|has| |#2| (-965)) ELT) (((-634 |#2|) (-634 $)) 107 (|has| |#2| (-965)) ELT)) (-3848 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 141 (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 137 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 136 T ELT)) (-3473 (((-3 $ "failed") $) 87 (|has| |#2| (-965)) ELT)) (-3000 (($) 116 (|has| |#2| (-322)) ELT)) (-1580 ((|#2| $ (-488) |#2|) 48 (|has| $ (-1039 |#2|)) ELT)) (-3118 ((|#2| $ (-488)) 46 T ELT)) (-3192 (((-85) $) 123 (|has| |#2| (-721)) ELT)) (-1218 (((-85) $ $) 74 (|has| |#2| (-23)) ELT)) (-2415 (((-85) $) 85 (|has| |#2| (-965)) ELT)) (-2205 (((-488) $) 38 (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) 117 (|has| |#2| (-760)) ELT)) (-2614 (((-587 |#2|) $) 135 T ELT)) (-3251 (((-85) |#2| $) 140 (|has| |#2| (-72)) ELT)) (-2206 (((-488) $) 39 (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) 118 (|has| |#2| (-760)) ELT)) (-3849 (($ (-1 |#2| |#2|) $) 26 T ELT)) (-2015 (((-834) $) 115 (|has| |#2| (-322)) ELT)) (-2285 (((-634 (-488)) (-1183 $)) 112 (-2568 (|has| |#2| (-584 (-488))) (|has| |#2| (-965))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) 111 (-2568 (|has| |#2| (-584 (-488))) (|has| |#2| (-965))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-1183 $) $) 106 (|has| |#2| (-965)) ELT) (((-634 |#2|) (-1183 $)) 105 (|has| |#2| (-965)) ELT)) (-3248 (((-1077) $) 21 (|has| |#2| (-1017)) ELT)) (-2208 (((-587 (-488)) $) 41 T ELT)) (-2209 (((-85) (-488) $) 42 T ELT)) (-2405 (($ (-834)) 114 (|has| |#2| (-322)) ELT)) (-3249 (((-1037) $) 20 (|has| |#2| (-1017)) ELT)) (-3807 ((|#2| $) 37 (|has| (-488) (-760)) ELT)) (-1734 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 138 T ELT)) (-2204 (($ $ |#2|) 36 (|has| $ (-1039 |#2|)) ELT)) (-1736 (((-85) (-1 (-85) |#2|) $) 133 T ELT)) (-3774 (($ $ (-587 (-251 |#2|))) 25 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-251 |#2|)) 24 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ |#2| |#2|) 23 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) 22 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-2207 (((-85) |#2| $) 40 (-12 (|has| $ (-320 |#2|)) (|has| |#2| (-72))) ELT)) (-2210 (((-587 |#2|) $) 43 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#2| $ (-488) |#2|) 45 T ELT) ((|#2| $ (-488)) 44 T ELT)) (-3842 ((|#2| $ $) 127 (|has| |#2| (-965)) ELT)) (-1472 (($ (-1183 |#2|)) 129 T ELT)) (-3918 (((-107)) 126 (|has| |#2| (-314)) ELT)) (-3764 (($ $ (-698)) 103 (-2568 (|has| |#2| (-191)) (|has| |#2| (-965))) ELT) (($ $) 101 (-2568 (|has| |#2| (-191)) (|has| |#2| (-965))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 97 (-2568 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1094) (-698)) 96 (-2568 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-587 (-1094))) 95 (-2568 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1094)) 93 (-2568 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-965)) ELT) (($ $ (-1 |#2| |#2|) (-698)) 91 (|has| |#2| (-965)) ELT)) (-1735 (((-698) |#2| $) 139 (|has| |#2| (-72)) ELT) (((-698) (-1 (-85) |#2|) $) 134 T ELT)) (-3406 (($ $) 9 T ELT)) (-3953 (((-1183 |#2|) $) 130 T ELT) (($ (-488)) 68 (OR (-2568 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017))) (|has| |#2| (-965))) ELT) (($ (-352 (-488))) 65 (-2568 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017))) ELT) (($ |#2|) 60 (|has| |#2| (-1017)) ELT) (((-776) $) 16 (|has| |#2| (-556 (-776))) ELT)) (-3132 (((-698)) 88 (|has| |#2| (-965)) CONST)) (-1269 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#2|) $) 132 T ELT)) (-3131 (((-85) $ $) 83 (|has| |#2| (-965)) ELT)) (-2666 (($) 71 (|has| |#2| (-23)) CONST)) (-2672 (($) 84 (|has| |#2| (-965)) CONST)) (-2675 (($ $ (-698)) 104 (-2568 (|has| |#2| (-191)) (|has| |#2| (-965))) ELT) (($ $) 102 (-2568 (|has| |#2| (-191)) (|has| |#2| (-965))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 100 (-2568 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1094) (-698)) 99 (-2568 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-587 (-1094))) 98 (-2568 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1094)) 94 (-2568 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1 |#2| |#2|)) 90 (|has| |#2| (-965)) ELT) (($ $ (-1 |#2| |#2|) (-698)) 89 (|has| |#2| (-965)) ELT)) (-2572 (((-85) $ $) 119 (|has| |#2| (-760)) ELT)) (-2573 (((-85) $ $) 121 (|has| |#2| (-760)) ELT)) (-3062 (((-85) $ $) 17 (|has| |#2| (-72)) ELT)) (-2690 (((-85) $ $) 120 (|has| |#2| (-760)) ELT)) (-2691 (((-85) $ $) 122 (|has| |#2| (-760)) ELT)) (-3956 (($ $ |#2|) 125 (|has| |#2| (-314)) ELT)) (-3843 (($ $ $) 78 (|has| |#2| (-21)) ELT) (($ $) 77 (|has| |#2| (-21)) ELT)) (-3845 (($ $ $) 69 (|has| |#2| (-25)) ELT)) (** (($ $ (-698)) 86 (|has| |#2| (-965)) ELT) (($ $ (-834)) 81 (|has| |#2| (-965)) ELT)) (* (($ $ $) 82 (|has| |#2| (-965)) ELT) (($ $ |#2|) 80 (|has| |#2| (-667)) ELT) (($ |#2| $) 79 (|has| |#2| (-667)) ELT) (($ (-488) $) 76 (|has| |#2| (-21)) ELT) (($ (-698) $) 73 (|has| |#2| (-23)) ELT) (($ (-834) $) 70 (|has| |#2| (-25)) ELT)) (-3964 (((-698) $) 131 T ELT))) +(((-198 |#1| |#2|) (-113) (-698) (-1133)) (T -198)) +((-1472 (*1 *1 *2) (-12 (-5 *2 (-1183 *4)) (-4 *4 (-1133)) (-4 *1 (-198 *3 *4)))) (-3713 (*1 *1 *2) (-12 (-5 *2 (-834)) (-4 *1 (-198 *3 *4)) (-4 *4 (-965)) (-4 *4 (-1133)))) (-3842 (*1 *2 *1 *1) (-12 (-4 *1 (-198 *3 *2)) (-4 *2 (-1133)) (-4 *2 (-965))))) +(-13 (-542 (-488) |t#2|) (-320 |t#2|) (-556 (-1183 |t#2|)) (-10 -8 (-15 -1472 ($ (-1183 |t#2|))) (IF (|has| |t#2| (-1017)) (-6 (-357 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-965)) (PROGN (-6 (-82 |t#2| |t#2|)) (-6 (-186 |t#2|)) (-6 (-331 |t#2|)) (-15 -3713 ($ (-834))) (-15 -3842 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-104)) (-6 (-104)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-667)) (-6 (-586 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-322)) (-6 (-322)) |%noBranch|) (IF (|has| |t#2| (-148)) (-6 (-658 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3998)) (-6 -3998) |%noBranch|) (IF (|has| |t#2| (-760)) (-6 (-760)) |%noBranch|) (IF (|has| |t#2| (-721)) (-6 (-721)) |%noBranch|) (IF (|has| |t#2| (-314)) (-6 (-1191 |t#2|)) |%noBranch|))) +(((-21) OR (|has| |#2| (-965)) (|has| |#2| (-314)) (|has| |#2| (-148)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-965)) (|has| |#2| (-721)) (|has| |#2| (-314)) (|has| |#2| (-148)) (|has| |#2| (-104)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-965)) (|has| |#2| (-721)) (|has| |#2| (-314)) (|has| |#2| (-148)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1017)) (|has| |#2| (-965)) (|has| |#2| (-760)) (|has| |#2| (-721)) (|has| |#2| (-667)) (|has| |#2| (-322)) (|has| |#2| (-314)) (|has| |#2| (-148)) (|has| |#2| (-104)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-82 |#2| |#2|) OR (|has| |#2| (-965)) (|has| |#2| (-314)) (|has| |#2| (-148))) ((-104) OR (|has| |#2| (-965)) (|has| |#2| (-721)) (|has| |#2| (-314)) (|has| |#2| (-148)) (|has| |#2| (-104)) (|has| |#2| (-21))) ((-559 (-352 (-488))) -12 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017))) ((-559 (-488)) OR (|has| |#2| (-965)) (-12 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017)))) ((-559 |#2|) |has| |#2| (-1017)) ((-556 (-776)) OR (|has| |#2| (-1017)) (|has| |#2| (-965)) (|has| |#2| (-760)) (|has| |#2| (-721)) (|has| |#2| (-667)) (|has| |#2| (-322)) (|has| |#2| (-314)) (|has| |#2| (-148)) (|has| |#2| (-556 (-776))) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-556 (-1183 |#2|)) . T) ((-188 $) OR (-12 (|has| |#2| (-191)) (|has| |#2| (-965))) (-12 (|has| |#2| (-192)) (|has| |#2| (-965)))) ((-186 |#2|) |has| |#2| (-965)) ((-192) -12 (|has| |#2| (-192)) (|has| |#2| (-965))) ((-191) OR (-12 (|has| |#2| (-191)) (|has| |#2| (-965))) (-12 (|has| |#2| (-192)) (|has| |#2| (-965)))) ((-227 |#2|) |has| |#2| (-965)) ((-243 (-488) |#2|) . T) ((-245 (-488) |#2|) . T) ((-262 |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ((-322) |has| |#2| (-322)) ((-320 |#2|) . T) ((-331 |#2|) |has| |#2| (-965)) ((-357 |#2|) |has| |#2| (-1017)) ((-383 |#2|) . T) ((-432 |#2|) . T) ((-542 (-488) |#2|) . T) ((-459 |#2| |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ((-13) . T) ((-592 (-488)) OR (|has| |#2| (-965)) (|has| |#2| (-314)) (|has| |#2| (-148)) (|has| |#2| (-21))) ((-592 |#2|) OR (|has| |#2| (-965)) (|has| |#2| (-667)) (|has| |#2| (-314)) (|has| |#2| (-148))) ((-592 $) |has| |#2| (-965)) ((-594 (-488)) -12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965))) ((-594 |#2|) OR (|has| |#2| (-965)) (|has| |#2| (-314)) (|has| |#2| (-148))) ((-594 $) |has| |#2| (-965)) ((-586 |#2|) OR (|has| |#2| (-667)) (|has| |#2| (-314)) (|has| |#2| (-148))) ((-584 (-488)) -12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965))) ((-584 |#2|) |has| |#2| (-965)) ((-658 |#2|) OR (|has| |#2| (-314)) (|has| |#2| (-148))) ((-667) |has| |#2| (-965)) ((-720) |has| |#2| (-721)) ((-721) |has| |#2| (-721)) ((-722) |has| |#2| (-721)) ((-725) |has| |#2| (-721)) ((-760) OR (|has| |#2| (-760)) (|has| |#2| (-721))) ((-763) OR (|has| |#2| (-760)) (|has| |#2| (-721))) ((-810 $ (-1094)) OR (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) (-12 (|has| |#2| (-813 (-1094))) (|has| |#2| (-965)))) ((-813 (-1094)) -12 (|has| |#2| (-813 (-1094))) (|has| |#2| (-965))) ((-815 (-1094)) OR (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) (-12 (|has| |#2| (-813 (-1094))) (|has| |#2| (-965)))) ((-954 (-352 (-488))) -12 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017))) ((-954 (-488)) -12 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017))) ((-954 |#2|) |has| |#2| (-1017)) ((-967 |#2|) OR (|has| |#2| (-965)) (|has| |#2| (-667)) (|has| |#2| (-314)) (|has| |#2| (-148))) ((-972 |#2|) OR (|has| |#2| (-965)) (|has| |#2| (-314)) (|has| |#2| (-148))) ((-965) |has| |#2| (-965)) ((-974) |has| |#2| (-965)) ((-1029) |has| |#2| (-965)) ((-1065) |has| |#2| (-965)) ((-1017) OR (|has| |#2| (-1017)) (|has| |#2| (-965)) (|has| |#2| (-760)) (|has| |#2| (-721)) (|has| |#2| (-667)) (|has| |#2| (-322)) (|has| |#2| (-314)) (|has| |#2| (-148)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1133) . T) ((-1191 |#2|) |has| |#2| (-314))) +((-2574 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3194 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3713 (($ (-834)) 63 (|has| |#2| (-965)) ELT)) (-2203 (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 |#2|)) ELT)) (-2489 (($ $ $) 69 (|has| |#2| (-721)) ELT)) (-1316 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-104)) ELT)) (-3142 (((-698)) NIL (|has| |#2| (-322)) ELT)) (-3794 ((|#2| $ (-488) |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL (-12 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (-12 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1017)) ELT)) (-3162 (((-488) $) NIL (-12 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017))) ELT) (((-352 (-488)) $) NIL (-12 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017))) ELT) ((|#2| $) 29 (|has| |#2| (-1017)) ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (-12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (-12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 $) (-1183 $)) NIL (|has| |#2| (-965)) ELT) (((-634 |#2|) (-634 $)) NIL (|has| |#2| (-965)) ELT)) (-3848 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3473 (((-3 $ #1#) $) 59 (|has| |#2| (-965)) ELT)) (-3000 (($) NIL (|has| |#2| (-322)) ELT)) (-1580 ((|#2| $ (-488) |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-3118 ((|#2| $ (-488)) 57 T ELT)) (-3192 (((-85) $) NIL (|has| |#2| (-721)) ELT)) (-1218 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2415 (((-85) $) NIL (|has| |#2| (-965)) ELT)) (-2205 (((-488) $) 20 (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL (|has| |#2| (-760)) ELT)) (-2614 (((-587 |#2|) $) 14 T ELT)) (-3251 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2206 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#2| (-760)) ELT)) (-3849 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2015 (((-834) $) NIL (|has| |#2| (-322)) ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (-12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (-12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-1183 $) $) NIL (|has| |#2| (-965)) ELT) (((-634 |#2|) (-1183 $)) NIL (|has| |#2| (-965)) ELT)) (-3248 (((-1077) $) NIL (|has| |#2| (-1017)) ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) NIL T ELT)) (-2405 (($ (-834)) NIL (|has| |#2| (-322)) ELT)) (-3249 (((-1037) $) NIL (|has| |#2| (-1017)) ELT)) (-3807 ((|#2| $) NIL (|has| (-488) (-760)) ELT)) (-1734 (((-3 |#2| #1#) (-1 (-85) |#2|) $) NIL T ELT)) (-2204 (($ $ |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-1736 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-3774 (($ $ (-587 (-251 |#2|))) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-251 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#2| $) NIL (-12 (|has| $ (-320 |#2|)) (|has| |#2| (-72))) ELT)) (-2210 (((-587 |#2|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#2| $ (-488) |#2|) NIL T ELT) ((|#2| $ (-488)) 21 T ELT)) (-3842 ((|#2| $ $) NIL (|has| |#2| (-965)) ELT)) (-1472 (($ (-1183 |#2|)) 18 T ELT)) (-3918 (((-107)) NIL (|has| |#2| (-314)) ELT)) (-3764 (($ $ (-698)) NIL (-12 (|has| |#2| (-191)) (|has| |#2| (-965))) ELT) (($ $) NIL (-12 (|has| |#2| (-191)) (|has| |#2| (-965))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1094)) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-965)) ELT) (($ $ (-1 |#2| |#2|) (-698)) NIL (|has| |#2| (-965)) ELT)) (-1735 (((-698) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-698) (-1 (-85) |#2|) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3953 (((-1183 |#2|) $) 9 T ELT) (($ (-488)) NIL (OR (-12 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017))) (|has| |#2| (-965))) ELT) (($ (-352 (-488))) NIL (-12 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017))) ELT) (($ |#2|) 12 (|has| |#2| (-1017)) ELT) (((-776) $) NIL (|has| |#2| (-556 (-776))) ELT)) (-3132 (((-698)) NIL (|has| |#2| (-965)) CONST)) (-1269 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3131 (((-85) $ $) NIL (|has| |#2| (-965)) ELT)) (-2666 (($) 37 (|has| |#2| (-23)) CONST)) (-2672 (($) 41 (|has| |#2| (-965)) CONST)) (-2675 (($ $ (-698)) NIL (-12 (|has| |#2| (-191)) (|has| |#2| (-965))) ELT) (($ $) NIL (-12 (|has| |#2| (-191)) (|has| |#2| (-965))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1094)) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-965)) ELT) (($ $ (-1 |#2| |#2|) (-698)) NIL (|has| |#2| (-965)) ELT)) (-2572 (((-85) $ $) NIL (|has| |#2| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#2| (-760)) ELT)) (-3062 (((-85) $ $) 28 (|has| |#2| (-72)) ELT)) (-2690 (((-85) $ $) NIL (|has| |#2| (-760)) ELT)) (-2691 (((-85) $ $) 67 (|has| |#2| (-760)) ELT)) (-3956 (($ $ |#2|) NIL (|has| |#2| (-314)) ELT)) (-3843 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3845 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-698)) NIL (|has| |#2| (-965)) ELT) (($ $ (-834)) NIL (|has| |#2| (-965)) ELT)) (* (($ $ $) 47 (|has| |#2| (-965)) ELT) (($ $ |#2|) 45 (|has| |#2| (-667)) ELT) (($ |#2| $) 46 (|has| |#2| (-667)) ELT) (($ (-488) $) NIL (|has| |#2| (-21)) ELT) (($ (-698) $) NIL (|has| |#2| (-23)) ELT) (($ (-834) $) NIL (|has| |#2| (-25)) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-199 |#1| |#2|) (-198 |#1| |#2|) (-698) (-1133)) (T -199)) +NIL +((-3847 (((-199 |#1| |#3|) (-1 |#3| |#2| |#3|) (-199 |#1| |#2|) |#3|) 21 T ELT)) (-3848 ((|#3| (-1 |#3| |#2| |#3|) (-199 |#1| |#2|) |#3|) 23 T ELT)) (-3849 (((-199 |#1| |#3|) (-1 |#3| |#2|) (-199 |#1| |#2|)) 18 T ELT))) +(((-200 |#1| |#2| |#3|) (-10 -7 (-15 -3847 ((-199 |#1| |#3|) (-1 |#3| |#2| |#3|) (-199 |#1| |#2|) |#3|)) (-15 -3848 (|#3| (-1 |#3| |#2| |#3|) (-199 |#1| |#2|) |#3|)) (-15 -3849 ((-199 |#1| |#3|) (-1 |#3| |#2|) (-199 |#1| |#2|)))) (-698) (-1133) (-1133)) (T -200)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-199 *5 *6)) (-14 *5 (-698)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-199 *5 *7)) (-5 *1 (-200 *5 *6 *7)))) (-3848 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-199 *5 *6)) (-14 *5 (-698)) (-4 *6 (-1133)) (-4 *2 (-1133)) (-5 *1 (-200 *5 *6 *2)))) (-3847 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-199 *6 *7)) (-14 *6 (-698)) (-4 *7 (-1133)) (-4 *5 (-1133)) (-5 *2 (-199 *6 *5)) (-5 *1 (-200 *6 *7 *5))))) +((-1476 (((-488) (-587 (-1077))) 36 T ELT) (((-488) (-1077)) 29 T ELT)) (-1475 (((-1189) (-587 (-1077))) 40 T ELT) (((-1189) (-1077)) 39 T ELT)) (-1473 (((-1077)) 16 T ELT)) (-1474 (((-1077) (-488) (-1077)) 23 T ELT)) (-3779 (((-587 (-1077)) (-587 (-1077)) (-488) (-1077)) 37 T ELT) (((-1077) (-1077) (-488) (-1077)) 35 T ELT)) (-2626 (((-587 (-1077)) (-587 (-1077))) 15 T ELT) (((-587 (-1077)) (-1077)) 11 T ELT))) +(((-201) (-10 -7 (-15 -2626 ((-587 (-1077)) (-1077))) (-15 -2626 ((-587 (-1077)) (-587 (-1077)))) (-15 -1473 ((-1077))) (-15 -1474 ((-1077) (-488) (-1077))) (-15 -3779 ((-1077) (-1077) (-488) (-1077))) (-15 -3779 ((-587 (-1077)) (-587 (-1077)) (-488) (-1077))) (-15 -1475 ((-1189) (-1077))) (-15 -1475 ((-1189) (-587 (-1077)))) (-15 -1476 ((-488) (-1077))) (-15 -1476 ((-488) (-587 (-1077)))))) (T -201)) +((-1476 (*1 *2 *3) (-12 (-5 *3 (-587 (-1077))) (-5 *2 (-488)) (-5 *1 (-201)))) (-1476 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-488)) (-5 *1 (-201)))) (-1475 (*1 *2 *3) (-12 (-5 *3 (-587 (-1077))) (-5 *2 (-1189)) (-5 *1 (-201)))) (-1475 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-201)))) (-3779 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-587 (-1077))) (-5 *3 (-488)) (-5 *4 (-1077)) (-5 *1 (-201)))) (-3779 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1077)) (-5 *3 (-488)) (-5 *1 (-201)))) (-1474 (*1 *2 *3 *2) (-12 (-5 *2 (-1077)) (-5 *3 (-488)) (-5 *1 (-201)))) (-1473 (*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-201)))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-201)))) (-2626 (*1 *2 *3) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-201)) (-5 *3 (-1077))))) +((** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) 18 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-352 (-488)) $) 25 T ELT) (($ $ (-352 (-488))) NIL T ELT))) +(((-202 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-488))) (-15 * (|#1| |#1| (-352 (-488)))) (-15 * (|#1| (-352 (-488)) |#1|)) (-15 ** (|#1| |#1| (-698))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-834))) (-15 * (|#1| (-488) |#1|)) (-15 * (|#1| (-698) |#1|)) (-15 * (|#1| (-834) |#1|))) (-203)) (T -202)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 55 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ (-352 (-488))) 59 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 56 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-352 (-488)) $) 58 T ELT) (($ $ (-352 (-488))) 57 T ELT))) +(((-203) (-113)) (T -203)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-203)) (-5 *2 (-488)))) (-2490 (*1 *1 *1) (-4 *1 (-203)))) +(-13 (-248) (-38 (-352 (-488))) (-10 -8 (-15 ** ($ $ (-488))) (-15 -2490 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-352 (-488))) . T) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) . T) ((-82 $ $) . T) ((-104) . T) ((-559 (-352 (-488))) . T) ((-559 (-488)) . T) ((-556 (-776)) . T) ((-248) . T) ((-13) . T) ((-592 (-352 (-488))) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 (-352 (-488))) . T) ((-594 $) . T) ((-586 (-352 (-488))) . T) ((-658 (-352 (-488))) . T) ((-667) . T) ((-967 (-352 (-488))) . T) ((-967 $) . T) ((-972 (-352 (-488))) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3408 ((|#1| $) 43 T ELT)) (-3803 (($ $) 54 T ELT)) (-3031 ((|#1| $ |#1|) 34 (|has| $ (-1039 |#1|)) ELT)) (-1478 (($ $ $) 50 (|has| $ (-1039 |#1|)) ELT)) (-1477 (($ $ $) 49 (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1039 |#1|)) ELT)) (-3032 (($ $ (-587 $)) 36 (|has| $ (-1039 |#1|)) ELT)) (-3730 (($) 6 T CONST)) (-1480 (($ $) 53 T ELT)) (-3037 (((-587 $) $) 45 T ELT)) (-3033 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-1479 (($ $) 52 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3036 (((-587 |#1|) $) 40 T ELT)) (-3533 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-3804 ((|#1| $) 56 T ELT)) (-3184 (($ $) 55 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#1| $ #1#) 42 T ELT)) (-3035 (((-488) $ $) 39 T ELT)) (-3639 (((-85) $) 41 T ELT)) (-3406 (($ $) 9 T ELT)) (-3797 (($ $ $) 51 (|has| $ (-1039 |#1|)) ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-3528 (((-587 $) $) 46 T ELT)) (-3034 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-204 |#1|) (-113) (-1133)) (T -204)) +((-3804 (*1 *2 *1) (-12 (-4 *1 (-204 *2)) (-4 *2 (-1133)))) (-3184 (*1 *1 *1) (-12 (-4 *1 (-204 *2)) (-4 *2 (-1133)))) (-3803 (*1 *1 *1) (-12 (-4 *1 (-204 *2)) (-4 *2 (-1133)))) (-1480 (*1 *1 *1) (-12 (-4 *1 (-204 *2)) (-4 *2 (-1133)))) (-1479 (*1 *1 *1) (-12 (-4 *1 (-204 *2)) (-4 *2 (-1133)))) (-3797 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-204 *2)) (-4 *2 (-1133)))) (-1478 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-204 *2)) (-4 *2 (-1133)))) (-1477 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-204 *2)) (-4 *2 (-1133))))) +(-13 (-927 |t#1|) (-10 -8 (-15 -3804 (|t#1| $)) (-15 -3184 ($ $)) (-15 -3803 ($ $)) (-15 -1480 ($ $)) (-15 -1479 ($ $)) (IF (|has| $ (-1039 |t#1|)) (PROGN (-15 -3797 ($ $ $)) (-15 -1478 ($ $ $)) (-15 -1477 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-927 |#1|) . T) ((-1017) |has| |#1| (-1017)) ((-1133) . T)) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3408 ((|#1| $) NIL T ELT)) (-3801 ((|#1| $) NIL T ELT)) (-3803 (($ $) NIL T ELT)) (-2203 (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 |#1|)) ELT)) (-3791 (($ $ (-488)) NIL (|has| $ (-1039 |#1|)) ELT)) (-1740 (((-85) $) NIL (|has| |#1| (-760)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1738 (($ $) NIL (-12 (|has| $ (-1039 |#1|)) (|has| |#1| (-760))) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1039 |#1|)) ELT)) (-2915 (($ $) 10 (|has| |#1| (-760)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3448 (((-85) $ (-698)) NIL T ELT)) (-3031 ((|#1| $ |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3793 (($ $ $) NIL (|has| $ (-1039 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3795 ((|#1| $ |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1039 |#1|)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-1039 |#1|)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-1039 |#1|)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-1150 (-488)) |#1|) NIL (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-488) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3032 (($ $ (-587 $)) NIL (|has| $ (-1039 |#1|)) ELT)) (-1574 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3716 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3802 ((|#1| $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2302 (($ $) NIL (|has| $ (-1039 |#1|)) ELT)) (-2303 (($ $) NIL T ELT)) (-3805 (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-2373 (($ $) NIL (|has| |#1| (-72)) ELT)) (-1357 (($ $) 7 (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-3411 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3412 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1580 ((|#1| $ (-488) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-488)) NIL T ELT)) (-3449 (((-85) $) NIL T ELT)) (-3425 (((-488) |#1| $ (-488)) NIL (|has| |#1| (-72)) ELT) (((-488) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-488) (-1 (-85) |#1|) $) NIL T ELT)) (-3037 (((-587 $) $) NIL T ELT)) (-3033 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3620 (($ (-698) |#1|) NIL T ELT)) (-3725 (((-85) $ (-698)) NIL T ELT)) (-2205 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-2862 (($ $ $) NIL (|has| |#1| (-760)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3524 (($ $ $) NIL (|has| |#1| (-760)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2614 (((-587 |#1|) $) NIL T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2206 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3540 (($ |#1|) NIL T ELT)) (-3722 (((-85) $ (-698)) NIL T ELT)) (-3036 (((-587 |#1|) $) NIL T ELT)) (-3533 (((-85) $) NIL T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-3804 ((|#1| $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-3615 (($ $ $ (-488)) NIL T ELT) (($ |#1| $ (-488)) NIL T ELT)) (-2309 (($ $ $ (-488)) NIL T ELT) (($ |#1| $ (-488)) NIL T ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) NIL T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-3807 ((|#1| $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2204 (($ $ |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3450 (((-85) $) NIL T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1150 (-488))) NIL T ELT) ((|#1| $ (-488)) NIL T ELT) ((|#1| $ (-488) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-698) $ "count") 16 T ELT)) (-3035 (((-488) $ $) NIL T ELT)) (-1575 (($ $ (-1150 (-488))) NIL T ELT) (($ $ (-488)) NIL T ELT)) (-2310 (($ $ (-1150 (-488))) NIL T ELT) (($ $ (-488)) NIL T ELT)) (-1481 (($ (-587 |#1|)) 22 T ELT)) (-3639 (((-85) $) NIL T ELT)) (-3798 (($ $) NIL T ELT)) (-3796 (($ $) NIL (|has| $ (-1039 |#1|)) ELT)) (-3799 (((-698) $) NIL T ELT)) (-3800 (($ $) NIL T ELT)) (-1735 (((-698) (-1 (-85) |#1|) $) NIL T ELT) (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1739 (($ $ $ (-488)) NIL (|has| $ (-1039 |#1|)) ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) NIL (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) NIL T ELT)) (-3797 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3808 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-587 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3953 (($ (-587 |#1|)) 17 T ELT) (((-587 |#1|) $) 18 T ELT) (((-776) $) 21 (|has| |#1| (-556 (-776))) ELT)) (-3528 (((-587 $) $) NIL T ELT)) (-3034 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2572 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2690 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3964 (((-698) $) 14 T ELT))) +(((-205 |#1|) (-13 (-612 |#1|) (-433 (-587 |#1|)) (-10 -8 (-15 -1481 ($ (-587 |#1|))) (-15 -3806 ($ $ "unique")) (-15 -3806 ($ $ "sort")) (-15 -3806 ((-698) $ "count")))) (-760)) (T -205)) +((-1481 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-760)) (-5 *1 (-205 *3)))) (-3806 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-205 *3)) (-4 *3 (-760)))) (-3806 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-205 *3)) (-4 *3 (-760)))) (-3806 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-698)) (-5 *1 (-205 *4)) (-4 *4 (-760))))) +((-1482 (((-3 (-698) "failed") |#1| |#1| (-698)) 40 T ELT))) +(((-206 |#1|) (-10 -7 (-15 -1482 ((-3 (-698) "failed") |#1| |#1| (-698)))) (-13 (-667) (-322) (-10 -7 (-15 ** (|#1| |#1| (-488)))))) (T -206)) +((-1482 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-698)) (-4 *3 (-13 (-667) (-322) (-10 -7 (-15 ** (*3 *3 (-488)))))) (-5 *1 (-206 *3))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-1218 (((-85) $ $) 20 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3764 (($ $) 60 (|has| |#1| (-191)) ELT) (($ $ (-698)) 58 (|has| |#1| (-191)) ELT) (($ $ (-1094)) 56 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) 54 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) 53 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 52 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1 |#1| |#1|) (-698)) 46 T ELT) (($ $ (-1 |#1| |#1|)) 45 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-2675 (($ $) 59 (|has| |#1| (-191)) ELT) (($ $ (-698)) 57 (|has| |#1| (-191)) ELT) (($ $ (-1094)) 55 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) 51 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) 50 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 49 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1 |#1| |#1|) (-698)) 48 T ELT) (($ $ (-1 |#1| |#1|)) 47 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-207 |#1|) (-113) (-965)) (T -207)) +NIL +(-13 (-82 |t#1| |t#1|) (-227 |t#1|) (-10 -7 (IF (|has| |t#1| (-191)) (-6 (-189 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-815 (-1094))) (-6 (-812 |t#1| (-1094))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-776)) . T) ((-188 $) |has| |#1| (-191)) ((-189 |#1|) |has| |#1| (-191)) ((-191) |has| |#1| (-191)) ((-227 |#1|) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-594 |#1|) . T) ((-586 |#1|) OR (-12 (|has| |#1| (-148)) (|has| |#1| (-815 (-1094)))) (-12 (|has| |#1| (-148)) (|has| |#1| (-191)))) ((-658 |#1|) OR (-12 (|has| |#1| (-148)) (|has| |#1| (-815 (-1094)))) (-12 (|has| |#1| (-148)) (|has| |#1| (-191)))) ((-810 $ (-1094)) |has| |#1| (-815 (-1094))) ((-812 |#1| (-1094)) |has| |#1| (-815 (-1094))) ((-815 (-1094)) |has| |#1| (-815 (-1094))) ((-967 |#1|) . T) ((-972 |#1|) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3087 (((-587 (-777 |#1|)) $) NIL T ELT)) (-3089 (((-1089 $) $ (-777 |#1|)) NIL T ELT) (((-1089 |#2|) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#2| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#2| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#2| (-499)) ELT)) (-2825 (((-698) $) NIL T ELT) (((-698) $ (-587 (-777 |#1|))) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-3781 (($ $) NIL (|has| |#2| (-395)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#2| (-395)) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#2| (-954 (-352 (-488)))) ELT) (((-3 (-488) #1#) $) NIL (|has| |#2| (-954 (-488))) ELT) (((-3 (-777 |#1|) #1#) $) NIL T ELT)) (-3162 ((|#2| $) NIL T ELT) (((-352 (-488)) $) NIL (|has| |#2| (-954 (-352 (-488)))) ELT) (((-488) $) NIL (|has| |#2| (-954 (-488))) ELT) (((-777 |#1|) $) NIL T ELT)) (-3762 (($ $ $ (-777 |#1|)) NIL (|has| |#2| (-148)) ELT)) (-1945 (($ $ (-587 (-488))) NIL T ELT)) (-3965 (($ $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#2|) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3509 (($ $) NIL (|has| |#2| (-395)) ELT) (($ $ (-777 |#1|)) NIL (|has| |#2| (-395)) ELT)) (-2824 (((-587 $) $) NIL T ELT)) (-3729 (((-85) $) NIL (|has| |#2| (-825)) ELT)) (-1628 (($ $ |#2| (-199 (-3964 |#1|) (-698)) $) NIL T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (-12 (|has| (-777 |#1|) (-800 (-332))) (|has| |#2| (-800 (-332)))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (-12 (|has| (-777 |#1|) (-800 (-488))) (|has| |#2| (-800 (-488)))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2425 (((-698) $) NIL T ELT)) (-3090 (($ (-1089 |#2|) (-777 |#1|)) NIL T ELT) (($ (-1089 $) (-777 |#1|)) NIL T ELT)) (-2827 (((-587 $) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#2| (-199 (-3964 |#1|) (-698))) NIL T ELT) (($ $ (-777 |#1|) (-698)) NIL T ELT) (($ $ (-587 (-777 |#1|)) (-587 (-698))) NIL T ELT)) (-3769 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $ (-777 |#1|)) NIL T ELT)) (-2826 (((-199 (-3964 |#1|) (-698)) $) NIL T ELT) (((-698) $ (-777 |#1|)) NIL T ELT) (((-587 (-698)) $ (-587 (-777 |#1|))) NIL T ELT)) (-1629 (($ (-1 (-199 (-3964 |#1|) (-698)) (-199 (-3964 |#1|) (-698))) $) NIL T ELT)) (-3849 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3088 (((-3 (-777 |#1|) #1#) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-1183 $) $) NIL T ELT) (((-634 |#2|) (-1183 $)) NIL T ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#2| $) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#2| (-395)) ELT) (($ $ $) NIL (|has| |#2| (-395)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2829 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2828 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2830 (((-3 (-2 (|:| |var| (-777 |#1|)) (|:| -2406 (-698))) #1#) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1805 (((-85) $) NIL T ELT)) (-1804 ((|#2| $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#2| (-395)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#2| (-395)) ELT) (($ $ $) NIL (|has| |#2| (-395)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#2| (-825)) ELT)) (-3472 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-499)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-499)) ELT)) (-3774 (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ (-777 |#1|) |#2|) NIL T ELT) (($ $ (-587 (-777 |#1|)) (-587 |#2|)) NIL T ELT) (($ $ (-777 |#1|) $) NIL T ELT) (($ $ (-587 (-777 |#1|)) (-587 $)) NIL T ELT)) (-3763 (($ $ (-777 |#1|)) NIL (|has| |#2| (-148)) ELT)) (-3764 (($ $ (-587 (-777 |#1|)) (-587 (-698))) NIL T ELT) (($ $ (-777 |#1|) (-698)) NIL T ELT) (($ $ (-587 (-777 |#1|))) NIL T ELT) (($ $ (-777 |#1|)) NIL T ELT)) (-3955 (((-199 (-3964 |#1|) (-698)) $) NIL T ELT) (((-698) $ (-777 |#1|)) NIL T ELT) (((-587 (-698)) $ (-587 (-777 |#1|))) NIL T ELT)) (-3978 (((-804 (-332)) $) NIL (-12 (|has| (-777 |#1|) (-557 (-804 (-332)))) (|has| |#2| (-557 (-804 (-332))))) ELT) (((-804 (-488)) $) NIL (-12 (|has| (-777 |#1|) (-557 (-804 (-488)))) (|has| |#2| (-557 (-804 (-488))))) ELT) (((-477) $) NIL (-12 (|has| (-777 |#1|) (-557 (-477))) (|has| |#2| (-557 (-477)))) ELT)) (-2823 ((|#2| $) NIL (|has| |#2| (-395)) ELT) (($ $ (-777 |#1|)) NIL (|has| |#2| (-395)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-825))) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-777 |#1|)) NIL T ELT) (($ (-352 (-488))) NIL (OR (|has| |#2| (-38 (-352 (-488)))) (|has| |#2| (-954 (-352 (-488))))) ELT) (($ $) NIL (|has| |#2| (-499)) ELT)) (-3823 (((-587 |#2|) $) NIL T ELT)) (-3683 ((|#2| $ (-199 (-3964 |#1|) (-698))) NIL T ELT) (($ $ (-777 |#1|) (-698)) NIL T ELT) (($ $ (-587 (-777 |#1|)) (-587 (-698))) NIL T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-825))) (|has| |#2| (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1627 (($ $ $ (-698)) NIL (|has| |#2| (-148)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL (|has| |#2| (-499)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $ (-587 (-777 |#1|)) (-587 (-698))) NIL T ELT) (($ $ (-777 |#1|) (-698)) NIL T ELT) (($ $ (-587 (-777 |#1|))) NIL T ELT) (($ $ (-777 |#1|)) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#2|) NIL (|has| |#2| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL (|has| |#2| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) NIL (|has| |#2| (-38 (-352 (-488)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-208 |#1| |#2|) (-13 (-865 |#2| (-199 (-3964 |#1|) (-698)) (-777 |#1|)) (-10 -8 (-15 -1945 ($ $ (-587 (-488)))))) (-587 (-1094)) (-965)) (T -208)) +((-1945 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-208 *3 *4)) (-14 *3 (-587 (-1094))) (-4 *4 (-965))))) +((-2574 (((-85) $ $) NIL T ELT)) (-1483 (((-1189) $) 17 T ELT)) (-1485 (((-160 (-210)) $) 11 T ELT)) (-1484 (($ (-160 (-210))) 12 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1486 (((-210) $) 7 T ELT)) (-3953 (((-776) $) 9 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 15 T ELT))) +(((-209) (-13 (-1017) (-10 -8 (-15 -1486 ((-210) $)) (-15 -1485 ((-160 (-210)) $)) (-15 -1484 ($ (-160 (-210)))) (-15 -1483 ((-1189) $))))) (T -209)) +((-1486 (*1 *2 *1) (-12 (-5 *2 (-210)) (-5 *1 (-209)))) (-1485 (*1 *2 *1) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-209)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-209)))) (-1483 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-209))))) +((-2574 (((-85) $ $) NIL T ELT)) (-1428 (((-587 (-778)) $) NIL T ELT)) (-3548 (((-450) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1430 (((-163) $) NIL T ELT)) (-2639 (((-85) $ (-450)) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1487 (((-284) $) 7 T ELT)) (-1429 (((-587 (-85)) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (((-159) $) 8 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2527 (((-55) $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-210) (-13 (-162) (-556 (-159)) (-10 -8 (-15 -1487 ((-284) $))))) (T -210)) +((-1487 (*1 *2 *1) (-12 (-5 *2 (-284)) (-5 *1 (-210))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3806 (((-1099) $ (-698)) 14 T ELT)) (-3953 (((-776) $) 20 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 17 T ELT)) (-3964 (((-698) $) 11 T ELT))) +(((-211) (-13 (-1017) (-243 (-698) (-1099)) (-10 -8 (-15 -3964 ((-698) $))))) (T -211)) +((-3964 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-211))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3713 (($ (-834)) NIL (|has| |#4| (-965)) ELT)) (-2203 (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 |#4|)) ELT)) (-2489 (($ $ $) NIL (|has| |#4| (-721)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3142 (((-698)) NIL (|has| |#4| (-322)) ELT)) (-3794 ((|#4| $ (-488) |#4|) NIL (|has| $ (-1039 |#4|)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1017)) ELT) (((-3 (-488) #1#) $) NIL (-12 (|has| |#4| (-954 (-488))) (|has| |#4| (-1017))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (-12 (|has| |#4| (-954 (-352 (-488)))) (|has| |#4| (-1017))) ELT)) (-3162 ((|#4| $) NIL (|has| |#4| (-1017)) ELT) (((-488) $) NIL (-12 (|has| |#4| (-954 (-488))) (|has| |#4| (-1017))) ELT) (((-352 (-488)) $) NIL (-12 (|has| |#4| (-954 (-352 (-488)))) (|has| |#4| (-1017))) ELT)) (-2284 (((-2 (|:| |mat| (-634 |#4|)) (|:| |vec| (-1183 |#4|))) (-634 $) (-1183 $)) NIL (|has| |#4| (-965)) ELT) (((-634 |#4|) (-634 $)) NIL (|has| |#4| (-965)) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (-12 (|has| |#4| (-584 (-488))) (|has| |#4| (-965))) ELT) (((-634 (-488)) (-634 $)) NIL (-12 (|has| |#4| (-584 (-488))) (|has| |#4| (-965))) ELT)) (-3848 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL (|has| |#4| (-965)) ELT)) (-3000 (($) NIL (|has| |#4| (-322)) ELT)) (-1580 ((|#4| $ (-488) |#4|) NIL (|has| $ (-1039 |#4|)) ELT)) (-3118 ((|#4| $ (-488)) NIL T ELT)) (-3192 (((-85) $) NIL (|has| |#4| (-721)) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL (|has| |#4| (-965)) ELT)) (-2205 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL (|has| |#4| (-760)) ELT)) (-2614 (((-587 |#4|) $) NIL T ELT)) (-3251 (((-85) |#4| $) NIL (|has| |#4| (-72)) ELT)) (-2206 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#4| (-760)) ELT)) (-3849 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2015 (((-834) $) NIL (|has| |#4| (-322)) ELT)) (-2285 (((-2 (|:| |mat| (-634 |#4|)) (|:| |vec| (-1183 |#4|))) (-1183 $) $) NIL (|has| |#4| (-965)) ELT) (((-634 |#4|) (-1183 $)) NIL (|has| |#4| (-965)) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (-12 (|has| |#4| (-584 (-488))) (|has| |#4| (-965))) ELT) (((-634 (-488)) (-1183 $)) NIL (-12 (|has| |#4| (-584 (-488))) (|has| |#4| (-965))) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) NIL T ELT)) (-2405 (($ (-834)) NIL (|has| |#4| (-322)) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3807 ((|#4| $) NIL (|has| (-488) (-760)) ELT)) (-1734 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-2204 (($ $ |#4|) NIL (|has| $ (-1039 |#4|)) ELT)) (-1736 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#4|))) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-251 |#4|)) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-587 |#4|) (-587 |#4|)) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#4| $) NIL (-12 (|has| $ (-320 |#4|)) (|has| |#4| (-72))) ELT)) (-2210 (((-587 |#4|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#4| $ (-488) |#4|) NIL T ELT) ((|#4| $ (-488)) 12 T ELT)) (-3842 ((|#4| $ $) NIL (|has| |#4| (-965)) ELT)) (-1472 (($ (-1183 |#4|)) NIL T ELT)) (-3918 (((-107)) NIL (|has| |#4| (-314)) ELT)) (-3764 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-965)) ELT) (($ $ (-1 |#4| |#4|) (-698)) NIL (|has| |#4| (-965)) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (OR (-12 (|has| |#4| (-813 (-1094))) (|has| |#4| (-965))) (-12 (|has| |#4| (-815 (-1094))) (|has| |#4| (-965)))) ELT) (($ $ (-1094) (-698)) NIL (OR (-12 (|has| |#4| (-813 (-1094))) (|has| |#4| (-965))) (-12 (|has| |#4| (-815 (-1094))) (|has| |#4| (-965)))) ELT) (($ $ (-587 (-1094))) NIL (OR (-12 (|has| |#4| (-813 (-1094))) (|has| |#4| (-965))) (-12 (|has| |#4| (-815 (-1094))) (|has| |#4| (-965)))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| |#4| (-813 (-1094))) (|has| |#4| (-965))) (-12 (|has| |#4| (-815 (-1094))) (|has| |#4| (-965)))) ELT) (($ $ (-698)) NIL (OR (-12 (|has| |#4| (-192)) (|has| |#4| (-965))) (-12 (|has| |#4| (-191)) (|has| |#4| (-965)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-192)) (|has| |#4| (-965))) (-12 (|has| |#4| (-191)) (|has| |#4| (-965)))) ELT)) (-1735 (((-698) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-698) (-1 (-85) |#4|) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3953 (((-1183 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1017)) ELT) (((-776) $) NIL T ELT) (($ (-488)) NIL (OR (-12 (|has| |#4| (-954 (-488))) (|has| |#4| (-1017))) (|has| |#4| (-965))) ELT) (($ (-352 (-488))) NIL (-12 (|has| |#4| (-954 (-352 (-488)))) (|has| |#4| (-1017))) ELT)) (-3132 (((-698)) NIL (|has| |#4| (-965)) CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-1737 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3131 (((-85) $ $) NIL (|has| |#4| (-965)) ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL (|has| |#4| (-965)) CONST)) (-2675 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-965)) ELT) (($ $ (-1 |#4| |#4|) (-698)) NIL (|has| |#4| (-965)) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (OR (-12 (|has| |#4| (-813 (-1094))) (|has| |#4| (-965))) (-12 (|has| |#4| (-815 (-1094))) (|has| |#4| (-965)))) ELT) (($ $ (-1094) (-698)) NIL (OR (-12 (|has| |#4| (-813 (-1094))) (|has| |#4| (-965))) (-12 (|has| |#4| (-815 (-1094))) (|has| |#4| (-965)))) ELT) (($ $ (-587 (-1094))) NIL (OR (-12 (|has| |#4| (-813 (-1094))) (|has| |#4| (-965))) (-12 (|has| |#4| (-815 (-1094))) (|has| |#4| (-965)))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| |#4| (-813 (-1094))) (|has| |#4| (-965))) (-12 (|has| |#4| (-815 (-1094))) (|has| |#4| (-965)))) ELT) (($ $ (-698)) NIL (OR (-12 (|has| |#4| (-192)) (|has| |#4| (-965))) (-12 (|has| |#4| (-191)) (|has| |#4| (-965)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-192)) (|has| |#4| (-965))) (-12 (|has| |#4| (-191)) (|has| |#4| (-965)))) ELT)) (-2572 (((-85) $ $) NIL (|has| |#4| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#4| (-760)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL (|has| |#4| (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| |#4| (-760)) ELT)) (-3956 (($ $ |#4|) NIL (|has| |#4| (-314)) ELT)) (-3843 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-698)) NIL (|has| |#4| (-965)) ELT) (($ $ (-834)) NIL (|has| |#4| (-965)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-488) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-834) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-667)) ELT) (($ |#4| $) NIL (|has| |#4| (-667)) ELT) (($ $ $) NIL (|has| |#4| (-965)) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-212 |#1| |#2| |#3| |#4|) (-13 (-198 |#1| |#4|) (-594 |#2|) (-594 |#3|)) (-834) (-965) (-1041 |#1| |#2| (-199 |#1| |#2|) (-199 |#1| |#2|)) (-594 |#2|)) (T -212)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3713 (($ (-834)) NIL (|has| |#3| (-965)) ELT)) (-2203 (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 |#3|)) ELT)) (-2489 (($ $ $) NIL (|has| |#3| (-721)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3142 (((-698)) NIL (|has| |#3| (-322)) ELT)) (-3794 ((|#3| $ (-488) |#3|) NIL (|has| $ (-1039 |#3|)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1017)) ELT) (((-3 (-488) #1#) $) NIL (-12 (|has| |#3| (-954 (-488))) (|has| |#3| (-1017))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (-12 (|has| |#3| (-954 (-352 (-488)))) (|has| |#3| (-1017))) ELT)) (-3162 ((|#3| $) NIL (|has| |#3| (-1017)) ELT) (((-488) $) NIL (-12 (|has| |#3| (-954 (-488))) (|has| |#3| (-1017))) ELT) (((-352 (-488)) $) NIL (-12 (|has| |#3| (-954 (-352 (-488)))) (|has| |#3| (-1017))) ELT)) (-2284 (((-2 (|:| |mat| (-634 |#3|)) (|:| |vec| (-1183 |#3|))) (-634 $) (-1183 $)) NIL (|has| |#3| (-965)) ELT) (((-634 |#3|) (-634 $)) NIL (|has| |#3| (-965)) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (-12 (|has| |#3| (-584 (-488))) (|has| |#3| (-965))) ELT) (((-634 (-488)) (-634 $)) NIL (-12 (|has| |#3| (-584 (-488))) (|has| |#3| (-965))) ELT)) (-3848 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL (|has| |#3| (-965)) ELT)) (-3000 (($) NIL (|has| |#3| (-322)) ELT)) (-1580 ((|#3| $ (-488) |#3|) NIL (|has| $ (-1039 |#3|)) ELT)) (-3118 ((|#3| $ (-488)) NIL T ELT)) (-3192 (((-85) $) NIL (|has| |#3| (-721)) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL (|has| |#3| (-965)) ELT)) (-2205 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL (|has| |#3| (-760)) ELT)) (-2614 (((-587 |#3|) $) NIL T ELT)) (-3251 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-2206 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#3| (-760)) ELT)) (-3849 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2015 (((-834) $) NIL (|has| |#3| (-322)) ELT)) (-2285 (((-2 (|:| |mat| (-634 |#3|)) (|:| |vec| (-1183 |#3|))) (-1183 $) $) NIL (|has| |#3| (-965)) ELT) (((-634 |#3|) (-1183 $)) NIL (|has| |#3| (-965)) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (-12 (|has| |#3| (-584 (-488))) (|has| |#3| (-965))) ELT) (((-634 (-488)) (-1183 $)) NIL (-12 (|has| |#3| (-584 (-488))) (|has| |#3| (-965))) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) NIL T ELT)) (-2405 (($ (-834)) NIL (|has| |#3| (-322)) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3807 ((|#3| $) NIL (|has| (-488) (-760)) ELT)) (-1734 (((-3 |#3| #1#) (-1 (-85) |#3|) $) NIL T ELT)) (-2204 (($ $ |#3|) NIL (|has| $ (-1039 |#3|)) ELT)) (-1736 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#3|))) NIL (-12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017))) ELT) (($ $ (-251 |#3|)) NIL (-12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017))) ELT) (($ $ (-587 |#3|) (-587 |#3|)) NIL (-12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#3| $) NIL (-12 (|has| $ (-320 |#3|)) (|has| |#3| (-72))) ELT)) (-2210 (((-587 |#3|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#3| $ (-488) |#3|) NIL T ELT) ((|#3| $ (-488)) 11 T ELT)) (-3842 ((|#3| $ $) NIL (|has| |#3| (-965)) ELT)) (-1472 (($ (-1183 |#3|)) NIL T ELT)) (-3918 (((-107)) NIL (|has| |#3| (-314)) ELT)) (-3764 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-965)) ELT) (($ $ (-1 |#3| |#3|) (-698)) NIL (|has| |#3| (-965)) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (OR (-12 (|has| |#3| (-813 (-1094))) (|has| |#3| (-965))) (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965)))) ELT) (($ $ (-1094) (-698)) NIL (OR (-12 (|has| |#3| (-813 (-1094))) (|has| |#3| (-965))) (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965)))) ELT) (($ $ (-587 (-1094))) NIL (OR (-12 (|has| |#3| (-813 (-1094))) (|has| |#3| (-965))) (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965)))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| |#3| (-813 (-1094))) (|has| |#3| (-965))) (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965)))) ELT) (($ $ (-698)) NIL (OR (-12 (|has| |#3| (-192)) (|has| |#3| (-965))) (-12 (|has| |#3| (-191)) (|has| |#3| (-965)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-192)) (|has| |#3| (-965))) (-12 (|has| |#3| (-191)) (|has| |#3| (-965)))) ELT)) (-1735 (((-698) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-698) (-1 (-85) |#3|) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3953 (((-1183 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1017)) ELT) (((-776) $) NIL T ELT) (($ (-488)) NIL (OR (-12 (|has| |#3| (-954 (-488))) (|has| |#3| (-1017))) (|has| |#3| (-965))) ELT) (($ (-352 (-488))) NIL (-12 (|has| |#3| (-954 (-352 (-488)))) (|has| |#3| (-1017))) ELT)) (-3132 (((-698)) NIL (|has| |#3| (-965)) CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-1737 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3131 (((-85) $ $) NIL (|has| |#3| (-965)) ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL (|has| |#3| (-965)) CONST)) (-2675 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-965)) ELT) (($ $ (-1 |#3| |#3|) (-698)) NIL (|has| |#3| (-965)) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (OR (-12 (|has| |#3| (-813 (-1094))) (|has| |#3| (-965))) (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965)))) ELT) (($ $ (-1094) (-698)) NIL (OR (-12 (|has| |#3| (-813 (-1094))) (|has| |#3| (-965))) (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965)))) ELT) (($ $ (-587 (-1094))) NIL (OR (-12 (|has| |#3| (-813 (-1094))) (|has| |#3| (-965))) (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965)))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| |#3| (-813 (-1094))) (|has| |#3| (-965))) (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965)))) ELT) (($ $ (-698)) NIL (OR (-12 (|has| |#3| (-192)) (|has| |#3| (-965))) (-12 (|has| |#3| (-191)) (|has| |#3| (-965)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-192)) (|has| |#3| (-965))) (-12 (|has| |#3| (-191)) (|has| |#3| (-965)))) ELT)) (-2572 (((-85) $ $) NIL (|has| |#3| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#3| (-760)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL (|has| |#3| (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| |#3| (-760)) ELT)) (-3956 (($ $ |#3|) NIL (|has| |#3| (-314)) ELT)) (-3843 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-698)) NIL (|has| |#3| (-965)) ELT) (($ $ (-834)) NIL (|has| |#3| (-965)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-488) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-834) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-667)) ELT) (($ |#3| $) NIL (|has| |#3| (-667)) ELT) (($ $ $) NIL (|has| |#3| (-965)) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-213 |#1| |#2| |#3|) (-13 (-198 |#1| |#3|) (-594 |#2|)) (-698) (-965) (-594 |#2|)) (T -213)) +NIL +((-1492 (((-587 (-698)) $) 56 T ELT) (((-587 (-698)) $ |#3|) 59 T ELT)) (-1526 (((-698) $) 58 T ELT) (((-698) $ |#3|) 61 T ELT)) (-1488 (($ $) 76 T ELT)) (-3163 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL T ELT) (((-3 (-488) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3778 (((-698) $ |#3|) 43 T ELT) (((-698) $) 38 T ELT)) (-1527 (((-1 $ (-698)) |#3|) 15 T ELT) (((-1 $ (-698)) $) 88 T ELT)) (-1490 ((|#4| $) 69 T ELT)) (-1491 (((-85) $) 67 T ELT)) (-1489 (($ $) 75 T ELT)) (-3774 (($ $ (-587 (-251 $))) 111 T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-587 |#4|) (-587 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-587 |#4|) (-587 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-587 |#3|) (-587 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-587 |#3|) (-587 |#2|)) 97 T ELT)) (-3764 (($ $ (-587 |#4|) (-587 (-698))) NIL T ELT) (($ $ |#4| (-698)) NIL T ELT) (($ $ (-587 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-698)) NIL T ELT) (($ $ (-1094)) NIL T ELT) (($ $ (-587 (-1094))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-1493 (((-587 |#3|) $) 86 T ELT)) (-3955 ((|#5| $) NIL T ELT) (((-698) $ |#4|) NIL T ELT) (((-587 (-698)) $ (-587 |#4|)) NIL T ELT) (((-698) $ |#3|) 49 T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-352 (-488))) NIL T ELT) (($ $) NIL T ELT))) +(((-214 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3764 (|#1| |#1| (-698))) (-15 -3764 (|#1| |#1|)) (-15 -3764 (|#1| |#1| (-587 (-1094)) (-587 (-698)))) (-15 -3764 (|#1| |#1| (-1094) (-698))) (-15 -3764 (|#1| |#1| (-587 (-1094)))) (-15 -3764 (|#1| |#1| (-1094))) (-15 -3953 (|#1| |#1|)) (-15 -3953 (|#1| (-352 (-488)))) (-15 -3774 (|#1| |#1| (-587 |#3|) (-587 |#2|))) (-15 -3774 (|#1| |#1| |#3| |#2|)) (-15 -3774 (|#1| |#1| (-587 |#3|) (-587 |#1|))) (-15 -3774 (|#1| |#1| |#3| |#1|)) (-15 -1527 ((-1 |#1| (-698)) |#1|)) (-15 -1488 (|#1| |#1|)) (-15 -1489 (|#1| |#1|)) (-15 -1490 (|#4| |#1|)) (-15 -1491 ((-85) |#1|)) (-15 -1526 ((-698) |#1| |#3|)) (-15 -1492 ((-587 (-698)) |#1| |#3|)) (-15 -1526 ((-698) |#1|)) (-15 -1492 ((-587 (-698)) |#1|)) (-15 -3955 ((-698) |#1| |#3|)) (-15 -3778 ((-698) |#1|)) (-15 -3778 ((-698) |#1| |#3|)) (-15 -1493 ((-587 |#3|) |#1|)) (-15 -1527 ((-1 |#1| (-698)) |#3|)) (-15 -3953 (|#1| |#3|)) (-15 -3163 ((-3 |#3| #1="failed") |#1|)) (-15 -3764 (|#1| |#1| (-1 |#2| |#2|) (-698))) (-15 -3764 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3955 ((-587 (-698)) |#1| (-587 |#4|))) (-15 -3955 ((-698) |#1| |#4|)) (-15 -3953 (|#1| |#4|)) (-15 -3163 ((-3 |#4| #1#) |#1|)) (-15 -3774 (|#1| |#1| (-587 |#4|) (-587 |#1|))) (-15 -3774 (|#1| |#1| |#4| |#1|)) (-15 -3774 (|#1| |#1| (-587 |#4|) (-587 |#2|))) (-15 -3774 (|#1| |#1| |#4| |#2|)) (-15 -3774 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -3774 (|#1| |#1| |#1| |#1|)) (-15 -3774 (|#1| |#1| (-251 |#1|))) (-15 -3774 (|#1| |#1| (-587 (-251 |#1|)))) (-15 -3955 (|#5| |#1|)) (-15 -3163 ((-3 (-488) #1#) |#1|)) (-15 -3163 ((-3 (-352 (-488)) #1#) |#1|)) (-15 -3163 ((-3 |#2| #1#) |#1|)) (-15 -3953 (|#1| |#2|)) (-15 -3764 (|#1| |#1| |#4|)) (-15 -3764 (|#1| |#1| (-587 |#4|))) (-15 -3764 (|#1| |#1| |#4| (-698))) (-15 -3764 (|#1| |#1| (-587 |#4|) (-587 (-698)))) (-15 -3953 (|#1| (-488))) (-15 -3953 ((-776) |#1|))) (-215 |#2| |#3| |#4| |#5|) (-965) (-760) (-230 |#3|) (-721)) (T -214)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1492 (((-587 (-698)) $) 252 T ELT) (((-587 (-698)) $ |#2|) 250 T ELT)) (-1526 (((-698) $) 251 T ELT) (((-698) $ |#2|) 249 T ELT)) (-3087 (((-587 |#3|) $) 124 T ELT)) (-3089 (((-1089 $) $ |#3|) 139 T ELT) (((-1089 |#1|) $) 138 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 101 (|has| |#1| (-499)) ELT)) (-2068 (($ $) 102 (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) 104 (|has| |#1| (-499)) ELT)) (-2825 (((-698) $) 126 T ELT) (((-698) $ (-587 |#3|)) 125 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) 114 (|has| |#1| (-825)) ELT)) (-3781 (($ $) 112 (|has| |#1| (-395)) ELT)) (-3977 (((-350 $) $) 111 (|has| |#1| (-395)) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1="failed") (-587 (-1089 $)) (-1089 $)) 117 (|has| |#1| (-825)) ELT)) (-1488 (($ $) 245 T ELT)) (-3730 (($) 23 T CONST)) (-3163 (((-3 |#1| #2="failed") $) 182 T ELT) (((-3 (-352 (-488)) #2#) $) 179 (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 (-488) #2#) $) 177 (|has| |#1| (-954 (-488))) ELT) (((-3 |#3| #2#) $) 154 T ELT) (((-3 |#2| #2#) $) 259 T ELT)) (-3162 ((|#1| $) 181 T ELT) (((-352 (-488)) $) 180 (|has| |#1| (-954 (-352 (-488)))) ELT) (((-488) $) 178 (|has| |#1| (-954 (-488))) ELT) ((|#3| $) 155 T ELT) ((|#2| $) 260 T ELT)) (-3762 (($ $ $ |#3|) 122 (|has| |#1| (-148)) ELT)) (-3965 (($ $) 172 T ELT)) (-2284 (((-634 (-488)) (-634 $)) 150 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) 149 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) 148 T ELT) (((-634 |#1|) (-634 $)) 147 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3509 (($ $) 194 (|has| |#1| (-395)) ELT) (($ $ |#3|) 119 (|has| |#1| (-395)) ELT)) (-2824 (((-587 $) $) 123 T ELT)) (-3729 (((-85) $) 110 (|has| |#1| (-825)) ELT)) (-1628 (($ $ |#1| |#4| $) 190 T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) 98 (-12 (|has| |#3| (-800 (-332))) (|has| |#1| (-800 (-332)))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) 97 (-12 (|has| |#3| (-800 (-488))) (|has| |#1| (-800 (-488)))) ELT)) (-3778 (((-698) $ |#2|) 255 T ELT) (((-698) $) 254 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-2425 (((-698) $) 187 T ELT)) (-3090 (($ (-1089 |#1|) |#3|) 131 T ELT) (($ (-1089 $) |#3|) 130 T ELT)) (-2827 (((-587 $) $) 140 T ELT)) (-3944 (((-85) $) 170 T ELT)) (-2899 (($ |#1| |#4|) 171 T ELT) (($ $ |#3| (-698)) 133 T ELT) (($ $ (-587 |#3|) (-587 (-698))) 132 T ELT)) (-3769 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $ |#3|) 134 T ELT)) (-2826 ((|#4| $) 188 T ELT) (((-698) $ |#3|) 136 T ELT) (((-587 (-698)) $ (-587 |#3|)) 135 T ELT)) (-1629 (($ (-1 |#4| |#4|) $) 189 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-1527 (((-1 $ (-698)) |#2|) 257 T ELT) (((-1 $ (-698)) $) 244 (|has| |#1| (-192)) ELT)) (-3088 (((-3 |#3| #3="failed") $) 137 T ELT)) (-2285 (((-634 (-488)) (-1183 $)) 152 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) 151 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) 146 T ELT) (((-634 |#1|) (-1183 $)) 145 T ELT)) (-2900 (($ $) 168 T ELT)) (-3180 ((|#1| $) 167 T ELT)) (-1490 ((|#3| $) 247 T ELT)) (-1899 (($ (-587 $)) 108 (|has| |#1| (-395)) ELT) (($ $ $) 107 (|has| |#1| (-395)) ELT)) (-3248 (((-1077) $) 11 T ELT)) (-1491 (((-85) $) 248 T ELT)) (-2829 (((-3 (-587 $) #3#) $) 128 T ELT)) (-2828 (((-3 (-587 $) #3#) $) 129 T ELT)) (-2830 (((-3 (-2 (|:| |var| |#3|) (|:| -2406 (-698))) #3#) $) 127 T ELT)) (-1489 (($ $) 246 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-1805 (((-85) $) 184 T ELT)) (-1804 ((|#1| $) 185 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 109 (|has| |#1| (-395)) ELT)) (-3150 (($ (-587 $)) 106 (|has| |#1| (-395)) ELT) (($ $ $) 105 (|has| |#1| (-395)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) 116 (|has| |#1| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) 115 (|has| |#1| (-825)) ELT)) (-3738 (((-350 $) $) 113 (|has| |#1| (-825)) ELT)) (-3472 (((-3 $ "failed") $ |#1|) 192 (|has| |#1| (-499)) ELT) (((-3 $ "failed") $ $) 100 (|has| |#1| (-499)) ELT)) (-3774 (($ $ (-587 (-251 $))) 163 T ELT) (($ $ (-251 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-587 $) (-587 $)) 160 T ELT) (($ $ |#3| |#1|) 159 T ELT) (($ $ (-587 |#3|) (-587 |#1|)) 158 T ELT) (($ $ |#3| $) 157 T ELT) (($ $ (-587 |#3|) (-587 $)) 156 T ELT) (($ $ |#2| $) 243 (|has| |#1| (-192)) ELT) (($ $ (-587 |#2|) (-587 $)) 242 (|has| |#1| (-192)) ELT) (($ $ |#2| |#1|) 241 (|has| |#1| (-192)) ELT) (($ $ (-587 |#2|) (-587 |#1|)) 240 (|has| |#1| (-192)) ELT)) (-3763 (($ $ |#3|) 121 (|has| |#1| (-148)) ELT)) (-3764 (($ $ (-587 |#3|) (-587 (-698))) 52 T ELT) (($ $ |#3| (-698)) 51 T ELT) (($ $ (-587 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT) (($ $ (-1 |#1| |#1|)) 264 T ELT) (($ $ (-1 |#1| |#1|) (-698)) 263 T ELT) (($ $) 239 (|has| |#1| (-191)) ELT) (($ $ (-698)) 237 (|has| |#1| (-191)) ELT) (($ $ (-1094)) 235 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) 233 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) 232 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 231 (|has| |#1| (-815 (-1094))) ELT)) (-1493 (((-587 |#2|) $) 256 T ELT)) (-3955 ((|#4| $) 169 T ELT) (((-698) $ |#3|) 144 T ELT) (((-587 (-698)) $ (-587 |#3|)) 143 T ELT) (((-698) $ |#2|) 253 T ELT)) (-3978 (((-804 (-332)) $) 96 (-12 (|has| |#3| (-557 (-804 (-332)))) (|has| |#1| (-557 (-804 (-332))))) ELT) (((-804 (-488)) $) 95 (-12 (|has| |#3| (-557 (-804 (-488)))) (|has| |#1| (-557 (-804 (-488))))) ELT) (((-477) $) 94 (-12 (|has| |#3| (-557 (-477))) (|has| |#1| (-557 (-477)))) ELT)) (-2823 ((|#1| $) 193 (|has| |#1| (-395)) ELT) (($ $ |#3|) 120 (|has| |#1| (-395)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) 118 (-2568 (|has| $ (-118)) (|has| |#1| (-825))) ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#1|) 183 T ELT) (($ |#3|) 153 T ELT) (($ |#2|) 258 T ELT) (($ (-352 (-488))) 92 (OR (|has| |#1| (-954 (-352 (-488)))) (|has| |#1| (-38 (-352 (-488))))) ELT) (($ $) 99 (|has| |#1| (-499)) ELT)) (-3823 (((-587 |#1|) $) 186 T ELT)) (-3683 ((|#1| $ |#4|) 173 T ELT) (($ $ |#3| (-698)) 142 T ELT) (($ $ (-587 |#3|) (-587 (-698))) 141 T ELT)) (-2708 (((-636 $) $) 93 (OR (-2568 (|has| $ (-118)) (|has| |#1| (-825))) (|has| |#1| (-118))) ELT)) (-3132 (((-698)) 40 T CONST)) (-1627 (($ $ $ (-698)) 191 (|has| |#1| (-148)) ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 103 (|has| |#1| (-499)) ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-587 |#3|) (-587 (-698))) 55 T ELT) (($ $ |#3| (-698)) 54 T ELT) (($ $ (-587 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT) (($ $ (-1 |#1| |#1|)) 262 T ELT) (($ $ (-1 |#1| |#1|) (-698)) 261 T ELT) (($ $) 238 (|has| |#1| (-191)) ELT) (($ $ (-698)) 236 (|has| |#1| (-191)) ELT) (($ $ (-1094)) 234 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) 230 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) 229 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 228 (|has| |#1| (-815 (-1094))) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ |#1|) 174 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-352 (-488))) 176 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) 175 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ |#1| $) 165 T ELT) (($ $ |#1|) 164 T ELT))) +(((-215 |#1| |#2| |#3| |#4|) (-113) (-965) (-760) (-230 |t#2|) (-721)) (T -215)) +((-1527 (*1 *2 *3) (-12 (-4 *4 (-965)) (-4 *3 (-760)) (-4 *5 (-230 *3)) (-4 *6 (-721)) (-5 *2 (-1 *1 (-698))) (-4 *1 (-215 *4 *3 *5 *6)))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-215 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-760)) (-4 *5 (-230 *4)) (-4 *6 (-721)) (-5 *2 (-587 *4)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-215 *4 *3 *5 *6)) (-4 *4 (-965)) (-4 *3 (-760)) (-4 *5 (-230 *3)) (-4 *6 (-721)) (-5 *2 (-698)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-215 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-760)) (-4 *5 (-230 *4)) (-4 *6 (-721)) (-5 *2 (-698)))) (-3955 (*1 *2 *1 *3) (-12 (-4 *1 (-215 *4 *3 *5 *6)) (-4 *4 (-965)) (-4 *3 (-760)) (-4 *5 (-230 *3)) (-4 *6 (-721)) (-5 *2 (-698)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-215 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-760)) (-4 *5 (-230 *4)) (-4 *6 (-721)) (-5 *2 (-587 (-698))))) (-1526 (*1 *2 *1) (-12 (-4 *1 (-215 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-760)) (-4 *5 (-230 *4)) (-4 *6 (-721)) (-5 *2 (-698)))) (-1492 (*1 *2 *1 *3) (-12 (-4 *1 (-215 *4 *3 *5 *6)) (-4 *4 (-965)) (-4 *3 (-760)) (-4 *5 (-230 *3)) (-4 *6 (-721)) (-5 *2 (-587 (-698))))) (-1526 (*1 *2 *1 *3) (-12 (-4 *1 (-215 *4 *3 *5 *6)) (-4 *4 (-965)) (-4 *3 (-760)) (-4 *5 (-230 *3)) (-4 *6 (-721)) (-5 *2 (-698)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-215 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-760)) (-4 *5 (-230 *4)) (-4 *6 (-721)) (-5 *2 (-85)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-215 *3 *4 *2 *5)) (-4 *3 (-965)) (-4 *4 (-760)) (-4 *5 (-721)) (-4 *2 (-230 *4)))) (-1489 (*1 *1 *1) (-12 (-4 *1 (-215 *2 *3 *4 *5)) (-4 *2 (-965)) (-4 *3 (-760)) (-4 *4 (-230 *3)) (-4 *5 (-721)))) (-1488 (*1 *1 *1) (-12 (-4 *1 (-215 *2 *3 *4 *5)) (-4 *2 (-965)) (-4 *3 (-760)) (-4 *4 (-230 *3)) (-4 *5 (-721)))) (-1527 (*1 *2 *1) (-12 (-4 *3 (-192)) (-4 *3 (-965)) (-4 *4 (-760)) (-4 *5 (-230 *4)) (-4 *6 (-721)) (-5 *2 (-1 *1 (-698))) (-4 *1 (-215 *3 *4 *5 *6))))) +(-13 (-865 |t#1| |t#4| |t#3|) (-186 |t#1|) (-954 |t#2|) (-10 -8 (-15 -1527 ((-1 $ (-698)) |t#2|)) (-15 -1493 ((-587 |t#2|) $)) (-15 -3778 ((-698) $ |t#2|)) (-15 -3778 ((-698) $)) (-15 -3955 ((-698) $ |t#2|)) (-15 -1492 ((-587 (-698)) $)) (-15 -1526 ((-698) $)) (-15 -1492 ((-587 (-698)) $ |t#2|)) (-15 -1526 ((-698) $ |t#2|)) (-15 -1491 ((-85) $)) (-15 -1490 (|t#3| $)) (-15 -1489 ($ $)) (-15 -1488 ($ $)) (IF (|has| |t#1| (-192)) (PROGN (-6 (-459 |t#2| |t#1|)) (-6 (-459 |t#2| $)) (-6 (-262 $)) (-15 -1527 ((-1 $ (-698)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-38 |#1|) |has| |#1| (-148)) ((-38 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395))) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-148))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) OR (|has| |#1| (-954 (-352 (-488)))) (|has| |#1| (-38 (-352 (-488))))) ((-559 (-488)) . T) ((-559 |#1|) . T) ((-559 |#2|) . T) ((-559 |#3|) . T) ((-559 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395))) ((-556 (-776)) . T) ((-148) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-148))) ((-557 (-477)) -12 (|has| |#1| (-557 (-477))) (|has| |#3| (-557 (-477)))) ((-557 (-804 (-332))) -12 (|has| |#1| (-557 (-804 (-332)))) (|has| |#3| (-557 (-804 (-332))))) ((-557 (-804 (-488))) -12 (|has| |#1| (-557 (-804 (-488)))) (|has| |#3| (-557 (-804 (-488))))) ((-188 $) OR (|has| |#1| (-191)) (|has| |#1| (-192))) ((-186 |#1|) . T) ((-192) |has| |#1| (-192)) ((-191) OR (|has| |#1| (-191)) (|has| |#1| (-192))) ((-227 |#1|) . T) ((-248) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395))) ((-262 $) . T) ((-279 |#1| |#4|) . T) ((-331 |#1|) . T) ((-357 |#1|) . T) ((-383 |#1|) . T) ((-395) OR (|has| |#1| (-825)) (|has| |#1| (-395))) ((-459 |#2| |#1|) |has| |#1| (-192)) ((-459 |#2| $) |has| |#1| (-192)) ((-459 |#3| |#1|) . T) ((-459 |#3| $) . T) ((-459 $ $) . T) ((-499) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395))) ((-13) . T) ((-592 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-594 (-488)) |has| |#1| (-584 (-488))) ((-594 |#1|) . T) ((-594 $) . T) ((-586 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-586 |#1|) |has| |#1| (-148)) ((-586 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395))) ((-584 (-488)) |has| |#1| (-584 (-488))) ((-584 |#1|) . T) ((-658 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-658 |#1|) |has| |#1| (-148)) ((-658 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395))) ((-667) . T) ((-810 $ (-1094)) OR (|has| |#1| (-815 (-1094))) (|has| |#1| (-813 (-1094)))) ((-810 $ |#3|) . T) ((-813 (-1094)) |has| |#1| (-813 (-1094))) ((-813 |#3|) . T) ((-815 (-1094)) OR (|has| |#1| (-815 (-1094))) (|has| |#1| (-813 (-1094)))) ((-815 |#3|) . T) ((-800 (-332)) -12 (|has| |#1| (-800 (-332))) (|has| |#3| (-800 (-332)))) ((-800 (-488)) -12 (|has| |#1| (-800 (-488))) (|has| |#3| (-800 (-488)))) ((-865 |#1| |#4| |#3|) . T) ((-825) |has| |#1| (-825)) ((-954 (-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((-954 (-488)) |has| |#1| (-954 (-488))) ((-954 |#1|) . T) ((-954 |#2|) . T) ((-954 |#3|) . T) ((-967 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-148))) ((-972 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-972 |#1|) . T) ((-972 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-148))) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T) ((-1138) |has| |#1| (-825))) +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1499 ((|#1| $) 64 T ELT)) (-3329 ((|#1| $) 42 T ELT)) (-3730 (($) 6 T CONST)) (-3008 (($ $) 70 T ELT)) (-2302 (($ $) 58 T ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 55 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 51 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 50 T ELT)) (-3331 ((|#1| |#1| $) 44 T ELT)) (-3330 ((|#1| $) 43 T ELT)) (-2614 (((-587 |#1|) $) 49 T ELT)) (-3251 (((-85) |#1| $) 54 (|has| |#1| (-72)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3839 (((-698) $) 71 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-1278 ((|#1| $) 35 T ELT)) (-1497 ((|#1| |#1| $) 62 T ELT)) (-1496 ((|#1| |#1| $) 61 T ELT)) (-3615 (($ |#1| $) 36 T ELT)) (-2609 (((-698) $) 65 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-3007 ((|#1| $) 72 T ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 52 T ELT)) (-1495 ((|#1| $) 60 T ELT)) (-1494 ((|#1| $) 59 T ELT)) (-1279 ((|#1| $) 37 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) 47 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3010 ((|#1| |#1| $) 68 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3009 ((|#1| $) 69 T ELT)) (-1500 (($) 67 T ELT) (($ (-587 |#1|)) 66 T ELT)) (-3328 (((-698) $) 41 T ELT)) (-1735 (((-698) |#1| $) 53 (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) 48 T ELT)) (-3406 (($ $) 9 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-1498 ((|#1| $) 63 T ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1280 (($ (-587 |#1|)) 38 T ELT)) (-3006 ((|#1| $) 73 T ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) 46 T ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) 45 T ELT))) +(((-216 |#1|) (-113) (-1133)) (T -216)) +((-1500 (*1 *1) (-12 (-4 *1 (-216 *2)) (-4 *2 (-1133)))) (-1500 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1133)) (-4 *1 (-216 *3)))) (-2609 (*1 *2 *1) (-12 (-4 *1 (-216 *3)) (-4 *3 (-1133)) (-5 *2 (-698)))) (-1499 (*1 *2 *1) (-12 (-4 *1 (-216 *2)) (-4 *2 (-1133)))) (-1498 (*1 *2 *1) (-12 (-4 *1 (-216 *2)) (-4 *2 (-1133)))) (-1497 (*1 *2 *2 *1) (-12 (-4 *1 (-216 *2)) (-4 *2 (-1133)))) (-1496 (*1 *2 *2 *1) (-12 (-4 *1 (-216 *2)) (-4 *2 (-1133)))) (-1495 (*1 *2 *1) (-12 (-4 *1 (-216 *2)) (-4 *2 (-1133)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-216 *2)) (-4 *2 (-1133)))) (-2302 (*1 *1 *1) (-12 (-4 *1 (-216 *2)) (-4 *2 (-1133))))) +(-13 (-1038 |t#1|) (-912 |t#1|) (-10 -8 (-15 -1500 ($)) (-15 -1500 ($ (-587 |t#1|))) (-15 -2609 ((-698) $)) (-15 -1499 (|t#1| $)) (-15 -1498 (|t#1| $)) (-15 -1497 (|t#1| |t#1| $)) (-15 -1496 (|t#1| |t#1| $)) (-15 -1495 (|t#1| $)) (-15 -1494 (|t#1| $)) (-15 -2302 ($ $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-320 |#1|) . T) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-912 |#1|) . T) ((-1017) |has| |#1| (-1017)) ((-1039 |#1|) . T) ((-1038 |#1|) . T) ((-1133) . T)) +((-1501 (((-1051 (-181)) (-796 |#1|) (-1008 (-332)) (-1008 (-332))) 75 T ELT) (((-1051 (-181)) (-796 |#1|) (-1008 (-332)) (-1008 (-332)) (-587 (-223))) 74 T ELT) (((-1051 (-181)) |#1| (-1008 (-332)) (-1008 (-332))) 65 T ELT) (((-1051 (-181)) |#1| (-1008 (-332)) (-1008 (-332)) (-587 (-223))) 64 T ELT) (((-1051 (-181)) (-793 |#1|) (-1008 (-332))) 56 T ELT) (((-1051 (-181)) (-793 |#1|) (-1008 (-332)) (-587 (-223))) 55 T ELT)) (-1508 (((-1187) (-796 |#1|) (-1008 (-332)) (-1008 (-332))) 78 T ELT) (((-1187) (-796 |#1|) (-1008 (-332)) (-1008 (-332)) (-587 (-223))) 77 T ELT) (((-1187) |#1| (-1008 (-332)) (-1008 (-332))) 68 T ELT) (((-1187) |#1| (-1008 (-332)) (-1008 (-332)) (-587 (-223))) 67 T ELT) (((-1187) (-793 |#1|) (-1008 (-332))) 60 T ELT) (((-1187) (-793 |#1|) (-1008 (-332)) (-587 (-223))) 59 T ELT) (((-1186) (-791 |#1|) (-1008 (-332))) 47 T ELT) (((-1186) (-791 |#1|) (-1008 (-332)) (-587 (-223))) 46 T ELT) (((-1186) |#1| (-1008 (-332))) 38 T ELT) (((-1186) |#1| (-1008 (-332)) (-587 (-223))) 36 T ELT))) +(((-217 |#1|) (-10 -7 (-15 -1508 ((-1186) |#1| (-1008 (-332)) (-587 (-223)))) (-15 -1508 ((-1186) |#1| (-1008 (-332)))) (-15 -1508 ((-1186) (-791 |#1|) (-1008 (-332)) (-587 (-223)))) (-15 -1508 ((-1186) (-791 |#1|) (-1008 (-332)))) (-15 -1508 ((-1187) (-793 |#1|) (-1008 (-332)) (-587 (-223)))) (-15 -1508 ((-1187) (-793 |#1|) (-1008 (-332)))) (-15 -1501 ((-1051 (-181)) (-793 |#1|) (-1008 (-332)) (-587 (-223)))) (-15 -1501 ((-1051 (-181)) (-793 |#1|) (-1008 (-332)))) (-15 -1508 ((-1187) |#1| (-1008 (-332)) (-1008 (-332)) (-587 (-223)))) (-15 -1508 ((-1187) |#1| (-1008 (-332)) (-1008 (-332)))) (-15 -1501 ((-1051 (-181)) |#1| (-1008 (-332)) (-1008 (-332)) (-587 (-223)))) (-15 -1501 ((-1051 (-181)) |#1| (-1008 (-332)) (-1008 (-332)))) (-15 -1508 ((-1187) (-796 |#1|) (-1008 (-332)) (-1008 (-332)) (-587 (-223)))) (-15 -1508 ((-1187) (-796 |#1|) (-1008 (-332)) (-1008 (-332)))) (-15 -1501 ((-1051 (-181)) (-796 |#1|) (-1008 (-332)) (-1008 (-332)) (-587 (-223)))) (-15 -1501 ((-1051 (-181)) (-796 |#1|) (-1008 (-332)) (-1008 (-332))))) (-13 (-557 (-477)) (-1017))) (T -217)) +((-1501 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-796 *5)) (-5 *4 (-1008 (-332))) (-4 *5 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1051 (-181))) (-5 *1 (-217 *5)))) (-1501 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-796 *6)) (-5 *4 (-1008 (-332))) (-5 *5 (-587 (-223))) (-4 *6 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1051 (-181))) (-5 *1 (-217 *6)))) (-1508 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-796 *5)) (-5 *4 (-1008 (-332))) (-4 *5 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1187)) (-5 *1 (-217 *5)))) (-1508 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-796 *6)) (-5 *4 (-1008 (-332))) (-5 *5 (-587 (-223))) (-4 *6 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1187)) (-5 *1 (-217 *6)))) (-1501 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1008 (-332))) (-5 *2 (-1051 (-181))) (-5 *1 (-217 *3)) (-4 *3 (-13 (-557 (-477)) (-1017))))) (-1501 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1008 (-332))) (-5 *5 (-587 (-223))) (-5 *2 (-1051 (-181))) (-5 *1 (-217 *3)) (-4 *3 (-13 (-557 (-477)) (-1017))))) (-1508 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1008 (-332))) (-5 *2 (-1187)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-557 (-477)) (-1017))))) (-1508 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1008 (-332))) (-5 *5 (-587 (-223))) (-5 *2 (-1187)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-557 (-477)) (-1017))))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-793 *5)) (-5 *4 (-1008 (-332))) (-4 *5 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1051 (-181))) (-5 *1 (-217 *5)))) (-1501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-793 *6)) (-5 *4 (-1008 (-332))) (-5 *5 (-587 (-223))) (-4 *6 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1051 (-181))) (-5 *1 (-217 *6)))) (-1508 (*1 *2 *3 *4) (-12 (-5 *3 (-793 *5)) (-5 *4 (-1008 (-332))) (-4 *5 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1187)) (-5 *1 (-217 *5)))) (-1508 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-793 *6)) (-5 *4 (-1008 (-332))) (-5 *5 (-587 (-223))) (-4 *6 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1187)) (-5 *1 (-217 *6)))) (-1508 (*1 *2 *3 *4) (-12 (-5 *3 (-791 *5)) (-5 *4 (-1008 (-332))) (-4 *5 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1186)) (-5 *1 (-217 *5)))) (-1508 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-791 *6)) (-5 *4 (-1008 (-332))) (-5 *5 (-587 (-223))) (-4 *6 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1186)) (-5 *1 (-217 *6)))) (-1508 (*1 *2 *3 *4) (-12 (-5 *4 (-1008 (-332))) (-5 *2 (-1186)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-557 (-477)) (-1017))))) (-1508 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1008 (-332))) (-5 *5 (-587 (-223))) (-5 *2 (-1186)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-557 (-477)) (-1017)))))) +((-1502 (((-1 (-858 (-181)) (-181) (-181)) (-1 (-858 (-181)) (-181) (-181)) (-1 (-181) (-181) (-181) (-181))) 158 T ELT)) (-1501 (((-1051 (-181)) (-796 (-1 (-181) (-181) (-181))) (-1005 (-332)) (-1005 (-332))) 178 T ELT) (((-1051 (-181)) (-796 (-1 (-181) (-181) (-181))) (-1005 (-332)) (-1005 (-332)) (-587 (-223))) 176 T ELT) (((-1051 (-181)) (-1 (-858 (-181)) (-181) (-181)) (-1005 (-332)) (-1005 (-332))) 181 T ELT) (((-1051 (-181)) (-1 (-858 (-181)) (-181) (-181)) (-1005 (-332)) (-1005 (-332)) (-587 (-223))) 177 T ELT) (((-1051 (-181)) (-1 (-181) (-181) (-181)) (-1005 (-332)) (-1005 (-332))) 169 T ELT) (((-1051 (-181)) (-1 (-181) (-181) (-181)) (-1005 (-332)) (-1005 (-332)) (-587 (-223))) 168 T ELT) (((-1051 (-181)) (-1 (-858 (-181)) (-181)) (-1005 (-332))) 150 T ELT) (((-1051 (-181)) (-1 (-858 (-181)) (-181)) (-1005 (-332)) (-587 (-223))) 148 T ELT) (((-1051 (-181)) (-793 (-1 (-181) (-181))) (-1005 (-332))) 149 T ELT) (((-1051 (-181)) (-793 (-1 (-181) (-181))) (-1005 (-332)) (-587 (-223))) 146 T ELT)) (-1508 (((-1187) (-796 (-1 (-181) (-181) (-181))) (-1005 (-332)) (-1005 (-332))) 180 T ELT) (((-1187) (-796 (-1 (-181) (-181) (-181))) (-1005 (-332)) (-1005 (-332)) (-587 (-223))) 179 T ELT) (((-1187) (-1 (-858 (-181)) (-181) (-181)) (-1005 (-332)) (-1005 (-332))) 183 T ELT) (((-1187) (-1 (-858 (-181)) (-181) (-181)) (-1005 (-332)) (-1005 (-332)) (-587 (-223))) 182 T ELT) (((-1187) (-1 (-181) (-181) (-181)) (-1005 (-332)) (-1005 (-332))) 171 T ELT) (((-1187) (-1 (-181) (-181) (-181)) (-1005 (-332)) (-1005 (-332)) (-587 (-223))) 170 T ELT) (((-1187) (-1 (-858 (-181)) (-181)) (-1005 (-332))) 156 T ELT) (((-1187) (-1 (-858 (-181)) (-181)) (-1005 (-332)) (-587 (-223))) 155 T ELT) (((-1187) (-793 (-1 (-181) (-181))) (-1005 (-332))) 154 T ELT) (((-1187) (-793 (-1 (-181) (-181))) (-1005 (-332)) (-587 (-223))) 153 T ELT) (((-1186) (-791 (-1 (-181) (-181))) (-1005 (-332))) 118 T ELT) (((-1186) (-791 (-1 (-181) (-181))) (-1005 (-332)) (-587 (-223))) 117 T ELT) (((-1186) (-1 (-181) (-181)) (-1005 (-332))) 112 T ELT) (((-1186) (-1 (-181) (-181)) (-1005 (-332)) (-587 (-223))) 110 T ELT))) +(((-218) (-10 -7 (-15 -1508 ((-1186) (-1 (-181) (-181)) (-1005 (-332)) (-587 (-223)))) (-15 -1508 ((-1186) (-1 (-181) (-181)) (-1005 (-332)))) (-15 -1508 ((-1186) (-791 (-1 (-181) (-181))) (-1005 (-332)) (-587 (-223)))) (-15 -1508 ((-1186) (-791 (-1 (-181) (-181))) (-1005 (-332)))) (-15 -1508 ((-1187) (-793 (-1 (-181) (-181))) (-1005 (-332)) (-587 (-223)))) (-15 -1508 ((-1187) (-793 (-1 (-181) (-181))) (-1005 (-332)))) (-15 -1508 ((-1187) (-1 (-858 (-181)) (-181)) (-1005 (-332)) (-587 (-223)))) (-15 -1508 ((-1187) (-1 (-858 (-181)) (-181)) (-1005 (-332)))) (-15 -1501 ((-1051 (-181)) (-793 (-1 (-181) (-181))) (-1005 (-332)) (-587 (-223)))) (-15 -1501 ((-1051 (-181)) (-793 (-1 (-181) (-181))) (-1005 (-332)))) (-15 -1501 ((-1051 (-181)) (-1 (-858 (-181)) (-181)) (-1005 (-332)) (-587 (-223)))) (-15 -1501 ((-1051 (-181)) (-1 (-858 (-181)) (-181)) (-1005 (-332)))) (-15 -1508 ((-1187) (-1 (-181) (-181) (-181)) (-1005 (-332)) (-1005 (-332)) (-587 (-223)))) (-15 -1508 ((-1187) (-1 (-181) (-181) (-181)) (-1005 (-332)) (-1005 (-332)))) (-15 -1501 ((-1051 (-181)) (-1 (-181) (-181) (-181)) (-1005 (-332)) (-1005 (-332)) (-587 (-223)))) (-15 -1501 ((-1051 (-181)) (-1 (-181) (-181) (-181)) (-1005 (-332)) (-1005 (-332)))) (-15 -1508 ((-1187) (-1 (-858 (-181)) (-181) (-181)) (-1005 (-332)) (-1005 (-332)) (-587 (-223)))) (-15 -1508 ((-1187) (-1 (-858 (-181)) (-181) (-181)) (-1005 (-332)) (-1005 (-332)))) (-15 -1501 ((-1051 (-181)) (-1 (-858 (-181)) (-181) (-181)) (-1005 (-332)) (-1005 (-332)) (-587 (-223)))) (-15 -1501 ((-1051 (-181)) (-1 (-858 (-181)) (-181) (-181)) (-1005 (-332)) (-1005 (-332)))) (-15 -1508 ((-1187) (-796 (-1 (-181) (-181) (-181))) (-1005 (-332)) (-1005 (-332)) (-587 (-223)))) (-15 -1508 ((-1187) (-796 (-1 (-181) (-181) (-181))) (-1005 (-332)) (-1005 (-332)))) (-15 -1501 ((-1051 (-181)) (-796 (-1 (-181) (-181) (-181))) (-1005 (-332)) (-1005 (-332)) (-587 (-223)))) (-15 -1501 ((-1051 (-181)) (-796 (-1 (-181) (-181) (-181))) (-1005 (-332)) (-1005 (-332)))) (-15 -1502 ((-1 (-858 (-181)) (-181) (-181)) (-1 (-858 (-181)) (-181) (-181)) (-1 (-181) (-181) (-181) (-181)))))) (T -218)) +((-1502 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-858 (-181)) (-181) (-181))) (-5 *3 (-1 (-181) (-181) (-181) (-181))) (-5 *1 (-218)))) (-1501 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-796 (-1 (-181) (-181) (-181)))) (-5 *4 (-1005 (-332))) (-5 *2 (-1051 (-181))) (-5 *1 (-218)))) (-1501 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-796 (-1 (-181) (-181) (-181)))) (-5 *4 (-1005 (-332))) (-5 *5 (-587 (-223))) (-5 *2 (-1051 (-181))) (-5 *1 (-218)))) (-1508 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-796 (-1 (-181) (-181) (-181)))) (-5 *4 (-1005 (-332))) (-5 *2 (-1187)) (-5 *1 (-218)))) (-1508 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-796 (-1 (-181) (-181) (-181)))) (-5 *4 (-1005 (-332))) (-5 *5 (-587 (-223))) (-5 *2 (-1187)) (-5 *1 (-218)))) (-1501 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-858 (-181)) (-181) (-181))) (-5 *4 (-1005 (-332))) (-5 *2 (-1051 (-181))) (-5 *1 (-218)))) (-1501 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-858 (-181)) (-181) (-181))) (-5 *4 (-1005 (-332))) (-5 *5 (-587 (-223))) (-5 *2 (-1051 (-181))) (-5 *1 (-218)))) (-1508 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-858 (-181)) (-181) (-181))) (-5 *4 (-1005 (-332))) (-5 *2 (-1187)) (-5 *1 (-218)))) (-1508 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-858 (-181)) (-181) (-181))) (-5 *4 (-1005 (-332))) (-5 *5 (-587 (-223))) (-5 *2 (-1187)) (-5 *1 (-218)))) (-1501 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-181) (-181) (-181))) (-5 *4 (-1005 (-332))) (-5 *2 (-1051 (-181))) (-5 *1 (-218)))) (-1501 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-181) (-181) (-181))) (-5 *4 (-1005 (-332))) (-5 *5 (-587 (-223))) (-5 *2 (-1051 (-181))) (-5 *1 (-218)))) (-1508 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-181) (-181) (-181))) (-5 *4 (-1005 (-332))) (-5 *2 (-1187)) (-5 *1 (-218)))) (-1508 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-181) (-181) (-181))) (-5 *4 (-1005 (-332))) (-5 *5 (-587 (-223))) (-5 *2 (-1187)) (-5 *1 (-218)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-858 (-181)) (-181))) (-5 *4 (-1005 (-332))) (-5 *2 (-1051 (-181))) (-5 *1 (-218)))) (-1501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-858 (-181)) (-181))) (-5 *4 (-1005 (-332))) (-5 *5 (-587 (-223))) (-5 *2 (-1051 (-181))) (-5 *1 (-218)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-793 (-1 (-181) (-181)))) (-5 *4 (-1005 (-332))) (-5 *2 (-1051 (-181))) (-5 *1 (-218)))) (-1501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-793 (-1 (-181) (-181)))) (-5 *4 (-1005 (-332))) (-5 *5 (-587 (-223))) (-5 *2 (-1051 (-181))) (-5 *1 (-218)))) (-1508 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-858 (-181)) (-181))) (-5 *4 (-1005 (-332))) (-5 *2 (-1187)) (-5 *1 (-218)))) (-1508 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-858 (-181)) (-181))) (-5 *4 (-1005 (-332))) (-5 *5 (-587 (-223))) (-5 *2 (-1187)) (-5 *1 (-218)))) (-1508 (*1 *2 *3 *4) (-12 (-5 *3 (-793 (-1 (-181) (-181)))) (-5 *4 (-1005 (-332))) (-5 *2 (-1187)) (-5 *1 (-218)))) (-1508 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-793 (-1 (-181) (-181)))) (-5 *4 (-1005 (-332))) (-5 *5 (-587 (-223))) (-5 *2 (-1187)) (-5 *1 (-218)))) (-1508 (*1 *2 *3 *4) (-12 (-5 *3 (-791 (-1 (-181) (-181)))) (-5 *4 (-1005 (-332))) (-5 *2 (-1186)) (-5 *1 (-218)))) (-1508 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-791 (-1 (-181) (-181)))) (-5 *4 (-1005 (-332))) (-5 *5 (-587 (-223))) (-5 *2 (-1186)) (-5 *1 (-218)))) (-1508 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-181) (-181))) (-5 *4 (-1005 (-332))) (-5 *2 (-1186)) (-5 *1 (-218)))) (-1508 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-181) (-181))) (-5 *4 (-1005 (-332))) (-5 *5 (-587 (-223))) (-5 *2 (-1186)) (-5 *1 (-218))))) +((-1508 (((-1186) (-251 |#2|) (-1094) (-1094) (-587 (-223))) 102 T ELT))) +(((-219 |#1| |#2|) (-10 -7 (-15 -1508 ((-1186) (-251 |#2|) (-1094) (-1094) (-587 (-223))))) (-13 (-499) (-760) (-954 (-488))) (-366 |#1|)) (T -219)) +((-1508 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-251 *7)) (-5 *4 (-1094)) (-5 *5 (-587 (-223))) (-4 *7 (-366 *6)) (-4 *6 (-13 (-499) (-760) (-954 (-488)))) (-5 *2 (-1186)) (-5 *1 (-219 *6 *7))))) +((-1505 (((-488) (-488)) 71 T ELT)) (-1506 (((-488) (-488)) 72 T ELT)) (-1507 (((-181) (-181)) 73 T ELT)) (-1504 (((-1187) (-1 (-144 (-181)) (-144 (-181))) (-1005 (-181)) (-1005 (-181))) 70 T ELT)) (-1503 (((-1187) (-1 (-144 (-181)) (-144 (-181))) (-1005 (-181)) (-1005 (-181)) (-85)) 68 T ELT))) +(((-220) (-10 -7 (-15 -1503 ((-1187) (-1 (-144 (-181)) (-144 (-181))) (-1005 (-181)) (-1005 (-181)) (-85))) (-15 -1504 ((-1187) (-1 (-144 (-181)) (-144 (-181))) (-1005 (-181)) (-1005 (-181)))) (-15 -1505 ((-488) (-488))) (-15 -1506 ((-488) (-488))) (-15 -1507 ((-181) (-181))))) (T -220)) +((-1507 (*1 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-220)))) (-1506 (*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-220)))) (-1505 (*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-220)))) (-1504 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-144 (-181)) (-144 (-181)))) (-5 *4 (-1005 (-181))) (-5 *2 (-1187)) (-5 *1 (-220)))) (-1503 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-144 (-181)) (-144 (-181)))) (-5 *4 (-1005 (-181))) (-5 *5 (-85)) (-5 *2 (-1187)) (-5 *1 (-220))))) +((-3953 (((-1008 (-332)) (-1008 (-267 |#1|))) 16 T ELT))) +(((-221 |#1|) (-10 -7 (-15 -3953 ((-1008 (-332)) (-1008 (-267 |#1|))))) (-13 (-760) (-499) (-557 (-332)))) (T -221)) +((-3953 (*1 *2 *3) (-12 (-5 *3 (-1008 (-267 *4))) (-4 *4 (-13 (-760) (-499) (-557 (-332)))) (-5 *2 (-1008 (-332))) (-5 *1 (-221 *4))))) +((-1508 (((-1187) (-587 (-181)) (-587 (-181)) (-587 (-181)) (-587 (-223))) 23 T ELT) (((-1187) (-587 (-181)) (-587 (-181)) (-587 (-181))) 24 T ELT) (((-1186) (-587 (-858 (-181))) (-587 (-223))) 16 T ELT) (((-1186) (-587 (-858 (-181)))) 17 T ELT) (((-1186) (-587 (-181)) (-587 (-181)) (-587 (-223))) 20 T ELT) (((-1186) (-587 (-181)) (-587 (-181))) 21 T ELT))) +(((-222) (-10 -7 (-15 -1508 ((-1186) (-587 (-181)) (-587 (-181)))) (-15 -1508 ((-1186) (-587 (-181)) (-587 (-181)) (-587 (-223)))) (-15 -1508 ((-1186) (-587 (-858 (-181))))) (-15 -1508 ((-1186) (-587 (-858 (-181))) (-587 (-223)))) (-15 -1508 ((-1187) (-587 (-181)) (-587 (-181)) (-587 (-181)))) (-15 -1508 ((-1187) (-587 (-181)) (-587 (-181)) (-587 (-181)) (-587 (-223)))))) (T -222)) +((-1508 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-587 (-181))) (-5 *4 (-587 (-223))) (-5 *2 (-1187)) (-5 *1 (-222)))) (-1508 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-587 (-181))) (-5 *2 (-1187)) (-5 *1 (-222)))) (-1508 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-858 (-181)))) (-5 *4 (-587 (-223))) (-5 *2 (-1186)) (-5 *1 (-222)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-587 (-858 (-181)))) (-5 *2 (-1186)) (-5 *1 (-222)))) (-1508 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-587 (-181))) (-5 *4 (-587 (-223))) (-5 *2 (-1186)) (-5 *1 (-222)))) (-1508 (*1 *2 *3 *3) (-12 (-5 *3 (-587 (-181))) (-5 *2 (-1186)) (-5 *1 (-222))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3888 (($ (-2 (|:| |theta| (-181)) (|:| |phi| (-181)) (|:| -3854 (-181)) (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |scaleZ| (-181)) (|:| |deltaX| (-181)) (|:| |deltaY| (-181)))) 24 T ELT)) (-1521 (($ (-834)) 81 T ELT)) (-1520 (($ (-834)) 80 T ELT)) (-1780 (($ (-587 (-332))) 87 T ELT)) (-1524 (($ (-332)) 66 T ELT)) (-1523 (($ (-834)) 82 T ELT)) (-1517 (($ (-85)) 33 T ELT)) (-3890 (($ (-1077)) 28 T ELT)) (-1516 (($ (-1077)) 29 T ELT)) (-1522 (($ (-1051 (-181))) 76 T ELT)) (-1936 (($ (-587 (-1005 (-332)))) 72 T ELT)) (-1510 (($ (-587 (-1005 (-332)))) 68 T ELT) (($ (-587 (-1005 (-352 (-488))))) 71 T ELT)) (-1513 (($ (-332)) 38 T ELT) (($ (-787)) 42 T ELT)) (-1509 (((-85) (-587 $) (-1094)) 100 T ELT)) (-1525 (((-3 (-51) "failed") (-587 $) (-1094)) 102 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1512 (($ (-332)) 43 T ELT) (($ (-787)) 44 T ELT)) (-3230 (($ (-1 (-858 (-181)) (-858 (-181)))) 65 T ELT)) (-2271 (($ (-1 (-858 (-181)) (-858 (-181)))) 83 T ELT)) (-1511 (($ (-1 (-181) (-181))) 48 T ELT) (($ (-1 (-181) (-181) (-181))) 52 T ELT) (($ (-1 (-181) (-181) (-181) (-181))) 56 T ELT)) (-3953 (((-776) $) 93 T ELT)) (-1514 (($ (-85)) 34 T ELT) (($ (-587 (-1005 (-332)))) 60 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-1931 (($ (-85)) 35 T ELT)) (-3062 (((-85) $ $) 97 T ELT))) +(((-223) (-13 (-1017) (-10 -8 (-15 -1931 ($ (-85))) (-15 -1514 ($ (-85))) (-15 -3888 ($ (-2 (|:| |theta| (-181)) (|:| |phi| (-181)) (|:| -3854 (-181)) (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |scaleZ| (-181)) (|:| |deltaX| (-181)) (|:| |deltaY| (-181))))) (-15 -3890 ($ (-1077))) (-15 -1516 ($ (-1077))) (-15 -1517 ($ (-85))) (-15 -1514 ($ (-587 (-1005 (-332))))) (-15 -3230 ($ (-1 (-858 (-181)) (-858 (-181))))) (-15 -1513 ($ (-332))) (-15 -1513 ($ (-787))) (-15 -1512 ($ (-332))) (-15 -1512 ($ (-787))) (-15 -1511 ($ (-1 (-181) (-181)))) (-15 -1511 ($ (-1 (-181) (-181) (-181)))) (-15 -1511 ($ (-1 (-181) (-181) (-181) (-181)))) (-15 -1524 ($ (-332))) (-15 -1510 ($ (-587 (-1005 (-332))))) (-15 -1510 ($ (-587 (-1005 (-352 (-488)))))) (-15 -1936 ($ (-587 (-1005 (-332))))) (-15 -1522 ($ (-1051 (-181)))) (-15 -1520 ($ (-834))) (-15 -1521 ($ (-834))) (-15 -1523 ($ (-834))) (-15 -2271 ($ (-1 (-858 (-181)) (-858 (-181))))) (-15 -1780 ($ (-587 (-332)))) (-15 -1525 ((-3 (-51) "failed") (-587 $) (-1094))) (-15 -1509 ((-85) (-587 $) (-1094)))))) (T -223)) +((-1931 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-223)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-223)))) (-3888 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-181)) (|:| |phi| (-181)) (|:| -3854 (-181)) (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |scaleZ| (-181)) (|:| |deltaX| (-181)) (|:| |deltaY| (-181)))) (-5 *1 (-223)))) (-3890 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-223)))) (-1516 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-223)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-223)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-587 (-1005 (-332)))) (-5 *1 (-223)))) (-3230 (*1 *1 *2) (-12 (-5 *2 (-1 (-858 (-181)) (-858 (-181)))) (-5 *1 (-223)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-223)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-223)))) (-1512 (*1 *1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-223)))) (-1512 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-223)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-1 (-181) (-181))) (-5 *1 (-223)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-1 (-181) (-181) (-181))) (-5 *1 (-223)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-1 (-181) (-181) (-181) (-181))) (-5 *1 (-223)))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-223)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-587 (-1005 (-332)))) (-5 *1 (-223)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-587 (-1005 (-352 (-488))))) (-5 *1 (-223)))) (-1936 (*1 *1 *2) (-12 (-5 *2 (-587 (-1005 (-332)))) (-5 *1 (-223)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-1051 (-181))) (-5 *1 (-223)))) (-1520 (*1 *1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-223)))) (-1521 (*1 *1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-223)))) (-1523 (*1 *1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-223)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-1 (-858 (-181)) (-858 (-181)))) (-5 *1 (-223)))) (-1780 (*1 *1 *2) (-12 (-5 *2 (-587 (-332))) (-5 *1 (-223)))) (-1525 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-587 (-223))) (-5 *4 (-1094)) (-5 *2 (-51)) (-5 *1 (-223)))) (-1509 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-223))) (-5 *4 (-1094)) (-5 *2 (-85)) (-5 *1 (-223))))) +((-3888 (((-2 (|:| |theta| (-181)) (|:| |phi| (-181)) (|:| -3854 (-181)) (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |scaleZ| (-181)) (|:| |deltaX| (-181)) (|:| |deltaY| (-181))) (-587 (-223)) (-2 (|:| |theta| (-181)) (|:| |phi| (-181)) (|:| -3854 (-181)) (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |scaleZ| (-181)) (|:| |deltaX| (-181)) (|:| |deltaY| (-181)))) 25 T ELT)) (-1521 (((-834) (-587 (-223)) (-834)) 52 T ELT)) (-1520 (((-834) (-587 (-223)) (-834)) 51 T ELT)) (-3858 (((-587 (-332)) (-587 (-223)) (-587 (-332))) 68 T ELT)) (-1524 (((-332) (-587 (-223)) (-332)) 57 T ELT)) (-1523 (((-834) (-587 (-223)) (-834)) 53 T ELT)) (-1517 (((-85) (-587 (-223)) (-85)) 27 T ELT)) (-3890 (((-1077) (-587 (-223)) (-1077)) 19 T ELT)) (-1516 (((-1077) (-587 (-223)) (-1077)) 26 T ELT)) (-1522 (((-1051 (-181)) (-587 (-223))) 46 T ELT)) (-1936 (((-587 (-1005 (-332))) (-587 (-223)) (-587 (-1005 (-332)))) 40 T ELT)) (-1518 (((-787) (-587 (-223)) (-787)) 32 T ELT)) (-1519 (((-787) (-587 (-223)) (-787)) 33 T ELT)) (-2271 (((-1 (-858 (-181)) (-858 (-181))) (-587 (-223)) (-1 (-858 (-181)) (-858 (-181)))) 63 T ELT)) (-1515 (((-85) (-587 (-223)) (-85)) 14 T ELT)) (-1931 (((-85) (-587 (-223)) (-85)) 13 T ELT))) +(((-224) (-10 -7 (-15 -1931 ((-85) (-587 (-223)) (-85))) (-15 -1515 ((-85) (-587 (-223)) (-85))) (-15 -3888 ((-2 (|:| |theta| (-181)) (|:| |phi| (-181)) (|:| -3854 (-181)) (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |scaleZ| (-181)) (|:| |deltaX| (-181)) (|:| |deltaY| (-181))) (-587 (-223)) (-2 (|:| |theta| (-181)) (|:| |phi| (-181)) (|:| -3854 (-181)) (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |scaleZ| (-181)) (|:| |deltaX| (-181)) (|:| |deltaY| (-181))))) (-15 -3890 ((-1077) (-587 (-223)) (-1077))) (-15 -1516 ((-1077) (-587 (-223)) (-1077))) (-15 -1517 ((-85) (-587 (-223)) (-85))) (-15 -1518 ((-787) (-587 (-223)) (-787))) (-15 -1519 ((-787) (-587 (-223)) (-787))) (-15 -1936 ((-587 (-1005 (-332))) (-587 (-223)) (-587 (-1005 (-332))))) (-15 -1520 ((-834) (-587 (-223)) (-834))) (-15 -1521 ((-834) (-587 (-223)) (-834))) (-15 -1522 ((-1051 (-181)) (-587 (-223)))) (-15 -1523 ((-834) (-587 (-223)) (-834))) (-15 -1524 ((-332) (-587 (-223)) (-332))) (-15 -2271 ((-1 (-858 (-181)) (-858 (-181))) (-587 (-223)) (-1 (-858 (-181)) (-858 (-181))))) (-15 -3858 ((-587 (-332)) (-587 (-223)) (-587 (-332)))))) (T -224)) +((-3858 (*1 *2 *3 *2) (-12 (-5 *2 (-587 (-332))) (-5 *3 (-587 (-223))) (-5 *1 (-224)))) (-2271 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-858 (-181)) (-858 (-181)))) (-5 *3 (-587 (-223))) (-5 *1 (-224)))) (-1524 (*1 *2 *3 *2) (-12 (-5 *2 (-332)) (-5 *3 (-587 (-223))) (-5 *1 (-224)))) (-1523 (*1 *2 *3 *2) (-12 (-5 *2 (-834)) (-5 *3 (-587 (-223))) (-5 *1 (-224)))) (-1522 (*1 *2 *3) (-12 (-5 *3 (-587 (-223))) (-5 *2 (-1051 (-181))) (-5 *1 (-224)))) (-1521 (*1 *2 *3 *2) (-12 (-5 *2 (-834)) (-5 *3 (-587 (-223))) (-5 *1 (-224)))) (-1520 (*1 *2 *3 *2) (-12 (-5 *2 (-834)) (-5 *3 (-587 (-223))) (-5 *1 (-224)))) (-1936 (*1 *2 *3 *2) (-12 (-5 *2 (-587 (-1005 (-332)))) (-5 *3 (-587 (-223))) (-5 *1 (-224)))) (-1519 (*1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-587 (-223))) (-5 *1 (-224)))) (-1518 (*1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-587 (-223))) (-5 *1 (-224)))) (-1517 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-587 (-223))) (-5 *1 (-224)))) (-1516 (*1 *2 *3 *2) (-12 (-5 *2 (-1077)) (-5 *3 (-587 (-223))) (-5 *1 (-224)))) (-3890 (*1 *2 *3 *2) (-12 (-5 *2 (-1077)) (-5 *3 (-587 (-223))) (-5 *1 (-224)))) (-3888 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-181)) (|:| |phi| (-181)) (|:| -3854 (-181)) (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |scaleZ| (-181)) (|:| |deltaX| (-181)) (|:| |deltaY| (-181)))) (-5 *3 (-587 (-223))) (-5 *1 (-224)))) (-1515 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-587 (-223))) (-5 *1 (-224)))) (-1931 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-587 (-223))) (-5 *1 (-224))))) +((-1525 (((-3 |#1| "failed") (-587 (-223)) (-1094)) 17 T ELT))) +(((-225 |#1|) (-10 -7 (-15 -1525 ((-3 |#1| "failed") (-587 (-223)) (-1094)))) (-1133)) (T -225)) +((-1525 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-587 (-223))) (-5 *4 (-1094)) (-5 *1 (-225 *2)) (-4 *2 (-1133))))) +((-3764 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-698)) 11 T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094))) NIL T ELT) (($ $ (-1094)) 19 T ELT) (($ $ (-698)) NIL T ELT) (($ $) 16 T ELT)) (-2675 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-698)) 14 T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094))) NIL T ELT) (($ $ (-1094)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $) NIL T ELT))) +(((-226 |#1| |#2|) (-10 -7 (-15 -3764 (|#1| |#1|)) (-15 -2675 (|#1| |#1|)) (-15 -3764 (|#1| |#1| (-698))) (-15 -2675 (|#1| |#1| (-698))) (-15 -3764 (|#1| |#1| (-1094))) (-15 -2675 (|#1| |#1| (-1094))) (-15 -3764 (|#1| |#1| (-587 (-1094)))) (-15 -3764 (|#1| |#1| (-1094) (-698))) (-15 -3764 (|#1| |#1| (-587 (-1094)) (-587 (-698)))) (-15 -2675 (|#1| |#1| (-587 (-1094)))) (-15 -2675 (|#1| |#1| (-1094) (-698))) (-15 -2675 (|#1| |#1| (-587 (-1094)) (-587 (-698)))) (-15 -2675 (|#1| |#1| (-1 |#2| |#2|) (-698))) (-15 -2675 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3764 (|#1| |#1| (-1 |#2| |#2|) (-698))) (-15 -3764 (|#1| |#1| (-1 |#2| |#2|)))) (-227 |#2|) (-1133)) (T -226)) +NIL +((-3764 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-698)) 22 T ELT) (($ $ (-587 (-1094)) (-587 (-698))) 16 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) 15 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) 14 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094)) 12 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-698)) 10 (|has| |#1| (-191)) ELT) (($ $) 8 (|has| |#1| (-191)) ELT)) (-2675 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-698)) 20 T ELT) (($ $ (-587 (-1094)) (-587 (-698))) 19 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) 18 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) 17 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094)) 13 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-698)) 11 (|has| |#1| (-191)) ELT) (($ $) 9 (|has| |#1| (-191)) ELT))) +(((-227 |#1|) (-113) (-1133)) (T -227)) +((-3764 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1133)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-698)) (-4 *1 (-227 *4)) (-4 *4 (-1133)))) (-2675 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1133)))) (-2675 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-698)) (-4 *1 (-227 *4)) (-4 *4 (-1133))))) +(-13 (-1133) (-10 -8 (-15 -3764 ($ $ (-1 |t#1| |t#1|))) (-15 -3764 ($ $ (-1 |t#1| |t#1|) (-698))) (-15 -2675 ($ $ (-1 |t#1| |t#1|))) (-15 -2675 ($ $ (-1 |t#1| |t#1|) (-698))) (IF (|has| |t#1| (-191)) (-6 (-191)) |%noBranch|) (IF (|has| |t#1| (-815 (-1094))) (-6 (-815 (-1094))) |%noBranch|))) +(((-188 $) |has| |#1| (-191)) ((-191) |has| |#1| (-191)) ((-13) . T) ((-810 $ (-1094)) |has| |#1| (-815 (-1094))) ((-815 (-1094)) |has| |#1| (-815 (-1094))) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1492 (((-587 (-698)) $) NIL T ELT) (((-587 (-698)) $ |#2|) NIL T ELT)) (-1526 (((-698) $) NIL T ELT) (((-698) $ |#2|) NIL T ELT)) (-3087 (((-587 |#3|) $) NIL T ELT)) (-3089 (((-1089 $) $ |#3|) NIL T ELT) (((-1089 |#1|) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-2825 (((-698) $) NIL T ELT) (((-698) $ (-587 |#3|)) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3781 (($ $) NIL (|has| |#1| (-395)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-395)) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-1488 (($ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1043 |#1| |#2|) #1#) $) 23 T ELT)) (-3162 ((|#1| $) NIL T ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1043 |#1| |#2|) $) NIL T ELT)) (-3762 (($ $ $ |#3|) NIL (|has| |#1| (-148)) ELT)) (-3965 (($ $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#1|) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3509 (($ $) NIL (|has| |#1| (-395)) ELT) (($ $ |#3|) NIL (|has| |#1| (-395)) ELT)) (-2824 (((-587 $) $) NIL T ELT)) (-3729 (((-85) $) NIL (|has| |#1| (-825)) ELT)) (-1628 (($ $ |#1| (-473 |#3|) $) NIL T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (-12 (|has| |#1| (-800 (-332))) (|has| |#3| (-800 (-332)))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (-12 (|has| |#1| (-800 (-488))) (|has| |#3| (-800 (-488)))) ELT)) (-3778 (((-698) $ |#2|) NIL T ELT) (((-698) $) 10 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2425 (((-698) $) NIL T ELT)) (-3090 (($ (-1089 |#1|) |#3|) NIL T ELT) (($ (-1089 $) |#3|) NIL T ELT)) (-2827 (((-587 $) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-473 |#3|)) NIL T ELT) (($ $ |#3| (-698)) NIL T ELT) (($ $ (-587 |#3|) (-587 (-698))) NIL T ELT)) (-3769 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $ |#3|) NIL T ELT)) (-2826 (((-473 |#3|) $) NIL T ELT) (((-698) $ |#3|) NIL T ELT) (((-587 (-698)) $ (-587 |#3|)) NIL T ELT)) (-1629 (($ (-1 (-473 |#3|) (-473 |#3|)) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1527 (((-1 $ (-698)) |#2|) NIL T ELT) (((-1 $ (-698)) $) NIL (|has| |#1| (-192)) ELT)) (-3088 (((-3 |#3| #1#) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) NIL T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-1490 ((|#3| $) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-395)) ELT) (($ $ $) NIL (|has| |#1| (-395)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1491 (((-85) $) NIL T ELT)) (-2829 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2828 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2830 (((-3 (-2 (|:| |var| |#3|) (|:| -2406 (-698))) #1#) $) NIL T ELT)) (-1489 (($ $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1805 (((-85) $) NIL T ELT)) (-1804 ((|#1| $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#1| (-395)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-395)) ELT) (($ $ $) NIL (|has| |#1| (-395)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#1| (-825)) ELT)) (-3472 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-499)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-499)) ELT)) (-3774 (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-587 |#3|) (-587 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-587 |#3|) (-587 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-192)) ELT) (($ $ (-587 |#2|) (-587 $)) NIL (|has| |#1| (-192)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-192)) ELT) (($ $ (-587 |#2|) (-587 |#1|)) NIL (|has| |#1| (-192)) ELT)) (-3763 (($ $ |#3|) NIL (|has| |#1| (-148)) ELT)) (-3764 (($ $ (-587 |#3|) (-587 (-698))) NIL T ELT) (($ $ |#3| (-698)) NIL T ELT) (($ $ (-587 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $) NIL (|has| |#1| (-191)) ELT) (($ $ (-698)) NIL (|has| |#1| (-191)) ELT)) (-1493 (((-587 |#2|) $) NIL T ELT)) (-3955 (((-473 |#3|) $) NIL T ELT) (((-698) $ |#3|) NIL T ELT) (((-587 (-698)) $ (-587 |#3|)) NIL T ELT) (((-698) $ |#2|) NIL T ELT)) (-3978 (((-804 (-332)) $) NIL (-12 (|has| |#1| (-557 (-804 (-332)))) (|has| |#3| (-557 (-804 (-332))))) ELT) (((-804 (-488)) $) NIL (-12 (|has| |#1| (-557 (-804 (-488)))) (|has| |#3| (-557 (-804 (-488))))) ELT) (((-477) $) NIL (-12 (|has| |#1| (-557 (-477))) (|has| |#3| (-557 (-477)))) ELT)) (-2823 ((|#1| $) NIL (|has| |#1| (-395)) ELT) (($ $ |#3|) NIL (|has| |#1| (-395)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-825))) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1043 |#1| |#2|)) 32 T ELT) (($ (-352 (-488))) NIL (OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) ELT) (($ $) NIL (|has| |#1| (-499)) ELT)) (-3823 (((-587 |#1|) $) NIL T ELT)) (-3683 ((|#1| $ (-473 |#3|)) NIL T ELT) (($ $ |#3| (-698)) NIL T ELT) (($ $ (-587 |#3|) (-587 (-698))) NIL T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-825))) (|has| |#1| (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1627 (($ $ $ (-698)) NIL (|has| |#1| (-148)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $ (-587 |#3|) (-587 (-698))) NIL T ELT) (($ $ |#3| (-698)) NIL T ELT) (($ $ (-587 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $) NIL (|has| |#1| (-191)) ELT) (($ $ (-698)) NIL (|has| |#1| (-191)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-228 |#1| |#2| |#3|) (-13 (-215 |#1| |#2| |#3| (-473 |#3|)) (-954 (-1043 |#1| |#2|))) (-965) (-760) (-230 |#2|)) (T -228)) +NIL +((-1526 (((-698) $) 37 T ELT)) (-3163 (((-3 |#2| "failed") $) 22 T ELT)) (-3162 ((|#2| $) 33 T ELT)) (-3764 (($ $ (-698)) 18 T ELT) (($ $) 14 T ELT)) (-3953 (((-776) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3062 (((-85) $ $) 26 T ELT)) (-2691 (((-85) $ $) 36 T ELT))) +(((-229 |#1| |#2|) (-10 -7 (-15 -1526 ((-698) |#1|)) (-15 -3953 (|#1| |#2|)) (-15 -3163 ((-3 |#2| "failed") |#1|)) (-15 -3162 (|#2| |#1|)) (-15 -3764 (|#1| |#1|)) (-15 -3764 (|#1| |#1| (-698))) (-15 -2691 ((-85) |#1| |#1|)) (-15 -3953 ((-776) |#1|)) (-15 -3062 ((-85) |#1| |#1|))) (-230 |#2|) (-760)) (T -229)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-1526 (((-698) $) 26 T ELT)) (-3837 ((|#1| $) 27 T ELT)) (-3163 (((-3 |#1| "failed") $) 31 T ELT)) (-3162 ((|#1| $) 32 T ELT)) (-3778 (((-698) $) 28 T ELT)) (-2537 (($ $ $) 23 T ELT)) (-2863 (($ $ $) 22 T ELT)) (-1527 (($ |#1| (-698)) 29 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3764 (($ $ (-698)) 35 T ELT) (($ $) 33 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2675 (($ $ (-698)) 36 T ELT) (($ $) 34 T ELT)) (-2572 (((-85) $ $) 21 T ELT)) (-2573 (((-85) $ $) 19 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 20 T ELT)) (-2691 (((-85) $ $) 18 T ELT))) +(((-230 |#1|) (-113) (-760)) (T -230)) +((-1527 (*1 *1 *2 *3) (-12 (-5 *3 (-698)) (-4 *1 (-230 *2)) (-4 *2 (-760)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-760)) (-5 *2 (-698)))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-760)))) (-1526 (*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-760)) (-5 *2 (-698))))) +(-13 (-760) (-191) (-954 |t#1|) (-10 -8 (-15 -1527 ($ |t#1| (-698))) (-15 -3778 ((-698) $)) (-15 -3837 (|t#1| $)) (-15 -1526 ((-698) $)))) +(((-72) . T) ((-559 |#1|) . T) ((-556 (-776)) . T) ((-188 $) . T) ((-191) . T) ((-13) . T) ((-760) . T) ((-763) . T) ((-954 |#1|) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1529 (((-587 (-488)) $) 28 T ELT)) (-3955 (((-698) $) 26 T ELT)) (-3953 (((-776) $) 32 T ELT) (($ (-587 (-488))) 22 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-1528 (($ (-698)) 29 T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 11 T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 18 T ELT))) +(((-231) (-13 (-760) (-10 -8 (-15 -3953 ($ (-587 (-488)))) (-15 -3955 ((-698) $)) (-15 -1529 ((-587 (-488)) $)) (-15 -1528 ($ (-698)))))) (T -231)) +((-3953 (*1 *1 *2) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-231)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-231)))) (-1529 (*1 *2 *1) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-231)))) (-1528 (*1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-231))))) +((-3498 ((|#2| |#2|) 77 T ELT)) (-3645 ((|#2| |#2|) 65 T ELT)) (-1558 (((-3 |#2| "failed") |#2| (-587 (-2 (|:| |func| |#2|) (|:| |pole| (-85))))) 123 T ELT)) (-3496 ((|#2| |#2|) 75 T ELT)) (-3644 ((|#2| |#2|) 63 T ELT)) (-3500 ((|#2| |#2|) 79 T ELT)) (-3643 ((|#2| |#2|) 67 T ELT)) (-3633 ((|#2|) 46 T ELT)) (-3601 (((-86) (-86)) 97 T ELT)) (-3949 ((|#2| |#2|) 61 T ELT)) (-1559 (((-85) |#2|) 146 T ELT)) (-1548 ((|#2| |#2|) 193 T ELT)) (-1536 ((|#2| |#2|) 169 T ELT)) (-1531 ((|#2|) 59 T ELT)) (-1530 ((|#2|) 58 T ELT)) (-1546 ((|#2| |#2|) 189 T ELT)) (-1534 ((|#2| |#2|) 165 T ELT)) (-1550 ((|#2| |#2|) 197 T ELT)) (-1538 ((|#2| |#2|) 173 T ELT)) (-1533 ((|#2| |#2|) 161 T ELT)) (-1532 ((|#2| |#2|) 163 T ELT)) (-1551 ((|#2| |#2|) 199 T ELT)) (-1539 ((|#2| |#2|) 175 T ELT)) (-1549 ((|#2| |#2|) 195 T ELT)) (-1537 ((|#2| |#2|) 171 T ELT)) (-1547 ((|#2| |#2|) 191 T ELT)) (-1535 ((|#2| |#2|) 167 T ELT)) (-1554 ((|#2| |#2|) 205 T ELT)) (-1542 ((|#2| |#2|) 181 T ELT)) (-1552 ((|#2| |#2|) 201 T ELT)) (-1540 ((|#2| |#2|) 177 T ELT)) (-1556 ((|#2| |#2|) 209 T ELT)) (-1544 ((|#2| |#2|) 185 T ELT)) (-1557 ((|#2| |#2|) 211 T ELT)) (-1545 ((|#2| |#2|) 187 T ELT)) (-1555 ((|#2| |#2|) 207 T ELT)) (-1543 ((|#2| |#2|) 183 T ELT)) (-1553 ((|#2| |#2|) 203 T ELT)) (-1541 ((|#2| |#2|) 179 T ELT)) (-3950 ((|#2| |#2|) 62 T ELT)) (-3501 ((|#2| |#2|) 80 T ELT)) (-3642 ((|#2| |#2|) 68 T ELT)) (-3499 ((|#2| |#2|) 78 T ELT)) (-3641 ((|#2| |#2|) 66 T ELT)) (-3497 ((|#2| |#2|) 76 T ELT)) (-3640 ((|#2| |#2|) 64 T ELT)) (-2259 (((-85) (-86)) 95 T ELT)) (-3504 ((|#2| |#2|) 83 T ELT)) (-3492 ((|#2| |#2|) 71 T ELT)) (-3502 ((|#2| |#2|) 81 T ELT)) (-3490 ((|#2| |#2|) 69 T ELT)) (-3506 ((|#2| |#2|) 85 T ELT)) (-3494 ((|#2| |#2|) 73 T ELT)) (-3507 ((|#2| |#2|) 86 T ELT)) (-3495 ((|#2| |#2|) 74 T ELT)) (-3505 ((|#2| |#2|) 84 T ELT)) (-3493 ((|#2| |#2|) 72 T ELT)) (-3503 ((|#2| |#2|) 82 T ELT)) (-3491 ((|#2| |#2|) 70 T ELT))) +(((-232 |#1| |#2|) (-10 -7 (-15 -3950 (|#2| |#2|)) (-15 -3949 (|#2| |#2|)) (-15 -3644 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3641 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3642 (|#2| |#2|)) (-15 -3490 (|#2| |#2|)) (-15 -3491 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3495 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -3500 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -3503 (|#2| |#2|)) (-15 -3504 (|#2| |#2|)) (-15 -3505 (|#2| |#2|)) (-15 -3506 (|#2| |#2|)) (-15 -3507 (|#2| |#2|)) (-15 -3633 (|#2|)) (-15 -2259 ((-85) (-86))) (-15 -3601 ((-86) (-86))) (-15 -1530 (|#2|)) (-15 -1531 (|#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1552 (|#2| |#2|)) (-15 -1553 (|#2| |#2|)) (-15 -1554 (|#2| |#2|)) (-15 -1555 (|#2| |#2|)) (-15 -1556 (|#2| |#2|)) (-15 -1557 (|#2| |#2|)) (-15 -1558 ((-3 |#2| "failed") |#2| (-587 (-2 (|:| |func| |#2|) (|:| |pole| (-85)))))) (-15 -1559 ((-85) |#2|))) (-499) (-13 (-366 |#1|) (-919))) (T -232)) +((-1559 (*1 *2 *3) (-12 (-4 *4 (-499)) (-5 *2 (-85)) (-5 *1 (-232 *4 *3)) (-4 *3 (-13 (-366 *4) (-919))))) (-1558 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-587 (-2 (|:| |func| *2) (|:| |pole| (-85))))) (-4 *2 (-13 (-366 *4) (-919))) (-4 *4 (-499)) (-5 *1 (-232 *4 *2)))) (-1557 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1556 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1555 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1554 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1553 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-1531 (*1 *2) (-12 (-4 *2 (-13 (-366 *3) (-919))) (-5 *1 (-232 *3 *2)) (-4 *3 (-499)))) (-1530 (*1 *2) (-12 (-4 *2 (-13 (-366 *3) (-919))) (-5 *1 (-232 *3 *2)) (-4 *3 (-499)))) (-3601 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-499)) (-5 *1 (-232 *3 *4)) (-4 *4 (-13 (-366 *3) (-919))))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-499)) (-5 *2 (-85)) (-5 *1 (-232 *4 *5)) (-4 *5 (-13 (-366 *4) (-919))))) (-3633 (*1 *2) (-12 (-4 *2 (-13 (-366 *3) (-919))) (-5 *1 (-232 *3 *2)) (-4 *3 (-499)))) (-3507 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3506 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3505 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3504 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3949 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) (-3950 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) +((-1562 (((-3 |#2| "failed") (-587 (-554 |#2|)) |#2| (-1094)) 151 T ELT)) (-1564 ((|#2| (-352 (-488)) |#2|) 49 T ELT)) (-1563 ((|#2| |#2| (-554 |#2|)) 144 T ELT)) (-1560 (((-2 (|:| |func| |#2|) (|:| |kers| (-587 (-554 |#2|))) (|:| |vals| (-587 |#2|))) |#2| (-1094)) 143 T ELT)) (-1561 ((|#2| |#2| (-1094)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2449 ((|#2| |#2| (-1094)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) +(((-233 |#1| |#2|) (-10 -7 (-15 -2449 (|#2| |#2|)) (-15 -2449 (|#2| |#2| (-1094))) (-15 -1560 ((-2 (|:| |func| |#2|) (|:| |kers| (-587 (-554 |#2|))) (|:| |vals| (-587 |#2|))) |#2| (-1094))) (-15 -1561 (|#2| |#2|)) (-15 -1561 (|#2| |#2| (-1094))) (-15 -1562 ((-3 |#2| "failed") (-587 (-554 |#2|)) |#2| (-1094))) (-15 -1563 (|#2| |#2| (-554 |#2|))) (-15 -1564 (|#2| (-352 (-488)) |#2|))) (-13 (-499) (-954 (-488)) (-584 (-488))) (-13 (-27) (-1119) (-366 |#1|))) (T -233)) +((-1564 (*1 *2 *3 *2) (-12 (-5 *3 (-352 (-488))) (-4 *4 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *1 (-233 *4 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *4))))) (-1563 (*1 *2 *2 *3) (-12 (-5 *3 (-554 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *4))) (-4 *4 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *1 (-233 *4 *2)))) (-1562 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-587 (-554 *2))) (-5 *4 (-1094)) (-4 *2 (-13 (-27) (-1119) (-366 *5))) (-4 *5 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *1 (-233 *5 *2)))) (-1561 (*1 *2 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *1 (-233 *4 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *4))))) (-1561 (*1 *2 *2) (-12 (-4 *3 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *1 (-233 *3 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *3))))) (-1560 (*1 *2 *3 *4) (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-587 (-554 *3))) (|:| |vals| (-587 *3)))) (-5 *1 (-233 *5 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))))) (-2449 (*1 *2 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *1 (-233 *4 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *4))))) (-2449 (*1 *2 *2) (-12 (-4 *3 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *1 (-233 *3 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *3)))))) +((-2981 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3498 ((|#3| |#3|) 142 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3645 ((|#3| |#3|) 132 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3496 ((|#3| |#3|) 140 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3644 ((|#3| |#3|) 130 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3500 ((|#3| |#3|) 144 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3643 ((|#3| |#3|) 134 T ELT)) (-2964 (((-3 |#3| #1#) |#3| (-698)) 41 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3949 ((|#3| |#3|) 129 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3950 ((|#3| |#3|) 128 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3501 ((|#3| |#3|) 145 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3642 ((|#3| |#3|) 135 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3499 ((|#3| |#3|) 143 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3641 ((|#3| |#3|) 133 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3497 ((|#3| |#3|) 141 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3640 ((|#3| |#3|) 131 T ELT)) (-2987 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3504 ((|#3| |#3|) 148 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3492 ((|#3| |#3|) 152 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3502 ((|#3| |#3|) 146 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3490 ((|#3| |#3|) 136 T ELT)) (-2989 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3506 ((|#3| |#3|) 150 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3494 ((|#3| |#3|) 138 T ELT)) (-2990 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3507 ((|#3| |#3|) 151 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3495 ((|#3| |#3|) 139 T ELT)) (-2988 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3505 ((|#3| |#3|) 149 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3493 ((|#3| |#3|) 153 T ELT)) (-2986 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3503 ((|#3| |#3|) 147 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3491 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-352 (-488))) 47 (|has| |#1| (-314)) ELT))) +(((-234 |#1| |#2| |#3|) (-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-314)) (-15 ** (|#3| |#3| (-352 (-488)))) |%noBranch|) (-15 -3950 (|#3| |#3|)) (-15 -3949 (|#3| |#3|)) (-15 -3644 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3645 (|#3| |#3|)) (-15 -3641 (|#3| |#3|)) (-15 -3643 (|#3| |#3|)) (-15 -3642 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)) (-15 -3503 (|#3| |#3|)) (-15 -3504 (|#3| |#3|)) (-15 -3505 (|#3| |#3|)) (-15 -3506 (|#3| |#3|)) (-15 -3507 (|#3| |#3|)))) (-38 (-352 (-488))) (-1176 |#1|) (-1147 |#1| |#2|)) (T -234)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-352 (-488))) (-4 *4 (-314)) (-4 *4 (-38 *3)) (-4 *5 (-1176 *4)) (-5 *1 (-234 *4 *5 *2)) (-4 *2 (-1147 *4 *5)))) (-3950 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3949 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3504 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3505 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3506 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4)))) (-3507 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) (-4 *2 (-1147 *3 *4))))) +((-2981 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3498 ((|#3| |#3|) 137 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3645 ((|#3| |#3|) 125 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3496 ((|#3| |#3|) 135 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3644 ((|#3| |#3|) 123 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3500 ((|#3| |#3|) 139 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3643 ((|#3| |#3|) 127 T ELT)) (-2964 (((-3 |#3| #1#) |#3| (-698)) 38 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3949 ((|#3| |#3|) 111 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3950 ((|#3| |#3|) 122 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3501 ((|#3| |#3|) 140 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3642 ((|#3| |#3|) 128 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3499 ((|#3| |#3|) 138 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3641 ((|#3| |#3|) 126 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3497 ((|#3| |#3|) 136 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3640 ((|#3| |#3|) 124 T ELT)) (-2987 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3504 ((|#3| |#3|) 143 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3492 ((|#3| |#3|) 131 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3502 ((|#3| |#3|) 141 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3490 ((|#3| |#3|) 129 T ELT)) (-2989 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3506 ((|#3| |#3|) 145 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3494 ((|#3| |#3|) 133 T ELT)) (-2990 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3507 ((|#3| |#3|) 146 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3495 ((|#3| |#3|) 134 T ELT)) (-2988 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3505 ((|#3| |#3|) 144 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3493 ((|#3| |#3|) 132 T ELT)) (-2986 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3503 ((|#3| |#3|) 142 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3491 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-352 (-488))) 44 (|has| |#1| (-314)) ELT))) +(((-235 |#1| |#2| |#3| |#4|) (-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-314)) (-15 ** (|#3| |#3| (-352 (-488)))) |%noBranch|) (-15 -3950 (|#3| |#3|)) (-15 -3949 (|#3| |#3|)) (-15 -3644 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3645 (|#3| |#3|)) (-15 -3641 (|#3| |#3|)) (-15 -3643 (|#3| |#3|)) (-15 -3642 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)) (-15 -3503 (|#3| |#3|)) (-15 -3504 (|#3| |#3|)) (-15 -3505 (|#3| |#3|)) (-15 -3506 (|#3| |#3|)) (-15 -3507 (|#3| |#3|)))) (-38 (-352 (-488))) (-1145 |#1|) (-1168 |#1| |#2|) (-900 |#2|)) (T -235)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-352 (-488))) (-4 *4 (-314)) (-4 *4 (-38 *3)) (-4 *5 (-1145 *4)) (-5 *1 (-235 *4 *5 *2 *6)) (-4 *2 (-1168 *4 *5)) (-4 *6 (-900 *5)))) (-3950 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3949 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3504 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3505 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3506 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) (-3507 (*1 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4))))) +((-1567 (((-85) $) 20 T ELT)) (-1569 (((-1099) $) 9 T ELT)) (-3575 (((-3 (-450) #1="failed") $) 15 T ELT)) (-3574 (((-3 (-587 $) #1#) $) NIL T ELT)) (-1566 (((-3 (-450) #1#) $) 21 T ELT)) (-1568 (((-3 (-1019) #1#) $) 19 T ELT)) (-3960 (((-85) $) 17 T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1565 (((-85) $) 10 T ELT))) +(((-236) (-13 (-556 (-776)) (-10 -8 (-15 -1569 ((-1099) $)) (-15 -3960 ((-85) $)) (-15 -1568 ((-3 (-1019) #1="failed") $)) (-15 -1567 ((-85) $)) (-15 -1566 ((-3 (-450) #1#) $)) (-15 -1565 ((-85) $)) (-15 -3575 ((-3 (-450) #1#) $)) (-15 -3574 ((-3 (-587 $) #1#) $))))) (T -236)) +((-1569 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-236)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-236)))) (-1568 (*1 *2 *1) (|partial| -12 (-5 *2 (-1019)) (-5 *1 (-236)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-236)))) (-1566 (*1 *2 *1) (|partial| -12 (-5 *2 (-450)) (-5 *1 (-236)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-236)))) (-3575 (*1 *2 *1) (|partial| -12 (-5 *2 (-450)) (-5 *1 (-236)))) (-3574 (*1 *2 *1) (|partial| -12 (-5 *2 (-587 (-236))) (-5 *1 (-236))))) +((-1571 (((-536) $) 10 T ELT)) (-1572 (((-526) $) 8 T ELT)) (-1570 (((-249) $) 12 T ELT)) (-1573 (($ (-526) (-536) (-249)) NIL T ELT)) (-3953 (((-776) $) 19 T ELT))) +(((-237) (-13 (-556 (-776)) (-10 -8 (-15 -1573 ($ (-526) (-536) (-249))) (-15 -1572 ((-526) $)) (-15 -1571 ((-536) $)) (-15 -1570 ((-249) $))))) (T -237)) +((-1573 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-526)) (-5 *3 (-536)) (-5 *4 (-249)) (-5 *1 (-237)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-237)))) (-1571 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-237)))) (-1570 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-237))))) +((-3716 (($ (-1 (-85) |#2|) $) 24 T ELT)) (-1357 (($ $) 38 T ELT)) (-3411 (($ (-1 (-85) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3412 (($ |#2| $) 34 T ELT) (($ (-1 (-85) |#2|) $) 18 T ELT)) (-2862 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2309 (($ |#2| $ (-488)) 20 T ELT) (($ $ $ (-488)) 22 T ELT)) (-2310 (($ $ (-488)) 11 T ELT) (($ $ (-1150 (-488))) 14 T ELT)) (-3797 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3808 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-587 $)) NIL T ELT))) +(((-238 |#1| |#2|) (-10 -7 (-15 -2862 (|#1| |#1| |#1|)) (-15 -3411 (|#1| |#2| |#1|)) (-15 -2862 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3411 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1| |#2|)) (-15 -2309 (|#1| |#1| |#1| (-488))) (-15 -2309 (|#1| |#2| |#1| (-488))) (-15 -2310 (|#1| |#1| (-1150 (-488)))) (-15 -2310 (|#1| |#1| (-488))) (-15 -3808 (|#1| (-587 |#1|))) (-15 -3808 (|#1| |#1| |#1|)) (-15 -3808 (|#1| |#2| |#1|)) (-15 -3808 (|#1| |#1| |#2|)) (-15 -3412 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3716 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3412 (|#1| |#2| |#1|)) (-15 -1357 (|#1| |#1|))) (-239 |#2|) (-1133)) (T -238)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2203 (((-1189) $ (-488) (-488)) 35 (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ (-488) |#1|) 47 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-1150 (-488)) |#1|) 55 (|has| $ (-1039 |#1|)) ELT)) (-1574 (($ (-1 (-85) |#1|) $) 83 T ELT)) (-3716 (($ (-1 (-85) |#1|) $) 69 (|has| $ (-320 |#1|)) ELT)) (-3730 (($) 6 T CONST)) (-2373 (($ $) 81 (|has| |#1| (-72)) ELT)) (-1357 (($ $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-3411 (($ (-1 (-85) |#1|) $) 87 T ELT) (($ |#1| $) 82 (|has| |#1| (-72)) ELT)) (-3412 (($ |#1| $) 70 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 68 (|has| $ (-320 |#1|)) ELT)) (-1580 ((|#1| $ (-488) |#1|) 48 (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-488)) 46 T ELT)) (-3620 (($ (-698) |#1|) 65 T ELT)) (-2205 (((-488) $) 38 (|has| (-488) (-760)) ELT)) (-2862 (($ (-1 (-85) |#1| |#1|) $ $) 84 T ELT) (($ $ $) 80 (|has| |#1| (-760)) ELT)) (-2206 (((-488) $) 39 (|has| (-488) (-760)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-3615 (($ |#1| $ (-488)) 86 T ELT) (($ $ $ (-488)) 85 T ELT)) (-2309 (($ |#1| $ (-488)) 57 T ELT) (($ $ $ (-488)) 56 T ELT)) (-2208 (((-587 (-488)) $) 41 T ELT)) (-2209 (((-85) (-488) $) 42 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-3807 ((|#1| $) 37 (|has| (-488) (-760)) ELT)) (-2204 (($ $ |#1|) 36 (|has| $ (-1039 |#1|)) ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-2207 (((-85) |#1| $) 40 (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) 43 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#1| $ (-488) |#1|) 45 T ELT) ((|#1| $ (-488)) 44 T ELT) (($ $ (-1150 (-488))) 66 T ELT)) (-1575 (($ $ (-488)) 89 T ELT) (($ $ (-1150 (-488))) 88 T ELT)) (-2310 (($ $ (-488)) 59 T ELT) (($ $ (-1150 (-488))) 58 T ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 72 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 67 T ELT)) (-3797 (($ $ |#1|) 91 T ELT) (($ $ $) 90 T ELT)) (-3808 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-239 |#1|) (-113) (-1133)) (T -239)) +((-3797 (*1 *1 *1 *2) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1133)))) (-3797 (*1 *1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1133)))) (-1575 (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-239 *3)) (-4 *3 (-1133)))) (-1575 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 (-488))) (-4 *1 (-239 *3)) (-4 *3 (-1133)))) (-3411 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-239 *3)) (-4 *3 (-1133)))) (-3615 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-488)) (-4 *1 (-239 *2)) (-4 *2 (-1133)))) (-3615 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-239 *3)) (-4 *3 (-1133)))) (-2862 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-239 *3)) (-4 *3 (-1133)))) (-1574 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-239 *3)) (-4 *3 (-1133)))) (-3411 (*1 *1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1133)) (-4 *2 (-72)))) (-2373 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1133)) (-4 *2 (-72)))) (-2862 (*1 *1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1133)) (-4 *2 (-760))))) +(-13 (-597 |t#1|) (-1039 |t#1|) (-10 -8 (-15 -3797 ($ $ |t#1|)) (-15 -3797 ($ $ $)) (-15 -1575 ($ $ (-488))) (-15 -1575 ($ $ (-1150 (-488)))) (-15 -3411 ($ (-1 (-85) |t#1|) $)) (-15 -3615 ($ |t#1| $ (-488))) (-15 -3615 ($ $ $ (-488))) (-15 -2862 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -1574 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3411 ($ |t#1| $)) (-15 -2373 ($ $))) |%noBranch|) (IF (|has| |t#1| (-760)) (-15 -2862 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-124 |#1|) . T) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-243 (-488) |#1|) . T) ((-243 (-1150 (-488)) $) . T) ((-245 (-488) |#1|) . T) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-542 (-488) |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-597 |#1|) . T) ((-1017) |has| |#1| (-1017)) ((-1039 |#1|) . T) ((-1133) . T)) ((** (($ $ $) 10 T ELT))) -(((-238 |#1|) (-10 -7 (-15 ** (|#1| |#1| |#1|))) (-239)) (T -238)) -NIL -((-3946 (($ $) 6 T ELT)) (-3947 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) -(((-239) (-113)) (T -239)) -((** (*1 *1 *1 *1) (-4 *1 (-239))) (-3947 (*1 *1 *1) (-4 *1 (-239))) (-3946 (*1 *1 *1) (-4 *1 (-239)))) -(-13 (-10 -8 (-15 -3946 ($ $)) (-15 -3947 ($ $)) (-15 ** ($ $ $)))) -((-1576 (((-585 (-1071 |#1|)) (-1071 |#1|) |#1|) 35 T ELT)) (-1573 ((|#2| |#2| |#1|) 39 T ELT)) (-1575 ((|#2| |#2| |#1|) 41 T ELT)) (-1574 ((|#2| |#2| |#1|) 40 T ELT))) -(((-240 |#1| |#2|) (-10 -7 (-15 -1573 (|#2| |#2| |#1|)) (-15 -1574 (|#2| |#2| |#1|)) (-15 -1575 (|#2| |#2| |#1|)) (-15 -1576 ((-585 (-1071 |#1|)) (-1071 |#1|) |#1|))) (-312) (-1174 |#1|)) (T -240)) -((-1576 (*1 *2 *3 *4) (-12 (-4 *4 (-312)) (-5 *2 (-585 (-1071 *4))) (-5 *1 (-240 *4 *5)) (-5 *3 (-1071 *4)) (-4 *5 (-1174 *4)))) (-1575 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1174 *3)))) (-1574 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1174 *3)))) (-1573 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1174 *3))))) -((-3803 ((|#2| $ |#1|) 6 T ELT))) -(((-241 |#1| |#2|) (-113) (-1131) (-1131)) (T -241)) -((-3803 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131))))) -(-13 (-1131) (-10 -8 (-15 -3803 (|t#2| $ |t#1|)))) -(((-13) . T) ((-1131) . T)) -((-1577 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3115 ((|#3| $ |#2|) 10 T ELT))) -(((-242 |#1| |#2| |#3|) (-10 -7 (-15 -1577 (|#3| |#1| |#2| |#3|)) (-15 -3115 (|#3| |#1| |#2|))) (-243 |#2| |#3|) (-72) (-1131)) (T -242)) -NIL -((-3791 ((|#2| $ |#1| |#2|) 10 (|has| $ (-1037 |#2|)) ELT)) (-1577 ((|#2| $ |#1| |#2|) 9 (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) 11 T ELT)) (-3803 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) -(((-243 |#1| |#2|) (-113) (-72) (-1131)) (T -243)) -((-3803 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1131)))) (-3115 (*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1131)))) (-3791 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-243 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1131)))) (-1577 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-243 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1131))))) -(-13 (-241 |t#1| |t#2|) (-10 -8 (-15 -3803 (|t#2| $ |t#1| |t#2|)) (-15 -3115 (|t#2| $ |t#1|)) (IF (|has| $ (-1037 |t#2|)) (PROGN (-15 -3791 (|t#2| $ |t#1| |t#2|)) (-15 -1577 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-241 |#1| |#2|) . T) ((-13) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 37 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 44 T ELT)) (-2065 (($ $) 41 T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) 35 T ELT)) (-3845 (($ |#2| |#3|) 18 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2617 ((|#3| $) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 19 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2404 (((-3 $ #1#) $ $) NIL T ELT)) (-1608 (((-696) $) 36 T ELT)) (-3803 ((|#2| $ |#2|) 46 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 23 T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 31 T CONST)) (-2669 (($) 39 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 40 T ELT))) -(((-244 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-258) (-241 |#2| |#2|) (-10 -8 (-15 -2617 (|#3| $)) (-15 -3950 (|#2| $)) (-15 -3845 ($ |#2| |#3|)) (-15 -2404 ((-3 $ #1="failed") $ $)) (-15 -3470 ((-3 $ #1#) $)) (-15 -2487 ($ $)))) (-146) (-1157 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -244)) -((-3470 (*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #1#) *3 *3 *4)))) (-2617 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1157 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #1#) *4 *4 *2)))) (-3950 (*1 *2 *1) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #1#) *2 *2 *4)))) (-3845 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1157 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #1#) *2 *2 *3)))) (-2404 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #1#) *3 *3 *4)))) (-2487 (*1 *1 *1) (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #1#) *3 *3 *4))))) -((-3128 (((-85) $ $) 10 T ELT))) -(((-245 |#1|) (-10 -7 (-15 -3128 ((-85) |#1| |#1|))) (-246)) (T -245)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-246) (-113)) (T -246)) -NIL -(-13 (-963) (-82 $ $) (-10 -7 (-6 -3991))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-1585 (((-585 (-999)) $) 10 T ELT)) (-1583 (($ (-448) (-448) (-1017) $) 19 T ELT)) (-1581 (($ (-448) (-585 (-878)) $) 23 T ELT)) (-1579 (($) 25 T ELT)) (-1584 (((-634 (-1017)) (-448) (-448) $) 18 T ELT)) (-1582 (((-585 (-878)) (-448) $) 22 T ELT)) (-3568 (($) 7 T ELT)) (-1580 (($) 24 T ELT)) (-3950 (((-774) $) 29 T ELT)) (-1578 (($) 26 T ELT))) -(((-247) (-13 (-554 (-774)) (-10 -8 (-15 -3568 ($)) (-15 -1585 ((-585 (-999)) $)) (-15 -1584 ((-634 (-1017)) (-448) (-448) $)) (-15 -1583 ($ (-448) (-448) (-1017) $)) (-15 -1582 ((-585 (-878)) (-448) $)) (-15 -1581 ($ (-448) (-585 (-878)) $)) (-15 -1580 ($)) (-15 -1579 ($)) (-15 -1578 ($))))) (T -247)) -((-3568 (*1 *1) (-5 *1 (-247))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-585 (-999))) (-5 *1 (-247)))) (-1584 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-1017))) (-5 *1 (-247)))) (-1583 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1017)) (-5 *1 (-247)))) (-1582 (*1 *2 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-585 (-878))) (-5 *1 (-247)))) (-1581 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-585 (-878))) (-5 *1 (-247)))) (-1580 (*1 *1) (-5 *1 (-247))) (-1579 (*1 *1) (-5 *1 (-247))) (-1578 (*1 *1) (-5 *1 (-247)))) -((-1589 (((-585 (-2 (|:| |eigval| (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|)))) (|:| |geneigvec| (-585 (-632 (-350 (-859 |#1|))))))) (-632 (-350 (-859 |#1|)))) 103 T ELT)) (-1588 (((-585 (-632 (-350 (-859 |#1|)))) (-2 (|:| |eigval| (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|)))) (|:| |eigmult| (-696)) (|:| |eigvec| (-585 (-632 (-350 (-859 |#1|)))))) (-632 (-350 (-859 |#1|)))) 98 T ELT) (((-585 (-632 (-350 (-859 |#1|)))) (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|))) (-632 (-350 (-859 |#1|))) (-696) (-696)) 42 T ELT)) (-1590 (((-585 (-2 (|:| |eigval| (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|)))) (|:| |eigmult| (-696)) (|:| |eigvec| (-585 (-632 (-350 (-859 |#1|))))))) (-632 (-350 (-859 |#1|)))) 100 T ELT)) (-1587 (((-585 (-632 (-350 (-859 |#1|)))) (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|))) (-632 (-350 (-859 |#1|)))) 76 T ELT)) (-1586 (((-585 (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|)))) (-632 (-350 (-859 |#1|)))) 75 T ELT)) (-2452 (((-859 |#1|) (-632 (-350 (-859 |#1|)))) 56 T ELT) (((-859 |#1|) (-632 (-350 (-859 |#1|))) (-1092)) 57 T ELT))) -(((-248 |#1|) (-10 -7 (-15 -2452 ((-859 |#1|) (-632 (-350 (-859 |#1|))) (-1092))) (-15 -2452 ((-859 |#1|) (-632 (-350 (-859 |#1|))))) (-15 -1586 ((-585 (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|)))) (-632 (-350 (-859 |#1|))))) (-15 -1587 ((-585 (-632 (-350 (-859 |#1|)))) (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|))) (-632 (-350 (-859 |#1|))))) (-15 -1588 ((-585 (-632 (-350 (-859 |#1|)))) (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|))) (-632 (-350 (-859 |#1|))) (-696) (-696))) (-15 -1588 ((-585 (-632 (-350 (-859 |#1|)))) (-2 (|:| |eigval| (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|)))) (|:| |eigmult| (-696)) (|:| |eigvec| (-585 (-632 (-350 (-859 |#1|)))))) (-632 (-350 (-859 |#1|))))) (-15 -1589 ((-585 (-2 (|:| |eigval| (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|)))) (|:| |geneigvec| (-585 (-632 (-350 (-859 |#1|))))))) (-632 (-350 (-859 |#1|))))) (-15 -1590 ((-585 (-2 (|:| |eigval| (-3 (-350 (-859 |#1|)) (-1082 (-1092) (-859 |#1|)))) (|:| |eigmult| (-696)) (|:| |eigvec| (-585 (-632 (-350 (-859 |#1|))))))) (-632 (-350 (-859 |#1|)))))) (-393)) (T -248)) -((-1590 (*1 *2 *3) (-12 (-4 *4 (-393)) (-5 *2 (-585 (-2 (|:| |eigval| (-3 (-350 (-859 *4)) (-1082 (-1092) (-859 *4)))) (|:| |eigmult| (-696)) (|:| |eigvec| (-585 (-632 (-350 (-859 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-632 (-350 (-859 *4)))))) (-1589 (*1 *2 *3) (-12 (-4 *4 (-393)) (-5 *2 (-585 (-2 (|:| |eigval| (-3 (-350 (-859 *4)) (-1082 (-1092) (-859 *4)))) (|:| |geneigvec| (-585 (-632 (-350 (-859 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-632 (-350 (-859 *4)))))) (-1588 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-350 (-859 *5)) (-1082 (-1092) (-859 *5)))) (|:| |eigmult| (-696)) (|:| |eigvec| (-585 *4)))) (-4 *5 (-393)) (-5 *2 (-585 (-632 (-350 (-859 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-632 (-350 (-859 *5)))))) (-1588 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-350 (-859 *6)) (-1082 (-1092) (-859 *6)))) (-5 *5 (-696)) (-4 *6 (-393)) (-5 *2 (-585 (-632 (-350 (-859 *6))))) (-5 *1 (-248 *6)) (-5 *4 (-632 (-350 (-859 *6)))))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-350 (-859 *5)) (-1082 (-1092) (-859 *5)))) (-4 *5 (-393)) (-5 *2 (-585 (-632 (-350 (-859 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-632 (-350 (-859 *5)))))) (-1586 (*1 *2 *3) (-12 (-5 *3 (-632 (-350 (-859 *4)))) (-4 *4 (-393)) (-5 *2 (-585 (-3 (-350 (-859 *4)) (-1082 (-1092) (-859 *4))))) (-5 *1 (-248 *4)))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-632 (-350 (-859 *4)))) (-5 *2 (-859 *4)) (-5 *1 (-248 *4)) (-4 *4 (-393)))) (-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-350 (-859 *5)))) (-5 *4 (-1092)) (-5 *2 (-859 *5)) (-5 *1 (-248 *5)) (-4 *5 (-393))))) -((-2571 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3191 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1596 (($ $) 12 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1605 (($ $ $) 95 (|has| |#1| (-254)) ELT)) (-3727 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-665))) CONST)) (-1594 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1592 (((-3 $ #1#) $) 62 (|has| |#1| (-665)) ELT)) (-3531 ((|#1| $) 11 T ELT)) (-3470 (((-3 $ #1#) $) 60 (|has| |#1| (-665)) ELT)) (-1216 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2412 (((-85) $) NIL (|has| |#1| (-665)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3532 ((|#1| $) 10 T ELT)) (-1595 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1593 (((-3 $ #1#) $) 61 (|has| |#1| (-665)) ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-2487 (($ $) 64 (OR (|has| |#1| (-312)) (|has| |#1| (-414))) ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1591 (((-585 $) $) 85 (|has| |#1| (-497)) ELT)) (-3771 (($ $ $) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 $)) 28 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-1092) |#1|) 17 (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) 21 (|has| |#1| (-457 (-1092) |#1|)) ELT)) (-3229 (($ |#1| |#1|) 9 T ELT)) (-3915 (((-107)) 90 (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1092)) 87 (|has| |#1| (-811 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-811 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-811 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-811 (-1092))) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-414)) ELT)) (-2438 (($ $ $) NIL (|has| |#1| (-414)) ELT)) (-3950 (($ (-486)) NIL (|has| |#1| (-963)) ELT) (((-85) $) 37 (|has| |#1| (-1015)) ELT) (((-774) $) 36 (|has| |#1| (-1015)) ELT)) (-3129 (((-696)) 67 (|has| |#1| (-963)) CONST)) (-1267 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3128 (((-85) $ $) NIL (|has| |#1| (-963)) ELT)) (-2663 (($) 47 (|has| |#1| (-21)) CONST)) (-2669 (($) 57 (|has| |#1| (-665)) CONST)) (-2672 (($ $ (-1092)) NIL (|has| |#1| (-811 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-811 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-811 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-811 (-1092))) ELT)) (-3059 (($ |#1| |#1|) 8 T ELT) (((-85) $ $) 32 (|has| |#1| (-1015)) ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 92 (OR (|has| |#1| (-312)) (|has| |#1| (-414))) ELT)) (-3840 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3842 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-486)) NIL (|has| |#1| (-414)) ELT) (($ $ (-696)) NIL (|has| |#1| (-665)) ELT) (($ $ (-832)) NIL (|has| |#1| (-1027)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1027)) ELT) (($ |#1| $) 54 (|has| |#1| (-1027)) ELT) (($ $ $) 53 (|has| |#1| (-1027)) ELT) (($ (-486) $) 70 (|has| |#1| (-21)) ELT) (($ (-696) $) NIL (|has| |#1| (-21)) ELT) (($ (-832) $) NIL (|has| |#1| (-25)) ELT))) -(((-249 |#1|) (-13 (-381 |#1|) (-10 -8 (-15 -3059 ($ |#1| |#1|)) (-15 -3229 ($ |#1| |#1|)) (-15 -1596 ($ $)) (-15 -3532 (|#1| $)) (-15 -3531 (|#1| $)) (IF (|has| |#1| (-457 (-1092) |#1|)) (-6 (-457 (-1092) |#1|)) |%noBranch|) (IF (|has| |#1| (-1015)) (PROGN (-6 (-1015)) (-6 (-554 (-85))) (IF (|has| |#1| (-260 |#1|)) (PROGN (-15 -3771 ($ $ $)) (-15 -3771 ($ $ (-585 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3842 ($ |#1| $)) (-15 -3842 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1595 ($ $)) (-15 -1594 ($ $)) (-15 -3840 ($ |#1| $)) (-15 -3840 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1027)) (PROGN (-6 (-1027)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-665)) (PROGN (-6 (-665)) (-15 -1593 ((-3 $ #1="failed") $)) (-15 -1592 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-414)) (PROGN (-6 (-414)) (-15 -1593 ((-3 $ #1#) $)) (-15 -1592 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-963)) (PROGN (-6 (-963)) (-6 (-82 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-656 |#1|)) |%noBranch|) (IF (|has| |#1| (-497)) (-15 -1591 ((-585 $) $)) |%noBranch|) (IF (|has| |#1| (-811 (-1092))) (-6 (-811 (-1092))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-1189 |#1|)) (-15 -3953 ($ $ $)) (-15 -2487 ($ $))) |%noBranch|) (IF (|has| |#1| (-254)) (-15 -1605 ($ $ $)) |%noBranch|))) (-1131)) (T -249)) -((-3059 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131)))) (-3229 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131)))) (-1596 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131)))) (-3532 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131)))) (-3531 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131)))) (-3771 (*1 *1 *1 *1) (-12 (-4 *2 (-260 *2)) (-4 *2 (-1015)) (-4 *2 (-1131)) (-5 *1 (-249 *2)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1015)) (-4 *3 (-1131)) (-5 *1 (-249 *3)))) (-3842 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1131)))) (-3842 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1131)))) (-1595 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1131)))) (-1594 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1131)))) (-3840 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1131)))) (-3840 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1131)))) (-1593 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-665)) (-4 *2 (-1131)))) (-1592 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-665)) (-4 *2 (-1131)))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-585 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-497)) (-4 *3 (-1131)))) (-1605 (*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1131)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1027)) (-4 *2 (-1131)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1027)) (-4 *2 (-1131)))) (-3953 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1131))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-414)) (-4 *2 (-1131))))) (-2487 (*1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1131))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-414)) (-4 *2 (-1131)))))) -((-3846 (((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)) 14 T ELT))) -(((-250 |#1| |#2|) (-10 -7 (-15 -3846 ((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)))) (-1131) (-1131)) (T -250)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-249 *6)) (-5 *1 (-250 *5 *6))))) -((-2571 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3602 (($) NIL T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1187) $ |#1| |#1|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3248 (((-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-2234 (((-585 |#1|) $) NIL T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT)) (-3246 (((-1035) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-758)) ELT)) (-1731 (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1277 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-696) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3950 (((-774) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-1267 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-251 |#1| |#2|) (-1109 |#1| |#2|) (-1015) (-1015)) (T -251)) -NIL -((-1597 (((-262) (-1075) (-585 (-1075))) 17 T ELT) (((-262) (-1075) (-1075)) 16 T ELT) (((-262) (-585 (-1075))) 15 T ELT) (((-262) (-1075)) 14 T ELT))) -(((-252) (-10 -7 (-15 -1597 ((-262) (-1075))) (-15 -1597 ((-262) (-585 (-1075)))) (-15 -1597 ((-262) (-1075) (-1075))) (-15 -1597 ((-262) (-1075) (-585 (-1075)))))) (T -252)) -((-1597 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-1075))) (-5 *3 (-1075)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1597 (*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-262)) (-5 *1 (-252)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-262)) (-5 *1 (-252))))) -((-1601 (((-585 (-552 $)) $) 27 T ELT)) (-1605 (($ $ (-249 $)) 78 T ELT) (($ $ (-585 (-249 $))) 140 T ELT) (($ $ (-585 (-552 $)) (-585 $)) NIL T ELT)) (-3160 (((-3 (-552 $) #1="failed") $) 128 T ELT)) (-3159 (((-552 $) $) 127 T ELT)) (-2576 (($ $) 17 T ELT) (($ (-585 $)) 54 T ELT)) (-1600 (((-585 (-86)) $) 35 T ELT)) (-3598 (((-86) (-86)) 89 T ELT)) (-2676 (((-85) $) 151 T ELT)) (-3846 (($ (-1 $ $) (-552 $)) 87 T ELT)) (-1603 (((-3 (-552 $) #1#) $) 95 T ELT)) (-2237 (($ (-86) $) 59 T ELT) (($ (-86) (-585 $)) 111 T ELT)) (-2636 (((-85) $ (-86)) 133 T ELT) (((-85) $ (-1092)) 132 T ELT)) (-2606 (((-696) $) 44 T ELT)) (-1599 (((-85) $ $) 57 T ELT) (((-85) $ (-1092)) 49 T ELT)) (-2677 (((-85) $) 149 T ELT)) (-3771 (($ $ (-552 $) $) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) NIL T ELT) (($ $ (-585 (-249 $))) 138 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ $))) 81 T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-1092) (-1 $ (-585 $))) 67 T ELT) (($ $ (-1092) (-1 $ $)) 72 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) 80 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) 83 T ELT) (($ $ (-86) (-1 $ (-585 $))) 68 T ELT) (($ $ (-86) (-1 $ $)) 74 T ELT)) (-3803 (($ (-86) $) 60 T ELT) (($ (-86) $ $) 61 T ELT) (($ (-86) $ $ $) 62 T ELT) (($ (-86) $ $ $ $) 63 T ELT) (($ (-86) (-585 $)) 124 T ELT)) (-1604 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2593 (($ $) 15 T ELT) (($ (-585 $)) 53 T ELT)) (-2256 (((-85) (-86)) 21 T ELT))) -(((-253 |#1|) (-10 -7 (-15 -2676 ((-85) |#1|)) (-15 -2677 ((-85) |#1|)) (-15 -3771 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3771 (|#1| |#1| (-86) (-1 |#1| (-585 |#1|)))) (-15 -3771 (|#1| |#1| (-585 (-86)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -3771 (|#1| |#1| (-585 (-86)) (-585 (-1 |#1| |#1|)))) (-15 -3771 (|#1| |#1| (-1092) (-1 |#1| |#1|))) (-15 -3771 (|#1| |#1| (-1092) (-1 |#1| (-585 |#1|)))) (-15 -3771 (|#1| |#1| (-585 (-1092)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -3771 (|#1| |#1| (-585 (-1092)) (-585 (-1 |#1| |#1|)))) (-15 -1599 ((-85) |#1| (-1092))) (-15 -1599 ((-85) |#1| |#1|)) (-15 -3846 (|#1| (-1 |#1| |#1|) (-552 |#1|))) (-15 -2237 (|#1| (-86) (-585 |#1|))) (-15 -2237 (|#1| (-86) |#1|)) (-15 -2636 ((-85) |#1| (-1092))) (-15 -2636 ((-85) |#1| (-86))) (-15 -2256 ((-85) (-86))) (-15 -3598 ((-86) (-86))) (-15 -1600 ((-585 (-86)) |#1|)) (-15 -1601 ((-585 (-552 |#1|)) |#1|)) (-15 -1603 ((-3 (-552 |#1|) #1="failed") |#1|)) (-15 -2606 ((-696) |#1|)) (-15 -1604 (|#1| |#1| |#1|)) (-15 -1604 (|#1| |#1|)) (-15 -2576 (|#1| (-585 |#1|))) (-15 -2576 (|#1| |#1|)) (-15 -2593 (|#1| (-585 |#1|))) (-15 -2593 (|#1| |#1|)) (-15 -1605 (|#1| |#1| (-585 (-552 |#1|)) (-585 |#1|))) (-15 -1605 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -1605 (|#1| |#1| (-249 |#1|))) (-15 -3803 (|#1| (-86) (-585 |#1|))) (-15 -3803 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3803 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3803 (|#1| (-86) |#1| |#1|)) (-15 -3803 (|#1| (-86) |#1|)) (-15 -3771 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -3771 (|#1| |#1| |#1| |#1|)) (-15 -3771 (|#1| |#1| (-249 |#1|))) (-15 -3771 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -3771 (|#1| |#1| (-585 (-552 |#1|)) (-585 |#1|))) (-15 -3771 (|#1| |#1| (-552 |#1|) |#1|)) (-15 -3160 ((-3 (-552 |#1|) #1#) |#1|)) (-15 -3159 ((-552 |#1|) |#1|))) (-254)) (T -253)) -((-3598 (*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-253 *3)) (-4 *3 (-254)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-253 *4)) (-4 *4 (-254))))) -((-2571 (((-85) $ $) 7 T ELT)) (-1601 (((-585 (-552 $)) $) 42 T ELT)) (-1605 (($ $ (-249 $)) 54 T ELT) (($ $ (-585 (-249 $))) 53 T ELT) (($ $ (-585 (-552 $)) (-585 $)) 52 T ELT)) (-3160 (((-3 (-552 $) "failed") $) 67 T ELT)) (-3159 (((-552 $) $) 68 T ELT)) (-2576 (($ $) 49 T ELT) (($ (-585 $)) 48 T ELT)) (-1600 (((-585 (-86)) $) 41 T ELT)) (-3598 (((-86) (-86)) 40 T ELT)) (-2676 (((-85) $) 20 (|has| $ (-952 (-486))) ELT)) (-1598 (((-1087 $) (-552 $)) 23 (|has| $ (-963)) ELT)) (-3846 (($ (-1 $ $) (-552 $)) 34 T ELT)) (-1603 (((-3 (-552 $) "failed") $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1602 (((-585 (-552 $)) $) 43 T ELT)) (-2237 (($ (-86) $) 36 T ELT) (($ (-86) (-585 $)) 35 T ELT)) (-2636 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1092)) 37 T ELT)) (-2606 (((-696) $) 45 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1599 (((-85) $ $) 33 T ELT) (((-85) $ (-1092)) 32 T ELT)) (-2677 (((-85) $) 21 (|has| $ (-952 (-486))) ELT)) (-3771 (($ $ (-552 $) $) 65 T ELT) (($ $ (-585 (-552 $)) (-585 $)) 64 T ELT) (($ $ (-585 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-585 $) (-585 $)) 60 T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ $))) 31 T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ (-585 $)))) 30 T ELT) (($ $ (-1092) (-1 $ (-585 $))) 29 T ELT) (($ $ (-1092) (-1 $ $)) 28 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) 27 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-585 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT)) (-3803 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-585 $)) 55 T ELT)) (-1604 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3188 (($ $) 22 (|has| $ (-963)) ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-552 $)) 66 T ELT)) (-2593 (($ $) 51 T ELT) (($ (-585 $)) 50 T ELT)) (-2256 (((-85) (-86)) 39 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) -(((-254) (-113)) (T -254)) -((-3803 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3803 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3803 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3803 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3803 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-585 *1)) (-4 *1 (-254)))) (-1605 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *1)) (-4 *1 (-254)))) (-1605 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-249 *1))) (-4 *1 (-254)))) (-1605 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-552 *1))) (-5 *3 (-585 *1)) (-4 *1 (-254)))) (-2593 (*1 *1 *1) (-4 *1 (-254))) (-2593 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-254)))) (-2576 (*1 *1 *1) (-4 *1 (-254))) (-2576 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-254)))) (-1604 (*1 *1 *1) (-4 *1 (-254))) (-1604 (*1 *1 *1 *1) (-4 *1 (-254))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-696)))) (-1603 (*1 *2 *1) (|partial| -12 (-5 *2 (-552 *1)) (-4 *1 (-254)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-585 (-552 *1))) (-4 *1 (-254)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-585 (-552 *1))) (-4 *1 (-254)))) (-1600 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-585 (-86))))) (-3598 (*1 *2 *2) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2256 (*1 *2 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2636 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2636 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1092)) (-5 *2 (-85)))) (-2237 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2237 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-585 *1)) (-4 *1 (-254)))) (-3846 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-552 *1)) (-4 *1 (-254)))) (-1599 (*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-85)))) (-1599 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1092)) (-5 *2 (-85)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-585 (-1 *1 *1))) (-4 *1 (-254)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-254)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1 *1 (-585 *1))) (-4 *1 (-254)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-86))) (-5 *3 (-585 (-1 *1 *1))) (-4 *1 (-254)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-86))) (-5 *3 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-254)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-585 *1))) (-4 *1 (-254)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-552 *1)) (-4 *1 (-963)) (-4 *1 (-254)) (-5 *2 (-1087 *1)))) (-3188 (*1 *1 *1) (-12 (-4 *1 (-963)) (-4 *1 (-254)))) (-2677 (*1 *2 *1) (-12 (-4 *1 (-952 (-486))) (-4 *1 (-254)) (-5 *2 (-85)))) (-2676 (*1 *2 *1) (-12 (-4 *1 (-952 (-486))) (-4 *1 (-254)) (-5 *2 (-85))))) -(-13 (-1015) (-952 (-552 $)) (-457 (-552 $) $) (-260 $) (-10 -8 (-15 -3803 ($ (-86) $)) (-15 -3803 ($ (-86) $ $)) (-15 -3803 ($ (-86) $ $ $)) (-15 -3803 ($ (-86) $ $ $ $)) (-15 -3803 ($ (-86) (-585 $))) (-15 -1605 ($ $ (-249 $))) (-15 -1605 ($ $ (-585 (-249 $)))) (-15 -1605 ($ $ (-585 (-552 $)) (-585 $))) (-15 -2593 ($ $)) (-15 -2593 ($ (-585 $))) (-15 -2576 ($ $)) (-15 -2576 ($ (-585 $))) (-15 -1604 ($ $)) (-15 -1604 ($ $ $)) (-15 -2606 ((-696) $)) (-15 -1603 ((-3 (-552 $) "failed") $)) (-15 -1602 ((-585 (-552 $)) $)) (-15 -1601 ((-585 (-552 $)) $)) (-15 -1600 ((-585 (-86)) $)) (-15 -3598 ((-86) (-86))) (-15 -2256 ((-85) (-86))) (-15 -2636 ((-85) $ (-86))) (-15 -2636 ((-85) $ (-1092))) (-15 -2237 ($ (-86) $)) (-15 -2237 ($ (-86) (-585 $))) (-15 -3846 ($ (-1 $ $) (-552 $))) (-15 -1599 ((-85) $ $)) (-15 -1599 ((-85) $ (-1092))) (-15 -3771 ($ $ (-585 (-1092)) (-585 (-1 $ $)))) (-15 -3771 ($ $ (-585 (-1092)) (-585 (-1 $ (-585 $))))) (-15 -3771 ($ $ (-1092) (-1 $ (-585 $)))) (-15 -3771 ($ $ (-1092) (-1 $ $))) (-15 -3771 ($ $ (-585 (-86)) (-585 (-1 $ $)))) (-15 -3771 ($ $ (-585 (-86)) (-585 (-1 $ (-585 $))))) (-15 -3771 ($ $ (-86) (-1 $ (-585 $)))) (-15 -3771 ($ $ (-86) (-1 $ $))) (IF (|has| $ (-963)) (PROGN (-15 -1598 ((-1087 $) (-552 $))) (-15 -3188 ($ $))) |%noBranch|) (IF (|has| $ (-952 (-486))) (PROGN (-15 -2677 ((-85) $)) (-15 -2676 ((-85) $))) |%noBranch|))) -(((-72) . T) ((-557 (-552 $)) . T) ((-554 (-774)) . T) ((-260 $) . T) ((-457 (-552 $) $) . T) ((-457 $ $) . T) ((-13) . T) ((-952 (-552 $)) . T) ((-1015) . T) ((-1131) . T)) -((-3846 ((|#2| (-1 |#2| |#1|) (-1075) (-552 |#1|)) 18 T ELT))) -(((-255 |#1| |#2|) (-10 -7 (-15 -3846 (|#2| (-1 |#2| |#1|) (-1075) (-552 |#1|)))) (-254) (-1131)) (T -255)) -((-3846 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1075)) (-5 *5 (-552 *6)) (-4 *6 (-254)) (-4 *2 (-1131)) (-5 *1 (-255 *6 *2))))) -((-3846 ((|#2| (-1 |#2| |#1|) (-552 |#1|)) 17 T ELT))) -(((-256 |#1| |#2|) (-10 -7 (-15 -3846 (|#2| (-1 |#2| |#1|) (-552 |#1|)))) (-254) (-254)) (T -256)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-552 *5)) (-4 *5 (-254)) (-4 *2 (-254)) (-5 *1 (-256 *5 *2))))) -((-1609 (((-85) $ $) 14 T ELT)) (-2567 (($ $ $) 18 T ELT)) (-2566 (($ $ $) 17 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 50 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 67 T ELT)) (-3147 (($ $ $) 25 T ELT) (($ (-585 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3469 (((-3 $ #1#) $ $) 21 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 55 T ELT))) -(((-257 |#1|) (-10 -7 (-15 -1606 ((-3 (-585 |#1|) #1="failed") (-585 |#1|) |#1|)) (-15 -1607 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1607 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2411 |#1|)) |#1| |#1|)) (-15 -2567 (|#1| |#1| |#1|)) (-15 -2566 (|#1| |#1| |#1|)) (-15 -1609 ((-85) |#1| |#1|)) (-15 -2743 ((-634 (-585 |#1|)) (-585 |#1|) |#1|)) (-15 -2744 ((-2 (|:| -3958 (-585 |#1|)) (|:| -2411 |#1|)) (-585 |#1|))) (-15 -3147 (|#1| (-585 |#1|))) (-15 -3147 (|#1| |#1| |#1|)) (-15 -3469 ((-3 |#1| #1#) |#1| |#1|))) (-258)) (T -257)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1606 (((-3 (-585 $) "failed") (-585 $) $) 68 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-258) (-113)) (T -258)) -((-1609 (*1 *2 *1 *1) (-12 (-4 *1 (-258)) (-5 *2 (-85)))) (-1608 (*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-696)))) (-2882 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-258)))) (-2566 (*1 *1 *1 *1) (-4 *1 (-258))) (-2567 (*1 *1 *1 *1) (-4 *1 (-258))) (-1607 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) (-4 *1 (-258)))) (-1607 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-258)))) (-1606 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-585 *1)) (-4 *1 (-258))))) -(-13 (-834) (-10 -8 (-15 -1609 ((-85) $ $)) (-15 -1608 ((-696) $)) (-15 -2882 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-15 -2566 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -1607 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $)) (-15 -1607 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1606 ((-3 (-585 $) "failed") (-585 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-3771 (($ $ (-585 |#2|) (-585 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-249 |#2|)) 11 T ELT) (($ $ (-585 (-249 |#2|))) NIL T ELT))) -(((-259 |#1| |#2|) (-10 -7 (-15 -3771 (|#1| |#1| (-585 (-249 |#2|)))) (-15 -3771 (|#1| |#1| (-249 |#2|))) (-15 -3771 (|#1| |#1| |#2| |#2|)) (-15 -3771 (|#1| |#1| (-585 |#2|) (-585 |#2|)))) (-260 |#2|) (-1015)) (T -259)) -NIL -((-3771 (($ $ (-585 |#1|) (-585 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-249 |#1|)) 13 T ELT) (($ $ (-585 (-249 |#1|))) 12 T ELT))) -(((-260 |#1|) (-113) (-1015)) (T -260)) -((-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1015)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1015))))) -(-13 (-457 |t#1| |t#1|) (-10 -8 (-15 -3771 ($ $ (-249 |t#1|))) (-15 -3771 ($ $ (-585 (-249 |t#1|)))))) -(((-457 |#1| |#1|) . T)) -((-3771 ((|#1| (-1 |#1| (-486)) (-1094 (-350 (-486)))) 26 T ELT))) -(((-261 |#1|) (-10 -7 (-15 -3771 (|#1| (-1 |#1| (-486)) (-1094 (-350 (-486)))))) (-38 (-350 (-486)))) (T -261)) -((-3771 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-486))) (-5 *4 (-1094 (-350 (-486)))) (-5 *1 (-261 *2)) (-4 *2 (-38 (-350 (-486))))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 7 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 9 T ELT))) -(((-262) (-1015)) (T -262)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3509 (((-486) $) 13 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3209 (((-1051) $) 10 T ELT)) (-3950 (((-774) $) 20 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-263) (-13 (-997) (-10 -8 (-15 -3209 ((-1051) $)) (-15 -3509 ((-486) $))))) (T -263)) -((-3209 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-263)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-263))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 60 T ELT)) (-3132 (((-1168 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-823)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-823)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-742)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-1168 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-952 (-1092))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-952 (-486))) ELT) (((-3 (-486) #1#) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-952 (-486))) ELT) (((-3 (-1162 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3159 (((-1168 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1092) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-952 (-486))) ELT) (((-486) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-952 (-486))) ELT) (((-1162 |#2| |#3| |#4|) $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-1168 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1181 (-1168 |#1| |#2| |#3| |#4|)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-1168 |#1| |#2| |#3| |#4|)) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-485)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-798 (-330))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-1168 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3448 (((-634 $) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-1068)) ELT)) (-3190 (((-85) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-742)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-758)) ELT)) (-3846 (($ (-1 (-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3787 (((-3 (-752 |#2|) #1#) $) 80 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-1168 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1181 (-1168 |#1| |#2| |#3| |#4|)))) (-1181 $) $) NIL T ELT) (((-632 (-1168 |#1| |#2| |#3| |#4|)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-3133 (((-1168 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-823)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3771 (($ $ (-585 (-1168 |#1| |#2| |#3| |#4|)) (-585 (-1168 |#1| |#2| |#3| |#4|))) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-260 (-1168 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-260 (-1168 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-249 (-1168 |#1| |#2| |#3| |#4|))) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-260 (-1168 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-585 (-249 (-1168 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-260 (-1168 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-585 (-1092)) (-585 (-1168 |#1| |#2| |#3| |#4|))) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-457 (-1092) (-1168 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1092) (-1168 |#1| |#2| |#3| |#4|)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-457 (-1092) (-1168 |#1| |#2| |#3| |#4|))) ELT)) (-1608 (((-696) $) NIL T ELT)) (-3803 (($ $ (-1168 |#1| |#2| |#3| |#4|)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-241 (-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-813 (-1092))) ELT) (($ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-696)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-1168 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3975 (((-802 (-486)) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-555 (-802 (-330)))) ELT) (((-475) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-555 (-475))) ELT) (((-330) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-935)) ELT) (((-179) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-935)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-1168 |#1| |#2| |#3| |#4|) (-823))) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-1168 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1092)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-952 (-1092))) ELT) (($ (-1162 |#2| |#3| |#4|)) 37 T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1168 |#1| |#2| |#3| |#4|) (-823))) (|has| (-1168 |#1| |#2| |#3| |#4|) (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-3134 (((-1168 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-485)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-742)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-813 (-1092))) ELT) (($ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-696)) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| (-1168 |#1| |#2| |#3| |#4|) (-758)) ELT)) (-3953 (($ $ $) 35 T ELT) (($ (-1168 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ (-1168 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1168 |#1| |#2| |#3| |#4|)) NIL T ELT))) -(((-264 |#1| |#2| |#3| |#4|) (-13 (-906 (-1168 |#1| |#2| |#3| |#4|)) (-952 (-1162 |#2| |#3| |#4|)) (-10 -8 (-15 -3787 ((-3 (-752 |#2|) "failed") $)) (-15 -3950 ($ (-1162 |#2| |#3| |#4|))))) (-13 (-952 (-486)) (-582 (-486)) (-393)) (-13 (-27) (-1117) (-364 |#1|)) (-1092) |#2|) (T -264)) -((-3950 (*1 *1 *2) (-12 (-5 *2 (-1162 *4 *5 *6)) (-4 *4 (-13 (-27) (-1117) (-364 *3))) (-14 *5 (-1092)) (-14 *6 *4) (-4 *3 (-13 (-952 (-486)) (-582 (-486)) (-393))) (-5 *1 (-264 *3 *4 *5 *6)))) (-3787 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-952 (-486)) (-582 (-486)) (-393))) (-5 *2 (-752 *4)) (-5 *1 (-264 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1117) (-364 *3))) (-14 *5 (-1092)) (-14 *6 *4)))) -((-2571 (((-85) $ $) NIL T ELT)) (-1217 (((-585 $) $ (-1092)) NIL (|has| |#1| (-497)) ELT) (((-585 $) $) NIL (|has| |#1| (-497)) ELT) (((-585 $) (-1087 $) (-1092)) NIL (|has| |#1| (-497)) ELT) (((-585 $) (-1087 $)) NIL (|has| |#1| (-497)) ELT) (((-585 $) (-859 $)) NIL (|has| |#1| (-497)) ELT)) (-1218 (($ $ (-1092)) NIL (|has| |#1| (-497)) ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ (-1087 $) (-1092)) NIL (|has| |#1| (-497)) ELT) (($ (-1087 $)) NIL (|has| |#1| (-497)) ELT) (($ (-859 $)) NIL (|has| |#1| (-497)) ELT)) (-3191 (((-85) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT)) (-3084 (((-585 (-1092)) $) 365 T ELT)) (-3086 (((-350 (-1087 $)) $ (-552 $)) NIL (|has| |#1| (-497)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-1601 (((-585 (-552 $)) $) NIL T ELT)) (-3495 (($ $) 170 (|has| |#1| (-497)) ELT)) (-3642 (($ $) 146 (|has| |#1| (-497)) ELT)) (-1373 (($ $ (-1006 $)) 231 (|has| |#1| (-497)) ELT) (($ $ (-1092)) 227 (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-585 (-249 $))) 383 T ELT) (($ $ (-585 (-552 $)) (-585 $)) 438 T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 305 (-12 (|has| |#1| (-393)) (|has| |#1| (-497))) ELT)) (-3778 (($ $) NIL (|has| |#1| (-497)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-497)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-497)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3493 (($ $) 166 (|has| |#1| (-497)) ELT)) (-3641 (($ $) 142 (|has| |#1| (-497)) ELT)) (-1610 (($ $ (-486)) 68 (|has| |#1| (-497)) ELT)) (-3497 (($ $) 174 (|has| |#1| (-497)) ELT)) (-3640 (($ $) 150 (|has| |#1| (-497)) ELT)) (-3727 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) (|has| |#1| (-1027))) CONST)) (-1219 (((-585 $) $ (-1092)) NIL (|has| |#1| (-497)) ELT) (((-585 $) $) NIL (|has| |#1| (-497)) ELT) (((-585 $) (-1087 $) (-1092)) NIL (|has| |#1| (-497)) ELT) (((-585 $) (-1087 $)) NIL (|has| |#1| (-497)) ELT) (((-585 $) (-859 $)) NIL (|has| |#1| (-497)) ELT)) (-3186 (($ $ (-1092)) NIL (|has| |#1| (-497)) ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ (-1087 $) (-1092)) 133 (|has| |#1| (-497)) ELT) (($ (-1087 $)) NIL (|has| |#1| (-497)) ELT) (($ (-859 $)) NIL (|has| |#1| (-497)) ELT)) (-3160 (((-3 (-552 $) #1#) $) 18 T ELT) (((-3 (-1092) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-859 |#1|)) #1#) $) NIL (|has| |#1| (-497)) ELT) (((-3 (-859 |#1|) #1#) $) NIL (|has| |#1| (-963)) ELT) (((-3 (-350 (-486)) #1#) $) 48 (OR (-12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-3159 (((-552 $) $) 12 T ELT) (((-1092) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-859 |#1|)) $) NIL (|has| |#1| (-497)) ELT) (((-859 |#1|) $) NIL (|has| |#1| (-963)) ELT) (((-350 (-486)) $) 316 (OR (-12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-497)) ELT)) (-2281 (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 124 (|has| |#1| (-963)) ELT) (((-632 |#1|) (-632 $)) 114 (|has| |#1| (-963)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ELT) (((-632 (-486)) (-632 $)) NIL (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ELT)) (-3845 (($ $) 95 (|has| |#1| (-497)) ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| |#1| (-1027)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-497)) ELT)) (-3948 (($ $ (-1006 $)) 235 (|has| |#1| (-497)) ELT) (($ $ (-1092)) 233 (|has| |#1| (-497)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-497)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3389 (($ $ $) 201 (|has| |#1| (-497)) ELT)) (-3630 (($) 136 (|has| |#1| (-497)) ELT)) (-1370 (($ $ $) 221 (|has| |#1| (-497)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 389 (|has| |#1| (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 396 (|has| |#1| (-798 (-330))) ELT)) (-2576 (($ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1216 (((-85) $ $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT)) (-1600 (((-585 (-86)) $) NIL T ELT)) (-3598 (((-86) (-86)) 275 T ELT)) (-2412 (((-85) $) 27 (|has| |#1| (-1027)) ELT)) (-2676 (((-85) $) NIL (|has| $ (-952 (-486))) ELT)) (-2999 (($ $) 73 (|has| |#1| (-963)) ELT)) (-3001 (((-1041 |#1| (-552 $)) $) 90 (|has| |#1| (-963)) ELT)) (-1611 (((-85) $) 49 (|has| |#1| (-497)) ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-497)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-497)) ELT)) (-1598 (((-1087 $) (-552 $)) 276 (|has| $ (-963)) ELT)) (-3846 (($ (-1 $ $) (-552 $)) 434 T ELT)) (-1603 (((-3 (-552 $) #1#) $) NIL T ELT)) (-3946 (($ $) 140 (|has| |#1| (-497)) ELT)) (-2259 (($ $) 246 (|has| |#1| (-497)) ELT)) (-2282 (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL (|has| |#1| (-963)) ELT) (((-632 |#1|) (-1181 $)) NIL (|has| |#1| (-963)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ELT) (((-632 (-486)) (-1181 $)) NIL (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-497)) ELT) (($ $ $) NIL (|has| |#1| (-497)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1602 (((-585 (-552 $)) $) 51 T ELT)) (-2237 (($ (-86) $) NIL T ELT) (($ (-86) (-585 $)) 439 T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL (|has| |#1| (-1027)) ELT)) (-2828 (((-3 (-2 (|:| |val| $) (|:| -2403 (-486))) #1#) $) NIL (|has| |#1| (-963)) ELT)) (-2825 (((-3 (-585 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1799 (((-3 (-2 (|:| -3958 (-486)) (|:| |var| (-552 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2827 (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) #1#) $) NIL (|has| |#1| (-1027)) ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) #1#) $ (-86)) NIL (|has| |#1| (-963)) ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) #1#) $ (-1092)) NIL (|has| |#1| (-963)) ELT)) (-2636 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1092)) 53 T ELT)) (-2487 (($ $) NIL (OR (|has| |#1| (-414)) (|has| |#1| (-497))) ELT)) (-2835 (($ $ (-1092)) 250 (|has| |#1| (-497)) ELT) (($ $ (-1006 $)) 252 (|has| |#1| (-497)) ELT)) (-2606 (((-696) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) 45 T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 298 (|has| |#1| (-497)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-497)) ELT) (($ $ $) NIL (|has| |#1| (-497)) ELT)) (-1599 (((-85) $ $) NIL T ELT) (((-85) $ (-1092)) NIL T ELT)) (-1374 (($ $ (-1092)) 225 (|has| |#1| (-497)) ELT) (($ $) 223 (|has| |#1| (-497)) ELT)) (-1368 (($ $) 217 (|has| |#1| (-497)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 303 (-12 (|has| |#1| (-393)) (|has| |#1| (-497))) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-497)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-497)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-497)) ELT)) (-3947 (($ $) 138 (|has| |#1| (-497)) ELT)) (-2677 (((-85) $) NIL (|has| $ (-952 (-486))) ELT)) (-3771 (($ $ (-552 $) $) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) 433 T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-1092) (-1 $ (-585 $))) NIL T ELT) (($ $ (-1092) (-1 $ $)) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) 376 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-585 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-555 (-475))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-555 (-475))) ELT) (($ $) NIL (|has| |#1| (-555 (-475))) ELT) (($ $ (-86) $ (-1092)) 363 (|has| |#1| (-555 (-475))) ELT) (($ $ (-585 (-86)) (-585 $) (-1092)) 362 (|has| |#1| (-555 (-475))) ELT) (($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ $))) NIL (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ (-585 $)))) NIL (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696) (-1 $ (-585 $))) NIL (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696) (-1 $ $)) NIL (|has| |#1| (-963)) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-497)) ELT)) (-2257 (($ $) 238 (|has| |#1| (-497)) ELT)) (-3803 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-585 $)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-1604 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2258 (($ $) 248 (|has| |#1| (-497)) ELT)) (-3388 (($ $) 199 (|has| |#1| (-497)) ELT)) (-3761 (($ $ (-1092)) NIL (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-963)) ELT)) (-2998 (($ $) 74 (|has| |#1| (-497)) ELT)) (-3000 (((-1041 |#1| (-552 $)) $) 92 (|has| |#1| (-497)) ELT)) (-3188 (($ $) 314 (|has| $ (-963)) ELT)) (-3498 (($ $) 176 (|has| |#1| (-497)) ELT)) (-3639 (($ $) 152 (|has| |#1| (-497)) ELT)) (-3496 (($ $) 172 (|has| |#1| (-497)) ELT)) (-3638 (($ $) 148 (|has| |#1| (-497)) ELT)) (-3494 (($ $) 168 (|has| |#1| (-497)) ELT)) (-3637 (($ $) 144 (|has| |#1| (-497)) ELT)) (-3975 (((-802 (-486)) $) NIL (|has| |#1| (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| |#1| (-555 (-802 (-330)))) ELT) (($ (-348 $)) NIL (|has| |#1| (-497)) ELT) (((-475) $) 360 (|has| |#1| (-555 (-475))) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-414)) ELT)) (-2438 (($ $ $) NIL (|has| |#1| (-414)) ELT)) (-3950 (((-774) $) 432 T ELT) (($ (-552 $)) 423 T ELT) (($ (-1092)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486)))) ELT) (($ (-1041 |#1| (-552 $))) 94 (|has| |#1| (-963)) ELT) (($ (-350 |#1|)) NIL (|has| |#1| (-497)) ELT) (($ (-859 (-350 |#1|))) NIL (|has| |#1| (-497)) ELT) (($ (-350 (-859 (-350 |#1|)))) NIL (|has| |#1| (-497)) ELT) (($ (-350 (-859 |#1|))) NIL (|has| |#1| (-497)) ELT) (($ (-859 |#1|)) NIL (|has| |#1| (-963)) ELT) (($ (-486)) 36 (OR (|has| |#1| (-952 (-486))) (|has| |#1| (-963))) ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-497)) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL (|has| |#1| (-963)) CONST)) (-2593 (($ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3104 (($ $ $) 219 (|has| |#1| (-497)) ELT)) (-3392 (($ $ $) 205 (|has| |#1| (-497)) ELT)) (-3394 (($ $ $) 209 (|has| |#1| (-497)) ELT)) (-3391 (($ $ $) 203 (|has| |#1| (-497)) ELT)) (-3393 (($ $ $) 207 (|has| |#1| (-497)) ELT)) (-2256 (((-85) (-86)) 10 T ELT)) (-1267 (((-85) $ $) 85 T ELT)) (-3501 (($ $) 182 (|has| |#1| (-497)) ELT)) (-3489 (($ $) 158 (|has| |#1| (-497)) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) 178 (|has| |#1| (-497)) ELT)) (-3487 (($ $) 154 (|has| |#1| (-497)) ELT)) (-3503 (($ $) 186 (|has| |#1| (-497)) ELT)) (-3491 (($ $) 162 (|has| |#1| (-497)) ELT)) (-1800 (($ (-1092) $) NIL T ELT) (($ (-1092) $ $) NIL T ELT) (($ (-1092) $ $ $) NIL T ELT) (($ (-1092) $ $ $ $) NIL T ELT) (($ (-1092) (-585 $)) NIL T ELT)) (-3128 (((-85) $ $) NIL (|has| |#1| (-963)) ELT)) (-3396 (($ $) 213 (|has| |#1| (-497)) ELT)) (-3395 (($ $) 211 (|has| |#1| (-497)) ELT)) (-3504 (($ $) 188 (|has| |#1| (-497)) ELT)) (-3492 (($ $) 164 (|has| |#1| (-497)) ELT)) (-3502 (($ $) 184 (|has| |#1| (-497)) ELT)) (-3490 (($ $) 160 (|has| |#1| (-497)) ELT)) (-3500 (($ $) 180 (|has| |#1| (-497)) ELT)) (-3488 (($ $) 156 (|has| |#1| (-497)) ELT)) (-3386 (($ $) 191 (|has| |#1| (-497)) ELT)) (-2663 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) CONST)) (-2261 (($ $) 242 (|has| |#1| (-497)) ELT)) (-2669 (($) 25 (|has| |#1| (-1027)) CONST)) (-3390 (($ $) 193 (|has| |#1| (-497)) ELT) (($ $ $) 195 (|has| |#1| (-497)) ELT)) (-2262 (($ $) 240 (|has| |#1| (-497)) ELT)) (-2672 (($ $ (-1092)) NIL (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-963)) ELT)) (-2260 (($ $) 244 (|has| |#1| (-497)) ELT)) (-3387 (($ $ $) 197 (|has| |#1| (-497)) ELT)) (-3059 (((-85) $ $) 87 T ELT)) (-3953 (($ (-1041 |#1| (-552 $)) (-1041 |#1| (-552 $))) 105 (|has| |#1| (-497)) ELT) (($ $ $) 44 (OR (|has| |#1| (-414)) (|has| |#1| (-497))) ELT)) (-3840 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT)) (-3842 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-497)) ELT) (($ $ (-350 (-486))) 311 (|has| |#1| (-497)) ELT) (($ $ (-486)) 79 (OR (|has| |#1| (-414)) (|has| |#1| (-497))) ELT) (($ $ (-696)) 75 (|has| |#1| (-1027)) ELT) (($ $ (-832)) 83 (|has| |#1| (-1027)) ELT)) (* (($ (-350 (-486)) $) NIL (|has| |#1| (-497)) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-497)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT) (($ |#1| $) NIL (|has| |#1| (-963)) ELT) (($ $ $) 38 (|has| |#1| (-1027)) ELT) (($ (-486) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT) (($ (-696) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT) (($ (-832) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963)))) ELT))) -(((-265 |#1|) (-13 (-364 |#1|) (-10 -8 (IF (|has| |#1| (-497)) (PROGN (-6 (-29 |#1|)) (-6 (-1117)) (-6 (-133)) (-6 (-571)) (-6 (-1055)) (-15 -3845 ($ $)) (-15 -1611 ((-85) $)) (-15 -1610 ($ $ (-486))) (IF (|has| |#1| (-393)) (PROGN (-15 -2709 ((-348 (-1087 $)) (-1087 $))) (-15 -2710 ((-348 (-1087 $)) (-1087 $)))) |%noBranch|) (IF (|has| |#1| (-952 (-486))) (-6 (-952 (-48))) |%noBranch|)) |%noBranch|))) (-1015)) (T -265)) -((-3845 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-497)) (-4 *2 (-1015)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-497)) (-4 *3 (-1015)))) (-1610 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-265 *3)) (-4 *3 (-497)) (-4 *3 (-1015)))) (-2709 (*1 *2 *3) (-12 (-5 *2 (-348 (-1087 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1087 *1)) (-4 *4 (-393)) (-4 *4 (-497)) (-4 *4 (-1015)))) (-2710 (*1 *2 *3) (-12 (-5 *2 (-348 (-1087 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1087 *1)) (-4 *4 (-393)) (-4 *4 (-497)) (-4 *4 (-1015))))) -((-3846 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 13 T ELT))) -(((-266 |#1| |#2|) (-10 -7 (-15 -3846 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1015) (-1015)) (T -266)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-265 *6)) (-5 *1 (-266 *5 *6))))) -((-3732 (((-51) |#2| (-249 |#2|) (-696)) 40 T ELT) (((-51) |#2| (-249 |#2|)) 32 T ELT) (((-51) |#2| (-696)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1092)) 26 T ELT)) (-3821 (((-51) |#2| (-249 |#2|) (-350 (-486))) 59 T ELT) (((-51) |#2| (-249 |#2|)) 56 T ELT) (((-51) |#2| (-350 (-486))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1092)) 55 T ELT)) (-3785 (((-51) |#2| (-249 |#2|) (-350 (-486))) 54 T ELT) (((-51) |#2| (-249 |#2|)) 51 T ELT) (((-51) |#2| (-350 (-486))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1092)) 50 T ELT)) (-3782 (((-51) |#2| (-249 |#2|) (-486)) 47 T ELT) (((-51) |#2| (-249 |#2|)) 44 T ELT) (((-51) |#2| (-486)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1092)) 43 T ELT))) -(((-267 |#1| |#2|) (-10 -7 (-15 -3732 ((-51) (-1092))) (-15 -3732 ((-51) |#2|)) (-15 -3732 ((-51) |#2| (-696))) (-15 -3732 ((-51) |#2| (-249 |#2|))) (-15 -3732 ((-51) |#2| (-249 |#2|) (-696))) (-15 -3782 ((-51) (-1092))) (-15 -3782 ((-51) |#2|)) (-15 -3782 ((-51) |#2| (-486))) (-15 -3782 ((-51) |#2| (-249 |#2|))) (-15 -3782 ((-51) |#2| (-249 |#2|) (-486))) (-15 -3785 ((-51) (-1092))) (-15 -3785 ((-51) |#2|)) (-15 -3785 ((-51) |#2| (-350 (-486)))) (-15 -3785 ((-51) |#2| (-249 |#2|))) (-15 -3785 ((-51) |#2| (-249 |#2|) (-350 (-486)))) (-15 -3821 ((-51) (-1092))) (-15 -3821 ((-51) |#2|)) (-15 -3821 ((-51) |#2| (-350 (-486)))) (-15 -3821 ((-51) |#2| (-249 |#2|))) (-15 -3821 ((-51) |#2| (-249 |#2|) (-350 (-486))))) (-13 (-393) (-952 (-486)) (-582 (-486))) (-13 (-27) (-1117) (-364 |#1|))) (T -267)) -((-3821 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-486))) (-4 *3 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3821 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3821 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-486))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) (-3821 (*1 *2 *3) (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) (-3821 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-364 *4))))) (-3785 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-486))) (-4 *3 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3785 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3785 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-486))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) (-3785 (*1 *2 *3) (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) (-3785 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-364 *4))))) (-3782 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-393) (-952 *5) (-582 *5))) (-5 *5 (-486)) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *4 (-486)) (-4 *5 (-13 (-393) (-952 *4) (-582 *4))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) (-3782 (*1 *2 *3) (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-364 *4))))) (-3732 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-696)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) (-3732 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-364 *4)))))) -((-1612 (((-51) |#2| (-86) (-249 |#2|) (-585 |#2|)) 89 T ELT) (((-51) |#2| (-86) (-249 |#2|) (-249 |#2|)) 85 T ELT) (((-51) |#2| (-86) (-249 |#2|) |#2|) 87 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|) 88 T ELT) (((-51) (-585 |#2|) (-585 (-86)) (-249 |#2|) (-585 (-249 |#2|))) 81 T ELT) (((-51) (-585 |#2|) (-585 (-86)) (-249 |#2|) (-585 |#2|)) 83 T ELT) (((-51) (-585 (-249 |#2|)) (-585 (-86)) (-249 |#2|) (-585 |#2|)) 84 T ELT) (((-51) (-585 (-249 |#2|)) (-585 (-86)) (-249 |#2|) (-585 (-249 |#2|))) 82 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-585 |#2|)) 90 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|)) 86 T ELT))) -(((-268 |#1| |#2|) (-10 -7 (-15 -1612 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|))) (-15 -1612 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-585 |#2|))) (-15 -1612 ((-51) (-585 (-249 |#2|)) (-585 (-86)) (-249 |#2|) (-585 (-249 |#2|)))) (-15 -1612 ((-51) (-585 (-249 |#2|)) (-585 (-86)) (-249 |#2|) (-585 |#2|))) (-15 -1612 ((-51) (-585 |#2|) (-585 (-86)) (-249 |#2|) (-585 |#2|))) (-15 -1612 ((-51) (-585 |#2|) (-585 (-86)) (-249 |#2|) (-585 (-249 |#2|)))) (-15 -1612 ((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|)) (-15 -1612 ((-51) |#2| (-86) (-249 |#2|) |#2|)) (-15 -1612 ((-51) |#2| (-86) (-249 |#2|) (-249 |#2|))) (-15 -1612 ((-51) |#2| (-86) (-249 |#2|) (-585 |#2|)))) (-13 (-497) (-555 (-475))) (-364 |#1|)) (T -268)) -((-1612 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-585 *3)) (-4 *3 (-364 *7)) (-4 *7 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3)))) (-1612 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1612 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1612 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-364 *6)) (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) (-1612 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-86))) (-5 *6 (-585 (-249 *8))) (-4 *8 (-364 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1612 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-585 *7)) (-5 *4 (-585 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1612 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-585 (-249 *8))) (-5 *4 (-585 (-86))) (-5 *5 (-249 *8)) (-5 *6 (-585 *8)) (-4 *8 (-364 *7)) (-4 *7 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1612 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-585 (-249 *7))) (-5 *4 (-585 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1612 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-585 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1612 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-364 *5)) (-4 *5 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6))))) -((-1614 (((-1127 (-840)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-179) (-486) (-1075)) 67 T ELT) (((-1127 (-840)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-179) (-486)) 68 T ELT) (((-1127 (-840)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-1 (-179) (-179)) (-486) (-1075)) 64 T ELT) (((-1127 (-840)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-1 (-179) (-179)) (-486)) 65 T ELT)) (-1613 (((-1 (-179) (-179)) (-179)) 66 T ELT))) -(((-269) (-10 -7 (-15 -1613 ((-1 (-179) (-179)) (-179))) (-15 -1614 ((-1127 (-840)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-1 (-179) (-179)) (-486))) (-15 -1614 ((-1127 (-840)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-1 (-179) (-179)) (-486) (-1075))) (-15 -1614 ((-1127 (-840)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-179) (-486))) (-15 -1614 ((-1127 (-840)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-179) (-486) (-1075))))) (T -269)) -((-1614 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) (-5 *6 (-179)) (-5 *7 (-486)) (-5 *8 (-1075)) (-5 *2 (-1127 (-840))) (-5 *1 (-269)))) (-1614 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) (-5 *6 (-179)) (-5 *7 (-486)) (-5 *2 (-1127 (-840))) (-5 *1 (-269)))) (-1614 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) (-5 *6 (-486)) (-5 *7 (-1075)) (-5 *2 (-1127 (-840))) (-5 *1 (-269)))) (-1614 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) (-5 *6 (-486)) (-5 *2 (-1127 (-840))) (-5 *1 (-269)))) (-1613 (*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-269)) (-5 *3 (-179))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 26 T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-350 (-486))) NIL T ELT) (($ $ (-350 (-486)) (-350 (-486))) NIL T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|))) $) 20 T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-696) (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|)))) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) 36 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3189 (((-85) $) NIL T ELT)) (-2895 (((-85) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-350 (-486)) $) NIL T ELT) (((-350 (-486)) $ (-350 (-486))) 16 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-350 (-486))) NIL T ELT) (($ $ (-996) (-350 (-486))) NIL T ELT) (($ $ (-585 (-996)) (-585 (-350 (-486)))) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3946 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3815 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-350 (-486))) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-1615 (((-350 (-486)) $) 17 T ELT)) (-3093 (($ (-1162 |#1| |#2| |#3|)) 11 T ELT)) (-2403 (((-1162 |#1| |#2| |#3|) $) 12 T ELT)) (-3947 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-350 (-486))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-486)) (-1027)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT)) (-3952 (((-350 (-486)) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) 10 T ELT)) (-3950 (((-774) $) 42 T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-350 (-486))) 34 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-3776 ((|#1| $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-350 (-486))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) (|has| |#1| (-15 -3950 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 28 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 37 T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-270 |#1| |#2| |#3|) (-13 (-1164 |#1|) (-718) (-10 -8 (-15 -3093 ($ (-1162 |#1| |#2| |#3|))) (-15 -2403 ((-1162 |#1| |#2| |#3|) $)) (-15 -1615 ((-350 (-486)) $)))) (-312) (-1092) |#1|) (T -270)) -((-3093 (*1 *1 *2) (-12 (-5 *2 (-1162 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1092)) (-14 *5 *3) (-5 *1 (-270 *3 *4 *5)))) (-2403 (*1 *2 *1) (-12 (-5 *2 (-1162 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1092)) (-14 *5 *3))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1092)) (-14 *5 *3)))) -((-3014 (((-2 (|:| -2403 (-696)) (|:| -3958 |#1|) (|:| |radicand| (-585 |#1|))) (-348 |#1|) (-696)) 35 T ELT)) (-3946 (((-585 (-2 (|:| -3958 (-696)) (|:| |logand| |#1|))) (-348 |#1|)) 40 T ELT))) -(((-271 |#1|) (-10 -7 (-15 -3014 ((-2 (|:| -2403 (-696)) (|:| -3958 |#1|) (|:| |radicand| (-585 |#1|))) (-348 |#1|) (-696))) (-15 -3946 ((-585 (-2 (|:| -3958 (-696)) (|:| |logand| |#1|))) (-348 |#1|)))) (-497)) (T -271)) -((-3946 (*1 *2 *3) (-12 (-5 *3 (-348 *4)) (-4 *4 (-497)) (-5 *2 (-585 (-2 (|:| -3958 (-696)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) (-3014 (*1 *2 *3 *4) (-12 (-5 *3 (-348 *5)) (-4 *5 (-497)) (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3958 *5) (|:| |radicand| (-585 *5)))) (-5 *1 (-271 *5)) (-5 *4 (-696))))) -((-3084 (((-585 |#2|) (-1087 |#4|)) 45 T ELT)) (-1620 ((|#3| (-486)) 48 T ELT)) (-1618 (((-1087 |#4|) (-1087 |#3|)) 30 T ELT)) (-1619 (((-1087 |#4|) (-1087 |#4|) (-486)) 67 T ELT)) (-1617 (((-1087 |#3|) (-1087 |#4|)) 21 T ELT)) (-3952 (((-585 (-696)) (-1087 |#4|) (-585 |#2|)) 41 T ELT)) (-1616 (((-1087 |#3|) (-1087 |#4|) (-585 |#2|) (-585 |#3|)) 35 T ELT))) -(((-272 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1616 ((-1087 |#3|) (-1087 |#4|) (-585 |#2|) (-585 |#3|))) (-15 -3952 ((-585 (-696)) (-1087 |#4|) (-585 |#2|))) (-15 -3084 ((-585 |#2|) (-1087 |#4|))) (-15 -1617 ((-1087 |#3|) (-1087 |#4|))) (-15 -1618 ((-1087 |#4|) (-1087 |#3|))) (-15 -1619 ((-1087 |#4|) (-1087 |#4|) (-486))) (-15 -1620 (|#3| (-486)))) (-719) (-758) (-963) (-863 |#3| |#1| |#2|)) (T -272)) -((-1620 (*1 *2 *3) (-12 (-5 *3 (-486)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-963)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-863 *2 *4 *5)))) (-1619 (*1 *2 *2 *3) (-12 (-5 *2 (-1087 *7)) (-5 *3 (-486)) (-4 *7 (-863 *6 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-5 *1 (-272 *4 *5 *6 *7)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-1087 *6)) (-4 *6 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-1087 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-1087 *7)) (-4 *7 (-863 *6 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-5 *2 (-1087 *6)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-1087 *7)) (-4 *7 (-863 *6 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-5 *2 (-585 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *8)) (-5 *4 (-585 *6)) (-4 *6 (-758)) (-4 *8 (-863 *7 *5 *6)) (-4 *5 (-719)) (-4 *7 (-963)) (-5 *2 (-585 (-696))) (-5 *1 (-272 *5 *6 *7 *8)))) (-1616 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1087 *9)) (-5 *4 (-585 *7)) (-5 *5 (-585 *8)) (-4 *7 (-758)) (-4 *8 (-963)) (-4 *9 (-863 *8 *6 *7)) (-4 *6 (-719)) (-5 *2 (-1087 *8)) (-5 *1 (-272 *6 *7 *8 *9))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 19 T ELT)) (-3777 (((-585 (-2 (|:| |gen| |#1|) (|:| -3947 (-486)))) $) 21 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-696) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2301 ((|#1| $ (-486)) NIL T ELT)) (-1623 (((-486) $ (-486)) NIL T ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2292 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1622 (($ (-1 (-486) (-486)) $) 11 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1621 (($ $ $) NIL (|has| (-486) (-718)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3680 (((-486) |#1| $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 30 (|has| |#1| (-758)) ELT)) (-3840 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3842 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ (-486)) NIL T ELT) (($ (-486) |#1|) 28 T ELT))) -(((-273 |#1|) (-13 (-21) (-656 (-486)) (-274 |#1| (-486)) (-10 -7 (IF (|has| |#1| (-758)) (-6 (-758)) |%noBranch|))) (-1015)) (T -273)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3777 (((-585 (-2 (|:| |gen| |#1|) (|:| -3947 |#2|))) $) 34 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3139 (((-696) $) 35 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| "failed") $) 39 T ELT)) (-3159 ((|#1| $) 40 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2301 ((|#1| $ (-486)) 32 T ELT)) (-1623 ((|#2| $ (-486)) 33 T ELT)) (-2292 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) 30 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1621 (($ $ $) 28 (|has| |#2| (-718)) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ |#1|) 38 T ELT)) (-3680 ((|#2| |#1| $) 31 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT) (($ |#1| $) 37 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ |#2| |#1|) 36 T ELT))) -(((-274 |#1| |#2|) (-113) (-1015) (-104)) (T -274)) -((-3842 (*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-104)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-104)))) (-3139 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)) (-5 *2 (-696)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)) (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3947 *4)))))) (-1623 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1015)) (-4 *2 (-104)))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1015)))) (-3680 (*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-104)))) (-1622 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)))) (-1621 (*1 *1 *1 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-104)) (-4 *3 (-718))))) -(-13 (-104) (-952 |t#1|) (-10 -8 (-15 -3842 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3139 ((-696) $)) (-15 -3777 ((-585 (-2 (|:| |gen| |t#1|) (|:| -3947 |t#2|))) $)) (-15 -1623 (|t#2| $ (-486))) (-15 -2301 (|t#1| $ (-486))) (-15 -3680 (|t#2| |t#1| $)) (-15 -1622 ($ (-1 |t#2| |t#2|) $)) (-15 -2292 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-718)) (-15 -1621 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-13) . T) ((-952 |#1|) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3777 (((-585 (-2 (|:| |gen| |#1|) (|:| -3947 (-696)))) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-696) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2301 ((|#1| $ (-486)) NIL T ELT)) (-1623 (((-696) $ (-486)) NIL T ELT)) (-2292 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1622 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1621 (($ $ $) NIL (|has| (-696) (-718)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3680 (((-696) |#1| $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-696) |#1|) NIL T ELT))) -(((-275 |#1|) (-274 |#1| (-696)) (-1015)) (T -275)) -NIL -((-3506 (($ $) 72 T ELT)) (-1625 (($ $ |#2| |#3| $) 14 T ELT)) (-1626 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1802 (((-85) $) 42 T ELT)) (-1801 ((|#2| $) 44 T ELT)) (-3469 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2820 ((|#2| $) 68 T ELT)) (-3820 (((-585 |#2|) $) 56 T ELT)) (-1624 (($ $ $ (-696)) 37 T ELT)) (-3953 (($ $ |#2|) 60 T ELT))) -(((-276 |#1| |#2| |#3|) (-10 -7 (-15 -3506 (|#1| |#1|)) (-15 -2820 (|#2| |#1|)) (-15 -3469 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1624 (|#1| |#1| |#1| (-696))) (-15 -1625 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1626 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3820 ((-585 |#2|) |#1|)) (-15 -1801 (|#2| |#1|)) (-15 -1802 ((-85) |#1|)) (-15 -3469 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3953 (|#1| |#1| |#2|))) (-277 |#2| |#3|) (-963) (-718)) (T -276)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 72 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 73 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 75 (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-486) #1="failed") $) 110 (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) 108 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 105 T ELT)) (-3159 (((-486) $) 109 (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) 107 (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 106 T ELT)) (-3962 (($ $) 81 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3506 (($ $) 94 (|has| |#1| (-393)) ELT)) (-1625 (($ $ |#1| |#2| $) 98 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2422 (((-696) $) 101 T ELT)) (-3941 (((-85) $) 83 T ELT)) (-2896 (($ |#1| |#2|) 82 T ELT)) (-2823 ((|#2| $) 100 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) 99 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1802 (((-85) $) 104 T ELT)) (-1801 ((|#1| $) 103 T ELT)) (-3469 (((-3 $ "failed") $ $) 71 (|has| |#1| (-497)) ELT) (((-3 $ "failed") $ |#1|) 96 (|has| |#1| (-497)) ELT)) (-3952 ((|#2| $) 84 T ELT)) (-2820 ((|#1| $) 95 (|has| |#1| (-393)) ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 70 (|has| |#1| (-497)) ELT) (($ |#1|) 68 T ELT) (($ (-350 (-486))) 78 (OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ELT)) (-3820 (((-585 |#1|) $) 102 T ELT)) (-3680 ((|#1| $ |#2|) 80 T ELT)) (-2705 (((-634 $) $) 69 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-1624 (($ $ $ (-696)) 97 (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 74 (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 79 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-350 (-486)) $) 77 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 76 (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-277 |#1| |#2|) (-113) (-963) (-718)) (T -277)) -((-1802 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-85)))) (-1801 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) (-3820 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-585 *3)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-696)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-1626 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)))) (-1625 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) (-1624 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-4 *3 (-146)))) (-3469 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *2 (-497)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)) (-4 *2 (-393)))) (-3506 (*1 *1 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *2 (-393))))) -(-13 (-47 |t#1| |t#2|) (-355 |t#1|) (-10 -8 (-15 -1802 ((-85) $)) (-15 -1801 (|t#1| $)) (-15 -3820 ((-585 |t#1|) $)) (-15 -2422 ((-696) $)) (-15 -2823 (|t#2| $)) (-15 -1626 ($ (-1 |t#2| |t#2|) $)) (-15 -1625 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-146)) (-15 -1624 ($ $ $ (-696))) |%noBranch|) (IF (|has| |t#1| (-497)) (-15 -3469 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-393)) (PROGN (-15 -2820 (|t#1| $)) (-15 -3506 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-497)) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-557 $) |has| |#1| (-497)) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-246) |has| |#1| (-497)) ((-355 |#1|) . T) ((-381 |#1|) . T) ((-497) |has| |#1| (-497)) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-497)) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-497)) ((-665) . T) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1037 |#1|)) (|has| |#1| (-758))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-1988 (((-85) (-85)) NIL T ELT)) (-3791 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-2370 (($ $) NIL (|has| |#1| (-72)) ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) NIL T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) NIL T ELT) (((-486) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) NIL (|has| |#1| (-72)) ELT)) (-1989 (($ $ (-486)) NIL T ELT)) (-1990 (((-696) $) NIL T ELT)) (-3617 (($ (-696) |#1|) NIL T ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3612 (($ $ $ (-486)) NIL T ELT) (($ |#1| $ (-486)) NIL T ELT)) (-2306 (($ |#1| $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1991 (($ (-585 |#1|)) NIL T ELT)) (-3804 ((|#1| $) NIL (|has| (-486) (-758)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-486) |#1|) NIL T ELT) ((|#1| $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-1572 (($ $ (-1148 (-486))) NIL T ELT) (($ $ (-486)) NIL T ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) NIL T ELT)) (-3794 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3950 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-278 |#1|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1991 ($ (-585 |#1|))) (-15 -1990 ((-696) $)) (-15 -1989 ($ $ (-486))) (-15 -1988 ((-85) (-85))))) (-1131)) (T -278)) -((-1991 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-278 *3)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-278 *3)) (-4 *3 (-1131)))) (-1989 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-278 *3)) (-4 *3 (-1131)))) (-1988 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1131))))) -((-3936 (((-85) $) 47 T ELT)) (-3933 (((-696)) 23 T ELT)) (-3333 ((|#2| $) 51 T ELT) (($ $ (-832)) 123 T ELT)) (-3139 (((-696)) 124 T ELT)) (-1797 (($ (-1181 |#2|)) 20 T ELT)) (-2013 (((-85) $) 136 T ELT)) (-3135 ((|#2| $) 53 T ELT) (($ $ (-832)) 120 T ELT)) (-2016 (((-1087 |#2|) $) NIL T ELT) (((-1087 $) $ (-832)) 111 T ELT)) (-1628 (((-1087 |#2|) $) 95 T ELT)) (-1627 (((-1087 |#2|) $) 91 T ELT) (((-3 (-1087 |#2|) "failed") $ $) 88 T ELT)) (-1629 (($ $ (-1087 |#2|)) 58 T ELT)) (-3934 (((-745 (-832))) 30 T ELT) (((-832)) 48 T ELT)) (-3915 (((-107)) 27 T ELT)) (-3952 (((-745 (-832)) $) 32 T ELT) (((-832) $) 139 T ELT)) (-1630 (($) 130 T ELT)) (-3227 (((-1181 |#2|) $) NIL T ELT) (((-632 |#2|) (-1181 $)) 42 T ELT)) (-2705 (($ $) NIL T ELT) (((-634 $) $) 100 T ELT)) (-3937 (((-85) $) 45 T ELT))) -(((-279 |#1| |#2|) (-10 -7 (-15 -2705 ((-634 |#1|) |#1|)) (-15 -3139 ((-696))) (-15 -2705 (|#1| |#1|)) (-15 -1627 ((-3 (-1087 |#2|) "failed") |#1| |#1|)) (-15 -1627 ((-1087 |#2|) |#1|)) (-15 -1628 ((-1087 |#2|) |#1|)) (-15 -1629 (|#1| |#1| (-1087 |#2|))) (-15 -2013 ((-85) |#1|)) (-15 -1630 (|#1|)) (-15 -3333 (|#1| |#1| (-832))) (-15 -3135 (|#1| |#1| (-832))) (-15 -2016 ((-1087 |#1|) |#1| (-832))) (-15 -3333 (|#2| |#1|)) (-15 -3135 (|#2| |#1|)) (-15 -3952 ((-832) |#1|)) (-15 -3934 ((-832))) (-15 -2016 ((-1087 |#2|) |#1|)) (-15 -1797 (|#1| (-1181 |#2|))) (-15 -3227 ((-632 |#2|) (-1181 |#1|))) (-15 -3227 ((-1181 |#2|) |#1|)) (-15 -3933 ((-696))) (-15 -3934 ((-745 (-832)))) (-15 -3952 ((-745 (-832)) |#1|)) (-15 -3936 ((-85) |#1|)) (-15 -3937 ((-85) |#1|)) (-15 -3915 ((-107)))) (-280 |#2|) (-312)) (T -279)) -((-3915 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-107)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3934 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-745 (-832))) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3933 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-696)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3934 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-832)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3139 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-696)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-3936 (((-85) $) 114 T ELT)) (-3933 (((-696)) 110 T ELT)) (-3333 ((|#1| $) 162 T ELT) (($ $ (-832)) 159 (|has| |#1| (-320)) ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) 144 (|has| |#1| (-320)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3139 (((-696)) 134 (|has| |#1| (-320)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| "failed") $) 121 T ELT)) (-3159 ((|#1| $) 122 T ELT)) (-1797 (($ (-1181 |#1|)) 168 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-320)) ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2997 (($) 131 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-2836 (($) 146 (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) 147 (|has| |#1| (-320)) ELT)) (-1769 (($ $ (-696)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3726 (((-85) $) 89 T ELT)) (-3775 (((-832) $) 149 (|has| |#1| (-320)) ELT) (((-745 (-832)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2015 (($) 157 (|has| |#1| (-320)) ELT)) (-2013 (((-85) $) 156 (|has| |#1| (-320)) ELT)) (-3135 ((|#1| $) 163 T ELT) (($ $ (-832)) 160 (|has| |#1| (-320)) ELT)) (-3448 (((-634 $) $) 135 (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-2016 (((-1087 |#1|) $) 167 T ELT) (((-1087 $) $ (-832)) 161 (|has| |#1| (-320)) ELT)) (-2012 (((-832) $) 132 (|has| |#1| (-320)) ELT)) (-1628 (((-1087 |#1|) $) 153 (|has| |#1| (-320)) ELT)) (-1627 (((-1087 |#1|) $) 152 (|has| |#1| (-320)) ELT) (((-3 (-1087 |#1|) "failed") $ $) 151 (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1087 |#1|)) 154 (|has| |#1| (-320)) ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3449 (($) 136 (|has| |#1| (-320)) CONST)) (-2402 (($ (-832)) 133 (|has| |#1| (-320)) ELT)) (-3935 (((-85) $) 113 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2411 (($) 155 (|has| |#1| (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) 143 (|has| |#1| (-320)) ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-3934 (((-745 (-832))) 111 T ELT) (((-832)) 165 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-1770 (((-696) $) 148 (|has| |#1| (-320)) ELT) (((-3 (-696) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3915 (((-107)) 119 T ELT)) (-3761 (($ $ (-696)) 139 (|has| |#1| (-320)) ELT) (($ $) 137 (|has| |#1| (-320)) ELT)) (-3952 (((-745 (-832)) $) 112 T ELT) (((-832) $) 164 T ELT)) (-3188 (((-1087 |#1|)) 166 T ELT)) (-1675 (($) 145 (|has| |#1| (-320)) ELT)) (-1630 (($) 158 (|has| |#1| (-320)) ELT)) (-3227 (((-1181 |#1|) $) 170 T ELT) (((-632 |#1|) (-1181 $)) 169 T ELT)) (-2706 (((-3 (-1181 $) "failed") (-632 $)) 142 (|has| |#1| (-320)) ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2705 (($ $) 141 (|has| |#1| (-320)) ELT) (((-634 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2014 (((-1181 $)) 172 T ELT) (((-1181 $) (-832)) 171 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3937 (((-85) $) 115 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3932 (($ $) 109 (|has| |#1| (-320)) ELT) (($ $ (-696)) 108 (|has| |#1| (-320)) ELT)) (-2672 (($ $ (-696)) 140 (|has| |#1| (-320)) ELT) (($ $) 138 (|has| |#1| (-320)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT))) -(((-280 |#1|) (-113) (-312)) (T -280)) -((-2014 (*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1181 *1)) (-4 *1 (-280 *3)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-832)) (-4 *4 (-312)) (-5 *2 (-1181 *1)) (-4 *1 (-280 *4)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1181 *3)))) (-3227 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-632 *4)))) (-1797 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1087 *3)))) (-3188 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1087 *3)))) (-3934 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-832)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-832)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-2016 (*1 *2 *1 *3) (-12 (-5 *3 (-832)) (-4 *4 (-320)) (-4 *4 (-312)) (-5 *2 (-1087 *1)) (-4 *1 (-280 *4)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) (-3333 (*1 *1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) (-1630 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-2015 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-85)))) (-2411 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-1629 (*1 *1 *1 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-320)) (-4 *1 (-280 *3)) (-4 *3 (-312)))) (-1628 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1087 *3)))) (-1627 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1087 *3)))) (-1627 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1087 *3))))) -(-13 (-1200 |t#1|) (-952 |t#1|) (-10 -8 (-15 -2014 ((-1181 $))) (-15 -2014 ((-1181 $) (-832))) (-15 -3227 ((-1181 |t#1|) $)) (-15 -3227 ((-632 |t#1|) (-1181 $))) (-15 -1797 ($ (-1181 |t#1|))) (-15 -2016 ((-1087 |t#1|) $)) (-15 -3188 ((-1087 |t#1|))) (-15 -3934 ((-832))) (-15 -3952 ((-832) $)) (-15 -3135 (|t#1| $)) (-15 -3333 (|t#1| $)) (IF (|has| |t#1| (-320)) (PROGN (-6 (-299)) (-15 -2016 ((-1087 $) $ (-832))) (-15 -3135 ($ $ (-832))) (-15 -3333 ($ $ (-832))) (-15 -1630 ($)) (-15 -2015 ($)) (-15 -2013 ((-85) $)) (-15 -2411 ($)) (-15 -1629 ($ $ (-1087 |t#1|))) (-15 -1628 ((-1087 |t#1|) $)) (-15 -1627 ((-1087 |t#1|) $)) (-15 -1627 ((-3 (-1087 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-186 $) |has| |#1| (-320)) ((-190) |has| |#1| (-320)) ((-189) |has| |#1| (-320)) ((-201) . T) ((-246) . T) ((-258) . T) ((-1200 |#1|) . T) ((-312) . T) ((-345) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-320) |has| |#1| (-320)) ((-299) |has| |#1| (-320)) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-656 (-350 (-486))) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-952 |#1|) . T) ((-965 (-350 (-486))) . T) ((-965 |#1|) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 |#1|) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1068) |has| |#1| (-320)) ((-1131) . T) ((-1136) . T) ((-1189 |#1|) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-1631 (((-85) $) 13 T ELT)) (-3641 (($ |#1|) 10 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3637 (($ |#1|) 12 T ELT)) (-3950 (((-774) $) 19 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2238 ((|#1| $) 14 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 21 T ELT))) -(((-281 |#1|) (-13 (-758) (-10 -8 (-15 -3641 ($ |#1|)) (-15 -3637 ($ |#1|)) (-15 -1631 ((-85) $)) (-15 -2238 (|#1| $)))) (-758)) (T -281)) -((-3641 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-758)))) (-3637 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-758)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-758)))) (-2238 (*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-758))))) -((-2571 (((-85) $ $) NIL T ELT)) (-1632 (((-448) $) 20 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1633 (((-871 (-696)) $) 18 T ELT)) (-1635 (((-209) $) 7 T ELT)) (-3950 (((-774) $) 26 T ELT)) (-2208 (((-871 (-158 (-112))) $) 16 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1634 (((-585 (-784 (-1097) (-696))) $) 12 T ELT)) (-3059 (((-85) $ $) 22 T ELT))) -(((-282) (-13 (-1015) (-10 -8 (-15 -1635 ((-209) $)) (-15 -1634 ((-585 (-784 (-1097) (-696))) $)) (-15 -1633 ((-871 (-696)) $)) (-15 -2208 ((-871 (-158 (-112))) $)) (-15 -1632 ((-448) $))))) (T -282)) -((-1635 (*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-282)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-585 (-784 (-1097) (-696)))) (-5 *1 (-282)))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-871 (-696))) (-5 *1 (-282)))) (-2208 (*1 *2 *1) (-12 (-5 *2 (-871 (-158 (-112)))) (-5 *1 (-282)))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-282))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3845 (($ $) 34 T ELT)) (-1638 (((-85) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1636 (((-1181 |#4|) $) 133 T ELT)) (-1970 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 32 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (((-3 |#4| #1#) $) 37 T ELT)) (-1637 (((-1181 |#4|) $) 125 T ELT)) (-1639 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-486)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3438 (((-2 (|:| -2338 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3950 (((-774) $) 18 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 15 T CONST)) (-3059 (((-85) $ $) 21 T ELT)) (-3840 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 26 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 24 T ELT))) -(((-283 |#1| |#2| |#3| |#4|) (-13 (-286 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1637 ((-1181 |#4|) $)) (-15 -1636 ((-1181 |#4|) $)))) (-312) (-1157 |#1|) (-1157 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -283)) -((-1637 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-1181 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))) (-1636 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-1181 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) -((-3846 (((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)) 33 T ELT))) -(((-284 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3846 ((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)))) (-312) (-1157 |#1|) (-1157 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-312) (-1157 |#5|) (-1157 (-350 |#6|)) (-291 |#5| |#6| |#7|)) (T -284)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-283 *5 *6 *7 *8)) (-4 *5 (-312)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *9 (-312)) (-4 *10 (-1157 *9)) (-4 *11 (-1157 (-350 *10))) (-5 *2 (-283 *9 *10 *11 *12)) (-5 *1 (-284 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-291 *9 *10 *11))))) -((-1638 (((-85) $) 14 T ELT))) -(((-285 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1638 ((-85) |#1|))) (-286 |#2| |#3| |#4| |#5|) (-312) (-1157 |#2|) (-1157 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -285)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3845 (($ $) 35 T ELT)) (-1638 (((-85) $) 34 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1970 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 41 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2411 (((-3 |#4| "failed") $) 33 T ELT)) (-1639 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 40 T ELT) (($ |#4|) 39 T ELT) (($ |#1| |#1|) 38 T ELT) (($ |#1| |#1| (-486)) 37 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 32 T ELT)) (-3438 (((-2 (|:| -2338 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 36 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT))) -(((-286 |#1| |#2| |#3| |#4|) (-113) (-312) (-1157 |t#1|) (-1157 (-350 |t#2|)) (-291 |t#1| |t#2| |t#3|)) (T -286)) -((-1970 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-356 *4 (-350 *4) *5 *6)))) (-1639 (*1 *1 *2) (-12 (-5 *2 (-356 *4 (-350 *4) *5 *6)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) (-4 *1 (-286 *3 *4 *5 *6)))) (-1639 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-4 *1 (-286 *3 *4 *5 *2)) (-4 *2 (-291 *3 *4 *5)))) (-1639 (*1 *1 *2 *2) (-12 (-4 *2 (-312)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-350 *3))) (-4 *1 (-286 *2 *3 *4 *5)) (-4 *5 (-291 *2 *3 *4)))) (-1639 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-486)) (-4 *2 (-312)) (-4 *4 (-1157 *2)) (-4 *5 (-1157 (-350 *4))) (-4 *1 (-286 *2 *4 *5 *6)) (-4 *6 (-291 *2 *4 *5)))) (-3438 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-2 (|:| -2338 (-356 *4 (-350 *4) *5 *6)) (|:| |principalPart| *6))))) (-3845 (*1 *1 *1) (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-350 *3))) (-4 *5 (-291 *2 *3 *4)))) (-1638 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85)))) (-2411 (*1 *2 *1) (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-4 *2 (-291 *3 *4 *5)))) (-1639 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-312)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-350 *3))) (-4 *1 (-286 *4 *3 *5 *2)) (-4 *2 (-291 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -1970 ((-356 |t#2| (-350 |t#2|) |t#3| |t#4|) $)) (-15 -1639 ($ (-356 |t#2| (-350 |t#2|) |t#3| |t#4|))) (-15 -1639 ($ |t#4|)) (-15 -1639 ($ |t#1| |t#1|)) (-15 -1639 ($ |t#1| |t#1| (-486))) (-15 -3438 ((-2 (|:| -2338 (-356 |t#2| (-350 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3845 ($ $)) (-15 -1638 ((-85) $)) (-15 -2411 ((-3 |t#4| "failed") $)) (-15 -1639 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-1015) . T) ((-1131) . T)) -((-3771 (($ $ (-1092) |#2|) NIL T ELT) (($ $ (-585 (-1092)) (-585 |#2|)) 20 T ELT) (($ $ (-585 (-249 |#2|))) 15 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL T ELT)) (-3803 (($ $ |#2|) 11 T ELT))) -(((-287 |#1| |#2|) (-10 -7 (-15 -3803 (|#1| |#1| |#2|)) (-15 -3771 (|#1| |#1| (-585 |#2|) (-585 |#2|))) (-15 -3771 (|#1| |#1| |#2| |#2|)) (-15 -3771 (|#1| |#1| (-249 |#2|))) (-15 -3771 (|#1| |#1| (-585 (-249 |#2|)))) (-15 -3771 (|#1| |#1| (-585 (-1092)) (-585 |#2|))) (-15 -3771 (|#1| |#1| (-1092) |#2|))) (-288 |#2|) (-1015)) (T -287)) -NIL -((-3846 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3771 (($ $ (-1092) |#1|) 17 (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) 16 (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-585 (-249 |#1|))) 15 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 14 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 12 (|has| |#1| (-260 |#1|)) ELT)) (-3803 (($ $ |#1|) 11 (|has| |#1| (-241 |#1| |#1|)) ELT))) -(((-288 |#1|) (-113) (-1015)) (T -288)) -NIL -(-13 (-381 |t#1|) (-10 -8 (IF (|has| |t#1| (-241 |t#1| |t#1|)) (-6 (-241 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-457 (-1092) |t#1|)) (-6 (-457 (-1092) |t#1|)) |%noBranch|))) -(((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-381 |#1|) . T) ((-457 (-1092) |#1|) |has| |#1| (-457 (-1092) |#1|)) ((-457 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3933 (((-696)) NIL T ELT)) (-3333 (((-819 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-819 |#1|) #1#) $) NIL T ELT)) (-3159 (((-819 |#1|) $) NIL T ELT)) (-1797 (($ (-1181 (-819 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1681 (((-85) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2013 (((-85) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3135 (((-819 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 (-819 |#1|)) $) NIL T ELT) (((-1087 $) $ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2012 (((-832) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1628 (((-1087 (-819 |#1|)) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1627 (((-1087 (-819 |#1|)) $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-3 (-1087 (-819 |#1|)) #1#) $ $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1629 (($ $ (-1087 (-819 |#1|))) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-819 |#1|) (-320)) CONST)) (-2402 (($ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3935 (((-85) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3934 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-3915 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| (-819 |#1|) (-320)) ELT) (($ $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3952 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3188 (((-1087 (-819 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1630 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3227 (((-1181 (-819 |#1|)) $) NIL T ELT) (((-632 (-819 |#1|)) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-819 |#1|)) NIL T ELT)) (-2705 (($ $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-634 $) $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT) (((-1181 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3932 (($ $) NIL (|has| (-819 |#1|) (-320)) ELT) (($ $ (-696)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| (-819 |#1|) (-320)) ELT) (($ $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT) (($ $ (-819 |#1|)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ (-819 |#1|)) NIL T ELT) (($ (-819 |#1|) $) NIL T ELT))) -(((-289 |#1| |#2|) (-280 (-819 |#1|)) (-832) (-832)) (T -289)) -NIL -((-1648 (((-2 (|:| |num| (-1181 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1797 (($ (-1181 (-350 |#3|)) (-1181 $)) NIL T ELT) (($ (-1181 (-350 |#3|))) NIL T ELT) (($ (-1181 |#3|) |#3|) 172 T ELT)) (-1653 (((-1181 $) (-1181 $)) 156 T ELT)) (-1640 (((-585 (-585 |#2|))) 126 T ELT)) (-1665 (((-85) |#2| |#2|) 76 T ELT)) (-3506 (($ $) 148 T ELT)) (-3380 (((-696)) 171 T ELT)) (-1654 (((-1181 $) (-1181 $)) 219 T ELT)) (-1641 (((-585 (-859 |#2|)) (-1092)) 115 T ELT)) (-1657 (((-85) $) 168 T ELT)) (-1656 (((-85) $) 27 T ELT) (((-85) $ |#2|) 31 T ELT) (((-85) $ |#3|) 223 T ELT)) (-1643 (((-3 |#3| #1="failed")) 52 T ELT)) (-1667 (((-696)) 183 T ELT)) (-3803 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1644 (((-3 |#3| #1#)) 71 T ELT)) (-3761 (($ $ (-1 (-350 |#3|) (-350 |#3|))) NIL T ELT) (($ $ (-1 (-350 |#3|) (-350 |#3|)) (-696)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-1655 (((-1181 $) (-1181 $)) 162 T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1666 (((-85)) 34 T ELT))) -(((-290 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3761 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -1640 ((-585 (-585 |#2|)))) (-15 -1641 ((-585 (-859 |#2|)) (-1092))) (-15 -1642 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1643 ((-3 |#3| #1="failed"))) (-15 -1644 ((-3 |#3| #1#))) (-15 -3803 (|#2| |#1| |#2| |#2|)) (-15 -3506 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1656 ((-85) |#1| |#3|)) (-15 -1656 ((-85) |#1| |#2|)) (-15 -1797 (|#1| (-1181 |#3|) |#3|)) (-15 -1648 ((-2 (|:| |num| (-1181 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1653 ((-1181 |#1|) (-1181 |#1|))) (-15 -1654 ((-1181 |#1|) (-1181 |#1|))) (-15 -1655 ((-1181 |#1|) (-1181 |#1|))) (-15 -1656 ((-85) |#1|)) (-15 -1657 ((-85) |#1|)) (-15 -1665 ((-85) |#2| |#2|)) (-15 -1666 ((-85))) (-15 -1667 ((-696))) (-15 -3380 ((-696))) (-15 -3761 (|#1| |#1| (-1 (-350 |#3|) (-350 |#3|)) (-696))) (-15 -3761 (|#1| |#1| (-1 (-350 |#3|) (-350 |#3|)))) (-15 -1797 (|#1| (-1181 (-350 |#3|)))) (-15 -1797 (|#1| (-1181 (-350 |#3|)) (-1181 |#1|)))) (-291 |#2| |#3| |#4|) (-1136) (-1157 |#2|) (-1157 (-350 |#3|))) (T -290)) -((-3380 (*1 *2) (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) (-5 *2 (-696)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1667 (*1 *2) (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) (-5 *2 (-696)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1666 (*1 *2) (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1665 (*1 *2 *3 *3) (-12 (-4 *3 (-1136)) (-4 *5 (-1157 *3)) (-4 *6 (-1157 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *4 *3 *5 *6)) (-4 *4 (-291 *3 *5 *6)))) (-1644 (*1 *2) (|partial| -12 (-4 *4 (-1136)) (-4 *5 (-1157 (-350 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1643 (*1 *2) (|partial| -12 (-4 *4 (-1136)) (-4 *5 (-1157 (-350 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *5 (-1136)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-5 *2 (-585 (-859 *5))) (-5 *1 (-290 *4 *5 *6 *7)) (-4 *4 (-291 *5 *6 *7)))) (-1640 (*1 *2) (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) (-5 *2 (-585 (-585 *4))) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1648 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 225 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 114 (|has| (-350 |#2|) (-312)) ELT)) (-2065 (($ $) 115 (|has| (-350 |#2|) (-312)) ELT)) (-2063 (((-85) $) 117 (|has| (-350 |#2|) (-312)) ELT)) (-1787 (((-632 (-350 |#2|)) (-1181 $)) 61 T ELT) (((-632 (-350 |#2|))) 77 T ELT)) (-3333 (((-350 |#2|) $) 67 T ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) 167 (|has| (-350 |#2|) (-299)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 134 (|has| (-350 |#2|) (-312)) ELT)) (-3974 (((-348 $) $) 135 (|has| (-350 |#2|) (-312)) ELT)) (-1609 (((-85) $ $) 125 (|has| (-350 |#2|) (-312)) ELT)) (-3139 (((-696)) 108 (|has| (-350 |#2|) (-320)) ELT)) (-1662 (((-85)) 242 T ELT)) (-1661 (((-85) |#1|) 241 T ELT) (((-85) |#2|) 240 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-486) #1="failed") $) 194 (|has| (-350 |#2|) (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) 192 (|has| (-350 |#2|) (-952 (-350 (-486)))) ELT) (((-3 (-350 |#2|) #1#) $) 189 T ELT)) (-3159 (((-486) $) 193 (|has| (-350 |#2|) (-952 (-486))) ELT) (((-350 (-486)) $) 191 (|has| (-350 |#2|) (-952 (-350 (-486)))) ELT) (((-350 |#2|) $) 190 T ELT)) (-1797 (($ (-1181 (-350 |#2|)) (-1181 $)) 63 T ELT) (($ (-1181 (-350 |#2|))) 80 T ELT) (($ (-1181 |#2|) |#2|) 224 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| (-350 |#2|) (-299)) ELT)) (-2567 (($ $ $) 129 (|has| (-350 |#2|) (-312)) ELT)) (-1786 (((-632 (-350 |#2|)) $ (-1181 $)) 68 T ELT) (((-632 (-350 |#2|)) $) 75 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 186 (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 185 (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-350 |#2|))) (|:| |vec| (-1181 (-350 |#2|)))) (-632 $) (-1181 $)) 184 T ELT) (((-632 (-350 |#2|)) (-632 $)) 183 T ELT)) (-1653 (((-1181 $) (-1181 $)) 230 T ELT)) (-3845 (($ |#3|) 178 T ELT) (((-3 $ "failed") (-350 |#3|)) 175 (|has| (-350 |#2|) (-312)) ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1640 (((-585 (-585 |#1|))) 211 (|has| |#1| (-320)) ELT)) (-1665 (((-85) |#1| |#1|) 246 T ELT)) (-3111 (((-832)) 69 T ELT)) (-2997 (($) 111 (|has| (-350 |#2|) (-320)) ELT)) (-1660 (((-85)) 239 T ELT)) (-1659 (((-85) |#1|) 238 T ELT) (((-85) |#2|) 237 T ELT)) (-2566 (($ $ $) 128 (|has| (-350 |#2|) (-312)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 123 (|has| (-350 |#2|) (-312)) ELT)) (-3506 (($ $) 217 T ELT)) (-2836 (($) 169 (|has| (-350 |#2|) (-299)) ELT)) (-1681 (((-85) $) 170 (|has| (-350 |#2|) (-299)) ELT)) (-1769 (($ $ (-696)) 161 (|has| (-350 |#2|) (-299)) ELT) (($ $) 160 (|has| (-350 |#2|) (-299)) ELT)) (-3726 (((-85) $) 136 (|has| (-350 |#2|) (-312)) ELT)) (-3775 (((-832) $) 172 (|has| (-350 |#2|) (-299)) ELT) (((-745 (-832)) $) 158 (|has| (-350 |#2|) (-299)) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3380 (((-696)) 249 T ELT)) (-1654 (((-1181 $) (-1181 $)) 231 T ELT)) (-3135 (((-350 |#2|) $) 66 T ELT)) (-1641 (((-585 (-859 |#1|)) (-1092)) 212 (|has| |#1| (-312)) ELT)) (-3448 (((-634 $) $) 162 (|has| (-350 |#2|) (-299)) ELT)) (-1606 (((-3 (-585 $) #2="failed") (-585 $) $) 132 (|has| (-350 |#2|) (-312)) ELT)) (-2016 ((|#3| $) 59 (|has| (-350 |#2|) (-312)) ELT)) (-2012 (((-832) $) 110 (|has| (-350 |#2|) (-320)) ELT)) (-3082 ((|#3| $) 176 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 188 (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 187 (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-350 |#2|))) (|:| |vec| (-1181 (-350 |#2|)))) (-1181 $) $) 182 T ELT) (((-632 (-350 |#2|)) (-1181 $)) 181 T ELT)) (-1896 (($ (-585 $)) 121 (|has| (-350 |#2|) (-312)) ELT) (($ $ $) 120 (|has| (-350 |#2|) (-312)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1649 (((-632 (-350 |#2|))) 226 T ELT)) (-1651 (((-632 (-350 |#2|))) 228 T ELT)) (-2487 (($ $) 137 (|has| (-350 |#2|) (-312)) ELT)) (-1646 (($ (-1181 |#2|) |#2|) 222 T ELT)) (-1650 (((-632 (-350 |#2|))) 227 T ELT)) (-1652 (((-632 (-350 |#2|))) 229 T ELT)) (-1645 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 221 T ELT)) (-1647 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (-1658 (((-1181 $)) 235 T ELT)) (-3922 (((-1181 $)) 236 T ELT)) (-1657 (((-85) $) 234 T ELT)) (-1656 (((-85) $) 233 T ELT) (((-85) $ |#1|) 220 T ELT) (((-85) $ |#2|) 219 T ELT)) (-3449 (($) 163 (|has| (-350 |#2|) (-299)) CONST)) (-2402 (($ (-832)) 109 (|has| (-350 |#2|) (-320)) ELT)) (-1643 (((-3 |#2| "failed")) 214 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1667 (((-696)) 248 T ELT)) (-2411 (($) 180 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 122 (|has| (-350 |#2|) (-312)) ELT)) (-3147 (($ (-585 $)) 119 (|has| (-350 |#2|) (-312)) ELT) (($ $ $) 118 (|has| (-350 |#2|) (-312)) ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) 166 (|has| (-350 |#2|) (-299)) ELT)) (-3735 (((-348 $) $) 133 (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 130 (|has| (-350 |#2|) (-312)) ELT)) (-3469 (((-3 $ "failed") $ $) 113 (|has| (-350 |#2|) (-312)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 124 (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-696) $) 126 (|has| (-350 |#2|) (-312)) ELT)) (-3803 ((|#1| $ |#1| |#1|) 216 T ELT)) (-1644 (((-3 |#2| "failed")) 215 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 127 (|has| (-350 |#2|) (-312)) ELT)) (-3760 (((-350 |#2|) (-1181 $)) 62 T ELT) (((-350 |#2|)) 76 T ELT)) (-1770 (((-696) $) 171 (|has| (-350 |#2|) (-299)) ELT) (((-3 (-696) "failed") $ $) 159 (|has| (-350 |#2|) (-299)) ELT)) (-3761 (($ $ (-1 (-350 |#2|) (-350 |#2|))) 145 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-696)) 144 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 218 T ELT) (($ $ (-585 (-1092)) (-585 (-696))) 150 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-2565 (|has| (-350 |#2|) (-813 (-1092))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1092) (-696)) 149 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-2565 (|has| (-350 |#2|) (-813 (-1092))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-585 (-1092))) 148 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-2565 (|has| (-350 |#2|) (-813 (-1092))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1092)) 146 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-2565 (|has| (-350 |#2|) (-813 (-1092))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-696)) 156 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2565 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) 154 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2565 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2410 (((-632 (-350 |#2|)) (-1181 $) (-1 (-350 |#2|) (-350 |#2|))) 174 (|has| (-350 |#2|) (-312)) ELT)) (-3188 ((|#3|) 179 T ELT)) (-1675 (($) 168 (|has| (-350 |#2|) (-299)) ELT)) (-3227 (((-1181 (-350 |#2|)) $ (-1181 $)) 65 T ELT) (((-632 (-350 |#2|)) (-1181 $) (-1181 $)) 64 T ELT) (((-1181 (-350 |#2|)) $) 82 T ELT) (((-632 (-350 |#2|)) (-1181 $)) 81 T ELT)) (-3975 (((-1181 (-350 |#2|)) $) 79 T ELT) (($ (-1181 (-350 |#2|))) 78 T ELT) ((|#3| $) 195 T ELT) (($ |#3|) 177 T ELT)) (-2706 (((-3 (-1181 $) "failed") (-632 $)) 165 (|has| (-350 |#2|) (-299)) ELT)) (-1655 (((-1181 $) (-1181 $)) 232 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 |#2|)) 52 T ELT) (($ (-350 (-486))) 107 (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-952 (-350 (-486))))) ELT) (($ $) 112 (|has| (-350 |#2|) (-312)) ELT)) (-2705 (($ $) 164 (|has| (-350 |#2|) (-299)) ELT) (((-634 $) $) 58 (|has| (-350 |#2|) (-118)) ELT)) (-2452 ((|#3| $) 60 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1664 (((-85)) 245 T ELT)) (-1663 (((-85) |#1|) 244 T ELT) (((-85) |#2|) 243 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2014 (((-1181 $)) 83 T ELT)) (-2064 (((-85) $ $) 116 (|has| (-350 |#2|) (-312)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 213 T ELT)) (-1666 (((-85)) 247 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 (-350 |#2|) (-350 |#2|))) 143 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-696)) 142 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 153 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-2565 (|has| (-350 |#2|) (-813 (-1092))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1092) (-696)) 152 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-2565 (|has| (-350 |#2|) (-813 (-1092))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-585 (-1092))) 151 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-2565 (|has| (-350 |#2|) (-813 (-1092))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1092)) 147 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-2565 (|has| (-350 |#2|) (-813 (-1092))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-696)) 157 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2565 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) 155 (OR (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2565 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2565 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ $) 141 (|has| (-350 |#2|) (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 138 (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 |#2|)) 54 T ELT) (($ (-350 |#2|) $) 53 T ELT) (($ (-350 (-486)) $) 140 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-486))) 139 (|has| (-350 |#2|) (-312)) ELT))) -(((-291 |#1| |#2| |#3|) (-113) (-1136) (-1157 |t#1|) (-1157 (-350 |t#2|))) (T -291)) -((-3380 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-696)))) (-1667 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-696)))) (-1666 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1665 (*1 *2 *3 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1664 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1663 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1663 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1136)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-350 *3))) (-5 *2 (-85)))) (-1662 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1661 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1661 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1136)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-350 *3))) (-5 *2 (-85)))) (-1660 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1136)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-350 *3))) (-5 *2 (-85)))) (-3922 (*1 *2) (-12 (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1658 (*1 *2) (-12 (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1657 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1656 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1655 (*1 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))))) (-1654 (*1 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))))) (-1653 (*1 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))))) (-1652 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-632 (-350 *4))))) (-1651 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-632 (-350 *4))))) (-1650 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-632 (-350 *4))))) (-1649 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-632 (-350 *4))))) (-1648 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4))))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1136)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1157 (-350 *3))))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4))))) (-1646 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1136)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1157 (-350 *3))))) (-1645 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) (-5 *2 (-2 (|:| |num| (-632 *5)) (|:| |den| *5))))) (-1656 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) (-1656 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1136)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-350 *3))) (-5 *2 (-85)))) (-3761 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))))) (-3506 (*1 *1 *1) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1136)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-350 *3))))) (-3803 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1136)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-350 *3))))) (-1644 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1136)) (-4 *4 (-1157 (-350 *2))) (-4 *2 (-1157 *3)))) (-1643 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1136)) (-4 *4 (-1157 (-350 *2))) (-4 *2 (-1157 *3)))) (-1642 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-1136)) (-4 *6 (-1157 (-350 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-291 *4 *5 *6)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) (-4 *4 (-312)) (-5 *2 (-585 (-859 *4))))) (-1640 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) (-4 *3 (-320)) (-5 *2 (-585 (-585 *3)))))) -(-13 (-663 (-350 |t#2|) |t#3|) (-10 -8 (-15 -3380 ((-696))) (-15 -1667 ((-696))) (-15 -1666 ((-85))) (-15 -1665 ((-85) |t#1| |t#1|)) (-15 -1664 ((-85))) (-15 -1663 ((-85) |t#1|)) (-15 -1663 ((-85) |t#2|)) (-15 -1662 ((-85))) (-15 -1661 ((-85) |t#1|)) (-15 -1661 ((-85) |t#2|)) (-15 -1660 ((-85))) (-15 -1659 ((-85) |t#1|)) (-15 -1659 ((-85) |t#2|)) (-15 -3922 ((-1181 $))) (-15 -1658 ((-1181 $))) (-15 -1657 ((-85) $)) (-15 -1656 ((-85) $)) (-15 -1655 ((-1181 $) (-1181 $))) (-15 -1654 ((-1181 $) (-1181 $))) (-15 -1653 ((-1181 $) (-1181 $))) (-15 -1652 ((-632 (-350 |t#2|)))) (-15 -1651 ((-632 (-350 |t#2|)))) (-15 -1650 ((-632 (-350 |t#2|)))) (-15 -1649 ((-632 (-350 |t#2|)))) (-15 -1648 ((-2 (|:| |num| (-1181 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1797 ($ (-1181 |t#2|) |t#2|)) (-15 -1647 ((-2 (|:| |num| (-1181 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1646 ($ (-1181 |t#2|) |t#2|)) (-15 -1645 ((-2 (|:| |num| (-632 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1656 ((-85) $ |t#1|)) (-15 -1656 ((-85) $ |t#2|)) (-15 -3761 ($ $ (-1 |t#2| |t#2|))) (-15 -3506 ($ $)) (-15 -3803 (|t#1| $ |t#1| |t#1|)) (-15 -1644 ((-3 |t#2| "failed"))) (-15 -1643 ((-3 |t#2| "failed"))) (-15 -1642 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-312)) (-15 -1641 ((-585 (-859 |t#1|)) (-1092))) |%noBranch|) (IF (|has| |t#1| (-320)) (-15 -1640 ((-585 (-585 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-38 (-350 |#2|)) . T) ((-38 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-82 (-350 |#2|) (-350 |#2|)) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-118))) ((-120) |has| (-350 |#2|) (-120)) ((-557 (-350 (-486))) OR (|has| (-350 |#2|) (-952 (-350 (-486)))) (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-557 (-350 |#2|)) . T) ((-557 (-486)) . T) ((-557 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-554 (-774)) . T) ((-146) . T) ((-555 |#3|) . T) ((-186 $) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-184 (-350 |#2|)) |has| (-350 |#2|) (-312)) ((-190) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-189) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-225 (-350 |#2|)) |has| (-350 |#2|) (-312)) ((-201) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-246) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-258) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-312) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-345) |has| (-350 |#2|) (-299)) ((-320) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-320))) ((-299) |has| (-350 |#2|) (-299)) ((-322 (-350 |#2|) |#3|) . T) ((-353 (-350 |#2|) |#3|) . T) ((-329 (-350 |#2|)) . T) ((-355 (-350 |#2|)) . T) ((-393) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-497) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-13) . T) ((-590 (-350 (-486))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-590 (-350 |#2|)) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-350 (-486))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-592 (-350 |#2|)) . T) ((-592 (-486)) |has| (-350 |#2|) (-582 (-486))) ((-592 $) . T) ((-584 (-350 (-486))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-584 (-350 |#2|)) . T) ((-584 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-582 (-350 |#2|)) . T) ((-582 (-486)) |has| (-350 |#2|) (-582 (-486))) ((-656 (-350 (-486))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-656 (-350 |#2|)) . T) ((-656 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-663 (-350 |#2|) |#3|) . T) ((-665) . T) ((-808 $ (-1092)) OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092))))) ((-811 (-1092)) -12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) ((-813 (-1092)) OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092))))) ((-834) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-952 (-350 (-486))) |has| (-350 |#2|) (-952 (-350 (-486)))) ((-952 (-350 |#2|)) . T) ((-952 (-486)) |has| (-350 |#2|) (-952 (-486))) ((-965 (-350 (-486))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-965 (-350 |#2|)) . T) ((-965 $) . T) ((-970 (-350 (-486))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-970 (-350 |#2|)) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1068) |has| (-350 |#2|) (-299)) ((-1131) . T) ((-1136) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312)))) -((-3846 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) -(((-292 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3846 (|#8| (-1 |#5| |#1|) |#4|))) (-1136) (-1157 |#1|) (-1157 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-1136) (-1157 |#5|) (-1157 (-350 |#6|)) (-291 |#5| |#6| |#7|)) (T -292)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1136)) (-4 *8 (-1136)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-4 *9 (-1157 *8)) (-4 *2 (-291 *8 *9 *10)) (-5 *1 (-292 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-291 *5 *6 *7)) (-4 *10 (-1157 (-350 *9)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3933 (((-696)) NIL T ELT)) (-3333 (((-819 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-819 |#1|) #1#) $) NIL T ELT)) (-3159 (((-819 |#1|) $) NIL T ELT)) (-1797 (($ (-1181 (-819 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1681 (((-85) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2013 (((-85) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3135 (((-819 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 (-819 |#1|)) $) NIL T ELT) (((-1087 $) $ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2012 (((-832) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1628 (((-1087 (-819 |#1|)) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1627 (((-1087 (-819 |#1|)) $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-3 (-1087 (-819 |#1|)) #1#) $ $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1629 (($ $ (-1087 (-819 |#1|))) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-819 |#1|) (-320)) CONST)) (-2402 (($ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3935 (((-85) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1668 (((-871 (-1035))) NIL T ELT)) (-2411 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3934 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-3915 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| (-819 |#1|) (-320)) ELT) (($ $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3952 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3188 (((-1087 (-819 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1630 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3227 (((-1181 (-819 |#1|)) $) NIL T ELT) (((-632 (-819 |#1|)) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-819 |#1|)) NIL T ELT)) (-2705 (($ $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-634 $) $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT) (((-1181 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3932 (($ $) NIL (|has| (-819 |#1|) (-320)) ELT) (($ $ (-696)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| (-819 |#1|) (-320)) ELT) (($ $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT) (($ $ (-819 |#1|)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ (-819 |#1|)) NIL T ELT) (($ (-819 |#1|) $) NIL T ELT))) -(((-293 |#1| |#2|) (-13 (-280 (-819 |#1|)) (-10 -7 (-15 -1668 ((-871 (-1035)))))) (-832) (-832)) (T -293)) -((-1668 (*1 *2) (-12 (-5 *2 (-871 (-1035))) (-5 *1 (-293 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 58 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3933 (((-696)) NIL T ELT)) (-3333 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) 56 (|has| |#1| (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| |#1| (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 139 T ELT)) (-3159 ((|#1| $) 111 T ELT)) (-1797 (($ (-1181 |#1|)) 128 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) 122 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) 155 (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) 65 (|has| |#1| (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) 60 (|has| |#1| (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 62 T ELT)) (-2015 (($) 157 (|has| |#1| (-320)) ELT)) (-2013 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3135 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 |#1|) $) 115 T ELT) (((-1087 $) $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-832) $) 165 (|has| |#1| (-320)) ELT)) (-1628 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1087 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1087 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 172 T ELT)) (-3449 (($) NIL (|has| |#1| (-320)) CONST)) (-2402 (($ (-832)) 94 (|has| |#1| (-320)) ELT)) (-3935 (((-85) $) 142 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1668 (((-871 (-1035))) 57 T ELT)) (-2411 (($) 153 (|has| |#1| (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) 117 (|has| |#1| (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3934 (((-745 (-832))) 88 T ELT) (((-832)) 89 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) 156 (|has| |#1| (-320)) ELT) (((-3 (-696) #1#) $ $) 149 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3915 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3952 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3188 (((-1087 |#1|)) 120 T ELT)) (-1675 (($) 154 (|has| |#1| (-320)) ELT)) (-1630 (($) 162 (|has| |#1| (-320)) ELT)) (-3227 (((-1181 |#1|) $) 76 T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| |#1| (-320)) ELT)) (-3950 (((-774) $) 168 T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2705 (($ $) NIL (|has| |#1| (-320)) ELT) (((-634 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3129 (((-696)) 150 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) 141 T ELT) (((-1181 $) (-832)) 96 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2663 (($) 66 T CONST)) (-2669 (($) 101 T CONST)) (-3932 (($ $) 105 (|has| |#1| (-320)) ELT) (($ $ (-696)) NIL (|has| |#1| (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3059 (((-85) $ $) 64 T ELT)) (-3953 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3840 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 84 T ELT)) (** (($ $ (-832)) 174 T ELT) (($ $ (-696)) 175 T ELT) (($ $ (-486)) 173 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT))) -(((-294 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1668 ((-871 (-1035)))))) (-299) (-1087 |#1|)) (T -294)) -((-1668 (*1 *2) (-12 (-5 *2 (-871 (-1035))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) (-14 *4 (-1087 *3))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3933 (((-696)) NIL T ELT)) (-3333 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) NIL (|has| |#1| (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| |#1| (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1797 (($ (-1181 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) NIL (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) NIL (|has| |#1| (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| |#1| (-320)) ELT)) (-2013 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3135 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 |#1|) $) NIL T ELT) (((-1087 $) $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-320)) ELT)) (-1628 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1087 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1087 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| |#1| (-320)) CONST)) (-2402 (($ (-832)) NIL (|has| |#1| (-320)) ELT)) (-3935 (((-85) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1668 (((-871 (-1035))) NIL T ELT)) (-2411 (($) NIL (|has| |#1| (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| |#1| (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3934 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3915 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3952 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3188 (((-1087 |#1|)) NIL T ELT)) (-1675 (($) NIL (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3227 (((-1181 |#1|) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| |#1| (-320)) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2705 (($ $) NIL (|has| |#1| (-320)) ELT) (((-634 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT) (((-1181 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3932 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-696)) NIL (|has| |#1| (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-295 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1668 ((-871 (-1035)))))) (-299) (-832)) (T -295)) -((-1668 (*1 *2) (-12 (-5 *2 (-871 (-1035))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832))))) -((-1678 (((-696) (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035)))))) 61 T ELT)) (-1669 (((-871 (-1035)) (-1087 |#1|)) 112 T ELT)) (-1670 (((-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))) (-1087 |#1|)) 103 T ELT)) (-1671 (((-632 |#1|) (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035)))))) 113 T ELT)) (-1672 (((-3 (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))) "failed") (-832)) 13 T ELT)) (-1673 (((-3 (-1087 |#1|) (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035)))))) (-832)) 18 T ELT))) -(((-296 |#1|) (-10 -7 (-15 -1669 ((-871 (-1035)) (-1087 |#1|))) (-15 -1670 ((-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))) (-1087 |#1|))) (-15 -1671 ((-632 |#1|) (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))))) (-15 -1678 ((-696) (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))))) (-15 -1672 ((-3 (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))) "failed") (-832))) (-15 -1673 ((-3 (-1087 |#1|) (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035)))))) (-832)))) (-299)) (T -296)) -((-1673 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-3 (-1087 *4) (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035))))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1672 (*1 *2 *3) (|partial| -12 (-5 *3 (-832)) (-5 *2 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) (-4 *4 (-299)) (-5 *2 (-696)) (-5 *1 (-296 *4)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) (-4 *4 (-299)) (-5 *2 (-632 *4)) (-5 *1 (-296 *4)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) (-5 *2 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) (-5 *1 (-296 *4)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) (-5 *2 (-871 (-1035))) (-5 *1 (-296 *4))))) -((-3950 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) -(((-297 |#1| |#2| |#3|) (-10 -7 (-15 -3950 (|#3| |#1|)) (-15 -3950 (|#1| |#3|))) (-280 |#2|) (-299) (-280 |#2|)) (T -297)) -((-3950 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *2 *4 *3)) (-4 *3 (-280 *4)))) (-3950 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *3 *4 *2)) (-4 *3 (-280 *4))))) -((-1681 (((-85) $) 65 T ELT)) (-3775 (((-745 (-832)) $) 26 T ELT) (((-832) $) 69 T ELT)) (-3448 (((-634 $) $) 21 T ELT)) (-3449 (($) 9 T CONST)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 120 T ELT)) (-1770 (((-3 (-696) #1="failed") $ $) 98 T ELT) (((-696) $) 84 T ELT)) (-3761 (($ $) 8 T ELT) (($ $ (-696)) NIL T ELT)) (-1675 (($) 58 T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) 41 T ELT)) (-2705 (((-634 $) $) 50 T ELT) (($ $) 47 T ELT))) -(((-298 |#1|) (-10 -7 (-15 -3775 ((-832) |#1|)) (-15 -1770 ((-696) |#1|)) (-15 -1681 ((-85) |#1|)) (-15 -1675 (|#1|)) (-15 -2706 ((-3 (-1181 |#1|) #1="failed") (-632 |#1|))) (-15 -2705 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1|)) (-15 -3449 (|#1|) -3956) (-15 -3448 ((-634 |#1|) |#1|)) (-15 -1770 ((-3 (-696) #1#) |#1| |#1|)) (-15 -3775 ((-745 (-832)) |#1|)) (-15 -2705 ((-634 |#1|) |#1|)) (-15 -2711 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|)))) (-299)) (T -298)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) 113 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3139 (((-696)) 123 T ELT)) (-3727 (($) 23 T CONST)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 107 T ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2997 (($) 126 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-2836 (($) 111 T ELT)) (-1681 (((-85) $) 110 T ELT)) (-1769 (($ $) 97 T ELT) (($ $ (-696)) 96 T ELT)) (-3726 (((-85) $) 89 T ELT)) (-3775 (((-745 (-832)) $) 99 T ELT) (((-832) $) 108 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3448 (((-634 $) $) 122 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-2012 (((-832) $) 125 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3449 (($) 121 T CONST)) (-2402 (($ (-832)) 124 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) 114 T ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-1770 (((-3 (-696) "failed") $ $) 98 T ELT) (((-696) $) 109 T ELT)) (-3761 (($ $) 120 T ELT) (($ $ (-696)) 118 T ELT)) (-1675 (($) 112 T ELT)) (-2706 (((-3 (-1181 $) "failed") (-632 $)) 115 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT)) (-2705 (((-634 $) $) 100 T ELT) (($ $) 116 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $) 119 T ELT) (($ $ (-696)) 117 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ $) 83 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT))) -(((-299) (-113)) (T -299)) -((-2705 (*1 *1 *1) (-4 *1 (-299))) (-2706 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-299)) (-5 *2 (-1181 *1)))) (-1677 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))))) (-1676 (*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-486)) (-5 *2 (-1104 (-832) (-696))))) (-1675 (*1 *1) (-4 *1 (-299))) (-2836 (*1 *1) (-4 *1 (-299))) (-1681 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-85)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-696)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-832)))) (-1674 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-345) (-320) (-1068) (-190) (-10 -8 (-15 -2705 ($ $)) (-15 -2706 ((-3 (-1181 $) "failed") (-632 $))) (-15 -1677 ((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486)))))) (-15 -1676 ((-1104 (-832) (-696)) (-486))) (-15 -1675 ($)) (-15 -2836 ($)) (-15 -1681 ((-85) $)) (-15 -1770 ((-696) $)) (-15 -3775 ((-832) $)) (-15 -1674 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-345) . T) ((-320) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 $) . T) ((-656 (-350 (-486))) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-965 (-350 (-486))) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1068) . T) ((-1131) . T) ((-1136) . T)) -((-3923 (((-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|) 55 T ELT)) (-3922 (((-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))) 53 T ELT))) -(((-300 |#1| |#2| |#3|) (-10 -7 (-15 -3922 ((-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))))) (-15 -3923 ((-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|))) (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $)))) (-1157 |#1|) (-353 |#1| |#2|)) (T -300)) -((-3923 (*1 *2 *3) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *4 (-1157 *3)) (-5 *2 (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-3922 (*1 *2) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *4 (-1157 *3)) (-5 *2 (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3933 (((-696)) NIL T ELT)) (-3333 (((-819 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1678 (((-696)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-819 |#1|) #1#) $) NIL T ELT)) (-3159 (((-819 |#1|) $) NIL T ELT)) (-1797 (($ (-1181 (-819 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1681 (((-85) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2013 (((-85) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3135 (((-819 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 (-819 |#1|)) $) NIL T ELT) (((-1087 $) $ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2012 (((-832) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1628 (((-1087 (-819 |#1|)) $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1627 (((-1087 (-819 |#1|)) $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-3 (-1087 (-819 |#1|)) #1#) $ $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1629 (($ $ (-1087 (-819 |#1|))) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-819 |#1|) (-320)) CONST)) (-2402 (($ (-832)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3935 (((-85) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1680 (((-1181 (-585 (-2 (|:| -3405 (-819 |#1|)) (|:| -2402 (-1035)))))) NIL T ELT)) (-1679 (((-632 (-819 |#1|))) NIL T ELT)) (-2411 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3934 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-3915 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| (-819 |#1|) (-320)) ELT) (($ $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3952 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3188 (((-1087 (-819 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-1630 (($) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3227 (((-1181 (-819 |#1|)) $) NIL T ELT) (((-632 (-819 |#1|)) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-819 |#1|)) NIL T ELT)) (-2705 (($ $) NIL (|has| (-819 |#1|) (-320)) ELT) (((-634 $) $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-320))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT) (((-1181 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3932 (($ $) NIL (|has| (-819 |#1|) (-320)) ELT) (($ $ (-696)) NIL (|has| (-819 |#1|) (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| (-819 |#1|) (-320)) ELT) (($ $) NIL (|has| (-819 |#1|) (-320)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT) (($ $ (-819 |#1|)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ (-819 |#1|)) NIL T ELT) (($ (-819 |#1|) $) NIL T ELT))) -(((-301 |#1| |#2|) (-13 (-280 (-819 |#1|)) (-10 -7 (-15 -1680 ((-1181 (-585 (-2 (|:| -3405 (-819 |#1|)) (|:| -2402 (-1035))))))) (-15 -1679 ((-632 (-819 |#1|)))) (-15 -1678 ((-696))))) (-832) (-832)) (T -301)) -((-1680 (*1 *2) (-12 (-5 *2 (-1181 (-585 (-2 (|:| -3405 (-819 *3)) (|:| -2402 (-1035)))))) (-5 *1 (-301 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) (-1679 (*1 *2) (-12 (-5 *2 (-632 (-819 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) (-1678 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-301 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832))))) -((-2571 (((-85) $ $) 72 T ELT)) (-3191 (((-85) $) 87 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3933 (((-696)) NIL T ELT)) (-3333 ((|#1| $) 105 T ELT) (($ $ (-832)) 103 (|has| |#1| (-320)) ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) 168 (|has| |#1| (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1678 (((-696)) 102 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) 185 (|has| |#1| (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 126 T ELT)) (-3159 ((|#1| $) 104 T ELT)) (-1797 (($ (-1181 |#1|)) 70 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) 180 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) 169 (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) NIL (|has| |#1| (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) 112 (|has| |#1| (-320)) ELT)) (-2013 (((-85) $) 198 (|has| |#1| (-320)) ELT)) (-3135 ((|#1| $) 107 T ELT) (($ $ (-832)) 106 (|has| |#1| (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 |#1|) $) 212 T ELT) (((-1087 $) $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-832) $) 146 (|has| |#1| (-320)) ELT)) (-1628 (((-1087 |#1|) $) 86 (|has| |#1| (-320)) ELT)) (-1627 (((-1087 |#1|) $) 83 (|has| |#1| (-320)) ELT) (((-3 (-1087 |#1|) #1#) $ $) 95 (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1087 |#1|)) 82 (|has| |#1| (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 216 T ELT)) (-3449 (($) NIL (|has| |#1| (-320)) CONST)) (-2402 (($ (-832)) 148 (|has| |#1| (-320)) ELT)) (-3935 (((-85) $) 122 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1680 (((-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035)))))) 96 T ELT)) (-1679 (((-632 |#1|)) 100 T ELT)) (-2411 (($) 109 (|has| |#1| (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) 171 (|has| |#1| (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3934 (((-745 (-832))) NIL T ELT) (((-832)) 172 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3915 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3952 (((-745 (-832)) $) NIL T ELT) (((-832) $) 74 T ELT)) (-3188 (((-1087 |#1|)) 173 T ELT)) (-1675 (($) 145 (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3227 (((-1181 |#1|) $) 120 T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| |#1| (-320)) ELT)) (-3950 (((-774) $) 138 T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2705 (($ $) NIL (|has| |#1| (-320)) ELT) (((-634 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3129 (((-696)) 178 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) 195 T ELT) (((-1181 $) (-832)) 115 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2663 (($) 184 T CONST)) (-2669 (($) 159 T CONST)) (-3932 (($ $) 121 (|has| |#1| (-320)) ELT) (($ $ (-696)) 113 (|has| |#1| (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3059 (((-85) $ $) 206 T ELT)) (-3953 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3840 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3842 (($ $ $) 202 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 151 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT))) -(((-302 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1680 ((-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))))) (-15 -1679 ((-632 |#1|))) (-15 -1678 ((-696))))) (-299) (-3 (-1087 |#1|) (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))))) (T -302)) -((-1680 (*1 *2) (-12 (-5 *2 (-1181 (-585 (-2 (|:| -3405 *3) (|:| -2402 (-1035)))))) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1087 *3) *2)))) (-1679 (*1 *2) (-12 (-5 *2 (-632 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1087 *3) (-1181 (-585 (-2 (|:| -3405 *3) (|:| -2402 (-1035))))))))) (-1678 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1087 *3) (-1181 (-585 (-2 (|:| -3405 *3) (|:| -2402 (-1035)))))))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3933 (((-696)) NIL T ELT)) (-3333 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) NIL (|has| |#1| (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1678 (((-696)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| |#1| (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1797 (($ (-1181 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) NIL (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) NIL (|has| |#1| (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| |#1| (-320)) ELT)) (-2013 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3135 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 |#1|) $) NIL T ELT) (((-1087 $) $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-320)) ELT)) (-1628 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1087 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1087 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| |#1| (-320)) CONST)) (-2402 (($ (-832)) NIL (|has| |#1| (-320)) ELT)) (-3935 (((-85) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1680 (((-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035)))))) NIL T ELT)) (-1679 (((-632 |#1|)) NIL T ELT)) (-2411 (($) NIL (|has| |#1| (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| |#1| (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3934 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3915 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3952 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3188 (((-1087 |#1|)) NIL T ELT)) (-1675 (($) NIL (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3227 (((-1181 |#1|) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| |#1| (-320)) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2705 (($ $) NIL (|has| |#1| (-320)) ELT) (((-634 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT) (((-1181 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3932 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-696)) NIL (|has| |#1| (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-303 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1680 ((-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))))) (-15 -1679 ((-632 |#1|))) (-15 -1678 ((-696))))) (-299) (-832)) (T -303)) -((-1680 (*1 *2) (-12 (-5 *2 (-1181 (-585 (-2 (|:| -3405 *3) (|:| -2402 (-1035)))))) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832)))) (-1679 (*1 *2) (-12 (-5 *2 (-632 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832)))) (-1678 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3933 (((-696)) NIL T ELT)) (-3333 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) 130 (|has| |#1| (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) 156 (|has| |#1| (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 104 T ELT)) (-3159 ((|#1| $) 101 T ELT)) (-1797 (($ (-1181 |#1|)) 96 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) 93 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) 52 (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) NIL (|has| |#1| (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) 131 (|has| |#1| (-320)) ELT)) (-2013 (((-85) $) 85 (|has| |#1| (-320)) ELT)) (-3135 ((|#1| $) 48 T ELT) (($ $ (-832)) 53 (|has| |#1| (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 |#1|) $) 76 T ELT) (((-1087 $) $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-832) $) 108 (|has| |#1| (-320)) ELT)) (-1628 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1087 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1087 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| |#1| (-320)) CONST)) (-2402 (($ (-832)) 106 (|has| |#1| (-320)) ELT)) (-3935 (((-85) $) 158 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($) 45 (|has| |#1| (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) 125 (|has| |#1| (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3934 (((-745 (-832))) NIL T ELT) (((-832)) 155 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3915 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3952 (((-745 (-832)) $) NIL T ELT) (((-832) $) 68 T ELT)) (-3188 (((-1087 |#1|)) 99 T ELT)) (-1675 (($) 136 (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3227 (((-1181 |#1|) $) 64 T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| |#1| (-320)) ELT)) (-3950 (((-774) $) 154 T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2705 (($ $) NIL (|has| |#1| (-320)) ELT) (((-634 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3129 (((-696)) 160 T CONST)) (-1267 (((-85) $ $) 162 T ELT)) (-2014 (((-1181 $)) 120 T ELT) (((-1181 $) (-832)) 59 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2663 (($) 122 T CONST)) (-2669 (($) 40 T CONST)) (-3932 (($ $) 79 (|has| |#1| (-320)) ELT) (($ $ (-696)) NIL (|has| |#1| (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3059 (((-85) $ $) 118 T ELT)) (-3953 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3840 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3842 (($ $ $) 114 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 54 T ELT) (($ $ (-486)) 139 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT))) -(((-304 |#1| |#2|) (-280 |#1|) (-299) (-1087 |#1|)) (T -304)) -NIL -((-1696 (((-871 (-1087 |#1|)) (-1087 |#1|)) 49 T ELT)) (-2997 (((-1087 |#1|) (-832) (-832)) 159 T ELT) (((-1087 |#1|) (-832)) 155 T ELT)) (-1681 (((-85) (-1087 |#1|)) 110 T ELT)) (-1683 (((-832) (-832)) 85 T ELT)) (-1684 (((-832) (-832)) 94 T ELT)) (-1682 (((-832) (-832)) 83 T ELT)) (-2013 (((-85) (-1087 |#1|)) 114 T ELT)) (-1691 (((-3 (-1087 |#1|) #1="failed") (-1087 |#1|)) 139 T ELT)) (-1694 (((-3 (-1087 |#1|) #1#) (-1087 |#1|)) 144 T ELT)) (-1693 (((-3 (-1087 |#1|) #1#) (-1087 |#1|)) 143 T ELT)) (-1692 (((-3 (-1087 |#1|) #1#) (-1087 |#1|)) 142 T ELT)) (-1690 (((-3 (-1087 |#1|) #1#) (-1087 |#1|)) 134 T ELT)) (-1695 (((-1087 |#1|) (-1087 |#1|)) 71 T ELT)) (-1686 (((-1087 |#1|) (-832)) 149 T ELT)) (-1689 (((-1087 |#1|) (-832)) 152 T ELT)) (-1688 (((-1087 |#1|) (-832)) 151 T ELT)) (-1687 (((-1087 |#1|) (-832)) 150 T ELT)) (-1685 (((-1087 |#1|) (-832)) 147 T ELT))) -(((-305 |#1|) (-10 -7 (-15 -1681 ((-85) (-1087 |#1|))) (-15 -2013 ((-85) (-1087 |#1|))) (-15 -1682 ((-832) (-832))) (-15 -1683 ((-832) (-832))) (-15 -1684 ((-832) (-832))) (-15 -1685 ((-1087 |#1|) (-832))) (-15 -1686 ((-1087 |#1|) (-832))) (-15 -1687 ((-1087 |#1|) (-832))) (-15 -1688 ((-1087 |#1|) (-832))) (-15 -1689 ((-1087 |#1|) (-832))) (-15 -1690 ((-3 (-1087 |#1|) #1="failed") (-1087 |#1|))) (-15 -1691 ((-3 (-1087 |#1|) #1#) (-1087 |#1|))) (-15 -1692 ((-3 (-1087 |#1|) #1#) (-1087 |#1|))) (-15 -1693 ((-3 (-1087 |#1|) #1#) (-1087 |#1|))) (-15 -1694 ((-3 (-1087 |#1|) #1#) (-1087 |#1|))) (-15 -2997 ((-1087 |#1|) (-832))) (-15 -2997 ((-1087 |#1|) (-832) (-832))) (-15 -1695 ((-1087 |#1|) (-1087 |#1|))) (-15 -1696 ((-871 (-1087 |#1|)) (-1087 |#1|)))) (-299)) (T -305)) -((-1696 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-871 (-1087 *4))) (-5 *1 (-305 *4)) (-5 *3 (-1087 *4)))) (-1695 (*1 *2 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-2997 (*1 *2 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-2997 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1694 (*1 *2 *2) (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1693 (*1 *2 *2) (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1692 (*1 *2 *2) (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1691 (*1 *2 *2) (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1690 (*1 *2 *2) (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1684 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))) -((-1697 ((|#1| (-1087 |#2|)) 60 T ELT))) -(((-306 |#1| |#2|) (-10 -7 (-15 -1697 (|#1| (-1087 |#2|)))) (-13 (-345) (-10 -7 (-15 -3950 (|#1| |#2|)) (-15 -2012 ((-832) |#1|)) (-15 -2014 ((-1181 |#1|) (-832))) (-15 -3932 (|#1| |#1|)))) (-299)) (T -306)) -((-1697 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) (-4 *2 (-13 (-345) (-10 -7 (-15 -3950 (*2 *4)) (-15 -2012 ((-832) *2)) (-15 -2014 ((-1181 *2) (-832))) (-15 -3932 (*2 *2))))) (-5 *1 (-306 *2 *4))))) -((-2707 (((-3 (-585 |#3|) "failed") (-585 |#3|) |#3|) 40 T ELT))) -(((-307 |#1| |#2| |#3|) (-10 -7 (-15 -2707 ((-3 (-585 |#3|) "failed") (-585 |#3|) |#3|))) (-299) (-1157 |#1|) (-1157 |#2|)) (T -307)) -((-2707 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-299)) (-5 *1 (-307 *4 *5 *3))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3933 (((-696)) NIL T ELT)) (-3333 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) NIL (|has| |#1| (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| |#1| (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1797 (($ (-1181 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) NIL (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) NIL (|has| |#1| (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| |#1| (-320)) ELT)) (-2013 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3135 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 |#1|) $) NIL T ELT) (((-1087 $) $ (-832)) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-320)) ELT)) (-1628 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1087 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1087 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1087 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| |#1| (-320)) CONST)) (-2402 (($ (-832)) NIL (|has| |#1| (-320)) ELT)) (-3935 (((-85) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($) NIL (|has| |#1| (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| |#1| (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3934 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3915 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3952 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3188 (((-1087 |#1|)) NIL T ELT)) (-1675 (($) NIL (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3227 (((-1181 |#1|) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| |#1| (-320)) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2705 (($ $) NIL (|has| |#1| (-320)) ELT) (((-634 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT) (((-1181 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3932 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-696)) NIL (|has| |#1| (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-308 |#1| |#2|) (-280 |#1|) (-299) (-832)) (T -308)) -NIL -((-2251 (((-85) (-585 (-859 |#1|))) 41 T ELT)) (-2253 (((-585 (-859 |#1|)) (-585 (-859 |#1|))) 53 T ELT)) (-2252 (((-3 (-585 (-859 |#1|)) "failed") (-585 (-859 |#1|))) 48 T ELT))) -(((-309 |#1| |#2|) (-10 -7 (-15 -2251 ((-85) (-585 (-859 |#1|)))) (-15 -2252 ((-3 (-585 (-859 |#1|)) "failed") (-585 (-859 |#1|)))) (-15 -2253 ((-585 (-859 |#1|)) (-585 (-859 |#1|))))) (-393) (-585 (-1092))) (T -309)) -((-2253 (*1 *2 *2) (-12 (-5 *2 (-585 (-859 *3))) (-4 *3 (-393)) (-5 *1 (-309 *3 *4)) (-14 *4 (-585 (-1092))))) (-2252 (*1 *2 *2) (|partial| -12 (-5 *2 (-585 (-859 *3))) (-4 *3 (-393)) (-5 *1 (-309 *3 *4)) (-14 *4 (-585 (-1092))))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-393)) (-5 *2 (-85)) (-5 *1 (-309 *4 *5)) (-14 *5 (-585 (-1092)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2412 (((-85) $) 17 T ELT)) (-2301 ((|#1| $ (-486)) NIL T ELT)) (-2302 (((-486) $ (-486)) NIL T ELT)) (-2292 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2293 (($ (-1 (-486) (-486)) $) 26 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 28 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1784 (((-585 (-2 (|:| |gen| |#1|) (|:| -3947 (-486)))) $) 30 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-3950 (((-774) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2669 (($) 7 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT) (($ |#1| (-486)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) -(((-310 |#1|) (-13 (-414) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-486))) (-15 -3139 ((-696) $)) (-15 -2302 ((-486) $ (-486))) (-15 -2301 (|#1| $ (-486))) (-15 -2293 ($ (-1 (-486) (-486)) $)) (-15 -2292 ($ (-1 |#1| |#1|) $)) (-15 -1784 ((-585 (-2 (|:| |gen| |#1|) (|:| -3947 (-486)))) $)))) (-1015)) (T -310)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1015)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1015)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-310 *2)) (-4 *2 (-1015)))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-310 *3)) (-4 *3 (-1015)))) (-2302 (*1 *2 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-310 *3)) (-4 *3 (-1015)))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *1 (-310 *2)) (-4 *2 (-1015)))) (-2293 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-486) (-486))) (-5 *1 (-310 *3)) (-4 *3 (-1015)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1015)) (-5 *1 (-310 *3)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3947 (-486))))) (-5 *1 (-310 *3)) (-4 *3 (-1015))))) -((-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 13 T ELT)) (-2065 (($ $) 14 T ELT)) (-3974 (((-348 $) $) 31 T ELT)) (-3726 (((-85) $) 27 T ELT)) (-2487 (($ $) 19 T ELT)) (-3147 (($ $ $) 22 T ELT) (($ (-585 $)) NIL T ELT)) (-3735 (((-348 $) $) 32 T ELT)) (-3469 (((-3 $ "failed") $ $) 21 T ELT)) (-1608 (((-696) $) 25 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 36 T ELT)) (-2064 (((-85) $ $) 16 T ELT)) (-3953 (($ $ $) 34 T ELT))) -(((-311 |#1|) (-10 -7 (-15 -3953 (|#1| |#1| |#1|)) (-15 -2487 (|#1| |#1|)) (-15 -3726 ((-85) |#1|)) (-15 -3974 ((-348 |#1|) |#1|)) (-15 -3735 ((-348 |#1|) |#1|)) (-15 -2882 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-15 -1608 ((-696) |#1|)) (-15 -3147 (|#1| (-585 |#1|))) (-15 -3147 (|#1| |#1| |#1|)) (-15 -2064 ((-85) |#1| |#1|)) (-15 -2065 (|#1| |#1|)) (-15 -2066 ((-2 (|:| -1777 |#1|) (|:| -3985 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3469 ((-3 |#1| "failed") |#1| |#1|))) (-312)) (T -311)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3726 (((-85) $) 89 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ $) 83 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT))) -(((-312) (-113)) (T -312)) -((-3953 (*1 *1 *1 *1) (-4 *1 (-312)))) -(-13 (-258) (-1136) (-201) (-10 -8 (-15 -3953 ($ $ $)) (-6 -3996) (-6 -3990))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 $) . T) ((-656 (-350 (-486))) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-965 (-350 (-486))) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-1698 ((|#1| $ |#1|) 35 T ELT)) (-1702 (($ $ (-1075)) 23 T ELT)) (-3622 (((-3 |#1| "failed") $) 34 T ELT)) (-1699 ((|#1| $) 32 T ELT)) (-1703 (($ (-338)) 22 T ELT) (($ (-338) (-1075)) 21 T ELT)) (-3545 (((-338) $) 25 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1700 (((-1075) $) 26 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 20 T ELT)) (-1701 (($ $) 24 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 19 T ELT))) -(((-313 |#1|) (-13 (-314 (-338) |#1|) (-10 -8 (-15 -3622 ((-3 |#1| "failed") $)))) (-1015)) (T -313)) -((-3622 (*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1015))))) -((-2571 (((-85) $ $) 7 T ELT)) (-1698 ((|#2| $ |#2|) 17 T ELT)) (-1702 (($ $ (-1075)) 22 T ELT)) (-1699 ((|#2| $) 18 T ELT)) (-1703 (($ |#1|) 24 T ELT) (($ |#1| (-1075)) 23 T ELT)) (-3545 ((|#1| $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1700 (((-1075) $) 19 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1701 (($ $) 21 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) -(((-314 |#1| |#2|) (-113) (-1015) (-1015)) (T -314)) -((-1703 (*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1015)) (-4 *4 (-1015)))) (-1702 (*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-1701 (*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-3545 (*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1015)) (-4 *2 (-1015)))) (-1700 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-1075)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015)))) (-1698 (*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015))))) -(-13 (-1015) (-10 -8 (-15 -1703 ($ |t#1|)) (-15 -1703 ($ |t#1| (-1075))) (-15 -1702 ($ $ (-1075))) (-15 -1701 ($ $)) (-15 -3545 (|t#1| $)) (-15 -1700 ((-1075) $)) (-15 -1699 (|t#2| $)) (-15 -1698 (|t#2| $ |t#2|)))) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-3226 (((-1181 (-632 |#2|)) (-1181 $)) 67 T ELT)) (-1793 (((-632 |#2|) (-1181 $)) 139 T ELT)) (-1728 ((|#2| $) 36 T ELT)) (-1791 (((-632 |#2|) $ (-1181 $)) 142 T ELT)) (-2406 (((-3 $ #1="failed") $) 89 T ELT)) (-1726 ((|#2| $) 39 T ELT)) (-1706 (((-1087 |#2|) $) 98 T ELT)) (-1795 ((|#2| (-1181 $)) 122 T ELT)) (-1724 (((-1087 |#2|) $) 32 T ELT)) (-1718 (((-85)) 116 T ELT)) (-1797 (($ (-1181 |#2|) (-1181 $)) 132 T ELT)) (-3470 (((-3 $ #1#) $) 93 T ELT)) (-1711 (((-85)) 111 T ELT)) (-1709 (((-85)) 106 T ELT)) (-1713 (((-85)) 58 T ELT)) (-1794 (((-632 |#2|) (-1181 $)) 137 T ELT)) (-1729 ((|#2| $) 35 T ELT)) (-1792 (((-632 |#2|) $ (-1181 $)) 141 T ELT)) (-2407 (((-3 $ #1#) $) 87 T ELT)) (-1727 ((|#2| $) 38 T ELT)) (-1707 (((-1087 |#2|) $) 97 T ELT)) (-1796 ((|#2| (-1181 $)) 120 T ELT)) (-1725 (((-1087 |#2|) $) 30 T ELT)) (-1719 (((-85)) 115 T ELT)) (-1710 (((-85)) 108 T ELT)) (-1712 (((-85)) 56 T ELT)) (-1714 (((-85)) 103 T ELT)) (-1717 (((-85)) 117 T ELT)) (-3227 (((-1181 |#2|) $ (-1181 $)) NIL T ELT) (((-632 |#2|) (-1181 $) (-1181 $)) 128 T ELT)) (-1723 (((-85)) 113 T ELT)) (-1708 (((-585 (-1181 |#2|))) 102 T ELT)) (-1721 (((-85)) 114 T ELT)) (-1722 (((-85)) 112 T ELT)) (-1720 (((-85)) 51 T ELT)) (-1716 (((-85)) 118 T ELT))) -(((-315 |#1| |#2|) (-10 -7 (-15 -1706 ((-1087 |#2|) |#1|)) (-15 -1707 ((-1087 |#2|) |#1|)) (-15 -1708 ((-585 (-1181 |#2|)))) (-15 -2406 ((-3 |#1| #1="failed") |#1|)) (-15 -2407 ((-3 |#1| #1#) |#1|)) (-15 -3470 ((-3 |#1| #1#) |#1|)) (-15 -1709 ((-85))) (-15 -1710 ((-85))) (-15 -1711 ((-85))) (-15 -1712 ((-85))) (-15 -1713 ((-85))) (-15 -1714 ((-85))) (-15 -1716 ((-85))) (-15 -1717 ((-85))) (-15 -1718 ((-85))) (-15 -1719 ((-85))) (-15 -1720 ((-85))) (-15 -1721 ((-85))) (-15 -1722 ((-85))) (-15 -1723 ((-85))) (-15 -1724 ((-1087 |#2|) |#1|)) (-15 -1725 ((-1087 |#2|) |#1|)) (-15 -1793 ((-632 |#2|) (-1181 |#1|))) (-15 -1794 ((-632 |#2|) (-1181 |#1|))) (-15 -1795 (|#2| (-1181 |#1|))) (-15 -1796 (|#2| (-1181 |#1|))) (-15 -1797 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -3227 ((-632 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3227 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -1726 (|#2| |#1|)) (-15 -1727 (|#2| |#1|)) (-15 -1728 (|#2| |#1|)) (-15 -1729 (|#2| |#1|)) (-15 -1791 ((-632 |#2|) |#1| (-1181 |#1|))) (-15 -1792 ((-632 |#2|) |#1| (-1181 |#1|))) (-15 -3226 ((-1181 (-632 |#2|)) (-1181 |#1|)))) (-316 |#2|) (-146)) (T -315)) -((-1723 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1722 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1721 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1720 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1719 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1718 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1717 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1716 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1714 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1713 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1712 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1711 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1710 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1709 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1708 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-585 (-1181 *4))) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1777 (((-3 $ "failed")) 48 (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3226 (((-1181 (-632 |#1|)) (-1181 $)) 89 T ELT)) (-1730 (((-1181 $)) 92 T ELT)) (-3727 (($) 23 T CONST)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) "failed")) 51 (|has| |#1| (-497)) ELT)) (-1704 (((-3 $ "failed")) 49 (|has| |#1| (-497)) ELT)) (-1793 (((-632 |#1|) (-1181 $)) 76 T ELT)) (-1728 ((|#1| $) 85 T ELT)) (-1791 (((-632 |#1|) $ (-1181 $)) 87 T ELT)) (-2406 (((-3 $ "failed") $) 56 (|has| |#1| (-497)) ELT)) (-2409 (($ $ (-832)) 37 T ELT)) (-1726 ((|#1| $) 83 T ELT)) (-1706 (((-1087 |#1|) $) 53 (|has| |#1| (-497)) ELT)) (-1795 ((|#1| (-1181 $)) 78 T ELT)) (-1724 (((-1087 |#1|) $) 74 T ELT)) (-1718 (((-85)) 68 T ELT)) (-1797 (($ (-1181 |#1|) (-1181 $)) 80 T ELT)) (-3470 (((-3 $ "failed") $) 58 (|has| |#1| (-497)) ELT)) (-3111 (((-832)) 91 T ELT)) (-1715 (((-85)) 65 T ELT)) (-2436 (($ $ (-832)) 44 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-1711 (((-85)) 61 T ELT)) (-1709 (((-85)) 59 T ELT)) (-1713 (((-85)) 63 T ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) "failed")) 52 (|has| |#1| (-497)) ELT)) (-1705 (((-3 $ "failed")) 50 (|has| |#1| (-497)) ELT)) (-1794 (((-632 |#1|) (-1181 $)) 77 T ELT)) (-1729 ((|#1| $) 86 T ELT)) (-1792 (((-632 |#1|) $ (-1181 $)) 88 T ELT)) (-2407 (((-3 $ "failed") $) 57 (|has| |#1| (-497)) ELT)) (-2408 (($ $ (-832)) 38 T ELT)) (-1727 ((|#1| $) 84 T ELT)) (-1707 (((-1087 |#1|) $) 54 (|has| |#1| (-497)) ELT)) (-1796 ((|#1| (-1181 $)) 79 T ELT)) (-1725 (((-1087 |#1|) $) 75 T ELT)) (-1719 (((-85)) 69 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1710 (((-85)) 60 T ELT)) (-1712 (((-85)) 62 T ELT)) (-1714 (((-85)) 64 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1717 (((-85)) 67 T ELT)) (-3227 (((-1181 |#1|) $ (-1181 $)) 82 T ELT) (((-632 |#1|) (-1181 $) (-1181 $)) 81 T ELT)) (-1897 (((-585 (-859 |#1|)) (-1181 $)) 90 T ELT)) (-2438 (($ $ $) 34 T ELT)) (-1723 (((-85)) 73 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-1708 (((-585 (-1181 |#1|))) 55 (|has| |#1| (-497)) ELT)) (-2439 (($ $ $ $) 35 T ELT)) (-1721 (((-85)) 71 T ELT)) (-2437 (($ $ $) 33 T ELT)) (-1722 (((-85)) 72 T ELT)) (-1720 (((-85)) 70 T ELT)) (-1716 (((-85)) 66 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 39 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) -(((-316 |#1|) (-113) (-146)) (T -316)) -((-1730 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1181 *1)) (-4 *1 (-316 *3)))) (-3111 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-832)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-585 (-859 *4))))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1181 (-632 *4))))) (-1792 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) (-1791 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1728 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-3227 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1181 *4)))) (-3227 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1795 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1794 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1087 *3)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1087 *3)))) (-1723 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1722 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1721 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1720 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1719 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1718 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1717 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1716 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1715 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1714 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1713 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1712 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1711 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1710 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1709 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-3470 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-497)))) (-2407 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-497)))) (-2406 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-497)))) (-1708 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-497)) (-5 *2 (-585 (-1181 *3))))) (-1707 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-497)) (-5 *2 (-1087 *3)))) (-1706 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-497)) (-5 *2 (-1087 *3)))) (-1912 (*1 *2) (|partial| -12 (-4 *3 (-497)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2014 (-585 *1)))) (-4 *1 (-316 *3)))) (-1911 (*1 *2) (|partial| -12 (-4 *3 (-497)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2014 (-585 *1)))) (-4 *1 (-316 *3)))) (-1705 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-497)) (-4 *2 (-146)))) (-1704 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-497)) (-4 *2 (-146)))) (-1777 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-497)) (-4 *2 (-146))))) -(-13 (-685 |t#1|) (-10 -8 (-15 -1730 ((-1181 $))) (-15 -3111 ((-832))) (-15 -1897 ((-585 (-859 |t#1|)) (-1181 $))) (-15 -3226 ((-1181 (-632 |t#1|)) (-1181 $))) (-15 -1792 ((-632 |t#1|) $ (-1181 $))) (-15 -1791 ((-632 |t#1|) $ (-1181 $))) (-15 -1729 (|t#1| $)) (-15 -1728 (|t#1| $)) (-15 -1727 (|t#1| $)) (-15 -1726 (|t#1| $)) (-15 -3227 ((-1181 |t#1|) $ (-1181 $))) (-15 -3227 ((-632 |t#1|) (-1181 $) (-1181 $))) (-15 -1797 ($ (-1181 |t#1|) (-1181 $))) (-15 -1796 (|t#1| (-1181 $))) (-15 -1795 (|t#1| (-1181 $))) (-15 -1794 ((-632 |t#1|) (-1181 $))) (-15 -1793 ((-632 |t#1|) (-1181 $))) (-15 -1725 ((-1087 |t#1|) $)) (-15 -1724 ((-1087 |t#1|) $)) (-15 -1723 ((-85))) (-15 -1722 ((-85))) (-15 -1721 ((-85))) (-15 -1720 ((-85))) (-15 -1719 ((-85))) (-15 -1718 ((-85))) (-15 -1717 ((-85))) (-15 -1716 ((-85))) (-15 -1715 ((-85))) (-15 -1714 ((-85))) (-15 -1713 ((-85))) (-15 -1712 ((-85))) (-15 -1711 ((-85))) (-15 -1710 ((-85))) (-15 -1709 ((-85))) (IF (|has| |t#1| (-497)) (PROGN (-15 -3470 ((-3 $ "failed") $)) (-15 -2407 ((-3 $ "failed") $)) (-15 -2406 ((-3 $ "failed") $)) (-15 -1708 ((-585 (-1181 |t#1|)))) (-15 -1707 ((-1087 |t#1|) $)) (-15 -1706 ((-1087 |t#1|) $)) (-15 -1912 ((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) "failed"))) (-15 -1911 ((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) "failed"))) (-15 -1705 ((-3 $ "failed"))) (-15 -1704 ((-3 $ "failed"))) (-15 -1777 ((-3 $ "failed"))) (-6 -3995)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-659) . T) ((-685 |#1|) . T) ((-687) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) -((-3845 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 38 T ELT)) (-3248 (((-85) |#2| $) 35 T ELT)) (-1731 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 30 T ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-3406 (((-85) $) 13 T ELT)) (-1732 (((-696) (-1 (-85) |#2|) $) 27 T ELT) (((-696) |#2| $) 33 T ELT)) (-3950 (((-774) $) 46 T ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3059 (((-85) $ $) 40 T ELT)) (-3961 (((-696) $) 17 T ELT))) -(((-317 |#1| |#2|) (-10 -7 (-15 -3059 ((-85) |#1| |#1|)) (-15 -3950 ((-774) |#1|)) (-15 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3248 ((-85) |#2| |#1|)) (-15 -1732 ((-696) |#2| |#1|)) (-15 -1731 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1732 ((-696) (-1 (-85) |#2|) |#1|)) (-15 -1733 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1734 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3961 ((-696) |#1|)) (-15 -3406 ((-85) |#1|))) (-318 |#2|) (-1131)) (T -317)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3727 (($) 6 T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) 39 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 38 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| (-72)) ELT)) (-2611 (((-585 |#1|) $) 40 T ELT)) (-3248 (((-85) |#1| $) 35 (|has| |#1| (-72)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 42 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) 41 T ELT) (((-696) |#1| $) 36 (|has| |#1| (-72)) ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 43 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) 44 T ELT))) -(((-318 |#1|) (-113) (-1131)) (T -318)) -((-3961 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1131)) (-5 *2 (-696)))) (-1734 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1131)) (-5 *2 (-85)))) (-1733 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1131)) (-5 *2 (-85)))) (-1732 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1131)) (-5 *2 (-696)))) (-2611 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1131)) (-5 *2 (-585 *3)))) (-3845 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1131)))) (-3845 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1131)))) (-1731 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-318 *2)) (-4 *2 (-1131)))) (-1732 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-696)))) (-3248 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-85)))) (-3845 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-72)) (-4 *1 (-318 *2)) (-4 *2 (-1131))))) -(-13 (-430 |t#1|) (-10 -8 (-15 -3961 ((-696) $)) (-15 -1734 ((-85) (-1 (-85) |t#1|) $)) (-15 -1733 ((-85) (-1 (-85) |t#1|) $)) (-15 -1732 ((-696) (-1 (-85) |t#1|) $)) (-15 -2611 ((-585 |t#1|) $)) (-15 -3845 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3845 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1731 ((-3 |t#1| "failed") (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -1732 ((-696) |t#1| $)) (-15 -3248 ((-85) |t#1| $)) (-15 -3845 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1131) . T)) -((-2997 (($) 15 T ELT))) -(((-319 |#1|) (-10 -7 (-15 -2997 (|#1|))) (-320)) (T -319)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3139 (((-696)) 20 T ELT)) (-2997 (($) 17 T ELT)) (-2012 (((-832) $) 18 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2402 (($ (-832)) 19 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) -(((-320) (-113)) (T -320)) -((-3139 (*1 *2) (-12 (-4 *1 (-320)) (-5 *2 (-696)))) (-2402 (*1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-320)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-320)) (-5 *2 (-832)))) (-2997 (*1 *1) (-4 *1 (-320)))) -(-13 (-1015) (-10 -8 (-15 -3139 ((-696))) (-15 -2402 ($ (-832))) (-15 -2012 ((-832) $)) (-15 -2997 ($)))) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-1787 (((-632 |#2|) (-1181 $)) 45 T ELT)) (-1797 (($ (-1181 |#2|) (-1181 $)) 39 T ELT)) (-1786 (((-632 |#2|) $ (-1181 $)) 47 T ELT)) (-3760 ((|#2| (-1181 $)) 13 T ELT)) (-3227 (((-1181 |#2|) $ (-1181 $)) NIL T ELT) (((-632 |#2|) (-1181 $) (-1181 $)) 27 T ELT))) -(((-321 |#1| |#2| |#3|) (-10 -7 (-15 -1787 ((-632 |#2|) (-1181 |#1|))) (-15 -3760 (|#2| (-1181 |#1|))) (-15 -1797 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -3227 ((-632 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3227 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -1786 ((-632 |#2|) |#1| (-1181 |#1|)))) (-322 |#2| |#3|) (-146) (-1157 |#2|)) (T -321)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1787 (((-632 |#1|) (-1181 $)) 61 T ELT)) (-3333 ((|#1| $) 67 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1797 (($ (-1181 |#1|) (-1181 $)) 63 T ELT)) (-1786 (((-632 |#1|) $ (-1181 $)) 68 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3111 (((-832)) 69 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3135 ((|#1| $) 66 T ELT)) (-2016 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3760 ((|#1| (-1181 $)) 62 T ELT)) (-3227 (((-1181 |#1|) $ (-1181 $)) 65 T ELT) (((-632 |#1|) (-1181 $) (-1181 $)) 64 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2705 (((-634 $) $) 58 (|has| |#1| (-118)) ELT)) (-2452 ((|#2| $) 60 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) -(((-322 |#1| |#2|) (-113) (-146) (-1157 |t#1|)) (T -322)) -((-3111 (*1 *2) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) (-5 *2 (-832)))) (-1786 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-146)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-146)))) (-3227 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *4)))) (-3227 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-146)) (-4 *1 (-322 *4 *5)) (-4 *5 (-1157 *4)))) (-3760 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *2 *4)) (-4 *4 (-1157 *2)) (-4 *2 (-146)))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)))) (-2452 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1157 *3)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1157 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3111 ((-832))) (-15 -1786 ((-632 |t#1|) $ (-1181 $))) (-15 -3333 (|t#1| $)) (-15 -3135 (|t#1| $)) (-15 -3227 ((-1181 |t#1|) $ (-1181 $))) (-15 -3227 ((-632 |t#1|) (-1181 $) (-1181 $))) (-15 -1797 ($ (-1181 |t#1|) (-1181 $))) (-15 -3760 (|t#1| (-1181 $))) (-15 -1787 ((-632 |t#1|) (-1181 $))) (-15 -2452 (|t#2| $)) (IF (|has| |t#1| (-312)) (-15 -2016 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-665) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-1737 (((-85) (-1 (-85) |#2| |#2|) $) NIL T ELT) (((-85) $) 18 T ELT)) (-1735 (($ (-1 (-85) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2912 (($ (-1 (-85) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2300 (($ $) 25 T ELT)) (-3422 (((-486) (-1 (-85) |#2|) $) NIL T ELT) (((-486) |#2| $) 11 T ELT) (((-486) |#2| $ (-486)) NIL T ELT)) (-3521 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) -(((-323 |#1| |#2|) (-10 -7 (-15 -1735 (|#1| |#1|)) (-15 -1735 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1737 ((-85) |#1|)) (-15 -2912 (|#1| |#1|)) (-15 -3521 (|#1| |#1| |#1|)) (-15 -3422 ((-486) |#2| |#1| (-486))) (-15 -3422 ((-486) |#2| |#1|)) (-15 -3422 ((-486) (-1 (-85) |#2|) |#1|)) (-15 -1737 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -2912 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -3521 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|))) (-324 |#2|) (-1131)) (T -323)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) 35 (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) 96 T ELT) (((-85) $) 90 (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) 87 (|has| $ (-1037 |#1|)) ELT) (($ $) 86 (-12 (|has| |#1| (-758)) (|has| $ (-1037 |#1|))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) 97 T ELT) (($ $) 91 (|has| |#1| (-758)) ELT)) (-3791 ((|#1| $ (-486) |#1|) 47 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2299 (($ $) 88 (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) 98 T ELT)) (-1355 (($ $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3409 (($ |#1| $) 70 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 68 (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 105 T ELT)) (-1577 ((|#1| $ (-486) |#1|) 48 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 46 T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) 95 T ELT) (((-486) |#1| $) 94 (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) 93 (|has| |#1| (-72)) ELT)) (-3617 (($ (-696) |#1|) 65 T ELT)) (-2202 (((-486) $) 38 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) 80 (|has| |#1| (-758)) ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) 104 T ELT)) (-3248 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) 39 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) 81 (|has| |#1| (-758)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) 57 T ELT) (($ $ $ (-486)) 56 T ELT)) (-2205 (((-585 (-486)) $) 41 T ELT)) (-2206 (((-85) (-486) $) 42 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 37 (|has| (-486) (-758)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 107 T ELT)) (-2201 (($ $ |#1|) 36 (|has| $ (-1037 |#1|)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) 43 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-486) |#1|) 45 T ELT) ((|#1| $ (-486)) 44 T ELT) (($ $ (-1148 (-486))) 66 T ELT)) (-2307 (($ $ (-486)) 59 T ELT) (($ $ (-1148 (-486))) 58 T ELT)) (-1732 (((-696) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 103 T ELT)) (-1736 (($ $ $ (-486)) 89 (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 72 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 67 T ELT)) (-3805 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 101 T ELT)) (-2569 (((-85) $ $) 82 (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) 84 (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) 83 (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 85 (|has| |#1| (-758)) ELT)) (-3961 (((-696) $) 100 T ELT))) -(((-324 |#1|) (-113) (-1131)) (T -324)) -((-3521 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1131)))) (-2300 (*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1131)))) (-2912 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1131)))) (-1737 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-324 *4)) (-4 *4 (-1131)) (-5 *2 (-85)))) (-3422 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-324 *4)) (-4 *4 (-1131)) (-5 *2 (-486)))) (-3422 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-486)))) (-3422 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-324 *3)) (-4 *3 (-1131)) (-4 *3 (-72)))) (-3521 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1131)) (-4 *2 (-758)))) (-2912 (*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1131)) (-4 *2 (-758)))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-1131)) (-4 *3 (-758)) (-5 *2 (-85)))) (-1736 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-1037 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1131)))) (-2299 (*1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1131)))) (-1735 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-1037 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1131)))) (-1735 (*1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1131)) (-4 *2 (-758))))) -(-13 (-595 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3521 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -2300 ($ $)) (-15 -2912 ($ (-1 (-85) |t#1| |t#1|) $)) (-15 -1737 ((-85) (-1 (-85) |t#1| |t#1|) $)) (-15 -3422 ((-486) (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3422 ((-486) |t#1| $)) (-15 -3422 ((-486) |t#1| $ (-486)))) |%noBranch|) (IF (|has| |t#1| (-758)) (PROGN (-6 (-758)) (-15 -3521 ($ $ $)) (-15 -2912 ($ $)) (-15 -1737 ((-85) $))) |%noBranch|) (IF (|has| $ (-1037 |t#1|)) (PROGN (-15 -1736 ($ $ $ (-486))) (-15 -2299 ($ $)) (-15 -1735 ($ (-1 (-85) |t#1| |t#1|) $)) (IF (|has| |t#1| (-758)) (-15 -1735 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 (-486) |#1|) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-540 (-486) |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-1015) OR (|has| |#1| (-1015)) (|has| |#1| (-758))) ((-1131) . T)) -((-3844 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3845 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3846 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) -(((-325 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3846 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3845 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3844 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1131) (-324 |#1|) (-1131) (-324 |#3|)) (T -325)) -((-3844 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-4 *2 (-324 *5)) (-5 *1 (-325 *6 *4 *5 *2)) (-4 *4 (-324 *6)))) (-3845 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-325 *5 *4 *2 *6)) (-4 *4 (-324 *5)) (-4 *6 (-324 *2)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-324 *6)) (-5 *1 (-325 *5 *4 *6 *2)) (-4 *4 (-324 *5))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3938 (((-585 |#1|) $) 43 T ELT)) (-3951 (($ $ (-696)) 44 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3943 (((-1206 |#1| |#2|) (-1206 |#1| |#2|) $) 47 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-3940 (($ $) 45 T ELT)) (-3944 (((-1206 |#1| |#2|) (-1206 |#1| |#2|) $) 48 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3771 (($ $ |#1| $) 42 T ELT) (($ $ (-585 |#1|) (-585 $)) 41 T ELT)) (-3952 (((-696) $) 49 T ELT)) (-3533 (($ $ $) 40 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ |#1|) 52 T ELT) (((-1197 |#1| |#2|) $) 51 T ELT) (((-1206 |#1| |#2|) $) 50 T ELT)) (-3958 ((|#2| (-1206 |#1| |#2|) $) 53 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-1738 (($ (-616 |#1|)) 46 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ |#2|) 39 (|has| |#2| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#2| $) 33 T ELT) (($ $ |#2|) 37 T ELT))) -(((-326 |#1| |#2|) (-113) (-758) (-146)) (T -326)) -((-3958 (*1 *2 *3 *1) (-12 (-5 *3 (-1206 *4 *2)) (-4 *1 (-326 *4 *2)) (-4 *4 (-758)) (-4 *2 (-146)))) (-3950 (*1 *1 *2) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-758)) (-4 *3 (-146)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *2 (-1197 *3 *4)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *2 (-1206 *3 *4)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *2 (-696)))) (-3944 (*1 *2 *2 *1) (-12 (-5 *2 (-1206 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-3943 (*1 *2 *2 *1) (-12 (-5 *2 (-1206 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-4 *1 (-326 *3 *4)) (-4 *4 (-146)))) (-3940 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-758)) (-4 *3 (-146)))) (-3951 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *2 (-585 *3)))) (-3771 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-758)) (-4 *3 (-146)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 *1)) (-4 *1 (-326 *4 *5)) (-4 *4 (-758)) (-4 *5 (-146))))) -(-13 (-576 |t#2|) (-10 -8 (-15 -3958 (|t#2| (-1206 |t#1| |t#2|) $)) (-15 -3950 ($ |t#1|)) (-15 -3950 ((-1197 |t#1| |t#2|) $)) (-15 -3950 ((-1206 |t#1| |t#2|) $)) (-15 -3952 ((-696) $)) (-15 -3944 ((-1206 |t#1| |t#2|) (-1206 |t#1| |t#2|) $)) (-15 -3943 ((-1206 |t#1| |t#2|) (-1206 |t#1| |t#2|) $)) (-15 -1738 ($ (-616 |t#1|))) (-15 -3940 ($ $)) (-15 -3951 ($ $ (-696))) (-15 -3938 ((-585 |t#1|) $)) (-15 -3771 ($ $ |t#1| $)) (-15 -3771 ($ $ (-585 |t#1|) (-585 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#2|) . T) ((-592 |#2|) . T) ((-576 |#2|) . T) ((-584 |#2|) . T) ((-656 |#2|) . T) ((-965 |#2|) . T) ((-970 |#2|) . T) ((-1015) . T) ((-1131) . T)) -((-1741 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 40 T ELT)) (-1739 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 13 T ELT)) (-1740 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 33 T ELT))) -(((-327 |#1| |#2|) (-10 -7 (-15 -1739 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1740 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1741 (|#2| (-1 (-85) |#1| |#1|) |#2|))) (-1131) (-13 (-324 |#1|) (-1037 |#1|))) (T -327)) -((-1741 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-1037 *4))))) (-1740 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-1037 *4))))) (-1739 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-1037 *4)))))) -((-2281 (((-632 |#2|) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 22 T ELT) (((-632 (-486)) (-632 $)) 14 T ELT))) -(((-328 |#1| |#2|) (-10 -7 (-15 -2281 ((-632 (-486)) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-632 |#2|) (-632 |#1|)))) (-329 |#2|) (-963)) (T -328)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2281 (((-632 |#1|) (-632 $)) 36 T ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 35 T ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 47 (|has| |#1| (-582 (-486))) ELT) (((-632 (-486)) (-632 $)) 46 (|has| |#1| (-582 (-486))) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2282 (((-632 |#1|) (-1181 $)) 38 T ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 37 T ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 45 (|has| |#1| (-582 (-486))) ELT) (((-632 (-486)) (-1181 $)) 44 (|has| |#1| (-582 (-486))) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT))) -(((-329 |#1|) (-113) (-963)) (T -329)) -NIL -(-13 (-582 |t#1|) (-10 -7 (IF (|has| |t#1| (-582 (-486))) (-6 (-582 (-486))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 (-486)) |has| |#1| (-582 (-486))) ((-592 |#1|) . T) ((-582 (-486)) |has| |#1| (-582 (-486))) ((-582 |#1|) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 16 T ELT)) (-3132 (((-486) $) 44 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3774 (($ $) 120 T ELT)) (-3495 (($ $) 81 T ELT)) (-3642 (($ $) 72 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-3040 (($ $) 28 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3493 (($ $) 79 T ELT)) (-3641 (($ $) 67 T ELT)) (-3626 (((-486) $) 60 T ELT)) (-2444 (($ $ (-486)) 55 T ELT)) (-3497 (($ $) NIL T ELT)) (-3640 (($ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3130 (($ $) 122 T ELT)) (-3160 (((-3 (-486) #1#) $) 217 T ELT) (((-3 (-350 (-486)) #1#) $) 213 T ELT)) (-3159 (((-486) $) 215 T ELT) (((-350 (-486)) $) 211 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-1750 (((-486) $ $) 110 T ELT)) (-3470 (((-3 $ #1#) $) 125 T ELT)) (-1749 (((-350 (-486)) $ (-696)) 218 T ELT) (((-350 (-486)) $ (-696) (-696)) 210 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-1773 (((-832)) 106 T ELT) (((-832) (-832)) 107 (|has| $ (-6 -3989)) ELT)) (-3189 (((-85) $) 38 T ELT)) (-3630 (($) 22 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL T ELT)) (-1742 (((-1187) (-696)) 177 T ELT)) (-1743 (((-1187)) 182 T ELT) (((-1187) (-696)) 183 T ELT)) (-1745 (((-1187)) 184 T ELT) (((-1187) (-696)) 185 T ELT)) (-1744 (((-1187)) 180 T ELT) (((-1187) (-696)) 181 T ELT)) (-3775 (((-486) $) 50 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 21 T ELT)) (-3014 (($ $ (-486)) NIL T ELT)) (-2446 (($ $) 32 T ELT)) (-3135 (($ $) NIL T ELT)) (-3190 (((-85) $) 18 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL (-12 (-2563 (|has| $ (-6 -3981))) (-2563 (|has| $ (-6 -3989)))) ELT)) (-2860 (($ $ $) NIL T ELT) (($) NIL (-12 (-2563 (|has| $ (-6 -3981))) (-2563 (|has| $ (-6 -3989)))) ELT)) (-1775 (((-486) $) 112 T ELT)) (-1748 (($) 90 T ELT) (($ $) 97 T ELT)) (-1747 (($) 96 T ELT) (($ $) 98 T ELT)) (-3946 (($ $) 84 T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 127 T ELT)) (-1772 (((-832) (-486)) 27 (|has| $ (-6 -3989)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) 41 T ELT)) (-3133 (($ $) 119 T ELT)) (-3257 (($ (-486) (-486)) 115 T ELT) (($ (-486) (-486) (-832)) 116 T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2403 (((-486) $) 113 T ELT)) (-1746 (($) 99 T ELT)) (-3947 (($ $) 78 T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2618 (((-832)) 108 T ELT) (((-832) (-832)) 109 (|has| $ (-6 -3989)) ELT)) (-3761 (($ $) 126 T ELT) (($ $ (-696)) NIL T ELT)) (-1771 (((-832) (-486)) 31 (|has| $ (-6 -3989)) ELT)) (-3498 (($ $) NIL T ELT)) (-3639 (($ $) NIL T ELT)) (-3496 (($ $) NIL T ELT)) (-3638 (($ $) NIL T ELT)) (-3494 (($ $) 80 T ELT)) (-3637 (($ $) 71 T ELT)) (-3975 (((-330) $) 202 T ELT) (((-179) $) 204 T ELT) (((-802 (-330)) $) NIL T ELT) (((-1075) $) 188 T ELT) (((-475) $) 200 T ELT) (($ (-179)) 209 T ELT)) (-3950 (((-774) $) 192 T ELT) (($ (-486)) 214 T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-486)) 214 T ELT) (($ (-350 (-486))) NIL T ELT) (((-179) $) 205 T ELT)) (-3129 (((-696)) NIL T CONST)) (-3134 (($ $) 121 T ELT)) (-1774 (((-832)) 42 T ELT) (((-832) (-832)) 62 (|has| $ (-6 -3989)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2697 (((-832)) 111 T ELT)) (-3501 (($ $) 87 T ELT)) (-3489 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 85 T ELT)) (-3487 (($ $) 20 T ELT)) (-3503 (($ $) NIL T ELT)) (-3491 (($ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL T ELT)) (-3492 (($ $) NIL T ELT)) (-3502 (($ $) NIL T ELT)) (-3490 (($ $) NIL T ELT)) (-3500 (($ $) 86 T ELT)) (-3488 (($ $) 33 T ELT)) (-3386 (($ $) 39 T ELT)) (-2663 (($) 17 T CONST)) (-2669 (($) 24 T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2569 (((-85) $ $) 189 T ELT)) (-2570 (((-85) $ $) 26 T ELT)) (-3059 (((-85) $ $) 37 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 43 T ELT)) (-3953 (($ $ $) 29 T ELT) (($ $ (-486)) 23 T ELT)) (-3840 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3842 (($ $ $) 54 T ELT)) (** (($ $ (-832)) 65 T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 91 T ELT) (($ $ (-350 (-486))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-832) $) 61 T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT))) -(((-330) (-13 (-347) (-190) (-555 (-1075)) (-554 (-179)) (-1117) (-555 (-475)) (-559 (-179)) (-10 -8 (-15 -3953 ($ $ (-486))) (-15 ** ($ $ $)) (-15 -2446 ($ $)) (-15 -1750 ((-486) $ $)) (-15 -2444 ($ $ (-486))) (-15 -1749 ((-350 (-486)) $ (-696))) (-15 -1749 ((-350 (-486)) $ (-696) (-696))) (-15 -1748 ($)) (-15 -1747 ($)) (-15 -1746 ($)) (-15 -3489 ($ $ $)) (-15 -1748 ($ $)) (-15 -1747 ($ $)) (-15 -1745 ((-1187))) (-15 -1745 ((-1187) (-696))) (-15 -1744 ((-1187))) (-15 -1744 ((-1187) (-696))) (-15 -1743 ((-1187))) (-15 -1743 ((-1187) (-696))) (-15 -1742 ((-1187) (-696))) (-6 -3989) (-6 -3981)))) (T -330)) -((** (*1 *1 *1 *1) (-5 *1 (-330))) (-3953 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-330)))) (-2446 (*1 *1 *1) (-5 *1 (-330))) (-1750 (*1 *2 *1 *1) (-12 (-5 *2 (-486)) (-5 *1 (-330)))) (-2444 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-330)))) (-1749 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-350 (-486))) (-5 *1 (-330)))) (-1749 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-350 (-486))) (-5 *1 (-330)))) (-1748 (*1 *1) (-5 *1 (-330))) (-1747 (*1 *1) (-5 *1 (-330))) (-1746 (*1 *1) (-5 *1 (-330))) (-3489 (*1 *1 *1 *1) (-5 *1 (-330))) (-1748 (*1 *1 *1) (-5 *1 (-330))) (-1747 (*1 *1 *1) (-5 *1 (-330))) (-1745 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-330)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-330)))) (-1744 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-330)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-330)))) (-1743 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-330)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-330)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-330))))) -((-1751 (((-585 (-249 (-859 (-142 |#1|)))) (-249 (-350 (-859 (-142 (-486))))) |#1|) 52 T ELT) (((-585 (-249 (-859 (-142 |#1|)))) (-350 (-859 (-142 (-486)))) |#1|) 51 T ELT) (((-585 (-585 (-249 (-859 (-142 |#1|))))) (-585 (-249 (-350 (-859 (-142 (-486)))))) |#1|) 48 T ELT) (((-585 (-585 (-249 (-859 (-142 |#1|))))) (-585 (-350 (-859 (-142 (-486))))) |#1|) 42 T ELT)) (-1752 (((-585 (-585 (-142 |#1|))) (-585 (-350 (-859 (-142 (-486))))) (-585 (-1092)) |#1|) 30 T ELT) (((-585 (-142 |#1|)) (-350 (-859 (-142 (-486)))) |#1|) 18 T ELT))) -(((-331 |#1|) (-10 -7 (-15 -1751 ((-585 (-585 (-249 (-859 (-142 |#1|))))) (-585 (-350 (-859 (-142 (-486))))) |#1|)) (-15 -1751 ((-585 (-585 (-249 (-859 (-142 |#1|))))) (-585 (-249 (-350 (-859 (-142 (-486)))))) |#1|)) (-15 -1751 ((-585 (-249 (-859 (-142 |#1|)))) (-350 (-859 (-142 (-486)))) |#1|)) (-15 -1751 ((-585 (-249 (-859 (-142 |#1|)))) (-249 (-350 (-859 (-142 (-486))))) |#1|)) (-15 -1752 ((-585 (-142 |#1|)) (-350 (-859 (-142 (-486)))) |#1|)) (-15 -1752 ((-585 (-585 (-142 |#1|))) (-585 (-350 (-859 (-142 (-486))))) (-585 (-1092)) |#1|))) (-13 (-312) (-757))) (T -331)) -((-1752 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-350 (-859 (-142 (-486)))))) (-5 *4 (-585 (-1092))) (-5 *2 (-585 (-585 (-142 *5)))) (-5 *1 (-331 *5)) (-4 *5 (-13 (-312) (-757))))) (-1752 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 (-142 (-486))))) (-5 *2 (-585 (-142 *4))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-757))))) (-1751 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-859 (-142 (-486)))))) (-5 *2 (-585 (-249 (-859 (-142 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-757))))) (-1751 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 (-142 (-486))))) (-5 *2 (-585 (-249 (-859 (-142 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-757))))) (-1751 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-249 (-350 (-859 (-142 (-486))))))) (-5 *2 (-585 (-585 (-249 (-859 (-142 *4)))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-757))))) (-1751 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-350 (-859 (-142 (-486)))))) (-5 *2 (-585 (-585 (-249 (-859 (-142 *4)))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-757)))))) -((-3576 (((-585 (-249 (-859 |#1|))) (-249 (-350 (-859 (-486)))) |#1|) 47 T ELT) (((-585 (-249 (-859 |#1|))) (-350 (-859 (-486))) |#1|) 46 T ELT) (((-585 (-585 (-249 (-859 |#1|)))) (-585 (-249 (-350 (-859 (-486))))) |#1|) 43 T ELT) (((-585 (-585 (-249 (-859 |#1|)))) (-585 (-350 (-859 (-486)))) |#1|) 37 T ELT)) (-1753 (((-585 |#1|) (-350 (-859 (-486))) |#1|) 20 T ELT) (((-585 (-585 |#1|)) (-585 (-350 (-859 (-486)))) (-585 (-1092)) |#1|) 30 T ELT))) -(((-332 |#1|) (-10 -7 (-15 -3576 ((-585 (-585 (-249 (-859 |#1|)))) (-585 (-350 (-859 (-486)))) |#1|)) (-15 -3576 ((-585 (-585 (-249 (-859 |#1|)))) (-585 (-249 (-350 (-859 (-486))))) |#1|)) (-15 -3576 ((-585 (-249 (-859 |#1|))) (-350 (-859 (-486))) |#1|)) (-15 -3576 ((-585 (-249 (-859 |#1|))) (-249 (-350 (-859 (-486)))) |#1|)) (-15 -1753 ((-585 (-585 |#1|)) (-585 (-350 (-859 (-486)))) (-585 (-1092)) |#1|)) (-15 -1753 ((-585 |#1|) (-350 (-859 (-486))) |#1|))) (-13 (-757) (-312))) (T -332)) -((-1753 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 (-486)))) (-5 *2 (-585 *4)) (-5 *1 (-332 *4)) (-4 *4 (-13 (-757) (-312))))) (-1753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-350 (-859 (-486))))) (-5 *4 (-585 (-1092))) (-5 *2 (-585 (-585 *5))) (-5 *1 (-332 *5)) (-4 *5 (-13 (-757) (-312))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-859 (-486))))) (-5 *2 (-585 (-249 (-859 *4)))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-757) (-312))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 (-486)))) (-5 *2 (-585 (-249 (-859 *4)))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-757) (-312))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-249 (-350 (-859 (-486)))))) (-5 *2 (-585 (-585 (-249 (-859 *4))))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-757) (-312))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-350 (-859 (-486))))) (-5 *2 (-585 (-585 (-249 (-859 *4))))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-757) (-312)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3777 (((-585 (-455 |#1| |#2|)) $) NIL T ELT)) (-1314 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2896 (($ |#1| |#2|) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3975 (($ (-585 (-455 |#1| |#2|))) NIL T ELT)) (-3950 (((-774) $) 34 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 12 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) -(((-333 |#1| |#2|) (-13 (-82 |#1| |#1|) (-451 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-146)) (-6 (-656 |#1|)) |%noBranch|))) (-963) (-761)) (T -333)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) 29 T ELT)) (-3159 ((|#2| $) 31 T ELT)) (-3962 (($ $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2422 (((-696) $) 13 T ELT)) (-2824 (((-585 $) $) 23 T ELT)) (-3941 (((-85) $) NIL T ELT)) (-3942 (($ |#2| |#1|) 21 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1754 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2897 ((|#2| $) 18 T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3820 (((-585 |#1|) $) 20 T ELT)) (-3680 ((|#1| $ |#2|) 54 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 32 T CONST)) (-2668 (((-585 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ $ |#1|) 36 T ELT) (($ |#1| $) 35 T ELT) (($ (-486) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-832) $) NIL T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) -(((-334 |#1| |#2|) (-13 (-335 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-963) (-758)) (T -334)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-334 *3 *2)) (-4 *3 (-963)) (-4 *2 (-758))))) -((-2571 (((-85) $ $) 31 T ELT)) (-3191 (((-85) $) 40 T ELT)) (-1314 (((-3 $ "failed") $ $) 43 T ELT)) (-3727 (($) 39 T CONST)) (-3160 (((-3 |#2| "failed") $) 28 T ELT)) (-3159 ((|#2| $) 29 T ELT)) (-3962 (($ $) 15 T ELT)) (-1216 (((-85) $ $) 42 T ELT)) (-2422 (((-696) $) 19 T ELT)) (-2824 (((-585 $) $) 20 T ELT)) (-3941 (((-85) $) 23 T ELT)) (-3942 (($ |#2| |#1|) 24 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-1754 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 16 T ELT)) (-2897 ((|#2| $) 18 T ELT)) (-3177 ((|#1| $) 17 T ELT)) (-3245 (((-1075) $) 35 T ELT)) (-3246 (((-1035) $) 34 T ELT)) (-3950 (((-774) $) 33 T ELT) (($ |#2|) 27 T ELT)) (-3820 (((-585 |#1|) $) 21 T ELT)) (-3680 ((|#1| $ |#2|) 25 T ELT)) (-1267 (((-85) $ $) 32 T ELT)) (-2663 (($) 38 T CONST)) (-2668 (((-585 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 22 T ELT)) (-3059 (((-85) $ $) 30 T ELT)) (-3840 (($ $ $) 46 T ELT) (($ $) 45 T ELT)) (-3842 (($ $ $) 36 T ELT)) (* (($ $ |#1|) 48 T ELT) (($ |#1| $) 47 T ELT) (($ (-486) $) 44 T ELT) (($ (-696) $) 41 T ELT) (($ (-832) $) 37 T ELT) (($ |#1| |#2|) 26 T ELT))) -(((-335 |#1| |#2|) (-113) (-963) (-1015)) (T -335)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1015)))) (-3680 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1015)) (-4 *2 (-963)))) (-3942 (*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1015)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-85)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-585 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3820 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-585 *3)))) (-2824 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-335 *3 *4)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-696)))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1015)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1015)) (-4 *2 (-963)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1015))))) -(-13 (-381 |t#1|) (-82 |t#1| |t#1|) (-952 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3680 (|t#1| $ |t#2|)) (-15 -3942 ($ |t#2| |t#1|)) (-15 -3941 ((-85) $)) (-15 -2668 ((-585 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3820 ((-585 |t#1|) $)) (-15 -2824 ((-585 $) $)) (-15 -2422 ((-696) $)) (-15 -2897 (|t#2| $)) (-15 -3177 (|t#1| $)) (-15 -1754 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3962 ($ $)) (IF (|has| |t#1| (-146)) (-6 (-656 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-557 |#2|) . T) ((-554 (-774)) . T) ((-381 |#1|) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-952 |#2|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) 7 T ELT)) (-3139 (((-696) $) 40 T ELT)) (-3727 (($) 23 T CONST)) (-3943 (((-3 $ "failed") $ $) 43 T ELT)) (-3160 (((-3 |#1| "failed") $) 51 T ELT)) (-3159 ((|#1| $) 52 T ELT)) (-3470 (((-3 $ "failed") $) 20 T ELT)) (-1755 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2412 (((-85) $) 22 T ELT)) (-2301 ((|#1| $ (-486)) 37 T ELT)) (-2302 (((-696) $ (-486)) 38 T ELT)) (-2534 (($ $ $) 29 (|has| |#1| (-758)) ELT)) (-2860 (($ $ $) 30 (|has| |#1| (-758)) ELT)) (-2292 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2293 (($ (-1 (-696) (-696)) $) 36 T ELT)) (-3944 (((-3 $ "failed") $ $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1756 (($ $ $) 45 T ELT)) (-1757 (($ $ $) 46 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1784 (((-585 (-2 (|:| |gen| |#1|) (|:| -3947 (-696)))) $) 39 T ELT)) (-2882 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2669 (($) 24 T CONST)) (-2569 (((-85) $ $) 31 (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) 33 (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 32 (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 34 (|has| |#1| (-758)) ELT)) (** (($ $ (-832)) 17 T ELT) (($ $ (-696)) 21 T ELT) (($ |#1| (-696)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) -(((-336 |#1|) (-113) (-1015)) (T -336)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-336 *2)) (-4 *2 (-1015)))) (-1757 (*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) (-1756 (*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) (-3944 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) (-3943 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) (-2882 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1015)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3)))) (-1755 (*1 *2 *1 *1) (-12 (-4 *3 (-1015)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3)))) (-3139 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1015)) (-5 *2 (-696)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1015)) (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3947 (-696))))))) (-2302 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-336 *4)) (-4 *4 (-1015)) (-5 *2 (-696)))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-336 *2)) (-4 *2 (-1015)))) (-2293 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-696) (-696))) (-4 *1 (-336 *3)) (-4 *3 (-1015)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-336 *3)) (-4 *3 (-1015))))) -(-13 (-665) (-952 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-696))) (-15 -1757 ($ $ $)) (-15 -1756 ($ $ $)) (-15 -3944 ((-3 $ "failed") $ $)) (-15 -3943 ((-3 $ "failed") $ $)) (-15 -2882 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1755 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3139 ((-696) $)) (-15 -1784 ((-585 (-2 (|:| |gen| |t#1|) (|:| -3947 (-696)))) $)) (-15 -2302 ((-696) $ (-486))) (-15 -2301 (|t#1| $ (-486))) (-15 -2293 ($ (-1 (-696) (-696)) $)) (-15 -2292 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-758)) (-6 (-758)) |%noBranch|))) -(((-72) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-13) . T) ((-665) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-952 |#1|) . T) ((-1027) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696) $) 74 T ELT)) (-3727 (($) NIL T CONST)) (-3943 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1755 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2412 (((-85) $) 17 T ELT)) (-2301 ((|#1| $ (-486)) NIL T ELT)) (-2302 (((-696) $ (-486)) NIL T ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2292 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2293 (($ (-1 (-696) (-696)) $) 37 T ELT)) (-3944 (((-3 $ #1#) $ $) 60 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1756 (($ $ $) 28 T ELT)) (-1757 (($ $ $) 26 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1784 (((-585 (-2 (|:| |gen| |#1|) (|:| -3947 (-696)))) $) 34 T ELT)) (-2882 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3950 (((-774) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2669 (($) 7 T CONST)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 83 (|has| |#1| (-758)) ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ |#1| (-696)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) -(((-337 |#1|) (-336 |#1|) (-1015)) (T -337)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-1758 (((-85) $) 25 T ELT)) (-1759 (((-85) $) 22 T ELT)) (-3617 (($ (-1075) (-1075) (-1075)) 26 T ELT)) (-3545 (((-1075) $) 16 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1763 (($ (-1075) (-1075) (-1075)) 14 T ELT)) (-1761 (((-1075) $) 17 T ELT)) (-1760 (((-85) $) 18 T ELT)) (-1762 (((-1075) $) 15 T ELT)) (-3950 (((-774) $) 12 T ELT) (($ (-1075)) 13 T ELT) (((-1075) $) 9 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 7 T ELT))) -(((-338) (-339)) (T -338)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-1758 (((-85) $) 20 T ELT)) (-1759 (((-85) $) 21 T ELT)) (-3617 (($ (-1075) (-1075) (-1075)) 19 T ELT)) (-3545 (((-1075) $) 24 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1763 (($ (-1075) (-1075) (-1075)) 26 T ELT)) (-1761 (((-1075) $) 23 T ELT)) (-1760 (((-85) $) 22 T ELT)) (-1762 (((-1075) $) 25 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-1075)) 28 T ELT) (((-1075) $) 27 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) -(((-339) (-113)) (T -339)) -((-1763 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-339)))) (-1762 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1075)))) (-3545 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1075)))) (-1761 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1075)))) (-1760 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-1759 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-3617 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-339))))) -(-13 (-1015) (-431 (-1075)) (-10 -8 (-15 -1763 ($ (-1075) (-1075) (-1075))) (-15 -1762 ((-1075) $)) (-15 -3545 ((-1075) $)) (-15 -1761 ((-1075) $)) (-15 -1760 ((-85) $)) (-15 -1759 ((-85) $)) (-15 -1758 ((-85) $)) (-15 -3617 ($ (-1075) (-1075) (-1075))))) -(((-72) . T) ((-557 (-1075)) . T) ((-554 (-774)) . T) ((-554 (-1075)) . T) ((-431 (-1075)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ "failed") $ $) NIL T ELT)) (-1764 (((-774) $) 64 T ELT)) (-3727 (($) NIL T CONST)) (-2409 (($ $ (-832)) NIL T ELT)) (-2436 (($ $ (-832)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2408 (($ $ (-832)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($ (-696)) 38 T ELT)) (-3915 (((-696)) 18 T ELT)) (-1765 (((-774) $) 66 T ELT)) (-2438 (($ $ $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2439 (($ $ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 41 T ELT)) (-3840 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3842 (($ $ $) 51 T ELT)) (** (($ $ (-832)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) -(((-340 |#1| |#2| |#3|) (-13 (-685 |#3|) (-10 -8 (-15 -3915 ((-696))) (-15 -1765 ((-774) $)) (-15 -1764 ((-774) $)) (-15 -2411 ($ (-696))))) (-696) (-696) (-146)) (T -340)) -((-3915 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-696)) (-14 *4 (-696)) (-4 *5 (-146)))) (-1764 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-696)) (-14 *4 (-696)) (-4 *5 (-146)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146))))) -((-3775 (((-696) (-283 |#1| |#2| |#3| |#4|)) 16 T ELT))) -(((-341 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3775 ((-696) (-283 |#1| |#2| |#3| |#4|)))) (-13 (-320) (-312)) (-1157 |#1|) (-1157 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -341)) -((-3775 (*1 *2 *3) (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-320) (-312))) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) (-4 *7 (-291 *4 *5 *6)) (-5 *2 (-696)) (-5 *1 (-341 *4 *5 *6 *7))))) -((-2571 (((-85) $ $) NIL T ELT)) (-1767 ((|#2| $) 38 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1768 (($ (-350 |#2|)) 93 T ELT)) (-1766 (((-585 (-2 (|:| -2403 (-696)) (|:| -3776 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3761 (($ $ (-696)) 36 T ELT) (($ $) 34 T ELT)) (-3975 (((-350 |#2|) $) 49 T ELT)) (-3533 (($ (-585 (-2 (|:| -2403 (-696)) (|:| -3776 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3950 (((-774) $) 131 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2672 (($ $ (-696)) 37 T ELT) (($ $) 35 T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3842 (($ |#2| $) 41 T ELT))) -(((-342 |#1| |#2|) (-13 (-1015) (-189) (-555 (-350 |#2|)) (-10 -8 (-15 -3842 ($ |#2| $)) (-15 -1768 ($ (-350 |#2|))) (-15 -1767 (|#2| $)) (-15 -1766 ((-585 (-2 (|:| -2403 (-696)) (|:| -3776 |#2|) (|:| |num| |#2|))) $)) (-15 -3533 ($ (-585 (-2 (|:| -2403 (-696)) (|:| -3776 |#2|) (|:| |num| |#2|))))))) (-13 (-312) (-120)) (-1157 |#1|)) (T -342)) -((-3842 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *2)) (-4 *2 (-1157 *3)))) (-1768 (*1 *1 *2) (-12 (-5 *2 (-350 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4)))) (-1767 (*1 *2 *1) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-342 *3 *2)) (-4 *3 (-13 (-312) (-120))))) (-1766 (*1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *2 (-585 (-2 (|:| -2403 (-696)) (|:| -3776 *4) (|:| |num| *4)))) (-5 *1 (-342 *3 *4)) (-4 *4 (-1157 *3)))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -2403 (-696)) (|:| -3776 *4) (|:| |num| *4)))) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4))))) -((-2571 (((-85) $ $) 10 (OR (|has| |#1| (-798 (-486))) (|has| |#1| (-798 (-330)))) ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 16 (|has| |#1| (-798 (-330))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 15 (|has| |#1| (-798 (-486))) ELT)) (-3245 (((-1075) $) 14 (OR (|has| |#1| (-798 (-486))) (|has| |#1| (-798 (-330)))) ELT)) (-3246 (((-1035) $) 13 (OR (|has| |#1| (-798 (-486))) (|has| |#1| (-798 (-330)))) ELT)) (-3950 (((-774) $) 12 (OR (|has| |#1| (-798 (-486))) (|has| |#1| (-798 (-330)))) ELT)) (-1267 (((-85) $ $) 11 (OR (|has| |#1| (-798 (-486))) (|has| |#1| (-798 (-330)))) ELT)) (-3059 (((-85) $ $) 9 (OR (|has| |#1| (-798 (-486))) (|has| |#1| (-798 (-330)))) ELT))) -(((-343 |#1|) (-113) (-1131)) (T -343)) -NIL -(-13 (-1131) (-10 -7 (IF (|has| |t#1| (-798 (-486))) (-6 (-798 (-486))) |%noBranch|) (IF (|has| |t#1| (-798 (-330))) (-6 (-798 (-330))) |%noBranch|))) -(((-72) OR (|has| |#1| (-798 (-486))) (|has| |#1| (-798 (-330)))) ((-554 (-774)) OR (|has| |#1| (-798 (-486))) (|has| |#1| (-798 (-330)))) ((-13) . T) ((-798 (-330)) |has| |#1| (-798 (-330))) ((-798 (-486)) |has| |#1| (-798 (-486))) ((-1015) OR (|has| |#1| (-798 (-486))) (|has| |#1| (-798 (-330)))) ((-1131) . T)) -((-1769 (($ $) 10 T ELT) (($ $ (-696)) 12 T ELT))) -(((-344 |#1|) (-10 -7 (-15 -1769 (|#1| |#1| (-696))) (-15 -1769 (|#1| |#1|))) (-345)) (T -344)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-1769 (($ $) 97 T ELT) (($ $ (-696)) 96 T ELT)) (-3726 (((-85) $) 89 T ELT)) (-3775 (((-745 (-832)) $) 99 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-1770 (((-3 (-696) "failed") $ $) 98 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT)) (-2705 (((-634 $) $) 100 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ $) 83 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT))) -(((-345) (-113)) (T -345)) -((-3775 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-745 (-832))))) (-1770 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-345)) (-5 *2 (-696)))) (-1769 (*1 *1 *1) (-4 *1 (-345))) (-1769 (*1 *1 *1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-696))))) -(-13 (-312) (-118) (-10 -8 (-15 -3775 ((-745 (-832)) $)) (-15 -1770 ((-3 (-696) "failed") $ $)) (-15 -1769 ($ $)) (-15 -1769 ($ $ (-696))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 $) . T) ((-656 (-350 (-486))) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-965 (-350 (-486))) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) . T)) -((-3257 (($ (-486) (-486)) 11 T ELT) (($ (-486) (-486) (-832)) NIL T ELT)) (-2618 (((-832)) 19 T ELT) (((-832) (-832)) NIL T ELT))) -(((-346 |#1|) (-10 -7 (-15 -2618 ((-832) (-832))) (-15 -2618 ((-832))) (-15 -3257 (|#1| (-486) (-486) (-832))) (-15 -3257 (|#1| (-486) (-486)))) (-347)) (T -346)) -((-2618 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-346 *3)) (-4 *3 (-347)))) (-2618 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-346 *3)) (-4 *3 (-347))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3132 (((-486) $) 108 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-3774 (($ $) 106 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-3040 (($ $) 116 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3626 (((-486) $) 133 T ELT)) (-3727 (($) 23 T CONST)) (-3130 (($ $) 105 T ELT)) (-3160 (((-3 (-486) #1="failed") $) 121 T ELT) (((-3 (-350 (-486)) #1#) $) 118 T ELT)) (-3159 (((-486) $) 122 T ELT) (((-350 (-486)) $) 119 T ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3726 (((-85) $) 89 T ELT)) (-1773 (((-832)) 149 T ELT) (((-832) (-832)) 146 (|has| $ (-6 -3989)) ELT)) (-3189 (((-85) $) 131 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 112 T ELT)) (-3775 (((-486) $) 155 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 115 T ELT)) (-3135 (($ $) 111 T ELT)) (-3190 (((-85) $) 132 T ELT)) (-1606 (((-3 (-585 $) #2="failed") (-585 $) $) 68 T ELT)) (-2534 (($ $ $) 125 T ELT) (($) 143 (-12 (-2563 (|has| $ (-6 -3989))) (-2563 (|has| $ (-6 -3981)))) ELT)) (-2860 (($ $ $) 126 T ELT) (($) 142 (-12 (-2563 (|has| $ (-6 -3989))) (-2563 (|has| $ (-6 -3981)))) ELT)) (-1775 (((-486) $) 152 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-1772 (((-832) (-486)) 145 (|has| $ (-6 -3989)) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3131 (($ $) 107 T ELT)) (-3133 (($ $) 109 T ELT)) (-3257 (($ (-486) (-486)) 157 T ELT) (($ (-486) (-486) (-832)) 156 T ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-2403 (((-486) $) 153 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-2618 (((-832)) 150 T ELT) (((-832) (-832)) 147 (|has| $ (-6 -3989)) ELT)) (-1771 (((-832) (-486)) 144 (|has| $ (-6 -3989)) ELT)) (-3975 (((-330) $) 124 T ELT) (((-179) $) 123 T ELT) (((-802 (-330)) $) 113 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT) (($ (-486)) 120 T ELT) (($ (-350 (-486))) 117 T ELT)) (-3129 (((-696)) 40 T CONST)) (-3134 (($ $) 110 T ELT)) (-1774 (((-832)) 151 T ELT) (((-832) (-832)) 148 (|has| $ (-6 -3989)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2697 (((-832)) 154 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3386 (($ $) 134 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2569 (((-85) $ $) 127 T ELT)) (-2570 (((-85) $ $) 129 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 128 T ELT)) (-2688 (((-85) $ $) 130 T ELT)) (-3953 (($ $ $) 83 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT) (($ $ (-350 (-486))) 114 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT))) +(((-240 |#1|) (-10 -7 (-15 ** (|#1| |#1| |#1|))) (-241)) (T -240)) +NIL +((-3949 (($ $) 6 T ELT)) (-3950 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) +(((-241) (-113)) (T -241)) +((** (*1 *1 *1 *1) (-4 *1 (-241))) (-3950 (*1 *1 *1) (-4 *1 (-241))) (-3949 (*1 *1 *1) (-4 *1 (-241)))) +(-13 (-10 -8 (-15 -3949 ($ $)) (-15 -3950 ($ $)) (-15 ** ($ $ $)))) +((-1579 (((-587 (-1073 |#1|)) (-1073 |#1|) |#1|) 35 T ELT)) (-1576 ((|#2| |#2| |#1|) 39 T ELT)) (-1578 ((|#2| |#2| |#1|) 41 T ELT)) (-1577 ((|#2| |#2| |#1|) 40 T ELT))) +(((-242 |#1| |#2|) (-10 -7 (-15 -1576 (|#2| |#2| |#1|)) (-15 -1577 (|#2| |#2| |#1|)) (-15 -1578 (|#2| |#2| |#1|)) (-15 -1579 ((-587 (-1073 |#1|)) (-1073 |#1|) |#1|))) (-314) (-1176 |#1|)) (T -242)) +((-1579 (*1 *2 *3 *4) (-12 (-4 *4 (-314)) (-5 *2 (-587 (-1073 *4))) (-5 *1 (-242 *4 *5)) (-5 *3 (-1073 *4)) (-4 *5 (-1176 *4)))) (-1578 (*1 *2 *2 *3) (-12 (-4 *3 (-314)) (-5 *1 (-242 *3 *2)) (-4 *2 (-1176 *3)))) (-1577 (*1 *2 *2 *3) (-12 (-4 *3 (-314)) (-5 *1 (-242 *3 *2)) (-4 *2 (-1176 *3)))) (-1576 (*1 *2 *2 *3) (-12 (-4 *3 (-314)) (-5 *1 (-242 *3 *2)) (-4 *2 (-1176 *3))))) +((-3806 ((|#2| $ |#1|) 6 T ELT))) +(((-243 |#1| |#2|) (-113) (-1133) (-1133)) (T -243)) +((-3806 (*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1133))))) +(-13 (-1133) (-10 -8 (-15 -3806 (|t#2| $ |t#1|)))) +(((-13) . T) ((-1133) . T)) +((-1580 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3118 ((|#3| $ |#2|) 10 T ELT))) +(((-244 |#1| |#2| |#3|) (-10 -7 (-15 -1580 (|#3| |#1| |#2| |#3|)) (-15 -3118 (|#3| |#1| |#2|))) (-245 |#2| |#3|) (-72) (-1133)) (T -244)) +NIL +((-3794 ((|#2| $ |#1| |#2|) 10 (|has| $ (-1039 |#2|)) ELT)) (-1580 ((|#2| $ |#1| |#2|) 9 (|has| $ (-1039 |#2|)) ELT)) (-3118 ((|#2| $ |#1|) 11 T ELT)) (-3806 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) +(((-245 |#1| |#2|) (-113) (-72) (-1133)) (T -245)) +((-3806 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-245 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1133)))) (-3118 (*1 *2 *1 *3) (-12 (-4 *1 (-245 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1133)))) (-3794 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-245 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1133)))) (-1580 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-245 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1133))))) +(-13 (-243 |t#1| |t#2|) (-10 -8 (-15 -3806 (|t#2| $ |t#1| |t#2|)) (-15 -3118 (|t#2| $ |t#1|)) (IF (|has| $ (-1039 |t#2|)) (PROGN (-15 -3794 (|t#2| $ |t#1| |t#2|)) (-15 -1580 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-243 |#1| |#2|) . T) ((-13) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 37 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 44 T ELT)) (-2068 (($ $) 41 T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2570 (($ $ $) 35 T ELT)) (-3848 (($ |#2| |#3|) 18 T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2620 ((|#3| $) NIL T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) 19 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-2407 (((-3 $ #1#) $ $) NIL T ELT)) (-1611 (((-698) $) 36 T ELT)) (-3806 ((|#2| $ |#2|) 46 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 23 T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 31 T CONST)) (-2672 (($) 39 T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 40 T ELT))) +(((-246 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-260) (-243 |#2| |#2|) (-10 -8 (-15 -2620 (|#3| $)) (-15 -3953 (|#2| $)) (-15 -3848 ($ |#2| |#3|)) (-15 -2407 ((-3 $ #1="failed") $ $)) (-15 -3473 ((-3 $ #1#) $)) (-15 -2490 ($ $)))) (-148) (-1159 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -246)) +((-3473 (*1 *1 *1) (|partial| -12 (-4 *2 (-148)) (-5 *1 (-246 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1159 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #1#) *3 *3 *4)))) (-2620 (*1 *2 *1) (-12 (-4 *3 (-148)) (-4 *2 (-23)) (-5 *1 (-246 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1159 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #1#) *4 *4 *2)))) (-3953 (*1 *2 *1) (-12 (-4 *2 (-1159 *3)) (-5 *1 (-246 *3 *2 *4 *5 *6 *7)) (-4 *3 (-148)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #1#) *2 *2 *4)))) (-3848 (*1 *1 *2 *3) (-12 (-4 *4 (-148)) (-5 *1 (-246 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1159 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #1#) *2 *2 *3)))) (-2407 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-148)) (-5 *1 (-246 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1159 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #1#) *3 *3 *4)))) (-2490 (*1 *1 *1) (-12 (-4 *2 (-148)) (-5 *1 (-246 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1159 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #1#) *3 *3 *4))))) +((-3131 (((-85) $ $) 10 T ELT))) +(((-247 |#1|) (-10 -7 (-15 -3131 ((-85) |#1| |#1|))) (-248)) (T -247)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-248) (-113)) (T -248)) +NIL +(-13 (-965) (-82 $ $) (-10 -7 (-6 -3994))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-559 (-488)) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 $) . T) ((-667) . T) ((-967 $) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-1588 (((-587 (-1001)) $) 10 T ELT)) (-1586 (($ (-450) (-450) (-1019) $) 19 T ELT)) (-1584 (($ (-450) (-587 (-880)) $) 23 T ELT)) (-1582 (($) 25 T ELT)) (-1587 (((-636 (-1019)) (-450) (-450) $) 18 T ELT)) (-1585 (((-587 (-880)) (-450) $) 22 T ELT)) (-3571 (($) 7 T ELT)) (-1583 (($) 24 T ELT)) (-3953 (((-776) $) 29 T ELT)) (-1581 (($) 26 T ELT))) +(((-249) (-13 (-556 (-776)) (-10 -8 (-15 -3571 ($)) (-15 -1588 ((-587 (-1001)) $)) (-15 -1587 ((-636 (-1019)) (-450) (-450) $)) (-15 -1586 ($ (-450) (-450) (-1019) $)) (-15 -1585 ((-587 (-880)) (-450) $)) (-15 -1584 ($ (-450) (-587 (-880)) $)) (-15 -1583 ($)) (-15 -1582 ($)) (-15 -1581 ($))))) (T -249)) +((-3571 (*1 *1) (-5 *1 (-249))) (-1588 (*1 *2 *1) (-12 (-5 *2 (-587 (-1001))) (-5 *1 (-249)))) (-1587 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-450)) (-5 *2 (-636 (-1019))) (-5 *1 (-249)))) (-1586 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-450)) (-5 *3 (-1019)) (-5 *1 (-249)))) (-1585 (*1 *2 *3 *1) (-12 (-5 *3 (-450)) (-5 *2 (-587 (-880))) (-5 *1 (-249)))) (-1584 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-450)) (-5 *3 (-587 (-880))) (-5 *1 (-249)))) (-1583 (*1 *1) (-5 *1 (-249))) (-1582 (*1 *1) (-5 *1 (-249))) (-1581 (*1 *1) (-5 *1 (-249)))) +((-1592 (((-587 (-2 (|:| |eigval| (-3 (-352 (-861 |#1|)) (-1084 (-1094) (-861 |#1|)))) (|:| |geneigvec| (-587 (-634 (-352 (-861 |#1|))))))) (-634 (-352 (-861 |#1|)))) 103 T ELT)) (-1591 (((-587 (-634 (-352 (-861 |#1|)))) (-2 (|:| |eigval| (-3 (-352 (-861 |#1|)) (-1084 (-1094) (-861 |#1|)))) (|:| |eigmult| (-698)) (|:| |eigvec| (-587 (-634 (-352 (-861 |#1|)))))) (-634 (-352 (-861 |#1|)))) 98 T ELT) (((-587 (-634 (-352 (-861 |#1|)))) (-3 (-352 (-861 |#1|)) (-1084 (-1094) (-861 |#1|))) (-634 (-352 (-861 |#1|))) (-698) (-698)) 42 T ELT)) (-1593 (((-587 (-2 (|:| |eigval| (-3 (-352 (-861 |#1|)) (-1084 (-1094) (-861 |#1|)))) (|:| |eigmult| (-698)) (|:| |eigvec| (-587 (-634 (-352 (-861 |#1|))))))) (-634 (-352 (-861 |#1|)))) 100 T ELT)) (-1590 (((-587 (-634 (-352 (-861 |#1|)))) (-3 (-352 (-861 |#1|)) (-1084 (-1094) (-861 |#1|))) (-634 (-352 (-861 |#1|)))) 76 T ELT)) (-1589 (((-587 (-3 (-352 (-861 |#1|)) (-1084 (-1094) (-861 |#1|)))) (-634 (-352 (-861 |#1|)))) 75 T ELT)) (-2455 (((-861 |#1|) (-634 (-352 (-861 |#1|)))) 56 T ELT) (((-861 |#1|) (-634 (-352 (-861 |#1|))) (-1094)) 57 T ELT))) +(((-250 |#1|) (-10 -7 (-15 -2455 ((-861 |#1|) (-634 (-352 (-861 |#1|))) (-1094))) (-15 -2455 ((-861 |#1|) (-634 (-352 (-861 |#1|))))) (-15 -1589 ((-587 (-3 (-352 (-861 |#1|)) (-1084 (-1094) (-861 |#1|)))) (-634 (-352 (-861 |#1|))))) (-15 -1590 ((-587 (-634 (-352 (-861 |#1|)))) (-3 (-352 (-861 |#1|)) (-1084 (-1094) (-861 |#1|))) (-634 (-352 (-861 |#1|))))) (-15 -1591 ((-587 (-634 (-352 (-861 |#1|)))) (-3 (-352 (-861 |#1|)) (-1084 (-1094) (-861 |#1|))) (-634 (-352 (-861 |#1|))) (-698) (-698))) (-15 -1591 ((-587 (-634 (-352 (-861 |#1|)))) (-2 (|:| |eigval| (-3 (-352 (-861 |#1|)) (-1084 (-1094) (-861 |#1|)))) (|:| |eigmult| (-698)) (|:| |eigvec| (-587 (-634 (-352 (-861 |#1|)))))) (-634 (-352 (-861 |#1|))))) (-15 -1592 ((-587 (-2 (|:| |eigval| (-3 (-352 (-861 |#1|)) (-1084 (-1094) (-861 |#1|)))) (|:| |geneigvec| (-587 (-634 (-352 (-861 |#1|))))))) (-634 (-352 (-861 |#1|))))) (-15 -1593 ((-587 (-2 (|:| |eigval| (-3 (-352 (-861 |#1|)) (-1084 (-1094) (-861 |#1|)))) (|:| |eigmult| (-698)) (|:| |eigvec| (-587 (-634 (-352 (-861 |#1|))))))) (-634 (-352 (-861 |#1|)))))) (-395)) (T -250)) +((-1593 (*1 *2 *3) (-12 (-4 *4 (-395)) (-5 *2 (-587 (-2 (|:| |eigval| (-3 (-352 (-861 *4)) (-1084 (-1094) (-861 *4)))) (|:| |eigmult| (-698)) (|:| |eigvec| (-587 (-634 (-352 (-861 *4)))))))) (-5 *1 (-250 *4)) (-5 *3 (-634 (-352 (-861 *4)))))) (-1592 (*1 *2 *3) (-12 (-4 *4 (-395)) (-5 *2 (-587 (-2 (|:| |eigval| (-3 (-352 (-861 *4)) (-1084 (-1094) (-861 *4)))) (|:| |geneigvec| (-587 (-634 (-352 (-861 *4)))))))) (-5 *1 (-250 *4)) (-5 *3 (-634 (-352 (-861 *4)))))) (-1591 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-352 (-861 *5)) (-1084 (-1094) (-861 *5)))) (|:| |eigmult| (-698)) (|:| |eigvec| (-587 *4)))) (-4 *5 (-395)) (-5 *2 (-587 (-634 (-352 (-861 *5))))) (-5 *1 (-250 *5)) (-5 *4 (-634 (-352 (-861 *5)))))) (-1591 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-352 (-861 *6)) (-1084 (-1094) (-861 *6)))) (-5 *5 (-698)) (-4 *6 (-395)) (-5 *2 (-587 (-634 (-352 (-861 *6))))) (-5 *1 (-250 *6)) (-5 *4 (-634 (-352 (-861 *6)))))) (-1590 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-352 (-861 *5)) (-1084 (-1094) (-861 *5)))) (-4 *5 (-395)) (-5 *2 (-587 (-634 (-352 (-861 *5))))) (-5 *1 (-250 *5)) (-5 *4 (-634 (-352 (-861 *5)))))) (-1589 (*1 *2 *3) (-12 (-5 *3 (-634 (-352 (-861 *4)))) (-4 *4 (-395)) (-5 *2 (-587 (-3 (-352 (-861 *4)) (-1084 (-1094) (-861 *4))))) (-5 *1 (-250 *4)))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-634 (-352 (-861 *4)))) (-5 *2 (-861 *4)) (-5 *1 (-250 *4)) (-4 *4 (-395)))) (-2455 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-352 (-861 *5)))) (-5 *4 (-1094)) (-5 *2 (-861 *5)) (-5 *1 (-250 *5)) (-4 *5 (-395))))) +((-2574 (((-85) $ $) NIL (|has| |#1| (-1017)) ELT)) (-3194 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1599 (($ $) 12 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1608 (($ $ $) 95 (|has| |#1| (-256)) ELT)) (-3730 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-667))) CONST)) (-1597 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1595 (((-3 $ #1#) $) 62 (|has| |#1| (-667)) ELT)) (-3534 ((|#1| $) 11 T ELT)) (-3473 (((-3 $ #1#) $) 60 (|has| |#1| (-667)) ELT)) (-1218 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2415 (((-85) $) NIL (|has| |#1| (-667)) ELT)) (-3849 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3535 ((|#1| $) 10 T ELT)) (-1598 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1596 (((-3 $ #1#) $) 61 (|has| |#1| (-667)) ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-2490 (($ $) 64 (OR (|has| |#1| (-314)) (|has| |#1| (-416))) ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-1594 (((-587 $) $) 85 (|has| |#1| (-499)) ELT)) (-3774 (($ $ $) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 $)) 28 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-1094) |#1|) 17 (|has| |#1| (-459 (-1094) |#1|)) ELT) (($ $ (-587 (-1094)) (-587 |#1|)) 21 (|has| |#1| (-459 (-1094) |#1|)) ELT)) (-3232 (($ |#1| |#1|) 9 T ELT)) (-3918 (((-107)) 90 (|has| |#1| (-314)) ELT)) (-3764 (($ $ (-1094)) 87 (|has| |#1| (-813 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-813 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-813 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-813 (-1094))) ELT)) (-3015 (($ $ $) NIL (|has| |#1| (-416)) ELT)) (-2441 (($ $ $) NIL (|has| |#1| (-416)) ELT)) (-3953 (($ (-488)) NIL (|has| |#1| (-965)) ELT) (((-85) $) 37 (|has| |#1| (-1017)) ELT) (((-776) $) 36 (|has| |#1| (-1017)) ELT)) (-3132 (((-698)) 67 (|has| |#1| (-965)) CONST)) (-1269 (((-85) $ $) NIL (|has| |#1| (-1017)) ELT)) (-3131 (((-85) $ $) NIL (|has| |#1| (-965)) ELT)) (-2666 (($) 47 (|has| |#1| (-21)) CONST)) (-2672 (($) 57 (|has| |#1| (-667)) CONST)) (-2675 (($ $ (-1094)) NIL (|has| |#1| (-813 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-813 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-813 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-813 (-1094))) ELT)) (-3062 (($ |#1| |#1|) 8 T ELT) (((-85) $ $) 32 (|has| |#1| (-1017)) ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT) (($ $ $) 92 (OR (|has| |#1| (-314)) (|has| |#1| (-416))) ELT)) (-3843 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3845 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-488)) NIL (|has| |#1| (-416)) ELT) (($ $ (-698)) NIL (|has| |#1| (-667)) ELT) (($ $ (-834)) NIL (|has| |#1| (-1029)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1029)) ELT) (($ |#1| $) 54 (|has| |#1| (-1029)) ELT) (($ $ $) 53 (|has| |#1| (-1029)) ELT) (($ (-488) $) 70 (|has| |#1| (-21)) ELT) (($ (-698) $) NIL (|has| |#1| (-21)) ELT) (($ (-834) $) NIL (|has| |#1| (-25)) ELT))) +(((-251 |#1|) (-13 (-383 |#1|) (-10 -8 (-15 -3062 ($ |#1| |#1|)) (-15 -3232 ($ |#1| |#1|)) (-15 -1599 ($ $)) (-15 -3535 (|#1| $)) (-15 -3534 (|#1| $)) (IF (|has| |#1| (-459 (-1094) |#1|)) (-6 (-459 (-1094) |#1|)) |%noBranch|) (IF (|has| |#1| (-1017)) (PROGN (-6 (-1017)) (-6 (-556 (-85))) (IF (|has| |#1| (-262 |#1|)) (PROGN (-15 -3774 ($ $ $)) (-15 -3774 ($ $ (-587 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3845 ($ |#1| $)) (-15 -3845 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1598 ($ $)) (-15 -1597 ($ $)) (-15 -3843 ($ |#1| $)) (-15 -3843 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1029)) (PROGN (-6 (-1029)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-667)) (PROGN (-6 (-667)) (-15 -1596 ((-3 $ #1="failed") $)) (-15 -1595 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-416)) (PROGN (-6 (-416)) (-15 -1596 ((-3 $ #1#) $)) (-15 -1595 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-965)) (PROGN (-6 (-965)) (-6 (-82 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-148)) (-6 (-658 |#1|)) |%noBranch|) (IF (|has| |#1| (-499)) (-15 -1594 ((-587 $) $)) |%noBranch|) (IF (|has| |#1| (-813 (-1094))) (-6 (-813 (-1094))) |%noBranch|) (IF (|has| |#1| (-314)) (PROGN (-6 (-1191 |#1|)) (-15 -3956 ($ $ $)) (-15 -2490 ($ $))) |%noBranch|) (IF (|has| |#1| (-256)) (-15 -1608 ($ $ $)) |%noBranch|))) (-1133)) (T -251)) +((-3062 (*1 *1 *2 *2) (-12 (-5 *1 (-251 *2)) (-4 *2 (-1133)))) (-3232 (*1 *1 *2 *2) (-12 (-5 *1 (-251 *2)) (-4 *2 (-1133)))) (-1599 (*1 *1 *1) (-12 (-5 *1 (-251 *2)) (-4 *2 (-1133)))) (-3535 (*1 *2 *1) (-12 (-5 *1 (-251 *2)) (-4 *2 (-1133)))) (-3534 (*1 *2 *1) (-12 (-5 *1 (-251 *2)) (-4 *2 (-1133)))) (-3774 (*1 *1 *1 *1) (-12 (-4 *2 (-262 *2)) (-4 *2 (-1017)) (-4 *2 (-1133)) (-5 *1 (-251 *2)))) (-3774 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-251 *3))) (-4 *3 (-262 *3)) (-4 *3 (-1017)) (-4 *3 (-1133)) (-5 *1 (-251 *3)))) (-3845 (*1 *1 *2 *1) (-12 (-5 *1 (-251 *2)) (-4 *2 (-25)) (-4 *2 (-1133)))) (-3845 (*1 *1 *1 *2) (-12 (-5 *1 (-251 *2)) (-4 *2 (-25)) (-4 *2 (-1133)))) (-1598 (*1 *1 *1) (-12 (-5 *1 (-251 *2)) (-4 *2 (-21)) (-4 *2 (-1133)))) (-1597 (*1 *1 *1) (-12 (-5 *1 (-251 *2)) (-4 *2 (-21)) (-4 *2 (-1133)))) (-3843 (*1 *1 *2 *1) (-12 (-5 *1 (-251 *2)) (-4 *2 (-21)) (-4 *2 (-1133)))) (-3843 (*1 *1 *1 *2) (-12 (-5 *1 (-251 *2)) (-4 *2 (-21)) (-4 *2 (-1133)))) (-1596 (*1 *1 *1) (|partial| -12 (-5 *1 (-251 *2)) (-4 *2 (-667)) (-4 *2 (-1133)))) (-1595 (*1 *1 *1) (|partial| -12 (-5 *1 (-251 *2)) (-4 *2 (-667)) (-4 *2 (-1133)))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-587 (-251 *3))) (-5 *1 (-251 *3)) (-4 *3 (-499)) (-4 *3 (-1133)))) (-1608 (*1 *1 *1 *1) (-12 (-5 *1 (-251 *2)) (-4 *2 (-256)) (-4 *2 (-1133)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-251 *2)) (-4 *2 (-1029)) (-4 *2 (-1133)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-251 *2)) (-4 *2 (-1029)) (-4 *2 (-1133)))) (-3956 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-251 *2)) (-4 *2 (-314)) (-4 *2 (-1133))) (-12 (-5 *1 (-251 *2)) (-4 *2 (-416)) (-4 *2 (-1133))))) (-2490 (*1 *1 *1) (OR (-12 (-5 *1 (-251 *2)) (-4 *2 (-314)) (-4 *2 (-1133))) (-12 (-5 *1 (-251 *2)) (-4 *2 (-416)) (-4 *2 (-1133)))))) +((-3849 (((-251 |#2|) (-1 |#2| |#1|) (-251 |#1|)) 14 T ELT))) +(((-252 |#1| |#2|) (-10 -7 (-15 -3849 ((-251 |#2|) (-1 |#2| |#1|) (-251 |#1|)))) (-1133) (-1133)) (T -252)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-251 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-251 *6)) (-5 *1 (-252 *5 *6))))) +((-2574 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3605 (($) NIL T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2203 (((-1189) $ |#1| |#1|) NIL (|has| $ (-1039 |#2|)) ELT)) (-3794 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-1574 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3716 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-2236 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-1357 (($ $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3411 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3412 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3848 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1580 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-3118 ((|#2| $ |#1|) NIL T ELT)) (-2205 ((|#1| $) NIL (|has| |#1| (-760)) ELT)) (-2614 (((-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3251 (((-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2206 ((|#1| $) NIL (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3849 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017))) ELT)) (-2237 (((-587 |#1|) $) NIL T ELT)) (-2238 (((-85) |#1| $) NIL T ELT)) (-1278 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3615 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2208 (((-587 |#1|) $) NIL T ELT)) (-2209 (((-85) |#1| $) NIL T ELT)) (-3249 (((-1037) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017))) ELT)) (-3807 ((|#2| $) NIL (|has| |#1| (-760)) ELT)) (-1734 (((-3 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2204 (($ $ |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-1279 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1736 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-251 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 (-251 |#2|))) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#2| $) NIL (-12 (|has| $ (-320 |#2|)) (|has| |#2| (-72))) ELT)) (-2210 (((-587 |#2|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1470 (($) NIL T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1735 (((-698) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-698) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-557 (-477))) ELT)) (-3536 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3953 (((-776) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-556 (-776))) (|has| |#2| (-556 (-776)))) ELT)) (-1269 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1280 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1737 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3062 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-253 |#1| |#2|) (-1111 |#1| |#2|) (-1017) (-1017)) (T -253)) +NIL +((-1600 (((-264) (-1077) (-587 (-1077))) 17 T ELT) (((-264) (-1077) (-1077)) 16 T ELT) (((-264) (-587 (-1077))) 15 T ELT) (((-264) (-1077)) 14 T ELT))) +(((-254) (-10 -7 (-15 -1600 ((-264) (-1077))) (-15 -1600 ((-264) (-587 (-1077)))) (-15 -1600 ((-264) (-1077) (-1077))) (-15 -1600 ((-264) (-1077) (-587 (-1077)))))) (T -254)) +((-1600 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-1077))) (-5 *3 (-1077)) (-5 *2 (-264)) (-5 *1 (-254)))) (-1600 (*1 *2 *3 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-264)) (-5 *1 (-254)))) (-1600 (*1 *2 *3) (-12 (-5 *3 (-587 (-1077))) (-5 *2 (-264)) (-5 *1 (-254)))) (-1600 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-264)) (-5 *1 (-254))))) +((-1604 (((-587 (-554 $)) $) 27 T ELT)) (-1608 (($ $ (-251 $)) 78 T ELT) (($ $ (-587 (-251 $))) 140 T ELT) (($ $ (-587 (-554 $)) (-587 $)) NIL T ELT)) (-3163 (((-3 (-554 $) #1="failed") $) 128 T ELT)) (-3162 (((-554 $) $) 127 T ELT)) (-2579 (($ $) 17 T ELT) (($ (-587 $)) 54 T ELT)) (-1603 (((-587 (-86)) $) 35 T ELT)) (-3601 (((-86) (-86)) 89 T ELT)) (-2679 (((-85) $) 151 T ELT)) (-3849 (($ (-1 $ $) (-554 $)) 87 T ELT)) (-1606 (((-3 (-554 $) #1#) $) 95 T ELT)) (-2240 (($ (-86) $) 59 T ELT) (($ (-86) (-587 $)) 111 T ELT)) (-2639 (((-85) $ (-86)) 133 T ELT) (((-85) $ (-1094)) 132 T ELT)) (-2609 (((-698) $) 44 T ELT)) (-1602 (((-85) $ $) 57 T ELT) (((-85) $ (-1094)) 49 T ELT)) (-2680 (((-85) $) 149 T ELT)) (-3774 (($ $ (-554 $) $) NIL T ELT) (($ $ (-587 (-554 $)) (-587 $)) NIL T ELT) (($ $ (-587 (-251 $))) 138 T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-1 $ $))) 81 T ELT) (($ $ (-587 (-1094)) (-587 (-1 $ (-587 $)))) NIL T ELT) (($ $ (-1094) (-1 $ (-587 $))) 67 T ELT) (($ $ (-1094) (-1 $ $)) 72 T ELT) (($ $ (-587 (-86)) (-587 (-1 $ $))) 80 T ELT) (($ $ (-587 (-86)) (-587 (-1 $ (-587 $)))) 83 T ELT) (($ $ (-86) (-1 $ (-587 $))) 68 T ELT) (($ $ (-86) (-1 $ $)) 74 T ELT)) (-3806 (($ (-86) $) 60 T ELT) (($ (-86) $ $) 61 T ELT) (($ (-86) $ $ $) 62 T ELT) (($ (-86) $ $ $ $) 63 T ELT) (($ (-86) (-587 $)) 124 T ELT)) (-1607 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2596 (($ $) 15 T ELT) (($ (-587 $)) 53 T ELT)) (-2259 (((-85) (-86)) 21 T ELT))) +(((-255 |#1|) (-10 -7 (-15 -2679 ((-85) |#1|)) (-15 -2680 ((-85) |#1|)) (-15 -3774 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3774 (|#1| |#1| (-86) (-1 |#1| (-587 |#1|)))) (-15 -3774 (|#1| |#1| (-587 (-86)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -3774 (|#1| |#1| (-587 (-86)) (-587 (-1 |#1| |#1|)))) (-15 -3774 (|#1| |#1| (-1094) (-1 |#1| |#1|))) (-15 -3774 (|#1| |#1| (-1094) (-1 |#1| (-587 |#1|)))) (-15 -3774 (|#1| |#1| (-587 (-1094)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -3774 (|#1| |#1| (-587 (-1094)) (-587 (-1 |#1| |#1|)))) (-15 -1602 ((-85) |#1| (-1094))) (-15 -1602 ((-85) |#1| |#1|)) (-15 -3849 (|#1| (-1 |#1| |#1|) (-554 |#1|))) (-15 -2240 (|#1| (-86) (-587 |#1|))) (-15 -2240 (|#1| (-86) |#1|)) (-15 -2639 ((-85) |#1| (-1094))) (-15 -2639 ((-85) |#1| (-86))) (-15 -2259 ((-85) (-86))) (-15 -3601 ((-86) (-86))) (-15 -1603 ((-587 (-86)) |#1|)) (-15 -1604 ((-587 (-554 |#1|)) |#1|)) (-15 -1606 ((-3 (-554 |#1|) #1="failed") |#1|)) (-15 -2609 ((-698) |#1|)) (-15 -1607 (|#1| |#1| |#1|)) (-15 -1607 (|#1| |#1|)) (-15 -2579 (|#1| (-587 |#1|))) (-15 -2579 (|#1| |#1|)) (-15 -2596 (|#1| (-587 |#1|))) (-15 -2596 (|#1| |#1|)) (-15 -1608 (|#1| |#1| (-587 (-554 |#1|)) (-587 |#1|))) (-15 -1608 (|#1| |#1| (-587 (-251 |#1|)))) (-15 -1608 (|#1| |#1| (-251 |#1|))) (-15 -3806 (|#1| (-86) (-587 |#1|))) (-15 -3806 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3806 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3806 (|#1| (-86) |#1| |#1|)) (-15 -3806 (|#1| (-86) |#1|)) (-15 -3774 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -3774 (|#1| |#1| |#1| |#1|)) (-15 -3774 (|#1| |#1| (-251 |#1|))) (-15 -3774 (|#1| |#1| (-587 (-251 |#1|)))) (-15 -3774 (|#1| |#1| (-587 (-554 |#1|)) (-587 |#1|))) (-15 -3774 (|#1| |#1| (-554 |#1|) |#1|)) (-15 -3163 ((-3 (-554 |#1|) #1#) |#1|)) (-15 -3162 ((-554 |#1|) |#1|))) (-256)) (T -255)) +((-3601 (*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-255 *3)) (-4 *3 (-256)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-255 *4)) (-4 *4 (-256))))) +((-2574 (((-85) $ $) 7 T ELT)) (-1604 (((-587 (-554 $)) $) 42 T ELT)) (-1608 (($ $ (-251 $)) 54 T ELT) (($ $ (-587 (-251 $))) 53 T ELT) (($ $ (-587 (-554 $)) (-587 $)) 52 T ELT)) (-3163 (((-3 (-554 $) "failed") $) 67 T ELT)) (-3162 (((-554 $) $) 68 T ELT)) (-2579 (($ $) 49 T ELT) (($ (-587 $)) 48 T ELT)) (-1603 (((-587 (-86)) $) 41 T ELT)) (-3601 (((-86) (-86)) 40 T ELT)) (-2679 (((-85) $) 20 (|has| $ (-954 (-488))) ELT)) (-1601 (((-1089 $) (-554 $)) 23 (|has| $ (-965)) ELT)) (-3849 (($ (-1 $ $) (-554 $)) 34 T ELT)) (-1606 (((-3 (-554 $) "failed") $) 44 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-1605 (((-587 (-554 $)) $) 43 T ELT)) (-2240 (($ (-86) $) 36 T ELT) (($ (-86) (-587 $)) 35 T ELT)) (-2639 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1094)) 37 T ELT)) (-2609 (((-698) $) 45 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-1602 (((-85) $ $) 33 T ELT) (((-85) $ (-1094)) 32 T ELT)) (-2680 (((-85) $) 21 (|has| $ (-954 (-488))) ELT)) (-3774 (($ $ (-554 $) $) 65 T ELT) (($ $ (-587 (-554 $)) (-587 $)) 64 T ELT) (($ $ (-587 (-251 $))) 63 T ELT) (($ $ (-251 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-587 $) (-587 $)) 60 T ELT) (($ $ (-587 (-1094)) (-587 (-1 $ $))) 31 T ELT) (($ $ (-587 (-1094)) (-587 (-1 $ (-587 $)))) 30 T ELT) (($ $ (-1094) (-1 $ (-587 $))) 29 T ELT) (($ $ (-1094) (-1 $ $)) 28 T ELT) (($ $ (-587 (-86)) (-587 (-1 $ $))) 27 T ELT) (($ $ (-587 (-86)) (-587 (-1 $ (-587 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-587 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT)) (-3806 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-587 $)) 55 T ELT)) (-1607 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3191 (($ $) 22 (|has| $ (-965)) ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-554 $)) 66 T ELT)) (-2596 (($ $) 51 T ELT) (($ (-587 $)) 50 T ELT)) (-2259 (((-85) (-86)) 39 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT))) +(((-256) (-113)) (T -256)) +((-3806 (*1 *1 *2 *1) (-12 (-4 *1 (-256)) (-5 *2 (-86)))) (-3806 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-256)) (-5 *2 (-86)))) (-3806 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-256)) (-5 *2 (-86)))) (-3806 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-256)) (-5 *2 (-86)))) (-3806 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-587 *1)) (-4 *1 (-256)))) (-1608 (*1 *1 *1 *2) (-12 (-5 *2 (-251 *1)) (-4 *1 (-256)))) (-1608 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-251 *1))) (-4 *1 (-256)))) (-1608 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-554 *1))) (-5 *3 (-587 *1)) (-4 *1 (-256)))) (-2596 (*1 *1 *1) (-4 *1 (-256))) (-2596 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-256)))) (-2579 (*1 *1 *1) (-4 *1 (-256))) (-2579 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-256)))) (-1607 (*1 *1 *1) (-4 *1 (-256))) (-1607 (*1 *1 *1 *1) (-4 *1 (-256))) (-2609 (*1 *2 *1) (-12 (-4 *1 (-256)) (-5 *2 (-698)))) (-1606 (*1 *2 *1) (|partial| -12 (-5 *2 (-554 *1)) (-4 *1 (-256)))) (-1605 (*1 *2 *1) (-12 (-5 *2 (-587 (-554 *1))) (-4 *1 (-256)))) (-1604 (*1 *2 *1) (-12 (-5 *2 (-587 (-554 *1))) (-4 *1 (-256)))) (-1603 (*1 *2 *1) (-12 (-4 *1 (-256)) (-5 *2 (-587 (-86))))) (-3601 (*1 *2 *2) (-12 (-4 *1 (-256)) (-5 *2 (-86)))) (-2259 (*1 *2 *3) (-12 (-4 *1 (-256)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2639 (*1 *2 *1 *3) (-12 (-4 *1 (-256)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2639 (*1 *2 *1 *3) (-12 (-4 *1 (-256)) (-5 *3 (-1094)) (-5 *2 (-85)))) (-2240 (*1 *1 *2 *1) (-12 (-4 *1 (-256)) (-5 *2 (-86)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-587 *1)) (-4 *1 (-256)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-554 *1)) (-4 *1 (-256)))) (-1602 (*1 *2 *1 *1) (-12 (-4 *1 (-256)) (-5 *2 (-85)))) (-1602 (*1 *2 *1 *3) (-12 (-4 *1 (-256)) (-5 *3 (-1094)) (-5 *2 (-85)))) (-3774 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-1094))) (-5 *3 (-587 (-1 *1 *1))) (-4 *1 (-256)))) (-3774 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-1094))) (-5 *3 (-587 (-1 *1 (-587 *1)))) (-4 *1 (-256)))) (-3774 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-1 *1 (-587 *1))) (-4 *1 (-256)))) (-3774 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-1 *1 *1)) (-4 *1 (-256)))) (-3774 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-86))) (-5 *3 (-587 (-1 *1 *1))) (-4 *1 (-256)))) (-3774 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-86))) (-5 *3 (-587 (-1 *1 (-587 *1)))) (-4 *1 (-256)))) (-3774 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-587 *1))) (-4 *1 (-256)))) (-3774 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-256)))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-554 *1)) (-4 *1 (-965)) (-4 *1 (-256)) (-5 *2 (-1089 *1)))) (-3191 (*1 *1 *1) (-12 (-4 *1 (-965)) (-4 *1 (-256)))) (-2680 (*1 *2 *1) (-12 (-4 *1 (-954 (-488))) (-4 *1 (-256)) (-5 *2 (-85)))) (-2679 (*1 *2 *1) (-12 (-4 *1 (-954 (-488))) (-4 *1 (-256)) (-5 *2 (-85))))) +(-13 (-1017) (-954 (-554 $)) (-459 (-554 $) $) (-262 $) (-10 -8 (-15 -3806 ($ (-86) $)) (-15 -3806 ($ (-86) $ $)) (-15 -3806 ($ (-86) $ $ $)) (-15 -3806 ($ (-86) $ $ $ $)) (-15 -3806 ($ (-86) (-587 $))) (-15 -1608 ($ $ (-251 $))) (-15 -1608 ($ $ (-587 (-251 $)))) (-15 -1608 ($ $ (-587 (-554 $)) (-587 $))) (-15 -2596 ($ $)) (-15 -2596 ($ (-587 $))) (-15 -2579 ($ $)) (-15 -2579 ($ (-587 $))) (-15 -1607 ($ $)) (-15 -1607 ($ $ $)) (-15 -2609 ((-698) $)) (-15 -1606 ((-3 (-554 $) "failed") $)) (-15 -1605 ((-587 (-554 $)) $)) (-15 -1604 ((-587 (-554 $)) $)) (-15 -1603 ((-587 (-86)) $)) (-15 -3601 ((-86) (-86))) (-15 -2259 ((-85) (-86))) (-15 -2639 ((-85) $ (-86))) (-15 -2639 ((-85) $ (-1094))) (-15 -2240 ($ (-86) $)) (-15 -2240 ($ (-86) (-587 $))) (-15 -3849 ($ (-1 $ $) (-554 $))) (-15 -1602 ((-85) $ $)) (-15 -1602 ((-85) $ (-1094))) (-15 -3774 ($ $ (-587 (-1094)) (-587 (-1 $ $)))) (-15 -3774 ($ $ (-587 (-1094)) (-587 (-1 $ (-587 $))))) (-15 -3774 ($ $ (-1094) (-1 $ (-587 $)))) (-15 -3774 ($ $ (-1094) (-1 $ $))) (-15 -3774 ($ $ (-587 (-86)) (-587 (-1 $ $)))) (-15 -3774 ($ $ (-587 (-86)) (-587 (-1 $ (-587 $))))) (-15 -3774 ($ $ (-86) (-1 $ (-587 $)))) (-15 -3774 ($ $ (-86) (-1 $ $))) (IF (|has| $ (-965)) (PROGN (-15 -1601 ((-1089 $) (-554 $))) (-15 -3191 ($ $))) |%noBranch|) (IF (|has| $ (-954 (-488))) (PROGN (-15 -2680 ((-85) $)) (-15 -2679 ((-85) $))) |%noBranch|))) +(((-72) . T) ((-559 (-554 $)) . T) ((-556 (-776)) . T) ((-262 $) . T) ((-459 (-554 $) $) . T) ((-459 $ $) . T) ((-13) . T) ((-954 (-554 $)) . T) ((-1017) . T) ((-1133) . T)) +((-3849 ((|#2| (-1 |#2| |#1|) (-1077) (-554 |#1|)) 18 T ELT))) +(((-257 |#1| |#2|) (-10 -7 (-15 -3849 (|#2| (-1 |#2| |#1|) (-1077) (-554 |#1|)))) (-256) (-1133)) (T -257)) +((-3849 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1077)) (-5 *5 (-554 *6)) (-4 *6 (-256)) (-4 *2 (-1133)) (-5 *1 (-257 *6 *2))))) +((-3849 ((|#2| (-1 |#2| |#1|) (-554 |#1|)) 17 T ELT))) +(((-258 |#1| |#2|) (-10 -7 (-15 -3849 (|#2| (-1 |#2| |#1|) (-554 |#1|)))) (-256) (-256)) (T -258)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-554 *5)) (-4 *5 (-256)) (-4 *2 (-256)) (-5 *1 (-258 *5 *2))))) +((-1612 (((-85) $ $) 14 T ELT)) (-2570 (($ $ $) 18 T ELT)) (-2569 (($ $ $) 17 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 50 T ELT)) (-1609 (((-3 (-587 $) #1="failed") (-587 $) $) 67 T ELT)) (-3150 (($ $ $) 25 T ELT) (($ (-587 $)) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3472 (((-3 $ #1#) $ $) 21 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 55 T ELT))) +(((-259 |#1|) (-10 -7 (-15 -1609 ((-3 (-587 |#1|) #1="failed") (-587 |#1|) |#1|)) (-15 -1610 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1610 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2414 |#1|)) |#1| |#1|)) (-15 -2570 (|#1| |#1| |#1|)) (-15 -2569 (|#1| |#1| |#1|)) (-15 -1612 ((-85) |#1| |#1|)) (-15 -2746 ((-636 (-587 |#1|)) (-587 |#1|) |#1|)) (-15 -2747 ((-2 (|:| -3961 (-587 |#1|)) (|:| -2414 |#1|)) (-587 |#1|))) (-15 -3150 (|#1| (-587 |#1|))) (-15 -3150 (|#1| |#1| |#1|)) (-15 -3472 ((-3 |#1| #1#) |#1| |#1|))) (-260)) (T -259)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-1612 (((-85) $ $) 75 T ELT)) (-3730 (($) 23 T CONST)) (-2570 (($ $ $) 71 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-2569 (($ $ $) 72 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 66 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-1609 (((-3 (-587 $) "failed") (-587 $) $) 68 T ELT)) (-1899 (($ $ $) 60 T ELT) (($ (-587 $)) 59 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 58 T ELT)) (-3150 (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 69 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 65 T ELT)) (-1611 (((-698) $) 74 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 73 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-260) (-113)) (T -260)) +((-1612 (*1 *2 *1 *1) (-12 (-4 *1 (-260)) (-5 *2 (-85)))) (-1611 (*1 *2 *1) (-12 (-4 *1 (-260)) (-5 *2 (-698)))) (-2885 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1977 *1) (|:| -2908 *1))) (-4 *1 (-260)))) (-2569 (*1 *1 *1 *1) (-4 *1 (-260))) (-2570 (*1 *1 *1 *1) (-4 *1 (-260))) (-1610 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2414 *1))) (-4 *1 (-260)))) (-1610 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-260)))) (-1609 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-587 *1)) (-4 *1 (-260))))) +(-13 (-836) (-10 -8 (-15 -1612 ((-85) $ $)) (-15 -1611 ((-698) $)) (-15 -2885 ((-2 (|:| -1977 $) (|:| -2908 $)) $ $)) (-15 -2569 ($ $ $)) (-15 -2570 ($ $ $)) (-15 -1610 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $)) (-15 -1610 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1609 ((-3 (-587 $) "failed") (-587 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-559 (-488)) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-248) . T) ((-395) . T) ((-499) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 $) . T) ((-586 $) . T) ((-658 $) . T) ((-667) . T) ((-836) . T) ((-967 $) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-3774 (($ $ (-587 |#2|) (-587 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-251 |#2|)) 11 T ELT) (($ $ (-587 (-251 |#2|))) NIL T ELT))) +(((-261 |#1| |#2|) (-10 -7 (-15 -3774 (|#1| |#1| (-587 (-251 |#2|)))) (-15 -3774 (|#1| |#1| (-251 |#2|))) (-15 -3774 (|#1| |#1| |#2| |#2|)) (-15 -3774 (|#1| |#1| (-587 |#2|) (-587 |#2|)))) (-262 |#2|) (-1017)) (T -261)) +NIL +((-3774 (($ $ (-587 |#1|) (-587 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-251 |#1|)) 13 T ELT) (($ $ (-587 (-251 |#1|))) 12 T ELT))) +(((-262 |#1|) (-113) (-1017)) (T -262)) +((-3774 (*1 *1 *1 *2) (-12 (-5 *2 (-251 *3)) (-4 *1 (-262 *3)) (-4 *3 (-1017)))) (-3774 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-251 *3))) (-4 *1 (-262 *3)) (-4 *3 (-1017))))) +(-13 (-459 |t#1| |t#1|) (-10 -8 (-15 -3774 ($ $ (-251 |t#1|))) (-15 -3774 ($ $ (-587 (-251 |t#1|)))))) +(((-459 |#1| |#1|) . T)) +((-3774 ((|#1| (-1 |#1| (-488)) (-1096 (-352 (-488)))) 26 T ELT))) +(((-263 |#1|) (-10 -7 (-15 -3774 (|#1| (-1 |#1| (-488)) (-1096 (-352 (-488)))))) (-38 (-352 (-488)))) (T -263)) +((-3774 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-488))) (-5 *4 (-1096 (-352 (-488)))) (-5 *1 (-263 *2)) (-4 *2 (-38 (-352 (-488))))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 7 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 9 T ELT))) +(((-264) (-1017)) (T -264)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3512 (((-488) $) 13 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3212 (((-1053) $) 10 T ELT)) (-3953 (((-776) $) 20 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-265) (-13 (-999) (-10 -8 (-15 -3212 ((-1053) $)) (-15 -3512 ((-488) $))))) (T -265)) +((-3212 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-265)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-265))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 60 T ELT)) (-3135 (((-1170 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-260)) ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-825)) ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-825)) ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3629 (((-488) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-744)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-1170 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1094) #1#) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-954 (-1094))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-954 (-488))) ELT) (((-3 (-488) #1#) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-954 (-488))) ELT) (((-3 (-1164 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3162 (((-1170 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1094) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-954 (-1094))) ELT) (((-352 (-488)) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-954 (-488))) ELT) (((-488) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-954 (-488))) ELT) (((-1164 |#2| |#3| |#4|) $) NIL T ELT)) (-2570 (($ $ $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-1170 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1183 (-1170 |#1| |#2| |#3| |#4|)))) (-634 $) (-1183 $)) NIL T ELT) (((-634 (-1170 |#1| |#2| |#3| |#4|)) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3000 (($) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-487)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-3192 (((-85) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-744)) ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-800 (-488))) ELT) (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-800 (-332))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3002 (($ $) NIL T ELT)) (-3004 (((-1170 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3451 (((-636 $) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-1070)) ELT)) (-3193 (((-85) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-744)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2537 (($ $ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-760)) ELT)) (-3849 (($ (-1 (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3790 (((-3 (-754 |#2|) #1#) $) 80 T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-1170 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1183 (-1170 |#1| |#2| |#3| |#4|)))) (-1183 $) $) NIL T ELT) (((-634 (-1170 |#1| |#2| |#3| |#4|)) (-1183 $)) NIL T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3452 (($) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-1070)) CONST)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3134 (($ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-260)) ELT)) (-3136 (((-1170 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-487)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-825)) ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-3774 (($ $ (-587 (-1170 |#1| |#2| |#3| |#4|)) (-587 (-1170 |#1| |#2| |#3| |#4|))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-262 (-1170 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-262 (-1170 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-251 (-1170 |#1| |#2| |#3| |#4|))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-262 (-1170 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-587 (-251 (-1170 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-262 (-1170 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-587 (-1094)) (-587 (-1170 |#1| |#2| |#3| |#4|))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-459 (-1094) (-1170 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1094) (-1170 |#1| |#2| |#3| |#4|)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-459 (-1094) (-1170 |#1| |#2| |#3| |#4|))) ELT)) (-1611 (((-698) $) NIL T ELT)) (-3806 (($ $ (-1170 |#1| |#2| |#3| |#4|)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-243 (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|))) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-3764 (($ $ (-1 (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|)) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-815 (-1094))) ELT) (($ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-191)) ELT) (($ $ (-698)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-191)) ELT)) (-3001 (($ $) NIL T ELT)) (-3003 (((-1170 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3978 (((-804 (-488)) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-557 (-804 (-488)))) ELT) (((-804 (-332)) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-557 (-804 (-332)))) ELT) (((-477) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-557 (-477))) ELT) (((-332) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-937)) ELT) (((-181) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-937)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| (-1170 |#1| |#2| |#3| |#4|) (-825))) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ (-1170 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1094)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-954 (-1094))) ELT) (($ (-1164 |#2| |#3| |#4|)) 37 T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1170 |#1| |#2| |#3| |#4|) (-825))) (|has| (-1170 |#1| |#2| |#3| |#4|) (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-3137 (((-1170 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-487)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3389 (($ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-744)) ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $ (-1 (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|)) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-815 (-1094))) ELT) (($ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-191)) ELT) (($ $ (-698)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-191)) ELT)) (-2572 (((-85) $ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-760)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-760)) ELT)) (-3956 (($ $ $) 35 T ELT) (($ (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ (-1170 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1170 |#1| |#2| |#3| |#4|)) NIL T ELT))) +(((-266 |#1| |#2| |#3| |#4|) (-13 (-908 (-1170 |#1| |#2| |#3| |#4|)) (-954 (-1164 |#2| |#3| |#4|)) (-10 -8 (-15 -3790 ((-3 (-754 |#2|) "failed") $)) (-15 -3953 ($ (-1164 |#2| |#3| |#4|))))) (-13 (-954 (-488)) (-584 (-488)) (-395)) (-13 (-27) (-1119) (-366 |#1|)) (-1094) |#2|) (T -266)) +((-3953 (*1 *1 *2) (-12 (-5 *2 (-1164 *4 *5 *6)) (-4 *4 (-13 (-27) (-1119) (-366 *3))) (-14 *5 (-1094)) (-14 *6 *4) (-4 *3 (-13 (-954 (-488)) (-584 (-488)) (-395))) (-5 *1 (-266 *3 *4 *5 *6)))) (-3790 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-954 (-488)) (-584 (-488)) (-395))) (-5 *2 (-754 *4)) (-5 *1 (-266 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1119) (-366 *3))) (-14 *5 (-1094)) (-14 *6 *4)))) +((-2574 (((-85) $ $) NIL T ELT)) (-1219 (((-587 $) $ (-1094)) NIL (|has| |#1| (-499)) ELT) (((-587 $) $) NIL (|has| |#1| (-499)) ELT) (((-587 $) (-1089 $) (-1094)) NIL (|has| |#1| (-499)) ELT) (((-587 $) (-1089 $)) NIL (|has| |#1| (-499)) ELT) (((-587 $) (-861 $)) NIL (|has| |#1| (-499)) ELT)) (-1220 (($ $ (-1094)) NIL (|has| |#1| (-499)) ELT) (($ $) NIL (|has| |#1| (-499)) ELT) (($ (-1089 $) (-1094)) NIL (|has| |#1| (-499)) ELT) (($ (-1089 $)) NIL (|has| |#1| (-499)) ELT) (($ (-861 $)) NIL (|has| |#1| (-499)) ELT)) (-3194 (((-85) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965)))) ELT)) (-3087 (((-587 (-1094)) $) 365 T ELT)) (-3089 (((-352 (-1089 $)) $ (-554 $)) NIL (|has| |#1| (-499)) ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-1604 (((-587 (-554 $)) $) NIL T ELT)) (-3498 (($ $) 170 (|has| |#1| (-499)) ELT)) (-3645 (($ $) 146 (|has| |#1| (-499)) ELT)) (-1375 (($ $ (-1008 $)) 231 (|has| |#1| (-499)) ELT) (($ $ (-1094)) 227 (|has| |#1| (-499)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965)))) ELT)) (-1608 (($ $ (-251 $)) NIL T ELT) (($ $ (-587 (-251 $))) 383 T ELT) (($ $ (-587 (-554 $)) (-587 $)) 438 T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) 305 (-12 (|has| |#1| (-395)) (|has| |#1| (-499))) ELT)) (-3781 (($ $) NIL (|has| |#1| (-499)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-499)) ELT)) (-3043 (($ $) NIL (|has| |#1| (-499)) ELT)) (-1612 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3496 (($ $) 166 (|has| |#1| (-499)) ELT)) (-3644 (($ $) 142 (|has| |#1| (-499)) ELT)) (-1613 (($ $ (-488)) 68 (|has| |#1| (-499)) ELT)) (-3500 (($ $) 174 (|has| |#1| (-499)) ELT)) (-3643 (($ $) 150 (|has| |#1| (-499)) ELT)) (-3730 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965))) (|has| |#1| (-1029))) CONST)) (-1221 (((-587 $) $ (-1094)) NIL (|has| |#1| (-499)) ELT) (((-587 $) $) NIL (|has| |#1| (-499)) ELT) (((-587 $) (-1089 $) (-1094)) NIL (|has| |#1| (-499)) ELT) (((-587 $) (-1089 $)) NIL (|has| |#1| (-499)) ELT) (((-587 $) (-861 $)) NIL (|has| |#1| (-499)) ELT)) (-3189 (($ $ (-1094)) NIL (|has| |#1| (-499)) ELT) (($ $) NIL (|has| |#1| (-499)) ELT) (($ (-1089 $) (-1094)) 133 (|has| |#1| (-499)) ELT) (($ (-1089 $)) NIL (|has| |#1| (-499)) ELT) (($ (-861 $)) NIL (|has| |#1| (-499)) ELT)) (-3163 (((-3 (-554 $) #1#) $) 18 T ELT) (((-3 (-1094) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-499)) (|has| |#1| (-954 (-488)))) ELT) (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-861 |#1|)) #1#) $) NIL (|has| |#1| (-499)) ELT) (((-3 (-861 |#1|) #1#) $) NIL (|has| |#1| (-965)) ELT) (((-3 (-352 (-488)) #1#) $) 48 (OR (-12 (|has| |#1| (-499)) (|has| |#1| (-954 (-488)))) (|has| |#1| (-954 (-352 (-488))))) ELT)) (-3162 (((-554 $) $) 12 T ELT) (((-1094) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-499)) (|has| |#1| (-954 (-488)))) ELT) (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-352 (-861 |#1|)) $) NIL (|has| |#1| (-499)) ELT) (((-861 |#1|) $) NIL (|has| |#1| (-965)) ELT) (((-352 (-488)) $) 316 (OR (-12 (|has| |#1| (-499)) (|has| |#1| (-954 (-488)))) (|has| |#1| (-954 (-352 (-488))))) ELT)) (-2570 (($ $ $) NIL (|has| |#1| (-499)) ELT)) (-2284 (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) 124 (|has| |#1| (-965)) ELT) (((-634 |#1|) (-634 $)) 114 (|has| |#1| (-965)) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (-12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965))) ELT) (((-634 (-488)) (-634 $)) NIL (-12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965))) ELT)) (-3848 (($ $) 95 (|has| |#1| (-499)) ELT)) (-3473 (((-3 $ #1#) $) NIL (|has| |#1| (-1029)) ELT)) (-2569 (($ $ $) NIL (|has| |#1| (-499)) ELT)) (-3951 (($ $ (-1008 $)) 235 (|has| |#1| (-499)) ELT) (($ $ (-1094)) 233 (|has| |#1| (-499)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL (|has| |#1| (-499)) ELT)) (-3729 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3392 (($ $ $) 201 (|has| |#1| (-499)) ELT)) (-3633 (($) 136 (|has| |#1| (-499)) ELT)) (-1372 (($ $ $) 221 (|has| |#1| (-499)) ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) 389 (|has| |#1| (-800 (-488))) ELT) (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) 396 (|has| |#1| (-800 (-332))) ELT)) (-2579 (($ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1218 (((-85) $ $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965)))) ELT)) (-1603 (((-587 (-86)) $) NIL T ELT)) (-3601 (((-86) (-86)) 275 T ELT)) (-2415 (((-85) $) 27 (|has| |#1| (-1029)) ELT)) (-2679 (((-85) $) NIL (|has| $ (-954 (-488))) ELT)) (-3002 (($ $) 73 (|has| |#1| (-965)) ELT)) (-3004 (((-1043 |#1| (-554 $)) $) 90 (|has| |#1| (-965)) ELT)) (-1614 (((-85) $) 49 (|has| |#1| (-499)) ELT)) (-3017 (($ $ (-488)) NIL (|has| |#1| (-499)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL (|has| |#1| (-499)) ELT)) (-1601 (((-1089 $) (-554 $)) 276 (|has| $ (-965)) ELT)) (-3849 (($ (-1 $ $) (-554 $)) 434 T ELT)) (-1606 (((-3 (-554 $) #1#) $) NIL T ELT)) (-3949 (($ $) 140 (|has| |#1| (-499)) ELT)) (-2262 (($ $) 246 (|has| |#1| (-499)) ELT)) (-2285 (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) NIL (|has| |#1| (-965)) ELT) (((-634 |#1|) (-1183 $)) NIL (|has| |#1| (-965)) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (-12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965))) ELT) (((-634 (-488)) (-1183 $)) NIL (-12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965))) ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-499)) ELT) (($ $ $) NIL (|has| |#1| (-499)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1605 (((-587 (-554 $)) $) 51 T ELT)) (-2240 (($ (-86) $) NIL T ELT) (($ (-86) (-587 $)) 439 T ELT)) (-2829 (((-3 (-587 $) #1#) $) NIL (|has| |#1| (-1029)) ELT)) (-2831 (((-3 (-2 (|:| |val| $) (|:| -2406 (-488))) #1#) $) NIL (|has| |#1| (-965)) ELT)) (-2828 (((-3 (-587 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1802 (((-3 (-2 (|:| -3961 (-488)) (|:| |var| (-554 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2830 (((-3 (-2 (|:| |var| (-554 $)) (|:| -2406 (-488))) #1#) $) NIL (|has| |#1| (-1029)) ELT) (((-3 (-2 (|:| |var| (-554 $)) (|:| -2406 (-488))) #1#) $ (-86)) NIL (|has| |#1| (-965)) ELT) (((-3 (-2 (|:| |var| (-554 $)) (|:| -2406 (-488))) #1#) $ (-1094)) NIL (|has| |#1| (-965)) ELT)) (-2639 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1094)) 53 T ELT)) (-2490 (($ $) NIL (OR (|has| |#1| (-416)) (|has| |#1| (-499))) ELT)) (-2838 (($ $ (-1094)) 250 (|has| |#1| (-499)) ELT) (($ $ (-1008 $)) 252 (|has| |#1| (-499)) ELT)) (-2609 (((-698) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1805 (((-85) $) 45 T ELT)) (-1804 ((|#1| $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 298 (|has| |#1| (-499)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-499)) ELT) (($ $ $) NIL (|has| |#1| (-499)) ELT)) (-1602 (((-85) $ $) NIL T ELT) (((-85) $ (-1094)) NIL T ELT)) (-1376 (($ $ (-1094)) 225 (|has| |#1| (-499)) ELT) (($ $) 223 (|has| |#1| (-499)) ELT)) (-1370 (($ $) 217 (|has| |#1| (-499)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) 303 (-12 (|has| |#1| (-395)) (|has| |#1| (-499))) ELT)) (-3738 (((-350 $) $) NIL (|has| |#1| (-499)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-499)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-499)) ELT)) (-3472 (((-3 $ #1#) $ $) NIL (|has| |#1| (-499)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL (|has| |#1| (-499)) ELT)) (-3950 (($ $) 138 (|has| |#1| (-499)) ELT)) (-2680 (((-85) $) NIL (|has| $ (-954 (-488))) ELT)) (-3774 (($ $ (-554 $) $) NIL T ELT) (($ $ (-587 (-554 $)) (-587 $)) 433 T ELT) (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-1 $ $))) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-1 $ (-587 $)))) NIL T ELT) (($ $ (-1094) (-1 $ (-587 $))) NIL T ELT) (($ $ (-1094) (-1 $ $)) NIL T ELT) (($ $ (-587 (-86)) (-587 (-1 $ $))) 376 T ELT) (($ $ (-587 (-86)) (-587 (-1 $ (-587 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-587 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1094)) NIL (|has| |#1| (-557 (-477))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-557 (-477))) ELT) (($ $) NIL (|has| |#1| (-557 (-477))) ELT) (($ $ (-86) $ (-1094)) 363 (|has| |#1| (-557 (-477))) ELT) (($ $ (-587 (-86)) (-587 $) (-1094)) 362 (|has| |#1| (-557 (-477))) ELT) (($ $ (-587 (-1094)) (-587 (-698)) (-587 (-1 $ $))) NIL (|has| |#1| (-965)) ELT) (($ $ (-587 (-1094)) (-587 (-698)) (-587 (-1 $ (-587 $)))) NIL (|has| |#1| (-965)) ELT) (($ $ (-1094) (-698) (-1 $ (-587 $))) NIL (|has| |#1| (-965)) ELT) (($ $ (-1094) (-698) (-1 $ $)) NIL (|has| |#1| (-965)) ELT)) (-1611 (((-698) $) NIL (|has| |#1| (-499)) ELT)) (-2260 (($ $) 238 (|has| |#1| (-499)) ELT)) (-3806 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-587 $)) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-499)) ELT)) (-1607 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2261 (($ $) 248 (|has| |#1| (-499)) ELT)) (-3391 (($ $) 199 (|has| |#1| (-499)) ELT)) (-3764 (($ $ (-1094)) NIL (|has| |#1| (-965)) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-965)) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-965)) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-965)) ELT)) (-3001 (($ $) 74 (|has| |#1| (-499)) ELT)) (-3003 (((-1043 |#1| (-554 $)) $) 92 (|has| |#1| (-499)) ELT)) (-3191 (($ $) 314 (|has| $ (-965)) ELT)) (-3501 (($ $) 176 (|has| |#1| (-499)) ELT)) (-3642 (($ $) 152 (|has| |#1| (-499)) ELT)) (-3499 (($ $) 172 (|has| |#1| (-499)) ELT)) (-3641 (($ $) 148 (|has| |#1| (-499)) ELT)) (-3497 (($ $) 168 (|has| |#1| (-499)) ELT)) (-3640 (($ $) 144 (|has| |#1| (-499)) ELT)) (-3978 (((-804 (-488)) $) NIL (|has| |#1| (-557 (-804 (-488)))) ELT) (((-804 (-332)) $) NIL (|has| |#1| (-557 (-804 (-332)))) ELT) (($ (-350 $)) NIL (|has| |#1| (-499)) ELT) (((-477) $) 360 (|has| |#1| (-557 (-477))) ELT)) (-3015 (($ $ $) NIL (|has| |#1| (-416)) ELT)) (-2441 (($ $ $) NIL (|has| |#1| (-416)) ELT)) (-3953 (((-776) $) 432 T ELT) (($ (-554 $)) 423 T ELT) (($ (-1094)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-499)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-499)) (|has| |#1| (-954 (-488)))) ELT) (($ (-1043 |#1| (-554 $))) 94 (|has| |#1| (-965)) ELT) (($ (-352 |#1|)) NIL (|has| |#1| (-499)) ELT) (($ (-861 (-352 |#1|))) NIL (|has| |#1| (-499)) ELT) (($ (-352 (-861 (-352 |#1|)))) NIL (|has| |#1| (-499)) ELT) (($ (-352 (-861 |#1|))) NIL (|has| |#1| (-499)) ELT) (($ (-861 |#1|)) NIL (|has| |#1| (-965)) ELT) (($ (-488)) 36 (OR (|has| |#1| (-954 (-488))) (|has| |#1| (-965))) ELT) (($ (-352 (-488))) NIL (OR (|has| |#1| (-499)) (|has| |#1| (-954 (-352 (-488))))) ELT)) (-2708 (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-3132 (((-698)) NIL (|has| |#1| (-965)) CONST)) (-2596 (($ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3107 (($ $ $) 219 (|has| |#1| (-499)) ELT)) (-3395 (($ $ $) 205 (|has| |#1| (-499)) ELT)) (-3397 (($ $ $) 209 (|has| |#1| (-499)) ELT)) (-3394 (($ $ $) 203 (|has| |#1| (-499)) ELT)) (-3396 (($ $ $) 207 (|has| |#1| (-499)) ELT)) (-2259 (((-85) (-86)) 10 T ELT)) (-1269 (((-85) $ $) 85 T ELT)) (-3504 (($ $) 182 (|has| |#1| (-499)) ELT)) (-3492 (($ $) 158 (|has| |#1| (-499)) ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3502 (($ $) 178 (|has| |#1| (-499)) ELT)) (-3490 (($ $) 154 (|has| |#1| (-499)) ELT)) (-3506 (($ $) 186 (|has| |#1| (-499)) ELT)) (-3494 (($ $) 162 (|has| |#1| (-499)) ELT)) (-1803 (($ (-1094) $) NIL T ELT) (($ (-1094) $ $) NIL T ELT) (($ (-1094) $ $ $) NIL T ELT) (($ (-1094) $ $ $ $) NIL T ELT) (($ (-1094) (-587 $)) NIL T ELT)) (-3131 (((-85) $ $) NIL (|has| |#1| (-965)) ELT)) (-3399 (($ $) 213 (|has| |#1| (-499)) ELT)) (-3398 (($ $) 211 (|has| |#1| (-499)) ELT)) (-3507 (($ $) 188 (|has| |#1| (-499)) ELT)) (-3495 (($ $) 164 (|has| |#1| (-499)) ELT)) (-3505 (($ $) 184 (|has| |#1| (-499)) ELT)) (-3493 (($ $) 160 (|has| |#1| (-499)) ELT)) (-3503 (($ $) 180 (|has| |#1| (-499)) ELT)) (-3491 (($ $) 156 (|has| |#1| (-499)) ELT)) (-3389 (($ $) 191 (|has| |#1| (-499)) ELT)) (-2666 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965)))) CONST)) (-2264 (($ $) 242 (|has| |#1| (-499)) ELT)) (-2672 (($) 25 (|has| |#1| (-1029)) CONST)) (-3393 (($ $) 193 (|has| |#1| (-499)) ELT) (($ $ $) 195 (|has| |#1| (-499)) ELT)) (-2265 (($ $) 240 (|has| |#1| (-499)) ELT)) (-2675 (($ $ (-1094)) NIL (|has| |#1| (-965)) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-965)) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-965)) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-965)) ELT)) (-2263 (($ $) 244 (|has| |#1| (-499)) ELT)) (-3390 (($ $ $) 197 (|has| |#1| (-499)) ELT)) (-3062 (((-85) $ $) 87 T ELT)) (-3956 (($ (-1043 |#1| (-554 $)) (-1043 |#1| (-554 $))) 105 (|has| |#1| (-499)) ELT) (($ $ $) 44 (OR (|has| |#1| (-416)) (|has| |#1| (-499))) ELT)) (-3843 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965)))) ELT)) (-3845 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-499)) ELT) (($ $ (-352 (-488))) 311 (|has| |#1| (-499)) ELT) (($ $ (-488)) 79 (OR (|has| |#1| (-416)) (|has| |#1| (-499))) ELT) (($ $ (-698)) 75 (|has| |#1| (-1029)) ELT) (($ $ (-834)) 83 (|has| |#1| (-1029)) ELT)) (* (($ (-352 (-488)) $) NIL (|has| |#1| (-499)) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-499)) ELT) (($ $ |#1|) NIL (|has| |#1| (-148)) ELT) (($ |#1| $) NIL (|has| |#1| (-965)) ELT) (($ $ $) 38 (|has| |#1| (-1029)) ELT) (($ (-488) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965)))) ELT) (($ (-698) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965)))) ELT) (($ (-834) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965)))) ELT))) +(((-267 |#1|) (-13 (-366 |#1|) (-10 -8 (IF (|has| |#1| (-499)) (PROGN (-6 (-29 |#1|)) (-6 (-1119)) (-6 (-133)) (-6 (-573)) (-6 (-1057)) (-15 -3848 ($ $)) (-15 -1614 ((-85) $)) (-15 -1613 ($ $ (-488))) (IF (|has| |#1| (-395)) (PROGN (-15 -2712 ((-350 (-1089 $)) (-1089 $))) (-15 -2713 ((-350 (-1089 $)) (-1089 $)))) |%noBranch|) (IF (|has| |#1| (-954 (-488))) (-6 (-954 (-48))) |%noBranch|)) |%noBranch|))) (-1017)) (T -267)) +((-3848 (*1 *1 *1) (-12 (-5 *1 (-267 *2)) (-4 *2 (-499)) (-4 *2 (-1017)))) (-1614 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-267 *3)) (-4 *3 (-499)) (-4 *3 (-1017)))) (-1613 (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-267 *3)) (-4 *3 (-499)) (-4 *3 (-1017)))) (-2712 (*1 *2 *3) (-12 (-5 *2 (-350 (-1089 *1))) (-5 *1 (-267 *4)) (-5 *3 (-1089 *1)) (-4 *4 (-395)) (-4 *4 (-499)) (-4 *4 (-1017)))) (-2713 (*1 *2 *3) (-12 (-5 *2 (-350 (-1089 *1))) (-5 *1 (-267 *4)) (-5 *3 (-1089 *1)) (-4 *4 (-395)) (-4 *4 (-499)) (-4 *4 (-1017))))) +((-3849 (((-267 |#2|) (-1 |#2| |#1|) (-267 |#1|)) 13 T ELT))) +(((-268 |#1| |#2|) (-10 -7 (-15 -3849 ((-267 |#2|) (-1 |#2| |#1|) (-267 |#1|)))) (-1017) (-1017)) (T -268)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-267 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-5 *2 (-267 *6)) (-5 *1 (-268 *5 *6))))) +((-3735 (((-51) |#2| (-251 |#2|) (-698)) 40 T ELT) (((-51) |#2| (-251 |#2|)) 32 T ELT) (((-51) |#2| (-698)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1094)) 26 T ELT)) (-3824 (((-51) |#2| (-251 |#2|) (-352 (-488))) 59 T ELT) (((-51) |#2| (-251 |#2|)) 56 T ELT) (((-51) |#2| (-352 (-488))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1094)) 55 T ELT)) (-3788 (((-51) |#2| (-251 |#2|) (-352 (-488))) 54 T ELT) (((-51) |#2| (-251 |#2|)) 51 T ELT) (((-51) |#2| (-352 (-488))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1094)) 50 T ELT)) (-3785 (((-51) |#2| (-251 |#2|) (-488)) 47 T ELT) (((-51) |#2| (-251 |#2|)) 44 T ELT) (((-51) |#2| (-488)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1094)) 43 T ELT))) +(((-269 |#1| |#2|) (-10 -7 (-15 -3735 ((-51) (-1094))) (-15 -3735 ((-51) |#2|)) (-15 -3735 ((-51) |#2| (-698))) (-15 -3735 ((-51) |#2| (-251 |#2|))) (-15 -3735 ((-51) |#2| (-251 |#2|) (-698))) (-15 -3785 ((-51) (-1094))) (-15 -3785 ((-51) |#2|)) (-15 -3785 ((-51) |#2| (-488))) (-15 -3785 ((-51) |#2| (-251 |#2|))) (-15 -3785 ((-51) |#2| (-251 |#2|) (-488))) (-15 -3788 ((-51) (-1094))) (-15 -3788 ((-51) |#2|)) (-15 -3788 ((-51) |#2| (-352 (-488)))) (-15 -3788 ((-51) |#2| (-251 |#2|))) (-15 -3788 ((-51) |#2| (-251 |#2|) (-352 (-488)))) (-15 -3824 ((-51) (-1094))) (-15 -3824 ((-51) |#2|)) (-15 -3824 ((-51) |#2| (-352 (-488)))) (-15 -3824 ((-51) |#2| (-251 |#2|))) (-15 -3824 ((-51) |#2| (-251 |#2|) (-352 (-488))))) (-13 (-395) (-954 (-488)) (-584 (-488))) (-13 (-27) (-1119) (-366 |#1|))) (T -269)) +((-3824 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-251 *3)) (-5 *5 (-352 (-488))) (-4 *3 (-13 (-27) (-1119) (-366 *6))) (-4 *6 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-269 *6 *3)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-251 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))) (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-269 *5 *3)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-352 (-488))) (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-269 *5 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-269 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *4))))) (-3824 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-27) (-1119) (-366 *4))))) (-3788 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-251 *3)) (-5 *5 (-352 (-488))) (-4 *3 (-13 (-27) (-1119) (-366 *6))) (-4 *6 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-269 *6 *3)))) (-3788 (*1 *2 *3 *4) (-12 (-5 *4 (-251 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))) (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-269 *5 *3)))) (-3788 (*1 *2 *3 *4) (-12 (-5 *4 (-352 (-488))) (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-269 *5 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))))) (-3788 (*1 *2 *3) (-12 (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-269 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *4))))) (-3788 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-27) (-1119) (-366 *4))))) (-3785 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-251 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *6))) (-4 *6 (-13 (-395) (-954 *5) (-584 *5))) (-5 *5 (-488)) (-5 *2 (-51)) (-5 *1 (-269 *6 *3)))) (-3785 (*1 *2 *3 *4) (-12 (-5 *4 (-251 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))) (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-269 *5 *3)))) (-3785 (*1 *2 *3 *4) (-12 (-5 *4 (-488)) (-4 *5 (-13 (-395) (-954 *4) (-584 *4))) (-5 *2 (-51)) (-5 *1 (-269 *5 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))))) (-3785 (*1 *2 *3) (-12 (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-269 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *4))))) (-3785 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-27) (-1119) (-366 *4))))) (-3735 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-251 *3)) (-5 *5 (-698)) (-4 *3 (-13 (-27) (-1119) (-366 *6))) (-4 *6 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-269 *6 *3)))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-251 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))) (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-269 *5 *3)))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-698)) (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-269 *5 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-269 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *4))))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-27) (-1119) (-366 *4)))))) +((-1615 (((-51) |#2| (-86) (-251 |#2|) (-587 |#2|)) 89 T ELT) (((-51) |#2| (-86) (-251 |#2|) (-251 |#2|)) 85 T ELT) (((-51) |#2| (-86) (-251 |#2|) |#2|) 87 T ELT) (((-51) (-251 |#2|) (-86) (-251 |#2|) |#2|) 88 T ELT) (((-51) (-587 |#2|) (-587 (-86)) (-251 |#2|) (-587 (-251 |#2|))) 81 T ELT) (((-51) (-587 |#2|) (-587 (-86)) (-251 |#2|) (-587 |#2|)) 83 T ELT) (((-51) (-587 (-251 |#2|)) (-587 (-86)) (-251 |#2|) (-587 |#2|)) 84 T ELT) (((-51) (-587 (-251 |#2|)) (-587 (-86)) (-251 |#2|) (-587 (-251 |#2|))) 82 T ELT) (((-51) (-251 |#2|) (-86) (-251 |#2|) (-587 |#2|)) 90 T ELT) (((-51) (-251 |#2|) (-86) (-251 |#2|) (-251 |#2|)) 86 T ELT))) +(((-270 |#1| |#2|) (-10 -7 (-15 -1615 ((-51) (-251 |#2|) (-86) (-251 |#2|) (-251 |#2|))) (-15 -1615 ((-51) (-251 |#2|) (-86) (-251 |#2|) (-587 |#2|))) (-15 -1615 ((-51) (-587 (-251 |#2|)) (-587 (-86)) (-251 |#2|) (-587 (-251 |#2|)))) (-15 -1615 ((-51) (-587 (-251 |#2|)) (-587 (-86)) (-251 |#2|) (-587 |#2|))) (-15 -1615 ((-51) (-587 |#2|) (-587 (-86)) (-251 |#2|) (-587 |#2|))) (-15 -1615 ((-51) (-587 |#2|) (-587 (-86)) (-251 |#2|) (-587 (-251 |#2|)))) (-15 -1615 ((-51) (-251 |#2|) (-86) (-251 |#2|) |#2|)) (-15 -1615 ((-51) |#2| (-86) (-251 |#2|) |#2|)) (-15 -1615 ((-51) |#2| (-86) (-251 |#2|) (-251 |#2|))) (-15 -1615 ((-51) |#2| (-86) (-251 |#2|) (-587 |#2|)))) (-13 (-499) (-557 (-477))) (-366 |#1|)) (T -270)) +((-1615 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-86)) (-5 *5 (-251 *3)) (-5 *6 (-587 *3)) (-4 *3 (-366 *7)) (-4 *7 (-13 (-499) (-557 (-477)))) (-5 *2 (-51)) (-5 *1 (-270 *7 *3)))) (-1615 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-251 *3)) (-4 *3 (-366 *6)) (-4 *6 (-13 (-499) (-557 (-477)))) (-5 *2 (-51)) (-5 *1 (-270 *6 *3)))) (-1615 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-251 *3)) (-4 *3 (-366 *6)) (-4 *6 (-13 (-499) (-557 (-477)))) (-5 *2 (-51)) (-5 *1 (-270 *6 *3)))) (-1615 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-251 *5)) (-5 *4 (-86)) (-4 *5 (-366 *6)) (-4 *6 (-13 (-499) (-557 (-477)))) (-5 *2 (-51)) (-5 *1 (-270 *6 *5)))) (-1615 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 (-86))) (-5 *6 (-587 (-251 *8))) (-4 *8 (-366 *7)) (-5 *5 (-251 *8)) (-4 *7 (-13 (-499) (-557 (-477)))) (-5 *2 (-51)) (-5 *1 (-270 *7 *8)))) (-1615 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-587 *7)) (-5 *4 (-587 (-86))) (-5 *5 (-251 *7)) (-4 *7 (-366 *6)) (-4 *6 (-13 (-499) (-557 (-477)))) (-5 *2 (-51)) (-5 *1 (-270 *6 *7)))) (-1615 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-587 (-251 *8))) (-5 *4 (-587 (-86))) (-5 *5 (-251 *8)) (-5 *6 (-587 *8)) (-4 *8 (-366 *7)) (-4 *7 (-13 (-499) (-557 (-477)))) (-5 *2 (-51)) (-5 *1 (-270 *7 *8)))) (-1615 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-587 (-251 *7))) (-5 *4 (-587 (-86))) (-5 *5 (-251 *7)) (-4 *7 (-366 *6)) (-4 *6 (-13 (-499) (-557 (-477)))) (-5 *2 (-51)) (-5 *1 (-270 *6 *7)))) (-1615 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-251 *7)) (-5 *4 (-86)) (-5 *5 (-587 *7)) (-4 *7 (-366 *6)) (-4 *6 (-13 (-499) (-557 (-477)))) (-5 *2 (-51)) (-5 *1 (-270 *6 *7)))) (-1615 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-251 *6)) (-5 *4 (-86)) (-4 *6 (-366 *5)) (-4 *5 (-13 (-499) (-557 (-477)))) (-5 *2 (-51)) (-5 *1 (-270 *5 *6))))) +((-1617 (((-1129 (-842)) (-267 (-488)) (-267 (-488)) (-267 (-488)) (-1 (-181) (-181)) (-1005 (-181)) (-181) (-488) (-1077)) 67 T ELT) (((-1129 (-842)) (-267 (-488)) (-267 (-488)) (-267 (-488)) (-1 (-181) (-181)) (-1005 (-181)) (-181) (-488)) 68 T ELT) (((-1129 (-842)) (-267 (-488)) (-267 (-488)) (-267 (-488)) (-1 (-181) (-181)) (-1005 (-181)) (-1 (-181) (-181)) (-488) (-1077)) 64 T ELT) (((-1129 (-842)) (-267 (-488)) (-267 (-488)) (-267 (-488)) (-1 (-181) (-181)) (-1005 (-181)) (-1 (-181) (-181)) (-488)) 65 T ELT)) (-1616 (((-1 (-181) (-181)) (-181)) 66 T ELT))) +(((-271) (-10 -7 (-15 -1616 ((-1 (-181) (-181)) (-181))) (-15 -1617 ((-1129 (-842)) (-267 (-488)) (-267 (-488)) (-267 (-488)) (-1 (-181) (-181)) (-1005 (-181)) (-1 (-181) (-181)) (-488))) (-15 -1617 ((-1129 (-842)) (-267 (-488)) (-267 (-488)) (-267 (-488)) (-1 (-181) (-181)) (-1005 (-181)) (-1 (-181) (-181)) (-488) (-1077))) (-15 -1617 ((-1129 (-842)) (-267 (-488)) (-267 (-488)) (-267 (-488)) (-1 (-181) (-181)) (-1005 (-181)) (-181) (-488))) (-15 -1617 ((-1129 (-842)) (-267 (-488)) (-267 (-488)) (-267 (-488)) (-1 (-181) (-181)) (-1005 (-181)) (-181) (-488) (-1077))))) (T -271)) +((-1617 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-267 (-488))) (-5 *4 (-1 (-181) (-181))) (-5 *5 (-1005 (-181))) (-5 *6 (-181)) (-5 *7 (-488)) (-5 *8 (-1077)) (-5 *2 (-1129 (-842))) (-5 *1 (-271)))) (-1617 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-267 (-488))) (-5 *4 (-1 (-181) (-181))) (-5 *5 (-1005 (-181))) (-5 *6 (-181)) (-5 *7 (-488)) (-5 *2 (-1129 (-842))) (-5 *1 (-271)))) (-1617 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-267 (-488))) (-5 *4 (-1 (-181) (-181))) (-5 *5 (-1005 (-181))) (-5 *6 (-488)) (-5 *7 (-1077)) (-5 *2 (-1129 (-842))) (-5 *1 (-271)))) (-1617 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-267 (-488))) (-5 *4 (-1 (-181) (-181))) (-5 *5 (-1005 (-181))) (-5 *6 (-488)) (-5 *2 (-1129 (-842))) (-5 *1 (-271)))) (-1616 (*1 *2 *3) (-12 (-5 *2 (-1 (-181) (-181))) (-5 *1 (-271)) (-5 *3 (-181))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 26 T ELT)) (-3087 (((-587 (-998)) $) NIL T ELT)) (-3837 (((-1094) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3777 (($ $ (-352 (-488))) NIL T ELT) (($ $ (-352 (-488)) (-352 (-488))) NIL T ELT)) (-3780 (((-1073 (-2 (|:| |k| (-352 (-488))) (|:| |c| |#1|))) $) 20 T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3645 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-314)) ELT)) (-3043 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1612 (((-85) $ $) NIL (|has| |#1| (-314)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3644 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3824 (($ (-698) (-1073 (-2 (|:| |k| (-352 (-488))) (|:| |c| |#1|)))) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3643 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3730 (($) NIL T CONST)) (-2570 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3965 (($ $) 36 T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-2569 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL (|has| |#1| (-314)) ELT)) (-3729 (((-85) $) NIL (|has| |#1| (-314)) ELT)) (-3192 (((-85) $) NIL T ELT)) (-2898 (((-85) $) NIL T ELT)) (-3633 (($) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3778 (((-352 (-488)) $) NIL T ELT) (((-352 (-488)) $ (-352 (-488))) 16 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3017 (($ $ (-488)) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3783 (($ $ (-834)) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-352 (-488))) NIL T ELT) (($ $ (-998) (-352 (-488))) NIL T ELT) (($ $ (-587 (-998)) (-587 (-352 (-488)))) NIL T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3949 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3818 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-29 (-488))) (|has| |#1| (-875)) (|has| |#1| (-1119))) (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-15 -3818 (|#1| |#1| (-1094)))) (|has| |#1| (-15 -3087 ((-587 (-1094)) |#1|))))) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#1| (-314)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#1| (-314)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3775 (($ $ (-352 (-488))) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL (|has| |#1| (-499)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-1618 (((-352 (-488)) $) 17 T ELT)) (-3096 (($ (-1164 |#1| |#2| |#3|)) 11 T ELT)) (-2406 (((-1164 |#1| |#2| |#3|) $) 12 T ELT)) (-3950 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3774 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-352 (-488))))) ELT)) (-1611 (((-698) $) NIL (|has| |#1| (-314)) ELT)) (-3806 ((|#1| $ (-352 (-488))) NIL T ELT) (($ $ $) NIL (|has| (-352 (-488)) (-1029)) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3764 (($ $ (-1094)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-698)) NIL (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT)) (-3955 (((-352 (-488)) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2897 (($ $) 10 T ELT)) (-3953 (((-776) $) 42 T ELT) (($ (-488)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-148)) ELT) (($ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $) NIL (|has| |#1| (-499)) ELT)) (-3683 ((|#1| $ (-352 (-488))) 34 T ELT)) (-2708 (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-3132 (((-698)) NIL T CONST)) (-3779 ((|#1| $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3506 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3776 ((|#1| $ (-352 (-488))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-352 (-488))))) (|has| |#1| (-15 -3953 (|#1| (-1094))))) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3507 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3505 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $ (-1094)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-698)) NIL (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 28 T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 37 T ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-272 |#1| |#2| |#3|) (-13 (-1166 |#1|) (-720) (-10 -8 (-15 -3096 ($ (-1164 |#1| |#2| |#3|))) (-15 -2406 ((-1164 |#1| |#2| |#3|) $)) (-15 -1618 ((-352 (-488)) $)))) (-314) (-1094) |#1|) (T -272)) +((-3096 (*1 *1 *2) (-12 (-5 *2 (-1164 *3 *4 *5)) (-4 *3 (-314)) (-14 *4 (-1094)) (-14 *5 *3) (-5 *1 (-272 *3 *4 *5)))) (-2406 (*1 *2 *1) (-12 (-5 *2 (-1164 *3 *4 *5)) (-5 *1 (-272 *3 *4 *5)) (-4 *3 (-314)) (-14 *4 (-1094)) (-14 *5 *3))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-272 *3 *4 *5)) (-4 *3 (-314)) (-14 *4 (-1094)) (-14 *5 *3)))) +((-3017 (((-2 (|:| -2406 (-698)) (|:| -3961 |#1|) (|:| |radicand| (-587 |#1|))) (-350 |#1|) (-698)) 35 T ELT)) (-3949 (((-587 (-2 (|:| -3961 (-698)) (|:| |logand| |#1|))) (-350 |#1|)) 40 T ELT))) +(((-273 |#1|) (-10 -7 (-15 -3017 ((-2 (|:| -2406 (-698)) (|:| -3961 |#1|) (|:| |radicand| (-587 |#1|))) (-350 |#1|) (-698))) (-15 -3949 ((-587 (-2 (|:| -3961 (-698)) (|:| |logand| |#1|))) (-350 |#1|)))) (-499)) (T -273)) +((-3949 (*1 *2 *3) (-12 (-5 *3 (-350 *4)) (-4 *4 (-499)) (-5 *2 (-587 (-2 (|:| -3961 (-698)) (|:| |logand| *4)))) (-5 *1 (-273 *4)))) (-3017 (*1 *2 *3 *4) (-12 (-5 *3 (-350 *5)) (-4 *5 (-499)) (-5 *2 (-2 (|:| -2406 (-698)) (|:| -3961 *5) (|:| |radicand| (-587 *5)))) (-5 *1 (-273 *5)) (-5 *4 (-698))))) +((-3087 (((-587 |#2|) (-1089 |#4|)) 45 T ELT)) (-1623 ((|#3| (-488)) 48 T ELT)) (-1621 (((-1089 |#4|) (-1089 |#3|)) 30 T ELT)) (-1622 (((-1089 |#4|) (-1089 |#4|) (-488)) 67 T ELT)) (-1620 (((-1089 |#3|) (-1089 |#4|)) 21 T ELT)) (-3955 (((-587 (-698)) (-1089 |#4|) (-587 |#2|)) 41 T ELT)) (-1619 (((-1089 |#3|) (-1089 |#4|) (-587 |#2|) (-587 |#3|)) 35 T ELT))) +(((-274 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1619 ((-1089 |#3|) (-1089 |#4|) (-587 |#2|) (-587 |#3|))) (-15 -3955 ((-587 (-698)) (-1089 |#4|) (-587 |#2|))) (-15 -3087 ((-587 |#2|) (-1089 |#4|))) (-15 -1620 ((-1089 |#3|) (-1089 |#4|))) (-15 -1621 ((-1089 |#4|) (-1089 |#3|))) (-15 -1622 ((-1089 |#4|) (-1089 |#4|) (-488))) (-15 -1623 (|#3| (-488)))) (-721) (-760) (-965) (-865 |#3| |#1| |#2|)) (T -274)) +((-1623 (*1 *2 *3) (-12 (-5 *3 (-488)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *2 (-965)) (-5 *1 (-274 *4 *5 *2 *6)) (-4 *6 (-865 *2 *4 *5)))) (-1622 (*1 *2 *2 *3) (-12 (-5 *2 (-1089 *7)) (-5 *3 (-488)) (-4 *7 (-865 *6 *4 *5)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-965)) (-5 *1 (-274 *4 *5 *6 *7)))) (-1621 (*1 *2 *3) (-12 (-5 *3 (-1089 *6)) (-4 *6 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-1089 *7)) (-5 *1 (-274 *4 *5 *6 *7)) (-4 *7 (-865 *6 *4 *5)))) (-1620 (*1 *2 *3) (-12 (-5 *3 (-1089 *7)) (-4 *7 (-865 *6 *4 *5)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-965)) (-5 *2 (-1089 *6)) (-5 *1 (-274 *4 *5 *6 *7)))) (-3087 (*1 *2 *3) (-12 (-5 *3 (-1089 *7)) (-4 *7 (-865 *6 *4 *5)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-965)) (-5 *2 (-587 *5)) (-5 *1 (-274 *4 *5 *6 *7)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1089 *8)) (-5 *4 (-587 *6)) (-4 *6 (-760)) (-4 *8 (-865 *7 *5 *6)) (-4 *5 (-721)) (-4 *7 (-965)) (-5 *2 (-587 (-698))) (-5 *1 (-274 *5 *6 *7 *8)))) (-1619 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1089 *9)) (-5 *4 (-587 *7)) (-5 *5 (-587 *8)) (-4 *7 (-760)) (-4 *8 (-965)) (-4 *9 (-865 *8 *6 *7)) (-4 *6 (-721)) (-5 *2 (-1089 *8)) (-5 *1 (-274 *6 *7 *8 *9))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 19 T ELT)) (-3780 (((-587 (-2 (|:| |gen| |#1|) (|:| -3950 (-488)))) $) 21 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3142 (((-698) $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) NIL T ELT)) (-3162 ((|#1| $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2304 ((|#1| $ (-488)) NIL T ELT)) (-1626 (((-488) $ (-488)) NIL T ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-2295 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1625 (($ (-1 (-488) (-488)) $) 11 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1624 (($ $ $) NIL (|has| (-488) (-720)) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3683 (((-488) |#1| $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2572 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) 30 (|has| |#1| (-760)) ELT)) (-3843 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3845 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ (-488)) NIL T ELT) (($ (-488) |#1|) 28 T ELT))) +(((-275 |#1|) (-13 (-21) (-658 (-488)) (-276 |#1| (-488)) (-10 -7 (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|))) (-1017)) (T -275)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3780 (((-587 (-2 (|:| |gen| |#1|) (|:| -3950 |#2|))) $) 34 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3142 (((-698) $) 35 T ELT)) (-3730 (($) 23 T CONST)) (-3163 (((-3 |#1| "failed") $) 39 T ELT)) (-3162 ((|#1| $) 40 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2304 ((|#1| $ (-488)) 32 T ELT)) (-1626 ((|#2| $ (-488)) 33 T ELT)) (-2295 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-1625 (($ (-1 |#2| |#2|) $) 30 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-1624 (($ $ $) 28 (|has| |#2| (-720)) ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ |#1|) 38 T ELT)) (-3683 ((|#2| |#1| $) 31 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3845 (($ $ $) 18 T ELT) (($ |#1| $) 37 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ |#2| |#1|) 36 T ELT))) +(((-276 |#1| |#2|) (-113) (-1017) (-104)) (T -276)) +((-3845 (*1 *1 *2 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-104)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-276 *3 *2)) (-4 *3 (-1017)) (-4 *2 (-104)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-104)) (-5 *2 (-698)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-104)) (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3950 *4)))))) (-1626 (*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-4 *1 (-276 *4 *2)) (-4 *4 (-1017)) (-4 *2 (-104)))) (-2304 (*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-4 *1 (-276 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1017)))) (-3683 (*1 *2 *3 *1) (-12 (-4 *1 (-276 *3 *2)) (-4 *3 (-1017)) (-4 *2 (-104)))) (-1625 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-276 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-104)))) (-2295 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-276 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-104)))) (-1624 (*1 *1 *1 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-104)) (-4 *3 (-720))))) +(-13 (-104) (-954 |t#1|) (-10 -8 (-15 -3845 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3142 ((-698) $)) (-15 -3780 ((-587 (-2 (|:| |gen| |t#1|) (|:| -3950 |t#2|))) $)) (-15 -1626 (|t#2| $ (-488))) (-15 -2304 (|t#1| $ (-488))) (-15 -3683 (|t#2| |t#1| $)) (-15 -1625 ($ (-1 |t#2| |t#2|) $)) (-15 -2295 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-720)) (-15 -1624 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-559 |#1|) . T) ((-556 (-776)) . T) ((-13) . T) ((-954 |#1|) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3780 (((-587 (-2 (|:| |gen| |#1|) (|:| -3950 (-698)))) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3142 (((-698) $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) NIL T ELT)) (-3162 ((|#1| $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2304 ((|#1| $ (-488)) NIL T ELT)) (-1626 (((-698) $ (-488)) NIL T ELT)) (-2295 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1625 (($ (-1 (-698) (-698)) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1624 (($ $ $) NIL (|has| (-698) (-720)) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3683 (((-698) |#1| $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-698) |#1|) NIL T ELT))) +(((-277 |#1|) (-276 |#1| (-698)) (-1017)) (T -277)) +NIL +((-3509 (($ $) 72 T ELT)) (-1628 (($ $ |#2| |#3| $) 14 T ELT)) (-1629 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1805 (((-85) $) 42 T ELT)) (-1804 ((|#2| $) 44 T ELT)) (-3472 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2823 ((|#2| $) 68 T ELT)) (-3823 (((-587 |#2|) $) 56 T ELT)) (-1627 (($ $ $ (-698)) 37 T ELT)) (-3956 (($ $ |#2|) 60 T ELT))) +(((-278 |#1| |#2| |#3|) (-10 -7 (-15 -3509 (|#1| |#1|)) (-15 -2823 (|#2| |#1|)) (-15 -3472 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1627 (|#1| |#1| |#1| (-698))) (-15 -1628 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1629 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3823 ((-587 |#2|) |#1|)) (-15 -1804 (|#2| |#1|)) (-15 -1805 ((-85) |#1|)) (-15 -3472 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3956 (|#1| |#1| |#2|))) (-279 |#2| |#3|) (-965) (-720)) (T -278)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 72 (|has| |#1| (-499)) ELT)) (-2068 (($ $) 73 (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) 75 (|has| |#1| (-499)) ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3163 (((-3 (-488) #1="failed") $) 110 (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) 108 (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #1#) $) 105 T ELT)) (-3162 (((-488) $) 109 (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) 107 (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) 106 T ELT)) (-3965 (($ $) 81 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3509 (($ $) 94 (|has| |#1| (-395)) ELT)) (-1628 (($ $ |#1| |#2| $) 98 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-2425 (((-698) $) 101 T ELT)) (-3944 (((-85) $) 83 T ELT)) (-2899 (($ |#1| |#2|) 82 T ELT)) (-2826 ((|#2| $) 100 T ELT)) (-1629 (($ (-1 |#2| |#2|) $) 99 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-2900 (($ $) 85 T ELT)) (-3180 ((|#1| $) 86 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-1805 (((-85) $) 104 T ELT)) (-1804 ((|#1| $) 103 T ELT)) (-3472 (((-3 $ "failed") $ $) 71 (|has| |#1| (-499)) ELT) (((-3 $ "failed") $ |#1|) 96 (|has| |#1| (-499)) ELT)) (-3955 ((|#2| $) 84 T ELT)) (-2823 ((|#1| $) 95 (|has| |#1| (-395)) ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 70 (|has| |#1| (-499)) ELT) (($ |#1|) 68 T ELT) (($ (-352 (-488))) 78 (OR (|has| |#1| (-954 (-352 (-488)))) (|has| |#1| (-38 (-352 (-488))))) ELT)) (-3823 (((-587 |#1|) $) 102 T ELT)) (-3683 ((|#1| $ |#2|) 80 T ELT)) (-2708 (((-636 $) $) 69 (|has| |#1| (-118)) ELT)) (-3132 (((-698)) 40 T CONST)) (-1627 (($ $ $ (-698)) 97 (|has| |#1| (-148)) ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 74 (|has| |#1| (-499)) ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ |#1|) 79 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-352 (-488)) $) 77 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 76 (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-279 |#1| |#2|) (-113) (-965) (-720)) (T -279)) +((-1805 (*1 *2 *1) (-12 (-4 *1 (-279 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720)) (-5 *2 (-85)))) (-1804 (*1 *2 *1) (-12 (-4 *1 (-279 *2 *3)) (-4 *3 (-720)) (-4 *2 (-965)))) (-3823 (*1 *2 *1) (-12 (-4 *1 (-279 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720)) (-5 *2 (-587 *3)))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-279 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720)) (-5 *2 (-698)))) (-2826 (*1 *2 *1) (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-965)) (-4 *2 (-720)))) (-1629 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-279 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720)))) (-1628 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-279 *2 *3)) (-4 *2 (-965)) (-4 *3 (-720)))) (-1627 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-279 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720)) (-4 *3 (-148)))) (-3472 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-279 *2 *3)) (-4 *2 (-965)) (-4 *3 (-720)) (-4 *2 (-499)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-279 *2 *3)) (-4 *3 (-720)) (-4 *2 (-965)) (-4 *2 (-395)))) (-3509 (*1 *1 *1) (-12 (-4 *1 (-279 *2 *3)) (-4 *2 (-965)) (-4 *3 (-720)) (-4 *2 (-395))))) +(-13 (-47 |t#1| |t#2|) (-357 |t#1|) (-10 -8 (-15 -1805 ((-85) $)) (-15 -1804 (|t#1| $)) (-15 -3823 ((-587 |t#1|) $)) (-15 -2425 ((-698) $)) (-15 -2826 (|t#2| $)) (-15 -1629 ($ (-1 |t#2| |t#2|) $)) (-15 -1628 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-148)) (-15 -1627 ($ $ $ (-698))) |%noBranch|) (IF (|has| |t#1| (-499)) (-15 -3472 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-395)) (PROGN (-15 -2823 (|t#1| $)) (-15 -3509 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-38 |#1|) |has| |#1| (-148)) ((-38 $) |has| |#1| (-499)) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) OR (|has| |#1| (-954 (-352 (-488)))) (|has| |#1| (-38 (-352 (-488))))) ((-559 (-488)) . T) ((-559 |#1|) . T) ((-559 $) |has| |#1| (-499)) ((-556 (-776)) . T) ((-148) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-248) |has| |#1| (-499)) ((-357 |#1|) . T) ((-383 |#1|) . T) ((-499) |has| |#1| (-499)) ((-13) . T) ((-592 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-594 |#1|) . T) ((-594 $) . T) ((-586 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-586 |#1|) |has| |#1| (-148)) ((-586 $) |has| |#1| (-499)) ((-658 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-658 |#1|) |has| |#1| (-148)) ((-658 $) |has| |#1| (-499)) ((-667) . T) ((-954 (-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((-954 (-488)) |has| |#1| (-954 (-488))) ((-954 |#1|) . T) ((-967 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-972 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-972 |#1|) . T) ((-972 $) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 |#1|)) ELT)) (-1740 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-760)) ELT)) (-1738 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1039 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1039 |#1|)) (|has| |#1| (-760))) ELT)) (-2915 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-760)) ELT)) (-1991 (((-85) (-85)) NIL T ELT)) (-3794 ((|#1| $ (-488) |#1|) NIL (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-1150 (-488)) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-1574 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3716 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3730 (($) NIL T CONST)) (-2302 (($ $) NIL (|has| $ (-1039 |#1|)) ELT)) (-2303 (($ $) NIL T ELT)) (-2373 (($ $) NIL (|has| |#1| (-72)) ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-3411 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3412 (($ |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1580 ((|#1| $ (-488) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-488)) NIL T ELT)) (-3425 (((-488) (-1 (-85) |#1|) $) NIL T ELT) (((-488) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-488) |#1| $ (-488)) NIL (|has| |#1| (-72)) ELT)) (-1992 (($ $ (-488)) NIL T ELT)) (-1993 (((-698) $) NIL T ELT)) (-3620 (($ (-698) |#1|) NIL T ELT)) (-2205 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-2862 (($ $ $) NIL (|has| |#1| (-760)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3524 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-2614 (((-587 |#1|) $) NIL T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2206 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-3615 (($ $ $ (-488)) NIL T ELT) (($ |#1| $ (-488)) NIL T ELT)) (-2309 (($ |#1| $ (-488)) NIL T ELT) (($ $ $ (-488)) NIL T ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) NIL T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-1994 (($ (-587 |#1|)) NIL T ELT)) (-3807 ((|#1| $) NIL (|has| (-488) (-760)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2204 (($ $ |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#1| $ (-488) |#1|) NIL T ELT) ((|#1| $ (-488)) NIL T ELT) (($ $ (-1150 (-488))) NIL T ELT)) (-1575 (($ $ (-1150 (-488))) NIL T ELT) (($ $ (-488)) NIL T ELT)) (-2310 (($ $ (-488)) NIL T ELT) (($ $ (-1150 (-488))) NIL T ELT)) (-1735 (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) NIL T ELT)) (-1739 (($ $ $ (-488)) NIL (|has| $ (-1039 |#1|)) ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) NIL (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) NIL T ELT)) (-3797 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3808 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3953 (((-776) $) NIL (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2572 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2690 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-280 |#1|) (-13 (-19 |#1|) (-239 |#1|) (-10 -8 (-15 -1994 ($ (-587 |#1|))) (-15 -1993 ((-698) $)) (-15 -1992 ($ $ (-488))) (-15 -1991 ((-85) (-85))))) (-1133)) (T -280)) +((-1994 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1133)) (-5 *1 (-280 *3)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-280 *3)) (-4 *3 (-1133)))) (-1992 (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-280 *3)) (-4 *3 (-1133)))) (-1991 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-280 *3)) (-4 *3 (-1133))))) +((-3939 (((-85) $) 47 T ELT)) (-3936 (((-698)) 23 T ELT)) (-3336 ((|#2| $) 51 T ELT) (($ $ (-834)) 123 T ELT)) (-3142 (((-698)) 124 T ELT)) (-1800 (($ (-1183 |#2|)) 20 T ELT)) (-2016 (((-85) $) 136 T ELT)) (-3138 ((|#2| $) 53 T ELT) (($ $ (-834)) 120 T ELT)) (-2019 (((-1089 |#2|) $) NIL T ELT) (((-1089 $) $ (-834)) 111 T ELT)) (-1631 (((-1089 |#2|) $) 95 T ELT)) (-1630 (((-1089 |#2|) $) 91 T ELT) (((-3 (-1089 |#2|) "failed") $ $) 88 T ELT)) (-1632 (($ $ (-1089 |#2|)) 58 T ELT)) (-3937 (((-747 (-834))) 30 T ELT) (((-834)) 48 T ELT)) (-3918 (((-107)) 27 T ELT)) (-3955 (((-747 (-834)) $) 32 T ELT) (((-834) $) 139 T ELT)) (-1633 (($) 130 T ELT)) (-3230 (((-1183 |#2|) $) NIL T ELT) (((-634 |#2|) (-1183 $)) 42 T ELT)) (-2708 (($ $) NIL T ELT) (((-636 $) $) 100 T ELT)) (-3940 (((-85) $) 45 T ELT))) +(((-281 |#1| |#2|) (-10 -7 (-15 -2708 ((-636 |#1|) |#1|)) (-15 -3142 ((-698))) (-15 -2708 (|#1| |#1|)) (-15 -1630 ((-3 (-1089 |#2|) "failed") |#1| |#1|)) (-15 -1630 ((-1089 |#2|) |#1|)) (-15 -1631 ((-1089 |#2|) |#1|)) (-15 -1632 (|#1| |#1| (-1089 |#2|))) (-15 -2016 ((-85) |#1|)) (-15 -1633 (|#1|)) (-15 -3336 (|#1| |#1| (-834))) (-15 -3138 (|#1| |#1| (-834))) (-15 -2019 ((-1089 |#1|) |#1| (-834))) (-15 -3336 (|#2| |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -3955 ((-834) |#1|)) (-15 -3937 ((-834))) (-15 -2019 ((-1089 |#2|) |#1|)) (-15 -1800 (|#1| (-1183 |#2|))) (-15 -3230 ((-634 |#2|) (-1183 |#1|))) (-15 -3230 ((-1183 |#2|) |#1|)) (-15 -3936 ((-698))) (-15 -3937 ((-747 (-834)))) (-15 -3955 ((-747 (-834)) |#1|)) (-15 -3939 ((-85) |#1|)) (-15 -3940 ((-85) |#1|)) (-15 -3918 ((-107)))) (-282 |#2|) (-314)) (T -281)) +((-3918 (*1 *2) (-12 (-4 *4 (-314)) (-5 *2 (-107)) (-5 *1 (-281 *3 *4)) (-4 *3 (-282 *4)))) (-3937 (*1 *2) (-12 (-4 *4 (-314)) (-5 *2 (-747 (-834))) (-5 *1 (-281 *3 *4)) (-4 *3 (-282 *4)))) (-3936 (*1 *2) (-12 (-4 *4 (-314)) (-5 *2 (-698)) (-5 *1 (-281 *3 *4)) (-4 *3 (-282 *4)))) (-3937 (*1 *2) (-12 (-4 *4 (-314)) (-5 *2 (-834)) (-5 *1 (-281 *3 *4)) (-4 *3 (-282 *4)))) (-3142 (*1 *2) (-12 (-4 *4 (-314)) (-5 *2 (-698)) (-5 *1 (-281 *3 *4)) (-4 *3 (-282 *4))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-3939 (((-85) $) 114 T ELT)) (-3936 (((-698)) 110 T ELT)) (-3336 ((|#1| $) 162 T ELT) (($ $ (-834)) 159 (|has| |#1| (-322)) ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) 144 (|has| |#1| (-322)) ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3781 (($ $) 91 T ELT)) (-3977 (((-350 $) $) 90 T ELT)) (-1612 (((-85) $ $) 75 T ELT)) (-3142 (((-698)) 134 (|has| |#1| (-322)) ELT)) (-3730 (($) 23 T CONST)) (-3163 (((-3 |#1| "failed") $) 121 T ELT)) (-3162 ((|#1| $) 122 T ELT)) (-1800 (($ (-1183 |#1|)) 168 T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-322)) ELT)) (-2570 (($ $ $) 71 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3000 (($) 131 (|has| |#1| (-322)) ELT)) (-2569 (($ $ $) 72 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 66 T ELT)) (-2839 (($) 146 (|has| |#1| (-322)) ELT)) (-1684 (((-85) $) 147 (|has| |#1| (-322)) ELT)) (-1772 (($ $ (-698)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3729 (((-85) $) 89 T ELT)) (-3778 (((-834) $) 149 (|has| |#1| (-322)) ELT) (((-747 (-834)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-2018 (($) 157 (|has| |#1| (-322)) ELT)) (-2016 (((-85) $) 156 (|has| |#1| (-322)) ELT)) (-3138 ((|#1| $) 163 T ELT) (($ $ (-834)) 160 (|has| |#1| (-322)) ELT)) (-3451 (((-636 $) $) 135 (|has| |#1| (-322)) ELT)) (-1609 (((-3 (-587 $) #1="failed") (-587 $) $) 68 T ELT)) (-2019 (((-1089 |#1|) $) 167 T ELT) (((-1089 $) $ (-834)) 161 (|has| |#1| (-322)) ELT)) (-2015 (((-834) $) 132 (|has| |#1| (-322)) ELT)) (-1631 (((-1089 |#1|) $) 153 (|has| |#1| (-322)) ELT)) (-1630 (((-1089 |#1|) $) 152 (|has| |#1| (-322)) ELT) (((-3 (-1089 |#1|) "failed") $ $) 151 (|has| |#1| (-322)) ELT)) (-1632 (($ $ (-1089 |#1|)) 154 (|has| |#1| (-322)) ELT)) (-1899 (($ $ $) 60 T ELT) (($ (-587 $)) 59 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 88 T ELT)) (-3452 (($) 136 (|has| |#1| (-322)) CONST)) (-2405 (($ (-834)) 133 (|has| |#1| (-322)) ELT)) (-3938 (((-85) $) 113 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2414 (($) 155 (|has| |#1| (-322)) ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 58 T ELT)) (-3150 (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) 143 (|has| |#1| (-322)) ELT)) (-3738 (((-350 $) $) 92 T ELT)) (-3937 (((-747 (-834))) 111 T ELT) (((-834)) 165 T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 65 T ELT)) (-1611 (((-698) $) 74 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 73 T ELT)) (-1773 (((-698) $) 148 (|has| |#1| (-322)) ELT) (((-3 (-698) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3918 (((-107)) 119 T ELT)) (-3764 (($ $ (-698)) 139 (|has| |#1| (-322)) ELT) (($ $) 137 (|has| |#1| (-322)) ELT)) (-3955 (((-747 (-834)) $) 112 T ELT) (((-834) $) 164 T ELT)) (-3191 (((-1089 |#1|)) 166 T ELT)) (-1678 (($) 145 (|has| |#1| (-322)) ELT)) (-1633 (($) 158 (|has| |#1| (-322)) ELT)) (-3230 (((-1183 |#1|) $) 170 T ELT) (((-634 |#1|) (-1183 $)) 169 T ELT)) (-2709 (((-3 (-1183 $) "failed") (-634 $)) 142 (|has| |#1| (-322)) ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT) (($ (-352 (-488))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2708 (($ $) 141 (|has| |#1| (-322)) ELT) (((-636 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2017 (((-1183 $)) 172 T ELT) (((-1183 $) (-834)) 171 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-3940 (((-85) $) 115 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3935 (($ $) 109 (|has| |#1| (-322)) ELT) (($ $ (-698)) 108 (|has| |#1| (-322)) ELT)) (-2675 (($ $ (-698)) 140 (|has| |#1| (-322)) ELT) (($ $) 138 (|has| |#1| (-322)) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 87 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-352 (-488))) 86 T ELT) (($ (-352 (-488)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT))) +(((-282 |#1|) (-113) (-314)) (T -282)) +((-2017 (*1 *2) (-12 (-4 *3 (-314)) (-5 *2 (-1183 *1)) (-4 *1 (-282 *3)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-834)) (-4 *4 (-314)) (-5 *2 (-1183 *1)) (-4 *1 (-282 *4)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-282 *3)) (-4 *3 (-314)) (-5 *2 (-1183 *3)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-282 *4)) (-4 *4 (-314)) (-5 *2 (-634 *4)))) (-1800 (*1 *1 *2) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-314)) (-4 *1 (-282 *3)))) (-2019 (*1 *2 *1) (-12 (-4 *1 (-282 *3)) (-4 *3 (-314)) (-5 *2 (-1089 *3)))) (-3191 (*1 *2) (-12 (-4 *1 (-282 *3)) (-4 *3 (-314)) (-5 *2 (-1089 *3)))) (-3937 (*1 *2) (-12 (-4 *1 (-282 *3)) (-4 *3 (-314)) (-5 *2 (-834)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-282 *3)) (-4 *3 (-314)) (-5 *2 (-834)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-314)))) (-3336 (*1 *2 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-314)))) (-2019 (*1 *2 *1 *3) (-12 (-5 *3 (-834)) (-4 *4 (-322)) (-4 *4 (-314)) (-5 *2 (-1089 *1)) (-4 *1 (-282 *4)))) (-3138 (*1 *1 *1 *2) (-12 (-5 *2 (-834)) (-4 *1 (-282 *3)) (-4 *3 (-314)) (-4 *3 (-322)))) (-3336 (*1 *1 *1 *2) (-12 (-5 *2 (-834)) (-4 *1 (-282 *3)) (-4 *3 (-314)) (-4 *3 (-322)))) (-1633 (*1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-322)) (-4 *2 (-314)))) (-2018 (*1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-322)) (-4 *2 (-314)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-282 *3)) (-4 *3 (-314)) (-4 *3 (-322)) (-5 *2 (-85)))) (-2414 (*1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-322)) (-4 *2 (-314)))) (-1632 (*1 *1 *1 *2) (-12 (-5 *2 (-1089 *3)) (-4 *3 (-322)) (-4 *1 (-282 *3)) (-4 *3 (-314)))) (-1631 (*1 *2 *1) (-12 (-4 *1 (-282 *3)) (-4 *3 (-314)) (-4 *3 (-322)) (-5 *2 (-1089 *3)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-282 *3)) (-4 *3 (-314)) (-4 *3 (-322)) (-5 *2 (-1089 *3)))) (-1630 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-282 *3)) (-4 *3 (-314)) (-4 *3 (-322)) (-5 *2 (-1089 *3))))) +(-13 (-1202 |t#1|) (-954 |t#1|) (-10 -8 (-15 -2017 ((-1183 $))) (-15 -2017 ((-1183 $) (-834))) (-15 -3230 ((-1183 |t#1|) $)) (-15 -3230 ((-634 |t#1|) (-1183 $))) (-15 -1800 ($ (-1183 |t#1|))) (-15 -2019 ((-1089 |t#1|) $)) (-15 -3191 ((-1089 |t#1|))) (-15 -3937 ((-834))) (-15 -3955 ((-834) $)) (-15 -3138 (|t#1| $)) (-15 -3336 (|t#1| $)) (IF (|has| |t#1| (-322)) (PROGN (-6 (-301)) (-15 -2019 ((-1089 $) $ (-834))) (-15 -3138 ($ $ (-834))) (-15 -3336 ($ $ (-834))) (-15 -1633 ($)) (-15 -2018 ($)) (-15 -2016 ((-85) $)) (-15 -2414 ($)) (-15 -1632 ($ $ (-1089 |t#1|))) (-15 -1631 ((-1089 |t#1|) $)) (-15 -1630 ((-1089 |t#1|) $)) (-15 -1630 ((-3 (-1089 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-352 (-488))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-322)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) . T) ((-559 (-488)) . T) ((-559 |#1|) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-188 $) |has| |#1| (-322)) ((-192) |has| |#1| (-322)) ((-191) |has| |#1| (-322)) ((-203) . T) ((-248) . T) ((-260) . T) ((-1202 |#1|) . T) ((-314) . T) ((-347) OR (|has| |#1| (-322)) (|has| |#1| (-118))) ((-322) |has| |#1| (-322)) ((-301) |has| |#1| (-322)) ((-395) . T) ((-499) . T) ((-13) . T) ((-592 (-352 (-488))) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 (-352 (-488))) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-586 (-352 (-488))) . T) ((-586 |#1|) . T) ((-586 $) . T) ((-658 (-352 (-488))) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-667) . T) ((-836) . T) ((-954 |#1|) . T) ((-967 (-352 (-488))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-972 (-352 (-488))) . T) ((-972 |#1|) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1070) |has| |#1| (-322)) ((-1133) . T) ((-1138) . T) ((-1191 |#1|) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-1634 (((-85) $) 13 T ELT)) (-3644 (($ |#1|) 10 T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3640 (($ |#1|) 12 T ELT)) (-3953 (((-776) $) 19 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2241 ((|#1| $) 14 T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 21 T ELT))) +(((-283 |#1|) (-13 (-760) (-10 -8 (-15 -3644 ($ |#1|)) (-15 -3640 ($ |#1|)) (-15 -1634 ((-85) $)) (-15 -2241 (|#1| $)))) (-760)) (T -283)) +((-3644 (*1 *1 *2) (-12 (-5 *1 (-283 *2)) (-4 *2 (-760)))) (-3640 (*1 *1 *2) (-12 (-5 *1 (-283 *2)) (-4 *2 (-760)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-283 *3)) (-4 *3 (-760)))) (-2241 (*1 *2 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-760))))) +((-2574 (((-85) $ $) NIL T ELT)) (-1635 (((-450) $) 20 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1636 (((-873 (-698)) $) 18 T ELT)) (-1638 (((-211) $) 7 T ELT)) (-3953 (((-776) $) 26 T ELT)) (-2211 (((-873 (-160 (-112))) $) 16 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-1637 (((-587 (-786 (-1099) (-698))) $) 12 T ELT)) (-3062 (((-85) $ $) 22 T ELT))) +(((-284) (-13 (-1017) (-10 -8 (-15 -1638 ((-211) $)) (-15 -1637 ((-587 (-786 (-1099) (-698))) $)) (-15 -1636 ((-873 (-698)) $)) (-15 -2211 ((-873 (-160 (-112))) $)) (-15 -1635 ((-450) $))))) (T -284)) +((-1638 (*1 *2 *1) (-12 (-5 *2 (-211)) (-5 *1 (-284)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-587 (-786 (-1099) (-698)))) (-5 *1 (-284)))) (-1636 (*1 *2 *1) (-12 (-5 *2 (-873 (-698))) (-5 *1 (-284)))) (-2211 (*1 *2 *1) (-12 (-5 *2 (-873 (-160 (-112)))) (-5 *1 (-284)))) (-1635 (*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-284))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3848 (($ $) 34 T ELT)) (-1641 (((-85) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1639 (((-1183 |#4|) $) 133 T ELT)) (-1973 (((-358 |#2| (-352 |#2|) |#3| |#4|) $) 32 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2414 (((-3 |#4| #1#) $) 37 T ELT)) (-1640 (((-1183 |#4|) $) 125 T ELT)) (-1642 (($ (-358 |#2| (-352 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-488)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3441 (((-2 (|:| -2341 (-358 |#2| (-352 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3953 (((-776) $) 18 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) 15 T CONST)) (-3062 (((-85) $ $) 21 T ELT)) (-3843 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 26 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 24 T ELT))) +(((-285 |#1| |#2| |#3| |#4|) (-13 (-288 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1640 ((-1183 |#4|) $)) (-15 -1639 ((-1183 |#4|) $)))) (-314) (-1159 |#1|) (-1159 (-352 |#2|)) (-293 |#1| |#2| |#3|)) (T -285)) +((-1640 (*1 *2 *1) (-12 (-4 *3 (-314)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-1183 *6)) (-5 *1 (-285 *3 *4 *5 *6)) (-4 *6 (-293 *3 *4 *5)))) (-1639 (*1 *2 *1) (-12 (-4 *3 (-314)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-1183 *6)) (-5 *1 (-285 *3 *4 *5 *6)) (-4 *6 (-293 *3 *4 *5))))) +((-3849 (((-285 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-285 |#1| |#2| |#3| |#4|)) 33 T ELT))) +(((-286 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3849 ((-285 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-285 |#1| |#2| |#3| |#4|)))) (-314) (-1159 |#1|) (-1159 (-352 |#2|)) (-293 |#1| |#2| |#3|) (-314) (-1159 |#5|) (-1159 (-352 |#6|)) (-293 |#5| |#6| |#7|)) (T -286)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-285 *5 *6 *7 *8)) (-4 *5 (-314)) (-4 *6 (-1159 *5)) (-4 *7 (-1159 (-352 *6))) (-4 *8 (-293 *5 *6 *7)) (-4 *9 (-314)) (-4 *10 (-1159 *9)) (-4 *11 (-1159 (-352 *10))) (-5 *2 (-285 *9 *10 *11 *12)) (-5 *1 (-286 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-293 *9 *10 *11))))) +((-1641 (((-85) $) 14 T ELT))) +(((-287 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1641 ((-85) |#1|))) (-288 |#2| |#3| |#4| |#5|) (-314) (-1159 |#2|) (-1159 (-352 |#3|)) (-293 |#2| |#3| |#4|)) (T -287)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3848 (($ $) 35 T ELT)) (-1641 (((-85) $) 34 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-1973 (((-358 |#2| (-352 |#2|) |#3| |#4|) $) 41 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2414 (((-3 |#4| "failed") $) 33 T ELT)) (-1642 (($ (-358 |#2| (-352 |#2|) |#3| |#4|)) 40 T ELT) (($ |#4|) 39 T ELT) (($ |#1| |#1|) 38 T ELT) (($ |#1| |#1| (-488)) 37 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 32 T ELT)) (-3441 (((-2 (|:| -2341 (-358 |#2| (-352 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 36 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT))) +(((-288 |#1| |#2| |#3| |#4|) (-113) (-314) (-1159 |t#1|) (-1159 (-352 |t#2|)) (-293 |t#1| |t#2| |t#3|)) (T -288)) +((-1973 (*1 *2 *1) (-12 (-4 *1 (-288 *3 *4 *5 *6)) (-4 *3 (-314)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-4 *6 (-293 *3 *4 *5)) (-5 *2 (-358 *4 (-352 *4) *5 *6)))) (-1642 (*1 *1 *2) (-12 (-5 *2 (-358 *4 (-352 *4) *5 *6)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-4 *6 (-293 *3 *4 *5)) (-4 *3 (-314)) (-4 *1 (-288 *3 *4 *5 *6)))) (-1642 (*1 *1 *2) (-12 (-4 *3 (-314)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-4 *1 (-288 *3 *4 *5 *2)) (-4 *2 (-293 *3 *4 *5)))) (-1642 (*1 *1 *2 *2) (-12 (-4 *2 (-314)) (-4 *3 (-1159 *2)) (-4 *4 (-1159 (-352 *3))) (-4 *1 (-288 *2 *3 *4 *5)) (-4 *5 (-293 *2 *3 *4)))) (-1642 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-488)) (-4 *2 (-314)) (-4 *4 (-1159 *2)) (-4 *5 (-1159 (-352 *4))) (-4 *1 (-288 *2 *4 *5 *6)) (-4 *6 (-293 *2 *4 *5)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-288 *3 *4 *5 *6)) (-4 *3 (-314)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-4 *6 (-293 *3 *4 *5)) (-5 *2 (-2 (|:| -2341 (-358 *4 (-352 *4) *5 *6)) (|:| |principalPart| *6))))) (-3848 (*1 *1 *1) (-12 (-4 *1 (-288 *2 *3 *4 *5)) (-4 *2 (-314)) (-4 *3 (-1159 *2)) (-4 *4 (-1159 (-352 *3))) (-4 *5 (-293 *2 *3 *4)))) (-1641 (*1 *2 *1) (-12 (-4 *1 (-288 *3 *4 *5 *6)) (-4 *3 (-314)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-4 *6 (-293 *3 *4 *5)) (-5 *2 (-85)))) (-2414 (*1 *2 *1) (|partial| -12 (-4 *1 (-288 *3 *4 *5 *2)) (-4 *3 (-314)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-4 *2 (-293 *3 *4 *5)))) (-1642 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-314)) (-4 *3 (-1159 *4)) (-4 *5 (-1159 (-352 *3))) (-4 *1 (-288 *4 *3 *5 *2)) (-4 *2 (-293 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -1973 ((-358 |t#2| (-352 |t#2|) |t#3| |t#4|) $)) (-15 -1642 ($ (-358 |t#2| (-352 |t#2|) |t#3| |t#4|))) (-15 -1642 ($ |t#4|)) (-15 -1642 ($ |t#1| |t#1|)) (-15 -1642 ($ |t#1| |t#1| (-488))) (-15 -3441 ((-2 (|:| -2341 (-358 |t#2| (-352 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3848 ($ $)) (-15 -1641 ((-85) $)) (-15 -2414 ((-3 |t#4| "failed") $)) (-15 -1642 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-1017) . T) ((-1133) . T)) +((-3774 (($ $ (-1094) |#2|) NIL T ELT) (($ $ (-587 (-1094)) (-587 |#2|)) 20 T ELT) (($ $ (-587 (-251 |#2|))) 15 T ELT) (($ $ (-251 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-587 |#2|) (-587 |#2|)) NIL T ELT)) (-3806 (($ $ |#2|) 11 T ELT))) +(((-289 |#1| |#2|) (-10 -7 (-15 -3806 (|#1| |#1| |#2|)) (-15 -3774 (|#1| |#1| (-587 |#2|) (-587 |#2|))) (-15 -3774 (|#1| |#1| |#2| |#2|)) (-15 -3774 (|#1| |#1| (-251 |#2|))) (-15 -3774 (|#1| |#1| (-587 (-251 |#2|)))) (-15 -3774 (|#1| |#1| (-587 (-1094)) (-587 |#2|))) (-15 -3774 (|#1| |#1| (-1094) |#2|))) (-290 |#2|) (-1017)) (T -289)) +NIL +((-3849 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3774 (($ $ (-1094) |#1|) 17 (|has| |#1| (-459 (-1094) |#1|)) ELT) (($ $ (-587 (-1094)) (-587 |#1|)) 16 (|has| |#1| (-459 (-1094) |#1|)) ELT) (($ $ (-587 (-251 |#1|))) 15 (|has| |#1| (-262 |#1|)) ELT) (($ $ (-251 |#1|)) 14 (|has| |#1| (-262 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-262 |#1|)) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 12 (|has| |#1| (-262 |#1|)) ELT)) (-3806 (($ $ |#1|) 11 (|has| |#1| (-243 |#1| |#1|)) ELT))) +(((-290 |#1|) (-113) (-1017)) (T -290)) +NIL +(-13 (-383 |t#1|) (-10 -8 (IF (|has| |t#1| (-243 |t#1| |t#1|)) (-6 (-243 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-262 |t#1|)) (-6 (-262 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-459 (-1094) |t#1|)) (-6 (-459 (-1094) |t#1|)) |%noBranch|))) +(((-243 |#1| $) |has| |#1| (-243 |#1| |#1|)) ((-262 |#1|) |has| |#1| (-262 |#1|)) ((-383 |#1|) . T) ((-459 (-1094) |#1|) |has| |#1| (-459 (-1094) |#1|)) ((-459 |#1| |#1|) |has| |#1| (-262 |#1|)) ((-13) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3936 (((-698)) NIL T ELT)) (-3336 (((-821 |#1|) $) NIL T ELT) (($ $ (-834)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-821 |#1|) #1#) $) NIL T ELT)) (-3162 (((-821 |#1|) $) NIL T ELT)) (-1800 (($ (-1183 (-821 |#1|))) NIL T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-821 |#1|) (-322)) ELT)) (-2570 (($ $ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3000 (($) NIL (|has| (-821 |#1|) (-322)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-2839 (($) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1684 (((-85) $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1772 (($ $ (-698)) NIL (OR (|has| (-821 |#1|) (-118)) (|has| (-821 |#1|) (-322))) ELT) (($ $) NIL (OR (|has| (-821 |#1|) (-118)) (|has| (-821 |#1|) (-322))) ELT)) (-3729 (((-85) $) NIL T ELT)) (-3778 (((-834) $) NIL (|has| (-821 |#1|) (-322)) ELT) (((-747 (-834)) $) NIL (OR (|has| (-821 |#1|) (-118)) (|has| (-821 |#1|) (-322))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2018 (($) NIL (|has| (-821 |#1|) (-322)) ELT)) (-2016 (((-85) $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3138 (((-821 |#1|) $) NIL T ELT) (($ $ (-834)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3451 (((-636 $) $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2019 (((-1089 (-821 |#1|)) $) NIL T ELT) (((-1089 $) $ (-834)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-2015 (((-834) $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1631 (((-1089 (-821 |#1|)) $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1630 (((-1089 (-821 |#1|)) $) NIL (|has| (-821 |#1|) (-322)) ELT) (((-3 (-1089 (-821 |#1|)) #1#) $ $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1632 (($ $ (-1089 (-821 |#1|))) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3452 (($) NIL (|has| (-821 |#1|) (-322)) CONST)) (-2405 (($ (-834)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2414 (($) NIL (|has| (-821 |#1|) (-322)) ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-3937 (((-747 (-834))) NIL T ELT) (((-834)) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-1773 (((-698) $) NIL (|has| (-821 |#1|) (-322)) ELT) (((-3 (-698) #1#) $ $) NIL (OR (|has| (-821 |#1|) (-118)) (|has| (-821 |#1|) (-322))) ELT)) (-3918 (((-107)) NIL T ELT)) (-3764 (($ $ (-698)) NIL (|has| (-821 |#1|) (-322)) ELT) (($ $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3955 (((-747 (-834)) $) NIL T ELT) (((-834) $) NIL T ELT)) (-3191 (((-1089 (-821 |#1|))) NIL T ELT)) (-1678 (($) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1633 (($) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3230 (((-1183 (-821 |#1|)) $) NIL T ELT) (((-634 (-821 |#1|)) (-1183 $)) NIL T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ (-821 |#1|)) NIL T ELT)) (-2708 (($ $) NIL (|has| (-821 |#1|) (-322)) ELT) (((-636 $) $) NIL (OR (|has| (-821 |#1|) (-118)) (|has| (-821 |#1|) (-322))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 $)) NIL T ELT) (((-1183 $) (-834)) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-3935 (($ $) NIL (|has| (-821 |#1|) (-322)) ELT) (($ $ (-698)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-2675 (($ $ (-698)) NIL (|has| (-821 |#1|) (-322)) ELT) (($ $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ $) NIL T ELT) (($ $ (-821 |#1|)) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ $ (-821 |#1|)) NIL T ELT) (($ (-821 |#1|) $) NIL T ELT))) +(((-291 |#1| |#2|) (-282 (-821 |#1|)) (-834) (-834)) (T -291)) +NIL +((-1651 (((-2 (|:| |num| (-1183 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1800 (($ (-1183 (-352 |#3|)) (-1183 $)) NIL T ELT) (($ (-1183 (-352 |#3|))) NIL T ELT) (($ (-1183 |#3|) |#3|) 172 T ELT)) (-1656 (((-1183 $) (-1183 $)) 156 T ELT)) (-1643 (((-587 (-587 |#2|))) 126 T ELT)) (-1668 (((-85) |#2| |#2|) 76 T ELT)) (-3509 (($ $) 148 T ELT)) (-3383 (((-698)) 171 T ELT)) (-1657 (((-1183 $) (-1183 $)) 219 T ELT)) (-1644 (((-587 (-861 |#2|)) (-1094)) 115 T ELT)) (-1660 (((-85) $) 168 T ELT)) (-1659 (((-85) $) 27 T ELT) (((-85) $ |#2|) 31 T ELT) (((-85) $ |#3|) 223 T ELT)) (-1646 (((-3 |#3| #1="failed")) 52 T ELT)) (-1670 (((-698)) 183 T ELT)) (-3806 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1647 (((-3 |#3| #1#)) 71 T ELT)) (-3764 (($ $ (-1 (-352 |#3|) (-352 |#3|))) NIL T ELT) (($ $ (-1 (-352 |#3|) (-352 |#3|)) (-698)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094))) NIL T ELT) (($ $ (-1094)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $) NIL T ELT)) (-1658 (((-1183 $) (-1183 $)) 162 T ELT)) (-1645 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1669 (((-85)) 34 T ELT))) +(((-292 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3764 (|#1| |#1|)) (-15 -3764 (|#1| |#1| (-698))) (-15 -3764 (|#1| |#1| (-1094))) (-15 -3764 (|#1| |#1| (-587 (-1094)))) (-15 -3764 (|#1| |#1| (-1094) (-698))) (-15 -3764 (|#1| |#1| (-587 (-1094)) (-587 (-698)))) (-15 -1643 ((-587 (-587 |#2|)))) (-15 -1644 ((-587 (-861 |#2|)) (-1094))) (-15 -1645 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1646 ((-3 |#3| #1="failed"))) (-15 -1647 ((-3 |#3| #1#))) (-15 -3806 (|#2| |#1| |#2| |#2|)) (-15 -3509 (|#1| |#1|)) (-15 -3764 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1659 ((-85) |#1| |#3|)) (-15 -1659 ((-85) |#1| |#2|)) (-15 -1800 (|#1| (-1183 |#3|) |#3|)) (-15 -1651 ((-2 (|:| |num| (-1183 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1656 ((-1183 |#1|) (-1183 |#1|))) (-15 -1657 ((-1183 |#1|) (-1183 |#1|))) (-15 -1658 ((-1183 |#1|) (-1183 |#1|))) (-15 -1659 ((-85) |#1|)) (-15 -1660 ((-85) |#1|)) (-15 -1668 ((-85) |#2| |#2|)) (-15 -1669 ((-85))) (-15 -1670 ((-698))) (-15 -3383 ((-698))) (-15 -3764 (|#1| |#1| (-1 (-352 |#3|) (-352 |#3|)) (-698))) (-15 -3764 (|#1| |#1| (-1 (-352 |#3|) (-352 |#3|)))) (-15 -1800 (|#1| (-1183 (-352 |#3|)))) (-15 -1800 (|#1| (-1183 (-352 |#3|)) (-1183 |#1|)))) (-293 |#2| |#3| |#4|) (-1138) (-1159 |#2|) (-1159 (-352 |#3|))) (T -292)) +((-3383 (*1 *2) (-12 (-4 *4 (-1138)) (-4 *5 (-1159 *4)) (-4 *6 (-1159 (-352 *5))) (-5 *2 (-698)) (-5 *1 (-292 *3 *4 *5 *6)) (-4 *3 (-293 *4 *5 *6)))) (-1670 (*1 *2) (-12 (-4 *4 (-1138)) (-4 *5 (-1159 *4)) (-4 *6 (-1159 (-352 *5))) (-5 *2 (-698)) (-5 *1 (-292 *3 *4 *5 *6)) (-4 *3 (-293 *4 *5 *6)))) (-1669 (*1 *2) (-12 (-4 *4 (-1138)) (-4 *5 (-1159 *4)) (-4 *6 (-1159 (-352 *5))) (-5 *2 (-85)) (-5 *1 (-292 *3 *4 *5 *6)) (-4 *3 (-293 *4 *5 *6)))) (-1668 (*1 *2 *3 *3) (-12 (-4 *3 (-1138)) (-4 *5 (-1159 *3)) (-4 *6 (-1159 (-352 *5))) (-5 *2 (-85)) (-5 *1 (-292 *4 *3 *5 *6)) (-4 *4 (-293 *3 *5 *6)))) (-1647 (*1 *2) (|partial| -12 (-4 *4 (-1138)) (-4 *5 (-1159 (-352 *2))) (-4 *2 (-1159 *4)) (-5 *1 (-292 *3 *4 *2 *5)) (-4 *3 (-293 *4 *2 *5)))) (-1646 (*1 *2) (|partial| -12 (-4 *4 (-1138)) (-4 *5 (-1159 (-352 *2))) (-4 *2 (-1159 *4)) (-5 *1 (-292 *3 *4 *2 *5)) (-4 *3 (-293 *4 *2 *5)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-4 *5 (-1138)) (-4 *6 (-1159 *5)) (-4 *7 (-1159 (-352 *6))) (-5 *2 (-587 (-861 *5))) (-5 *1 (-292 *4 *5 *6 *7)) (-4 *4 (-293 *5 *6 *7)))) (-1643 (*1 *2) (-12 (-4 *4 (-1138)) (-4 *5 (-1159 *4)) (-4 *6 (-1159 (-352 *5))) (-5 *2 (-587 (-587 *4))) (-5 *1 (-292 *3 *4 *5 *6)) (-4 *3 (-293 *4 *5 *6))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1651 (((-2 (|:| |num| (-1183 |#2|)) (|:| |den| |#2|)) $) 225 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 114 (|has| (-352 |#2|) (-314)) ELT)) (-2068 (($ $) 115 (|has| (-352 |#2|) (-314)) ELT)) (-2066 (((-85) $) 117 (|has| (-352 |#2|) (-314)) ELT)) (-1790 (((-634 (-352 |#2|)) (-1183 $)) 61 T ELT) (((-634 (-352 |#2|))) 77 T ELT)) (-3336 (((-352 |#2|) $) 67 T ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) 167 (|has| (-352 |#2|) (-301)) ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3781 (($ $) 134 (|has| (-352 |#2|) (-314)) ELT)) (-3977 (((-350 $) $) 135 (|has| (-352 |#2|) (-314)) ELT)) (-1612 (((-85) $ $) 125 (|has| (-352 |#2|) (-314)) ELT)) (-3142 (((-698)) 108 (|has| (-352 |#2|) (-322)) ELT)) (-1665 (((-85)) 242 T ELT)) (-1664 (((-85) |#1|) 241 T ELT) (((-85) |#2|) 240 T ELT)) (-3730 (($) 23 T CONST)) (-3163 (((-3 (-488) #1="failed") $) 194 (|has| (-352 |#2|) (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) 192 (|has| (-352 |#2|) (-954 (-352 (-488)))) ELT) (((-3 (-352 |#2|) #1#) $) 189 T ELT)) (-3162 (((-488) $) 193 (|has| (-352 |#2|) (-954 (-488))) ELT) (((-352 (-488)) $) 191 (|has| (-352 |#2|) (-954 (-352 (-488)))) ELT) (((-352 |#2|) $) 190 T ELT)) (-1800 (($ (-1183 (-352 |#2|)) (-1183 $)) 63 T ELT) (($ (-1183 (-352 |#2|))) 80 T ELT) (($ (-1183 |#2|) |#2|) 224 T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| (-352 |#2|) (-301)) ELT)) (-2570 (($ $ $) 129 (|has| (-352 |#2|) (-314)) ELT)) (-1789 (((-634 (-352 |#2|)) $ (-1183 $)) 68 T ELT) (((-634 (-352 |#2|)) $) 75 T ELT)) (-2284 (((-634 (-488)) (-634 $)) 186 (|has| (-352 |#2|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) 185 (|has| (-352 |#2|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-352 |#2|))) (|:| |vec| (-1183 (-352 |#2|)))) (-634 $) (-1183 $)) 184 T ELT) (((-634 (-352 |#2|)) (-634 $)) 183 T ELT)) (-1656 (((-1183 $) (-1183 $)) 230 T ELT)) (-3848 (($ |#3|) 178 T ELT) (((-3 $ "failed") (-352 |#3|)) 175 (|has| (-352 |#2|) (-314)) ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-1643 (((-587 (-587 |#1|))) 211 (|has| |#1| (-322)) ELT)) (-1668 (((-85) |#1| |#1|) 246 T ELT)) (-3114 (((-834)) 69 T ELT)) (-3000 (($) 111 (|has| (-352 |#2|) (-322)) ELT)) (-1663 (((-85)) 239 T ELT)) (-1662 (((-85) |#1|) 238 T ELT) (((-85) |#2|) 237 T ELT)) (-2569 (($ $ $) 128 (|has| (-352 |#2|) (-314)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 123 (|has| (-352 |#2|) (-314)) ELT)) (-3509 (($ $) 217 T ELT)) (-2839 (($) 169 (|has| (-352 |#2|) (-301)) ELT)) (-1684 (((-85) $) 170 (|has| (-352 |#2|) (-301)) ELT)) (-1772 (($ $ (-698)) 161 (|has| (-352 |#2|) (-301)) ELT) (($ $) 160 (|has| (-352 |#2|) (-301)) ELT)) (-3729 (((-85) $) 136 (|has| (-352 |#2|) (-314)) ELT)) (-3778 (((-834) $) 172 (|has| (-352 |#2|) (-301)) ELT) (((-747 (-834)) $) 158 (|has| (-352 |#2|) (-301)) ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3383 (((-698)) 249 T ELT)) (-1657 (((-1183 $) (-1183 $)) 231 T ELT)) (-3138 (((-352 |#2|) $) 66 T ELT)) (-1644 (((-587 (-861 |#1|)) (-1094)) 212 (|has| |#1| (-314)) ELT)) (-3451 (((-636 $) $) 162 (|has| (-352 |#2|) (-301)) ELT)) (-1609 (((-3 (-587 $) #2="failed") (-587 $) $) 132 (|has| (-352 |#2|) (-314)) ELT)) (-2019 ((|#3| $) 59 (|has| (-352 |#2|) (-314)) ELT)) (-2015 (((-834) $) 110 (|has| (-352 |#2|) (-322)) ELT)) (-3085 ((|#3| $) 176 T ELT)) (-2285 (((-634 (-488)) (-1183 $)) 188 (|has| (-352 |#2|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) 187 (|has| (-352 |#2|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-352 |#2|))) (|:| |vec| (-1183 (-352 |#2|)))) (-1183 $) $) 182 T ELT) (((-634 (-352 |#2|)) (-1183 $)) 181 T ELT)) (-1899 (($ (-587 $)) 121 (|has| (-352 |#2|) (-314)) ELT) (($ $ $) 120 (|has| (-352 |#2|) (-314)) ELT)) (-3248 (((-1077) $) 11 T ELT)) (-1652 (((-634 (-352 |#2|))) 226 T ELT)) (-1654 (((-634 (-352 |#2|))) 228 T ELT)) (-2490 (($ $) 137 (|has| (-352 |#2|) (-314)) ELT)) (-1649 (($ (-1183 |#2|) |#2|) 222 T ELT)) (-1653 (((-634 (-352 |#2|))) 227 T ELT)) (-1655 (((-634 (-352 |#2|))) 229 T ELT)) (-1648 (((-2 (|:| |num| (-634 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 221 T ELT)) (-1650 (((-2 (|:| |num| (-1183 |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (-1661 (((-1183 $)) 235 T ELT)) (-3925 (((-1183 $)) 236 T ELT)) (-1660 (((-85) $) 234 T ELT)) (-1659 (((-85) $) 233 T ELT) (((-85) $ |#1|) 220 T ELT) (((-85) $ |#2|) 219 T ELT)) (-3452 (($) 163 (|has| (-352 |#2|) (-301)) CONST)) (-2405 (($ (-834)) 109 (|has| (-352 |#2|) (-322)) ELT)) (-1646 (((-3 |#2| "failed")) 214 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-1670 (((-698)) 248 T ELT)) (-2414 (($) 180 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 122 (|has| (-352 |#2|) (-314)) ELT)) (-3150 (($ (-587 $)) 119 (|has| (-352 |#2|) (-314)) ELT) (($ $ $) 118 (|has| (-352 |#2|) (-314)) ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) 166 (|has| (-352 |#2|) (-301)) ELT)) (-3738 (((-350 $) $) 133 (|has| (-352 |#2|) (-314)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| (-352 |#2|) (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 130 (|has| (-352 |#2|) (-314)) ELT)) (-3472 (((-3 $ "failed") $ $) 113 (|has| (-352 |#2|) (-314)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 124 (|has| (-352 |#2|) (-314)) ELT)) (-1611 (((-698) $) 126 (|has| (-352 |#2|) (-314)) ELT)) (-3806 ((|#1| $ |#1| |#1|) 216 T ELT)) (-1647 (((-3 |#2| "failed")) 215 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 127 (|has| (-352 |#2|) (-314)) ELT)) (-3763 (((-352 |#2|) (-1183 $)) 62 T ELT) (((-352 |#2|)) 76 T ELT)) (-1773 (((-698) $) 171 (|has| (-352 |#2|) (-301)) ELT) (((-3 (-698) "failed") $ $) 159 (|has| (-352 |#2|) (-301)) ELT)) (-3764 (($ $ (-1 (-352 |#2|) (-352 |#2|))) 145 (|has| (-352 |#2|) (-314)) ELT) (($ $ (-1 (-352 |#2|) (-352 |#2|)) (-698)) 144 (|has| (-352 |#2|) (-314)) ELT) (($ $ (-1 |#2| |#2|)) 218 T ELT) (($ $ (-587 (-1094)) (-587 (-698))) 150 (OR (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094)))) (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-2568 (|has| (-352 |#2|) (-815 (-1094))) (|has| (-352 |#2|) (-314)))) ELT) (($ $ (-1094) (-698)) 149 (OR (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094)))) (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-2568 (|has| (-352 |#2|) (-815 (-1094))) (|has| (-352 |#2|) (-314)))) ELT) (($ $ (-587 (-1094))) 148 (OR (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094)))) (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-2568 (|has| (-352 |#2|) (-815 (-1094))) (|has| (-352 |#2|) (-314)))) ELT) (($ $ (-1094)) 146 (OR (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094)))) (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-2568 (|has| (-352 |#2|) (-815 (-1094))) (|has| (-352 |#2|) (-314)))) ELT) (($ $ (-698)) 156 (OR (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-191))) (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-192))) (-2568 (|has| (-352 |#2|) (-191)) (|has| (-352 |#2|) (-314))) (|has| (-352 |#2|) (-301))) ELT) (($ $) 154 (OR (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-191))) (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-192))) (-2568 (|has| (-352 |#2|) (-191)) (|has| (-352 |#2|) (-314))) (|has| (-352 |#2|) (-301))) ELT)) (-2413 (((-634 (-352 |#2|)) (-1183 $) (-1 (-352 |#2|) (-352 |#2|))) 174 (|has| (-352 |#2|) (-314)) ELT)) (-3191 ((|#3|) 179 T ELT)) (-1678 (($) 168 (|has| (-352 |#2|) (-301)) ELT)) (-3230 (((-1183 (-352 |#2|)) $ (-1183 $)) 65 T ELT) (((-634 (-352 |#2|)) (-1183 $) (-1183 $)) 64 T ELT) (((-1183 (-352 |#2|)) $) 82 T ELT) (((-634 (-352 |#2|)) (-1183 $)) 81 T ELT)) (-3978 (((-1183 (-352 |#2|)) $) 79 T ELT) (($ (-1183 (-352 |#2|))) 78 T ELT) ((|#3| $) 195 T ELT) (($ |#3|) 177 T ELT)) (-2709 (((-3 (-1183 $) "failed") (-634 $)) 165 (|has| (-352 |#2|) (-301)) ELT)) (-1658 (((-1183 $) (-1183 $)) 232 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ (-352 |#2|)) 52 T ELT) (($ (-352 (-488))) 107 (OR (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-954 (-352 (-488))))) ELT) (($ $) 112 (|has| (-352 |#2|) (-314)) ELT)) (-2708 (($ $) 164 (|has| (-352 |#2|) (-301)) ELT) (((-636 $) $) 58 (|has| (-352 |#2|) (-118)) ELT)) (-2455 ((|#3| $) 60 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1667 (((-85)) 245 T ELT)) (-1666 (((-85) |#1|) 244 T ELT) (((-85) |#2|) 243 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2017 (((-1183 $)) 83 T ELT)) (-2067 (((-85) $ $) 116 (|has| (-352 |#2|) (-314)) ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-1645 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 213 T ELT)) (-1669 (((-85)) 247 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-1 (-352 |#2|) (-352 |#2|))) 143 (|has| (-352 |#2|) (-314)) ELT) (($ $ (-1 (-352 |#2|) (-352 |#2|)) (-698)) 142 (|has| (-352 |#2|) (-314)) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 153 (OR (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094)))) (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-2568 (|has| (-352 |#2|) (-815 (-1094))) (|has| (-352 |#2|) (-314)))) ELT) (($ $ (-1094) (-698)) 152 (OR (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094)))) (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-2568 (|has| (-352 |#2|) (-815 (-1094))) (|has| (-352 |#2|) (-314)))) ELT) (($ $ (-587 (-1094))) 151 (OR (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094)))) (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-2568 (|has| (-352 |#2|) (-815 (-1094))) (|has| (-352 |#2|) (-314)))) ELT) (($ $ (-1094)) 147 (OR (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094)))) (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-2568 (|has| (-352 |#2|) (-815 (-1094))) (|has| (-352 |#2|) (-314)))) ELT) (($ $ (-698)) 157 (OR (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-191))) (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-192))) (-2568 (|has| (-352 |#2|) (-191)) (|has| (-352 |#2|) (-314))) (|has| (-352 |#2|) (-301))) ELT) (($ $) 155 (OR (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-191))) (-2568 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-192))) (-2568 (|has| (-352 |#2|) (-191)) (|has| (-352 |#2|) (-314))) (|has| (-352 |#2|) (-301))) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ $) 141 (|has| (-352 |#2|) (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 138 (|has| (-352 |#2|) (-314)) ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-352 |#2|)) 54 T ELT) (($ (-352 |#2|) $) 53 T ELT) (($ (-352 (-488)) $) 140 (|has| (-352 |#2|) (-314)) ELT) (($ $ (-352 (-488))) 139 (|has| (-352 |#2|) (-314)) ELT))) +(((-293 |#1| |#2| |#3|) (-113) (-1138) (-1159 |t#1|) (-1159 (-352 |t#2|))) (T -293)) +((-3383 (*1 *2) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-698)))) (-1670 (*1 *2) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-698)))) (-1669 (*1 *2) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85)))) (-1668 (*1 *2 *3 *3) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85)))) (-1667 (*1 *2) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85)))) (-1666 (*1 *2 *3) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85)))) (-1666 (*1 *2 *3) (-12 (-4 *1 (-293 *4 *3 *5)) (-4 *4 (-1138)) (-4 *3 (-1159 *4)) (-4 *5 (-1159 (-352 *3))) (-5 *2 (-85)))) (-1665 (*1 *2) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85)))) (-1664 (*1 *2 *3) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85)))) (-1664 (*1 *2 *3) (-12 (-4 *1 (-293 *4 *3 *5)) (-4 *4 (-1138)) (-4 *3 (-1159 *4)) (-4 *5 (-1159 (-352 *3))) (-5 *2 (-85)))) (-1663 (*1 *2) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85)))) (-1662 (*1 *2 *3) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85)))) (-1662 (*1 *2 *3) (-12 (-4 *1 (-293 *4 *3 *5)) (-4 *4 (-1138)) (-4 *3 (-1159 *4)) (-4 *5 (-1159 (-352 *3))) (-5 *2 (-85)))) (-3925 (*1 *2) (-12 (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-1183 *1)) (-4 *1 (-293 *3 *4 *5)))) (-1661 (*1 *2) (-12 (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-1183 *1)) (-4 *1 (-293 *3 *4 *5)))) (-1660 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85)))) (-1658 (*1 *2 *2) (-12 (-5 *2 (-1183 *1)) (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))))) (-1657 (*1 *2 *2) (-12 (-5 *2 (-1183 *1)) (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))))) (-1656 (*1 *2 *2) (-12 (-5 *2 (-1183 *1)) (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))))) (-1655 (*1 *2) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-634 (-352 *4))))) (-1654 (*1 *2) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-634 (-352 *4))))) (-1653 (*1 *2) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-634 (-352 *4))))) (-1652 (*1 *2) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-634 (-352 *4))))) (-1651 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-2 (|:| |num| (-1183 *4)) (|:| |den| *4))))) (-1800 (*1 *1 *2 *3) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-1159 *4)) (-4 *4 (-1138)) (-4 *1 (-293 *4 *3 *5)) (-4 *5 (-1159 (-352 *3))))) (-1650 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-2 (|:| |num| (-1183 *4)) (|:| |den| *4))))) (-1649 (*1 *1 *2 *3) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-1159 *4)) (-4 *4 (-1138)) (-4 *1 (-293 *4 *3 *5)) (-4 *5 (-1159 (-352 *3))))) (-1648 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-293 *4 *5 *6)) (-4 *4 (-1138)) (-4 *5 (-1159 *4)) (-4 *6 (-1159 (-352 *5))) (-5 *2 (-2 (|:| |num| (-634 *5)) (|:| |den| *5))))) (-1659 (*1 *2 *1 *3) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *1 *3) (-12 (-4 *1 (-293 *4 *3 *5)) (-4 *4 (-1138)) (-4 *3 (-1159 *4)) (-4 *5 (-1159 (-352 *3))) (-5 *2 (-85)))) (-3764 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))))) (-3509 (*1 *1 *1) (-12 (-4 *1 (-293 *2 *3 *4)) (-4 *2 (-1138)) (-4 *3 (-1159 *2)) (-4 *4 (-1159 (-352 *3))))) (-3806 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-293 *2 *3 *4)) (-4 *2 (-1138)) (-4 *3 (-1159 *2)) (-4 *4 (-1159 (-352 *3))))) (-1647 (*1 *2) (|partial| -12 (-4 *1 (-293 *3 *2 *4)) (-4 *3 (-1138)) (-4 *4 (-1159 (-352 *2))) (-4 *2 (-1159 *3)))) (-1646 (*1 *2) (|partial| -12 (-4 *1 (-293 *3 *2 *4)) (-4 *3 (-1138)) (-4 *4 (-1159 (-352 *2))) (-4 *2 (-1159 *3)))) (-1645 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1159 *4)) (-4 *4 (-1138)) (-4 *6 (-1159 (-352 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-293 *4 *5 *6)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-4 *1 (-293 *4 *5 *6)) (-4 *4 (-1138)) (-4 *5 (-1159 *4)) (-4 *6 (-1159 (-352 *5))) (-4 *4 (-314)) (-5 *2 (-587 (-861 *4))))) (-1643 (*1 *2) (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) (-4 *3 (-322)) (-5 *2 (-587 (-587 *3)))))) +(-13 (-665 (-352 |t#2|) |t#3|) (-10 -8 (-15 -3383 ((-698))) (-15 -1670 ((-698))) (-15 -1669 ((-85))) (-15 -1668 ((-85) |t#1| |t#1|)) (-15 -1667 ((-85))) (-15 -1666 ((-85) |t#1|)) (-15 -1666 ((-85) |t#2|)) (-15 -1665 ((-85))) (-15 -1664 ((-85) |t#1|)) (-15 -1664 ((-85) |t#2|)) (-15 -1663 ((-85))) (-15 -1662 ((-85) |t#1|)) (-15 -1662 ((-85) |t#2|)) (-15 -3925 ((-1183 $))) (-15 -1661 ((-1183 $))) (-15 -1660 ((-85) $)) (-15 -1659 ((-85) $)) (-15 -1658 ((-1183 $) (-1183 $))) (-15 -1657 ((-1183 $) (-1183 $))) (-15 -1656 ((-1183 $) (-1183 $))) (-15 -1655 ((-634 (-352 |t#2|)))) (-15 -1654 ((-634 (-352 |t#2|)))) (-15 -1653 ((-634 (-352 |t#2|)))) (-15 -1652 ((-634 (-352 |t#2|)))) (-15 -1651 ((-2 (|:| |num| (-1183 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1800 ($ (-1183 |t#2|) |t#2|)) (-15 -1650 ((-2 (|:| |num| (-1183 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1649 ($ (-1183 |t#2|) |t#2|)) (-15 -1648 ((-2 (|:| |num| (-634 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1659 ((-85) $ |t#1|)) (-15 -1659 ((-85) $ |t#2|)) (-15 -3764 ($ $ (-1 |t#2| |t#2|))) (-15 -3509 ($ $)) (-15 -3806 (|t#1| $ |t#1| |t#1|)) (-15 -1647 ((-3 |t#2| "failed"))) (-15 -1646 ((-3 |t#2| "failed"))) (-15 -1645 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-314)) (-15 -1644 ((-587 (-861 |t#1|)) (-1094))) |%noBranch|) (IF (|has| |t#1| (-322)) (-15 -1643 ((-587 (-587 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-352 (-488))) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-38 (-352 |#2|)) . T) ((-38 $) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-82 (-352 |#2|) (-352 |#2|)) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-118))) ((-120) |has| (-352 |#2|) (-120)) ((-559 (-352 (-488))) OR (|has| (-352 |#2|) (-954 (-352 (-488)))) (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-559 (-352 |#2|)) . T) ((-559 (-488)) . T) ((-559 $) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-556 (-776)) . T) ((-148) . T) ((-557 |#3|) . T) ((-188 $) OR (|has| (-352 |#2|) (-301)) (-12 (|has| (-352 |#2|) (-191)) (|has| (-352 |#2|) (-314))) (-12 (|has| (-352 |#2|) (-192)) (|has| (-352 |#2|) (-314)))) ((-186 (-352 |#2|)) |has| (-352 |#2|) (-314)) ((-192) OR (|has| (-352 |#2|) (-301)) (-12 (|has| (-352 |#2|) (-192)) (|has| (-352 |#2|) (-314)))) ((-191) OR (|has| (-352 |#2|) (-301)) (-12 (|has| (-352 |#2|) (-191)) (|has| (-352 |#2|) (-314))) (-12 (|has| (-352 |#2|) (-192)) (|has| (-352 |#2|) (-314)))) ((-227 (-352 |#2|)) |has| (-352 |#2|) (-314)) ((-203) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-248) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-260) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-314) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-347) |has| (-352 |#2|) (-301)) ((-322) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-322))) ((-301) |has| (-352 |#2|) (-301)) ((-324 (-352 |#2|) |#3|) . T) ((-355 (-352 |#2|) |#3|) . T) ((-331 (-352 |#2|)) . T) ((-357 (-352 |#2|)) . T) ((-395) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-499) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-13) . T) ((-592 (-352 (-488))) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-592 (-352 |#2|)) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 (-352 (-488))) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-594 (-352 |#2|)) . T) ((-594 (-488)) |has| (-352 |#2|) (-584 (-488))) ((-594 $) . T) ((-586 (-352 (-488))) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-586 (-352 |#2|)) . T) ((-586 $) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-584 (-352 |#2|)) . T) ((-584 (-488)) |has| (-352 |#2|) (-584 (-488))) ((-658 (-352 (-488))) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-658 (-352 |#2|)) . T) ((-658 $) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-665 (-352 |#2|) |#3|) . T) ((-667) . T) ((-810 $ (-1094)) OR (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094)))) (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094))))) ((-813 (-1094)) -12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) ((-815 (-1094)) OR (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094)))) (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094))))) ((-836) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-954 (-352 (-488))) |has| (-352 |#2|) (-954 (-352 (-488)))) ((-954 (-352 |#2|)) . T) ((-954 (-488)) |has| (-352 |#2|) (-954 (-488))) ((-967 (-352 (-488))) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-967 (-352 |#2|)) . T) ((-967 $) . T) ((-972 (-352 (-488))) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314))) ((-972 (-352 |#2|)) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1070) |has| (-352 |#2|) (-301)) ((-1133) . T) ((-1138) OR (|has| (-352 |#2|) (-301)) (|has| (-352 |#2|) (-314)))) +((-3849 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) +(((-294 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3849 (|#8| (-1 |#5| |#1|) |#4|))) (-1138) (-1159 |#1|) (-1159 (-352 |#2|)) (-293 |#1| |#2| |#3|) (-1138) (-1159 |#5|) (-1159 (-352 |#6|)) (-293 |#5| |#6| |#7|)) (T -294)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1138)) (-4 *8 (-1138)) (-4 *6 (-1159 *5)) (-4 *7 (-1159 (-352 *6))) (-4 *9 (-1159 *8)) (-4 *2 (-293 *8 *9 *10)) (-5 *1 (-294 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-293 *5 *6 *7)) (-4 *10 (-1159 (-352 *9)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3936 (((-698)) NIL T ELT)) (-3336 (((-821 |#1|) $) NIL T ELT) (($ $ (-834)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-821 |#1|) #1#) $) NIL T ELT)) (-3162 (((-821 |#1|) $) NIL T ELT)) (-1800 (($ (-1183 (-821 |#1|))) NIL T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-821 |#1|) (-322)) ELT)) (-2570 (($ $ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3000 (($) NIL (|has| (-821 |#1|) (-322)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-2839 (($) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1684 (((-85) $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1772 (($ $ (-698)) NIL (OR (|has| (-821 |#1|) (-118)) (|has| (-821 |#1|) (-322))) ELT) (($ $) NIL (OR (|has| (-821 |#1|) (-118)) (|has| (-821 |#1|) (-322))) ELT)) (-3729 (((-85) $) NIL T ELT)) (-3778 (((-834) $) NIL (|has| (-821 |#1|) (-322)) ELT) (((-747 (-834)) $) NIL (OR (|has| (-821 |#1|) (-118)) (|has| (-821 |#1|) (-322))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2018 (($) NIL (|has| (-821 |#1|) (-322)) ELT)) (-2016 (((-85) $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3138 (((-821 |#1|) $) NIL T ELT) (($ $ (-834)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3451 (((-636 $) $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2019 (((-1089 (-821 |#1|)) $) NIL T ELT) (((-1089 $) $ (-834)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-2015 (((-834) $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1631 (((-1089 (-821 |#1|)) $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1630 (((-1089 (-821 |#1|)) $) NIL (|has| (-821 |#1|) (-322)) ELT) (((-3 (-1089 (-821 |#1|)) #1#) $ $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1632 (($ $ (-1089 (-821 |#1|))) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3452 (($) NIL (|has| (-821 |#1|) (-322)) CONST)) (-2405 (($ (-834)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1671 (((-873 (-1037))) NIL T ELT)) (-2414 (($) NIL (|has| (-821 |#1|) (-322)) ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-3937 (((-747 (-834))) NIL T ELT) (((-834)) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-1773 (((-698) $) NIL (|has| (-821 |#1|) (-322)) ELT) (((-3 (-698) #1#) $ $) NIL (OR (|has| (-821 |#1|) (-118)) (|has| (-821 |#1|) (-322))) ELT)) (-3918 (((-107)) NIL T ELT)) (-3764 (($ $ (-698)) NIL (|has| (-821 |#1|) (-322)) ELT) (($ $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3955 (((-747 (-834)) $) NIL T ELT) (((-834) $) NIL T ELT)) (-3191 (((-1089 (-821 |#1|))) NIL T ELT)) (-1678 (($) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1633 (($) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3230 (((-1183 (-821 |#1|)) $) NIL T ELT) (((-634 (-821 |#1|)) (-1183 $)) NIL T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ (-821 |#1|)) NIL T ELT)) (-2708 (($ $) NIL (|has| (-821 |#1|) (-322)) ELT) (((-636 $) $) NIL (OR (|has| (-821 |#1|) (-118)) (|has| (-821 |#1|) (-322))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 $)) NIL T ELT) (((-1183 $) (-834)) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-3935 (($ $) NIL (|has| (-821 |#1|) (-322)) ELT) (($ $ (-698)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-2675 (($ $ (-698)) NIL (|has| (-821 |#1|) (-322)) ELT) (($ $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ $) NIL T ELT) (($ $ (-821 |#1|)) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ $ (-821 |#1|)) NIL T ELT) (($ (-821 |#1|) $) NIL T ELT))) +(((-295 |#1| |#2|) (-13 (-282 (-821 |#1|)) (-10 -7 (-15 -1671 ((-873 (-1037)))))) (-834) (-834)) (T -295)) +((-1671 (*1 *2) (-12 (-5 *2 (-873 (-1037))) (-5 *1 (-295 *3 *4)) (-14 *3 (-834)) (-14 *4 (-834))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 58 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3936 (((-698)) NIL T ELT)) (-3336 ((|#1| $) NIL T ELT) (($ $ (-834)) NIL (|has| |#1| (-322)) ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) 56 (|has| |#1| (-322)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) NIL (|has| |#1| (-322)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) 139 T ELT)) (-3162 ((|#1| $) 111 T ELT)) (-1800 (($ (-1183 |#1|)) 128 T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-322)) ELT)) (-2570 (($ $ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3000 (($) 122 (|has| |#1| (-322)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-2839 (($) 155 (|has| |#1| (-322)) ELT)) (-1684 (((-85) $) 65 (|has| |#1| (-322)) ELT)) (-1772 (($ $ (-698)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3729 (((-85) $) NIL T ELT)) (-3778 (((-834) $) 60 (|has| |#1| (-322)) ELT) (((-747 (-834)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) 62 T ELT)) (-2018 (($) 157 (|has| |#1| (-322)) ELT)) (-2016 (((-85) $) NIL (|has| |#1| (-322)) ELT)) (-3138 ((|#1| $) NIL T ELT) (($ $ (-834)) NIL (|has| |#1| (-322)) ELT)) (-3451 (((-636 $) $) NIL (|has| |#1| (-322)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2019 (((-1089 |#1|) $) 115 T ELT) (((-1089 $) $ (-834)) NIL (|has| |#1| (-322)) ELT)) (-2015 (((-834) $) 165 (|has| |#1| (-322)) ELT)) (-1631 (((-1089 |#1|) $) NIL (|has| |#1| (-322)) ELT)) (-1630 (((-1089 |#1|) $) NIL (|has| |#1| (-322)) ELT) (((-3 (-1089 |#1|) #1#) $ $) NIL (|has| |#1| (-322)) ELT)) (-1632 (($ $ (-1089 |#1|)) NIL (|has| |#1| (-322)) ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) 172 T ELT)) (-3452 (($) NIL (|has| |#1| (-322)) CONST)) (-2405 (($ (-834)) 94 (|has| |#1| (-322)) ELT)) (-3938 (((-85) $) 142 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1671 (((-873 (-1037))) 57 T ELT)) (-2414 (($) 153 (|has| |#1| (-322)) ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) 117 (|has| |#1| (-322)) ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-3937 (((-747 (-834))) 88 T ELT) (((-834)) 89 T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-1773 (((-698) $) 156 (|has| |#1| (-322)) ELT) (((-3 (-698) #1#) $ $) 149 (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3918 (((-107)) NIL T ELT)) (-3764 (($ $ (-698)) NIL (|has| |#1| (-322)) ELT) (($ $) NIL (|has| |#1| (-322)) ELT)) (-3955 (((-747 (-834)) $) NIL T ELT) (((-834) $) NIL T ELT)) (-3191 (((-1089 |#1|)) 120 T ELT)) (-1678 (($) 154 (|has| |#1| (-322)) ELT)) (-1633 (($) 162 (|has| |#1| (-322)) ELT)) (-3230 (((-1183 |#1|) $) 76 T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (|has| |#1| (-322)) ELT)) (-3953 (((-776) $) 168 T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2708 (($ $) NIL (|has| |#1| (-322)) ELT) (((-636 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3132 (((-698)) 150 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 $)) 141 T ELT) (((-1183 $) (-834)) 96 T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2666 (($) 66 T CONST)) (-2672 (($) 101 T CONST)) (-3935 (($ $) 105 (|has| |#1| (-322)) ELT) (($ $ (-698)) NIL (|has| |#1| (-322)) ELT)) (-2675 (($ $ (-698)) NIL (|has| |#1| (-322)) ELT) (($ $) NIL (|has| |#1| (-322)) ELT)) (-3062 (((-85) $ $) 64 T ELT)) (-3956 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3843 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 84 T ELT)) (** (($ $ (-834)) 174 T ELT) (($ $ (-698)) 175 T ELT) (($ $ (-488)) 173 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT))) +(((-296 |#1| |#2|) (-13 (-282 |#1|) (-10 -7 (-15 -1671 ((-873 (-1037)))))) (-301) (-1089 |#1|)) (T -296)) +((-1671 (*1 *2) (-12 (-5 *2 (-873 (-1037))) (-5 *1 (-296 *3 *4)) (-4 *3 (-301)) (-14 *4 (-1089 *3))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3936 (((-698)) NIL T ELT)) (-3336 ((|#1| $) NIL T ELT) (($ $ (-834)) NIL (|has| |#1| (-322)) ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) NIL (|has| |#1| (-322)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) NIL (|has| |#1| (-322)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) NIL T ELT)) (-3162 ((|#1| $) NIL T ELT)) (-1800 (($ (-1183 |#1|)) NIL T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-322)) ELT)) (-2570 (($ $ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3000 (($) NIL (|has| |#1| (-322)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-2839 (($) NIL (|has| |#1| (-322)) ELT)) (-1684 (((-85) $) NIL (|has| |#1| (-322)) ELT)) (-1772 (($ $ (-698)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3729 (((-85) $) NIL T ELT)) (-3778 (((-834) $) NIL (|has| |#1| (-322)) ELT) (((-747 (-834)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2018 (($) NIL (|has| |#1| (-322)) ELT)) (-2016 (((-85) $) NIL (|has| |#1| (-322)) ELT)) (-3138 ((|#1| $) NIL T ELT) (($ $ (-834)) NIL (|has| |#1| (-322)) ELT)) (-3451 (((-636 $) $) NIL (|has| |#1| (-322)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2019 (((-1089 |#1|) $) NIL T ELT) (((-1089 $) $ (-834)) NIL (|has| |#1| (-322)) ELT)) (-2015 (((-834) $) NIL (|has| |#1| (-322)) ELT)) (-1631 (((-1089 |#1|) $) NIL (|has| |#1| (-322)) ELT)) (-1630 (((-1089 |#1|) $) NIL (|has| |#1| (-322)) ELT) (((-3 (-1089 |#1|) #1#) $ $) NIL (|has| |#1| (-322)) ELT)) (-1632 (($ $ (-1089 |#1|)) NIL (|has| |#1| (-322)) ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3452 (($) NIL (|has| |#1| (-322)) CONST)) (-2405 (($ (-834)) NIL (|has| |#1| (-322)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1671 (((-873 (-1037))) NIL T ELT)) (-2414 (($) NIL (|has| |#1| (-322)) ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) NIL (|has| |#1| (-322)) ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-3937 (((-747 (-834))) NIL T ELT) (((-834)) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-1773 (((-698) $) NIL (|has| |#1| (-322)) ELT) (((-3 (-698) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3918 (((-107)) NIL T ELT)) (-3764 (($ $ (-698)) NIL (|has| |#1| (-322)) ELT) (($ $) NIL (|has| |#1| (-322)) ELT)) (-3955 (((-747 (-834)) $) NIL T ELT) (((-834) $) NIL T ELT)) (-3191 (((-1089 |#1|)) NIL T ELT)) (-1678 (($) NIL (|has| |#1| (-322)) ELT)) (-1633 (($) NIL (|has| |#1| (-322)) ELT)) (-3230 (((-1183 |#1|) $) NIL T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (|has| |#1| (-322)) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2708 (($ $) NIL (|has| |#1| (-322)) ELT) (((-636 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 $)) NIL T ELT) (((-1183 $) (-834)) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-3935 (($ $) NIL (|has| |#1| (-322)) ELT) (($ $ (-698)) NIL (|has| |#1| (-322)) ELT)) (-2675 (($ $ (-698)) NIL (|has| |#1| (-322)) ELT) (($ $) NIL (|has| |#1| (-322)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-297 |#1| |#2|) (-13 (-282 |#1|) (-10 -7 (-15 -1671 ((-873 (-1037)))))) (-301) (-834)) (T -297)) +((-1671 (*1 *2) (-12 (-5 *2 (-873 (-1037))) (-5 *1 (-297 *3 *4)) (-4 *3 (-301)) (-14 *4 (-834))))) +((-1681 (((-698) (-1183 (-587 (-2 (|:| -3408 |#1|) (|:| -2405 (-1037)))))) 61 T ELT)) (-1672 (((-873 (-1037)) (-1089 |#1|)) 112 T ELT)) (-1673 (((-1183 (-587 (-2 (|:| -3408 |#1|) (|:| -2405 (-1037))))) (-1089 |#1|)) 103 T ELT)) (-1674 (((-634 |#1|) (-1183 (-587 (-2 (|:| -3408 |#1|) (|:| -2405 (-1037)))))) 113 T ELT)) (-1675 (((-3 (-1183 (-587 (-2 (|:| -3408 |#1|) (|:| -2405 (-1037))))) "failed") (-834)) 13 T ELT)) (-1676 (((-3 (-1089 |#1|) (-1183 (-587 (-2 (|:| -3408 |#1|) (|:| -2405 (-1037)))))) (-834)) 18 T ELT))) +(((-298 |#1|) (-10 -7 (-15 -1672 ((-873 (-1037)) (-1089 |#1|))) (-15 -1673 ((-1183 (-587 (-2 (|:| -3408 |#1|) (|:| -2405 (-1037))))) (-1089 |#1|))) (-15 -1674 ((-634 |#1|) (-1183 (-587 (-2 (|:| -3408 |#1|) (|:| -2405 (-1037))))))) (-15 -1681 ((-698) (-1183 (-587 (-2 (|:| -3408 |#1|) (|:| -2405 (-1037))))))) (-15 -1675 ((-3 (-1183 (-587 (-2 (|:| -3408 |#1|) (|:| -2405 (-1037))))) "failed") (-834))) (-15 -1676 ((-3 (-1089 |#1|) (-1183 (-587 (-2 (|:| -3408 |#1|) (|:| -2405 (-1037)))))) (-834)))) (-301)) (T -298)) +((-1676 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-3 (-1089 *4) (-1183 (-587 (-2 (|:| -3408 *4) (|:| -2405 (-1037))))))) (-5 *1 (-298 *4)) (-4 *4 (-301)))) (-1675 (*1 *2 *3) (|partial| -12 (-5 *3 (-834)) (-5 *2 (-1183 (-587 (-2 (|:| -3408 *4) (|:| -2405 (-1037)))))) (-5 *1 (-298 *4)) (-4 *4 (-301)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-1183 (-587 (-2 (|:| -3408 *4) (|:| -2405 (-1037)))))) (-4 *4 (-301)) (-5 *2 (-698)) (-5 *1 (-298 *4)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-1183 (-587 (-2 (|:| -3408 *4) (|:| -2405 (-1037)))))) (-4 *4 (-301)) (-5 *2 (-634 *4)) (-5 *1 (-298 *4)))) (-1673 (*1 *2 *3) (-12 (-5 *3 (-1089 *4)) (-4 *4 (-301)) (-5 *2 (-1183 (-587 (-2 (|:| -3408 *4) (|:| -2405 (-1037)))))) (-5 *1 (-298 *4)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-1089 *4)) (-4 *4 (-301)) (-5 *2 (-873 (-1037))) (-5 *1 (-298 *4))))) +((-3953 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) +(((-299 |#1| |#2| |#3|) (-10 -7 (-15 -3953 (|#3| |#1|)) (-15 -3953 (|#1| |#3|))) (-282 |#2|) (-301) (-282 |#2|)) (T -299)) +((-3953 (*1 *2 *3) (-12 (-4 *4 (-301)) (-4 *2 (-282 *4)) (-5 *1 (-299 *2 *4 *3)) (-4 *3 (-282 *4)))) (-3953 (*1 *2 *3) (-12 (-4 *4 (-301)) (-4 *2 (-282 *4)) (-5 *1 (-299 *3 *4 *2)) (-4 *3 (-282 *4))))) +((-1684 (((-85) $) 65 T ELT)) (-3778 (((-747 (-834)) $) 26 T ELT) (((-834) $) 69 T ELT)) (-3451 (((-636 $) $) 21 T ELT)) (-3452 (($) 9 T CONST)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 120 T ELT)) (-1773 (((-3 (-698) #1="failed") $ $) 98 T ELT) (((-698) $) 84 T ELT)) (-3764 (($ $) 8 T ELT) (($ $ (-698)) NIL T ELT)) (-1678 (($) 58 T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) 41 T ELT)) (-2708 (((-636 $) $) 50 T ELT) (($ $) 47 T ELT))) +(((-300 |#1|) (-10 -7 (-15 -3778 ((-834) |#1|)) (-15 -1773 ((-698) |#1|)) (-15 -1684 ((-85) |#1|)) (-15 -1678 (|#1|)) (-15 -2709 ((-3 (-1183 |#1|) #1="failed") (-634 |#1|))) (-15 -2708 (|#1| |#1|)) (-15 -3764 (|#1| |#1| (-698))) (-15 -3764 (|#1| |#1|)) (-15 -3452 (|#1|) -3959) (-15 -3451 ((-636 |#1|) |#1|)) (-15 -1773 ((-3 (-698) #1#) |#1| |#1|)) (-15 -3778 ((-747 (-834)) |#1|)) (-15 -2708 ((-636 |#1|) |#1|)) (-15 -2714 ((-1089 |#1|) (-1089 |#1|) (-1089 |#1|)))) (-301)) (T -300)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) 113 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3781 (($ $) 91 T ELT)) (-3977 (((-350 $) $) 90 T ELT)) (-1612 (((-85) $ $) 75 T ELT)) (-3142 (((-698)) 123 T ELT)) (-3730 (($) 23 T CONST)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) 107 T ELT)) (-2570 (($ $ $) 71 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3000 (($) 126 T ELT)) (-2569 (($ $ $) 72 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 66 T ELT)) (-2839 (($) 111 T ELT)) (-1684 (((-85) $) 110 T ELT)) (-1772 (($ $) 97 T ELT) (($ $ (-698)) 96 T ELT)) (-3729 (((-85) $) 89 T ELT)) (-3778 (((-747 (-834)) $) 99 T ELT) (((-834) $) 108 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3451 (((-636 $) $) 122 T ELT)) (-1609 (((-3 (-587 $) #1="failed") (-587 $) $) 68 T ELT)) (-2015 (((-834) $) 125 T ELT)) (-1899 (($ $ $) 60 T ELT) (($ (-587 $)) 59 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 88 T ELT)) (-3452 (($) 121 T CONST)) (-2405 (($ (-834)) 124 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 58 T ELT)) (-3150 (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) 114 T ELT)) (-3738 (((-350 $) $) 92 T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 65 T ELT)) (-1611 (((-698) $) 74 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 73 T ELT)) (-1773 (((-3 (-698) "failed") $ $) 98 T ELT) (((-698) $) 109 T ELT)) (-3764 (($ $) 120 T ELT) (($ $ (-698)) 118 T ELT)) (-1678 (($) 112 T ELT)) (-2709 (((-3 (-1183 $) "failed") (-634 $)) 115 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT) (($ (-352 (-488))) 84 T ELT)) (-2708 (((-636 $) $) 100 T ELT) (($ $) 116 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $) 119 T ELT) (($ $ (-698)) 117 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ $) 83 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 87 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-352 (-488))) 86 T ELT) (($ (-352 (-488)) $) 85 T ELT))) +(((-301) (-113)) (T -301)) +((-2708 (*1 *1 *1) (-4 *1 (-301))) (-2709 (*1 *2 *3) (|partial| -12 (-5 *3 (-634 *1)) (-4 *1 (-301)) (-5 *2 (-1183 *1)))) (-1680 (*1 *2) (-12 (-4 *1 (-301)) (-5 *2 (-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))))) (-1679 (*1 *2 *3) (-12 (-4 *1 (-301)) (-5 *3 (-488)) (-5 *2 (-1106 (-834) (-698))))) (-1678 (*1 *1) (-4 *1 (-301))) (-2839 (*1 *1) (-4 *1 (-301))) (-1684 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-85)))) (-1773 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-698)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-834)))) (-1677 (*1 *2) (-12 (-4 *1 (-301)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-347) (-322) (-1070) (-192) (-10 -8 (-15 -2708 ($ $)) (-15 -2709 ((-3 (-1183 $) "failed") (-634 $))) (-15 -1680 ((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488)))))) (-15 -1679 ((-1106 (-834) (-698)) (-488))) (-15 -1678 ($)) (-15 -2839 ($)) (-15 -1684 ((-85) $)) (-15 -1773 ((-698) $)) (-15 -3778 ((-834) $)) (-15 -1677 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-352 (-488))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-559 (-352 (-488))) . T) ((-559 (-488)) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-188 $) . T) ((-192) . T) ((-191) . T) ((-203) . T) ((-248) . T) ((-260) . T) ((-314) . T) ((-347) . T) ((-322) . T) ((-395) . T) ((-499) . T) ((-13) . T) ((-592 (-352 (-488))) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 (-352 (-488))) . T) ((-594 $) . T) ((-586 (-352 (-488))) . T) ((-586 $) . T) ((-658 (-352 (-488))) . T) ((-658 $) . T) ((-667) . T) ((-836) . T) ((-967 (-352 (-488))) . T) ((-967 $) . T) ((-972 (-352 (-488))) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1070) . T) ((-1133) . T) ((-1138) . T)) +((-3926 (((-2 (|:| -2017 (-634 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-634 |#1|))) |#1|) 55 T ELT)) (-3925 (((-2 (|:| -2017 (-634 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-634 |#1|)))) 53 T ELT))) +(((-302 |#1| |#2| |#3|) (-10 -7 (-15 -3925 ((-2 (|:| -2017 (-634 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-634 |#1|))))) (-15 -3926 ((-2 (|:| -2017 (-634 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-634 |#1|))) |#1|))) (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $)))) (-1159 |#1|) (-355 |#1| |#2|)) (T -302)) +((-3926 (*1 *2 *3) (-12 (-4 *3 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) (-4 *4 (-1159 *3)) (-5 *2 (-2 (|:| -2017 (-634 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-634 *3)))) (-5 *1 (-302 *3 *4 *5)) (-4 *5 (-355 *3 *4)))) (-3925 (*1 *2) (-12 (-4 *3 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) (-4 *4 (-1159 *3)) (-5 *2 (-2 (|:| -2017 (-634 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-634 *3)))) (-5 *1 (-302 *3 *4 *5)) (-4 *5 (-355 *3 *4))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3936 (((-698)) NIL T ELT)) (-3336 (((-821 |#1|) $) NIL T ELT) (($ $ (-834)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-1681 (((-698)) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-821 |#1|) #1#) $) NIL T ELT)) (-3162 (((-821 |#1|) $) NIL T ELT)) (-1800 (($ (-1183 (-821 |#1|))) NIL T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-821 |#1|) (-322)) ELT)) (-2570 (($ $ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3000 (($) NIL (|has| (-821 |#1|) (-322)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-2839 (($) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1684 (((-85) $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1772 (($ $ (-698)) NIL (OR (|has| (-821 |#1|) (-118)) (|has| (-821 |#1|) (-322))) ELT) (($ $) NIL (OR (|has| (-821 |#1|) (-118)) (|has| (-821 |#1|) (-322))) ELT)) (-3729 (((-85) $) NIL T ELT)) (-3778 (((-834) $) NIL (|has| (-821 |#1|) (-322)) ELT) (((-747 (-834)) $) NIL (OR (|has| (-821 |#1|) (-118)) (|has| (-821 |#1|) (-322))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2018 (($) NIL (|has| (-821 |#1|) (-322)) ELT)) (-2016 (((-85) $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3138 (((-821 |#1|) $) NIL T ELT) (($ $ (-834)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3451 (((-636 $) $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2019 (((-1089 (-821 |#1|)) $) NIL T ELT) (((-1089 $) $ (-834)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-2015 (((-834) $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1631 (((-1089 (-821 |#1|)) $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1630 (((-1089 (-821 |#1|)) $) NIL (|has| (-821 |#1|) (-322)) ELT) (((-3 (-1089 (-821 |#1|)) #1#) $ $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1632 (($ $ (-1089 (-821 |#1|))) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3452 (($) NIL (|has| (-821 |#1|) (-322)) CONST)) (-2405 (($ (-834)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1683 (((-1183 (-587 (-2 (|:| -3408 (-821 |#1|)) (|:| -2405 (-1037)))))) NIL T ELT)) (-1682 (((-634 (-821 |#1|))) NIL T ELT)) (-2414 (($) NIL (|has| (-821 |#1|) (-322)) ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-3937 (((-747 (-834))) NIL T ELT) (((-834)) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-1773 (((-698) $) NIL (|has| (-821 |#1|) (-322)) ELT) (((-3 (-698) #1#) $ $) NIL (OR (|has| (-821 |#1|) (-118)) (|has| (-821 |#1|) (-322))) ELT)) (-3918 (((-107)) NIL T ELT)) (-3764 (($ $ (-698)) NIL (|has| (-821 |#1|) (-322)) ELT) (($ $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3955 (((-747 (-834)) $) NIL T ELT) (((-834) $) NIL T ELT)) (-3191 (((-1089 (-821 |#1|))) NIL T ELT)) (-1678 (($) NIL (|has| (-821 |#1|) (-322)) ELT)) (-1633 (($) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3230 (((-1183 (-821 |#1|)) $) NIL T ELT) (((-634 (-821 |#1|)) (-1183 $)) NIL T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ (-821 |#1|)) NIL T ELT)) (-2708 (($ $) NIL (|has| (-821 |#1|) (-322)) ELT) (((-636 $) $) NIL (OR (|has| (-821 |#1|) (-118)) (|has| (-821 |#1|) (-322))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 $)) NIL T ELT) (((-1183 $) (-834)) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-3935 (($ $) NIL (|has| (-821 |#1|) (-322)) ELT) (($ $ (-698)) NIL (|has| (-821 |#1|) (-322)) ELT)) (-2675 (($ $ (-698)) NIL (|has| (-821 |#1|) (-322)) ELT) (($ $) NIL (|has| (-821 |#1|) (-322)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ $) NIL T ELT) (($ $ (-821 |#1|)) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ $ (-821 |#1|)) NIL T ELT) (($ (-821 |#1|) $) NIL T ELT))) +(((-303 |#1| |#2|) (-13 (-282 (-821 |#1|)) (-10 -7 (-15 -1683 ((-1183 (-587 (-2 (|:| -3408 (-821 |#1|)) (|:| -2405 (-1037))))))) (-15 -1682 ((-634 (-821 |#1|)))) (-15 -1681 ((-698))))) (-834) (-834)) (T -303)) +((-1683 (*1 *2) (-12 (-5 *2 (-1183 (-587 (-2 (|:| -3408 (-821 *3)) (|:| -2405 (-1037)))))) (-5 *1 (-303 *3 *4)) (-14 *3 (-834)) (-14 *4 (-834)))) (-1682 (*1 *2) (-12 (-5 *2 (-634 (-821 *3))) (-5 *1 (-303 *3 *4)) (-14 *3 (-834)) (-14 *4 (-834)))) (-1681 (*1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-303 *3 *4)) (-14 *3 (-834)) (-14 *4 (-834))))) +((-2574 (((-85) $ $) 72 T ELT)) (-3194 (((-85) $) 87 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3936 (((-698)) NIL T ELT)) (-3336 ((|#1| $) 105 T ELT) (($ $ (-834)) 103 (|has| |#1| (-322)) ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) 168 (|has| |#1| (-322)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-1681 (((-698)) 102 T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) 185 (|has| |#1| (-322)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) 126 T ELT)) (-3162 ((|#1| $) 104 T ELT)) (-1800 (($ (-1183 |#1|)) 70 T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-322)) ELT)) (-2570 (($ $ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3000 (($) 180 (|has| |#1| (-322)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-2839 (($) 169 (|has| |#1| (-322)) ELT)) (-1684 (((-85) $) NIL (|has| |#1| (-322)) ELT)) (-1772 (($ $ (-698)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3729 (((-85) $) NIL T ELT)) (-3778 (((-834) $) NIL (|has| |#1| (-322)) ELT) (((-747 (-834)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2018 (($) 112 (|has| |#1| (-322)) ELT)) (-2016 (((-85) $) 198 (|has| |#1| (-322)) ELT)) (-3138 ((|#1| $) 107 T ELT) (($ $ (-834)) 106 (|has| |#1| (-322)) ELT)) (-3451 (((-636 $) $) NIL (|has| |#1| (-322)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2019 (((-1089 |#1|) $) 212 T ELT) (((-1089 $) $ (-834)) NIL (|has| |#1| (-322)) ELT)) (-2015 (((-834) $) 146 (|has| |#1| (-322)) ELT)) (-1631 (((-1089 |#1|) $) 86 (|has| |#1| (-322)) ELT)) (-1630 (((-1089 |#1|) $) 83 (|has| |#1| (-322)) ELT) (((-3 (-1089 |#1|) #1#) $ $) 95 (|has| |#1| (-322)) ELT)) (-1632 (($ $ (-1089 |#1|)) 82 (|has| |#1| (-322)) ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) 216 T ELT)) (-3452 (($) NIL (|has| |#1| (-322)) CONST)) (-2405 (($ (-834)) 148 (|has| |#1| (-322)) ELT)) (-3938 (((-85) $) 122 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1683 (((-1183 (-587 (-2 (|:| -3408 |#1|) (|:| -2405 (-1037)))))) 96 T ELT)) (-1682 (((-634 |#1|)) 100 T ELT)) (-2414 (($) 109 (|has| |#1| (-322)) ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) 171 (|has| |#1| (-322)) ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-3937 (((-747 (-834))) NIL T ELT) (((-834)) 172 T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-1773 (((-698) $) NIL (|has| |#1| (-322)) ELT) (((-3 (-698) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3918 (((-107)) NIL T ELT)) (-3764 (($ $ (-698)) NIL (|has| |#1| (-322)) ELT) (($ $) NIL (|has| |#1| (-322)) ELT)) (-3955 (((-747 (-834)) $) NIL T ELT) (((-834) $) 74 T ELT)) (-3191 (((-1089 |#1|)) 173 T ELT)) (-1678 (($) 145 (|has| |#1| (-322)) ELT)) (-1633 (($) NIL (|has| |#1| (-322)) ELT)) (-3230 (((-1183 |#1|) $) 120 T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (|has| |#1| (-322)) ELT)) (-3953 (((-776) $) 138 T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2708 (($ $) NIL (|has| |#1| (-322)) ELT) (((-636 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3132 (((-698)) 178 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 $)) 195 T ELT) (((-1183 $) (-834)) 115 T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2666 (($) 184 T CONST)) (-2672 (($) 159 T CONST)) (-3935 (($ $) 121 (|has| |#1| (-322)) ELT) (($ $ (-698)) 113 (|has| |#1| (-322)) ELT)) (-2675 (($ $ (-698)) NIL (|has| |#1| (-322)) ELT) (($ $) NIL (|has| |#1| (-322)) ELT)) (-3062 (((-85) $ $) 206 T ELT)) (-3956 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3843 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3845 (($ $ $) 202 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) 151 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT))) +(((-304 |#1| |#2|) (-13 (-282 |#1|) (-10 -7 (-15 -1683 ((-1183 (-587 (-2 (|:| -3408 |#1|) (|:| -2405 (-1037))))))) (-15 -1682 ((-634 |#1|))) (-15 -1681 ((-698))))) (-301) (-3 (-1089 |#1|) (-1183 (-587 (-2 (|:| -3408 |#1|) (|:| -2405 (-1037))))))) (T -304)) +((-1683 (*1 *2) (-12 (-5 *2 (-1183 (-587 (-2 (|:| -3408 *3) (|:| -2405 (-1037)))))) (-5 *1 (-304 *3 *4)) (-4 *3 (-301)) (-14 *4 (-3 (-1089 *3) *2)))) (-1682 (*1 *2) (-12 (-5 *2 (-634 *3)) (-5 *1 (-304 *3 *4)) (-4 *3 (-301)) (-14 *4 (-3 (-1089 *3) (-1183 (-587 (-2 (|:| -3408 *3) (|:| -2405 (-1037))))))))) (-1681 (*1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-304 *3 *4)) (-4 *3 (-301)) (-14 *4 (-3 (-1089 *3) (-1183 (-587 (-2 (|:| -3408 *3) (|:| -2405 (-1037)))))))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3936 (((-698)) NIL T ELT)) (-3336 ((|#1| $) NIL T ELT) (($ $ (-834)) NIL (|has| |#1| (-322)) ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) NIL (|has| |#1| (-322)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-1681 (((-698)) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) NIL (|has| |#1| (-322)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) NIL T ELT)) (-3162 ((|#1| $) NIL T ELT)) (-1800 (($ (-1183 |#1|)) NIL T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-322)) ELT)) (-2570 (($ $ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3000 (($) NIL (|has| |#1| (-322)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-2839 (($) NIL (|has| |#1| (-322)) ELT)) (-1684 (((-85) $) NIL (|has| |#1| (-322)) ELT)) (-1772 (($ $ (-698)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3729 (((-85) $) NIL T ELT)) (-3778 (((-834) $) NIL (|has| |#1| (-322)) ELT) (((-747 (-834)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2018 (($) NIL (|has| |#1| (-322)) ELT)) (-2016 (((-85) $) NIL (|has| |#1| (-322)) ELT)) (-3138 ((|#1| $) NIL T ELT) (($ $ (-834)) NIL (|has| |#1| (-322)) ELT)) (-3451 (((-636 $) $) NIL (|has| |#1| (-322)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2019 (((-1089 |#1|) $) NIL T ELT) (((-1089 $) $ (-834)) NIL (|has| |#1| (-322)) ELT)) (-2015 (((-834) $) NIL (|has| |#1| (-322)) ELT)) (-1631 (((-1089 |#1|) $) NIL (|has| |#1| (-322)) ELT)) (-1630 (((-1089 |#1|) $) NIL (|has| |#1| (-322)) ELT) (((-3 (-1089 |#1|) #1#) $ $) NIL (|has| |#1| (-322)) ELT)) (-1632 (($ $ (-1089 |#1|)) NIL (|has| |#1| (-322)) ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3452 (($) NIL (|has| |#1| (-322)) CONST)) (-2405 (($ (-834)) NIL (|has| |#1| (-322)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1683 (((-1183 (-587 (-2 (|:| -3408 |#1|) (|:| -2405 (-1037)))))) NIL T ELT)) (-1682 (((-634 |#1|)) NIL T ELT)) (-2414 (($) NIL (|has| |#1| (-322)) ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) NIL (|has| |#1| (-322)) ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-3937 (((-747 (-834))) NIL T ELT) (((-834)) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-1773 (((-698) $) NIL (|has| |#1| (-322)) ELT) (((-3 (-698) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3918 (((-107)) NIL T ELT)) (-3764 (($ $ (-698)) NIL (|has| |#1| (-322)) ELT) (($ $) NIL (|has| |#1| (-322)) ELT)) (-3955 (((-747 (-834)) $) NIL T ELT) (((-834) $) NIL T ELT)) (-3191 (((-1089 |#1|)) NIL T ELT)) (-1678 (($) NIL (|has| |#1| (-322)) ELT)) (-1633 (($) NIL (|has| |#1| (-322)) ELT)) (-3230 (((-1183 |#1|) $) NIL T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (|has| |#1| (-322)) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2708 (($ $) NIL (|has| |#1| (-322)) ELT) (((-636 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 $)) NIL T ELT) (((-1183 $) (-834)) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-3935 (($ $) NIL (|has| |#1| (-322)) ELT) (($ $ (-698)) NIL (|has| |#1| (-322)) ELT)) (-2675 (($ $ (-698)) NIL (|has| |#1| (-322)) ELT) (($ $) NIL (|has| |#1| (-322)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-305 |#1| |#2|) (-13 (-282 |#1|) (-10 -7 (-15 -1683 ((-1183 (-587 (-2 (|:| -3408 |#1|) (|:| -2405 (-1037))))))) (-15 -1682 ((-634 |#1|))) (-15 -1681 ((-698))))) (-301) (-834)) (T -305)) +((-1683 (*1 *2) (-12 (-5 *2 (-1183 (-587 (-2 (|:| -3408 *3) (|:| -2405 (-1037)))))) (-5 *1 (-305 *3 *4)) (-4 *3 (-301)) (-14 *4 (-834)))) (-1682 (*1 *2) (-12 (-5 *2 (-634 *3)) (-5 *1 (-305 *3 *4)) (-4 *3 (-301)) (-14 *4 (-834)))) (-1681 (*1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-305 *3 *4)) (-4 *3 (-301)) (-14 *4 (-834))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3936 (((-698)) NIL T ELT)) (-3336 ((|#1| $) NIL T ELT) (($ $ (-834)) NIL (|has| |#1| (-322)) ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) 130 (|has| |#1| (-322)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) 156 (|has| |#1| (-322)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) 104 T ELT)) (-3162 ((|#1| $) 101 T ELT)) (-1800 (($ (-1183 |#1|)) 96 T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-322)) ELT)) (-2570 (($ $ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3000 (($) 93 (|has| |#1| (-322)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-2839 (($) 52 (|has| |#1| (-322)) ELT)) (-1684 (((-85) $) NIL (|has| |#1| (-322)) ELT)) (-1772 (($ $ (-698)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3729 (((-85) $) NIL T ELT)) (-3778 (((-834) $) NIL (|has| |#1| (-322)) ELT) (((-747 (-834)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2018 (($) 131 (|has| |#1| (-322)) ELT)) (-2016 (((-85) $) 85 (|has| |#1| (-322)) ELT)) (-3138 ((|#1| $) 48 T ELT) (($ $ (-834)) 53 (|has| |#1| (-322)) ELT)) (-3451 (((-636 $) $) NIL (|has| |#1| (-322)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2019 (((-1089 |#1|) $) 76 T ELT) (((-1089 $) $ (-834)) NIL (|has| |#1| (-322)) ELT)) (-2015 (((-834) $) 108 (|has| |#1| (-322)) ELT)) (-1631 (((-1089 |#1|) $) NIL (|has| |#1| (-322)) ELT)) (-1630 (((-1089 |#1|) $) NIL (|has| |#1| (-322)) ELT) (((-3 (-1089 |#1|) #1#) $ $) NIL (|has| |#1| (-322)) ELT)) (-1632 (($ $ (-1089 |#1|)) NIL (|has| |#1| (-322)) ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3452 (($) NIL (|has| |#1| (-322)) CONST)) (-2405 (($ (-834)) 106 (|has| |#1| (-322)) ELT)) (-3938 (((-85) $) 158 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2414 (($) 45 (|has| |#1| (-322)) ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) 125 (|has| |#1| (-322)) ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-3937 (((-747 (-834))) NIL T ELT) (((-834)) 155 T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-1773 (((-698) $) NIL (|has| |#1| (-322)) ELT) (((-3 (-698) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3918 (((-107)) NIL T ELT)) (-3764 (($ $ (-698)) NIL (|has| |#1| (-322)) ELT) (($ $) NIL (|has| |#1| (-322)) ELT)) (-3955 (((-747 (-834)) $) NIL T ELT) (((-834) $) 68 T ELT)) (-3191 (((-1089 |#1|)) 99 T ELT)) (-1678 (($) 136 (|has| |#1| (-322)) ELT)) (-1633 (($) NIL (|has| |#1| (-322)) ELT)) (-3230 (((-1183 |#1|) $) 64 T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (|has| |#1| (-322)) ELT)) (-3953 (((-776) $) 154 T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2708 (($ $) NIL (|has| |#1| (-322)) ELT) (((-636 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3132 (((-698)) 160 T CONST)) (-1269 (((-85) $ $) 162 T ELT)) (-2017 (((-1183 $)) 120 T ELT) (((-1183 $) (-834)) 59 T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2666 (($) 122 T CONST)) (-2672 (($) 40 T CONST)) (-3935 (($ $) 79 (|has| |#1| (-322)) ELT) (($ $ (-698)) NIL (|has| |#1| (-322)) ELT)) (-2675 (($ $ (-698)) NIL (|has| |#1| (-322)) ELT) (($ $) NIL (|has| |#1| (-322)) ELT)) (-3062 (((-85) $ $) 118 T ELT)) (-3956 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3843 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3845 (($ $ $) 114 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 54 T ELT) (($ $ (-488)) 139 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT))) +(((-306 |#1| |#2|) (-282 |#1|) (-301) (-1089 |#1|)) (T -306)) +NIL +((-1699 (((-873 (-1089 |#1|)) (-1089 |#1|)) 49 T ELT)) (-3000 (((-1089 |#1|) (-834) (-834)) 159 T ELT) (((-1089 |#1|) (-834)) 155 T ELT)) (-1684 (((-85) (-1089 |#1|)) 110 T ELT)) (-1686 (((-834) (-834)) 85 T ELT)) (-1687 (((-834) (-834)) 94 T ELT)) (-1685 (((-834) (-834)) 83 T ELT)) (-2016 (((-85) (-1089 |#1|)) 114 T ELT)) (-1694 (((-3 (-1089 |#1|) #1="failed") (-1089 |#1|)) 139 T ELT)) (-1697 (((-3 (-1089 |#1|) #1#) (-1089 |#1|)) 144 T ELT)) (-1696 (((-3 (-1089 |#1|) #1#) (-1089 |#1|)) 143 T ELT)) (-1695 (((-3 (-1089 |#1|) #1#) (-1089 |#1|)) 142 T ELT)) (-1693 (((-3 (-1089 |#1|) #1#) (-1089 |#1|)) 134 T ELT)) (-1698 (((-1089 |#1|) (-1089 |#1|)) 71 T ELT)) (-1689 (((-1089 |#1|) (-834)) 149 T ELT)) (-1692 (((-1089 |#1|) (-834)) 152 T ELT)) (-1691 (((-1089 |#1|) (-834)) 151 T ELT)) (-1690 (((-1089 |#1|) (-834)) 150 T ELT)) (-1688 (((-1089 |#1|) (-834)) 147 T ELT))) +(((-307 |#1|) (-10 -7 (-15 -1684 ((-85) (-1089 |#1|))) (-15 -2016 ((-85) (-1089 |#1|))) (-15 -1685 ((-834) (-834))) (-15 -1686 ((-834) (-834))) (-15 -1687 ((-834) (-834))) (-15 -1688 ((-1089 |#1|) (-834))) (-15 -1689 ((-1089 |#1|) (-834))) (-15 -1690 ((-1089 |#1|) (-834))) (-15 -1691 ((-1089 |#1|) (-834))) (-15 -1692 ((-1089 |#1|) (-834))) (-15 -1693 ((-3 (-1089 |#1|) #1="failed") (-1089 |#1|))) (-15 -1694 ((-3 (-1089 |#1|) #1#) (-1089 |#1|))) (-15 -1695 ((-3 (-1089 |#1|) #1#) (-1089 |#1|))) (-15 -1696 ((-3 (-1089 |#1|) #1#) (-1089 |#1|))) (-15 -1697 ((-3 (-1089 |#1|) #1#) (-1089 |#1|))) (-15 -3000 ((-1089 |#1|) (-834))) (-15 -3000 ((-1089 |#1|) (-834) (-834))) (-15 -1698 ((-1089 |#1|) (-1089 |#1|))) (-15 -1699 ((-873 (-1089 |#1|)) (-1089 |#1|)))) (-301)) (T -307)) +((-1699 (*1 *2 *3) (-12 (-4 *4 (-301)) (-5 *2 (-873 (-1089 *4))) (-5 *1 (-307 *4)) (-5 *3 (-1089 *4)))) (-1698 (*1 *2 *2) (-12 (-5 *2 (-1089 *3)) (-4 *3 (-301)) (-5 *1 (-307 *3)))) (-3000 (*1 *2 *3 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1089 *4)) (-5 *1 (-307 *4)) (-4 *4 (-301)))) (-3000 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1089 *4)) (-5 *1 (-307 *4)) (-4 *4 (-301)))) (-1697 (*1 *2 *2) (|partial| -12 (-5 *2 (-1089 *3)) (-4 *3 (-301)) (-5 *1 (-307 *3)))) (-1696 (*1 *2 *2) (|partial| -12 (-5 *2 (-1089 *3)) (-4 *3 (-301)) (-5 *1 (-307 *3)))) (-1695 (*1 *2 *2) (|partial| -12 (-5 *2 (-1089 *3)) (-4 *3 (-301)) (-5 *1 (-307 *3)))) (-1694 (*1 *2 *2) (|partial| -12 (-5 *2 (-1089 *3)) (-4 *3 (-301)) (-5 *1 (-307 *3)))) (-1693 (*1 *2 *2) (|partial| -12 (-5 *2 (-1089 *3)) (-4 *3 (-301)) (-5 *1 (-307 *3)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1089 *4)) (-5 *1 (-307 *4)) (-4 *4 (-301)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1089 *4)) (-5 *1 (-307 *4)) (-4 *4 (-301)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1089 *4)) (-5 *1 (-307 *4)) (-4 *4 (-301)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1089 *4)) (-5 *1 (-307 *4)) (-4 *4 (-301)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1089 *4)) (-5 *1 (-307 *4)) (-4 *4 (-301)))) (-1687 (*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-307 *3)) (-4 *3 (-301)))) (-1686 (*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-307 *3)) (-4 *3 (-301)))) (-1685 (*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-307 *3)) (-4 *3 (-301)))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-1089 *4)) (-4 *4 (-301)) (-5 *2 (-85)) (-5 *1 (-307 *4)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-1089 *4)) (-4 *4 (-301)) (-5 *2 (-85)) (-5 *1 (-307 *4))))) +((-1700 ((|#1| (-1089 |#2|)) 60 T ELT))) +(((-308 |#1| |#2|) (-10 -7 (-15 -1700 (|#1| (-1089 |#2|)))) (-13 (-347) (-10 -7 (-15 -3953 (|#1| |#2|)) (-15 -2015 ((-834) |#1|)) (-15 -2017 ((-1183 |#1|) (-834))) (-15 -3935 (|#1| |#1|)))) (-301)) (T -308)) +((-1700 (*1 *2 *3) (-12 (-5 *3 (-1089 *4)) (-4 *4 (-301)) (-4 *2 (-13 (-347) (-10 -7 (-15 -3953 (*2 *4)) (-15 -2015 ((-834) *2)) (-15 -2017 ((-1183 *2) (-834))) (-15 -3935 (*2 *2))))) (-5 *1 (-308 *2 *4))))) +((-2710 (((-3 (-587 |#3|) "failed") (-587 |#3|) |#3|) 40 T ELT))) +(((-309 |#1| |#2| |#3|) (-10 -7 (-15 -2710 ((-3 (-587 |#3|) "failed") (-587 |#3|) |#3|))) (-301) (-1159 |#1|) (-1159 |#2|)) (T -309)) +((-2710 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 *3)) (-4 *3 (-1159 *5)) (-4 *5 (-1159 *4)) (-4 *4 (-301)) (-5 *1 (-309 *4 *5 *3))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3936 (((-698)) NIL T ELT)) (-3336 ((|#1| $) NIL T ELT) (($ $ (-834)) NIL (|has| |#1| (-322)) ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) NIL (|has| |#1| (-322)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) NIL (|has| |#1| (-322)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) NIL T ELT)) (-3162 ((|#1| $) NIL T ELT)) (-1800 (($ (-1183 |#1|)) NIL T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-322)) ELT)) (-2570 (($ $ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3000 (($) NIL (|has| |#1| (-322)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-2839 (($) NIL (|has| |#1| (-322)) ELT)) (-1684 (((-85) $) NIL (|has| |#1| (-322)) ELT)) (-1772 (($ $ (-698)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3729 (((-85) $) NIL T ELT)) (-3778 (((-834) $) NIL (|has| |#1| (-322)) ELT) (((-747 (-834)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2018 (($) NIL (|has| |#1| (-322)) ELT)) (-2016 (((-85) $) NIL (|has| |#1| (-322)) ELT)) (-3138 ((|#1| $) NIL T ELT) (($ $ (-834)) NIL (|has| |#1| (-322)) ELT)) (-3451 (((-636 $) $) NIL (|has| |#1| (-322)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2019 (((-1089 |#1|) $) NIL T ELT) (((-1089 $) $ (-834)) NIL (|has| |#1| (-322)) ELT)) (-2015 (((-834) $) NIL (|has| |#1| (-322)) ELT)) (-1631 (((-1089 |#1|) $) NIL (|has| |#1| (-322)) ELT)) (-1630 (((-1089 |#1|) $) NIL (|has| |#1| (-322)) ELT) (((-3 (-1089 |#1|) #1#) $ $) NIL (|has| |#1| (-322)) ELT)) (-1632 (($ $ (-1089 |#1|)) NIL (|has| |#1| (-322)) ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3452 (($) NIL (|has| |#1| (-322)) CONST)) (-2405 (($ (-834)) NIL (|has| |#1| (-322)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2414 (($) NIL (|has| |#1| (-322)) ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) NIL (|has| |#1| (-322)) ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-3937 (((-747 (-834))) NIL T ELT) (((-834)) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-1773 (((-698) $) NIL (|has| |#1| (-322)) ELT) (((-3 (-698) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3918 (((-107)) NIL T ELT)) (-3764 (($ $ (-698)) NIL (|has| |#1| (-322)) ELT) (($ $) NIL (|has| |#1| (-322)) ELT)) (-3955 (((-747 (-834)) $) NIL T ELT) (((-834) $) NIL T ELT)) (-3191 (((-1089 |#1|)) NIL T ELT)) (-1678 (($) NIL (|has| |#1| (-322)) ELT)) (-1633 (($) NIL (|has| |#1| (-322)) ELT)) (-3230 (((-1183 |#1|) $) NIL T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (|has| |#1| (-322)) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2708 (($ $) NIL (|has| |#1| (-322)) ELT) (((-636 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 $)) NIL T ELT) (((-1183 $) (-834)) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-3935 (($ $) NIL (|has| |#1| (-322)) ELT) (($ $ (-698)) NIL (|has| |#1| (-322)) ELT)) (-2675 (($ $ (-698)) NIL (|has| |#1| (-322)) ELT) (($ $) NIL (|has| |#1| (-322)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-310 |#1| |#2|) (-282 |#1|) (-301) (-834)) (T -310)) +NIL +((-2254 (((-85) (-587 (-861 |#1|))) 41 T ELT)) (-2256 (((-587 (-861 |#1|)) (-587 (-861 |#1|))) 53 T ELT)) (-2255 (((-3 (-587 (-861 |#1|)) "failed") (-587 (-861 |#1|))) 48 T ELT))) +(((-311 |#1| |#2|) (-10 -7 (-15 -2254 ((-85) (-587 (-861 |#1|)))) (-15 -2255 ((-3 (-587 (-861 |#1|)) "failed") (-587 (-861 |#1|)))) (-15 -2256 ((-587 (-861 |#1|)) (-587 (-861 |#1|))))) (-395) (-587 (-1094))) (T -311)) +((-2256 (*1 *2 *2) (-12 (-5 *2 (-587 (-861 *3))) (-4 *3 (-395)) (-5 *1 (-311 *3 *4)) (-14 *4 (-587 (-1094))))) (-2255 (*1 *2 *2) (|partial| -12 (-5 *2 (-587 (-861 *3))) (-4 *3 (-395)) (-5 *1 (-311 *3 *4)) (-14 *4 (-587 (-1094))))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-587 (-861 *4))) (-4 *4 (-395)) (-5 *2 (-85)) (-5 *1 (-311 *4 *5)) (-14 *5 (-587 (-1094)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3142 (((-698) $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3162 ((|#1| $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-2415 (((-85) $) 17 T ELT)) (-2304 ((|#1| $ (-488)) NIL T ELT)) (-2305 (((-488) $ (-488)) NIL T ELT)) (-2295 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2296 (($ (-1 (-488) (-488)) $) 26 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) 28 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1787 (((-587 (-2 (|:| |gen| |#1|) (|:| -3950 (-488)))) $) 30 T ELT)) (-3015 (($ $ $) NIL T ELT)) (-2441 (($ $ $) NIL T ELT)) (-3953 (((-776) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2672 (($) 7 T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT) (($ |#1| (-488)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) +(((-312 |#1|) (-13 (-416) (-954 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-488))) (-15 -3142 ((-698) $)) (-15 -2305 ((-488) $ (-488))) (-15 -2304 (|#1| $ (-488))) (-15 -2296 ($ (-1 (-488) (-488)) $)) (-15 -2295 ($ (-1 |#1| |#1|) $)) (-15 -1787 ((-587 (-2 (|:| |gen| |#1|) (|:| -3950 (-488)))) $)))) (-1017)) (T -312)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-312 *2)) (-4 *2 (-1017)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-1017)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-312 *2)) (-4 *2 (-1017)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-312 *3)) (-4 *3 (-1017)))) (-2305 (*1 *2 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-312 *3)) (-4 *3 (-1017)))) (-2304 (*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-5 *1 (-312 *2)) (-4 *2 (-1017)))) (-2296 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-488) (-488))) (-5 *1 (-312 *3)) (-4 *3 (-1017)))) (-2295 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1017)) (-5 *1 (-312 *3)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3950 (-488))))) (-5 *1 (-312 *3)) (-4 *3 (-1017))))) +((-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 13 T ELT)) (-2068 (($ $) 14 T ELT)) (-3977 (((-350 $) $) 31 T ELT)) (-3729 (((-85) $) 27 T ELT)) (-2490 (($ $) 19 T ELT)) (-3150 (($ $ $) 22 T ELT) (($ (-587 $)) NIL T ELT)) (-3738 (((-350 $) $) 32 T ELT)) (-3472 (((-3 $ "failed") $ $) 21 T ELT)) (-1611 (((-698) $) 25 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 36 T ELT)) (-2067 (((-85) $ $) 16 T ELT)) (-3956 (($ $ $) 34 T ELT))) +(((-313 |#1|) (-10 -7 (-15 -3956 (|#1| |#1| |#1|)) (-15 -2490 (|#1| |#1|)) (-15 -3729 ((-85) |#1|)) (-15 -3977 ((-350 |#1|) |#1|)) (-15 -3738 ((-350 |#1|) |#1|)) (-15 -2885 ((-2 (|:| -1977 |#1|) (|:| -2908 |#1|)) |#1| |#1|)) (-15 -1611 ((-698) |#1|)) (-15 -3150 (|#1| (-587 |#1|))) (-15 -3150 (|#1| |#1| |#1|)) (-15 -2067 ((-85) |#1| |#1|)) (-15 -2068 (|#1| |#1|)) (-15 -2069 ((-2 (|:| -1780 |#1|) (|:| -3988 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3472 ((-3 |#1| "failed") |#1| |#1|))) (-314)) (T -313)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3781 (($ $) 91 T ELT)) (-3977 (((-350 $) $) 90 T ELT)) (-1612 (((-85) $ $) 75 T ELT)) (-3730 (($) 23 T CONST)) (-2570 (($ $ $) 71 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-2569 (($ $ $) 72 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 66 T ELT)) (-3729 (((-85) $) 89 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-1609 (((-3 (-587 $) #1="failed") (-587 $) $) 68 T ELT)) (-1899 (($ $ $) 60 T ELT) (($ (-587 $)) 59 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 88 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 58 T ELT)) (-3150 (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-3738 (((-350 $) $) 92 T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 65 T ELT)) (-1611 (((-698) $) 74 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 73 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT) (($ (-352 (-488))) 84 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ $) 83 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 87 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-352 (-488))) 86 T ELT) (($ (-352 (-488)) $) 85 T ELT))) +(((-314) (-113)) (T -314)) +((-3956 (*1 *1 *1 *1) (-4 *1 (-314)))) +(-13 (-260) (-1138) (-203) (-10 -8 (-15 -3956 ($ $ $)) (-6 -3999) (-6 -3993))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-352 (-488))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) . T) ((-82 $ $) . T) ((-104) . T) ((-559 (-352 (-488))) . T) ((-559 (-488)) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-203) . T) ((-248) . T) ((-260) . T) ((-395) . T) ((-499) . T) ((-13) . T) ((-592 (-352 (-488))) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 (-352 (-488))) . T) ((-594 $) . T) ((-586 (-352 (-488))) . T) ((-586 $) . T) ((-658 (-352 (-488))) . T) ((-658 $) . T) ((-667) . T) ((-836) . T) ((-967 (-352 (-488))) . T) ((-967 $) . T) ((-972 (-352 (-488))) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T) ((-1138) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-1701 ((|#1| $ |#1|) 35 T ELT)) (-1705 (($ $ (-1077)) 23 T ELT)) (-3625 (((-3 |#1| "failed") $) 34 T ELT)) (-1702 ((|#1| $) 32 T ELT)) (-1706 (($ (-340)) 22 T ELT) (($ (-340) (-1077)) 21 T ELT)) (-3548 (((-340) $) 25 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1703 (((-1077) $) 26 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 20 T ELT)) (-1704 (($ $) 24 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 19 T ELT))) +(((-315 |#1|) (-13 (-316 (-340) |#1|) (-10 -8 (-15 -3625 ((-3 |#1| "failed") $)))) (-1017)) (T -315)) +((-3625 (*1 *2 *1) (|partial| -12 (-5 *1 (-315 *2)) (-4 *2 (-1017))))) +((-2574 (((-85) $ $) 7 T ELT)) (-1701 ((|#2| $ |#2|) 17 T ELT)) (-1705 (($ $ (-1077)) 22 T ELT)) (-1702 ((|#2| $) 18 T ELT)) (-1706 (($ |#1|) 24 T ELT) (($ |#1| (-1077)) 23 T ELT)) (-3548 ((|#1| $) 20 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-1703 (((-1077) $) 19 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1704 (($ $) 21 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT))) +(((-316 |#1| |#2|) (-113) (-1017) (-1017)) (T -316)) +((-1706 (*1 *1 *2) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1017)))) (-1706 (*1 *1 *2 *3) (-12 (-5 *3 (-1077)) (-4 *1 (-316 *2 *4)) (-4 *2 (-1017)) (-4 *4 (-1017)))) (-1705 (*1 *1 *1 *2) (-12 (-5 *2 (-1077)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017)))) (-1704 (*1 *1 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1017)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *3 (-1017)) (-4 *2 (-1017)))) (-1703 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-5 *2 (-1077)))) (-1702 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1017)) (-4 *2 (-1017)))) (-1701 (*1 *2 *1 *2) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1017)) (-4 *2 (-1017))))) +(-13 (-1017) (-10 -8 (-15 -1706 ($ |t#1|)) (-15 -1706 ($ |t#1| (-1077))) (-15 -1705 ($ $ (-1077))) (-15 -1704 ($ $)) (-15 -3548 (|t#1| $)) (-15 -1703 ((-1077) $)) (-15 -1702 (|t#2| $)) (-15 -1701 (|t#2| $ |t#2|)))) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-3229 (((-1183 (-634 |#2|)) (-1183 $)) 67 T ELT)) (-1796 (((-634 |#2|) (-1183 $)) 139 T ELT)) (-1731 ((|#2| $) 36 T ELT)) (-1794 (((-634 |#2|) $ (-1183 $)) 142 T ELT)) (-2409 (((-3 $ #1="failed") $) 89 T ELT)) (-1729 ((|#2| $) 39 T ELT)) (-1709 (((-1089 |#2|) $) 98 T ELT)) (-1798 ((|#2| (-1183 $)) 122 T ELT)) (-1727 (((-1089 |#2|) $) 32 T ELT)) (-1721 (((-85)) 116 T ELT)) (-1800 (($ (-1183 |#2|) (-1183 $)) 132 T ELT)) (-3473 (((-3 $ #1#) $) 93 T ELT)) (-1714 (((-85)) 111 T ELT)) (-1712 (((-85)) 106 T ELT)) (-1716 (((-85)) 58 T ELT)) (-1797 (((-634 |#2|) (-1183 $)) 137 T ELT)) (-1732 ((|#2| $) 35 T ELT)) (-1795 (((-634 |#2|) $ (-1183 $)) 141 T ELT)) (-2410 (((-3 $ #1#) $) 87 T ELT)) (-1730 ((|#2| $) 38 T ELT)) (-1710 (((-1089 |#2|) $) 97 T ELT)) (-1799 ((|#2| (-1183 $)) 120 T ELT)) (-1728 (((-1089 |#2|) $) 30 T ELT)) (-1722 (((-85)) 115 T ELT)) (-1713 (((-85)) 108 T ELT)) (-1715 (((-85)) 56 T ELT)) (-1717 (((-85)) 103 T ELT)) (-1720 (((-85)) 117 T ELT)) (-3230 (((-1183 |#2|) $ (-1183 $)) NIL T ELT) (((-634 |#2|) (-1183 $) (-1183 $)) 128 T ELT)) (-1726 (((-85)) 113 T ELT)) (-1711 (((-587 (-1183 |#2|))) 102 T ELT)) (-1724 (((-85)) 114 T ELT)) (-1725 (((-85)) 112 T ELT)) (-1723 (((-85)) 51 T ELT)) (-1719 (((-85)) 118 T ELT))) +(((-317 |#1| |#2|) (-10 -7 (-15 -1709 ((-1089 |#2|) |#1|)) (-15 -1710 ((-1089 |#2|) |#1|)) (-15 -1711 ((-587 (-1183 |#2|)))) (-15 -2409 ((-3 |#1| #1="failed") |#1|)) (-15 -2410 ((-3 |#1| #1#) |#1|)) (-15 -3473 ((-3 |#1| #1#) |#1|)) (-15 -1712 ((-85))) (-15 -1713 ((-85))) (-15 -1714 ((-85))) (-15 -1715 ((-85))) (-15 -1716 ((-85))) (-15 -1717 ((-85))) (-15 -1719 ((-85))) (-15 -1720 ((-85))) (-15 -1721 ((-85))) (-15 -1722 ((-85))) (-15 -1723 ((-85))) (-15 -1724 ((-85))) (-15 -1725 ((-85))) (-15 -1726 ((-85))) (-15 -1727 ((-1089 |#2|) |#1|)) (-15 -1728 ((-1089 |#2|) |#1|)) (-15 -1796 ((-634 |#2|) (-1183 |#1|))) (-15 -1797 ((-634 |#2|) (-1183 |#1|))) (-15 -1798 (|#2| (-1183 |#1|))) (-15 -1799 (|#2| (-1183 |#1|))) (-15 -1800 (|#1| (-1183 |#2|) (-1183 |#1|))) (-15 -3230 ((-634 |#2|) (-1183 |#1|) (-1183 |#1|))) (-15 -3230 ((-1183 |#2|) |#1| (-1183 |#1|))) (-15 -1729 (|#2| |#1|)) (-15 -1730 (|#2| |#1|)) (-15 -1731 (|#2| |#1|)) (-15 -1732 (|#2| |#1|)) (-15 -1794 ((-634 |#2|) |#1| (-1183 |#1|))) (-15 -1795 ((-634 |#2|) |#1| (-1183 |#1|))) (-15 -3229 ((-1183 (-634 |#2|)) (-1183 |#1|)))) (-318 |#2|) (-148)) (T -317)) +((-1726 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) (-1725 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) (-1724 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) (-1723 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) (-1722 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) (-1721 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) (-1720 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) (-1719 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) (-1717 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) (-1716 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) (-1715 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) (-1714 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) (-1713 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) (-1712 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) (-1711 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-587 (-1183 *4))) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1780 (((-3 $ "failed")) 48 (|has| |#1| (-499)) ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3229 (((-1183 (-634 |#1|)) (-1183 $)) 89 T ELT)) (-1733 (((-1183 $)) 92 T ELT)) (-3730 (($) 23 T CONST)) (-1914 (((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) "failed")) 51 (|has| |#1| (-499)) ELT)) (-1707 (((-3 $ "failed")) 49 (|has| |#1| (-499)) ELT)) (-1796 (((-634 |#1|) (-1183 $)) 76 T ELT)) (-1731 ((|#1| $) 85 T ELT)) (-1794 (((-634 |#1|) $ (-1183 $)) 87 T ELT)) (-2409 (((-3 $ "failed") $) 56 (|has| |#1| (-499)) ELT)) (-2412 (($ $ (-834)) 37 T ELT)) (-1729 ((|#1| $) 83 T ELT)) (-1709 (((-1089 |#1|) $) 53 (|has| |#1| (-499)) ELT)) (-1798 ((|#1| (-1183 $)) 78 T ELT)) (-1727 (((-1089 |#1|) $) 74 T ELT)) (-1721 (((-85)) 68 T ELT)) (-1800 (($ (-1183 |#1|) (-1183 $)) 80 T ELT)) (-3473 (((-3 $ "failed") $) 58 (|has| |#1| (-499)) ELT)) (-3114 (((-834)) 91 T ELT)) (-1718 (((-85)) 65 T ELT)) (-2439 (($ $ (-834)) 44 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-1714 (((-85)) 61 T ELT)) (-1712 (((-85)) 59 T ELT)) (-1716 (((-85)) 63 T ELT)) (-1915 (((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) "failed")) 52 (|has| |#1| (-499)) ELT)) (-1708 (((-3 $ "failed")) 50 (|has| |#1| (-499)) ELT)) (-1797 (((-634 |#1|) (-1183 $)) 77 T ELT)) (-1732 ((|#1| $) 86 T ELT)) (-1795 (((-634 |#1|) $ (-1183 $)) 88 T ELT)) (-2410 (((-3 $ "failed") $) 57 (|has| |#1| (-499)) ELT)) (-2411 (($ $ (-834)) 38 T ELT)) (-1730 ((|#1| $) 84 T ELT)) (-1710 (((-1089 |#1|) $) 54 (|has| |#1| (-499)) ELT)) (-1799 ((|#1| (-1183 $)) 79 T ELT)) (-1728 (((-1089 |#1|) $) 75 T ELT)) (-1722 (((-85)) 69 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-1713 (((-85)) 60 T ELT)) (-1715 (((-85)) 62 T ELT)) (-1717 (((-85)) 64 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-1720 (((-85)) 67 T ELT)) (-3230 (((-1183 |#1|) $ (-1183 $)) 82 T ELT) (((-634 |#1|) (-1183 $) (-1183 $)) 81 T ELT)) (-1900 (((-587 (-861 |#1|)) (-1183 $)) 90 T ELT)) (-2441 (($ $ $) 34 T ELT)) (-1726 (((-85)) 73 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-1711 (((-587 (-1183 |#1|))) 55 (|has| |#1| (-499)) ELT)) (-2442 (($ $ $ $) 35 T ELT)) (-1724 (((-85)) 71 T ELT)) (-2440 (($ $ $) 33 T ELT)) (-1725 (((-85)) 72 T ELT)) (-1723 (((-85)) 70 T ELT)) (-1719 (((-85)) 66 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 39 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +(((-318 |#1|) (-113) (-148)) (T -318)) +((-1733 (*1 *2) (-12 (-4 *3 (-148)) (-5 *2 (-1183 *1)) (-4 *1 (-318 *3)))) (-3114 (*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-834)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *4)) (-4 *4 (-148)) (-5 *2 (-587 (-861 *4))))) (-3229 (*1 *2 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *4)) (-4 *4 (-148)) (-5 *2 (-1183 (-634 *4))))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *4)) (-4 *4 (-148)) (-5 *2 (-634 *4)))) (-1794 (*1 *2 *1 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *4)) (-4 *4 (-148)) (-5 *2 (-634 *4)))) (-1732 (*1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *2 (-148)))) (-1731 (*1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *2 (-148)))) (-1730 (*1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *2 (-148)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *2 (-148)))) (-3230 (*1 *2 *1 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *4)) (-4 *4 (-148)) (-5 *2 (-1183 *4)))) (-3230 (*1 *2 *3 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *4)) (-4 *4 (-148)) (-5 *2 (-634 *4)))) (-1800 (*1 *1 *2 *3) (-12 (-5 *2 (-1183 *4)) (-5 *3 (-1183 *1)) (-4 *4 (-148)) (-4 *1 (-318 *4)))) (-1799 (*1 *2 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *2)) (-4 *2 (-148)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *2)) (-4 *2 (-148)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *4)) (-4 *4 (-148)) (-5 *2 (-634 *4)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *4)) (-4 *4 (-148)) (-5 *2 (-634 *4)))) (-1728 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-1089 *3)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-1089 *3)))) (-1726 (*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85)))) (-1725 (*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85)))) (-1724 (*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85)))) (-1723 (*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85)))) (-1722 (*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85)))) (-1721 (*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85)))) (-1720 (*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85)))) (-1719 (*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85)))) (-1718 (*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85)))) (-1717 (*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85)))) (-1716 (*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85)))) (-1715 (*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85)))) (-1714 (*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85)))) (-1713 (*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85)))) (-1712 (*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85)))) (-3473 (*1 *1 *1) (|partial| -12 (-4 *1 (-318 *2)) (-4 *2 (-148)) (-4 *2 (-499)))) (-2410 (*1 *1 *1) (|partial| -12 (-4 *1 (-318 *2)) (-4 *2 (-148)) (-4 *2 (-499)))) (-2409 (*1 *1 *1) (|partial| -12 (-4 *1 (-318 *2)) (-4 *2 (-148)) (-4 *2 (-499)))) (-1711 (*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-4 *3 (-499)) (-5 *2 (-587 (-1183 *3))))) (-1710 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-4 *3 (-499)) (-5 *2 (-1089 *3)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-4 *3 (-499)) (-5 *2 (-1089 *3)))) (-1915 (*1 *2) (|partial| -12 (-4 *3 (-499)) (-4 *3 (-148)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2017 (-587 *1)))) (-4 *1 (-318 *3)))) (-1914 (*1 *2) (|partial| -12 (-4 *3 (-499)) (-4 *3 (-148)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2017 (-587 *1)))) (-4 *1 (-318 *3)))) (-1708 (*1 *1) (|partial| -12 (-4 *1 (-318 *2)) (-4 *2 (-499)) (-4 *2 (-148)))) (-1707 (*1 *1) (|partial| -12 (-4 *1 (-318 *2)) (-4 *2 (-499)) (-4 *2 (-148)))) (-1780 (*1 *1) (|partial| -12 (-4 *1 (-318 *2)) (-4 *2 (-499)) (-4 *2 (-148))))) +(-13 (-687 |t#1|) (-10 -8 (-15 -1733 ((-1183 $))) (-15 -3114 ((-834))) (-15 -1900 ((-587 (-861 |t#1|)) (-1183 $))) (-15 -3229 ((-1183 (-634 |t#1|)) (-1183 $))) (-15 -1795 ((-634 |t#1|) $ (-1183 $))) (-15 -1794 ((-634 |t#1|) $ (-1183 $))) (-15 -1732 (|t#1| $)) (-15 -1731 (|t#1| $)) (-15 -1730 (|t#1| $)) (-15 -1729 (|t#1| $)) (-15 -3230 ((-1183 |t#1|) $ (-1183 $))) (-15 -3230 ((-634 |t#1|) (-1183 $) (-1183 $))) (-15 -1800 ($ (-1183 |t#1|) (-1183 $))) (-15 -1799 (|t#1| (-1183 $))) (-15 -1798 (|t#1| (-1183 $))) (-15 -1797 ((-634 |t#1|) (-1183 $))) (-15 -1796 ((-634 |t#1|) (-1183 $))) (-15 -1728 ((-1089 |t#1|) $)) (-15 -1727 ((-1089 |t#1|) $)) (-15 -1726 ((-85))) (-15 -1725 ((-85))) (-15 -1724 ((-85))) (-15 -1723 ((-85))) (-15 -1722 ((-85))) (-15 -1721 ((-85))) (-15 -1720 ((-85))) (-15 -1719 ((-85))) (-15 -1718 ((-85))) (-15 -1717 ((-85))) (-15 -1716 ((-85))) (-15 -1715 ((-85))) (-15 -1714 ((-85))) (-15 -1713 ((-85))) (-15 -1712 ((-85))) (IF (|has| |t#1| (-499)) (PROGN (-15 -3473 ((-3 $ "failed") $)) (-15 -2410 ((-3 $ "failed") $)) (-15 -2409 ((-3 $ "failed") $)) (-15 -1711 ((-587 (-1183 |t#1|)))) (-15 -1710 ((-1089 |t#1|) $)) (-15 -1709 ((-1089 |t#1|) $)) (-15 -1915 ((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) "failed"))) (-15 -1914 ((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) "failed"))) (-15 -1708 ((-3 $ "failed"))) (-15 -1707 ((-3 $ "failed"))) (-15 -1780 ((-3 $ "failed"))) (-6 -3998)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-594 |#1|) . T) ((-586 |#1|) . T) ((-658 |#1|) . T) ((-661) . T) ((-687 |#1|) . T) ((-689) . T) ((-967 |#1|) . T) ((-972 |#1|) . T) ((-1017) . T) ((-1133) . T)) +((-3848 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 38 T ELT)) (-3251 (((-85) |#2| $) 35 T ELT)) (-1734 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 30 T ELT)) (-1736 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-3409 (((-85) $) 13 T ELT)) (-1735 (((-698) (-1 (-85) |#2|) $) 27 T ELT) (((-698) |#2| $) 33 T ELT)) (-3953 (((-776) $) 46 T ELT)) (-1737 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3062 (((-85) $ $) 40 T ELT)) (-3964 (((-698) $) 17 T ELT))) +(((-319 |#1| |#2|) (-10 -7 (-15 -3062 ((-85) |#1| |#1|)) (-15 -3953 ((-776) |#1|)) (-15 -3848 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3251 ((-85) |#2| |#1|)) (-15 -1735 ((-698) |#2| |#1|)) (-15 -1734 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3848 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3848 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1735 ((-698) (-1 (-85) |#2|) |#1|)) (-15 -1736 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1737 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3964 ((-698) |#1|)) (-15 -3409 ((-85) |#1|))) (-320 |#2|) (-1133)) (T -319)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3730 (($) 6 T CONST)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $) 39 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 38 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| (-72)) ELT)) (-2614 (((-587 |#1|) $) 40 T ELT)) (-3251 (((-85) |#1| $) 35 (|has| |#1| (-72)) ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 37 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) 42 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-1735 (((-698) (-1 (-85) |#1|) $) 41 T ELT) (((-698) |#1| $) 36 (|has| |#1| (-72)) ELT)) (-3406 (($ $) 9 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) 43 T ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) 44 T ELT))) +(((-320 |#1|) (-113) (-1133)) (T -320)) +((-3964 (*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-1133)) (-5 *2 (-698)))) (-1737 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-320 *4)) (-4 *4 (-1133)) (-5 *2 (-85)))) (-1736 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-320 *4)) (-4 *4 (-1133)) (-5 *2 (-85)))) (-1735 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-320 *4)) (-4 *4 (-1133)) (-5 *2 (-698)))) (-2614 (*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-1133)) (-5 *2 (-587 *3)))) (-3848 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-320 *2)) (-4 *2 (-1133)))) (-3848 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-320 *2)) (-4 *2 (-1133)))) (-1734 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-320 *2)) (-4 *2 (-1133)))) (-1735 (*1 *2 *3 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-1133)) (-4 *3 (-72)) (-5 *2 (-698)))) (-3251 (*1 *2 *3 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-1133)) (-4 *3 (-72)) (-5 *2 (-85)))) (-3848 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-72)) (-4 *1 (-320 *2)) (-4 *2 (-1133))))) +(-13 (-432 |t#1|) (-10 -8 (-15 -3964 ((-698) $)) (-15 -1737 ((-85) (-1 (-85) |t#1|) $)) (-15 -1736 ((-85) (-1 (-85) |t#1|) $)) (-15 -1735 ((-698) (-1 (-85) |t#1|) $)) (-15 -2614 ((-587 |t#1|) $)) (-15 -3848 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3848 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1734 ((-3 |t#1| "failed") (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -1735 ((-698) |t#1| $)) (-15 -3251 ((-85) |t#1| $)) (-15 -3848 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-1017) |has| |#1| (-1017)) ((-1133) . T)) +((-3000 (($) 15 T ELT))) +(((-321 |#1|) (-10 -7 (-15 -3000 (|#1|))) (-322)) (T -321)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3142 (((-698)) 20 T ELT)) (-3000 (($) 17 T ELT)) (-2015 (((-834) $) 18 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2405 (($ (-834)) 19 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT))) +(((-322) (-113)) (T -322)) +((-3142 (*1 *2) (-12 (-4 *1 (-322)) (-5 *2 (-698)))) (-2405 (*1 *1 *2) (-12 (-5 *2 (-834)) (-4 *1 (-322)))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-322)) (-5 *2 (-834)))) (-3000 (*1 *1) (-4 *1 (-322)))) +(-13 (-1017) (-10 -8 (-15 -3142 ((-698))) (-15 -2405 ($ (-834))) (-15 -2015 ((-834) $)) (-15 -3000 ($)))) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-1790 (((-634 |#2|) (-1183 $)) 45 T ELT)) (-1800 (($ (-1183 |#2|) (-1183 $)) 39 T ELT)) (-1789 (((-634 |#2|) $ (-1183 $)) 47 T ELT)) (-3763 ((|#2| (-1183 $)) 13 T ELT)) (-3230 (((-1183 |#2|) $ (-1183 $)) NIL T ELT) (((-634 |#2|) (-1183 $) (-1183 $)) 27 T ELT))) +(((-323 |#1| |#2| |#3|) (-10 -7 (-15 -1790 ((-634 |#2|) (-1183 |#1|))) (-15 -3763 (|#2| (-1183 |#1|))) (-15 -1800 (|#1| (-1183 |#2|) (-1183 |#1|))) (-15 -3230 ((-634 |#2|) (-1183 |#1|) (-1183 |#1|))) (-15 -3230 ((-1183 |#2|) |#1| (-1183 |#1|))) (-15 -1789 ((-634 |#2|) |#1| (-1183 |#1|)))) (-324 |#2| |#3|) (-148) (-1159 |#2|)) (T -323)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1790 (((-634 |#1|) (-1183 $)) 61 T ELT)) (-3336 ((|#1| $) 67 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-1800 (($ (-1183 |#1|) (-1183 $)) 63 T ELT)) (-1789 (((-634 |#1|) $ (-1183 $)) 68 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3114 (((-834)) 69 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3138 ((|#1| $) 66 T ELT)) (-2019 ((|#2| $) 59 (|has| |#1| (-314)) ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3763 ((|#1| (-1183 $)) 62 T ELT)) (-3230 (((-1183 |#1|) $ (-1183 $)) 65 T ELT) (((-634 |#1|) (-1183 $) (-1183 $)) 64 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2708 (((-636 $) $) 58 (|has| |#1| (-118)) ELT)) (-2455 ((|#2| $) 60 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) +(((-324 |#1| |#2|) (-113) (-148) (-1159 |t#1|)) (T -324)) +((-3114 (*1 *2) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-148)) (-4 *4 (-1159 *3)) (-5 *2 (-834)))) (-1789 (*1 *2 *1 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-324 *4 *5)) (-4 *4 (-148)) (-4 *5 (-1159 *4)) (-5 *2 (-634 *4)))) (-3336 (*1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *3 (-1159 *2)) (-4 *2 (-148)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *3 (-1159 *2)) (-4 *2 (-148)))) (-3230 (*1 *2 *1 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-324 *4 *5)) (-4 *4 (-148)) (-4 *5 (-1159 *4)) (-5 *2 (-1183 *4)))) (-3230 (*1 *2 *3 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-324 *4 *5)) (-4 *4 (-148)) (-4 *5 (-1159 *4)) (-5 *2 (-634 *4)))) (-1800 (*1 *1 *2 *3) (-12 (-5 *2 (-1183 *4)) (-5 *3 (-1183 *1)) (-4 *4 (-148)) (-4 *1 (-324 *4 *5)) (-4 *5 (-1159 *4)))) (-3763 (*1 *2 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-324 *2 *4)) (-4 *4 (-1159 *2)) (-4 *2 (-148)))) (-1790 (*1 *2 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-324 *4 *5)) (-4 *4 (-148)) (-4 *5 (-1159 *4)) (-5 *2 (-634 *4)))) (-2455 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-148)) (-4 *2 (-1159 *3)))) (-2019 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-148)) (-4 *3 (-314)) (-4 *2 (-1159 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3114 ((-834))) (-15 -1789 ((-634 |t#1|) $ (-1183 $))) (-15 -3336 (|t#1| $)) (-15 -3138 (|t#1| $)) (-15 -3230 ((-1183 |t#1|) $ (-1183 $))) (-15 -3230 ((-634 |t#1|) (-1183 $) (-1183 $))) (-15 -1800 ($ (-1183 |t#1|) (-1183 $))) (-15 -3763 (|t#1| (-1183 $))) (-15 -1790 ((-634 |t#1|) (-1183 $))) (-15 -2455 (|t#2| $)) (IF (|has| |t#1| (-314)) (-15 -2019 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-559 (-488)) . T) ((-559 |#1|) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-586 |#1|) . T) ((-658 |#1|) . T) ((-667) . T) ((-967 |#1|) . T) ((-972 |#1|) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-1740 (((-85) (-1 (-85) |#2| |#2|) $) NIL T ELT) (((-85) $) 18 T ELT)) (-1738 (($ (-1 (-85) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2915 (($ (-1 (-85) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2303 (($ $) 25 T ELT)) (-3425 (((-488) (-1 (-85) |#2|) $) NIL T ELT) (((-488) |#2| $) 11 T ELT) (((-488) |#2| $ (-488)) NIL T ELT)) (-3524 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) +(((-325 |#1| |#2|) (-10 -7 (-15 -1738 (|#1| |#1|)) (-15 -1738 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1740 ((-85) |#1|)) (-15 -2915 (|#1| |#1|)) (-15 -3524 (|#1| |#1| |#1|)) (-15 -3425 ((-488) |#2| |#1| (-488))) (-15 -3425 ((-488) |#2| |#1|)) (-15 -3425 ((-488) (-1 (-85) |#2|) |#1|)) (-15 -1740 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -2915 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2303 (|#1| |#1|)) (-15 -3524 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|))) (-326 |#2|) (-1133)) (T -325)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2203 (((-1189) $ (-488) (-488)) 35 (|has| $ (-1039 |#1|)) ELT)) (-1740 (((-85) (-1 (-85) |#1| |#1|) $) 96 T ELT) (((-85) $) 90 (|has| |#1| (-760)) ELT)) (-1738 (($ (-1 (-85) |#1| |#1|) $) 87 (|has| $ (-1039 |#1|)) ELT) (($ $) 86 (-12 (|has| |#1| (-760)) (|has| $ (-1039 |#1|))) ELT)) (-2915 (($ (-1 (-85) |#1| |#1|) $) 97 T ELT) (($ $) 91 (|has| |#1| (-760)) ELT)) (-3794 ((|#1| $ (-488) |#1|) 47 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-1150 (-488)) |#1|) 55 (|has| $ (-1039 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) 69 (|has| $ (-320 |#1|)) ELT)) (-3730 (($) 6 T CONST)) (-2302 (($ $) 88 (|has| $ (-1039 |#1|)) ELT)) (-2303 (($ $) 98 T ELT)) (-1357 (($ $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-3412 (($ |#1| $) 70 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 68 (|has| $ (-320 |#1|)) ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 105 T ELT)) (-1580 ((|#1| $ (-488) |#1|) 48 (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-488)) 46 T ELT)) (-3425 (((-488) (-1 (-85) |#1|) $) 95 T ELT) (((-488) |#1| $) 94 (|has| |#1| (-72)) ELT) (((-488) |#1| $ (-488)) 93 (|has| |#1| (-72)) ELT)) (-3620 (($ (-698) |#1|) 65 T ELT)) (-2205 (((-488) $) 38 (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) 80 (|has| |#1| (-760)) ELT)) (-3524 (($ (-1 (-85) |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| (-760)) ELT)) (-2614 (((-587 |#1|) $) 104 T ELT)) (-3251 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2206 (((-488) $) 39 (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) 81 (|has| |#1| (-760)) ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-2309 (($ |#1| $ (-488)) 57 T ELT) (($ $ $ (-488)) 56 T ELT)) (-2208 (((-587 (-488)) $) 41 T ELT)) (-2209 (((-85) (-488) $) 42 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-3807 ((|#1| $) 37 (|has| (-488) (-760)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 107 T ELT)) (-2204 (($ $ |#1|) 36 (|has| $ (-1039 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-2207 (((-85) |#1| $) 40 (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) 43 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#1| $ (-488) |#1|) 45 T ELT) ((|#1| $ (-488)) 44 T ELT) (($ $ (-1150 (-488))) 66 T ELT)) (-2310 (($ $ (-488)) 59 T ELT) (($ $ (-1150 (-488))) 58 T ELT)) (-1735 (((-698) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) 103 T ELT)) (-1739 (($ $ $ (-488)) 89 (|has| $ (-1039 |#1|)) ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 72 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 67 T ELT)) (-3808 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) 101 T ELT)) (-2572 (((-85) $ $) 82 (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) 84 (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2690 (((-85) $ $) 83 (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) 85 (|has| |#1| (-760)) ELT)) (-3964 (((-698) $) 100 T ELT))) +(((-326 |#1|) (-113) (-1133)) (T -326)) +((-3524 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-326 *3)) (-4 *3 (-1133)))) (-2303 (*1 *1 *1) (-12 (-4 *1 (-326 *2)) (-4 *2 (-1133)))) (-2915 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-326 *3)) (-4 *3 (-1133)))) (-1740 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-326 *4)) (-4 *4 (-1133)) (-5 *2 (-85)))) (-3425 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-326 *4)) (-4 *4 (-1133)) (-5 *2 (-488)))) (-3425 (*1 *2 *3 *1) (-12 (-4 *1 (-326 *3)) (-4 *3 (-1133)) (-4 *3 (-72)) (-5 *2 (-488)))) (-3425 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-326 *3)) (-4 *3 (-1133)) (-4 *3 (-72)))) (-3524 (*1 *1 *1 *1) (-12 (-4 *1 (-326 *2)) (-4 *2 (-1133)) (-4 *2 (-760)))) (-2915 (*1 *1 *1) (-12 (-4 *1 (-326 *2)) (-4 *2 (-1133)) (-4 *2 (-760)))) (-1740 (*1 *2 *1) (-12 (-4 *1 (-326 *3)) (-4 *3 (-1133)) (-4 *3 (-760)) (-5 *2 (-85)))) (-1739 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-1039 *3)) (-4 *1 (-326 *3)) (-4 *3 (-1133)))) (-2302 (*1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-326 *2)) (-4 *2 (-1133)))) (-1738 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-1039 *3)) (-4 *1 (-326 *3)) (-4 *3 (-1133)))) (-1738 (*1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-326 *2)) (-4 *2 (-1133)) (-4 *2 (-760))))) +(-13 (-597 |t#1|) (-320 |t#1|) (-10 -8 (-15 -3524 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -2303 ($ $)) (-15 -2915 ($ (-1 (-85) |t#1| |t#1|) $)) (-15 -1740 ((-85) (-1 (-85) |t#1| |t#1|) $)) (-15 -3425 ((-488) (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3425 ((-488) |t#1| $)) (-15 -3425 ((-488) |t#1| $ (-488)))) |%noBranch|) (IF (|has| |t#1| (-760)) (PROGN (-6 (-760)) (-15 -3524 ($ $ $)) (-15 -2915 ($ $)) (-15 -1740 ((-85) $))) |%noBranch|) (IF (|has| $ (-1039 |t#1|)) (PROGN (-15 -1739 ($ $ $ (-488))) (-15 -2302 ($ $)) (-15 -1738 ($ (-1 (-85) |t#1| |t#1|) $)) (IF (|has| |t#1| (-760)) (-15 -1738 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-760)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-760)) (|has| |#1| (-556 (-776)))) ((-124 |#1|) . T) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-243 (-488) |#1|) . T) ((-243 (-1150 (-488)) $) . T) ((-245 (-488) |#1|) . T) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-320 |#1|) . T) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-542 (-488) |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-597 |#1|) . T) ((-760) |has| |#1| (-760)) ((-763) |has| |#1| (-760)) ((-1017) OR (|has| |#1| (-1017)) (|has| |#1| (-760))) ((-1133) . T)) +((-3847 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3848 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3849 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) +(((-327 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3849 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3848 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3847 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1133) (-326 |#1|) (-1133) (-326 |#3|)) (T -327)) +((-3847 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1133)) (-4 *5 (-1133)) (-4 *2 (-326 *5)) (-5 *1 (-327 *6 *4 *5 *2)) (-4 *4 (-326 *6)))) (-3848 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1133)) (-4 *2 (-1133)) (-5 *1 (-327 *5 *4 *2 *6)) (-4 *4 (-326 *5)) (-4 *6 (-326 *2)))) (-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *2 (-326 *6)) (-5 *1 (-327 *5 *4 *6 *2)) (-4 *4 (-326 *5))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3941 (((-587 |#1|) $) 43 T ELT)) (-3954 (($ $ (-698)) 44 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3946 (((-1208 |#1| |#2|) (-1208 |#1| |#2|) $) 47 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-3943 (($ $) 45 T ELT)) (-3947 (((-1208 |#1| |#2|) (-1208 |#1| |#2|) $) 48 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3774 (($ $ |#1| $) 42 T ELT) (($ $ (-587 |#1|) (-587 $)) 41 T ELT)) (-3955 (((-698) $) 49 T ELT)) (-3536 (($ $ $) 40 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ |#1|) 52 T ELT) (((-1199 |#1| |#2|) $) 51 T ELT) (((-1208 |#1| |#2|) $) 50 T ELT)) (-3961 ((|#2| (-1208 |#1| |#2|) $) 53 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-1741 (($ (-618 |#1|)) 46 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ |#2|) 39 (|has| |#2| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ |#2| $) 33 T ELT) (($ $ |#2|) 37 T ELT))) +(((-328 |#1| |#2|) (-113) (-760) (-148)) (T -328)) +((-3961 (*1 *2 *3 *1) (-12 (-5 *3 (-1208 *4 *2)) (-4 *1 (-328 *4 *2)) (-4 *4 (-760)) (-4 *2 (-148)))) (-3953 (*1 *1 *2) (-12 (-4 *1 (-328 *2 *3)) (-4 *2 (-760)) (-4 *3 (-148)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)) (-5 *2 (-1199 *3 *4)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)) (-5 *2 (-1208 *3 *4)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)) (-5 *2 (-698)))) (-3947 (*1 *2 *2 *1) (-12 (-5 *2 (-1208 *3 *4)) (-4 *1 (-328 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)))) (-3946 (*1 *2 *2 *1) (-12 (-5 *2 (-1208 *3 *4)) (-4 *1 (-328 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)))) (-1741 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-760)) (-4 *1 (-328 *3 *4)) (-4 *4 (-148)))) (-3943 (*1 *1 *1) (-12 (-4 *1 (-328 *2 *3)) (-4 *2 (-760)) (-4 *3 (-148)))) (-3954 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-328 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)) (-5 *2 (-587 *3)))) (-3774 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-328 *2 *3)) (-4 *2 (-760)) (-4 *3 (-148)))) (-3774 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 *1)) (-4 *1 (-328 *4 *5)) (-4 *4 (-760)) (-4 *5 (-148))))) +(-13 (-578 |t#2|) (-10 -8 (-15 -3961 (|t#2| (-1208 |t#1| |t#2|) $)) (-15 -3953 ($ |t#1|)) (-15 -3953 ((-1199 |t#1| |t#2|) $)) (-15 -3953 ((-1208 |t#1| |t#2|) $)) (-15 -3955 ((-698) $)) (-15 -3947 ((-1208 |t#1| |t#2|) (-1208 |t#1| |t#2|) $)) (-15 -3946 ((-1208 |t#1| |t#2|) (-1208 |t#1| |t#2|) $)) (-15 -1741 ($ (-618 |t#1|))) (-15 -3943 ($ $)) (-15 -3954 ($ $ (-698))) (-15 -3941 ((-587 |t#1|) $)) (-15 -3774 ($ $ |t#1| $)) (-15 -3774 ($ $ (-587 |t#1|) (-587 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#2|) . T) ((-594 |#2|) . T) ((-578 |#2|) . T) ((-586 |#2|) . T) ((-658 |#2|) . T) ((-967 |#2|) . T) ((-972 |#2|) . T) ((-1017) . T) ((-1133) . T)) +((-1744 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 40 T ELT)) (-1742 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 13 T ELT)) (-1743 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 33 T ELT))) +(((-329 |#1| |#2|) (-10 -7 (-15 -1742 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1743 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1744 (|#2| (-1 (-85) |#1| |#1|) |#2|))) (-1133) (-13 (-326 |#1|) (-1039 |#1|))) (T -329)) +((-1744 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1133)) (-5 *1 (-329 *4 *2)) (-4 *2 (-13 (-326 *4) (-1039 *4))))) (-1743 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1133)) (-5 *1 (-329 *4 *2)) (-4 *2 (-13 (-326 *4) (-1039 *4))))) (-1742 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1133)) (-5 *1 (-329 *4 *2)) (-4 *2 (-13 (-326 *4) (-1039 *4)))))) +((-2284 (((-634 |#2|) (-634 $)) NIL T ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 $) (-1183 $)) NIL T ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) 22 T ELT) (((-634 (-488)) (-634 $)) 14 T ELT))) +(((-330 |#1| |#2|) (-10 -7 (-15 -2284 ((-634 (-488)) (-634 |#1|))) (-15 -2284 ((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 |#1|) (-1183 |#1|))) (-15 -2284 ((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 |#1|) (-1183 |#1|))) (-15 -2284 ((-634 |#2|) (-634 |#1|)))) (-331 |#2|) (-965)) (T -330)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-2284 (((-634 |#1|) (-634 $)) 36 T ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) 35 T ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) 47 (|has| |#1| (-584 (-488))) ELT) (((-634 (-488)) (-634 $)) 46 (|has| |#1| (-584 (-488))) ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2285 (((-634 |#1|) (-1183 $)) 38 T ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) 37 T ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) 45 (|has| |#1| (-584 (-488))) ELT) (((-634 (-488)) (-1183 $)) 44 (|has| |#1| (-584 (-488))) ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ |#1| $) 33 T ELT))) +(((-331 |#1|) (-113) (-965)) (T -331)) +NIL +(-13 (-584 |t#1|) (-10 -7 (IF (|has| |t#1| (-584 (-488))) (-6 (-584 (-488))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-594 (-488)) |has| |#1| (-584 (-488))) ((-594 |#1|) . T) ((-584 (-488)) |has| |#1| (-584 (-488))) ((-584 |#1|) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 16 T ELT)) (-3135 (((-488) $) 44 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-3777 (($ $) 120 T ELT)) (-3498 (($ $) 81 T ELT)) (-3645 (($ $) 72 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-3043 (($ $) 28 T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3496 (($ $) 79 T ELT)) (-3644 (($ $) 67 T ELT)) (-3629 (((-488) $) 60 T ELT)) (-2447 (($ $ (-488)) 55 T ELT)) (-3500 (($ $) NIL T ELT)) (-3643 (($ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3133 (($ $) 122 T ELT)) (-3163 (((-3 (-488) #1#) $) 217 T ELT) (((-3 (-352 (-488)) #1#) $) 213 T ELT)) (-3162 (((-488) $) 215 T ELT) (((-352 (-488)) $) 211 T ELT)) (-2570 (($ $ $) NIL T ELT)) (-1753 (((-488) $ $) 110 T ELT)) (-3473 (((-3 $ #1#) $) 125 T ELT)) (-1752 (((-352 (-488)) $ (-698)) 218 T ELT) (((-352 (-488)) $ (-698) (-698)) 210 T ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-1776 (((-834)) 106 T ELT) (((-834) (-834)) 107 (|has| $ (-6 -3992)) ELT)) (-3192 (((-85) $) 38 T ELT)) (-3633 (($) 22 T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL T ELT)) (-1745 (((-1189) (-698)) 177 T ELT)) (-1746 (((-1189)) 182 T ELT) (((-1189) (-698)) 183 T ELT)) (-1748 (((-1189)) 184 T ELT) (((-1189) (-698)) 185 T ELT)) (-1747 (((-1189)) 180 T ELT) (((-1189) (-698)) 181 T ELT)) (-3778 (((-488) $) 50 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) 21 T ELT)) (-3017 (($ $ (-488)) NIL T ELT)) (-2449 (($ $) 32 T ELT)) (-3138 (($ $) NIL T ELT)) (-3193 (((-85) $) 18 T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2537 (($ $ $) NIL T ELT) (($) NIL (-12 (-2566 (|has| $ (-6 -3984))) (-2566 (|has| $ (-6 -3992)))) ELT)) (-2863 (($ $ $) NIL T ELT) (($) NIL (-12 (-2566 (|has| $ (-6 -3984))) (-2566 (|has| $ (-6 -3992)))) ELT)) (-1778 (((-488) $) 112 T ELT)) (-1751 (($) 90 T ELT) (($ $) 97 T ELT)) (-1750 (($) 96 T ELT) (($ $) 98 T ELT)) (-3949 (($ $) 84 T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) 127 T ELT)) (-1775 (((-834) (-488)) 27 (|has| $ (-6 -3992)) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3134 (($ $) 41 T ELT)) (-3136 (($ $) 119 T ELT)) (-3260 (($ (-488) (-488)) 115 T ELT) (($ (-488) (-488) (-834)) 116 T ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-2406 (((-488) $) 113 T ELT)) (-1749 (($) 99 T ELT)) (-3950 (($ $) 78 T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-2621 (((-834)) 108 T ELT) (((-834) (-834)) 109 (|has| $ (-6 -3992)) ELT)) (-3764 (($ $) 126 T ELT) (($ $ (-698)) NIL T ELT)) (-1774 (((-834) (-488)) 31 (|has| $ (-6 -3992)) ELT)) (-3501 (($ $) NIL T ELT)) (-3642 (($ $) NIL T ELT)) (-3499 (($ $) NIL T ELT)) (-3641 (($ $) NIL T ELT)) (-3497 (($ $) 80 T ELT)) (-3640 (($ $) 71 T ELT)) (-3978 (((-332) $) 202 T ELT) (((-181) $) 204 T ELT) (((-804 (-332)) $) NIL T ELT) (((-1077) $) 188 T ELT) (((-477) $) 200 T ELT) (($ (-181)) 209 T ELT)) (-3953 (((-776) $) 192 T ELT) (($ (-488)) 214 T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ (-488)) 214 T ELT) (($ (-352 (-488))) NIL T ELT) (((-181) $) 205 T ELT)) (-3132 (((-698)) NIL T CONST)) (-3137 (($ $) 121 T ELT)) (-1777 (((-834)) 42 T ELT) (((-834) (-834)) 62 (|has| $ (-6 -3992)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2700 (((-834)) 111 T ELT)) (-3504 (($ $) 87 T ELT)) (-3492 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 85 T ELT)) (-3490 (($ $) 20 T ELT)) (-3506 (($ $) NIL T ELT)) (-3494 (($ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3507 (($ $) NIL T ELT)) (-3495 (($ $) NIL T ELT)) (-3505 (($ $) NIL T ELT)) (-3493 (($ $) NIL T ELT)) (-3503 (($ $) 86 T ELT)) (-3491 (($ $) 33 T ELT)) (-3389 (($ $) 39 T ELT)) (-2666 (($) 17 T CONST)) (-2672 (($) 24 T CONST)) (-2675 (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-2572 (((-85) $ $) 189 T ELT)) (-2573 (((-85) $ $) 26 T ELT)) (-3062 (((-85) $ $) 37 T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 43 T ELT)) (-3956 (($ $ $) 29 T ELT) (($ $ (-488)) 23 T ELT)) (-3843 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3845 (($ $ $) 54 T ELT)) (** (($ $ (-834)) 65 T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) 91 T ELT) (($ $ (-352 (-488))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-834) $) 61 T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT))) +(((-332) (-13 (-349) (-192) (-557 (-1077)) (-556 (-181)) (-1119) (-557 (-477)) (-561 (-181)) (-10 -8 (-15 -3956 ($ $ (-488))) (-15 ** ($ $ $)) (-15 -2449 ($ $)) (-15 -1753 ((-488) $ $)) (-15 -2447 ($ $ (-488))) (-15 -1752 ((-352 (-488)) $ (-698))) (-15 -1752 ((-352 (-488)) $ (-698) (-698))) (-15 -1751 ($)) (-15 -1750 ($)) (-15 -1749 ($)) (-15 -3492 ($ $ $)) (-15 -1751 ($ $)) (-15 -1750 ($ $)) (-15 -1748 ((-1189))) (-15 -1748 ((-1189) (-698))) (-15 -1747 ((-1189))) (-15 -1747 ((-1189) (-698))) (-15 -1746 ((-1189))) (-15 -1746 ((-1189) (-698))) (-15 -1745 ((-1189) (-698))) (-6 -3992) (-6 -3984)))) (T -332)) +((** (*1 *1 *1 *1) (-5 *1 (-332))) (-3956 (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-332)))) (-2449 (*1 *1 *1) (-5 *1 (-332))) (-1753 (*1 *2 *1 *1) (-12 (-5 *2 (-488)) (-5 *1 (-332)))) (-2447 (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-332)))) (-1752 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-5 *2 (-352 (-488))) (-5 *1 (-332)))) (-1752 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-698)) (-5 *2 (-352 (-488))) (-5 *1 (-332)))) (-1751 (*1 *1) (-5 *1 (-332))) (-1750 (*1 *1) (-5 *1 (-332))) (-1749 (*1 *1) (-5 *1 (-332))) (-3492 (*1 *1 *1 *1) (-5 *1 (-332))) (-1751 (*1 *1 *1) (-5 *1 (-332))) (-1750 (*1 *1 *1) (-5 *1 (-332))) (-1748 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-332)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1189)) (-5 *1 (-332)))) (-1747 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-332)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1189)) (-5 *1 (-332)))) (-1746 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-332)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1189)) (-5 *1 (-332)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1189)) (-5 *1 (-332))))) +((-1754 (((-587 (-251 (-861 (-144 |#1|)))) (-251 (-352 (-861 (-144 (-488))))) |#1|) 52 T ELT) (((-587 (-251 (-861 (-144 |#1|)))) (-352 (-861 (-144 (-488)))) |#1|) 51 T ELT) (((-587 (-587 (-251 (-861 (-144 |#1|))))) (-587 (-251 (-352 (-861 (-144 (-488)))))) |#1|) 48 T ELT) (((-587 (-587 (-251 (-861 (-144 |#1|))))) (-587 (-352 (-861 (-144 (-488))))) |#1|) 42 T ELT)) (-1755 (((-587 (-587 (-144 |#1|))) (-587 (-352 (-861 (-144 (-488))))) (-587 (-1094)) |#1|) 30 T ELT) (((-587 (-144 |#1|)) (-352 (-861 (-144 (-488)))) |#1|) 18 T ELT))) +(((-333 |#1|) (-10 -7 (-15 -1754 ((-587 (-587 (-251 (-861 (-144 |#1|))))) (-587 (-352 (-861 (-144 (-488))))) |#1|)) (-15 -1754 ((-587 (-587 (-251 (-861 (-144 |#1|))))) (-587 (-251 (-352 (-861 (-144 (-488)))))) |#1|)) (-15 -1754 ((-587 (-251 (-861 (-144 |#1|)))) (-352 (-861 (-144 (-488)))) |#1|)) (-15 -1754 ((-587 (-251 (-861 (-144 |#1|)))) (-251 (-352 (-861 (-144 (-488))))) |#1|)) (-15 -1755 ((-587 (-144 |#1|)) (-352 (-861 (-144 (-488)))) |#1|)) (-15 -1755 ((-587 (-587 (-144 |#1|))) (-587 (-352 (-861 (-144 (-488))))) (-587 (-1094)) |#1|))) (-13 (-314) (-759))) (T -333)) +((-1755 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 (-352 (-861 (-144 (-488)))))) (-5 *4 (-587 (-1094))) (-5 *2 (-587 (-587 (-144 *5)))) (-5 *1 (-333 *5)) (-4 *5 (-13 (-314) (-759))))) (-1755 (*1 *2 *3 *4) (-12 (-5 *3 (-352 (-861 (-144 (-488))))) (-5 *2 (-587 (-144 *4))) (-5 *1 (-333 *4)) (-4 *4 (-13 (-314) (-759))))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-251 (-352 (-861 (-144 (-488)))))) (-5 *2 (-587 (-251 (-861 (-144 *4))))) (-5 *1 (-333 *4)) (-4 *4 (-13 (-314) (-759))))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-352 (-861 (-144 (-488))))) (-5 *2 (-587 (-251 (-861 (-144 *4))))) (-5 *1 (-333 *4)) (-4 *4 (-13 (-314) (-759))))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-251 (-352 (-861 (-144 (-488))))))) (-5 *2 (-587 (-587 (-251 (-861 (-144 *4)))))) (-5 *1 (-333 *4)) (-4 *4 (-13 (-314) (-759))))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-352 (-861 (-144 (-488)))))) (-5 *2 (-587 (-587 (-251 (-861 (-144 *4)))))) (-5 *1 (-333 *4)) (-4 *4 (-13 (-314) (-759)))))) +((-3579 (((-587 (-251 (-861 |#1|))) (-251 (-352 (-861 (-488)))) |#1|) 47 T ELT) (((-587 (-251 (-861 |#1|))) (-352 (-861 (-488))) |#1|) 46 T ELT) (((-587 (-587 (-251 (-861 |#1|)))) (-587 (-251 (-352 (-861 (-488))))) |#1|) 43 T ELT) (((-587 (-587 (-251 (-861 |#1|)))) (-587 (-352 (-861 (-488)))) |#1|) 37 T ELT)) (-1756 (((-587 |#1|) (-352 (-861 (-488))) |#1|) 20 T ELT) (((-587 (-587 |#1|)) (-587 (-352 (-861 (-488)))) (-587 (-1094)) |#1|) 30 T ELT))) +(((-334 |#1|) (-10 -7 (-15 -3579 ((-587 (-587 (-251 (-861 |#1|)))) (-587 (-352 (-861 (-488)))) |#1|)) (-15 -3579 ((-587 (-587 (-251 (-861 |#1|)))) (-587 (-251 (-352 (-861 (-488))))) |#1|)) (-15 -3579 ((-587 (-251 (-861 |#1|))) (-352 (-861 (-488))) |#1|)) (-15 -3579 ((-587 (-251 (-861 |#1|))) (-251 (-352 (-861 (-488)))) |#1|)) (-15 -1756 ((-587 (-587 |#1|)) (-587 (-352 (-861 (-488)))) (-587 (-1094)) |#1|)) (-15 -1756 ((-587 |#1|) (-352 (-861 (-488))) |#1|))) (-13 (-759) (-314))) (T -334)) +((-1756 (*1 *2 *3 *4) (-12 (-5 *3 (-352 (-861 (-488)))) (-5 *2 (-587 *4)) (-5 *1 (-334 *4)) (-4 *4 (-13 (-759) (-314))))) (-1756 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 (-352 (-861 (-488))))) (-5 *4 (-587 (-1094))) (-5 *2 (-587 (-587 *5))) (-5 *1 (-334 *5)) (-4 *5 (-13 (-759) (-314))))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-251 (-352 (-861 (-488))))) (-5 *2 (-587 (-251 (-861 *4)))) (-5 *1 (-334 *4)) (-4 *4 (-13 (-759) (-314))))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-352 (-861 (-488)))) (-5 *2 (-587 (-251 (-861 *4)))) (-5 *1 (-334 *4)) (-4 *4 (-13 (-759) (-314))))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-251 (-352 (-861 (-488)))))) (-5 *2 (-587 (-587 (-251 (-861 *4))))) (-5 *1 (-334 *4)) (-4 *4 (-13 (-759) (-314))))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-352 (-861 (-488))))) (-5 *2 (-587 (-587 (-251 (-861 *4))))) (-5 *1 (-334 *4)) (-4 *4 (-13 (-759) (-314)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3780 (((-587 (-457 |#1| |#2|)) $) NIL T ELT)) (-1316 (((-3 $ "failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3965 (($ $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2899 (($ |#1| |#2|) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1988 ((|#2| $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3978 (($ (-587 (-457 |#1| |#2|))) NIL T ELT)) (-3953 (((-776) $) 34 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) 12 T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) +(((-335 |#1| |#2|) (-13 (-82 |#1| |#1|) (-453 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-148)) (-6 (-658 |#1|)) |%noBranch|))) (-965) (-763)) (T -335)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#2| #1#) $) 29 T ELT)) (-3162 ((|#2| $) 31 T ELT)) (-3965 (($ $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2425 (((-698) $) 13 T ELT)) (-2827 (((-587 $) $) 23 T ELT)) (-3944 (((-85) $) NIL T ELT)) (-3945 (($ |#2| |#1|) 21 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1757 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2900 ((|#2| $) 18 T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3823 (((-587 |#1|) $) 20 T ELT)) (-3683 ((|#1| $ |#2|) 54 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) 32 T CONST)) (-2671 (((-587 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (* (($ $ |#1|) 36 T ELT) (($ |#1| $) 35 T ELT) (($ (-488) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-834) $) NIL T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) +(((-336 |#1| |#2|) (-13 (-337 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-965) (-760)) (T -336)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-336 *3 *2)) (-4 *3 (-965)) (-4 *2 (-760))))) +((-2574 (((-85) $ $) 31 T ELT)) (-3194 (((-85) $) 40 T ELT)) (-1316 (((-3 $ "failed") $ $) 43 T ELT)) (-3730 (($) 39 T CONST)) (-3163 (((-3 |#2| "failed") $) 28 T ELT)) (-3162 ((|#2| $) 29 T ELT)) (-3965 (($ $) 15 T ELT)) (-1218 (((-85) $ $) 42 T ELT)) (-2425 (((-698) $) 19 T ELT)) (-2827 (((-587 $) $) 20 T ELT)) (-3944 (((-85) $) 23 T ELT)) (-3945 (($ |#2| |#1|) 24 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-1757 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 16 T ELT)) (-2900 ((|#2| $) 18 T ELT)) (-3180 ((|#1| $) 17 T ELT)) (-3248 (((-1077) $) 35 T ELT)) (-3249 (((-1037) $) 34 T ELT)) (-3953 (((-776) $) 33 T ELT) (($ |#2|) 27 T ELT)) (-3823 (((-587 |#1|) $) 21 T ELT)) (-3683 ((|#1| $ |#2|) 25 T ELT)) (-1269 (((-85) $ $) 32 T ELT)) (-2666 (($) 38 T CONST)) (-2671 (((-587 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 22 T ELT)) (-3062 (((-85) $ $) 30 T ELT)) (-3843 (($ $ $) 46 T ELT) (($ $) 45 T ELT)) (-3845 (($ $ $) 36 T ELT)) (* (($ $ |#1|) 48 T ELT) (($ |#1| $) 47 T ELT) (($ (-488) $) 44 T ELT) (($ (-698) $) 41 T ELT) (($ (-834) $) 37 T ELT) (($ |#1| |#2|) 26 T ELT))) +(((-337 |#1| |#2|) (-113) (-965) (-1017)) (T -337)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-965)) (-4 *3 (-1017)))) (-3683 (*1 *2 *1 *3) (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-1017)) (-4 *2 (-965)))) (-3945 (*1 *1 *2 *3) (-12 (-4 *1 (-337 *3 *2)) (-4 *3 (-965)) (-4 *2 (-1017)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-965)) (-4 *4 (-1017)) (-5 *2 (-85)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-965)) (-4 *4 (-1017)) (-5 *2 (-587 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3823 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-965)) (-4 *4 (-1017)) (-5 *2 (-587 *3)))) (-2827 (*1 *2 *1) (-12 (-4 *3 (-965)) (-4 *4 (-1017)) (-5 *2 (-587 *1)) (-4 *1 (-337 *3 *4)))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-965)) (-4 *4 (-1017)) (-5 *2 (-698)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *2)) (-4 *3 (-965)) (-4 *2 (-1017)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-1017)) (-4 *2 (-965)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-965)) (-4 *4 (-1017)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3965 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-965)) (-4 *3 (-1017))))) +(-13 (-383 |t#1|) (-82 |t#1| |t#1|) (-954 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3683 (|t#1| $ |t#2|)) (-15 -3945 ($ |t#2| |t#1|)) (-15 -3944 ((-85) $)) (-15 -2671 ((-587 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3823 ((-587 |t#1|) $)) (-15 -2827 ((-587 $) $)) (-15 -2425 ((-698) $)) (-15 -2900 (|t#2| $)) (-15 -3180 (|t#1| $)) (-15 -1757 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3965 ($ $)) (IF (|has| |t#1| (-148)) (-6 (-658 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-559 |#2|) . T) ((-556 (-776)) . T) ((-383 |#1|) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-594 |#1|) . T) ((-586 |#1|) |has| |#1| (-148)) ((-658 |#1|) |has| |#1| (-148)) ((-954 |#2|) . T) ((-967 |#1|) . T) ((-972 |#1|) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) 7 T ELT)) (-3142 (((-698) $) 40 T ELT)) (-3730 (($) 23 T CONST)) (-3946 (((-3 $ "failed") $ $) 43 T ELT)) (-3163 (((-3 |#1| "failed") $) 51 T ELT)) (-3162 ((|#1| $) 52 T ELT)) (-3473 (((-3 $ "failed") $) 20 T ELT)) (-1758 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2415 (((-85) $) 22 T ELT)) (-2304 ((|#1| $ (-488)) 37 T ELT)) (-2305 (((-698) $ (-488)) 38 T ELT)) (-2537 (($ $ $) 29 (|has| |#1| (-760)) ELT)) (-2863 (($ $ $) 30 (|has| |#1| (-760)) ELT)) (-2295 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2296 (($ (-1 (-698) (-698)) $) 36 T ELT)) (-3947 (((-3 $ "failed") $ $) 44 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-1759 (($ $ $) 45 T ELT)) (-1760 (($ $ $) 46 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-1787 (((-587 (-2 (|:| |gen| |#1|) (|:| -3950 (-698)))) $) 39 T ELT)) (-2885 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2672 (($) 24 T CONST)) (-2572 (((-85) $ $) 31 (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) 33 (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 32 (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) 34 (|has| |#1| (-760)) ELT)) (** (($ $ (-834)) 17 T ELT) (($ $ (-698)) 21 T ELT) (($ |#1| (-698)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) +(((-338 |#1|) (-113) (-1017)) (T -338)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-1017)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-338 *2)) (-4 *2 (-1017)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-698)) (-4 *1 (-338 *2)) (-4 *2 (-1017)))) (-1760 (*1 *1 *1 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-1017)))) (-1759 (*1 *1 *1 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-1017)))) (-3947 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-338 *2)) (-4 *2 (-1017)))) (-3946 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-338 *2)) (-4 *2 (-1017)))) (-2885 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1017)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-338 *3)))) (-1758 (*1 *2 *1 *1) (-12 (-4 *3 (-1017)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-338 *3)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-1017)) (-5 *2 (-698)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-1017)) (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3950 (-698))))))) (-2305 (*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-4 *1 (-338 *4)) (-4 *4 (-1017)) (-5 *2 (-698)))) (-2304 (*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-4 *1 (-338 *2)) (-4 *2 (-1017)))) (-2296 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-698) (-698))) (-4 *1 (-338 *3)) (-4 *3 (-1017)))) (-2295 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1017))))) +(-13 (-667) (-954 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-698))) (-15 -1760 ($ $ $)) (-15 -1759 ($ $ $)) (-15 -3947 ((-3 $ "failed") $ $)) (-15 -3946 ((-3 $ "failed") $ $)) (-15 -2885 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1758 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3142 ((-698) $)) (-15 -1787 ((-587 (-2 (|:| |gen| |t#1|) (|:| -3950 (-698)))) $)) (-15 -2305 ((-698) $ (-488))) (-15 -2304 (|t#1| $ (-488))) (-15 -2296 ($ (-1 (-698) (-698)) $)) (-15 -2295 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-760)) (-6 (-760)) |%noBranch|))) +(((-72) . T) ((-559 |#1|) . T) ((-556 (-776)) . T) ((-13) . T) ((-667) . T) ((-760) |has| |#1| (-760)) ((-763) |has| |#1| (-760)) ((-954 |#1|) . T) ((-1029) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3142 (((-698) $) 74 T ELT)) (-3730 (($) NIL T CONST)) (-3946 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3163 (((-3 |#1| #1#) $) NIL T ELT)) (-3162 ((|#1| $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-1758 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2415 (((-85) $) 17 T ELT)) (-2304 ((|#1| $ (-488)) NIL T ELT)) (-2305 (((-698) $ (-488)) NIL T ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-2295 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2296 (($ (-1 (-698) (-698)) $) 37 T ELT)) (-3947 (((-3 $ #1#) $ $) 60 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1759 (($ $ $) 28 T ELT)) (-1760 (($ $ $) 26 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1787 (((-587 (-2 (|:| |gen| |#1|) (|:| -3950 (-698)))) $) 34 T ELT)) (-2885 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3953 (((-776) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2672 (($) 7 T CONST)) (-2572 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) 83 (|has| |#1| (-760)) ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ |#1| (-698)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) +(((-339 |#1|) (-338 |#1|) (-1017)) (T -339)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-1761 (((-85) $) 25 T ELT)) (-1762 (((-85) $) 22 T ELT)) (-3620 (($ (-1077) (-1077) (-1077)) 26 T ELT)) (-3548 (((-1077) $) 16 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1766 (($ (-1077) (-1077) (-1077)) 14 T ELT)) (-1764 (((-1077) $) 17 T ELT)) (-1763 (((-85) $) 18 T ELT)) (-1765 (((-1077) $) 15 T ELT)) (-3953 (((-776) $) 12 T ELT) (($ (-1077)) 13 T ELT) (((-1077) $) 9 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 7 T ELT))) +(((-340) (-341)) (T -340)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-1761 (((-85) $) 20 T ELT)) (-1762 (((-85) $) 21 T ELT)) (-3620 (($ (-1077) (-1077) (-1077)) 19 T ELT)) (-3548 (((-1077) $) 24 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-1766 (($ (-1077) (-1077) (-1077)) 26 T ELT)) (-1764 (((-1077) $) 23 T ELT)) (-1763 (((-85) $) 22 T ELT)) (-1765 (((-1077) $) 25 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-1077)) 28 T ELT) (((-1077) $) 27 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT))) +(((-341) (-113)) (T -341)) +((-1766 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1077)) (-4 *1 (-341)))) (-1765 (*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-1077)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-1077)))) (-1764 (*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-1077)))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-85)))) (-1762 (*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-85)))) (-1761 (*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-85)))) (-3620 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1077)) (-4 *1 (-341))))) +(-13 (-1017) (-433 (-1077)) (-10 -8 (-15 -1766 ($ (-1077) (-1077) (-1077))) (-15 -1765 ((-1077) $)) (-15 -3548 ((-1077) $)) (-15 -1764 ((-1077) $)) (-15 -1763 ((-85) $)) (-15 -1762 ((-85) $)) (-15 -1761 ((-85) $)) (-15 -3620 ($ (-1077) (-1077) (-1077))))) +(((-72) . T) ((-559 (-1077)) . T) ((-556 (-776)) . T) ((-556 (-1077)) . T) ((-433 (-1077)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1316 (((-3 $ "failed") $ $) NIL T ELT)) (-1767 (((-776) $) 64 T ELT)) (-3730 (($) NIL T CONST)) (-2412 (($ $ (-834)) NIL T ELT)) (-2439 (($ $ (-834)) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2411 (($ $ (-834)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2414 (($ (-698)) 38 T ELT)) (-3918 (((-698)) 18 T ELT)) (-1768 (((-776) $) 66 T ELT)) (-2441 (($ $ $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2442 (($ $ $ $) NIL T ELT)) (-2440 (($ $ $) NIL T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 41 T ELT)) (-3843 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3845 (($ $ $) 51 T ELT)) (** (($ $ (-834)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) +(((-342 |#1| |#2| |#3|) (-13 (-687 |#3|) (-10 -8 (-15 -3918 ((-698))) (-15 -1768 ((-776) $)) (-15 -1767 ((-776) $)) (-15 -2414 ($ (-698))))) (-698) (-698) (-148)) (T -342)) +((-3918 (*1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-148)))) (-1768 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 (-698)) (-14 *4 (-698)) (-4 *5 (-148)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 (-698)) (-14 *4 (-698)) (-4 *5 (-148)))) (-2414 (*1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-148))))) +((-3778 (((-698) (-285 |#1| |#2| |#3| |#4|)) 16 T ELT))) +(((-343 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3778 ((-698) (-285 |#1| |#2| |#3| |#4|)))) (-13 (-322) (-314)) (-1159 |#1|) (-1159 (-352 |#2|)) (-293 |#1| |#2| |#3|)) (T -343)) +((-3778 (*1 *2 *3) (-12 (-5 *3 (-285 *4 *5 *6 *7)) (-4 *4 (-13 (-322) (-314))) (-4 *5 (-1159 *4)) (-4 *6 (-1159 (-352 *5))) (-4 *7 (-293 *4 *5 *6)) (-5 *2 (-698)) (-5 *1 (-343 *4 *5 *6 *7))))) +((-2574 (((-85) $ $) NIL T ELT)) (-1770 ((|#2| $) 38 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1771 (($ (-352 |#2|)) 93 T ELT)) (-1769 (((-587 (-2 (|:| -2406 (-698)) (|:| -3779 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3764 (($ $ (-698)) 36 T ELT) (($ $) 34 T ELT)) (-3978 (((-352 |#2|) $) 49 T ELT)) (-3536 (($ (-587 (-2 (|:| -2406 (-698)) (|:| -3779 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3953 (((-776) $) 131 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2675 (($ $ (-698)) 37 T ELT) (($ $) 35 T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3845 (($ |#2| $) 41 T ELT))) +(((-344 |#1| |#2|) (-13 (-1017) (-191) (-557 (-352 |#2|)) (-10 -8 (-15 -3845 ($ |#2| $)) (-15 -1771 ($ (-352 |#2|))) (-15 -1770 (|#2| $)) (-15 -1769 ((-587 (-2 (|:| -2406 (-698)) (|:| -3779 |#2|) (|:| |num| |#2|))) $)) (-15 -3536 ($ (-587 (-2 (|:| -2406 (-698)) (|:| -3779 |#2|) (|:| |num| |#2|))))))) (-13 (-314) (-120)) (-1159 |#1|)) (T -344)) +((-3845 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-314) (-120))) (-5 *1 (-344 *3 *2)) (-4 *2 (-1159 *3)))) (-1771 (*1 *1 *2) (-12 (-5 *2 (-352 *4)) (-4 *4 (-1159 *3)) (-4 *3 (-13 (-314) (-120))) (-5 *1 (-344 *3 *4)))) (-1770 (*1 *2 *1) (-12 (-4 *2 (-1159 *3)) (-5 *1 (-344 *3 *2)) (-4 *3 (-13 (-314) (-120))))) (-1769 (*1 *2 *1) (-12 (-4 *3 (-13 (-314) (-120))) (-5 *2 (-587 (-2 (|:| -2406 (-698)) (|:| -3779 *4) (|:| |num| *4)))) (-5 *1 (-344 *3 *4)) (-4 *4 (-1159 *3)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| -2406 (-698)) (|:| -3779 *4) (|:| |num| *4)))) (-4 *4 (-1159 *3)) (-4 *3 (-13 (-314) (-120))) (-5 *1 (-344 *3 *4))))) +((-2574 (((-85) $ $) 10 (OR (|has| |#1| (-800 (-488))) (|has| |#1| (-800 (-332)))) ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) 16 (|has| |#1| (-800 (-332))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) 15 (|has| |#1| (-800 (-488))) ELT)) (-3248 (((-1077) $) 14 (OR (|has| |#1| (-800 (-488))) (|has| |#1| (-800 (-332)))) ELT)) (-3249 (((-1037) $) 13 (OR (|has| |#1| (-800 (-488))) (|has| |#1| (-800 (-332)))) ELT)) (-3953 (((-776) $) 12 (OR (|has| |#1| (-800 (-488))) (|has| |#1| (-800 (-332)))) ELT)) (-1269 (((-85) $ $) 11 (OR (|has| |#1| (-800 (-488))) (|has| |#1| (-800 (-332)))) ELT)) (-3062 (((-85) $ $) 9 (OR (|has| |#1| (-800 (-488))) (|has| |#1| (-800 (-332)))) ELT))) +(((-345 |#1|) (-113) (-1133)) (T -345)) +NIL +(-13 (-1133) (-10 -7 (IF (|has| |t#1| (-800 (-488))) (-6 (-800 (-488))) |%noBranch|) (IF (|has| |t#1| (-800 (-332))) (-6 (-800 (-332))) |%noBranch|))) +(((-72) OR (|has| |#1| (-800 (-488))) (|has| |#1| (-800 (-332)))) ((-556 (-776)) OR (|has| |#1| (-800 (-488))) (|has| |#1| (-800 (-332)))) ((-13) . T) ((-800 (-332)) |has| |#1| (-800 (-332))) ((-800 (-488)) |has| |#1| (-800 (-488))) ((-1017) OR (|has| |#1| (-800 (-488))) (|has| |#1| (-800 (-332)))) ((-1133) . T)) +((-1772 (($ $) 10 T ELT) (($ $ (-698)) 12 T ELT))) +(((-346 |#1|) (-10 -7 (-15 -1772 (|#1| |#1| (-698))) (-15 -1772 (|#1| |#1|))) (-347)) (T -346)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3781 (($ $) 91 T ELT)) (-3977 (((-350 $) $) 90 T ELT)) (-1612 (((-85) $ $) 75 T ELT)) (-3730 (($) 23 T CONST)) (-2570 (($ $ $) 71 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-2569 (($ $ $) 72 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 66 T ELT)) (-1772 (($ $) 97 T ELT) (($ $ (-698)) 96 T ELT)) (-3729 (((-85) $) 89 T ELT)) (-3778 (((-747 (-834)) $) 99 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-1609 (((-3 (-587 $) #1="failed") (-587 $) $) 68 T ELT)) (-1899 (($ $ $) 60 T ELT) (($ (-587 $)) 59 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 88 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 58 T ELT)) (-3150 (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-3738 (((-350 $) $) 92 T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 65 T ELT)) (-1611 (((-698) $) 74 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 73 T ELT)) (-1773 (((-3 (-698) "failed") $ $) 98 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT) (($ (-352 (-488))) 84 T ELT)) (-2708 (((-636 $) $) 100 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ $) 83 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 87 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-352 (-488))) 86 T ELT) (($ (-352 (-488)) $) 85 T ELT))) (((-347) (-113)) (T -347)) -((-3257 (*1 *1 *2 *2) (-12 (-5 *2 (-486)) (-4 *1 (-347)))) (-3257 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-486)) (-5 *3 (-832)) (-4 *1 (-347)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-486)))) (-2697 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-832)))) (-2403 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-486)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-486)))) (-1774 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-832)))) (-2618 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-832)))) (-1773 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-832)))) (-1774 (*1 *2 *2) (-12 (-5 *2 (-832)) (|has| *1 (-6 -3989)) (-4 *1 (-347)))) (-2618 (*1 *2 *2) (-12 (-5 *2 (-832)) (|has| *1 (-6 -3989)) (-4 *1 (-347)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-832)) (|has| *1 (-6 -3989)) (-4 *1 (-347)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-486)) (|has| *1 (-6 -3989)) (-4 *1 (-347)) (-5 *2 (-832)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-486)) (|has| *1 (-6 -3989)) (-4 *1 (-347)) (-5 *2 (-832)))) (-2534 (*1 *1) (-12 (-4 *1 (-347)) (-2563 (|has| *1 (-6 -3989))) (-2563 (|has| *1 (-6 -3981))))) (-2860 (*1 *1) (-12 (-4 *1 (-347)) (-2563 (|has| *1 (-6 -3989))) (-2563 (|has| *1 (-6 -3981)))))) -(-13 (-975) (-10 -8 (-6 -3773) (-15 -3257 ($ (-486) (-486))) (-15 -3257 ($ (-486) (-486) (-832))) (-15 -3775 ((-486) $)) (-15 -2697 ((-832))) (-15 -2403 ((-486) $)) (-15 -1775 ((-486) $)) (-15 -1774 ((-832))) (-15 -2618 ((-832))) (-15 -1773 ((-832))) (IF (|has| $ (-6 -3989)) (PROGN (-15 -1774 ((-832) (-832))) (-15 -2618 ((-832) (-832))) (-15 -1773 ((-832) (-832))) (-15 -1772 ((-832) (-486))) (-15 -1771 ((-832) (-486)))) |%noBranch|) (IF (|has| $ (-6 -3981)) |%noBranch| (IF (|has| $ (-6 -3989)) |%noBranch| (PROGN (-15 -2534 ($)) (-15 -2860 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-555 (-179)) . T) ((-555 (-330)) . T) ((-555 (-802 (-330))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 $) . T) ((-656 (-350 (-486))) . T) ((-656 $) . T) ((-665) . T) ((-716) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-757) . T) ((-758) . T) ((-761) . T) ((-798 (-330)) . T) ((-834) . T) ((-917) . T) ((-935) . T) ((-975) . T) ((-952 (-350 (-486))) . T) ((-952 (-486)) . T) ((-965 (-350 (-486))) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 59 T ELT)) (-1776 (($ $) 77 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 189 T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) 48 T ELT)) (-1777 ((|#1| $) 16 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-1136)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-1136)) ELT)) (-1779 (($ |#1| (-486)) 42 T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 73 T ELT)) (-3470 (((-3 $ #1#) $) 163 T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) 84 (|has| |#1| (-485)) ELT)) (-3026 (((-85) $) 80 (|has| |#1| (-485)) ELT)) (-3025 (((-350 (-486)) $) 82 (|has| |#1| (-485)) ELT)) (-1780 (($ |#1| (-486)) 44 T ELT)) (-3726 (((-85) $) 209 (|has| |#1| (-1136)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 61 T ELT)) (-1839 (((-696) $) 51 T ELT)) (-1781 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-486)) 174 T ELT)) (-2301 ((|#1| $ (-486)) 173 T ELT)) (-1782 (((-486) $ (-486)) 172 T ELT)) (-1785 (($ |#1| (-486)) 41 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1836 (($ |#1| (-585 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-486))))) 78 T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1783 (($ |#1| (-486)) 43 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) 190 (|has| |#1| (-393)) ELT)) (-1778 (($ |#1| (-486) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1784 (((-585 (-2 (|:| -3735 |#1|) (|:| -2403 (-486)))) $) 72 T ELT)) (-1953 (((-585 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-486)))) $) 12 T ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-1136)) ELT)) (-3469 (((-3 $ #1#) $ $) 175 T ELT)) (-2403 (((-486) $) 166 T ELT)) (-3966 ((|#1| $) 74 T ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) 105 (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) |#1|) NIL (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) $) NIL (|has| |#1| (-457 (-1092) $)) ELT) (($ $ (-585 (-1092)) (-585 $)) 106 (|has| |#1| (-457 (-1092) $)) ELT) (($ $ (-585 (-249 $))) 102 (|has| |#1| (-260 $)) ELT) (($ $ (-249 $)) NIL (|has| |#1| (-260 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-260 $)) ELT) (($ $ (-585 $) (-585 $)) NIL (|has| |#1| (-260 $)) ELT)) (-3803 (($ $ |#1|) 91 (|has| |#1| (-241 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-241 $ $)) ELT)) (-3761 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-3975 (((-475) $) 39 (|has| |#1| (-555 (-475))) ELT) (((-330) $) 112 (|has| |#1| (-935)) ELT) (((-179) $) 118 (|has| |#1| (-935)) ELT)) (-3950 (((-774) $) 145 T ELT) (($ (-486)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-952 (-350 (-486)))) ELT)) (-3129 (((-696)) 66 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 53 T CONST)) (-2669 (($) 52 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) 158 T ELT)) (-3840 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 179 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 124 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) -(((-348 |#1|) (-13 (-497) (-184 |#1|) (-38 |#1|) (-288 |#1|) (-355 |#1|) (-381 |#1|) (-10 -8 (-15 -3966 (|#1| $)) (-15 -2403 ((-486) $)) (-15 -1836 ($ |#1| (-585 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-486)))))) (-15 -1953 ((-585 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-486)))) $)) (-15 -1785 ($ |#1| (-486))) (-15 -1784 ((-585 (-2 (|:| -3735 |#1|) (|:| -2403 (-486)))) $)) (-15 -1783 ($ |#1| (-486))) (-15 -1782 ((-486) $ (-486))) (-15 -2301 (|#1| $ (-486))) (-15 -1781 ((-3 #1# #2# #3# #4#) $ (-486))) (-15 -1839 ((-696) $)) (-15 -1780 ($ |#1| (-486))) (-15 -1779 ($ |#1| (-486))) (-15 -1778 ($ |#1| (-486) (-3 #1# #2# #3# #4#))) (-15 -1777 (|#1| $)) (-15 -1776 ($ $)) (IF (|has| |#1| (-393)) (-6 (-393)) |%noBranch|) (IF (|has| |#1| (-935)) (-6 (-935)) |%noBranch|) (IF (|has| |#1| (-1136)) (-6 (-1136)) |%noBranch|) (IF (|has| |#1| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-15 -3026 ((-85) $)) (-15 -3025 ((-350 (-486)) $)) (-15 -3027 ((-3 (-350 (-486)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-241 $ $)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |#1| (-260 $)) (-6 (-260 $)) |%noBranch|) (IF (|has| |#1| (-457 (-1092) $)) (-6 (-457 (-1092) $)) |%noBranch|))) (-497)) (T -348)) -((-3966 (*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-497)))) (-2403 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-348 *3)) (-4 *3 (-497)))) (-1836 (*1 *1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-486))))) (-4 *2 (-497)) (-5 *1 (-348 *2)))) (-1953 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-486))))) (-5 *1 (-348 *3)) (-4 *3 (-497)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| -3735 *3) (|:| -2403 (-486))))) (-5 *1 (-348 *3)) (-4 *3 (-497)))) (-1783 (*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497)))) (-1782 (*1 *2 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-348 *3)) (-4 *3 (-497)))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497)))) (-1781 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-348 *4)) (-4 *4 (-497)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-348 *3)) (-4 *3 (-497)))) (-1780 (*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497)))) (-1779 (*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497)))) (-1778 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-486)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-348 *2)) (-4 *2 (-497)))) (-1777 (*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-497)))) (-1776 (*1 *1 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-497)))) (-3026 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-348 *3)) (-4 *3 (-485)) (-4 *3 (-497)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-348 *3)) (-4 *3 (-485)) (-4 *3 (-497)))) (-3027 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-486))) (-5 *1 (-348 *3)) (-4 *3 (-485)) (-4 *3 (-497))))) -((-3846 (((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)) 20 T ELT))) -(((-349 |#1| |#2|) (-10 -7 (-15 -3846 ((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)))) (-497) (-497)) (T -349)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-497)) (-4 *6 (-497)) (-5 *2 (-348 *6)) (-5 *1 (-349 *5 *6))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 13 T ELT)) (-3132 ((|#1| $) 21 (|has| |#1| (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| |#1| (-742)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1092) #1#) $) NIL (|has| |#1| (-952 (-1092))) ELT) (((-3 (-350 (-486)) #1#) $) 54 (|has| |#1| (-952 (-486))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT)) (-3159 ((|#1| $) 15 T ELT) (((-1092) $) NIL (|has| |#1| (-952 (-1092))) ELT) (((-350 (-486)) $) 51 (|has| |#1| (-952 (-486))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) 32 T ELT)) (-2997 (($) NIL (|has| |#1| (-485)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| |#1| (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| |#1| (-798 (-330))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 38 T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 ((|#1| $) 55 T ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-1068)) ELT)) (-3190 (((-85) $) 22 (|has| |#1| (-742)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| |#1| (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 82 T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3133 ((|#1| $) 26 (|has| |#1| (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 133 (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 128 (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) NIL (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) |#1|) NIL (|has| |#1| (-457 (-1092) |#1|)) ELT)) (-1608 (((-696) $) NIL T ELT)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 ((|#1| $) 57 T ELT)) (-3975 (((-802 (-486)) $) NIL (|has| |#1| (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| |#1| (-555 (-802 (-330)))) ELT) (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT) (((-330) $) NIL (|has| |#1| (-935)) ELT) (((-179) $) NIL (|has| |#1| (-935)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) 112 (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1092)) NIL (|has| |#1| (-952 (-1092))) ELT)) (-2705 (((-634 $) $) 92 (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) 93 T CONST)) (-3134 ((|#1| $) 24 (|has| |#1| (-485)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| |#1| (-742)) ELT)) (-2663 (($) 28 T CONST)) (-2669 (($) 8 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 48 T ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3953 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3840 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3842 (($ $ $) 35 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 122 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) -(((-350 |#1|) (-13 (-906 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3985)) (IF (|has| |#1| (-393)) (IF (|has| |#1| (-6 -3996)) (-6 -3985) |%noBranch|) |%noBranch|) |%noBranch|))) (-497)) (T -350)) -NIL -((-3846 (((-350 |#2|) (-1 |#2| |#1|) (-350 |#1|)) 13 T ELT))) -(((-351 |#1| |#2|) (-10 -7 (-15 -3846 ((-350 |#2|) (-1 |#2| |#1|) (-350 |#1|)))) (-497) (-497)) (T -351)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-350 *5)) (-4 *5 (-497)) (-4 *6 (-497)) (-5 *2 (-350 *6)) (-5 *1 (-351 *5 *6))))) -((-1787 (((-632 |#2|) (-1181 $)) NIL T ELT) (((-632 |#2|)) 18 T ELT)) (-1797 (($ (-1181 |#2|) (-1181 $)) NIL T ELT) (($ (-1181 |#2|)) 24 T ELT)) (-1786 (((-632 |#2|) $ (-1181 $)) NIL T ELT) (((-632 |#2|) $) 40 T ELT)) (-2016 ((|#3| $) 69 T ELT)) (-3760 ((|#2| (-1181 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3227 (((-1181 |#2|) $ (-1181 $)) NIL T ELT) (((-632 |#2|) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 |#2|) $) 22 T ELT) (((-632 |#2|) (-1181 $)) 38 T ELT)) (-3975 (((-1181 |#2|) $) 11 T ELT) (($ (-1181 |#2|)) 13 T ELT)) (-2452 ((|#3| $) 55 T ELT))) -(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -1786 ((-632 |#2|) |#1|)) (-15 -3760 (|#2|)) (-15 -1787 ((-632 |#2|))) (-15 -3975 (|#1| (-1181 |#2|))) (-15 -3975 ((-1181 |#2|) |#1|)) (-15 -1797 (|#1| (-1181 |#2|))) (-15 -3227 ((-632 |#2|) (-1181 |#1|))) (-15 -3227 ((-1181 |#2|) |#1|)) (-15 -2016 (|#3| |#1|)) (-15 -2452 (|#3| |#1|)) (-15 -1787 ((-632 |#2|) (-1181 |#1|))) (-15 -3760 (|#2| (-1181 |#1|))) (-15 -1797 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -3227 ((-632 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3227 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -1786 ((-632 |#2|) |#1| (-1181 |#1|)))) (-353 |#2| |#3|) (-146) (-1157 |#2|)) (T -352)) -((-1787 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)) (-5 *1 (-352 *3 *4 *5)) (-4 *3 (-353 *4 *5)))) (-3760 (*1 *2) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-146)) (-5 *1 (-352 *3 *2 *4)) (-4 *3 (-353 *2 *4))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1787 (((-632 |#1|) (-1181 $)) 61 T ELT) (((-632 |#1|)) 77 T ELT)) (-3333 ((|#1| $) 67 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1797 (($ (-1181 |#1|) (-1181 $)) 63 T ELT) (($ (-1181 |#1|)) 80 T ELT)) (-1786 (((-632 |#1|) $ (-1181 $)) 68 T ELT) (((-632 |#1|) $) 75 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3111 (((-832)) 69 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3135 ((|#1| $) 66 T ELT)) (-2016 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3760 ((|#1| (-1181 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-3227 (((-1181 |#1|) $ (-1181 $)) 65 T ELT) (((-632 |#1|) (-1181 $) (-1181 $)) 64 T ELT) (((-1181 |#1|) $) 82 T ELT) (((-632 |#1|) (-1181 $)) 81 T ELT)) (-3975 (((-1181 |#1|) $) 79 T ELT) (($ (-1181 |#1|)) 78 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2705 (((-634 $) $) 58 (|has| |#1| (-118)) ELT)) (-2452 ((|#2| $) 60 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2014 (((-1181 $)) 83 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) -(((-353 |#1| |#2|) (-113) (-146) (-1157 |t#1|)) (T -353)) -((-2014 (*1 *2) (-12 (-4 *3 (-146)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *1)) (-4 *1 (-353 *3 *4)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *3)))) (-3227 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-353 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)))) (-1797 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) (-4 *4 (-1157 *3)))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *3)))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) (-4 *4 (-1157 *3)))) (-1787 (*1 *2) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) (-5 *2 (-632 *3)))) (-3760 (*1 *2) (-12 (-4 *1 (-353 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-146)))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) (-5 *2 (-632 *3))))) -(-13 (-322 |t#1| |t#2|) (-10 -8 (-15 -2014 ((-1181 $))) (-15 -3227 ((-1181 |t#1|) $)) (-15 -3227 ((-632 |t#1|) (-1181 $))) (-15 -1797 ($ (-1181 |t#1|))) (-15 -3975 ((-1181 |t#1|) $)) (-15 -3975 ($ (-1181 |t#1|))) (-15 -1787 ((-632 |t#1|))) (-15 -3760 (|t#1|)) (-15 -1786 ((-632 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-322 |#1| |#2|) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-665) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-3160 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) 27 T ELT) (((-3 (-486) #1#) $) 19 T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-350 (-486)) $) 24 T ELT) (((-486) $) 14 T ELT)) (-3950 (($ |#2|) NIL T ELT) (($ (-350 (-486))) 22 T ELT) (($ (-486)) 11 T ELT))) -(((-354 |#1| |#2|) (-10 -7 (-15 -3950 (|#1| (-486))) (-15 -3160 ((-3 (-486) #1="failed") |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3950 (|#1| (-350 (-486)))) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3950 (|#1| |#2|))) (-355 |#2|) (-1131)) (T -354)) -NIL -((-3160 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-350 (-486)) #1#) $) 16 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) 13 (|has| |#1| (-952 (-486))) ELT)) (-3159 ((|#1| $) 8 T ELT) (((-350 (-486)) $) 17 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) 14 (|has| |#1| (-952 (-486))) ELT)) (-3950 (($ |#1|) 6 T ELT) (($ (-350 (-486))) 15 (|has| |#1| (-952 (-350 (-486)))) ELT) (($ (-486)) 12 (|has| |#1| (-952 (-486))) ELT))) -(((-355 |#1|) (-113) (-1131)) (T -355)) -NIL -(-13 (-952 |t#1|) (-10 -7 (IF (|has| |t#1| (-952 (-486))) (-6 (-952 (-486))) |%noBranch|) (IF (|has| |t#1| (-952 (-350 (-486)))) (-6 (-952 (-350 (-486)))) |%noBranch|))) -(((-557 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-557 (-486)) |has| |#1| (-952 (-486))) ((-557 |#1|) . T) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT)) (-1788 ((|#4| (-696) (-1181 |#4|)) 55 T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3001 (((-1181 |#4|) $) 15 T ELT)) (-3135 ((|#2| $) 53 T ELT)) (-1789 (($ $) 156 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 103 T ELT)) (-1970 (($ (-1181 |#4|)) 102 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3000 ((|#1| $) 16 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-3950 (((-774) $) 147 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 |#4|) $) 140 T ELT)) (-2669 (($) 11 T CONST)) (-3059 (((-85) $ $) 39 T ELT)) (-3953 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 133 T ELT)) (* (($ $ $) 130 T ELT))) -(((-356 |#1| |#2| |#3| |#4|) (-13 (-414) (-10 -8 (-15 -1970 ($ (-1181 |#4|))) (-15 -2014 ((-1181 |#4|) $)) (-15 -3135 (|#2| $)) (-15 -3001 ((-1181 |#4|) $)) (-15 -3000 (|#1| $)) (-15 -1789 ($ $)) (-15 -1788 (|#4| (-696) (-1181 |#4|))))) (-258) (-906 |#1|) (-1157 |#2|) (-13 (-353 |#2| |#3|) (-952 |#2|))) (T -356)) -((-1970 (*1 *1 *2) (-12 (-5 *2 (-1181 *6)) (-4 *6 (-13 (-353 *4 *5) (-952 *4))) (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-4 *3 (-258)) (-5 *1 (-356 *3 *4 *5 *6)))) (-2014 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-952 *4))))) (-3135 (*1 *2 *1) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-906 *3)) (-5 *1 (-356 *3 *2 *4 *5)) (-4 *3 (-258)) (-4 *5 (-13 (-353 *2 *4) (-952 *2))))) (-3001 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-952 *4))))) (-3000 (*1 *2 *1) (-12 (-4 *3 (-906 *2)) (-4 *4 (-1157 *3)) (-4 *2 (-258)) (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-952 *3))))) (-1789 (*1 *1 *1) (-12 (-4 *2 (-258)) (-4 *3 (-906 *2)) (-4 *4 (-1157 *3)) (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-952 *3))))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-696)) (-5 *4 (-1181 *2)) (-4 *5 (-258)) (-4 *6 (-906 *5)) (-4 *2 (-13 (-353 *6 *7) (-952 *6))) (-5 *1 (-356 *5 *6 *7 *2)) (-4 *7 (-1157 *6))))) -((-3846 (((-356 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-356 |#1| |#2| |#3| |#4|)) 35 T ELT))) -(((-357 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3846 ((-356 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-356 |#1| |#2| |#3| |#4|)))) (-258) (-906 |#1|) (-1157 |#2|) (-13 (-353 |#2| |#3|) (-952 |#2|)) (-258) (-906 |#5|) (-1157 |#6|) (-13 (-353 |#6| |#7|) (-952 |#6|))) (T -357)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-356 *5 *6 *7 *8)) (-4 *5 (-258)) (-4 *6 (-906 *5)) (-4 *7 (-1157 *6)) (-4 *8 (-13 (-353 *6 *7) (-952 *6))) (-4 *9 (-258)) (-4 *10 (-906 *9)) (-4 *11 (-1157 *10)) (-5 *2 (-356 *9 *10 *11 *12)) (-5 *1 (-357 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-353 *10 *11) (-952 *10)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3135 ((|#2| $) 69 T ELT)) (-1790 (($ (-1181 |#4|)) 27 T ELT) (($ (-356 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-952 |#2|)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 37 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 |#4|) $) 28 T ELT)) (-2669 (($) 26 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ $ $) 80 T ELT))) -(((-358 |#1| |#2| |#3| |#4| |#5|) (-13 (-665) (-10 -8 (-15 -2014 ((-1181 |#4|) $)) (-15 -3135 (|#2| $)) (-15 -1790 ($ (-1181 |#4|))) (IF (|has| |#4| (-952 |#2|)) (-15 -1790 ($ (-356 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-258) (-906 |#1|) (-1157 |#2|) (-353 |#2| |#3|) (-1181 |#4|)) (T -358)) -((-2014 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-4 *6 (-353 *4 *5)) (-14 *7 *2))) (-3135 (*1 *2 *1) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-906 *3)) (-5 *1 (-358 *3 *2 *4 *5 *6)) (-4 *3 (-258)) (-4 *5 (-353 *2 *4)) (-14 *6 (-1181 *5)))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-1181 *6)) (-4 *6 (-353 *4 *5)) (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-4 *3 (-258)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-356 *3 *4 *5 *6)) (-4 *6 (-952 *4)) (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-4 *6 (-353 *4 *5)) (-14 *7 (-1181 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7))))) -((-3846 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) -(((-359 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3846 (|#3| (-1 |#4| |#2|) |#1|))) (-361 |#2|) (-146) (-361 |#4|) (-146)) (T -359)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-361 *6)) (-5 *1 (-359 *4 *5 *2 *6)) (-4 *4 (-361 *5))))) -((-1777 (((-3 $ #1="failed")) 99 T ELT)) (-3226 (((-1181 (-632 |#2|)) (-1181 $)) NIL T ELT) (((-1181 (-632 |#2|))) 104 T ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) 97 T ELT)) (-1704 (((-3 $ #1#)) 96 T ELT)) (-1793 (((-632 |#2|) (-1181 $)) NIL T ELT) (((-632 |#2|)) 115 T ELT)) (-1791 (((-632 |#2|) $ (-1181 $)) NIL T ELT) (((-632 |#2|) $) 123 T ELT)) (-1905 (((-1087 (-859 |#2|))) 64 T ELT)) (-1795 ((|#2| (-1181 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1797 (($ (-1181 |#2|) (-1181 $)) NIL T ELT) (($ (-1181 |#2|)) 125 T ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) 95 T ELT)) (-1705 (((-3 $ #1#)) 87 T ELT)) (-1794 (((-632 |#2|) (-1181 $)) NIL T ELT) (((-632 |#2|)) 113 T ELT)) (-1792 (((-632 |#2|) $ (-1181 $)) NIL T ELT) (((-632 |#2|) $) 121 T ELT)) (-1909 (((-1087 (-859 |#2|))) 63 T ELT)) (-1796 ((|#2| (-1181 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3227 (((-1181 |#2|) $ (-1181 $)) NIL T ELT) (((-632 |#2|) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 |#2|) $) 124 T ELT) (((-632 |#2|) (-1181 $)) 133 T ELT)) (-3975 (((-1181 |#2|) $) 109 T ELT) (($ (-1181 |#2|)) 111 T ELT)) (-1897 (((-585 (-859 |#2|)) (-1181 $)) NIL T ELT) (((-585 (-859 |#2|))) 107 T ELT)) (-2548 (($ (-632 |#2|) $) 103 T ELT))) -(((-360 |#1| |#2|) (-10 -7 (-15 -2548 (|#1| (-632 |#2|) |#1|)) (-15 -1905 ((-1087 (-859 |#2|)))) (-15 -1909 ((-1087 (-859 |#2|)))) (-15 -1791 ((-632 |#2|) |#1|)) (-15 -1792 ((-632 |#2|) |#1|)) (-15 -1793 ((-632 |#2|))) (-15 -1794 ((-632 |#2|))) (-15 -1795 (|#2|)) (-15 -1796 (|#2|)) (-15 -3975 (|#1| (-1181 |#2|))) (-15 -3975 ((-1181 |#2|) |#1|)) (-15 -1797 (|#1| (-1181 |#2|))) (-15 -1897 ((-585 (-859 |#2|)))) (-15 -3226 ((-1181 (-632 |#2|)))) (-15 -3227 ((-632 |#2|) (-1181 |#1|))) (-15 -3227 ((-1181 |#2|) |#1|)) (-15 -1777 ((-3 |#1| #1="failed"))) (-15 -1704 ((-3 |#1| #1#))) (-15 -1705 ((-3 |#1| #1#))) (-15 -1911 ((-3 (-2 (|:| |particular| |#1|) (|:| -2014 (-585 |#1|))) #1#))) (-15 -1912 ((-3 (-2 (|:| |particular| |#1|) (|:| -2014 (-585 |#1|))) #1#))) (-15 -1793 ((-632 |#2|) (-1181 |#1|))) (-15 -1794 ((-632 |#2|) (-1181 |#1|))) (-15 -1795 (|#2| (-1181 |#1|))) (-15 -1796 (|#2| (-1181 |#1|))) (-15 -1797 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -3227 ((-632 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3227 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -1791 ((-632 |#2|) |#1| (-1181 |#1|))) (-15 -1792 ((-632 |#2|) |#1| (-1181 |#1|))) (-15 -3226 ((-1181 (-632 |#2|)) (-1181 |#1|))) (-15 -1897 ((-585 (-859 |#2|)) (-1181 |#1|)))) (-361 |#2|) (-146)) (T -360)) -((-3226 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1181 (-632 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1897 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-585 (-859 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1796 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) (-1795 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) (-1794 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-632 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1793 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-632 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1909 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1087 (-859 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1905 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1087 (-859 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1777 (((-3 $ #1="failed")) 48 (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3226 (((-1181 (-632 |#1|)) (-1181 $)) 89 T ELT) (((-1181 (-632 |#1|))) 115 T ELT)) (-1730 (((-1181 $)) 92 T ELT)) (-3727 (($) 23 T CONST)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) 51 (|has| |#1| (-497)) ELT)) (-1704 (((-3 $ #1#)) 49 (|has| |#1| (-497)) ELT)) (-1793 (((-632 |#1|) (-1181 $)) 76 T ELT) (((-632 |#1|)) 107 T ELT)) (-1728 ((|#1| $) 85 T ELT)) (-1791 (((-632 |#1|) $ (-1181 $)) 87 T ELT) (((-632 |#1|) $) 105 T ELT)) (-2406 (((-3 $ #1#) $) 56 (|has| |#1| (-497)) ELT)) (-1905 (((-1087 (-859 |#1|))) 103 (|has| |#1| (-312)) ELT)) (-2409 (($ $ (-832)) 37 T ELT)) (-1726 ((|#1| $) 83 T ELT)) (-1706 (((-1087 |#1|) $) 53 (|has| |#1| (-497)) ELT)) (-1795 ((|#1| (-1181 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1724 (((-1087 |#1|) $) 74 T ELT)) (-1718 (((-85)) 68 T ELT)) (-1797 (($ (-1181 |#1|) (-1181 $)) 80 T ELT) (($ (-1181 |#1|)) 113 T ELT)) (-3470 (((-3 $ #1#) $) 58 (|has| |#1| (-497)) ELT)) (-3111 (((-832)) 91 T ELT)) (-1715 (((-85)) 65 T ELT)) (-2436 (($ $ (-832)) 44 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-1711 (((-85)) 61 T ELT)) (-1709 (((-85)) 59 T ELT)) (-1713 (((-85)) 63 T ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) 52 (|has| |#1| (-497)) ELT)) (-1705 (((-3 $ #1#)) 50 (|has| |#1| (-497)) ELT)) (-1794 (((-632 |#1|) (-1181 $)) 77 T ELT) (((-632 |#1|)) 108 T ELT)) (-1729 ((|#1| $) 86 T ELT)) (-1792 (((-632 |#1|) $ (-1181 $)) 88 T ELT) (((-632 |#1|) $) 106 T ELT)) (-2407 (((-3 $ #1#) $) 57 (|has| |#1| (-497)) ELT)) (-1909 (((-1087 (-859 |#1|))) 104 (|has| |#1| (-312)) ELT)) (-2408 (($ $ (-832)) 38 T ELT)) (-1727 ((|#1| $) 84 T ELT)) (-1707 (((-1087 |#1|) $) 54 (|has| |#1| (-497)) ELT)) (-1796 ((|#1| (-1181 $)) 79 T ELT) ((|#1|) 110 T ELT)) (-1725 (((-1087 |#1|) $) 75 T ELT)) (-1719 (((-85)) 69 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1710 (((-85)) 60 T ELT)) (-1712 (((-85)) 62 T ELT)) (-1714 (((-85)) 64 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1717 (((-85)) 67 T ELT)) (-3803 ((|#1| $ (-486)) 119 T ELT)) (-3227 (((-1181 |#1|) $ (-1181 $)) 82 T ELT) (((-632 |#1|) (-1181 $) (-1181 $)) 81 T ELT) (((-1181 |#1|) $) 117 T ELT) (((-632 |#1|) (-1181 $)) 116 T ELT)) (-3975 (((-1181 |#1|) $) 112 T ELT) (($ (-1181 |#1|)) 111 T ELT)) (-1897 (((-585 (-859 |#1|)) (-1181 $)) 90 T ELT) (((-585 (-859 |#1|))) 114 T ELT)) (-2438 (($ $ $) 34 T ELT)) (-1723 (((-85)) 73 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2014 (((-1181 $)) 118 T ELT)) (-1708 (((-585 (-1181 |#1|))) 55 (|has| |#1| (-497)) ELT)) (-2439 (($ $ $ $) 35 T ELT)) (-1721 (((-85)) 71 T ELT)) (-2548 (($ (-632 |#1|) $) 102 T ELT)) (-2437 (($ $ $) 33 T ELT)) (-1722 (((-85)) 72 T ELT)) (-1720 (((-85)) 70 T ELT)) (-1716 (((-85)) 66 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 39 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) -(((-361 |#1|) (-113) (-146)) (T -361)) -((-2014 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1181 *1)) (-4 *1 (-361 *3)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1181 *3)))) (-3227 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-361 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) (-3226 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1181 (-632 *3))))) (-1897 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-585 (-859 *3))))) (-1797 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1181 *3)))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) (-1796 (*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))) (-1795 (*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))) (-1794 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3)))) (-1793 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3)))) (-1792 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3)))) (-1909 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1087 (-859 *3))))) (-1905 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1087 (-859 *3))))) (-2548 (*1 *1 *2 *1) (-12 (-5 *2 (-632 *3)) (-4 *1 (-361 *3)) (-4 *3 (-146))))) -(-13 (-316 |t#1|) (-241 (-486) |t#1|) (-10 -8 (-15 -2014 ((-1181 $))) (-15 -3227 ((-1181 |t#1|) $)) (-15 -3227 ((-632 |t#1|) (-1181 $))) (-15 -3226 ((-1181 (-632 |t#1|)))) (-15 -1897 ((-585 (-859 |t#1|)))) (-15 -1797 ($ (-1181 |t#1|))) (-15 -3975 ((-1181 |t#1|) $)) (-15 -3975 ($ (-1181 |t#1|))) (-15 -1796 (|t#1|)) (-15 -1795 (|t#1|)) (-15 -1794 ((-632 |t#1|))) (-15 -1793 ((-632 |t#1|))) (-15 -1792 ((-632 |t#1|) $)) (-15 -1791 ((-632 |t#1|) $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -1909 ((-1087 (-859 |t#1|)))) (-15 -1905 ((-1087 (-859 |t#1|))))) |%noBranch|) (-15 -2548 ($ (-632 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-241 (-486) |#1|) . T) ((-316 |#1|) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-659) . T) ((-685 |#1|) . T) ((-687) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) -((-3137 (((-348 |#1|) (-348 |#1|) (-1 (-348 |#1|) |#1|)) 28 T ELT)) (-1798 (((-348 |#1|) (-348 |#1|) (-348 |#1|)) 17 T ELT))) -(((-362 |#1|) (-10 -7 (-15 -3137 ((-348 |#1|) (-348 |#1|) (-1 (-348 |#1|) |#1|))) (-15 -1798 ((-348 |#1|) (-348 |#1|) (-348 |#1|)))) (-497)) (T -362)) -((-1798 (*1 *2 *2 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-497)) (-5 *1 (-362 *3)))) (-3137 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-348 *4) *4)) (-4 *4 (-497)) (-5 *2 (-348 *4)) (-5 *1 (-362 *4))))) -((-3084 (((-585 (-1092)) $) 81 T ELT)) (-3086 (((-350 (-1087 $)) $ (-552 $)) 313 T ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) 277 T ELT)) (-3160 (((-3 (-552 $) #1="failed") $) NIL T ELT) (((-3 (-1092) #1#) $) 84 T ELT) (((-3 (-486) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-350 (-859 |#2|)) #1#) $) 363 T ELT) (((-3 (-859 |#2|) #1#) $) 275 T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT)) (-3159 (((-552 $) $) NIL T ELT) (((-1092) $) 28 T ELT) (((-486) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-350 (-859 |#2|)) $) 345 T ELT) (((-859 |#2|) $) 272 T ELT) (((-350 (-486)) $) NIL T ELT)) (-3598 (((-86) (-86)) 47 T ELT)) (-2999 (($ $) 99 T ELT)) (-1603 (((-3 (-552 $) #1#) $) 268 T ELT)) (-1602 (((-585 (-552 $)) $) 269 T ELT)) (-2826 (((-3 (-585 $) #1#) $) 287 T ELT)) (-2828 (((-3 (-2 (|:| |val| $) (|:| -2403 (-486))) #1#) $) 294 T ELT)) (-2825 (((-3 (-585 $) #1#) $) 285 T ELT)) (-1799 (((-3 (-2 (|:| -3958 (-486)) (|:| |var| (-552 $))) #1#) $) 304 T ELT)) (-2827 (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) #1#) $ (-86)) 255 T ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) #1#) $ (-1092)) 257 T ELT)) (-1802 (((-85) $) 17 T ELT)) (-1801 ((|#2| $) 19 T ELT)) (-3771 (($ $ (-552 $) $) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) 276 T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ (-585 $)))) 109 T ELT) (($ $ (-1092) (-1 $ (-585 $))) NIL T ELT) (($ $ (-1092) (-1 $ $)) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-585 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1092)) 62 T ELT) (($ $ (-585 (-1092))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-86) $ (-1092)) 65 T ELT) (($ $ (-585 (-86)) (-585 $) (-1092)) 72 T ELT) (($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ $))) 120 T ELT) (($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ (-585 $)))) 282 T ELT) (($ $ (-1092) (-696) (-1 $ (-585 $))) 105 T ELT) (($ $ (-1092) (-696) (-1 $ $)) 104 T ELT)) (-3803 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-585 $)) 119 T ELT)) (-3761 (($ $ (-1092)) 278 T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT)) (-2998 (($ $) 324 T ELT)) (-3975 (((-802 (-486)) $) 297 T ELT) (((-802 (-330)) $) 301 T ELT) (($ (-348 $)) 359 T ELT) (((-475) $) NIL T ELT)) (-3950 (((-774) $) 279 T ELT) (($ (-552 $)) 93 T ELT) (($ (-1092)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1041 |#2| (-552 $))) NIL T ELT) (($ (-350 |#2|)) 329 T ELT) (($ (-859 (-350 |#2|))) 368 T ELT) (($ (-350 (-859 (-350 |#2|)))) 341 T ELT) (($ (-350 (-859 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-859 |#2|)) 216 T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) 373 T ELT)) (-3129 (((-696)) 88 T CONST)) (-2256 (((-85) (-86)) 42 T ELT)) (-1800 (($ (-1092) $) 31 T ELT) (($ (-1092) $ $) 32 T ELT) (($ (-1092) $ $ $) 33 T ELT) (($ (-1092) $ $ $ $) 34 T ELT) (($ (-1092) (-585 $)) 39 T ELT)) (* (($ (-350 (-486)) $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-832) $) NIL T ELT))) -(((-363 |#1| |#2|) (-10 -7 (-15 * (|#1| (-832) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 -3950 (|#1| (-350 (-486)))) (-15 -3160 ((-3 (-350 (-486)) #1="failed") |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3950 (|#1| (-486))) (-15 -3129 ((-696)) -3956) (-15 * (|#1| |#2| |#1|)) (-15 -3975 ((-475) |#1|)) (-15 -3950 (|#1| (-859 |#2|))) (-15 -3160 ((-3 (-859 |#2|) #1#) |#1|)) (-15 -3159 ((-859 |#2|) |#1|)) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092))) (-15 * (|#1| |#1| |#2|)) (-15 -3950 (|#1| |#1|)) (-15 * (|#1| |#1| (-350 (-486)))) (-15 * (|#1| (-350 (-486)) |#1|)) (-15 -3950 (|#1| (-350 (-859 |#2|)))) (-15 -3160 ((-3 (-350 (-859 |#2|)) #1#) |#1|)) (-15 -3159 ((-350 (-859 |#2|)) |#1|)) (-15 -3086 ((-350 (-1087 |#1|)) |#1| (-552 |#1|))) (-15 -3950 (|#1| (-350 (-859 (-350 |#2|))))) (-15 -3950 (|#1| (-859 (-350 |#2|)))) (-15 -3950 (|#1| (-350 |#2|))) (-15 -2998 (|#1| |#1|)) (-15 -3975 (|#1| (-348 |#1|))) (-15 -3771 (|#1| |#1| (-1092) (-696) (-1 |#1| |#1|))) (-15 -3771 (|#1| |#1| (-1092) (-696) (-1 |#1| (-585 |#1|)))) (-15 -3771 (|#1| |#1| (-585 (-1092)) (-585 (-696)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -3771 (|#1| |#1| (-585 (-1092)) (-585 (-696)) (-585 (-1 |#1| |#1|)))) (-15 -2828 ((-3 (-2 (|:| |val| |#1|) (|:| -2403 (-486))) #1#) |#1|)) (-15 -2827 ((-3 (-2 (|:| |var| (-552 |#1|)) (|:| -2403 (-486))) #1#) |#1| (-1092))) (-15 -2827 ((-3 (-2 (|:| |var| (-552 |#1|)) (|:| -2403 (-486))) #1#) |#1| (-86))) (-15 -2999 (|#1| |#1|)) (-15 -3950 (|#1| (-1041 |#2| (-552 |#1|)))) (-15 -1799 ((-3 (-2 (|:| -3958 (-486)) (|:| |var| (-552 |#1|))) #1#) |#1|)) (-15 -2825 ((-3 (-585 |#1|) #1#) |#1|)) (-15 -2827 ((-3 (-2 (|:| |var| (-552 |#1|)) (|:| -2403 (-486))) #1#) |#1|)) (-15 -2826 ((-3 (-585 |#1|) #1#) |#1|)) (-15 -3771 (|#1| |#1| (-585 (-86)) (-585 |#1|) (-1092))) (-15 -3771 (|#1| |#1| (-86) |#1| (-1092))) (-15 -3771 (|#1| |#1|)) (-15 -3771 (|#1| |#1| (-585 (-1092)))) (-15 -3771 (|#1| |#1| (-1092))) (-15 -1800 (|#1| (-1092) (-585 |#1|))) (-15 -1800 (|#1| (-1092) |#1| |#1| |#1| |#1|)) (-15 -1800 (|#1| (-1092) |#1| |#1| |#1|)) (-15 -1800 (|#1| (-1092) |#1| |#1|)) (-15 -1800 (|#1| (-1092) |#1|)) (-15 -3084 ((-585 (-1092)) |#1|)) (-15 -1801 (|#2| |#1|)) (-15 -1802 ((-85) |#1|)) (-15 -3950 (|#1| |#2|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3975 ((-802 (-330)) |#1|)) (-15 -3975 ((-802 (-486)) |#1|)) (-15 -3950 (|#1| (-1092))) (-15 -3160 ((-3 (-1092) #1#) |#1|)) (-15 -3159 ((-1092) |#1|)) (-15 -3771 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3771 (|#1| |#1| (-86) (-1 |#1| (-585 |#1|)))) (-15 -3771 (|#1| |#1| (-585 (-86)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -3771 (|#1| |#1| (-585 (-86)) (-585 (-1 |#1| |#1|)))) (-15 -3771 (|#1| |#1| (-1092) (-1 |#1| |#1|))) (-15 -3771 (|#1| |#1| (-1092) (-1 |#1| (-585 |#1|)))) (-15 -3771 (|#1| |#1| (-585 (-1092)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -3771 (|#1| |#1| (-585 (-1092)) (-585 (-1 |#1| |#1|)))) (-15 -2256 ((-85) (-86))) (-15 -3598 ((-86) (-86))) (-15 -1602 ((-585 (-552 |#1|)) |#1|)) (-15 -1603 ((-3 (-552 |#1|) #1#) |#1|)) (-15 -1605 (|#1| |#1| (-585 (-552 |#1|)) (-585 |#1|))) (-15 -1605 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -1605 (|#1| |#1| (-249 |#1|))) (-15 -3803 (|#1| (-86) (-585 |#1|))) (-15 -3803 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3803 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3803 (|#1| (-86) |#1| |#1|)) (-15 -3803 (|#1| (-86) |#1|)) (-15 -3771 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -3771 (|#1| |#1| |#1| |#1|)) (-15 -3771 (|#1| |#1| (-249 |#1|))) (-15 -3771 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -3771 (|#1| |#1| (-585 (-552 |#1|)) (-585 |#1|))) (-15 -3771 (|#1| |#1| (-552 |#1|) |#1|)) (-15 -3950 (|#1| (-552 |#1|))) (-15 -3160 ((-3 (-552 |#1|) #1#) |#1|)) (-15 -3159 ((-552 |#1|) |#1|)) (-15 -3950 ((-774) |#1|))) (-364 |#2|) (-1015)) (T -363)) -((-3598 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *4 (-1015)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-363 *4 *5)) (-4 *4 (-364 *5)))) (-3129 (*1 *2) (-12 (-4 *4 (-1015)) (-5 *2 (-696)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 129 (|has| |#1| (-25)) ELT)) (-3084 (((-585 (-1092)) $) 222 T ELT)) (-3086 (((-350 (-1087 $)) $ (-552 $)) 190 (|has| |#1| (-497)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 162 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 163 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 165 (|has| |#1| (-497)) ELT)) (-1601 (((-585 (-552 $)) $) 42 T ELT)) (-1314 (((-3 $ "failed") $ $) 132 (|has| |#1| (-21)) ELT)) (-1605 (($ $ (-249 $)) 54 T ELT) (($ $ (-585 (-249 $))) 53 T ELT) (($ $ (-585 (-552 $)) (-585 $)) 52 T ELT)) (-3778 (($ $) 182 (|has| |#1| (-497)) ELT)) (-3974 (((-348 $) $) 183 (|has| |#1| (-497)) ELT)) (-1609 (((-85) $ $) 173 (|has| |#1| (-497)) ELT)) (-3727 (($) 117 (OR (|has| |#1| (-1027)) (|has| |#1| (-25))) CONST)) (-3160 (((-3 (-552 $) #1="failed") $) 67 T ELT) (((-3 (-1092) #1#) $) 235 T ELT) (((-3 (-486) #1#) $) 229 (|has| |#1| (-952 (-486))) ELT) (((-3 |#1| #1#) $) 226 T ELT) (((-3 (-350 (-859 |#1|)) #1#) $) 188 (|has| |#1| (-497)) ELT) (((-3 (-859 |#1|) #1#) $) 137 (|has| |#1| (-963)) ELT) (((-3 (-350 (-486)) #1#) $) 111 (OR (-12 (|has| |#1| (-952 (-486))) (|has| |#1| (-497))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-3159 (((-552 $) $) 68 T ELT) (((-1092) $) 236 T ELT) (((-486) $) 228 (|has| |#1| (-952 (-486))) ELT) ((|#1| $) 227 T ELT) (((-350 (-859 |#1|)) $) 189 (|has| |#1| (-497)) ELT) (((-859 |#1|) $) 138 (|has| |#1| (-963)) ELT) (((-350 (-486)) $) 112 (OR (-12 (|has| |#1| (-952 (-486))) (|has| |#1| (-497))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-2567 (($ $ $) 177 (|has| |#1| (-497)) ELT)) (-2281 (((-632 (-486)) (-632 $)) 155 (-2565 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 154 (-2565 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 153 (|has| |#1| (-963)) ELT) (((-632 |#1|) (-632 $)) 152 (|has| |#1| (-963)) ELT)) (-3470 (((-3 $ "failed") $) 119 (|has| |#1| (-1027)) ELT)) (-2566 (($ $ $) 176 (|has| |#1| (-497)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 171 (|has| |#1| (-497)) ELT)) (-3726 (((-85) $) 184 (|has| |#1| (-497)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 231 (|has| |#1| (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 230 (|has| |#1| (-798 (-330))) ELT)) (-2576 (($ $) 49 T ELT) (($ (-585 $)) 48 T ELT)) (-1216 (((-85) $ $) 131 (|has| |#1| (-25)) ELT)) (-1600 (((-585 (-86)) $) 41 T ELT)) (-3598 (((-86) (-86)) 40 T ELT)) (-2412 (((-85) $) 118 (|has| |#1| (-1027)) ELT)) (-2676 (((-85) $) 20 (|has| $ (-952 (-486))) ELT)) (-2999 (($ $) 205 (|has| |#1| (-963)) ELT)) (-3001 (((-1041 |#1| (-552 $)) $) 206 (|has| |#1| (-963)) ELT)) (-1606 (((-3 (-585 $) #2="failed") (-585 $) $) 180 (|has| |#1| (-497)) ELT)) (-1598 (((-1087 $) (-552 $)) 23 (|has| $ (-963)) ELT)) (-3846 (($ (-1 $ $) (-552 $)) 34 T ELT)) (-1603 (((-3 (-552 $) "failed") $) 44 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 157 (-2565 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 156 (-2565 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 151 (|has| |#1| (-963)) ELT) (((-632 |#1|) (-1181 $)) 150 (|has| |#1| (-963)) ELT)) (-1896 (($ (-585 $)) 169 (|has| |#1| (-497)) ELT) (($ $ $) 168 (|has| |#1| (-497)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-1602 (((-585 (-552 $)) $) 43 T ELT)) (-2237 (($ (-86) $) 36 T ELT) (($ (-86) (-585 $)) 35 T ELT)) (-2826 (((-3 (-585 $) "failed") $) 211 (|has| |#1| (-1027)) ELT)) (-2828 (((-3 (-2 (|:| |val| $) (|:| -2403 (-486))) "failed") $) 202 (|has| |#1| (-963)) ELT)) (-2825 (((-3 (-585 $) "failed") $) 209 (|has| |#1| (-25)) ELT)) (-1799 (((-3 (-2 (|:| -3958 (-486)) (|:| |var| (-552 $))) "failed") $) 208 (|has| |#1| (-25)) ELT)) (-2827 (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) "failed") $) 210 (|has| |#1| (-1027)) ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) "failed") $ (-86)) 204 (|has| |#1| (-963)) ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) "failed") $ (-1092)) 203 (|has| |#1| (-963)) ELT)) (-2636 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1092)) 37 T ELT)) (-2487 (($ $) 121 (OR (|has| |#1| (-414)) (|has| |#1| (-497))) ELT)) (-2606 (((-696) $) 45 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1802 (((-85) $) 224 T ELT)) (-1801 ((|#1| $) 223 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 170 (|has| |#1| (-497)) ELT)) (-3147 (($ (-585 $)) 167 (|has| |#1| (-497)) ELT) (($ $ $) 166 (|has| |#1| (-497)) ELT)) (-1599 (((-85) $ $) 33 T ELT) (((-85) $ (-1092)) 32 T ELT)) (-3735 (((-348 $) $) 181 (|has| |#1| (-497)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 179 (|has| |#1| (-497)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 178 (|has| |#1| (-497)) ELT)) (-3469 (((-3 $ "failed") $ $) 161 (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 172 (|has| |#1| (-497)) ELT)) (-2677 (((-85) $) 21 (|has| $ (-952 (-486))) ELT)) (-3771 (($ $ (-552 $) $) 65 T ELT) (($ $ (-585 (-552 $)) (-585 $)) 64 T ELT) (($ $ (-585 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-585 $) (-585 $)) 60 T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ $))) 31 T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ (-585 $)))) 30 T ELT) (($ $ (-1092) (-1 $ (-585 $))) 29 T ELT) (($ $ (-1092) (-1 $ $)) 28 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) 27 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-585 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT) (($ $ (-1092)) 216 (|has| |#1| (-555 (-475))) ELT) (($ $ (-585 (-1092))) 215 (|has| |#1| (-555 (-475))) ELT) (($ $) 214 (|has| |#1| (-555 (-475))) ELT) (($ $ (-86) $ (-1092)) 213 (|has| |#1| (-555 (-475))) ELT) (($ $ (-585 (-86)) (-585 $) (-1092)) 212 (|has| |#1| (-555 (-475))) ELT) (($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ $))) 201 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ (-585 $)))) 200 (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696) (-1 $ (-585 $))) 199 (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696) (-1 $ $)) 198 (|has| |#1| (-963)) ELT)) (-1608 (((-696) $) 174 (|has| |#1| (-497)) ELT)) (-3803 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-585 $)) 55 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 175 (|has| |#1| (-497)) ELT)) (-1604 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3761 (($ $ (-1092)) 148 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092))) 146 (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696)) 145 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 144 (|has| |#1| (-963)) ELT)) (-2998 (($ $) 195 (|has| |#1| (-497)) ELT)) (-3000 (((-1041 |#1| (-552 $)) $) 196 (|has| |#1| (-497)) ELT)) (-3188 (($ $) 22 (|has| $ (-963)) ELT)) (-3975 (((-802 (-486)) $) 233 (|has| |#1| (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) 232 (|has| |#1| (-555 (-802 (-330)))) ELT) (($ (-348 $)) 197 (|has| |#1| (-497)) ELT) (((-475) $) 113 (|has| |#1| (-555 (-475))) ELT)) (-3012 (($ $ $) 124 (|has| |#1| (-414)) ELT)) (-2438 (($ $ $) 125 (|has| |#1| (-414)) ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-552 $)) 66 T ELT) (($ (-1092)) 234 T ELT) (($ |#1|) 225 T ELT) (($ (-1041 |#1| (-552 $))) 207 (|has| |#1| (-963)) ELT) (($ (-350 |#1|)) 193 (|has| |#1| (-497)) ELT) (($ (-859 (-350 |#1|))) 192 (|has| |#1| (-497)) ELT) (($ (-350 (-859 (-350 |#1|)))) 191 (|has| |#1| (-497)) ELT) (($ (-350 (-859 |#1|))) 187 (|has| |#1| (-497)) ELT) (($ $) 160 (|has| |#1| (-497)) ELT) (($ (-859 |#1|)) 136 (|has| |#1| (-963)) ELT) (($ (-350 (-486))) 110 (OR (|has| |#1| (-497)) (-12 (|has| |#1| (-952 (-486))) (|has| |#1| (-497))) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ (-486)) 109 (OR (|has| |#1| (-963)) (|has| |#1| (-952 (-486)))) ELT)) (-2705 (((-634 $) $) 158 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 140 (|has| |#1| (-963)) CONST)) (-2593 (($ $) 51 T ELT) (($ (-585 $)) 50 T ELT)) (-2256 (((-85) (-86)) 39 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 164 (|has| |#1| (-497)) ELT)) (-1800 (($ (-1092) $) 221 T ELT) (($ (-1092) $ $) 220 T ELT) (($ (-1092) $ $ $) 219 T ELT) (($ (-1092) $ $ $ $) 218 T ELT) (($ (-1092) (-585 $)) 217 T ELT)) (-3128 (((-85) $ $) 139 (|has| |#1| (-963)) ELT)) (-2663 (($) 128 (|has| |#1| (-25)) CONST)) (-2669 (($) 116 (|has| |#1| (-1027)) CONST)) (-2672 (($ $ (-1092)) 147 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092))) 143 (|has| |#1| (-963)) ELT) (($ $ (-1092) (-696)) 142 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 141 (|has| |#1| (-963)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ (-1041 |#1| (-552 $)) (-1041 |#1| (-552 $))) 194 (|has| |#1| (-497)) ELT) (($ $ $) 122 (OR (|has| |#1| (-414)) (|has| |#1| (-497))) ELT)) (-3840 (($ $ $) 135 (|has| |#1| (-21)) ELT) (($ $) 134 (|has| |#1| (-21)) ELT)) (-3842 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-486)) 123 (OR (|has| |#1| (-414)) (|has| |#1| (-497))) ELT) (($ $ (-696)) 120 (|has| |#1| (-1027)) ELT) (($ $ (-832)) 115 (|has| |#1| (-1027)) ELT)) (* (($ (-350 (-486)) $) 186 (|has| |#1| (-497)) ELT) (($ $ (-350 (-486))) 185 (|has| |#1| (-497)) ELT) (($ $ |#1|) 159 (|has| |#1| (-146)) ELT) (($ |#1| $) 149 (|has| |#1| (-963)) ELT) (($ (-486) $) 133 (|has| |#1| (-21)) ELT) (($ (-696) $) 130 (|has| |#1| (-25)) ELT) (($ (-832) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1027)) ELT))) -(((-364 |#1|) (-113) (-1015)) (T -364)) -((-1802 (*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1015)) (-5 *2 (-85)))) (-1801 (*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1015)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1015)) (-5 *2 (-585 (-1092))))) (-1800 (*1 *1 *2 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015)))) (-1800 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015)))) (-1800 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015)))) (-1800 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015)))) (-1800 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-585 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1015)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015)) (-4 *3 (-555 (-475))))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1092))) (-4 *1 (-364 *3)) (-4 *3 (-1015)) (-4 *3 (-555 (-475))))) (-3771 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1015)) (-4 *2 (-555 (-475))))) (-3771 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1092)) (-4 *1 (-364 *4)) (-4 *4 (-1015)) (-4 *4 (-555 (-475))))) (-3771 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-86))) (-5 *3 (-585 *1)) (-5 *4 (-1092)) (-4 *1 (-364 *5)) (-4 *5 (-1015)) (-4 *5 (-555 (-475))))) (-2826 (*1 *2 *1) (|partial| -12 (-4 *3 (-1027)) (-4 *3 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-364 *3)))) (-2827 (*1 *2 *1) (|partial| -12 (-4 *3 (-1027)) (-4 *3 (-1015)) (-5 *2 (-2 (|:| |var| (-552 *1)) (|:| -2403 (-486)))) (-4 *1 (-364 *3)))) (-2825 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-364 *3)))) (-1799 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1015)) (-5 *2 (-2 (|:| -3958 (-486)) (|:| |var| (-552 *1)))) (-4 *1 (-364 *3)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-1041 *3 (-552 *1))) (-4 *3 (-963)) (-4 *3 (-1015)) (-4 *1 (-364 *3)))) (-3001 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *3 (-1015)) (-5 *2 (-1041 *3 (-552 *1))) (-4 *1 (-364 *3)))) (-2999 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1015)) (-4 *2 (-963)))) (-2827 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-4 *4 (-963)) (-4 *4 (-1015)) (-5 *2 (-2 (|:| |var| (-552 *1)) (|:| -2403 (-486)))) (-4 *1 (-364 *4)))) (-2827 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1092)) (-4 *4 (-963)) (-4 *4 (-1015)) (-5 *2 (-2 (|:| |var| (-552 *1)) (|:| -2403 (-486)))) (-4 *1 (-364 *4)))) (-2828 (*1 *2 *1) (|partial| -12 (-4 *3 (-963)) (-4 *3 (-1015)) (-5 *2 (-2 (|:| |val| *1) (|:| -2403 (-486)))) (-4 *1 (-364 *3)))) (-3771 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-585 (-696))) (-5 *4 (-585 (-1 *1 *1))) (-4 *1 (-364 *5)) (-4 *5 (-1015)) (-4 *5 (-963)))) (-3771 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-585 (-696))) (-5 *4 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-364 *5)) (-4 *5 (-1015)) (-4 *5 (-963)))) (-3771 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-696)) (-5 *4 (-1 *1 (-585 *1))) (-4 *1 (-364 *5)) (-4 *5 (-1015)) (-4 *5 (-963)))) (-3771 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-696)) (-5 *4 (-1 *1 *1)) (-4 *1 (-364 *5)) (-4 *5 (-1015)) (-4 *5 (-963)))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-348 *1)) (-4 *1 (-364 *3)) (-4 *3 (-497)) (-4 *3 (-1015)))) (-3000 (*1 *2 *1) (-12 (-4 *3 (-497)) (-4 *3 (-1015)) (-5 *2 (-1041 *3 (-552 *1))) (-4 *1 (-364 *3)))) (-2998 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1015)) (-4 *2 (-497)))) (-3953 (*1 *1 *2 *2) (-12 (-5 *2 (-1041 *3 (-552 *1))) (-4 *3 (-497)) (-4 *3 (-1015)) (-4 *1 (-364 *3)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-497)) (-4 *3 (-1015)) (-4 *1 (-364 *3)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-859 (-350 *3))) (-4 *3 (-497)) (-4 *3 (-1015)) (-4 *1 (-364 *3)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-350 (-859 (-350 *3)))) (-4 *3 (-497)) (-4 *3 (-1015)) (-4 *1 (-364 *3)))) (-3086 (*1 *2 *1 *3) (-12 (-5 *3 (-552 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1015)) (-4 *4 (-497)) (-5 *2 (-350 (-1087 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-364 *3)) (-4 *3 (-1015)) (-4 *3 (-1027))))) -(-13 (-254) (-952 (-1092)) (-796 |t#1|) (-343 |t#1|) (-355 |t#1|) (-10 -8 (-15 -1802 ((-85) $)) (-15 -1801 (|t#1| $)) (-15 -3084 ((-585 (-1092)) $)) (-15 -1800 ($ (-1092) $)) (-15 -1800 ($ (-1092) $ $)) (-15 -1800 ($ (-1092) $ $ $)) (-15 -1800 ($ (-1092) $ $ $ $)) (-15 -1800 ($ (-1092) (-585 $))) (IF (|has| |t#1| (-555 (-475))) (PROGN (-6 (-555 (-475))) (-15 -3771 ($ $ (-1092))) (-15 -3771 ($ $ (-585 (-1092)))) (-15 -3771 ($ $)) (-15 -3771 ($ $ (-86) $ (-1092))) (-15 -3771 ($ $ (-585 (-86)) (-585 $) (-1092)))) |%noBranch|) (IF (|has| |t#1| (-1027)) (PROGN (-6 (-665)) (-15 ** ($ $ (-696))) (-15 -2826 ((-3 (-585 $) "failed") $)) (-15 -2827 ((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-414)) (-6 (-414)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2825 ((-3 (-585 $) "failed") $)) (-15 -1799 ((-3 (-2 (|:| -3958 (-486)) (|:| |var| (-552 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-963)) (PROGN (-6 (-963)) (-6 (-952 (-859 |t#1|))) (-6 (-811 (-1092))) (-6 (-329 |t#1|)) (-15 -3950 ($ (-1041 |t#1| (-552 $)))) (-15 -3001 ((-1041 |t#1| (-552 $)) $)) (-15 -2999 ($ $)) (-15 -2827 ((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) "failed") $ (-86))) (-15 -2827 ((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-486))) "failed") $ (-1092))) (-15 -2828 ((-3 (-2 (|:| |val| $) (|:| -2403 (-486))) "failed") $)) (-15 -3771 ($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ $)))) (-15 -3771 ($ $ (-585 (-1092)) (-585 (-696)) (-585 (-1 $ (-585 $))))) (-15 -3771 ($ $ (-1092) (-696) (-1 $ (-585 $)))) (-15 -3771 ($ $ (-1092) (-696) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-497)) (PROGN (-6 (-312)) (-6 (-952 (-350 (-859 |t#1|)))) (-15 -3975 ($ (-348 $))) (-15 -3000 ((-1041 |t#1| (-552 $)) $)) (-15 -2998 ($ $)) (-15 -3953 ($ (-1041 |t#1| (-552 $)) (-1041 |t#1| (-552 $)))) (-15 -3950 ($ (-350 |t#1|))) (-15 -3950 ($ (-859 (-350 |t#1|)))) (-15 -3950 ($ (-350 (-859 (-350 |t#1|))))) (-15 -3086 ((-350 (-1087 $)) $ (-552 $))) (IF (|has| |t#1| (-952 (-486))) (-6 (-952 (-350 (-486)))) |%noBranch|)) |%noBranch|))) -(((-21) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-350 (-486))) |has| |#1| (-497)) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-497)) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-497)) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) |has| |#1| (-497)) ((-104) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-497))) ((-557 (-350 (-859 |#1|))) |has| |#1| (-497)) ((-557 (-486)) OR (|has| |#1| (-963)) (|has| |#1| (-952 (-486))) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-557 (-552 $)) . T) ((-557 (-859 |#1|)) |has| |#1| (-963)) ((-557 (-1092)) . T) ((-557 |#1|) . T) ((-557 $) |has| |#1| (-497)) ((-554 (-774)) . T) ((-146) |has| |#1| (-497)) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-555 (-802 (-330))) |has| |#1| (-555 (-802 (-330)))) ((-555 (-802 (-486))) |has| |#1| (-555 (-802 (-486)))) ((-201) |has| |#1| (-497)) ((-246) |has| |#1| (-497)) ((-258) |has| |#1| (-497)) ((-260 $) . T) ((-254) . T) ((-312) |has| |#1| (-497)) ((-329 |#1|) |has| |#1| (-963)) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-393) |has| |#1| (-497)) ((-414) |has| |#1| (-414)) ((-457 (-552 $) $) . T) ((-457 $ $) . T) ((-497) |has| |#1| (-497)) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-497)) ((-590 (-486)) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-590 |#1|) OR (|has| |#1| (-963)) (|has| |#1| (-146))) ((-590 $) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-592 (-350 (-486))) |has| |#1| (-497)) ((-592 (-486)) -12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ((-592 |#1|) OR (|has| |#1| (-963)) (|has| |#1| (-146))) ((-592 $) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-584 (-350 (-486))) |has| |#1| (-497)) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-497)) ((-582 (-486)) -12 (|has| |#1| (-582 (-486))) (|has| |#1| (-963))) ((-582 |#1|) |has| |#1| (-963)) ((-656 (-350 (-486))) |has| |#1| (-497)) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-497)) ((-665) OR (|has| |#1| (-1027)) (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-414)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-808 $ (-1092)) |has| |#1| (-963)) ((-811 (-1092)) |has| |#1| (-963)) ((-813 (-1092)) |has| |#1| (-963)) ((-798 (-330)) |has| |#1| (-798 (-330))) ((-798 (-486)) |has| |#1| (-798 (-486))) ((-796 |#1|) . T) ((-834) |has| |#1| (-497)) ((-952 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (-12 (|has| |#1| (-497)) (|has| |#1| (-952 (-486))))) ((-952 (-350 (-859 |#1|))) |has| |#1| (-497)) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 (-552 $)) . T) ((-952 (-859 |#1|)) |has| |#1| (-963)) ((-952 (-1092)) . T) ((-952 |#1|) . T) ((-965 (-350 (-486))) |has| |#1| (-497)) ((-965 |#1|) |has| |#1| (-146)) ((-965 $) |has| |#1| (-497)) ((-970 (-350 (-486))) |has| |#1| (-497)) ((-970 |#1|) |has| |#1| (-146)) ((-970 $) |has| |#1| (-497)) ((-963) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-972) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1027) OR (|has| |#1| (-1027)) (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-414)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1063) OR (|has| |#1| (-963)) (|has| |#1| (-497)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1015) . T) ((-1131) . T) ((-1136) |has| |#1| (-497))) -((-3846 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) -(((-365 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3846 (|#4| (-1 |#3| |#1|) |#2|))) (-963) (-364 |#1|) (-963) (-364 |#3|)) (T -365)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-364 *6)) (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-364 *5))))) -((-1806 ((|#2| |#2|) 182 T ELT)) (-1803 (((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-85)) 60 T ELT))) -(((-366 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1803 ((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-85))) (-15 -1806 (|#2| |#2|))) (-13 (-393) (-952 (-486)) (-582 (-486))) (-13 (-27) (-1117) (-364 |#1|)) (-1092) |#2|) (T -366)) -((-1806 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-366 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1117) (-364 *3))) (-14 *4 (-1092)) (-14 *5 *2))) (-1803 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 (|:| |%expansion| (-264 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075)))))) (-5 *1 (-366 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) (-14 *6 (-1092)) (-14 *7 *3)))) -((-1806 ((|#2| |#2|) 105 T ELT)) (-1804 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-85) (-1075)) 52 T ELT)) (-1805 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-85) (-1075)) 169 T ELT))) -(((-367 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1804 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-85) (-1075))) (-15 -1805 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-85) (-1075))) (-15 -1806 (|#2| |#2|))) (-13 (-393) (-952 (-486)) (-582 (-486))) (-13 (-27) (-1117) (-364 |#1|) (-10 -8 (-15 -3950 ($ |#3|)))) (-757) (-13 (-1160 |#2| |#3|) (-312) (-1117) (-10 -8 (-15 -3761 ($ $)) (-15 -3815 ($ $)))) (-898 |#4|) (-1092)) (T -367)) -((-1806 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-4 *2 (-13 (-27) (-1117) (-364 *3) (-10 -8 (-15 -3950 ($ *4))))) (-4 *4 (-757)) (-4 *5 (-13 (-1160 *2 *4) (-312) (-1117) (-10 -8 (-15 -3761 ($ $)) (-15 -3815 ($ $))))) (-5 *1 (-367 *3 *2 *4 *5 *6 *7)) (-4 *6 (-898 *5)) (-14 *7 (-1092)))) (-1805 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-4 *3 (-13 (-27) (-1117) (-364 *6) (-10 -8 (-15 -3950 ($ *7))))) (-4 *7 (-757)) (-4 *8 (-13 (-1160 *3 *7) (-312) (-1117) (-10 -8 (-15 -3761 ($ $)) (-15 -3815 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075)))))) (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1075)) (-4 *9 (-898 *8)) (-14 *10 (-1092)))) (-1804 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-4 *3 (-13 (-27) (-1117) (-364 *6) (-10 -8 (-15 -3950 ($ *7))))) (-4 *7 (-757)) (-4 *8 (-13 (-1160 *3 *7) (-312) (-1117) (-10 -8 (-15 -3761 ($ $)) (-15 -3815 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075)))))) (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1075)) (-4 *9 (-898 *8)) (-14 *10 (-1092))))) -((-1807 (($) 51 T ELT)) (-3237 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3239 (($ $ $) 46 T ELT)) (-3238 (((-85) $ $) 35 T ELT)) (-3139 (((-696)) 55 T ELT)) (-3242 (($ (-585 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2997 (($) 66 T ELT)) (-3244 (((-85) $ $) 15 T ELT)) (-2534 ((|#2| $) 77 T ELT)) (-2860 ((|#2| $) 75 T ELT)) (-2012 (((-832) $) 70 T ELT)) (-3241 (($ $ $) 42 T ELT)) (-2402 (($ (-832)) 60 T ELT)) (-3240 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1732 (((-696) |#2| $) 31 T ELT) (((-696) (-1 (-85) |#2|) $) NIL T ELT)) (-3533 (($ (-585 |#2|)) 27 T ELT)) (-1808 (($ $) 53 T ELT)) (-3950 (((-774) $) 40 T ELT)) (-1809 (((-696) $) 24 T ELT)) (-3243 (($ (-585 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3059 (((-85) $ $) 19 T ELT))) -(((-368 |#1| |#2|) (-10 -7 (-15 -3139 ((-696))) (-15 -2402 (|#1| (-832))) (-15 -2012 ((-832) |#1|)) (-15 -2997 (|#1|)) (-15 -2534 (|#2| |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -1807 (|#1|)) (-15 -1808 (|#1| |#1|)) (-15 -1809 ((-696) |#1|)) (-15 -1732 ((-696) (-1 (-85) |#2|) |#1|)) (-15 -1732 ((-696) |#2| |#1|)) (-15 -3059 ((-85) |#1| |#1|)) (-15 -3950 ((-774) |#1|)) (-15 -3244 ((-85) |#1| |#1|)) (-15 -3243 (|#1|)) (-15 -3243 (|#1| (-585 |#2|))) (-15 -3242 (|#1|)) (-15 -3242 (|#1| (-585 |#2|))) (-15 -3241 (|#1| |#1| |#1|)) (-15 -3240 (|#1| |#1| |#1|)) (-15 -3240 (|#1| |#1| |#2|)) (-15 -3239 (|#1| |#1| |#1|)) (-15 -3238 ((-85) |#1| |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -3237 (|#1| |#1| |#2|)) (-15 -3237 (|#1| |#2| |#1|)) (-15 -3533 (|#1| (-585 |#2|)))) (-369 |#2|) (-1015)) (T -368)) -((-3139 (*1 *2) (-12 (-4 *4 (-1015)) (-5 *2 (-696)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4))))) -((-2571 (((-85) $ $) 18 T ELT)) (-1807 (($) 61 (|has| |#1| (-320)) ELT)) (-3237 (($ |#1| $) 87 T ELT) (($ $ |#1|) 86 T ELT) (($ $ $) 85 T ELT)) (-3239 (($ $ $) 83 T ELT)) (-3238 (((-85) $ $) 84 T ELT)) (-3139 (((-696)) 55 (|has| |#1| (-320)) ELT)) (-3242 (($ (-585 |#1|)) 79 T ELT) (($) 78 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 42 (|has| $ (-318 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-1355 (($ $) 51 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 44 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 43 (|has| $ (-318 |#1|)) ELT)) (-3409 (($ |#1| $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 74 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 70 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 69 T ELT)) (-2997 (($) 58 (|has| |#1| (-320)) ELT)) (-3244 (((-85) $ $) 75 T ELT)) (-2534 ((|#1| $) 59 (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) 68 T ELT)) (-3248 (((-85) |#1| $) 73 (|has| |#1| (-72)) ELT)) (-2860 ((|#1| $) 60 (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-2012 (((-832) $) 57 (|has| |#1| (-320)) ELT)) (-3245 (((-1075) $) 21 T ELT)) (-3241 (($ $ $) 80 T ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-2402 (($ (-832)) 56 (|has| |#1| (-320)) ELT)) (-3246 (((-1035) $) 20 T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 71 T ELT)) (-1277 ((|#1| $) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 66 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3240 (($ $ |#1|) 82 T ELT) (($ $ $) 81 T ELT)) (-1467 (($) 46 T ELT) (($ (-585 |#1|)) 45 T ELT)) (-1732 (((-696) |#1| $) 72 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 67 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 52 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 47 T ELT)) (-1808 (($ $) 62 (|has| |#1| (-320)) ELT)) (-3950 (((-774) $) 16 T ELT)) (-1809 (((-696) $) 63 T ELT)) (-3243 (($ (-585 |#1|)) 77 T ELT) (($) 76 T ELT)) (-1267 (((-85) $ $) 19 T ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 65 T ELT)) (-3059 (((-85) $ $) 17 T ELT)) (-3961 (((-696) $) 64 T ELT))) -(((-369 |#1|) (-113) (-1015)) (T -369)) -((-1809 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1015)) (-5 *2 (-696)))) (-1808 (*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1015)) (-4 *2 (-320)))) (-1807 (*1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-320)) (-4 *2 (-1015)))) (-2860 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1015)) (-4 *2 (-758)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1015)) (-4 *2 (-758))))) -(-13 (-183 |t#1|) (-1013 |t#1|) (-318 |t#1|) (-10 -8 (-15 -1809 ((-696) $)) (IF (|has| |t#1| (-320)) (PROGN (-6 (-320)) (-15 -1808 ($ $)) (-15 -1807 ($))) |%noBranch|) (IF (|has| |t#1| (-758)) (PROGN (-15 -2860 (|t#1| $)) (-15 -2534 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-554 (-774)) . T) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-183 |#1|) . T) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-320) |has| |#1| (-320)) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1013 |#1|) . T) ((-1015) . T) ((-1037 |#1|) . T) ((-1131) . T)) -((-3844 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3845 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3846 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) -(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3846 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3845 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3844 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1015) (-369 |#1|) (-1015) (-369 |#3|)) (T -370)) -((-3844 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1015)) (-4 *5 (-1015)) (-4 *2 (-369 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-369 *6)))) (-3845 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1015)) (-4 *2 (-1015)) (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-369 *5)) (-4 *6 (-369 *2)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-369 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-369 *5))))) -((-1810 (((-521 |#2|) |#2| (-1092)) 36 T ELT)) (-2102 (((-521 |#2|) |#2| (-1092)) 21 T ELT)) (-2151 ((|#2| |#2| (-1092)) 26 T ELT))) -(((-371 |#1| |#2|) (-10 -7 (-15 -2102 ((-521 |#2|) |#2| (-1092))) (-15 -1810 ((-521 |#2|) |#2| (-1092))) (-15 -2151 (|#2| |#2| (-1092)))) (-13 (-258) (-120) (-952 (-486)) (-582 (-486))) (-13 (-1117) (-29 |#1|))) (T -371)) -((-2151 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-1117) (-29 *4))))) (-1810 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-521 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1117) (-29 *5))))) (-2102 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-521 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1117) (-29 *5)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1812 (($ |#2| |#1|) 37 T ELT)) (-1811 (($ |#2| |#1|) 35 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-281 |#2|)) 25 T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 10 T CONST)) (-2669 (($) 16 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 36 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-372 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3985)) (IF (|has| |#1| (-6 -3985)) (-6 -3985) |%noBranch|) |%noBranch|) (-15 -3950 ($ |#1|)) (-15 -3950 ($ (-281 |#2|))) (-15 -1812 ($ |#2| |#1|)) (-15 -1811 ($ |#2| |#1|)))) (-13 (-146) (-38 (-350 (-486)))) (-13 (-758) (-21))) (T -372)) -((-3950 (*1 *1 *2) (-12 (-5 *1 (-372 *2 *3)) (-4 *2 (-13 (-146) (-38 (-350 (-486))))) (-4 *3 (-13 (-758) (-21))))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-758) (-21))) (-5 *1 (-372 *3 *4)) (-4 *3 (-13 (-146) (-38 (-350 (-486))))))) (-1812 (*1 *1 *2 *3) (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-486))))) (-4 *2 (-13 (-758) (-21))))) (-1811 (*1 *1 *2 *3) (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-486))))) (-4 *2 (-13 (-758) (-21)))))) -((-3815 (((-3 |#2| (-585 |#2|)) |#2| (-1092)) 115 T ELT))) -(((-373 |#1| |#2|) (-10 -7 (-15 -3815 ((-3 |#2| (-585 |#2|)) |#2| (-1092)))) (-13 (-258) (-120) (-952 (-486)) (-582 (-486))) (-13 (-1117) (-873) (-29 |#1|))) (T -373)) -((-3815 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 *3 (-585 *3))) (-5 *1 (-373 *5 *3)) (-4 *3 (-13 (-1117) (-873) (-29 *5)))))) -((-3389 ((|#2| |#2| |#2|) 31 T ELT)) (-3598 (((-86) (-86)) 43 T ELT)) (-1814 ((|#2| |#2|) 63 T ELT)) (-1813 ((|#2| |#2|) 66 T ELT)) (-3388 ((|#2| |#2|) 30 T ELT)) (-3392 ((|#2| |#2| |#2|) 33 T ELT)) (-3394 ((|#2| |#2| |#2|) 35 T ELT)) (-3391 ((|#2| |#2| |#2|) 32 T ELT)) (-3393 ((|#2| |#2| |#2|) 34 T ELT)) (-2256 (((-85) (-86)) 41 T ELT)) (-3396 ((|#2| |#2|) 37 T ELT)) (-3395 ((|#2| |#2|) 36 T ELT)) (-3386 ((|#2| |#2|) 25 T ELT)) (-3390 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3387 ((|#2| |#2| |#2|) 29 T ELT))) -(((-374 |#1| |#2|) (-10 -7 (-15 -2256 ((-85) (-86))) (-15 -3598 ((-86) (-86))) (-15 -3386 (|#2| |#2|)) (-15 -3390 (|#2| |#2|)) (-15 -3390 (|#2| |#2| |#2|)) (-15 -3387 (|#2| |#2| |#2|)) (-15 -3388 (|#2| |#2|)) (-15 -3389 (|#2| |#2| |#2|)) (-15 -3391 (|#2| |#2| |#2|)) (-15 -3392 (|#2| |#2| |#2|)) (-15 -3393 (|#2| |#2| |#2|)) (-15 -3394 (|#2| |#2| |#2|)) (-15 -3395 (|#2| |#2|)) (-15 -3396 (|#2| |#2|)) (-15 -1813 (|#2| |#2|)) (-15 -1814 (|#2| |#2|))) (-497) (-364 |#1|)) (T -374)) -((-1814 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-1813 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3396 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3395 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3394 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3393 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3392 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3391 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3389 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3388 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3387 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3390 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3390 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-374 *3 *4)) (-4 *4 (-364 *3)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5)) (-4 *5 (-364 *4))))) -((-2836 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1087 |#2|)) (|:| |pol2| (-1087 |#2|)) (|:| |prim| (-1087 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-585 (-1087 |#2|))) (|:| |prim| (-1087 |#2|))) (-585 |#2|)) 65 T ELT))) -(((-375 |#1| |#2|) (-10 -7 (-15 -2836 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-585 (-1087 |#2|))) (|:| |prim| (-1087 |#2|))) (-585 |#2|))) (IF (|has| |#2| (-27)) (-15 -2836 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1087 |#2|)) (|:| |pol2| (-1087 |#2|)) (|:| |prim| (-1087 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-497) (-120)) (-364 |#1|)) (T -375)) -((-2836 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-497) (-120))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1087 *3)) (|:| |pol2| (-1087 *3)) (|:| |prim| (-1087 *3)))) (-5 *1 (-375 *4 *3)) (-4 *3 (-27)) (-4 *3 (-364 *4)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-364 *4)) (-4 *4 (-13 (-497) (-120))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-585 (-1087 *5))) (|:| |prim| (-1087 *5)))) (-5 *1 (-375 *4 *5))))) -((-1816 (((-1187)) 18 T ELT)) (-1815 (((-1087 (-350 (-486))) |#2| (-552 |#2|)) 40 T ELT) (((-350 (-486)) |#2|) 27 T ELT))) -(((-376 |#1| |#2|) (-10 -7 (-15 -1815 ((-350 (-486)) |#2|)) (-15 -1815 ((-1087 (-350 (-486))) |#2| (-552 |#2|))) (-15 -1816 ((-1187)))) (-13 (-497) (-952 (-486))) (-364 |#1|)) (T -376)) -((-1816 (*1 *2) (-12 (-4 *3 (-13 (-497) (-952 (-486)))) (-5 *2 (-1187)) (-5 *1 (-376 *3 *4)) (-4 *4 (-364 *3)))) (-1815 (*1 *2 *3 *4) (-12 (-5 *4 (-552 *3)) (-4 *3 (-364 *5)) (-4 *5 (-13 (-497) (-952 (-486)))) (-5 *2 (-1087 (-350 (-486)))) (-5 *1 (-376 *5 *3)))) (-1815 (*1 *2 *3) (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-350 (-486))) (-5 *1 (-376 *4 *3)) (-4 *3 (-364 *4))))) -((-3648 (((-85) $) 33 T ELT)) (-1817 (((-85) $) 35 T ELT)) (-3262 (((-85) $) 36 T ELT)) (-1819 (((-85) $) 39 T ELT)) (-1821 (((-85) $) 34 T ELT)) (-1820 (((-85) $) 38 T ELT)) (-3950 (((-774) $) 20 T ELT) (($ (-1075)) 32 T ELT) (($ (-1092)) 30 T ELT) (((-1092) $) 24 T ELT) (((-1017) $) 23 T ELT)) (-1818 (((-85) $) 37 T ELT)) (-3059 (((-85) $ $) 17 T ELT))) -(((-377) (-13 (-554 (-774)) (-10 -8 (-15 -3950 ($ (-1075))) (-15 -3950 ($ (-1092))) (-15 -3950 ((-1092) $)) (-15 -3950 ((-1017) $)) (-15 -3648 ((-85) $)) (-15 -1821 ((-85) $)) (-15 -3262 ((-85) $)) (-15 -1820 ((-85) $)) (-15 -1819 ((-85) $)) (-15 -1818 ((-85) $)) (-15 -1817 ((-85) $)) (-15 -3059 ((-85) $ $))))) (T -377)) -((-3950 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-377)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-377)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-377)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-377)))) (-3648 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1821 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-3262 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-3059 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) -((-1823 (((-3 (-348 (-1087 (-350 (-486)))) #1="failed") |#3|) 71 T ELT)) (-1822 (((-348 |#3|) |#3|) 34 T ELT)) (-1825 (((-3 (-348 (-1087 (-48))) #1#) |#3|) 29 (|has| |#2| (-952 (-48))) ELT)) (-1824 (((-3 (|:| |overq| (-1087 (-350 (-486)))) (|:| |overan| (-1087 (-48))) (|:| -2642 (-85))) |#3|) 37 T ELT))) -(((-378 |#1| |#2| |#3|) (-10 -7 (-15 -1822 ((-348 |#3|) |#3|)) (-15 -1823 ((-3 (-348 (-1087 (-350 (-486)))) #1="failed") |#3|)) (-15 -1824 ((-3 (|:| |overq| (-1087 (-350 (-486)))) (|:| |overan| (-1087 (-48))) (|:| -2642 (-85))) |#3|)) (IF (|has| |#2| (-952 (-48))) (-15 -1825 ((-3 (-348 (-1087 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-497) (-952 (-486))) (-364 |#1|) (-1157 |#2|)) (T -378)) -((-1825 (*1 *2 *3) (|partial| -12 (-4 *5 (-952 (-48))) (-4 *4 (-13 (-497) (-952 (-486)))) (-4 *5 (-364 *4)) (-5 *2 (-348 (-1087 (-48)))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-1824 (*1 *2 *3) (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-4 *5 (-364 *4)) (-5 *2 (-3 (|:| |overq| (-1087 (-350 (-486)))) (|:| |overan| (-1087 (-48))) (|:| -2642 (-85)))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-1823 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-497) (-952 (-486)))) (-4 *5 (-364 *4)) (-5 *2 (-348 (-1087 (-350 (-486))))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-1822 (*1 *2 *3) (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-4 *5 (-364 *4)) (-5 *2 (-348 *3)) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1157 *5))))) -((-2571 (((-85) $ $) NIL T ELT)) (-1835 (((-3 (|:| |fst| (-377)) (|:| -3914 #1="void")) $) 11 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1832 (($) 35 T ELT)) (-1829 (($) 41 T ELT)) (-1830 (($) 37 T ELT)) (-1827 (($) 39 T ELT)) (-1831 (($) 36 T ELT)) (-1828 (($) 38 T ELT)) (-1826 (($) 40 T ELT)) (-1833 (((-85) $) 8 T ELT)) (-1834 (((-585 (-859 (-486))) $) 19 T ELT)) (-3533 (($ (-3 (|:| |fst| (-377)) (|:| -3914 #1#)) (-585 (-1092)) (-85)) 29 T ELT) (($ (-3 (|:| |fst| (-377)) (|:| -3914 #1#)) (-585 (-859 (-486))) (-85)) 30 T ELT)) (-3950 (((-774) $) 24 T ELT) (($ (-377)) 32 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-379) (-13 (-1015) (-10 -8 (-15 -3950 ($ (-377))) (-15 -1835 ((-3 (|:| |fst| (-377)) (|:| -3914 #1="void")) $)) (-15 -1834 ((-585 (-859 (-486))) $)) (-15 -1833 ((-85) $)) (-15 -3533 ($ (-3 (|:| |fst| (-377)) (|:| -3914 #1#)) (-585 (-1092)) (-85))) (-15 -3533 ($ (-3 (|:| |fst| (-377)) (|:| -3914 #1#)) (-585 (-859 (-486))) (-85))) (-15 -1832 ($)) (-15 -1831 ($)) (-15 -1830 ($)) (-15 -1829 ($)) (-15 -1828 ($)) (-15 -1827 ($)) (-15 -1826 ($))))) (T -379)) -((-3950 (*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-379)))) (-1835 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3914 #1="void"))) (-5 *1 (-379)))) (-1834 (*1 *2 *1) (-12 (-5 *2 (-585 (-859 (-486)))) (-5 *1 (-379)))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))) (-3533 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3914 #1#))) (-5 *3 (-585 (-1092))) (-5 *4 (-85)) (-5 *1 (-379)))) (-3533 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3914 #1#))) (-5 *3 (-585 (-859 (-486)))) (-5 *4 (-85)) (-5 *1 (-379)))) (-1832 (*1 *1) (-5 *1 (-379))) (-1831 (*1 *1) (-5 *1 (-379))) (-1830 (*1 *1) (-5 *1 (-379))) (-1829 (*1 *1) (-5 *1 (-379))) (-1828 (*1 *1) (-5 *1 (-379))) (-1827 (*1 *1) (-5 *1 (-379))) (-1826 (*1 *1) (-5 *1 (-379)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3545 (((-1092) $) 8 T ELT)) (-3245 (((-1075) $) 17 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 11 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 14 T ELT))) -(((-380 |#1|) (-13 (-1015) (-10 -8 (-15 -3545 ((-1092) $)))) (-1092)) (T -380)) -((-3545 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-380 *3)) (-14 *3 *2)))) -((-3846 (($ (-1 |#1| |#1|) $) 6 T ELT))) -(((-381 |#1|) (-113) (-1131)) (T -381)) -((-3846 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-381 *3)) (-4 *3 (-1131))))) -(-13 (-1131) (-10 -8 (-15 -3846 ($ (-1 |t#1| |t#1|) $)))) -(((-13) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3322 (((-1030) $) 7 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 9 T ELT))) -(((-382) (-13 (-1015) (-10 -8 (-15 -3322 ((-1030) $))))) (T -382)) -((-3322 (*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-382))))) -((-1841 (((-85)) 18 T ELT)) (-1842 (((-85) (-85)) 19 T ELT)) (-1843 (((-85)) 14 T ELT)) (-1844 (((-85) (-85)) 15 T ELT)) (-1846 (((-85)) 16 T ELT)) (-1847 (((-85) (-85)) 17 T ELT)) (-1838 (((-832) (-832)) 22 T ELT) (((-832)) 21 T ELT)) (-1839 (((-696) (-585 (-2 (|:| -3735 |#1|) (|:| -3952 (-486))))) 52 T ELT)) (-1837 (((-832) (-832)) 24 T ELT) (((-832)) 23 T ELT)) (-1840 (((-2 (|:| -2581 (-486)) (|:| -1784 (-585 |#1|))) |#1|) 94 T ELT)) (-1836 (((-348 |#1|) (-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-486))))))) 176 T ELT)) (-3737 (((-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-486)))))) |#1| (-85)) 209 T ELT)) (-3736 (((-348 |#1|) |#1| (-696) (-696)) 224 T ELT) (((-348 |#1|) |#1| (-585 (-696)) (-696)) 221 T ELT) (((-348 |#1|) |#1| (-585 (-696))) 223 T ELT) (((-348 |#1|) |#1| (-696)) 222 T ELT) (((-348 |#1|) |#1|) 220 T ELT)) (-1858 (((-3 |#1| #1="failed") (-832) |#1| (-585 (-696)) (-696) (-85)) 226 T ELT) (((-3 |#1| #1#) (-832) |#1| (-585 (-696)) (-696)) 227 T ELT) (((-3 |#1| #1#) (-832) |#1| (-585 (-696))) 229 T ELT) (((-3 |#1| #1#) (-832) |#1| (-696)) 228 T ELT) (((-3 |#1| #1#) (-832) |#1|) 230 T ELT)) (-3735 (((-348 |#1|) |#1| (-696) (-696)) 219 T ELT) (((-348 |#1|) |#1| (-585 (-696)) (-696)) 215 T ELT) (((-348 |#1|) |#1| (-585 (-696))) 217 T ELT) (((-348 |#1|) |#1| (-696)) 216 T ELT) (((-348 |#1|) |#1|) 214 T ELT)) (-1845 (((-85) |#1|) 43 T ELT)) (-1857 (((-677 (-696)) (-585 (-2 (|:| -3735 |#1|) (|:| -3952 (-486))))) 99 T ELT)) (-1848 (((-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-486)))))) |#1| (-85) (-1011 (-696)) (-696)) 213 T ELT))) -(((-383 |#1|) (-10 -7 (-15 -1836 ((-348 |#1|) (-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-486)))))))) (-15 -1857 ((-677 (-696)) (-585 (-2 (|:| -3735 |#1|) (|:| -3952 (-486)))))) (-15 -1837 ((-832))) (-15 -1837 ((-832) (-832))) (-15 -1838 ((-832))) (-15 -1838 ((-832) (-832))) (-15 -1839 ((-696) (-585 (-2 (|:| -3735 |#1|) (|:| -3952 (-486)))))) (-15 -1840 ((-2 (|:| -2581 (-486)) (|:| -1784 (-585 |#1|))) |#1|)) (-15 -1841 ((-85))) (-15 -1842 ((-85) (-85))) (-15 -1843 ((-85))) (-15 -1844 ((-85) (-85))) (-15 -1845 ((-85) |#1|)) (-15 -1846 ((-85))) (-15 -1847 ((-85) (-85))) (-15 -3735 ((-348 |#1|) |#1|)) (-15 -3735 ((-348 |#1|) |#1| (-696))) (-15 -3735 ((-348 |#1|) |#1| (-585 (-696)))) (-15 -3735 ((-348 |#1|) |#1| (-585 (-696)) (-696))) (-15 -3735 ((-348 |#1|) |#1| (-696) (-696))) (-15 -3736 ((-348 |#1|) |#1|)) (-15 -3736 ((-348 |#1|) |#1| (-696))) (-15 -3736 ((-348 |#1|) |#1| (-585 (-696)))) (-15 -3736 ((-348 |#1|) |#1| (-585 (-696)) (-696))) (-15 -3736 ((-348 |#1|) |#1| (-696) (-696))) (-15 -1858 ((-3 |#1| #1="failed") (-832) |#1|)) (-15 -1858 ((-3 |#1| #1#) (-832) |#1| (-696))) (-15 -1858 ((-3 |#1| #1#) (-832) |#1| (-585 (-696)))) (-15 -1858 ((-3 |#1| #1#) (-832) |#1| (-585 (-696)) (-696))) (-15 -1858 ((-3 |#1| #1#) (-832) |#1| (-585 (-696)) (-696) (-85))) (-15 -3737 ((-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-486)))))) |#1| (-85))) (-15 -1848 ((-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-486)))))) |#1| (-85) (-1011 (-696)) (-696)))) (-1157 (-486))) (T -383)) -((-1848 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-85)) (-5 *5 (-1011 (-696))) (-5 *6 (-696)) (-5 *2 (-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-486))))))) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3737 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-486))))))) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1858 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-832)) (-5 *4 (-585 (-696))) (-5 *5 (-696)) (-5 *6 (-85)) (-5 *1 (-383 *2)) (-4 *2 (-1157 (-486))))) (-1858 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-832)) (-5 *4 (-585 (-696))) (-5 *5 (-696)) (-5 *1 (-383 *2)) (-4 *2 (-1157 (-486))))) (-1858 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-832)) (-5 *4 (-585 (-696))) (-5 *1 (-383 *2)) (-4 *2 (-1157 (-486))))) (-1858 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-832)) (-5 *4 (-696)) (-5 *1 (-383 *2)) (-4 *2 (-1157 (-486))))) (-1858 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-832)) (-5 *1 (-383 *2)) (-4 *2 (-1157 (-486))))) (-3736 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3736 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-585 (-696))) (-5 *5 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3736 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-696))) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3736 (*1 *2 *3 *4) (-12 (-5 *4 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3736 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3735 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3735 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-585 (-696))) (-5 *5 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-696))) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1847 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1846 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1845 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1844 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1843 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1842 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1841 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1840 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2581 (-486)) (|:| -1784 (-585 *3)))) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1839 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3735 *4) (|:| -3952 (-486))))) (-4 *4 (-1157 (-486))) (-5 *2 (-696)) (-5 *1 (-383 *4)))) (-1838 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1838 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1837 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1837 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3735 *4) (|:| -3952 (-486))))) (-4 *4 (-1157 (-486))) (-5 *2 (-677 (-696))) (-5 *1 (-383 *4)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| *4) (|:| -2397 (-486))))))) (-4 *4 (-1157 (-486))) (-5 *2 (-348 *4)) (-5 *1 (-383 *4))))) -((-1852 (((-486) |#2|) 52 T ELT) (((-486) |#2| (-696)) 51 T ELT)) (-1851 (((-486) |#2|) 64 T ELT)) (-1853 ((|#3| |#2|) 26 T ELT)) (-3135 ((|#3| |#2| (-832)) 15 T ELT)) (-3836 ((|#3| |#2|) 16 T ELT)) (-1854 ((|#3| |#2|) 9 T ELT)) (-2606 ((|#3| |#2|) 10 T ELT)) (-1850 ((|#3| |#2| (-832)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1849 (((-486) |#2|) 66 T ELT))) -(((-384 |#1| |#2| |#3|) (-10 -7 (-15 -1849 ((-486) |#2|)) (-15 -1850 (|#3| |#2|)) (-15 -1850 (|#3| |#2| (-832))) (-15 -1851 ((-486) |#2|)) (-15 -1852 ((-486) |#2| (-696))) (-15 -1852 ((-486) |#2|)) (-15 -3135 (|#3| |#2| (-832))) (-15 -1853 (|#3| |#2|)) (-15 -1854 (|#3| |#2|)) (-15 -2606 (|#3| |#2|)) (-15 -3836 (|#3| |#2|))) (-963) (-1157 |#1|) (-13 (-347) (-952 |#1|) (-312) (-1117) (-239))) (T -384)) -((-3836 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-2606 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-1854 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-1853 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-3135 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-4 *5 (-963)) (-4 *2 (-13 (-347) (-952 *5) (-312) (-1117) (-239))) (-5 *1 (-384 *5 *3 *2)) (-4 *3 (-1157 *5)))) (-1852 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-486)) (-5 *1 (-384 *4 *3 *5)) (-4 *3 (-1157 *4)) (-4 *5 (-13 (-347) (-952 *4) (-312) (-1117) (-239))))) (-1852 (*1 *2 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-963)) (-5 *2 (-486)) (-5 *1 (-384 *5 *3 *6)) (-4 *3 (-1157 *5)) (-4 *6 (-13 (-347) (-952 *5) (-312) (-1117) (-239))))) (-1851 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-486)) (-5 *1 (-384 *4 *3 *5)) (-4 *3 (-1157 *4)) (-4 *5 (-13 (-347) (-952 *4) (-312) (-1117) (-239))))) (-1850 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-4 *5 (-963)) (-4 *2 (-13 (-347) (-952 *5) (-312) (-1117) (-239))) (-5 *1 (-384 *5 *3 *2)) (-4 *3 (-1157 *5)))) (-1850 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-1849 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-486)) (-5 *1 (-384 *4 *3 *5)) (-4 *3 (-1157 *4)) (-4 *5 (-13 (-347) (-952 *4) (-312) (-1117) (-239)))))) -((-3357 ((|#2| (-1181 |#1|)) 42 T ELT)) (-1856 ((|#2| |#2| |#1|) 58 T ELT)) (-1855 ((|#2| |#2| |#1|) 49 T ELT)) (-2300 ((|#2| |#2|) 44 T ELT)) (-3176 (((-85) |#2|) 32 T ELT)) (-1859 (((-585 |#2|) (-832) (-348 |#2|)) 21 T ELT)) (-1858 ((|#2| (-832) (-348 |#2|)) 25 T ELT)) (-1857 (((-677 (-696)) (-348 |#2|)) 29 T ELT))) -(((-385 |#1| |#2|) (-10 -7 (-15 -3176 ((-85) |#2|)) (-15 -3357 (|#2| (-1181 |#1|))) (-15 -2300 (|#2| |#2|)) (-15 -1855 (|#2| |#2| |#1|)) (-15 -1856 (|#2| |#2| |#1|)) (-15 -1857 ((-677 (-696)) (-348 |#2|))) (-15 -1858 (|#2| (-832) (-348 |#2|))) (-15 -1859 ((-585 |#2|) (-832) (-348 |#2|)))) (-963) (-1157 |#1|)) (T -385)) -((-1859 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-348 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-963)) (-5 *2 (-585 *6)) (-5 *1 (-385 *5 *6)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-348 *2)) (-4 *2 (-1157 *5)) (-5 *1 (-385 *5 *2)) (-4 *5 (-963)))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-348 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-963)) (-5 *2 (-677 (-696))) (-5 *1 (-385 *4 *5)))) (-1856 (*1 *2 *2 *3) (-12 (-4 *3 (-963)) (-5 *1 (-385 *3 *2)) (-4 *2 (-1157 *3)))) (-1855 (*1 *2 *2 *3) (-12 (-4 *3 (-963)) (-5 *1 (-385 *3 *2)) (-4 *2 (-1157 *3)))) (-2300 (*1 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-385 *3 *2)) (-4 *2 (-1157 *3)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-963)) (-4 *2 (-1157 *4)) (-5 *1 (-385 *4 *2)))) (-3176 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-85)) (-5 *1 (-385 *4 *3)) (-4 *3 (-1157 *4))))) -((-1862 (((-696)) 59 T ELT)) (-1866 (((-696)) 29 (|has| |#1| (-347)) ELT) (((-696) (-696)) 28 (|has| |#1| (-347)) ELT)) (-1865 (((-486) |#1|) 25 (|has| |#1| (-347)) ELT)) (-1864 (((-486) |#1|) 27 (|has| |#1| (-347)) ELT)) (-1861 (((-696)) 58 T ELT) (((-696) (-696)) 57 T ELT)) (-1860 ((|#1| (-696) (-486)) 37 T ELT)) (-1863 (((-1187)) 61 T ELT))) -(((-386 |#1|) (-10 -7 (-15 -1860 (|#1| (-696) (-486))) (-15 -1861 ((-696) (-696))) (-15 -1861 ((-696))) (-15 -1862 ((-696))) (-15 -1863 ((-1187))) (IF (|has| |#1| (-347)) (PROGN (-15 -1864 ((-486) |#1|)) (-15 -1865 ((-486) |#1|)) (-15 -1866 ((-696) (-696))) (-15 -1866 ((-696)))) |%noBranch|)) (-963)) (T -386)) -((-1866 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-347)) (-4 *3 (-963)))) (-1866 (*1 *2 *2) (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-347)) (-4 *3 (-963)))) (-1865 (*1 *2 *3) (-12 (-5 *2 (-486)) (-5 *1 (-386 *3)) (-4 *3 (-347)) (-4 *3 (-963)))) (-1864 (*1 *2 *3) (-12 (-5 *2 (-486)) (-5 *1 (-386 *3)) (-4 *3 (-347)) (-4 *3 (-963)))) (-1863 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-386 *3)) (-4 *3 (-963)))) (-1862 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-963)))) (-1861 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-963)))) (-1861 (*1 *2 *2) (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-963)))) (-1860 (*1 *2 *3 *4) (-12 (-5 *3 (-696)) (-5 *4 (-486)) (-5 *1 (-386 *2)) (-4 *2 (-963))))) -((-1867 (((-585 (-486)) (-486)) 76 T ELT)) (-3726 (((-85) (-142 (-486))) 84 T ELT)) (-3735 (((-348 (-142 (-486))) (-142 (-486))) 75 T ELT))) -(((-387) (-10 -7 (-15 -3735 ((-348 (-142 (-486))) (-142 (-486)))) (-15 -1867 ((-585 (-486)) (-486))) (-15 -3726 ((-85) (-142 (-486)))))) (T -387)) -((-3726 (*1 *2 *3) (-12 (-5 *3 (-142 (-486))) (-5 *2 (-85)) (-5 *1 (-387)))) (-1867 (*1 *2 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-387)) (-5 *3 (-486)))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-348 (-142 (-486)))) (-5 *1 (-387)) (-5 *3 (-142 (-486)))))) -((-2949 ((|#4| |#4| (-585 |#4|)) 20 (|has| |#1| (-312)) ELT)) (-2253 (((-585 |#4|) (-585 |#4|) (-1075) (-1075)) 46 T ELT) (((-585 |#4|) (-585 |#4|) (-1075)) 45 T ELT) (((-585 |#4|) (-585 |#4|)) 34 T ELT))) -(((-388 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2253 ((-585 |#4|) (-585 |#4|))) (-15 -2253 ((-585 |#4|) (-585 |#4|) (-1075))) (-15 -2253 ((-585 |#4|) (-585 |#4|) (-1075) (-1075))) (IF (|has| |#1| (-312)) (-15 -2949 (|#4| |#4| (-585 |#4|))) |%noBranch|)) (-393) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -388)) -((-2949 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-388 *4 *5 *6 *2)))) (-2253 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-1075)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-388 *4 *5 *6 *7)))) (-2253 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-1075)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-388 *4 *5 *6 *7)))) (-2253 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-388 *3 *4 *5 *6))))) -((-1868 ((|#4| |#4| (-585 |#4|)) 82 T ELT)) (-1869 (((-585 |#4|) (-585 |#4|) (-1075) (-1075)) 22 T ELT) (((-585 |#4|) (-585 |#4|) (-1075)) 21 T ELT) (((-585 |#4|) (-585 |#4|)) 13 T ELT))) -(((-389 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1868 (|#4| |#4| (-585 |#4|))) (-15 -1869 ((-585 |#4|) (-585 |#4|))) (-15 -1869 ((-585 |#4|) (-585 |#4|) (-1075))) (-15 -1869 ((-585 |#4|) (-585 |#4|) (-1075) (-1075)))) (-258) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -389)) -((-1869 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-1075)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-389 *4 *5 *6 *7)))) (-1869 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-1075)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-389 *4 *5 *6 *7)))) (-1869 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-389 *3 *4 *5 *6)))) (-1868 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-389 *4 *5 *6 *2))))) -((-1871 (((-585 (-585 |#4|)) (-585 |#4|) (-85)) 90 T ELT) (((-585 (-585 |#4|)) (-585 |#4|)) 89 T ELT) (((-585 (-585 |#4|)) (-585 |#4|) (-585 |#4|) (-85)) 83 T ELT) (((-585 (-585 |#4|)) (-585 |#4|) (-585 |#4|)) 84 T ELT)) (-1870 (((-585 (-585 |#4|)) (-585 |#4|) (-85)) 56 T ELT) (((-585 (-585 |#4|)) (-585 |#4|)) 78 T ELT))) -(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1870 ((-585 (-585 |#4|)) (-585 |#4|))) (-15 -1870 ((-585 (-585 |#4|)) (-585 |#4|) (-85))) (-15 -1871 ((-585 (-585 |#4|)) (-585 |#4|) (-585 |#4|))) (-15 -1871 ((-585 (-585 |#4|)) (-585 |#4|) (-585 |#4|) (-85))) (-15 -1871 ((-585 (-585 |#4|)) (-585 |#4|))) (-15 -1871 ((-585 (-585 |#4|)) (-585 |#4|) (-85)))) (-13 (-258) (-120)) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -390)) -((-1871 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-390 *5 *6 *7 *8)) (-5 *3 (-585 *8)))) (-1871 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-390 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-1871 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-390 *5 *6 *7 *8)) (-5 *3 (-585 *8)))) (-1871 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-390 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-1870 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-390 *5 *6 *7 *8)) (-5 *3 (-585 *8)))) (-1870 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-390 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) -((-1895 (((-696) |#4|) 12 T ELT)) (-1883 (((-585 (-2 (|:| |totdeg| (-696)) (|:| -2006 |#4|))) |#4| (-696) (-585 (-2 (|:| |totdeg| (-696)) (|:| -2006 |#4|)))) 39 T ELT)) (-1885 (((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1884 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1873 ((|#4| |#4| (-585 |#4|)) 54 T ELT)) (-1881 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-585 |#4|)) 96 T ELT)) (-1888 (((-1187) |#4|) 59 T ELT)) (-1891 (((-1187) (-585 |#4|)) 69 T ELT)) (-1889 (((-486) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-486) (-486) (-486)) 66 T ELT)) (-1892 (((-1187) (-486)) 110 T ELT)) (-1886 (((-585 |#4|) (-585 |#4|)) 104 T ELT)) (-1894 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-696)) (|:| -2006 |#4|)) |#4| (-696)) 31 T ELT)) (-1887 (((-486) |#4|) 109 T ELT)) (-1882 ((|#4| |#4|) 37 T ELT)) (-1874 (((-585 |#4|) (-585 |#4|) (-486) (-486)) 74 T ELT)) (-1890 (((-486) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-486) (-486) (-486) (-486)) 123 T ELT)) (-1893 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1875 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1880 (((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1879 (((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1876 (((-85) |#2| |#2|) 75 T ELT)) (-1878 (((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1877 (((-85) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1872 ((|#4| |#4| (-585 |#4|)) 97 T ELT))) -(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1872 (|#4| |#4| (-585 |#4|))) (-15 -1873 (|#4| |#4| (-585 |#4|))) (-15 -1874 ((-585 |#4|) (-585 |#4|) (-486) (-486))) (-15 -1875 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1876 ((-85) |#2| |#2|)) (-15 -1877 ((-85) |#2| |#2| |#2| |#2|)) (-15 -1878 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1879 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1880 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1881 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-585 |#4|))) (-15 -1882 (|#4| |#4|)) (-15 -1883 ((-585 (-2 (|:| |totdeg| (-696)) (|:| -2006 |#4|))) |#4| (-696) (-585 (-2 (|:| |totdeg| (-696)) (|:| -2006 |#4|))))) (-15 -1884 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1885 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1886 ((-585 |#4|) (-585 |#4|))) (-15 -1887 ((-486) |#4|)) (-15 -1888 ((-1187) |#4|)) (-15 -1889 ((-486) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-486) (-486) (-486))) (-15 -1890 ((-486) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-486) (-486) (-486) (-486))) (-15 -1891 ((-1187) (-585 |#4|))) (-15 -1892 ((-1187) (-486))) (-15 -1893 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1894 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-696)) (|:| -2006 |#4|)) |#4| (-696))) (-15 -1895 ((-696) |#4|))) (-393) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -391)) -((-1895 (*1 *2 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-696)) (-5 *1 (-391 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6)))) (-1894 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-696)) (|:| -2006 *4))) (-5 *5 (-696)) (-4 *4 (-863 *6 *7 *8)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-391 *6 *7 *8 *4)))) (-1893 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-719)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-391 *4 *5 *6 *7)))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-486)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1187)) (-5 *1 (-391 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6)))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1187)) (-5 *1 (-391 *4 *5 *6 *7)))) (-1890 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-696)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-719)) (-4 *4 (-863 *5 *6 *7)) (-4 *5 (-393)) (-4 *7 (-758)) (-5 *1 (-391 *5 *6 *7 *4)))) (-1889 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-696)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-719)) (-4 *4 (-863 *5 *6 *7)) (-4 *5 (-393)) (-4 *7 (-758)) (-5 *1 (-391 *5 *6 *7 *4)))) (-1888 (*1 *2 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1187)) (-5 *1 (-391 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6)))) (-1887 (*1 *2 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-486)) (-5 *1 (-391 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6)))) (-1886 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-391 *3 *4 *5 *6)))) (-1885 (*1 *2 *2 *2) (-12 (-5 *2 (-585 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-696)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-719)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-393)) (-4 *5 (-758)) (-5 *1 (-391 *3 *4 *5 *6)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-719)) (-4 *2 (-863 *4 *5 *6)) (-5 *1 (-391 *4 *5 *6 *2)) (-4 *4 (-393)) (-4 *6 (-758)))) (-1883 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-585 (-2 (|:| |totdeg| (-696)) (|:| -2006 *3)))) (-5 *4 (-696)) (-4 *3 (-863 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-391 *5 *6 *7 *3)))) (-1882 (*1 *2 *2) (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-391 *3 *4 *5 *2)) (-4 *2 (-863 *3 *4 *5)))) (-1881 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-863 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-391 *5 *6 *7 *3)))) (-1880 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-696)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-719)) (-4 *6 (-863 *4 *3 *5)) (-4 *4 (-393)) (-4 *5 (-758)) (-5 *1 (-391 *4 *3 *5 *6)))) (-1879 (*1 *2 *2) (-12 (-5 *2 (-585 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-696)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-719)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-393)) (-4 *5 (-758)) (-5 *1 (-391 *3 *4 *5 *6)))) (-1878 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-719)) (-4 *3 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *6 (-758)) (-5 *1 (-391 *4 *5 *6 *3)))) (-1877 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-393)) (-4 *3 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-391 *4 *3 *5 *6)) (-4 *6 (-863 *4 *3 *5)))) (-1876 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *3 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-391 *4 *3 *5 *6)) (-4 *6 (-863 *4 *3 *5)))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-719)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-391 *4 *5 *6 *7)))) (-1874 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-486)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-391 *4 *5 *6 *7)))) (-1873 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-391 *4 *5 *6 *2)))) (-1872 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-391 *4 *5 *6 *2))))) -((-1896 (($ $ $) 14 T ELT) (($ (-585 $)) 21 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 45 T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) 22 T ELT))) -(((-392 |#1|) (-10 -7 (-15 -2711 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|))) (-15 -1896 (|#1| (-585 |#1|))) (-15 -1896 (|#1| |#1| |#1|)) (-15 -3147 (|#1| (-585 |#1|))) (-15 -3147 (|#1| |#1| |#1|))) (-393)) (T -392)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-393) (-113)) (T -393)) -((-3147 (*1 *1 *1 *1) (-4 *1 (-393))) (-3147 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-393)))) (-1896 (*1 *1 *1 *1) (-4 *1 (-393))) (-1896 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-393)))) (-2711 (*1 *2 *2 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-393))))) -(-13 (-497) (-10 -8 (-15 -3147 ($ $ $)) (-15 -3147 ($ (-585 $))) (-15 -1896 ($ $ $)) (-15 -1896 ($ (-585 $))) (-15 -2711 ((-1087 $) (-1087 $) (-1087 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-497) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1777 (((-3 $ #1="failed")) NIL (|has| (-350 (-859 |#1|)) (-497)) ELT)) (-1314 (((-3 $ #1#) $ $) NIL T ELT)) (-3226 (((-1181 (-632 (-350 (-859 |#1|)))) (-1181 $)) NIL T ELT) (((-1181 (-632 (-350 (-859 |#1|))))) NIL T ELT)) (-1730 (((-1181 $)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL T ELT)) (-1704 (((-3 $ #1#)) NIL (|has| (-350 (-859 |#1|)) (-497)) ELT)) (-1793 (((-632 (-350 (-859 |#1|))) (-1181 $)) NIL T ELT) (((-632 (-350 (-859 |#1|)))) NIL T ELT)) (-1728 (((-350 (-859 |#1|)) $) NIL T ELT)) (-1791 (((-632 (-350 (-859 |#1|))) $ (-1181 $)) NIL T ELT) (((-632 (-350 (-859 |#1|))) $) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| (-350 (-859 |#1|)) (-497)) ELT)) (-1905 (((-1087 (-859 (-350 (-859 |#1|))))) NIL (|has| (-350 (-859 |#1|)) (-312)) ELT) (((-1087 (-350 (-859 |#1|)))) 89 (|has| |#1| (-497)) ELT)) (-2409 (($ $ (-832)) NIL T ELT)) (-1726 (((-350 (-859 |#1|)) $) NIL T ELT)) (-1706 (((-1087 (-350 (-859 |#1|))) $) 87 (|has| (-350 (-859 |#1|)) (-497)) ELT)) (-1795 (((-350 (-859 |#1|)) (-1181 $)) NIL T ELT) (((-350 (-859 |#1|))) NIL T ELT)) (-1724 (((-1087 (-350 (-859 |#1|))) $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-1797 (($ (-1181 (-350 (-859 |#1|))) (-1181 $)) 111 T ELT) (($ (-1181 (-350 (-859 |#1|)))) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| (-350 (-859 |#1|)) (-497)) ELT)) (-3111 (((-832)) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-2436 (($ $ (-832)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL T ELT)) (-1705 (((-3 $ #1#)) NIL (|has| (-350 (-859 |#1|)) (-497)) ELT)) (-1794 (((-632 (-350 (-859 |#1|))) (-1181 $)) NIL T ELT) (((-632 (-350 (-859 |#1|)))) NIL T ELT)) (-1729 (((-350 (-859 |#1|)) $) NIL T ELT)) (-1792 (((-632 (-350 (-859 |#1|))) $ (-1181 $)) NIL T ELT) (((-632 (-350 (-859 |#1|))) $) NIL T ELT)) (-2407 (((-3 $ #1#) $) NIL (|has| (-350 (-859 |#1|)) (-497)) ELT)) (-1909 (((-1087 (-859 (-350 (-859 |#1|))))) NIL (|has| (-350 (-859 |#1|)) (-312)) ELT) (((-1087 (-350 (-859 |#1|)))) 88 (|has| |#1| (-497)) ELT)) (-2408 (($ $ (-832)) NIL T ELT)) (-1727 (((-350 (-859 |#1|)) $) NIL T ELT)) (-1707 (((-1087 (-350 (-859 |#1|))) $) 84 (|has| (-350 (-859 |#1|)) (-497)) ELT)) (-1796 (((-350 (-859 |#1|)) (-1181 $)) NIL T ELT) (((-350 (-859 |#1|))) NIL T ELT)) (-1725 (((-1087 (-350 (-859 |#1|))) $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1899 (((-350 (-859 |#1|)) $ $) 75 (|has| |#1| (-497)) ELT)) (-1903 (((-350 (-859 |#1|)) $) 74 (|has| |#1| (-497)) ELT)) (-1902 (((-350 (-859 |#1|)) $) 101 (|has| |#1| (-497)) ELT)) (-1904 (((-1087 (-350 (-859 |#1|))) $) 93 (|has| |#1| (-497)) ELT)) (-1898 (((-350 (-859 |#1|))) 76 (|has| |#1| (-497)) ELT)) (-1901 (((-350 (-859 |#1|)) $ $) 64 (|has| |#1| (-497)) ELT)) (-1907 (((-350 (-859 |#1|)) $) 63 (|has| |#1| (-497)) ELT)) (-1906 (((-350 (-859 |#1|)) $) 100 (|has| |#1| (-497)) ELT)) (-1908 (((-1087 (-350 (-859 |#1|))) $) 92 (|has| |#1| (-497)) ELT)) (-1900 (((-350 (-859 |#1|))) 73 (|has| |#1| (-497)) ELT)) (-1910 (($) 107 T ELT) (($ (-1092)) 115 T ELT) (($ (-1181 (-1092))) 114 T ELT) (($ (-1181 $)) 102 T ELT) (($ (-1092) (-1181 $)) 113 T ELT) (($ (-1181 (-1092)) (-1181 $)) 112 T ELT)) (-1717 (((-85)) NIL T ELT)) (-3803 (((-350 (-859 |#1|)) $ (-486)) NIL T ELT)) (-3227 (((-1181 (-350 (-859 |#1|))) $ (-1181 $)) 104 T ELT) (((-632 (-350 (-859 |#1|))) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 (-350 (-859 |#1|))) $) 44 T ELT) (((-632 (-350 (-859 |#1|))) (-1181 $)) NIL T ELT)) (-3975 (((-1181 (-350 (-859 |#1|))) $) NIL T ELT) (($ (-1181 (-350 (-859 |#1|)))) 41 T ELT)) (-1897 (((-585 (-859 (-350 (-859 |#1|)))) (-1181 $)) NIL T ELT) (((-585 (-859 (-350 (-859 |#1|))))) NIL T ELT) (((-585 (-859 |#1|)) (-1181 $)) 105 (|has| |#1| (-497)) ELT) (((-585 (-859 |#1|))) 106 (|has| |#1| (-497)) ELT)) (-2438 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-1181 (-350 (-859 |#1|)))) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) 66 T ELT)) (-1708 (((-585 (-1181 (-350 (-859 |#1|))))) NIL (|has| (-350 (-859 |#1|)) (-497)) ELT)) (-2439 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-2548 (($ (-632 (-350 (-859 |#1|))) $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-2663 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-350 (-859 |#1|))) NIL T ELT) (($ (-350 (-859 |#1|)) $) NIL T ELT) (($ (-1058 |#2| (-350 (-859 |#1|))) $) NIL T ELT))) -(((-394 |#1| |#2| |#3| |#4|) (-13 (-361 (-350 (-859 |#1|))) (-592 (-1058 |#2| (-350 (-859 |#1|)))) (-10 -8 (-15 -3950 ($ (-1181 (-350 (-859 |#1|))))) (-15 -1912 ((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1="failed"))) (-15 -1911 ((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#))) (-15 -1910 ($)) (-15 -1910 ($ (-1092))) (-15 -1910 ($ (-1181 (-1092)))) (-15 -1910 ($ (-1181 $))) (-15 -1910 ($ (-1092) (-1181 $))) (-15 -1910 ($ (-1181 (-1092)) (-1181 $))) (IF (|has| |#1| (-497)) (PROGN (-15 -1909 ((-1087 (-350 (-859 |#1|))))) (-15 -1908 ((-1087 (-350 (-859 |#1|))) $)) (-15 -1907 ((-350 (-859 |#1|)) $)) (-15 -1906 ((-350 (-859 |#1|)) $)) (-15 -1905 ((-1087 (-350 (-859 |#1|))))) (-15 -1904 ((-1087 (-350 (-859 |#1|))) $)) (-15 -1903 ((-350 (-859 |#1|)) $)) (-15 -1902 ((-350 (-859 |#1|)) $)) (-15 -1901 ((-350 (-859 |#1|)) $ $)) (-15 -1900 ((-350 (-859 |#1|)))) (-15 -1899 ((-350 (-859 |#1|)) $ $)) (-15 -1898 ((-350 (-859 |#1|)))) (-15 -1897 ((-585 (-859 |#1|)) (-1181 $))) (-15 -1897 ((-585 (-859 |#1|))))) |%noBranch|))) (-146) (-832) (-585 (-1092)) (-1181 (-632 |#1|))) (T -394)) -((-3950 (*1 *1 *2) (-12 (-5 *2 (-1181 (-350 (-859 *3)))) (-4 *3 (-146)) (-14 *6 (-1181 (-632 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))))) (-1912 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-394 *3 *4 *5 *6)) (|:| -2014 (-585 (-394 *3 *4 *5 *6))))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1911 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-394 *3 *4 *5 *6)) (|:| -2014 (-585 (-394 *3 *4 *5 *6))))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1910 (*1 *1) (-12 (-5 *1 (-394 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-832)) (-14 *4 (-585 (-1092))) (-14 *5 (-1181 (-632 *2))))) (-1910 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 *2)) (-14 *6 (-1181 (-632 *3))))) (-1910 (*1 *1 *2) (-12 (-5 *2 (-1181 (-1092))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1910 (*1 *1 *2) (-12 (-5 *2 (-1181 (-394 *3 *4 *5 *6))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1910 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1181 (-394 *4 *5 *6 *7))) (-5 *1 (-394 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-832)) (-14 *6 (-585 *2)) (-14 *7 (-1181 (-632 *4))))) (-1910 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 (-1092))) (-5 *3 (-1181 (-394 *4 *5 *6 *7))) (-5 *1 (-394 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-832)) (-14 *6 (-585 (-1092))) (-14 *7 (-1181 (-632 *4))))) (-1909 (*1 *2) (-12 (-5 *2 (-1087 (-350 (-859 *3)))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-1087 (-350 (-859 *3)))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1906 (*1 *2 *1) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1905 (*1 *2) (-12 (-5 *2 (-1087 (-350 (-859 *3)))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1904 (*1 *2 *1) (-12 (-5 *2 (-1087 (-350 (-859 *3)))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1903 (*1 *2 *1) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1901 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1900 (*1 *2) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1899 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1898 (*1 *2) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-1181 (-394 *4 *5 *6 *7))) (-5 *2 (-585 (-859 *4))) (-5 *1 (-394 *4 *5 *6 *7)) (-4 *4 (-497)) (-4 *4 (-146)) (-14 *5 (-832)) (-14 *6 (-585 (-1092))) (-14 *7 (-1181 (-632 *4))))) (-1897 (*1 *2) (-12 (-5 *2 (-585 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 19 T ELT)) (-3084 (((-585 (-775 |#1|)) $) 88 T ELT)) (-3086 (((-1087 $) $ (-775 |#1|)) 53 T ELT) (((-1087 |#2|) $) 140 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#2| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#2| (-497)) ELT)) (-2822 (((-696) $) 28 T ELT) (((-696) $ (-585 (-775 |#1|))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#2| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#2| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-3159 ((|#2| $) 49 T ELT) (((-350 (-486)) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-775 |#1|) $) NIL T ELT)) (-3759 (($ $ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1942 (($ $ (-585 (-486))) 95 T ELT)) (-3962 (($ $) 81 T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#2| (-393)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#2| (-823)) ELT)) (-1625 (($ $ |#2| |#3| $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-330))) (|has| |#2| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-486))) (|has| |#2| (-798 (-486)))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) 66 T ELT)) (-3087 (($ (-1087 |#2|) (-775 |#1|)) 145 T ELT) (($ (-1087 $) (-775 |#1|)) 59 T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3941 (((-85) $) 69 T ELT)) (-2896 (($ |#2| |#3|) 36 T ELT) (($ $ (-775 |#1|) (-696)) 38 T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-775 |#1|)) NIL T ELT)) (-2823 ((|#3| $) NIL T ELT) (((-696) $ (-775 |#1|)) 57 T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) 64 T ELT)) (-1626 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3085 (((-3 (-775 |#1|) #1#) $) 46 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#2| $) 48 T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) NIL (|has| |#2| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-775 |#1|)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) 47 T ELT)) (-1801 ((|#2| $) 138 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#2| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) 151 (|has| |#2| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#2| (-823)) ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-775 |#1|) |#2|) 102 T ELT) (($ $ (-585 (-775 |#1|)) (-585 |#2|)) 108 T ELT) (($ $ (-775 |#1|) $) 100 T ELT) (($ $ (-585 (-775 |#1|)) (-585 $)) 126 T ELT)) (-3760 (($ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3761 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) 60 T ELT)) (-3952 ((|#3| $) 80 T ELT) (((-696) $ (-775 |#1|)) 43 T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) 63 T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-330)))) (|has| |#2| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-486)))) (|has| |#2| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-775 |#1|) (-555 (-475))) (|has| |#2| (-555 (-475)))) ELT)) (-2820 ((|#2| $) 147 (|has| |#2| (-393)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-823))) ELT)) (-3950 (((-774) $) 175 T ELT) (($ (-486)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-775 |#1|)) 40 T ELT) (($ (-350 (-486))) NIL (OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#2| (-497)) ELT)) (-3820 (((-585 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ |#3|) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#2| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#2| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#2| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 32 T CONST)) (-2672 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#2|) 77 (|has| |#2| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 133 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 131 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-350 (-486))) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT))) -(((-395 |#1| |#2| |#3|) (-13 (-863 |#2| |#3| (-775 |#1|)) (-10 -8 (-15 -1942 ($ $ (-585 (-486)))))) (-585 (-1092)) (-963) (-196 (-3961 |#1|) (-696))) (T -395)) -((-1942 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-486))) (-14 *3 (-585 (-1092))) (-5 *1 (-395 *3 *4 *5)) (-4 *4 (-963)) (-4 *5 (-196 (-3961 *3) (-696)))))) -((-1916 (((-85) |#1| (-585 |#2|)) 90 T ELT)) (-1914 (((-3 (-1181 (-585 |#2|)) #1="failed") (-696) |#1| (-585 |#2|)) 99 T ELT)) (-1915 (((-3 (-585 |#2|) #1#) |#2| |#1| (-1181 (-585 |#2|))) 101 T ELT)) (-2039 ((|#2| |#2| |#1|) 35 T ELT)) (-1913 (((-696) |#2| (-585 |#2|)) 26 T ELT))) -(((-396 |#1| |#2|) (-10 -7 (-15 -2039 (|#2| |#2| |#1|)) (-15 -1913 ((-696) |#2| (-585 |#2|))) (-15 -1914 ((-3 (-1181 (-585 |#2|)) #1="failed") (-696) |#1| (-585 |#2|))) (-15 -1915 ((-3 (-585 |#2|) #1#) |#2| |#1| (-1181 (-585 |#2|)))) (-15 -1916 ((-85) |#1| (-585 |#2|)))) (-258) (-1157 |#1|)) (T -396)) -((-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *5)) (-4 *5 (-1157 *3)) (-4 *3 (-258)) (-5 *2 (-85)) (-5 *1 (-396 *3 *5)))) (-1915 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1181 (-585 *3))) (-4 *4 (-258)) (-5 *2 (-585 *3)) (-5 *1 (-396 *4 *3)) (-4 *3 (-1157 *4)))) (-1914 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-696)) (-4 *4 (-258)) (-4 *6 (-1157 *4)) (-5 *2 (-1181 (-585 *6))) (-5 *1 (-396 *4 *6)) (-5 *5 (-585 *6)))) (-1913 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-258)) (-5 *2 (-696)) (-5 *1 (-396 *5 *3)))) (-2039 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-396 *3 *2)) (-4 *2 (-1157 *3))))) -((-3735 (((-348 |#5|) |#5|) 24 T ELT))) -(((-397 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3735 ((-348 |#5|) |#5|))) (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ "failed") (-1092))))) (-719) (-497) (-497) (-863 |#4| |#2| |#1|)) (T -397)) -((-3735 (*1 *2 *3) (-12 (-4 *4 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ "failed") (-1092)))))) (-4 *5 (-719)) (-4 *7 (-497)) (-5 *2 (-348 *3)) (-5 *1 (-397 *4 *5 *6 *7 *3)) (-4 *6 (-497)) (-4 *3 (-863 *7 *5 *4))))) -((-2703 ((|#3|) 43 T ELT)) (-2711 (((-1087 |#4|) (-1087 |#4|) (-1087 |#4|)) 34 T ELT))) -(((-398 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2711 ((-1087 |#4|) (-1087 |#4|) (-1087 |#4|))) (-15 -2703 (|#3|))) (-719) (-758) (-823) (-863 |#3| |#1| |#2|)) (T -398)) -((-2703 (*1 *2) (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-823)) (-5 *1 (-398 *3 *4 *2 *5)) (-4 *5 (-863 *2 *3 *4)))) (-2711 (*1 *2 *2 *2) (-12 (-5 *2 (-1087 *6)) (-4 *6 (-863 *5 *3 *4)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-823)) (-5 *1 (-398 *3 *4 *5 *6))))) -((-3735 (((-348 (-1087 |#1|)) (-1087 |#1|)) 43 T ELT))) -(((-399 |#1|) (-10 -7 (-15 -3735 ((-348 (-1087 |#1|)) (-1087 |#1|)))) (-258)) (T -399)) -((-3735 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-348 (-1087 *4))) (-5 *1 (-399 *4)) (-5 *3 (-1087 *4))))) -((-3732 (((-51) |#2| (-1092) (-249 |#2|) (-1148 (-696))) 44 T ELT) (((-51) (-1 |#2| (-486)) (-249 |#2|) (-1148 (-696))) 43 T ELT) (((-51) |#2| (-1092) (-249 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-486)) (-249 |#2|)) 29 T ELT)) (-3821 (((-51) |#2| (-1092) (-249 |#2|) (-1148 (-350 (-486))) (-350 (-486))) 88 T ELT) (((-51) (-1 |#2| (-350 (-486))) (-249 |#2|) (-1148 (-350 (-486))) (-350 (-486))) 87 T ELT) (((-51) |#2| (-1092) (-249 |#2|) (-1148 (-486))) 86 T ELT) (((-51) (-1 |#2| (-486)) (-249 |#2|) (-1148 (-486))) 85 T ELT) (((-51) |#2| (-1092) (-249 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-486)) (-249 |#2|)) 79 T ELT)) (-3785 (((-51) |#2| (-1092) (-249 |#2|) (-1148 (-350 (-486))) (-350 (-486))) 74 T ELT) (((-51) (-1 |#2| (-350 (-486))) (-249 |#2|) (-1148 (-350 (-486))) (-350 (-486))) 72 T ELT)) (-3782 (((-51) |#2| (-1092) (-249 |#2|) (-1148 (-486))) 51 T ELT) (((-51) (-1 |#2| (-486)) (-249 |#2|) (-1148 (-486))) 50 T ELT))) -(((-400 |#1| |#2|) (-10 -7 (-15 -3732 ((-51) (-1 |#2| (-486)) (-249 |#2|))) (-15 -3732 ((-51) |#2| (-1092) (-249 |#2|))) (-15 -3732 ((-51) (-1 |#2| (-486)) (-249 |#2|) (-1148 (-696)))) (-15 -3732 ((-51) |#2| (-1092) (-249 |#2|) (-1148 (-696)))) (-15 -3782 ((-51) (-1 |#2| (-486)) (-249 |#2|) (-1148 (-486)))) (-15 -3782 ((-51) |#2| (-1092) (-249 |#2|) (-1148 (-486)))) (-15 -3785 ((-51) (-1 |#2| (-350 (-486))) (-249 |#2|) (-1148 (-350 (-486))) (-350 (-486)))) (-15 -3785 ((-51) |#2| (-1092) (-249 |#2|) (-1148 (-350 (-486))) (-350 (-486)))) (-15 -3821 ((-51) (-1 |#2| (-486)) (-249 |#2|))) (-15 -3821 ((-51) |#2| (-1092) (-249 |#2|))) (-15 -3821 ((-51) (-1 |#2| (-486)) (-249 |#2|) (-1148 (-486)))) (-15 -3821 ((-51) |#2| (-1092) (-249 |#2|) (-1148 (-486)))) (-15 -3821 ((-51) (-1 |#2| (-350 (-486))) (-249 |#2|) (-1148 (-350 (-486))) (-350 (-486)))) (-15 -3821 ((-51) |#2| (-1092) (-249 |#2|) (-1148 (-350 (-486))) (-350 (-486))))) (-13 (-497) (-952 (-486)) (-582 (-486))) (-13 (-27) (-1117) (-364 |#1|))) (T -400)) -((-3821 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-350 (-486)))) (-5 *7 (-350 (-486))) (-4 *3 (-13 (-27) (-1117) (-364 *8))) (-4 *8 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *8 *3)))) (-3821 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-350 (-486)))) (-5 *4 (-249 *8)) (-5 *5 (-1148 (-350 (-486)))) (-5 *6 (-350 (-486))) (-4 *8 (-13 (-27) (-1117) (-364 *7))) (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *7 *8)))) (-3821 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-486))) (-4 *3 (-13 (-27) (-1117) (-364 *7))) (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *7 *3)))) (-3821 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-486))) (-5 *4 (-249 *7)) (-5 *5 (-1148 (-486))) (-4 *7 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *6 *7)))) (-3821 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *6 *3)))) (-3821 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-486))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *5 *6)))) (-3785 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-350 (-486)))) (-5 *7 (-350 (-486))) (-4 *3 (-13 (-27) (-1117) (-364 *8))) (-4 *8 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *8 *3)))) (-3785 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-350 (-486)))) (-5 *4 (-249 *8)) (-5 *5 (-1148 (-350 (-486)))) (-5 *6 (-350 (-486))) (-4 *8 (-13 (-27) (-1117) (-364 *7))) (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *7 *8)))) (-3782 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-486))) (-4 *3 (-13 (-27) (-1117) (-364 *7))) (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *7 *3)))) (-3782 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-486))) (-5 *4 (-249 *7)) (-5 *5 (-1148 (-486))) (-4 *7 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *6 *7)))) (-3732 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-696))) (-4 *3 (-13 (-27) (-1117) (-364 *7))) (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *7 *3)))) (-3732 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-486))) (-5 *4 (-249 *7)) (-5 *5 (-1148 (-696))) (-4 *7 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *6 *7)))) (-3732 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *6 *3)))) (-3732 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-486))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) (-5 *1 (-400 *5 *6))))) -((-2039 ((|#2| |#2| |#1|) 15 T ELT)) (-1918 (((-585 |#2|) |#2| (-585 |#2|) |#1| (-832)) 82 T ELT)) (-1917 (((-2 (|:| |plist| (-585 |#2|)) (|:| |modulo| |#1|)) |#2| (-585 |#2|) |#1| (-832)) 71 T ELT))) -(((-401 |#1| |#2|) (-10 -7 (-15 -1917 ((-2 (|:| |plist| (-585 |#2|)) (|:| |modulo| |#1|)) |#2| (-585 |#2|) |#1| (-832))) (-15 -1918 ((-585 |#2|) |#2| (-585 |#2|) |#1| (-832))) (-15 -2039 (|#2| |#2| |#1|))) (-258) (-1157 |#1|)) (T -401)) -((-2039 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-401 *3 *2)) (-4 *2 (-1157 *3)))) (-1918 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-585 *3)) (-5 *5 (-832)) (-4 *3 (-1157 *4)) (-4 *4 (-258)) (-5 *1 (-401 *4 *3)))) (-1917 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-832)) (-4 *5 (-258)) (-4 *3 (-1157 *5)) (-5 *2 (-2 (|:| |plist| (-585 *3)) (|:| |modulo| *5))) (-5 *1 (-401 *5 *3)) (-5 *4 (-585 *3))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 28 T ELT)) (-3710 (($ |#3|) 25 T ELT)) (-1314 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) 32 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-1919 (($ |#2| |#4| $) 33 T ELT)) (-2896 (($ |#2| (-652 |#3| |#4| |#5|)) 24 T ELT)) (-2897 (((-652 |#3| |#4| |#5|) $) 15 T ELT)) (-1921 ((|#3| $) 19 T ELT)) (-1922 ((|#4| $) 17 T ELT)) (-3177 ((|#2| $) 29 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1920 (($ |#2| |#3| |#4|) 26 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 36 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 34 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-402 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-656 |#6|) (-656 |#2|) (-10 -8 (-15 -3177 (|#2| $)) (-15 -2897 ((-652 |#3| |#4| |#5|) $)) (-15 -1922 (|#4| $)) (-15 -1921 (|#3| $)) (-15 -3962 ($ $)) (-15 -2896 ($ |#2| (-652 |#3| |#4| |#5|))) (-15 -3710 ($ |#3|)) (-15 -1920 ($ |#2| |#3| |#4|)) (-15 -1919 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-585 (-1092)) (-146) (-758) (-196 (-3961 |#1|) (-696)) (-1 (-85) (-2 (|:| -2402 |#3|) (|:| -2403 |#4|)) (-2 (|:| -2402 |#3|) (|:| -2403 |#4|))) (-863 |#2| |#4| (-775 |#1|))) (T -402)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) (-4 *6 (-196 (-3961 *3) (-696))) (-14 *7 (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *6)) (-2 (|:| -2402 *5) (|:| -2403 *6)))) (-5 *1 (-402 *3 *4 *5 *6 *7 *2)) (-4 *5 (-758)) (-4 *2 (-863 *4 *6 (-775 *3))))) (-3177 (*1 *2 *1) (-12 (-14 *3 (-585 (-1092))) (-4 *5 (-196 (-3961 *3) (-696))) (-14 *6 (-1 (-85) (-2 (|:| -2402 *4) (|:| -2403 *5)) (-2 (|:| -2402 *4) (|:| -2403 *5)))) (-4 *2 (-146)) (-5 *1 (-402 *3 *2 *4 *5 *6 *7)) (-4 *4 (-758)) (-4 *7 (-863 *2 *5 (-775 *3))))) (-2897 (*1 *2 *1) (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) (-4 *6 (-196 (-3961 *3) (-696))) (-14 *7 (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *6)) (-2 (|:| -2402 *5) (|:| -2403 *6)))) (-5 *2 (-652 *5 *6 *7)) (-5 *1 (-402 *3 *4 *5 *6 *7 *8)) (-4 *5 (-758)) (-4 *8 (-863 *4 *6 (-775 *3))))) (-1922 (*1 *2 *1) (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) (-14 *6 (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *2)) (-2 (|:| -2402 *5) (|:| -2403 *2)))) (-4 *2 (-196 (-3961 *3) (-696))) (-5 *1 (-402 *3 *4 *5 *2 *6 *7)) (-4 *5 (-758)) (-4 *7 (-863 *4 *2 (-775 *3))))) (-1921 (*1 *2 *1) (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) (-4 *5 (-196 (-3961 *3) (-696))) (-14 *6 (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *5)) (-2 (|:| -2402 *2) (|:| -2403 *5)))) (-4 *2 (-758)) (-5 *1 (-402 *3 *4 *2 *5 *6 *7)) (-4 *7 (-863 *4 *5 (-775 *3))))) (-3962 (*1 *1 *1) (-12 (-14 *2 (-585 (-1092))) (-4 *3 (-146)) (-4 *5 (-196 (-3961 *2) (-696))) (-14 *6 (-1 (-85) (-2 (|:| -2402 *4) (|:| -2403 *5)) (-2 (|:| -2402 *4) (|:| -2403 *5)))) (-5 *1 (-402 *2 *3 *4 *5 *6 *7)) (-4 *4 (-758)) (-4 *7 (-863 *3 *5 (-775 *2))))) (-2896 (*1 *1 *2 *3) (-12 (-5 *3 (-652 *5 *6 *7)) (-4 *5 (-758)) (-4 *6 (-196 (-3961 *4) (-696))) (-14 *7 (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *6)) (-2 (|:| -2402 *5) (|:| -2403 *6)))) (-14 *4 (-585 (-1092))) (-4 *2 (-146)) (-5 *1 (-402 *4 *2 *5 *6 *7 *8)) (-4 *8 (-863 *2 *6 (-775 *4))))) (-3710 (*1 *1 *2) (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) (-4 *5 (-196 (-3961 *3) (-696))) (-14 *6 (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *5)) (-2 (|:| -2402 *2) (|:| -2403 *5)))) (-5 *1 (-402 *3 *4 *2 *5 *6 *7)) (-4 *2 (-758)) (-4 *7 (-863 *4 *5 (-775 *3))))) (-1920 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-585 (-1092))) (-4 *2 (-146)) (-4 *4 (-196 (-3961 *5) (-696))) (-14 *6 (-1 (-85) (-2 (|:| -2402 *3) (|:| -2403 *4)) (-2 (|:| -2402 *3) (|:| -2403 *4)))) (-5 *1 (-402 *5 *2 *3 *4 *6 *7)) (-4 *3 (-758)) (-4 *7 (-863 *2 *4 (-775 *5))))) (-1919 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-585 (-1092))) (-4 *2 (-146)) (-4 *3 (-196 (-3961 *4) (-696))) (-14 *6 (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *3)) (-2 (|:| -2402 *5) (|:| -2403 *3)))) (-5 *1 (-402 *4 *2 *5 *3 *6 *7)) (-4 *5 (-758)) (-4 *7 (-863 *2 *3 (-775 *4)))))) -((-1923 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) -(((-403 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1923 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-719) (-758) (-497) (-863 |#3| |#1| |#2|) (-13 (-952 (-350 (-486))) (-312) (-10 -8 (-15 -3950 ($ |#4|)) (-15 -3001 (|#4| $)) (-15 -3000 (|#4| $))))) (T -403)) -((-1923 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-758)) (-4 *5 (-719)) (-4 *6 (-497)) (-4 *7 (-863 *6 *5 *3)) (-5 *1 (-403 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-952 (-350 (-486))) (-312) (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $)))))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3084 (((-585 |#3|) $) 40 T ELT)) (-2911 (((-85) $) NIL T ELT)) (-2902 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3713 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-3727 (($) NIL T CONST)) (-2907 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ #1="failed") (-585 |#4|)) 48 T ELT)) (-3159 (($ (-585 |#4|)) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3409 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-497)) ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT)) (-3183 ((|#3| $) 46 T ELT)) (-2611 (((-585 |#4|) $) 14 T ELT)) (-3248 (((-85) |#4| $) 25 (|has| |#4| (-72)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-3846 (($ (-1 |#4| |#4|) $) 20 T ELT)) (-2917 (((-585 |#3|) $) NIL T ELT)) (-2916 (((-85) |#3| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-497)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1731 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 38 T ELT)) (-3568 (($) 17 T ELT)) (-1732 (((-696) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) NIL T ELT)) (-3403 (($ $) 16 T ELT)) (-3975 (((-475) $) NIL (|has| |#4| (-555 (-475))) ELT) (($ (-585 |#4|)) 50 T ELT)) (-3533 (($ (-585 |#4|)) 13 T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-2915 (($ $ |#3|) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-3950 (((-774) $) 37 T ELT) (((-585 |#4|) $) 49 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3059 (((-85) $ $) 29 T ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-404 |#1| |#2| |#3| |#4|) (-13 (-891 |#1| |#2| |#3| |#4|) (-1037 |#4|) (-10 -8 (-15 -3975 ($ (-585 |#4|))))) (-963) (-719) (-758) (-979 |#1| |#2| |#3|)) (T -404)) -((-3975 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-404 *3 *4 *5 *6))))) -((-2663 (($) 11 T CONST)) (-2669 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) -(((-405 |#1| |#2| |#3|) (-10 -7 (-15 -2669 (|#1|) -3956) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2663 (|#1|) -3956)) (-406 |#2| |#3|) (-146) (-23)) (T -405)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3160 (((-3 |#1| "failed") $) 30 T ELT)) (-3159 ((|#1| $) 31 T ELT)) (-3948 (($ $ $) 27 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3952 ((|#2| $) 23 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 22 T CONST)) (-2669 (($) 28 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) -(((-406 |#1| |#2|) (-113) (-146) (-23)) (T -406)) -((-2669 (*1 *1) (-12 (-4 *1 (-406 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3948 (*1 *1 *1 *1) (-12 (-4 *1 (-406 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) -(-13 (-411 |t#1| |t#2|) (-952 |t#1|) (-10 -8 (-15 -2669 ($) -3956) (-15 -3948 ($ $ $)))) -(((-72) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-411 |#1| |#2|) . T) ((-13) . T) ((-952 |#1|) . T) ((-1015) . T) ((-1131) . T)) -((-1924 (((-1181 (-1181 (-486))) (-1181 (-1181 (-486))) (-832)) 26 T ELT)) (-1925 (((-1181 (-1181 (-486))) (-832)) 21 T ELT))) -(((-407) (-10 -7 (-15 -1924 ((-1181 (-1181 (-486))) (-1181 (-1181 (-486))) (-832))) (-15 -1925 ((-1181 (-1181 (-486))) (-832))))) (T -407)) -((-1925 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1181 (-1181 (-486)))) (-5 *1 (-407)))) (-1924 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 (-1181 (-486)))) (-5 *3 (-832)) (-5 *1 (-407))))) -((-2773 (((-486) (-486)) 32 T ELT) (((-486)) 24 T ELT)) (-2777 (((-486) (-486)) 28 T ELT) (((-486)) 20 T ELT)) (-2775 (((-486) (-486)) 30 T ELT) (((-486)) 22 T ELT)) (-1927 (((-85) (-85)) 14 T ELT) (((-85)) 12 T ELT)) (-1926 (((-85) (-85)) 13 T ELT) (((-85)) 11 T ELT)) (-1928 (((-85) (-85)) 26 T ELT) (((-85)) 17 T ELT))) -(((-408) (-10 -7 (-15 -1926 ((-85))) (-15 -1927 ((-85))) (-15 -1926 ((-85) (-85))) (-15 -1927 ((-85) (-85))) (-15 -1928 ((-85))) (-15 -2775 ((-486))) (-15 -2777 ((-486))) (-15 -2773 ((-486))) (-15 -1928 ((-85) (-85))) (-15 -2775 ((-486) (-486))) (-15 -2777 ((-486) (-486))) (-15 -2773 ((-486) (-486))))) (T -408)) -((-2773 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) (-2777 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) (-2775 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) (-1928 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408)))) (-2773 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) (-2777 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) (-2775 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) (-1928 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408)))) (-1927 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408)))) (-1926 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408)))) (-1927 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408)))) (-1926 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3855 (((-585 (-330)) $) 34 T ELT) (((-585 (-330)) $ (-585 (-330))) 145 T ELT)) (-1933 (((-585 (-1003 (-330))) $) 16 T ELT) (((-585 (-1003 (-330))) $ (-585 (-1003 (-330)))) 142 T ELT)) (-1930 (((-585 (-585 (-856 (-179)))) (-585 (-585 (-856 (-179)))) (-585 (-785))) 58 T ELT)) (-1934 (((-585 (-585 (-856 (-179)))) $) 137 T ELT)) (-3709 (((-1187) $ (-856 (-179)) (-785)) 162 T ELT)) (-1935 (($ $) 136 T ELT) (($ (-585 (-585 (-856 (-179))))) 148 T ELT) (($ (-585 (-585 (-856 (-179)))) (-585 (-785)) (-585 (-785)) (-585 (-832))) 147 T ELT) (($ (-585 (-585 (-856 (-179)))) (-585 (-785)) (-585 (-785)) (-585 (-832)) (-585 (-221))) 149 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3864 (((-486) $) 110 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1936 (($) 146 T ELT)) (-1929 (((-585 (-179)) (-585 (-585 (-856 (-179))))) 89 T ELT)) (-1932 (((-1187) $ (-585 (-856 (-179))) (-785) (-785) (-832)) 154 T ELT) (((-1187) $ (-856 (-179))) 156 T ELT) (((-1187) $ (-856 (-179)) (-785) (-785) (-832)) 155 T ELT)) (-3950 (((-774) $) 168 T ELT) (($ (-585 (-585 (-856 (-179))))) 163 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1931 (((-1187) $ (-856 (-179))) 161 T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-409) (-13 (-1015) (-10 -8 (-15 -1936 ($)) (-15 -1935 ($ $)) (-15 -1935 ($ (-585 (-585 (-856 (-179)))))) (-15 -1935 ($ (-585 (-585 (-856 (-179)))) (-585 (-785)) (-585 (-785)) (-585 (-832)))) (-15 -1935 ($ (-585 (-585 (-856 (-179)))) (-585 (-785)) (-585 (-785)) (-585 (-832)) (-585 (-221)))) (-15 -1934 ((-585 (-585 (-856 (-179)))) $)) (-15 -3864 ((-486) $)) (-15 -1933 ((-585 (-1003 (-330))) $)) (-15 -1933 ((-585 (-1003 (-330))) $ (-585 (-1003 (-330))))) (-15 -3855 ((-585 (-330)) $)) (-15 -3855 ((-585 (-330)) $ (-585 (-330)))) (-15 -1932 ((-1187) $ (-585 (-856 (-179))) (-785) (-785) (-832))) (-15 -1932 ((-1187) $ (-856 (-179)))) (-15 -1932 ((-1187) $ (-856 (-179)) (-785) (-785) (-832))) (-15 -1931 ((-1187) $ (-856 (-179)))) (-15 -3709 ((-1187) $ (-856 (-179)) (-785))) (-15 -3950 ($ (-585 (-585 (-856 (-179)))))) (-15 -3950 ((-774) $)) (-15 -1930 ((-585 (-585 (-856 (-179)))) (-585 (-585 (-856 (-179)))) (-585 (-785)))) (-15 -1929 ((-585 (-179)) (-585 (-585 (-856 (-179))))))))) (T -409)) -((-3950 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-409)))) (-1936 (*1 *1) (-5 *1 (-409))) (-1935 (*1 *1 *1) (-5 *1 (-409))) (-1935 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-409)))) (-1935 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *3 (-585 (-785))) (-5 *4 (-585 (-832))) (-5 *1 (-409)))) (-1935 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *3 (-585 (-785))) (-5 *4 (-585 (-832))) (-5 *5 (-585 (-221))) (-5 *1 (-409)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-409)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-409)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-409)))) (-1933 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-409)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-585 (-330))) (-5 *1 (-409)))) (-3855 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-330))) (-5 *1 (-409)))) (-1932 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-585 (-856 (-179)))) (-5 *4 (-785)) (-5 *5 (-832)) (-5 *2 (-1187)) (-5 *1 (-409)))) (-1932 (*1 *2 *1 *3) (-12 (-5 *3 (-856 (-179))) (-5 *2 (-1187)) (-5 *1 (-409)))) (-1932 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-856 (-179))) (-5 *4 (-785)) (-5 *5 (-832)) (-5 *2 (-1187)) (-5 *1 (-409)))) (-1931 (*1 *2 *1 *3) (-12 (-5 *3 (-856 (-179))) (-5 *2 (-1187)) (-5 *1 (-409)))) (-3709 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856 (-179))) (-5 *4 (-785)) (-5 *2 (-1187)) (-5 *1 (-409)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-409)))) (-1930 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *3 (-585 (-785))) (-5 *1 (-409)))) (-1929 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *2 (-585 (-179))) (-5 *1 (-409))))) -((-3840 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) -(((-410 |#1| |#2| |#3|) (-10 -7 (-15 -3840 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|))) (-411 |#2| |#3|) (-146) (-23)) (T -410)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3952 ((|#2| $) 23 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 22 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) -(((-411 |#1| |#2|) (-113) (-146) (-23)) (T -411)) -((-3952 (*1 *2 *1) (-12 (-4 *1 (-411 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) (-2663 (*1 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3840 (*1 *1 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3842 (*1 *1 *1 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3840 (*1 *1 *1 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) -(-13 (-1015) (-10 -8 (-15 -3952 (|t#2| $)) (-15 -2663 ($) -3956) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3840 ($ $)) (-15 -3842 ($ $ $)) (-15 -3840 ($ $ $)))) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-1938 (((-3 (-585 (-422 |#1| |#2|)) "failed") (-585 (-422 |#1| |#2|)) (-585 (-775 |#1|))) 135 T ELT)) (-1937 (((-585 (-585 (-206 |#1| |#2|))) (-585 (-206 |#1| |#2|)) (-585 (-775 |#1|))) 132 T ELT)) (-1939 (((-2 (|:| |dpolys| (-585 (-206 |#1| |#2|))) (|:| |coords| (-585 (-486)))) (-585 (-206 |#1| |#2|)) (-585 (-775 |#1|))) 87 T ELT))) -(((-412 |#1| |#2| |#3|) (-10 -7 (-15 -1937 ((-585 (-585 (-206 |#1| |#2|))) (-585 (-206 |#1| |#2|)) (-585 (-775 |#1|)))) (-15 -1938 ((-3 (-585 (-422 |#1| |#2|)) "failed") (-585 (-422 |#1| |#2|)) (-585 (-775 |#1|)))) (-15 -1939 ((-2 (|:| |dpolys| (-585 (-206 |#1| |#2|))) (|:| |coords| (-585 (-486)))) (-585 (-206 |#1| |#2|)) (-585 (-775 |#1|))))) (-585 (-1092)) (-393) (-393)) (T -412)) -((-1939 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-775 *5))) (-14 *5 (-585 (-1092))) (-4 *6 (-393)) (-5 *2 (-2 (|:| |dpolys| (-585 (-206 *5 *6))) (|:| |coords| (-585 (-486))))) (-5 *1 (-412 *5 *6 *7)) (-5 *3 (-585 (-206 *5 *6))) (-4 *7 (-393)))) (-1938 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-422 *4 *5))) (-5 *3 (-585 (-775 *4))) (-14 *4 (-585 (-1092))) (-4 *5 (-393)) (-5 *1 (-412 *4 *5 *6)) (-4 *6 (-393)))) (-1937 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-775 *5))) (-14 *5 (-585 (-1092))) (-4 *6 (-393)) (-5 *2 (-585 (-585 (-206 *5 *6)))) (-5 *1 (-412 *5 *6 *7)) (-5 *3 (-585 (-206 *5 *6))) (-4 *7 (-393))))) -((-3470 (((-3 $ "failed") $) 11 T ELT)) (-3012 (($ $ $) 22 T ELT)) (-2438 (($ $ $) 23 T ELT)) (-3953 (($ $ $) 9 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 21 T ELT))) -(((-413 |#1|) (-10 -7 (-15 -2438 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-486))) (-15 -3953 (|#1| |#1| |#1|)) (-15 -3470 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-696))) (-15 ** (|#1| |#1| (-832)))) (-414)) (T -413)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 20 T ELT)) (-2412 (((-85) $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 30 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3012 (($ $ $) 27 T ELT)) (-2438 (($ $ $) 26 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2669 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ $) 29 T ELT)) (** (($ $ (-832)) 17 T ELT) (($ $ (-696)) 21 T ELT) (($ $ (-486)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-414) (-113)) (T -414)) -((-2487 (*1 *1 *1) (-4 *1 (-414))) (-3953 (*1 *1 *1 *1) (-4 *1 (-414))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-486)))) (-3012 (*1 *1 *1 *1) (-4 *1 (-414))) (-2438 (*1 *1 *1 *1) (-4 *1 (-414)))) -(-13 (-665) (-10 -8 (-15 -2487 ($ $)) (-15 -3953 ($ $ $)) (-15 ** ($ $ (-486))) (-6 -3995) (-15 -3012 ($ $ $)) (-15 -2438 ($ $ $)))) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-665) . T) ((-1027) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) 18 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-350 (-486))) NIL T ELT) (($ $ (-350 (-486)) (-350 (-486))) NIL T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|))) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-696) (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|)))) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2895 (((-85) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-350 (-486)) $) NIL T ELT) (((-350 (-486)) $ (-350 (-486))) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-350 (-486))) NIL T ELT) (($ $ (-996) (-350 (-486))) NIL T ELT) (($ $ (-585 (-996)) (-585 (-350 (-486)))) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3946 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3815 (($ $) 29 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) 35 (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT) (($ $ (-1178 |#2|)) 30 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-350 (-486))) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3947 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-350 (-486))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-486)) (-1027)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1092)) 28 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-1178 |#2|)) 16 T ELT)) (-3952 (((-350 (-486)) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1178 |#2|)) NIL T ELT) (($ (-1162 |#1| |#2| |#3|)) 9 T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-350 (-486))) NIL T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-3776 ((|#1| $) 21 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-350 (-486))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) (|has| |#1| (-15 -3950 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-1178 |#2|)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-415 |#1| |#2| |#3|) (-13 (-1164 |#1|) (-808 $ (-1178 |#2|)) (-10 -8 (-15 -3950 ($ (-1178 |#2|))) (-15 -3950 ($ (-1162 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-350 (-486)))) (-15 -3815 ($ $ (-1178 |#2|))) |%noBranch|))) (-963) (-1092) |#1|) (T -415)) -((-3950 (*1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-415 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-1162 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3) (-5 *1 (-415 *3 *4 *5)))) (-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-415 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3)))) -((-2571 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3602 (($) NIL T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1187) $ |#1| |#1|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) 18 (|has| $ (-1037 |#2|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3248 (((-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-2234 (((-585 |#1|) $) NIL T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT)) (-3246 (((-1035) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-758)) ELT)) (-1731 (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1277 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-696) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3950 (((-774) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-1267 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-416 |#1| |#2| |#3| |#4|) (-1109 |#1| |#2|) (-1015) (-1015) (-1109 |#1| |#2|) |#2|) (T -416)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3684 (((-585 (-2 (|:| -3865 $) (|:| -1703 (-585 |#4|)))) (-585 |#4|)) NIL T ELT)) (-3685 (((-585 $) (-585 |#4|)) NIL T ELT)) (-3084 (((-585 |#3|) $) NIL T ELT)) (-2911 (((-85) $) NIL T ELT)) (-2902 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3691 ((|#4| |#4| $) NIL T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3713 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2907 (((-85) $) 28 (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3692 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ #1#) (-585 |#4|)) NIL T ELT)) (-3159 (($ (-585 |#4|)) NIL T ELT)) (-3802 (((-3 $ #1#) $) 44 T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3409 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-497)) ELT)) (-3697 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3699 (((-2 (|:| -3865 (-585 |#4|)) (|:| -1703 (-585 |#4|))) $) NIL T ELT)) (-3698 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3183 ((|#3| $) 37 T ELT)) (-2611 (((-585 |#4|) $) 18 T ELT)) (-3248 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3846 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2917 (((-585 |#3|) $) NIL T ELT)) (-2916 (((-85) |#3| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3801 (((-3 |#4| #1#) $) 41 T ELT)) (-3700 (((-585 |#4|) $) NIL T ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3702 (((-85) $ $) NIL T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-497)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 (((-3 |#4| #1#) $) 39 T ELT)) (-1731 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 54 T ELT)) (-3772 (($ $ |#4|) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 17 T ELT)) (-3568 (($) 14 T ELT)) (-3952 (((-696) $) NIL T ELT)) (-1732 (((-696) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) NIL T ELT)) (-3403 (($ $) 13 T ELT)) (-3975 (((-475) $) NIL (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) 21 T ELT)) (-2913 (($ $ |#3|) 48 T ELT)) (-2915 (($ $ |#3|) 50 T ELT)) (-3687 (($ $) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-3950 (((-774) $) 34 T ELT) (((-585 |#4|) $) 45 T ELT)) (-3681 (((-696) $) NIL (|has| |#3| (-320)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3693 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3683 (((-585 |#3|) $) NIL T ELT)) (-3937 (((-85) |#3| $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-417 |#1| |#2| |#3| |#4|) (-1126 |#1| |#2| |#3| |#4|) (-497) (-719) (-758) (-979 |#1| |#2| |#3|)) (T -417)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL T ELT) (((-350 (-486)) $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3630 (($) 17 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3975 (((-330) $) 21 T ELT) (((-179) $) 24 T ELT) (((-350 (-1087 (-486))) $) 18 T ELT) (((-475) $) 53 T ELT)) (-3950 (((-774) $) 51 T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (((-179) $) 23 T ELT) (((-330) $) 20 T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 37 T CONST)) (-2669 (($) 8 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT))) -(((-418) (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))) (-935) (-554 (-179)) (-554 (-330)) (-555 (-350 (-1087 (-486)))) (-555 (-475)) (-10 -8 (-15 -3630 ($))))) (T -418)) -((-3630 (*1 *1) (-5 *1 (-418)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3531 (((-1051) $) 12 T ELT)) (-3532 (((-1051) $) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 18 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-419) (-13 (-997) (-10 -8 (-15 -3532 ((-1051) $)) (-15 -3531 ((-1051) $))))) (T -419)) -((-3532 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-419)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-419))))) -((-2571 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3602 (($) NIL T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1187) $ |#1| |#1|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) 16 (|has| $ (-1037 |#2|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3248 (((-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-2234 (((-585 |#1|) $) 13 T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT)) (-3246 (((-1035) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-758)) ELT)) (-1731 (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1277 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) 19 T ELT)) (-3803 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-696) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3950 (((-774) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-1267 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3059 (((-85) $ $) 11 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3961 (((-696) $) 15 T ELT))) -(((-420 |#1| |#2| |#3|) (-1109 |#1| |#2|) (-1015) (-1015) (-1075)) (T -420)) -NIL -((-1940 (((-486) (-486) (-486)) 19 T ELT)) (-1941 (((-85) (-486) (-486) (-486) (-486)) 28 T ELT)) (-3460 (((-1181 (-585 (-486))) (-696) (-696)) 42 T ELT))) -(((-421) (-10 -7 (-15 -1940 ((-486) (-486) (-486))) (-15 -1941 ((-85) (-486) (-486) (-486) (-486))) (-15 -3460 ((-1181 (-585 (-486))) (-696) (-696))))) (T -421)) -((-3460 (*1 *2 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1181 (-585 (-486)))) (-5 *1 (-421)))) (-1941 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-486)) (-5 *2 (-85)) (-5 *1 (-421)))) (-1940 (*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-421))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-775 |#1|)) $) NIL T ELT)) (-3086 (((-1087 $) $ (-775 |#1|)) NIL T ELT) (((-1087 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#2| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#2| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-775 |#1|))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#2| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#2| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-775 |#1|) $) NIL T ELT)) (-3759 (($ $ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1942 (($ $ (-585 (-486))) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#2| (-393)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#2| (-823)) ELT)) (-1625 (($ $ |#2| (-423 (-3961 |#1|) (-696)) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-330))) (|has| |#2| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-486))) (|has| |#2| (-798 (-486)))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3087 (($ (-1087 |#2|) (-775 |#1|)) NIL T ELT) (($ (-1087 $) (-775 |#1|)) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#2| (-423 (-3961 |#1|) (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-775 |#1|)) NIL T ELT)) (-2823 (((-423 (-3961 |#1|) (-696)) $) NIL T ELT) (((-696) $ (-775 |#1|)) NIL T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) NIL T ELT)) (-1626 (($ (-1 (-423 (-3961 |#1|) (-696)) (-423 (-3961 |#1|) (-696))) $) NIL T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3085 (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) NIL (|has| |#2| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-775 |#1|)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#2| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#2| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) NIL (|has| |#2| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#2| (-823)) ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-775 |#1|) |#2|) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 |#2|)) NIL T ELT) (($ $ (-775 |#1|) $) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 $)) NIL T ELT)) (-3760 (($ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3761 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3952 (((-423 (-3961 |#1|) (-696)) $) NIL T ELT) (((-696) $ (-775 |#1|)) NIL T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-330)))) (|has| |#2| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-486)))) (|has| |#2| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-775 |#1|) (-555 (-475))) (|has| |#2| (-555 (-475)))) ELT)) (-2820 ((|#2| $) NIL (|has| |#2| (-393)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-823))) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-775 |#1|)) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#2| (-497)) ELT)) (-3820 (((-585 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-423 (-3961 |#1|) (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#2| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#2| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#2| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-422 |#1| |#2|) (-13 (-863 |#2| (-423 (-3961 |#1|) (-696)) (-775 |#1|)) (-10 -8 (-15 -1942 ($ $ (-585 (-486)))))) (-585 (-1092)) (-963)) (T -422)) -((-1942 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-422 *3 *4)) (-14 *3 (-585 (-1092))) (-4 *4 (-963))))) -((-2571 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3191 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3710 (($ (-832)) NIL (|has| |#2| (-963)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#2|)) ELT)) (-2486 (($ $ $) NIL (|has| |#2| (-719)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3139 (((-696)) NIL (|has| |#2| (-320)) ELT)) (-3791 ((|#2| $ (-486) |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (-12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1015)) ELT)) (-3159 (((-486) $) NIL (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) ELT) (((-350 (-486)) $) NIL (-12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) ((|#2| $) NIL (|has| |#2| (-1015)) ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL (|has| |#2| (-963)) ELT) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-963)) ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| |#2| (-963)) ELT)) (-2997 (($) NIL (|has| |#2| (-320)) ELT)) (-1577 ((|#2| $ (-486) |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ (-486)) 11 T ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-719)) ELT)) (-1216 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2412 (((-85) $) NIL (|has| |#2| (-963)) ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-2611 (((-585 |#2|) $) NIL T ELT)) (-3248 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#2| (-320)) ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL (|has| |#2| (-963)) ELT) (((-632 |#2|) (-1181 $)) NIL (|has| |#2| (-963)) ELT)) (-3245 (((-1075) $) NIL (|has| |#2| (-1015)) ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-2402 (($ (-832)) NIL (|has| |#2| (-320)) ELT)) (-3246 (((-1035) $) NIL (|has| |#2| (-1015)) ELT)) (-3804 ((|#2| $) NIL (|has| (-486) (-758)) ELT)) (-1731 (((-3 |#2| #1#) (-1 (-85) |#2|) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ (-486) |#2|) NIL T ELT) ((|#2| $ (-486)) NIL T ELT)) (-3839 ((|#2| $ $) NIL (|has| |#2| (-963)) ELT)) (-1469 (($ (-1181 |#2|)) NIL T ELT)) (-3915 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3761 (($ $ (-696)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#2| (-963)) ELT)) (-1732 (((-696) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-696) (-1 (-85) |#2|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-1181 |#2|) $) NIL T ELT) (($ (-486)) NIL (OR (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ELT) (($ (-350 (-486))) NIL (-12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) (($ |#2|) NIL (|has| |#2| (-1015)) ELT) (((-774) $) NIL (|has| |#2| (-554 (-774))) ELT)) (-3129 (((-696)) NIL (|has| |#2| (-963)) CONST)) (-1267 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3128 (((-85) $ $) NIL (|has| |#2| (-963)) ELT)) (-2663 (($) NIL (|has| |#2| (-23)) CONST)) (-2669 (($) NIL (|has| |#2| (-963)) CONST)) (-2672 (($ $ (-696)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#2| (-963)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2688 (((-85) $ $) 17 (|has| |#2| (-758)) ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3842 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-696)) NIL (|has| |#2| (-963)) ELT) (($ $ (-832)) NIL (|has| |#2| (-963)) ELT)) (* (($ $ $) NIL (|has| |#2| (-963)) ELT) (($ $ |#2|) NIL (|has| |#2| (-665)) ELT) (($ |#2| $) NIL (|has| |#2| (-665)) ELT) (($ (-486) $) NIL (|has| |#2| (-21)) ELT) (($ (-696) $) NIL (|has| |#2| (-23)) ELT) (($ (-832) $) NIL (|has| |#2| (-25)) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-423 |#1| |#2|) (-196 |#1| |#2|) (-696) (-719)) (T -423)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-1943 (((-585 (-787)) $) 16 T ELT)) (-3545 (((-448) $) 14 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1944 (($ (-448) (-585 (-787))) 12 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 23 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-424) (-13 (-997) (-10 -8 (-15 -1944 ($ (-448) (-585 (-787)))) (-15 -3545 ((-448) $)) (-15 -1943 ((-585 (-787)) $))))) (T -424)) -((-1944 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-585 (-787))) (-5 *1 (-424)))) (-3545 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-424)))) (-1943 (*1 *2 *1) (-12 (-5 *2 (-585 (-787))) (-5 *1 (-424))))) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3727 (($) NIL T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-2859 (($ $ $) 48 T ELT)) (-3521 (($ $ $) 47 T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2860 ((|#1| $) 40 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 41 T ELT)) (-3612 (($ |#1| $) 18 T ELT)) (-1945 (($ (-585 |#1|)) 19 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1277 ((|#1| $) 34 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) 11 T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 45 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) 29 T ELT))) -(((-425 |#1|) (-13 (-883 |#1|) (-10 -8 (-15 -1945 ($ (-585 |#1|))))) (-758)) (T -425)) -((-1945 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-425 *3))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3845 (($ $) 71 T ELT)) (-1638 (((-85) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1970 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 45 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (((-3 |#4| #1#) $) 117 T ELT)) (-1639 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-486)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3438 (((-2 (|:| -2338 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3950 (((-774) $) 110 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 32 T CONST)) (-3059 (((-85) $ $) 121 T ELT)) (-3840 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 72 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 77 T ELT))) -(((-426 |#1| |#2| |#3| |#4|) (-286 |#1| |#2| |#3| |#4|) (-312) (-1157 |#1|) (-1157 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -426)) -NIL -((-1949 (((-486) (-585 (-486))) 53 T ELT)) (-1946 ((|#1| (-585 |#1|)) 94 T ELT)) (-1948 (((-585 |#1|) (-585 |#1|)) 95 T ELT)) (-1947 (((-585 |#1|) (-585 |#1|)) 97 T ELT)) (-3147 ((|#1| (-585 |#1|)) 96 T ELT)) (-2820 (((-585 (-486)) (-585 |#1|)) 56 T ELT))) -(((-427 |#1|) (-10 -7 (-15 -3147 (|#1| (-585 |#1|))) (-15 -1946 (|#1| (-585 |#1|))) (-15 -1947 ((-585 |#1|) (-585 |#1|))) (-15 -1948 ((-585 |#1|) (-585 |#1|))) (-15 -2820 ((-585 (-486)) (-585 |#1|))) (-15 -1949 ((-486) (-585 (-486))))) (-1157 (-486))) (T -427)) -((-1949 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-486)) (-5 *1 (-427 *4)) (-4 *4 (-1157 *2)))) (-2820 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-1157 (-486))) (-5 *2 (-585 (-486))) (-5 *1 (-427 *4)))) (-1948 (*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1157 (-486))) (-5 *1 (-427 *3)))) (-1947 (*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1157 (-486))) (-5 *1 (-427 *3)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-427 *2)) (-4 *2 (-1157 (-486))))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-427 *2)) (-4 *2 (-1157 (-486)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 (((-486) $) NIL (|has| (-486) (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| (-486) (-742)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL (|has| (-486) (-952 (-1092))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| (-486) (-952 (-486))) ELT) (((-3 (-486) #1#) $) NIL (|has| (-486) (-952 (-486))) ELT)) (-3159 (((-486) $) NIL T ELT) (((-1092) $) NIL (|has| (-486) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL (|has| (-486) (-952 (-486))) ELT) (((-486) $) NIL (|has| (-486) (-952 (-486))) ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-486)) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-486) (-485)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| (-486) (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| (-486) (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| (-486) (-798 (-330))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-486) $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| (-486) (-1068)) ELT)) (-3190 (((-85) $) NIL (|has| (-486) (-742)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-486) (-758)) ELT)) (-3846 (($ (-1 (-486) (-486)) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL T ELT) (((-632 (-486)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-486) (-1068)) CONST)) (-1950 (($ (-350 (-486))) 9 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-486) (-258)) ELT) (((-350 (-486)) $) NIL T ELT)) (-3133 (((-486) $) NIL (|has| (-486) (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3771 (($ $ (-585 (-486)) (-585 (-486))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-486) (-486)) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-249 (-486))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-585 (-249 (-486)))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-585 (-1092)) (-585 (-486))) NIL (|has| (-486) (-457 (-1092) (-486))) ELT) (($ $ (-1092) (-486)) NIL (|has| (-486) (-457 (-1092) (-486))) ELT)) (-1608 (((-696) $) NIL T ELT)) (-3803 (($ $ (-486)) NIL (|has| (-486) (-241 (-486) (-486))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-486) (-486))) NIL T ELT) (($ $ (-1 (-486) (-486)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $) NIL (|has| (-486) (-189)) ELT) (($ $ (-696)) NIL (|has| (-486) (-189)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-486) $) NIL T ELT)) (-3975 (((-802 (-486)) $) NIL (|has| (-486) (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| (-486) (-555 (-802 (-330)))) ELT) (((-475) $) NIL (|has| (-486) (-555 (-475))) ELT) (((-330) $) NIL (|has| (-486) (-935)) ELT) (((-179) $) NIL (|has| (-486) (-935)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-486) (-823))) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) 8 T ELT) (($ (-486)) NIL T ELT) (($ (-1092)) NIL (|has| (-486) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL T ELT) (((-919 16) $) 10 T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-486) (-823))) (|has| (-486) (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-3134 (((-486) $) NIL (|has| (-486) (-485)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-486) (-742)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-486) (-486))) NIL T ELT) (($ $ (-1 (-486) (-486)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $) NIL (|has| (-486) (-189)) ELT) (($ $ (-696)) NIL (|has| (-486) (-189)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-3953 (($ $ $) NIL T ELT) (($ (-486) (-486)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ (-486)) NIL T ELT))) -(((-428) (-13 (-906 (-486)) (-554 (-350 (-486))) (-554 (-919 16)) (-10 -8 (-15 -3131 ((-350 (-486)) $)) (-15 -1950 ($ (-350 (-486))))))) (T -428)) -((-3131 (*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-428)))) (-1950 (*1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-428))))) -((-3771 (($ $ (-585 (-249 |#2|))) 13 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL T ELT))) -(((-429 |#1| |#2|) (-10 -7 (-15 -3771 (|#1| |#1| (-585 |#2|) (-585 |#2|))) (-15 -3771 (|#1| |#1| |#2| |#2|)) (-15 -3771 (|#1| |#1| (-249 |#2|))) (-15 -3771 (|#1| |#1| (-585 (-249 |#2|))))) (-430 |#2|) (-1131)) (T -429)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3727 (($) 6 T CONST)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) -(((-430 |#1|) (-113) (-1131)) (T -430)) -NIL -(-13 (-34) (-381 |t#1|) (-10 -7 (IF (|has| |t#1| (-554 (-774))) (-6 (-554 (-774))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1015)) (-6 (-1015)) |%noBranch|) (IF (|has| |t#1| (-1015)) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1131) . T)) -((-3950 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) -(((-431 |#1|) (-113) (-1131)) (T -431)) -NIL -(-13 (-554 |t#1|) (-557 |t#1|)) -(((-557 |#1|) . T) ((-554 |#1|) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1951 (($ (-1075)) 8 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 15 T ELT) (((-1075) $) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 11 T ELT))) -(((-432) (-13 (-1015) (-554 (-1075)) (-10 -8 (-15 -1951 ($ (-1075)))))) (T -432)) -((-1951 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-432))))) -((-3495 (($ $) 15 T ELT)) (-3493 (($ $) 24 T ELT)) (-3497 (($ $) 12 T ELT)) (-3498 (($ $) 10 T ELT)) (-3496 (($ $) 17 T ELT)) (-3494 (($ $) 22 T ELT))) -(((-433 |#1|) (-10 -7 (-15 -3494 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|))) (-434)) (T -433)) -NIL -((-3495 (($ $) 11 T ELT)) (-3493 (($ $) 10 T ELT)) (-3497 (($ $) 9 T ELT)) (-3498 (($ $) 8 T ELT)) (-3496 (($ $) 7 T ELT)) (-3494 (($ $) 6 T ELT))) -(((-434) (-113)) (T -434)) -((-3495 (*1 *1 *1) (-4 *1 (-434))) (-3493 (*1 *1 *1) (-4 *1 (-434))) (-3497 (*1 *1 *1) (-4 *1 (-434))) (-3498 (*1 *1 *1) (-4 *1 (-434))) (-3496 (*1 *1 *1) (-4 *1 (-434))) (-3494 (*1 *1 *1) (-4 *1 (-434)))) -(-13 (-10 -8 (-15 -3494 ($ $)) (-15 -3496 ($ $)) (-15 -3498 ($ $)) (-15 -3497 ($ $)) (-15 -3493 ($ $)) (-15 -3495 ($ $)))) -((-3735 (((-348 |#4|) |#4| (-1 (-348 |#2|) |#2|)) 54 T ELT))) -(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3735 ((-348 |#4|) |#4| (-1 (-348 |#2|) |#2|)))) (-312) (-1157 |#1|) (-13 (-312) (-120) (-663 |#1| |#2|)) (-1157 |#3|)) (T -435)) -((-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) (-4 *7 (-13 (-312) (-120) (-663 *5 *6))) (-5 *2 (-348 *3)) (-5 *1 (-435 *5 *6 *7 *3)) (-4 *3 (-1157 *7))))) -((-2571 (((-85) $ $) NIL T ELT)) (-1217 (((-585 $) (-1087 $) (-1092)) NIL T ELT) (((-585 $) (-1087 $)) NIL T ELT) (((-585 $) (-859 $)) NIL T ELT)) (-1218 (($ (-1087 $) (-1092)) NIL T ELT) (($ (-1087 $)) NIL T ELT) (($ (-859 $)) NIL T ELT)) (-3191 (((-85) $) 39 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1952 (((-85) $ $) 72 T ELT)) (-1601 (((-585 (-552 $)) $) 49 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-3040 (($ $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1219 (((-585 $) (-1087 $) (-1092)) NIL T ELT) (((-585 $) (-1087 $)) NIL T ELT) (((-585 $) (-859 $)) NIL T ELT)) (-3186 (($ (-1087 $) (-1092)) NIL T ELT) (($ (-1087 $)) NIL T ELT) (($ (-859 $)) NIL T ELT)) (-3160 (((-3 (-552 $) #1#) $) NIL T ELT) (((-3 (-486) #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT)) (-3159 (((-552 $) $) NIL T ELT) (((-486) $) NIL T ELT) (((-350 (-486)) $) 54 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-486)) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-350 (-486)))) (|:| |vec| (-1181 (-350 (-486))))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-350 (-486))) (-632 $)) NIL T ELT)) (-3845 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-2576 (($ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-1600 (((-585 (-86)) $) NIL T ELT)) (-3598 (((-86) (-86)) NIL T ELT)) (-2412 (((-85) $) 42 T ELT)) (-2676 (((-85) $) NIL (|has| $ (-952 (-486))) ELT)) (-3001 (((-1041 (-486) (-552 $)) $) 37 T ELT)) (-3014 (($ $ (-486)) NIL T ELT)) (-3135 (((-1087 $) (-1087 $) (-552 $)) 86 T ELT) (((-1087 $) (-1087 $) (-585 (-552 $))) 61 T ELT) (($ $ (-552 $)) 75 T ELT) (($ $ (-585 (-552 $))) 76 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-1598 (((-1087 $) (-552 $)) 73 (|has| $ (-963)) ELT)) (-3846 (($ (-1 $ $) (-552 $)) NIL T ELT)) (-1603 (((-3 (-552 $) #1#) $) NIL T ELT)) (-2282 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL T ELT) (((-632 (-486)) (-1181 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-350 (-486)))) (|:| |vec| (-1181 (-350 (-486))))) (-1181 $) $) NIL T ELT) (((-632 (-350 (-486))) (-1181 $)) NIL T ELT)) (-1896 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1602 (((-585 (-552 $)) $) NIL T ELT)) (-2237 (($ (-86) $) NIL T ELT) (($ (-86) (-585 $)) NIL T ELT)) (-2636 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1092)) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-2606 (((-696) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1599 (((-85) $ $) NIL T ELT) (((-85) $ (-1092)) NIL T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2677 (((-85) $) NIL (|has| $ (-952 (-486))) ELT)) (-3771 (($ $ (-552 $) $) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) NIL T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-1092) (-1 $ (-585 $))) NIL T ELT) (($ $ (-1092) (-1 $ $)) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-585 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-3803 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-585 $)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1604 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3761 (($ $) 36 T ELT) (($ $ (-696)) NIL T ELT)) (-3000 (((-1041 (-486) (-552 $)) $) 20 T ELT)) (-3188 (($ $) NIL (|has| $ (-963)) ELT)) (-3975 (((-330) $) 100 T ELT) (((-179) $) 108 T ELT) (((-142 (-330)) $) 116 T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-552 $)) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-1041 (-486) (-552 $))) 21 T ELT)) (-3129 (((-696)) NIL T CONST)) (-2593 (($ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-2256 (((-85) (-86)) 92 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 10 T CONST)) (-2669 (($) 22 T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3059 (((-85) $ $) 24 T ELT)) (-3953 (($ $ $) 44 T ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-350 (-486))) NIL T ELT) (($ $ (-486)) 47 T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT)) (* (($ (-350 (-486)) $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-486) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-832) $) NIL T ELT))) -(((-436) (-13 (-254) (-27) (-952 (-486)) (-952 (-350 (-486))) (-582 (-486)) (-935) (-582 (-350 (-486))) (-120) (-555 (-142 (-330))) (-190) (-557 (-1041 (-486) (-552 $))) (-10 -8 (-15 -3001 ((-1041 (-486) (-552 $)) $)) (-15 -3000 ((-1041 (-486) (-552 $)) $)) (-15 -3845 ($ $)) (-15 -1952 ((-85) $ $)) (-15 -3135 ((-1087 $) (-1087 $) (-552 $))) (-15 -3135 ((-1087 $) (-1087 $) (-585 (-552 $)))) (-15 -3135 ($ $ (-552 $))) (-15 -3135 ($ $ (-585 (-552 $))))))) (T -436)) -((-3001 (*1 *2 *1) (-12 (-5 *2 (-1041 (-486) (-552 (-436)))) (-5 *1 (-436)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-1041 (-486) (-552 (-436)))) (-5 *1 (-436)))) (-3845 (*1 *1 *1) (-5 *1 (-436))) (-1952 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-436)))) (-3135 (*1 *2 *2 *3) (-12 (-5 *2 (-1087 (-436))) (-5 *3 (-552 (-436))) (-5 *1 (-436)))) (-3135 (*1 *2 *2 *3) (-12 (-5 *2 (-1087 (-436))) (-5 *3 (-585 (-552 (-436)))) (-5 *1 (-436)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-552 (-436))) (-5 *1 (-436)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-552 (-436)))) (-5 *1 (-436))))) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1037 |#1|)) (|has| |#1| (-758))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-3791 ((|#1| $ (-486) |#1|) 19 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-486) |#1|) 14 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 13 T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) NIL T ELT) (((-486) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) NIL (|has| |#1| (-72)) ELT)) (-3617 (($ (-696) |#1|) NIL T ELT)) (-2202 (((-486) $) 9 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) 16 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) NIL (|has| (-486) (-758)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-486) |#1|) NIL T ELT) ((|#1| $ (-486)) 18 T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) NIL T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3950 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-437 |#1| |#2|) (-19 |#1|) (-1131) (-486)) (T -437)) -NIL -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3791 ((|#1| $ (-486) (-486) |#1|) 44 T ELT)) (-1259 (($ $ (-486) |#2|) NIL T ELT)) (-1258 (($ $ (-486) |#3|) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3114 ((|#2| $ (-486)) 53 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1577 ((|#1| $ (-486) (-486) |#1|) 43 T ELT)) (-3115 ((|#1| $ (-486) (-486)) 38 T ELT)) (-3117 (((-696) $) 28 T ELT)) (-3617 (($ (-696) (-696) |#1|) 24 T ELT)) (-3116 (((-696) $) 30 T ELT)) (-3121 (((-486) $) 26 T ELT)) (-3119 (((-486) $) 27 T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3120 (((-486) $) 29 T ELT)) (-3118 (((-486) $) 31 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) 66 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 64 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 70 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 74 T ELT)) (-3245 (((-1075) $) 48 (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) 61 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 33 T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-486) (-486)) 41 T ELT) ((|#1| $ (-486) (-486) |#1|) 72 T ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) NIL T ELT) (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3403 (($ $) 59 T ELT)) (-3113 ((|#3| $ (-486)) 55 T ELT)) (-3950 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-438 |#1| |#2| |#3|) (-57 |#1| |#2| |#3|) (-1131) (-324 |#1|) (-324 |#1|)) (T -438)) -NIL -((-1954 (((-585 (-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-696) (-696)) 32 T ELT)) (-1953 (((-585 (-1087 |#1|)) |#1| (-696) (-696) (-696)) 43 T ELT)) (-2079 (((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-585 |#3|) (-585 (-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-696)) 107 T ELT))) -(((-439 |#1| |#2| |#3|) (-10 -7 (-15 -1953 ((-585 (-1087 |#1|)) |#1| (-696) (-696) (-696))) (-15 -1954 ((-585 (-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-696) (-696))) (-15 -2079 ((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-585 |#3|) (-585 (-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-696)))) (-299) (-1157 |#1|) (-1157 |#2|)) (T -439)) -((-2079 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-2 (|:| -2014 (-632 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-632 *7))))) (-5 *5 (-696)) (-4 *8 (-1157 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-299)) (-5 *2 (-2 (|:| -2014 (-632 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-632 *7)))) (-5 *1 (-439 *6 *7 *8)))) (-1954 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-696)) (-4 *5 (-299)) (-4 *6 (-1157 *5)) (-5 *2 (-585 (-2 (|:| -2014 (-632 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-632 *6))))) (-5 *1 (-439 *5 *6 *7)) (-5 *3 (-2 (|:| -2014 (-632 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-632 *6)))) (-4 *7 (-1157 *6)))) (-1953 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-696)) (-4 *3 (-299)) (-4 *5 (-1157 *3)) (-5 *2 (-585 (-1087 *3))) (-5 *1 (-439 *3 *5 *6)) (-4 *6 (-1157 *5))))) -((-1960 (((-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))) 70 T ELT)) (-1955 ((|#1| (-632 |#1|) |#1| (-696)) 24 T ELT)) (-1957 (((-696) (-696) (-696)) 34 T ELT)) (-1959 (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 50 T ELT)) (-1958 (((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|) 58 T ELT) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 55 T ELT)) (-1956 ((|#1| (-632 |#1|) (-632 |#1|) |#1| (-486)) 28 T ELT)) (-3332 ((|#1| (-632 |#1|)) 18 T ELT))) -(((-440 |#1| |#2| |#3|) (-10 -7 (-15 -3332 (|#1| (-632 |#1|))) (-15 -1955 (|#1| (-632 |#1|) |#1| (-696))) (-15 -1956 (|#1| (-632 |#1|) (-632 |#1|) |#1| (-486))) (-15 -1957 ((-696) (-696) (-696))) (-15 -1958 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1958 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -1959 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1960 ((-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))))) (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $)))) (-1157 |#1|) (-353 |#1| |#2|)) (T -440)) -((-1960 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1959 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1958 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1958 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1957 (*1 *2 *2 *2) (-12 (-5 *2 (-696)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1956 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-632 *2)) (-5 *4 (-486)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *5 (-1157 *2)) (-5 *1 (-440 *2 *5 *6)) (-4 *6 (-353 *2 *5)))) (-1955 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-632 *2)) (-5 *4 (-696)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *5 (-1157 *2)) (-5 *1 (-440 *2 *5 *6)) (-4 *6 (-353 *2 *5)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-632 *2)) (-4 *4 (-1157 *2)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-5 *1 (-440 *2 *4 *5)) (-4 *5 (-353 *2 *4))))) -((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) 53 T ELT)) (-3324 (($ $ $) 51 T ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 (-85))) ELT)) (-1737 (((-85) $) NIL (|has| (-85) (-758)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1735 (($ $) NIL (-12 (|has| $ (-1037 (-85))) (|has| (-85) (-758))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-1037 (-85))) ELT)) (-2912 (($ $) NIL (|has| (-85) (-758)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3791 (((-85) $ (-1148 (-486)) (-85)) NIL (|has| $ (-1037 (-85))) ELT) (((-85) $ (-486) (-85)) 52 (|has| $ (-1037 (-85))) ELT)) (-3713 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-318 (-85))) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 (-85))) ELT)) (-2300 (($ $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-3409 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-318 (-85))) ELT) (($ (-85) $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-3845 (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (|has| (-85) (-72)) ELT)) (-1577 (((-85) $ (-486) (-85)) NIL (|has| $ (-1037 (-85))) ELT)) (-3115 (((-85) $ (-486)) NIL T ELT)) (-3422 (((-486) (-85) $ (-486)) NIL (|has| (-85) (-72)) ELT) (((-486) (-85) $) NIL (|has| (-85) (-72)) ELT) (((-486) (-1 (-85) (-85)) $) NIL T ELT)) (-2564 (($ $ $) 49 T ELT)) (-2563 (($ $) NIL T ELT)) (-1302 (($ $ $) NIL T ELT)) (-3617 (($ (-696) (-85)) 27 T ELT)) (-1303 (($ $ $) NIL T ELT)) (-2202 (((-486) $) 8 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL T ELT)) (-3521 (($ $ $) NIL (|has| (-85) (-758)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2611 (((-585 (-85)) $) NIL T ELT)) (-3248 (((-85) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL T ELT)) (-3329 (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3846 (($ (-1 (-85) (-85) (-85)) $ $) 47 T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2306 (($ $ $ (-486)) NIL T ELT) (($ (-85) $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 (((-85) $) NIL (|has| (-486) (-758)) ELT)) (-1731 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2201 (($ $ (-85)) NIL (|has| $ (-1037 (-85))) ELT)) (-1733 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-3771 (($ $ (-585 (-85)) (-585 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-585 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) (-85) $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-2207 (((-585 (-85)) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) 29 T ELT)) (-3803 (($ $ (-1148 (-486))) NIL T ELT) (((-85) $ (-486)) 22 T ELT) (((-85) $ (-486) (-85)) NIL T ELT)) (-2307 (($ $ (-1148 (-486))) NIL T ELT) (($ $ (-486)) NIL T ELT)) (-1732 (((-696) (-1 (-85) (-85)) $) NIL T ELT) (((-696) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 (-85))) ELT)) (-3403 (($ $) 30 T ELT)) (-3975 (((-475) $) NIL (|has| (-85) (-555 (-475))) ELT)) (-3533 (($ (-585 (-85))) NIL T ELT)) (-3805 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3950 (((-774) $) 26 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-2565 (($ $ $) 48 T ELT)) (-2313 (($ $ $) 55 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 31 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 43 T ELT)) (-2314 (($ $ $) 54 T ELT)) (-3961 (((-696) $) 13 T ELT))) -(((-441 |#1|) (-96) (-486)) (T -441)) -NIL -((-1962 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1087 |#4|)) 35 T ELT)) (-1961 (((-1087 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1087 |#4|)) 22 T ELT)) (-1963 (((-3 (-632 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-632 (-1087 |#4|))) 46 T ELT)) (-1964 (((-1087 (-1087 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) -(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1961 (|#2| (-1 |#1| |#4|) (-1087 |#4|))) (-15 -1961 ((-1087 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1962 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1087 |#4|))) (-15 -1963 ((-3 (-632 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-632 (-1087 |#4|)))) (-15 -1964 ((-1087 (-1087 |#4|)) (-1 |#4| |#1|) |#3|))) (-963) (-1157 |#1|) (-1157 |#2|) (-963)) (T -442)) -((-1964 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *6 (-1157 *5)) (-5 *2 (-1087 (-1087 *7))) (-5 *1 (-442 *5 *6 *4 *7)) (-4 *4 (-1157 *6)))) (-1963 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 #1="failed") *8)) (-5 *4 (-632 (-1087 *8))) (-4 *5 (-963)) (-4 *8 (-963)) (-4 *6 (-1157 *5)) (-5 *2 (-632 *6)) (-5 *1 (-442 *5 *6 *7 *8)) (-4 *7 (-1157 *6)))) (-1962 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 #1#) *7)) (-5 *4 (-1087 *7)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *2 (-1157 *5)) (-5 *1 (-442 *5 *2 *6 *7)) (-4 *6 (-1157 *2)))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *4 (-1157 *5)) (-5 *2 (-1087 *7)) (-5 *1 (-442 *5 *4 *6 *7)) (-4 *6 (-1157 *4)))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1087 *7)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *2 (-1157 *5)) (-5 *1 (-442 *5 *2 *6 *7)) (-4 *6 (-1157 *2))))) -((-2571 (((-85) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1965 (((-1187) $) 25 T ELT)) (-3803 (((-1075) $ (-1092)) 30 T ELT)) (-3620 (((-1187) $) 20 T ELT)) (-3950 (((-774) $) 27 T ELT) (($ (-1075)) 26 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 12 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 10 T ELT))) -(((-443) (-13 (-758) (-557 (-1075)) (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 ((-1187) $)) (-15 -1965 ((-1187) $))))) (T -443)) -((-3803 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1075)) (-5 *1 (-443)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-443)))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-443))))) -((-3744 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3742 ((|#1| |#4|) 10 T ELT)) (-3743 ((|#3| |#4|) 17 T ELT))) -(((-444 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3742 (|#1| |#4|)) (-15 -3743 (|#3| |#4|)) (-15 -3744 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-497) (-906 |#1|) (-324 |#1|) (-324 |#2|)) (T -444)) -((-3744 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *6 (-324 *4)) (-4 *3 (-324 *5)))) (-3743 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-906 *4)) (-4 *2 (-324 *4)) (-5 *1 (-444 *4 *5 *2 *3)) (-4 *3 (-324 *5)))) (-3742 (*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-497)) (-5 *1 (-444 *2 *4 *5 *3)) (-4 *5 (-324 *2)) (-4 *3 (-324 *4))))) -((-2571 (((-85) $ $) NIL T ELT)) (-1975 (((-85) $ (-585 |#3|)) 127 T ELT) (((-85) $) 128 T ELT)) (-3191 (((-85) $) 178 T ELT)) (-1967 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-585 |#3|)) 122 T ELT)) (-1966 (((-1082 (-585 (-859 |#1|)) (-585 (-249 (-859 |#1|)))) (-585 |#4|)) 171 (|has| |#3| (-555 (-1092))) ELT)) (-1974 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2412 (((-85) $) 177 T ELT)) (-1971 (($ $) 132 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3241 (($ $ $) 99 T ELT) (($ (-585 $)) 101 T ELT)) (-1976 (((-85) |#4| $) 130 T ELT)) (-1977 (((-85) $ $) 82 T ELT)) (-1970 (($ (-585 |#4|)) 106 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1969 (($ (-585 |#4|)) 175 T ELT)) (-1968 (((-85) $) 176 T ELT)) (-2253 (($ $) 85 T ELT)) (-2698 (((-585 |#4|) $) 73 T ELT)) (-1973 (((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-585 |#3|)) NIL T ELT)) (-1978 (((-85) |#4| $) 89 T ELT)) (-3915 (((-486) $ (-585 |#3|)) 134 T ELT) (((-486) $) 135 T ELT)) (-3950 (((-774) $) 174 T ELT) (($ (-585 |#4|)) 102 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1972 (($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3059 (((-85) $ $) 84 T ELT)) (-3842 (($ $ $) 109 T ELT)) (** (($ $ (-696)) 115 T ELT)) (* (($ $ $) 113 T ELT))) -(((-445 |#1| |#2| |#3| |#4|) (-13 (-1015) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-696))) (-15 -3842 ($ $ $)) (-15 -2412 ((-85) $)) (-15 -3191 ((-85) $)) (-15 -1978 ((-85) |#4| $)) (-15 -1977 ((-85) $ $)) (-15 -1976 ((-85) |#4| $)) (-15 -1975 ((-85) $ (-585 |#3|))) (-15 -1975 ((-85) $)) (-15 -3241 ($ $ $)) (-15 -3241 ($ (-585 $))) (-15 -1974 ($ $ $)) (-15 -1974 ($ $ |#4|)) (-15 -2253 ($ $)) (-15 -1973 ((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-585 |#3|))) (-15 -1972 ($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)))) (-15 -3915 ((-486) $ (-585 |#3|))) (-15 -3915 ((-486) $)) (-15 -1971 ($ $)) (-15 -1970 ($ (-585 |#4|))) (-15 -1969 ($ (-585 |#4|))) (-15 -1968 ((-85) $)) (-15 -2698 ((-585 |#4|) $)) (-15 -3950 ($ (-585 |#4|))) (-15 -1967 ($ $ |#4|)) (-15 -1967 ($ $ |#4| (-585 |#3|))) (IF (|has| |#3| (-555 (-1092))) (-15 -1966 ((-1082 (-585 (-859 |#1|)) (-585 (-249 (-859 |#1|)))) (-585 |#4|))) |%noBranch|))) (-312) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -445)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-3842 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (-2412 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-3191 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-1978 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6)))) (-1977 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-1976 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6)))) (-1975 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6)))) (-1975 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-3241 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-585 (-445 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-1974 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (-1974 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *2)) (-4 *2 (-863 *3 *4 *5)))) (-2253 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (-1973 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) (-5 *2 (-2 (|:| |mval| (-632 *4)) (|:| |invmval| (-632 *4)) (|:| |genIdeal| (-445 *4 *5 *6 *7)))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6)))) (-1972 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-632 *3)) (|:| |invmval| (-632 *3)) (|:| |genIdeal| (-445 *3 *4 *5 *6)))) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-3915 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) (-5 *2 (-486)) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6)))) (-3915 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-486)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-1971 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (-1970 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6)))) (-1969 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6)))) (-1968 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-2698 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *6)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6)))) (-1967 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *2)) (-4 *2 (-863 *3 *4 *5)))) (-1967 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) (-5 *1 (-445 *4 *5 *6 *2)) (-4 *2 (-863 *4 *5 *6)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *5 *6)) (-4 *6 (-555 (-1092))) (-4 *4 (-312)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1082 (-585 (-859 *4)) (-585 (-249 (-859 *4))))) (-5 *1 (-445 *4 *5 *6 *7))))) -((-1979 (((-85) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486))))) 178 T ELT)) (-1980 (((-85) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486))))) 179 T ELT)) (-1981 (((-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486))))) 129 T ELT)) (-3726 (((-85) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486))))) NIL T ELT)) (-1982 (((-585 (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486))))) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486))))) 181 T ELT)) (-1983 (((-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))) (-585 (-775 |#1|))) 197 T ELT))) -(((-446 |#1| |#2|) (-10 -7 (-15 -1979 ((-85) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))))) (-15 -1980 ((-85) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))))) (-15 -3726 ((-85) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))))) (-15 -1981 ((-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))))) (-15 -1982 ((-585 (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486))))) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))))) (-15 -1983 ((-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))) (-445 (-350 (-486)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-350 (-486)))) (-585 (-775 |#1|))))) (-585 (-1092)) (-696)) (T -446)) -((-1983 (*1 *2 *2 *3) (-12 (-5 *2 (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486))))) (-5 *3 (-585 (-775 *4))) (-14 *4 (-585 (-1092))) (-14 *5 (-696)) (-5 *1 (-446 *4 *5)))) (-1982 (*1 *2 *3) (-12 (-14 *4 (-585 (-1092))) (-14 *5 (-696)) (-5 *2 (-585 (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486)))))) (-5 *1 (-446 *4 *5)) (-5 *3 (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486))))))) (-1981 (*1 *2 *2) (-12 (-5 *2 (-445 (-350 (-486)) (-197 *4 (-696)) (-775 *3) (-206 *3 (-350 (-486))))) (-14 *3 (-585 (-1092))) (-14 *4 (-696)) (-5 *1 (-446 *3 *4)))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486))))) (-14 *4 (-585 (-1092))) (-14 *5 (-696)) (-5 *2 (-85)) (-5 *1 (-446 *4 *5)))) (-1980 (*1 *2 *3) (-12 (-5 *3 (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486))))) (-14 *4 (-585 (-1092))) (-14 *5 (-696)) (-5 *2 (-85)) (-5 *1 (-446 *4 *5)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486))))) (-14 *4 (-585 (-1092))) (-14 *5 (-696)) (-5 *2 (-85)) (-5 *1 (-446 *4 *5))))) -((-3803 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-447 |#1|) (-113) (-72)) (T -447)) -NIL -(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (-3059 (|f| |x| |x|) |x|)))))) -(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1984 (($) 6 T ELT)) (-3950 (((-774) $) 10 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 8 T ELT))) -(((-448) (-13 (-1015) (-10 -8 (-15 -1984 ($))))) (T -448)) -((-1984 (*1 *1) (-5 *1 (-448)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3777 (((-585 (-455 |#1| |#2|)) $) 10 T ELT)) (-1314 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2896 (($ |#1| |#2|) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3975 (($ (-585 (-455 |#1| |#2|))) 15 T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 20 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) 16 T ELT) (($ $ $) 36 T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 25 T ELT))) -(((-449 |#1| |#2|) (-13 (-21) (-451 |#1| |#2|)) (-21) (-761)) (T -449)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 16 T ELT)) (-3777 (((-585 (-455 |#1| |#2|)) $) 13 T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) 39 T ELT)) (-1216 (((-85) $ $) 44 T ELT)) (-2896 (($ |#1| |#2|) 36 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3177 ((|#1| $) 41 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3975 (($ (-585 (-455 |#1| |#2|))) 11 T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 12 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3842 (($ $ $) 30 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) 35 T ELT))) -(((-450 |#1| |#2|) (-13 (-23) (-451 |#1| |#2|)) (-23) (-761)) (T -450)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3777 (((-585 (-455 |#1| |#2|)) $) 17 T ELT)) (-3962 (($ $) 18 T ELT)) (-2896 (($ |#1| |#2|) 21 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-1985 ((|#2| $) 19 T ELT)) (-3177 ((|#1| $) 20 T ELT)) (-3245 (((-1075) $) 16 (-12 (|has| |#2| (-1015)) (|has| |#1| (-1015))) ELT)) (-3246 (((-1035) $) 15 (-12 (|has| |#2| (-1015)) (|has| |#1| (-1015))) ELT)) (-3975 (($ (-585 (-455 |#1| |#2|))) 22 T ELT)) (-3950 (((-774) $) 14 (-12 (|has| |#2| (-1015)) (|has| |#1| (-1015))) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) -(((-451 |#1| |#2|) (-113) (-72) (-761)) (T -451)) -((-2896 (*1 *1 *2 *3) (-12 (-4 *1 (-451 *2 *3)) (-4 *2 (-72)) (-4 *3 (-761)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-451 *2 *3)) (-4 *3 (-761)) (-4 *2 (-72)))) (-1985 (*1 *2 *1) (-12 (-4 *1 (-451 *3 *2)) (-4 *3 (-72)) (-4 *2 (-761)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-451 *2 *3)) (-4 *2 (-72)) (-4 *3 (-761)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-451 *3 *4)) (-4 *3 (-72)) (-4 *4 (-761)) (-5 *2 (-585 (-455 *3 *4)))))) -(-13 (-72) (-381 |t#1|) (-559 (-585 (-455 |t#1| |t#2|))) (-10 -8 (IF (|has| |t#1| (-1015)) (IF (|has| |t#2| (-1015)) (-6 (-1015)) |%noBranch|) |%noBranch|) (-15 -2896 ($ |t#1| |t#2|)) (-15 -3177 (|t#1| $)) (-15 -1985 (|t#2| $)) (-15 -3962 ($ $)) (-15 -3777 ((-585 (-455 |t#1| |t#2|)) $)))) -(((-72) . T) ((-554 (-774)) -12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ((-559 (-585 (-455 |#1| |#2|))) . T) ((-381 |#1|) . T) ((-13) . T) ((-1015) -12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3777 (((-585 (-455 |#1| |#2|)) $) 33 T ELT)) (-3962 (($ $) 28 T ELT)) (-2896 (($ |#1| |#2|) 24 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-1985 ((|#2| $) 32 T ELT)) (-3177 ((|#1| $) 31 T ELT)) (-3245 (((-1075) $) NIL (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-3246 (((-1035) $) NIL (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-3975 (($ (-585 (-455 |#1| |#2|))) 34 T ELT)) (-1986 (($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|)) 44 T ELT)) (-3950 (((-774) $) 18 (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 22 T ELT))) -(((-452 |#1| |#2|) (-13 (-451 |#1| |#2|) (-10 -8 (-15 -1986 ($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|))))) (-72) (-761)) (T -452)) -((-1986 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72)) (-5 *1 (-452 *4 *5)) (-4 *5 (-761))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3777 (((-585 (-455 |#1| |#2|)) $) 10 T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2896 (($ |#1| |#2|) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3975 (($ (-585 (-455 |#1| |#2|))) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 21 T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT))) -(((-453 |#1| |#2|) (-13 (-718) (-451 |#1| |#2|)) (-718) (-761)) (T -453)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3777 (((-585 (-455 |#1| |#2|)) $) NIL T ELT)) (-2486 (($ $ $) 24 T ELT)) (-1314 (((-3 $ "failed") $ $) 20 T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2896 (($ |#1| |#2|) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3975 (($ (-585 (-455 |#1| |#2|))) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT))) -(((-454 |#1| |#2|) (-13 (-719) (-451 |#1| |#2|)) (-719) (-758)) (T -454)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-1987 (($ |#2| |#1|) 9 T ELT)) (-2402 ((|#2| $) 11 T ELT)) (-3950 (((-784 |#2| |#1|) $) 14 T ELT)) (-3680 ((|#1| $) 13 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-455 |#1| |#2|) (-13 (-72) (-554 (-784 |#2| |#1|)) (-10 -8 (-15 -1987 ($ |#2| |#1|)) (-15 -2402 (|#2| $)) (-15 -3680 (|#1| $)))) (-72) (-761)) (T -455)) -((-1987 (*1 *1 *2 *3) (-12 (-5 *1 (-455 *3 *2)) (-4 *3 (-72)) (-4 *2 (-761)))) (-2402 (*1 *2 *1) (-12 (-4 *2 (-761)) (-5 *1 (-455 *3 *2)) (-4 *3 (-72)))) (-3680 (*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-455 *2 *3)) (-4 *3 (-761))))) -((-3771 (($ $ (-585 |#2|) (-585 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) -(((-456 |#1| |#2| |#3|) (-10 -7 (-15 -3771 (|#1| |#1| |#2| |#3|)) (-15 -3771 (|#1| |#1| (-585 |#2|) (-585 |#3|)))) (-457 |#2| |#3|) (-1015) (-1131)) (T -456)) -NIL -((-3771 (($ $ (-585 |#1|) (-585 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) -(((-457 |#1| |#2|) (-113) (-1015) (-1131)) (T -457)) -((-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 *5)) (-4 *1 (-457 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1131)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1131))))) -(-13 (-10 -8 (-15 -3771 ($ $ |t#1| |t#2|)) (-15 -3771 ($ $ (-585 |t#1|) (-585 |t#2|))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 17 T ELT)) (-3777 (((-585 (-2 (|:| |gen| |#1|) (|:| -3947 |#2|))) $) 19 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-696) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2301 ((|#1| $ (-486)) 24 T ELT)) (-1623 ((|#2| $ (-486)) 22 T ELT)) (-2292 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1621 (($ $ $) 55 (|has| |#2| (-718)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3680 ((|#2| |#1| $) 51 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 11 T CONST)) (-3059 (((-85) $ $) 30 T ELT)) (-3842 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) -(((-458 |#1| |#2| |#3|) (-274 |#1| |#2|) (-1015) (-104) |#2|) (T -458)) -NIL -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1037 |#1|)) (|has| |#1| (-758))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-1988 (((-85) (-85)) 32 T ELT)) (-3791 ((|#1| $ (-486) |#1|) 42 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 79 T ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-2370 (($ $) 83 (|has| |#1| (-72)) ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) 66 T ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) NIL T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) NIL T ELT) (((-486) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) NIL (|has| |#1| (-72)) ELT)) (-1989 (($ $ (-486)) 19 T ELT)) (-1990 (((-696) $) 13 T ELT)) (-3617 (($ (-696) |#1|) 31 T ELT)) (-2202 (((-486) $) 29 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 57 T ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) 28 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3612 (($ $ $ (-486)) 75 T ELT) (($ |#1| $ (-486)) 59 T ELT)) (-2306 (($ |#1| $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1991 (($ (-585 |#1|)) 43 T ELT)) (-3804 ((|#1| $) NIL (|has| (-486) (-758)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) 24 (|has| $ (-1037 |#1|)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 62 T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) 21 T ELT)) (-3803 ((|#1| $ (-486) |#1|) NIL T ELT) ((|#1| $ (-486)) 55 T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-1572 (($ $ (-1148 (-486))) 73 T ELT) (($ $ (-486)) 67 T ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-486)) 63 (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) 53 T ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) NIL T ELT)) (-3794 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3950 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3961 (((-696) $) 22 T ELT))) -(((-459 |#1| |#2|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1991 ($ (-585 |#1|))) (-15 -1990 ((-696) $)) (-15 -1989 ($ $ (-486))) (-15 -1988 ((-85) (-85))))) (-1131) (-486)) (T -459)) -((-1991 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-459 *3 *4)) (-14 *4 (-486)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-459 *3 *4)) (-4 *3 (-1131)) (-14 *4 (-486)))) (-1989 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-459 *3 *4)) (-4 *3 (-1131)) (-14 *4 *2))) (-1988 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-459 *3 *4)) (-4 *3 (-1131)) (-14 *4 (-486))))) -((-2571 (((-85) $ $) NIL T ELT)) (-1993 (((-1051) $) 12 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1992 (((-1051) $) 14 T ELT)) (-3926 (((-1051) $) 10 T ELT)) (-3950 (((-774) $) 20 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-460) (-13 (-997) (-10 -8 (-15 -3926 ((-1051) $)) (-15 -1993 ((-1051) $)) (-15 -1992 ((-1051) $))))) (T -460)) -((-3926 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-460)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-460)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-460))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3933 (((-696)) NIL T ELT)) (-3333 (((-519 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| (-519 |#1|) (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-519 |#1|) #1#) $) NIL T ELT)) (-3159 (((-519 |#1|) $) NIL T ELT)) (-1797 (($ (-1181 (-519 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-519 |#1|) (-320)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-519 |#1|) (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1681 (((-85) $) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1769 (($ $ (-696)) NIL (OR (|has| (-519 |#1|) (-118)) (|has| (-519 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-519 |#1|) (-118)) (|has| (-519 |#1|) (-320))) ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-832) $) NIL (|has| (-519 |#1|) (-320)) ELT) (((-745 (-832)) $) NIL (OR (|has| (-519 |#1|) (-118)) (|has| (-519 |#1|) (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| (-519 |#1|) (-320)) ELT)) (-2013 (((-85) $) NIL (|has| (-519 |#1|) (-320)) ELT)) (-3135 (((-519 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-519 |#1|) (-320)) ELT)) (-3448 (((-634 $) $) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 (-519 |#1|)) $) NIL T ELT) (((-1087 $) $ (-832)) NIL (|has| (-519 |#1|) (-320)) ELT)) (-2012 (((-832) $) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1628 (((-1087 (-519 |#1|)) $) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1627 (((-1087 (-519 |#1|)) $) NIL (|has| (-519 |#1|) (-320)) ELT) (((-3 (-1087 (-519 |#1|)) #1#) $ $) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1629 (($ $ (-1087 (-519 |#1|))) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-519 |#1|) (-320)) CONST)) (-2402 (($ (-832)) NIL (|has| (-519 |#1|) (-320)) ELT)) (-3935 (((-85) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($) NIL (|has| (-519 |#1|) (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| (-519 |#1|) (-320)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3934 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-696) $) NIL (|has| (-519 |#1|) (-320)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| (-519 |#1|) (-118)) (|has| (-519 |#1|) (-320))) ELT)) (-3915 (((-107)) NIL T ELT)) (-3761 (($ $ (-696)) NIL (|has| (-519 |#1|) (-320)) ELT) (($ $) NIL (|has| (-519 |#1|) (-320)) ELT)) (-3952 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3188 (((-1087 (-519 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-519 |#1|) (-320)) ELT)) (-1630 (($) NIL (|has| (-519 |#1|) (-320)) ELT)) (-3227 (((-1181 (-519 |#1|)) $) NIL T ELT) (((-632 (-519 |#1|)) (-1181 $)) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| (-519 |#1|) (-320)) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-519 |#1|)) NIL T ELT)) (-2705 (($ $) NIL (|has| (-519 |#1|) (-320)) ELT) (((-634 $) $) NIL (OR (|has| (-519 |#1|) (-118)) (|has| (-519 |#1|) (-320))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT) (((-1181 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3932 (($ $) NIL (|has| (-519 |#1|) (-320)) ELT) (($ $ (-696)) NIL (|has| (-519 |#1|) (-320)) ELT)) (-2672 (($ $ (-696)) NIL (|has| (-519 |#1|) (-320)) ELT) (($ $) NIL (|has| (-519 |#1|) (-320)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT) (($ $ (-519 |#1|)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ (-519 |#1|)) NIL T ELT) (($ (-519 |#1|) $) NIL T ELT))) -(((-461 |#1| |#2|) (-280 (-519 |#1|)) (-832) (-832)) (T -461)) -NIL -((-3112 ((|#4| |#4|) 38 T ELT)) (-3111 (((-696) |#4|) 45 T ELT)) (-3110 (((-696) |#4|) 46 T ELT)) (-3109 (((-585 |#3|) |#4|) 57 (|has| |#3| (-1037 |#1|)) ELT)) (-3593 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1994 ((|#4| |#4|) 61 T ELT)) (-3331 ((|#1| |#4|) 60 T ELT))) -(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3112 (|#4| |#4|)) (-15 -3111 ((-696) |#4|)) (-15 -3110 ((-696) |#4|)) (IF (|has| |#3| (-1037 |#1|)) (-15 -3109 ((-585 |#3|) |#4|)) |%noBranch|) (-15 -3331 (|#1| |#4|)) (-15 -1994 (|#4| |#4|)) (-15 -3593 ((-3 |#4| "failed") |#4|))) (-312) (-324 |#1|) (-324 |#1|) (-629 |#1| |#2| |#3|)) (T -462)) -((-3593 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-1994 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-3331 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-312)) (-5 *1 (-462 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) (-3109 (*1 *2 *3) (-12 (-4 *6 (-1037 *4)) (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-585 *6)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-696)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3111 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-696)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3112 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) -((-3112 ((|#8| |#4|) 20 T ELT)) (-3109 (((-585 |#3|) |#4|) 29 (|has| |#7| (-1037 |#5|)) ELT)) (-3593 (((-3 |#8| "failed") |#4|) 23 T ELT))) -(((-463 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3112 (|#8| |#4|)) (-15 -3593 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-1037 |#5|)) (-15 -3109 ((-585 |#3|) |#4|)) |%noBranch|)) (-497) (-324 |#1|) (-324 |#1|) (-629 |#1| |#2| |#3|) (-906 |#1|) (-324 |#5|) (-324 |#5|) (-629 |#5| |#6| |#7|)) (T -463)) -((-3109 (*1 *2 *3) (-12 (-4 *9 (-1037 *7)) (-4 *4 (-497)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-906 *4)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)) (-5 *2 (-585 *6)) (-5 *1 (-463 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-629 *4 *5 *6)) (-4 *10 (-629 *7 *8 *9)))) (-3593 (*1 *2 *3) (|partial| -12 (-4 *4 (-497)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-906 *4)) (-4 *2 (-629 *7 *8 *9)) (-5 *1 (-463 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-629 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)))) (-3112 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-906 *4)) (-4 *2 (-629 *7 *8 *9)) (-5 *1 (-463 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-629 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1995 (((-585 (-1132)) $) 14 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 20 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT) (($ (-585 (-1132))) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-464) (-13 (-997) (-10 -8 (-15 -3950 ($ (-585 (-1132)))) (-15 -1995 ((-585 (-1132)) $))))) (T -464)) -((-3950 (*1 *1 *2) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-464)))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-464))))) -((-2571 (((-85) $ $) NIL T ELT)) (-1996 (((-1051) $) 15 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3453 (((-448) $) 12 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 22 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-465) (-13 (-997) (-10 -8 (-15 -3453 ((-448) $)) (-15 -1996 ((-1051) $))))) (T -465)) -((-3453 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-465)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-465))))) -((-2002 (((-634 (-1140)) $) 15 T ELT)) (-1998 (((-634 (-1138)) $) 38 T ELT)) (-2000 (((-634 (-1137)) $) 29 T ELT)) (-2003 (((-634 (-490)) $) 12 T ELT)) (-1999 (((-634 (-488)) $) 42 T ELT)) (-2001 (((-634 (-487)) $) 33 T ELT)) (-1997 (((-696) $ (-102)) 54 T ELT))) -(((-466 |#1|) (-10 -7 (-15 -1997 ((-696) |#1| (-102))) (-15 -1998 ((-634 (-1138)) |#1|)) (-15 -1999 ((-634 (-488)) |#1|)) (-15 -2000 ((-634 (-1137)) |#1|)) (-15 -2001 ((-634 (-487)) |#1|)) (-15 -2002 ((-634 (-1140)) |#1|)) (-15 -2003 ((-634 (-490)) |#1|))) (-467)) (T -466)) -NIL -((-2002 (((-634 (-1140)) $) 12 T ELT)) (-1998 (((-634 (-1138)) $) 8 T ELT)) (-2000 (((-634 (-1137)) $) 10 T ELT)) (-2003 (((-634 (-490)) $) 13 T ELT)) (-1999 (((-634 (-488)) $) 9 T ELT)) (-2001 (((-634 (-487)) $) 11 T ELT)) (-1997 (((-696) $ (-102)) 7 T ELT)) (-2004 (((-634 (-101)) $) 14 T ELT)) (-1701 (($ $) 6 T ELT))) -(((-467) (-113)) (T -467)) -((-2004 (*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-101))))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-490))))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-1140))))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-487))))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-1137))))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-488))))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-1138))))) (-1997 (*1 *2 *1 *3) (-12 (-4 *1 (-467)) (-5 *3 (-102)) (-5 *2 (-696))))) -(-13 (-147) (-10 -8 (-15 -2004 ((-634 (-101)) $)) (-15 -2003 ((-634 (-490)) $)) (-15 -2002 ((-634 (-1140)) $)) (-15 -2001 ((-634 (-487)) $)) (-15 -2000 ((-634 (-1137)) $)) (-15 -1999 ((-634 (-488)) $)) (-15 -1998 ((-634 (-1138)) $)) (-15 -1997 ((-696) $ (-102))))) -(((-147) . T)) -((-2007 (((-1087 |#1|) (-696)) 114 T ELT)) (-3333 (((-1181 |#1|) (-1181 |#1|) (-832)) 107 T ELT)) (-2005 (((-1187) (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))) |#1|) 122 T ELT)) (-2009 (((-1181 |#1|) (-1181 |#1|) (-696)) 53 T ELT)) (-2997 (((-1181 |#1|) (-832)) 109 T ELT)) (-2011 (((-1181 |#1|) (-1181 |#1|) (-486)) 30 T ELT)) (-2006 (((-1087 |#1|) (-1181 |#1|)) 115 T ELT)) (-2015 (((-1181 |#1|) (-832)) 136 T ELT)) (-2013 (((-85) (-1181 |#1|)) 119 T ELT)) (-3135 (((-1181 |#1|) (-1181 |#1|) (-832)) 99 T ELT)) (-2016 (((-1087 |#1|) (-1181 |#1|)) 130 T ELT)) (-2012 (((-832) (-1181 |#1|)) 95 T ELT)) (-2487 (((-1181 |#1|) (-1181 |#1|)) 38 T ELT)) (-2402 (((-1181 |#1|) (-832) (-832)) 139 T ELT)) (-2010 (((-1181 |#1|) (-1181 |#1|) (-1035) (-1035)) 29 T ELT)) (-2008 (((-1181 |#1|) (-1181 |#1|) (-696) (-1035)) 54 T ELT)) (-2014 (((-1181 (-1181 |#1|)) (-832)) 135 T ELT)) (-3953 (((-1181 |#1|) (-1181 |#1|) (-1181 |#1|)) 120 T ELT)) (** (((-1181 |#1|) (-1181 |#1|) (-486)) 67 T ELT)) (* (((-1181 |#1|) (-1181 |#1|) (-1181 |#1|)) 31 T ELT))) -(((-468 |#1|) (-10 -7 (-15 -2005 ((-1187) (-1181 (-585 (-2 (|:| -3405 |#1|) (|:| -2402 (-1035))))) |#1|)) (-15 -2997 ((-1181 |#1|) (-832))) (-15 -2402 ((-1181 |#1|) (-832) (-832))) (-15 -2006 ((-1087 |#1|) (-1181 |#1|))) (-15 -2007 ((-1087 |#1|) (-696))) (-15 -2008 ((-1181 |#1|) (-1181 |#1|) (-696) (-1035))) (-15 -2009 ((-1181 |#1|) (-1181 |#1|) (-696))) (-15 -2010 ((-1181 |#1|) (-1181 |#1|) (-1035) (-1035))) (-15 -2011 ((-1181 |#1|) (-1181 |#1|) (-486))) (-15 ** ((-1181 |#1|) (-1181 |#1|) (-486))) (-15 * ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -3953 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -3135 ((-1181 |#1|) (-1181 |#1|) (-832))) (-15 -3333 ((-1181 |#1|) (-1181 |#1|) (-832))) (-15 -2487 ((-1181 |#1|) (-1181 |#1|))) (-15 -2012 ((-832) (-1181 |#1|))) (-15 -2013 ((-85) (-1181 |#1|))) (-15 -2014 ((-1181 (-1181 |#1|)) (-832))) (-15 -2015 ((-1181 |#1|) (-832))) (-15 -2016 ((-1087 |#1|) (-1181 |#1|)))) (-299)) (T -468)) -((-2016 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-299)) (-5 *2 (-1087 *4)) (-5 *1 (-468 *4)))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1181 *4)) (-5 *1 (-468 *4)) (-4 *4 (-299)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1181 (-1181 *4))) (-5 *1 (-468 *4)) (-4 *4 (-299)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-468 *4)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-299)) (-5 *2 (-832)) (-5 *1 (-468 *4)))) (-2487 (*1 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-299)) (-5 *1 (-468 *3)))) (-3333 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-832)) (-4 *4 (-299)) (-5 *1 (-468 *4)))) (-3135 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-832)) (-4 *4 (-299)) (-5 *1 (-468 *4)))) (-3953 (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-299)) (-5 *1 (-468 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-299)) (-5 *1 (-468 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-486)) (-4 *4 (-299)) (-5 *1 (-468 *4)))) (-2011 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-486)) (-4 *4 (-299)) (-5 *1 (-468 *4)))) (-2010 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1035)) (-4 *4 (-299)) (-5 *1 (-468 *4)))) (-2009 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-468 *4)))) (-2008 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1181 *5)) (-5 *3 (-696)) (-5 *4 (-1035)) (-4 *5 (-299)) (-5 *1 (-468 *5)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1087 *4)) (-5 *1 (-468 *4)) (-4 *4 (-299)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-299)) (-5 *2 (-1087 *4)) (-5 *1 (-468 *4)))) (-2402 (*1 *2 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1181 *4)) (-5 *1 (-468 *4)) (-4 *4 (-299)))) (-2997 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1181 *4)) (-5 *1 (-468 *4)) (-4 *4 (-299)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) (-4 *4 (-299)) (-5 *2 (-1187)) (-5 *1 (-468 *4))))) -((-2002 (((-634 (-1140)) $) NIL T ELT)) (-1998 (((-634 (-1138)) $) NIL T ELT)) (-2000 (((-634 (-1137)) $) NIL T ELT)) (-2003 (((-634 (-490)) $) NIL T ELT)) (-1999 (((-634 (-488)) $) NIL T ELT)) (-2001 (((-634 (-487)) $) NIL T ELT)) (-1997 (((-696) $ (-102)) NIL T ELT)) (-2004 (((-634 (-101)) $) 26 T ELT)) (-2017 (((-1035) $ (-1035)) 31 T ELT)) (-3422 (((-1035) $) 30 T ELT)) (-2561 (((-85) $) 20 T ELT)) (-2019 (($ (-338)) 14 T ELT) (($ (-1075)) 16 T ELT)) (-2018 (((-85) $) 27 T ELT)) (-3950 (((-774) $) 34 T ELT)) (-1701 (($ $) 28 T ELT))) -(((-469) (-13 (-467) (-554 (-774)) (-10 -8 (-15 -2019 ($ (-338))) (-15 -2019 ($ (-1075))) (-15 -2018 ((-85) $)) (-15 -2561 ((-85) $)) (-15 -3422 ((-1035) $)) (-15 -2017 ((-1035) $ (-1035)))))) (T -469)) -((-2019 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-469)))) (-2019 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-469)))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-469)))) (-2561 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-469)))) (-3422 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-469)))) (-2017 (*1 *2 *1 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-469))))) -((-2021 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2020 (((-1 |#1| |#1|)) 10 T ELT))) -(((-470 |#1|) (-10 -7 (-15 -2020 ((-1 |#1| |#1|))) (-15 -2021 ((-1 |#1| |#1|) |#1|))) (-13 (-665) (-25))) (T -470)) -((-2021 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-470 *3)) (-4 *3 (-13 (-665) (-25))))) (-2020 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-470 *3)) (-4 *3 (-13 (-665) (-25)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3777 (((-585 (-455 (-696) |#1|)) $) NIL T ELT)) (-2486 (($ $ $) NIL T ELT)) (-1314 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2896 (($ (-696) |#1|) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3846 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-1985 ((|#1| $) NIL T ELT)) (-3177 (((-696) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3975 (($ (-585 (-455 (-696) |#1|))) NIL T ELT)) (-3950 (((-774) $) 28 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT))) -(((-471 |#1|) (-13 (-719) (-451 (-696) |#1|)) (-758)) (T -471)) -NIL -((-2023 (((-585 |#2|) (-1087 |#1|) |#3|) 98 T ELT)) (-2024 (((-585 (-2 (|:| |outval| |#2|) (|:| |outmult| (-486)) (|:| |outvect| (-585 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-348 (-1087 |#1|)) (-1087 |#1|))) 114 T ELT)) (-2022 (((-1087 |#1|) (-632 |#1|)) 110 T ELT))) -(((-472 |#1| |#2| |#3|) (-10 -7 (-15 -2022 ((-1087 |#1|) (-632 |#1|))) (-15 -2023 ((-585 |#2|) (-1087 |#1|) |#3|)) (-15 -2024 ((-585 (-2 (|:| |outval| |#2|) (|:| |outmult| (-486)) (|:| |outvect| (-585 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-348 (-1087 |#1|)) (-1087 |#1|))))) (-312) (-312) (-13 (-312) (-757))) (T -472)) -((-2024 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *6)) (-5 *5 (-1 (-348 (-1087 *6)) (-1087 *6))) (-4 *6 (-312)) (-5 *2 (-585 (-2 (|:| |outval| *7) (|:| |outmult| (-486)) (|:| |outvect| (-585 (-632 *7)))))) (-5 *1 (-472 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-757))))) (-2023 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *5)) (-4 *5 (-312)) (-5 *2 (-585 *6)) (-5 *1 (-472 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-757))))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-632 *4)) (-4 *4 (-312)) (-5 *2 (-1087 *4)) (-5 *1 (-472 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-757)))))) -((-2558 (((-634 (-1140)) $ (-1140)) NIL T ELT)) (-2559 (((-634 (-490)) $ (-490)) NIL T ELT)) (-2557 (((-696) $ (-102)) 39 T ELT)) (-2560 (((-634 (-101)) $ (-101)) 40 T ELT)) (-2002 (((-634 (-1140)) $) NIL T ELT)) (-1998 (((-634 (-1138)) $) NIL T ELT)) (-2000 (((-634 (-1137)) $) NIL T ELT)) (-2003 (((-634 (-490)) $) NIL T ELT)) (-1999 (((-634 (-488)) $) NIL T ELT)) (-2001 (((-634 (-487)) $) NIL T ELT)) (-1997 (((-696) $ (-102)) 35 T ELT)) (-2004 (((-634 (-101)) $) 37 T ELT)) (-2442 (((-85) $) 27 T ELT)) (-2443 (((-634 $) (-517) (-867)) 18 T ELT) (((-634 $) (-432) (-867)) 24 T ELT)) (-3950 (((-774) $) 48 T ELT)) (-1701 (($ $) 42 T ELT))) -(((-473) (-13 (-693 (-517)) (-554 (-774)) (-10 -8 (-15 -2443 ((-634 $) (-432) (-867)))))) (T -473)) -((-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-432)) (-5 *4 (-867)) (-5 *2 (-634 (-473))) (-5 *1 (-473))))) -((-2530 (((-752 (-486))) 12 T ELT)) (-2529 (((-752 (-486))) 14 T ELT)) (-2517 (((-745 (-486))) 9 T ELT))) -(((-474) (-10 -7 (-15 -2517 ((-745 (-486)))) (-15 -2530 ((-752 (-486)))) (-15 -2529 ((-752 (-486)))))) (T -474)) -((-2529 (*1 *2) (-12 (-5 *2 (-752 (-486))) (-5 *1 (-474)))) (-2530 (*1 *2) (-12 (-5 *2 (-752 (-486))) (-5 *1 (-474)))) (-2517 (*1 *2) (-12 (-5 *2 (-745 (-486))) (-5 *1 (-474))))) -((-2571 (((-85) $ $) NIL T ELT)) (-2028 (((-1075) $) 55 T ELT)) (-3263 (((-85) $) 51 T ELT)) (-3259 (((-1092) $) 52 T ELT)) (-3264 (((-85) $) 49 T ELT)) (-3538 (((-1075) $) 50 T ELT)) (-2027 (($ (-1075)) 56 T ELT)) (-3266 (((-85) $) NIL T ELT)) (-3268 (((-85) $) NIL T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2030 (($ $ (-585 (-1092))) 21 T ELT)) (-2033 (((-51) $) 23 T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3258 (((-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2385 (($ $ (-585 (-1092)) (-1092)) 73 T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3257 (((-179) $) NIL T ELT)) (-2029 (($ $) 44 T ELT)) (-3256 (((-774) $) NIL T ELT)) (-3269 (((-85) $ $) NIL T ELT)) (-3803 (($ $ (-486)) NIL T ELT) (($ $ (-585 (-486))) NIL T ELT)) (-3260 (((-585 $) $) 30 T ELT)) (-2026 (((-1092) (-585 $)) 57 T ELT)) (-3975 (($ (-1075)) NIL T ELT) (($ (-1092)) 19 T ELT) (($ (-486)) 8 T ELT) (($ (-179)) 28 T ELT) (($ (-774)) NIL T ELT) (($ (-585 $)) 65 T ELT) (((-1017) $) 12 T ELT) (($ (-1017)) 13 T ELT)) (-2025 (((-1092) (-1092) (-585 $)) 60 T ELT)) (-3950 (((-774) $) 54 T ELT)) (-3254 (($ $) 59 T ELT)) (-3255 (($ $) 58 T ELT)) (-2031 (($ $ (-585 $)) 66 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3267 (((-85) $) 29 T ELT)) (-2663 (($) 9 T CONST)) (-2669 (($) 11 T CONST)) (-3059 (((-85) $ $) 74 T ELT)) (-3953 (($ $ $) 82 T ELT)) (-3842 (($ $ $) 75 T ELT)) (** (($ $ (-696)) 81 T ELT) (($ $ (-486)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3961 (((-486) $) NIL T ELT))) -(((-475) (-13 (-1018 (-1075) (-1092) (-486) (-179) (-774)) (-555 (-1017)) (-10 -8 (-15 -2033 ((-51) $)) (-15 -3975 ($ (-1017))) (-15 -2031 ($ $ (-585 $))) (-15 -2385 ($ $ (-585 (-1092)) (-1092))) (-15 -2030 ($ $ (-585 (-1092)))) (-15 -3842 ($ $ $)) (-15 * ($ $ $)) (-15 -3953 ($ $ $)) (-15 ** ($ $ (-696))) (-15 ** ($ $ (-486))) (-15 -2663 ($) -3956) (-15 -2669 ($) -3956) (-15 -2029 ($ $)) (-15 -2028 ((-1075) $)) (-15 -2027 ($ (-1075))) (-15 -2026 ((-1092) (-585 $))) (-15 -2025 ((-1092) (-1092) (-585 $)))))) (T -475)) -((-2033 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-475)))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-475)))) (-2031 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-475))) (-5 *1 (-475)))) (-2385 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-1092)) (-5 *1 (-475)))) (-2030 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-475)))) (-3842 (*1 *1 *1 *1) (-5 *1 (-475))) (* (*1 *1 *1 *1) (-5 *1 (-475))) (-3953 (*1 *1 *1 *1) (-5 *1 (-475))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-475)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-475)))) (-2663 (*1 *1) (-5 *1 (-475))) (-2669 (*1 *1) (-5 *1 (-475))) (-2029 (*1 *1 *1) (-5 *1 (-475))) (-2028 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-475)))) (-2027 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-475)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-585 (-475))) (-5 *2 (-1092)) (-5 *1 (-475)))) (-2025 (*1 *2 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-585 (-475))) (-5 *1 (-475))))) -((-2032 (((-475) (-1092)) 15 T ELT)) (-2033 ((|#1| (-475)) 20 T ELT))) -(((-476 |#1|) (-10 -7 (-15 -2032 ((-475) (-1092))) (-15 -2033 (|#1| (-475)))) (-1131)) (T -476)) -((-2033 (*1 *2 *3) (-12 (-5 *3 (-475)) (-5 *1 (-476 *2)) (-4 *2 (-1131)))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-475)) (-5 *1 (-476 *4)) (-4 *4 (-1131))))) -((-3456 ((|#2| |#2|) 17 T ELT)) (-3454 ((|#2| |#2|) 13 T ELT)) (-3457 ((|#2| |#2| (-486) (-486)) 20 T ELT)) (-3455 ((|#2| |#2|) 15 T ELT))) -(((-477 |#1| |#2|) (-10 -7 (-15 -3454 (|#2| |#2|)) (-15 -3455 (|#2| |#2|)) (-15 -3456 (|#2| |#2|)) (-15 -3457 (|#2| |#2| (-486) (-486)))) (-13 (-497) (-120)) (-1174 |#1|)) (T -477)) -((-3457 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-486)) (-4 *4 (-13 (-497) (-120))) (-5 *1 (-477 *4 *2)) (-4 *2 (-1174 *4)))) (-3456 (*1 *2 *2) (-12 (-4 *3 (-13 (-497) (-120))) (-5 *1 (-477 *3 *2)) (-4 *2 (-1174 *3)))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-13 (-497) (-120))) (-5 *1 (-477 *3 *2)) (-4 *2 (-1174 *3)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-497) (-120))) (-5 *1 (-477 *3 *2)) (-4 *2 (-1174 *3))))) -((-2036 (((-585 (-249 (-859 |#2|))) (-585 |#2|) (-585 (-1092))) 32 T ELT)) (-2034 (((-585 |#2|) (-859 |#1|) |#3|) 54 T ELT) (((-585 |#2|) (-1087 |#1|) |#3|) 53 T ELT)) (-2035 (((-585 (-585 |#2|)) (-585 (-859 |#1|)) (-585 (-859 |#1|)) (-585 (-1092)) |#3|) 106 T ELT))) -(((-478 |#1| |#2| |#3|) (-10 -7 (-15 -2034 ((-585 |#2|) (-1087 |#1|) |#3|)) (-15 -2034 ((-585 |#2|) (-859 |#1|) |#3|)) (-15 -2035 ((-585 (-585 |#2|)) (-585 (-859 |#1|)) (-585 (-859 |#1|)) (-585 (-1092)) |#3|)) (-15 -2036 ((-585 (-249 (-859 |#2|))) (-585 |#2|) (-585 (-1092))))) (-393) (-312) (-13 (-312) (-757))) (T -478)) -((-2036 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-1092))) (-4 *6 (-312)) (-5 *2 (-585 (-249 (-859 *6)))) (-5 *1 (-478 *5 *6 *7)) (-4 *5 (-393)) (-4 *7 (-13 (-312) (-757))))) (-2035 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-585 (-859 *6))) (-5 *4 (-585 (-1092))) (-4 *6 (-393)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-478 *6 *7 *5)) (-4 *7 (-312)) (-4 *5 (-13 (-312) (-757))))) (-2034 (*1 *2 *3 *4) (-12 (-5 *3 (-859 *5)) (-4 *5 (-393)) (-5 *2 (-585 *6)) (-5 *1 (-478 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-757))))) (-2034 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *5)) (-4 *5 (-393)) (-5 *2 (-585 *6)) (-5 *1 (-478 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-757)))))) -((-2039 ((|#2| |#2| |#1|) 17 T ELT)) (-2037 ((|#2| (-585 |#2|)) 30 T ELT)) (-2038 ((|#2| (-585 |#2|)) 51 T ELT))) -(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2037 (|#2| (-585 |#2|))) (-15 -2038 (|#2| (-585 |#2|))) (-15 -2039 (|#2| |#2| |#1|))) (-258) (-1157 |#1|) |#1| (-1 |#1| |#1| (-696))) (T -479)) -((-2039 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-696))) (-5 *1 (-479 *3 *2 *4 *5)) (-4 *2 (-1157 *3)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-479 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-696))))) (-2037 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-479 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-696)))))) -((-3735 (((-348 (-1087 |#4|)) (-1087 |#4|) (-1 (-348 (-1087 |#3|)) (-1087 |#3|))) 90 T ELT) (((-348 |#4|) |#4| (-1 (-348 (-1087 |#3|)) (-1087 |#3|))) 213 T ELT))) -(((-480 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3735 ((-348 |#4|) |#4| (-1 (-348 (-1087 |#3|)) (-1087 |#3|)))) (-15 -3735 ((-348 (-1087 |#4|)) (-1087 |#4|) (-1 (-348 (-1087 |#3|)) (-1087 |#3|))))) (-758) (-719) (-13 (-258) (-120)) (-863 |#3| |#2| |#1|)) (T -480)) -((-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 (-1087 *7)) (-1087 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-758)) (-4 *6 (-719)) (-4 *8 (-863 *7 *6 *5)) (-5 *2 (-348 (-1087 *8))) (-5 *1 (-480 *5 *6 *7 *8)) (-5 *3 (-1087 *8)))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 (-1087 *7)) (-1087 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-758)) (-4 *6 (-719)) (-5 *2 (-348 *3)) (-5 *1 (-480 *5 *6 *7 *3)) (-4 *3 (-863 *7 *6 *5))))) -((-3456 ((|#4| |#4|) 74 T ELT)) (-3454 ((|#4| |#4|) 70 T ELT)) (-3457 ((|#4| |#4| (-486) (-486)) 76 T ELT)) (-3455 ((|#4| |#4|) 72 T ELT))) -(((-481 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3454 (|#4| |#4|)) (-15 -3455 (|#4| |#4|)) (-15 -3456 (|#4| |#4|)) (-15 -3457 (|#4| |#4| (-486) (-486)))) (-13 (-312) (-320) (-555 (-486))) (-1157 |#1|) (-663 |#1| |#2|) (-1174 |#3|)) (T -481)) -((-3457 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-486)) (-4 *4 (-13 (-312) (-320) (-555 *3))) (-4 *5 (-1157 *4)) (-4 *6 (-663 *4 *5)) (-5 *1 (-481 *4 *5 *6 *2)) (-4 *2 (-1174 *6)))) (-3456 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-4 *4 (-1157 *3)) (-4 *5 (-663 *3 *4)) (-5 *1 (-481 *3 *4 *5 *2)) (-4 *2 (-1174 *5)))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-4 *4 (-1157 *3)) (-4 *5 (-663 *3 *4)) (-5 *1 (-481 *3 *4 *5 *2)) (-4 *2 (-1174 *5)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-4 *4 (-1157 *3)) (-4 *5 (-663 *3 *4)) (-5 *1 (-481 *3 *4 *5 *2)) (-4 *2 (-1174 *5))))) -((-3456 ((|#2| |#2|) 27 T ELT)) (-3454 ((|#2| |#2|) 23 T ELT)) (-3457 ((|#2| |#2| (-486) (-486)) 29 T ELT)) (-3455 ((|#2| |#2|) 25 T ELT))) -(((-482 |#1| |#2|) (-10 -7 (-15 -3454 (|#2| |#2|)) (-15 -3455 (|#2| |#2|)) (-15 -3456 (|#2| |#2|)) (-15 -3457 (|#2| |#2| (-486) (-486)))) (-13 (-312) (-320) (-555 (-486))) (-1174 |#1|)) (T -482)) -((-3457 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-486)) (-4 *4 (-13 (-312) (-320) (-555 *3))) (-5 *1 (-482 *4 *2)) (-4 *2 (-1174 *4)))) (-3456 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-5 *1 (-482 *3 *2)) (-4 *2 (-1174 *3)))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-5 *1 (-482 *3 *2)) (-4 *2 (-1174 *3)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-5 *1 (-482 *3 *2)) (-4 *2 (-1174 *3))))) -((-2040 (((-3 (-486) #1="failed") |#2| |#1| (-1 (-3 (-486) #1#) |#1|)) 18 T ELT) (((-3 (-486) #1#) |#2| |#1| (-486) (-1 (-3 (-486) #1#) |#1|)) 14 T ELT) (((-3 (-486) #1#) |#2| (-486) (-1 (-3 (-486) #1#) |#1|)) 30 T ELT))) -(((-483 |#1| |#2|) (-10 -7 (-15 -2040 ((-3 (-486) #1="failed") |#2| (-486) (-1 (-3 (-486) #1#) |#1|))) (-15 -2040 ((-3 (-486) #1#) |#2| |#1| (-486) (-1 (-3 (-486) #1#) |#1|))) (-15 -2040 ((-3 (-486) #1#) |#2| |#1| (-1 (-3 (-486) #1#) |#1|)))) (-963) (-1157 |#1|)) (T -483)) -((-2040 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-486) #1="failed") *4)) (-4 *4 (-963)) (-5 *2 (-486)) (-5 *1 (-483 *4 *3)) (-4 *3 (-1157 *4)))) (-2040 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-486) #1#) *4)) (-4 *4 (-963)) (-5 *2 (-486)) (-5 *1 (-483 *4 *3)) (-4 *3 (-1157 *4)))) (-2040 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-486) #1#) *5)) (-4 *5 (-963)) (-5 *2 (-486)) (-5 *1 (-483 *5 *3)) (-4 *3 (-1157 *5))))) -((-2049 (($ $ $) 87 T ELT)) (-3974 (((-348 $) $) 50 T ELT)) (-3160 (((-3 (-486) #1="failed") $) 62 T ELT)) (-3159 (((-486) $) 40 T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) 80 T ELT)) (-3026 (((-85) $) 24 T ELT)) (-3025 (((-350 (-486)) $) 78 T ELT)) (-3726 (((-85) $) 53 T ELT)) (-2042 (($ $ $ $) 94 T ELT)) (-1370 (($ $ $) 60 T ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 75 T ELT)) (-3448 (((-634 $) $) 70 T ELT)) (-2046 (($ $) 22 T ELT)) (-2041 (($ $ $) 92 T ELT)) (-3449 (($) 63 T CONST)) (-1368 (($ $) 56 T ELT)) (-3735 (((-348 $) $) 48 T ELT)) (-2677 (((-85) $) 15 T ELT)) (-1608 (((-696) $) 30 T ELT)) (-3761 (($ $) 11 T ELT) (($ $ (-696)) NIL T ELT)) (-3403 (($ $) 16 T ELT)) (-3975 (((-486) $) NIL T ELT) (((-475) $) 39 T ELT) (((-802 (-486)) $) 43 T ELT) (((-330) $) 33 T ELT) (((-179) $) 36 T ELT)) (-3129 (((-696)) 9 T CONST)) (-2051 (((-85) $ $) 19 T ELT)) (-3104 (($ $ $) 58 T ELT))) -(((-484 |#1|) (-10 -7 (-15 -2041 (|#1| |#1| |#1|)) (-15 -2042 (|#1| |#1| |#1| |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -3403 (|#1| |#1|)) (-15 -3027 ((-3 (-350 (-486)) #1="failed") |#1|)) (-15 -3025 ((-350 (-486)) |#1|)) (-15 -3026 ((-85) |#1|)) (-15 -2049 (|#1| |#1| |#1|)) (-15 -2051 ((-85) |#1| |#1|)) (-15 -2677 ((-85) |#1|)) (-15 -3449 (|#1|) -3956) (-15 -3448 ((-634 |#1|) |#1|)) (-15 -3975 ((-179) |#1|)) (-15 -3975 ((-330) |#1|)) (-15 -1370 (|#1| |#1| |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -3104 (|#1| |#1| |#1|)) (-15 -2799 ((-800 (-486) |#1|) |#1| (-802 (-486)) (-800 (-486) |#1|))) (-15 -3975 ((-802 (-486)) |#1|)) (-15 -3975 ((-475) |#1|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3975 ((-486) |#1|)) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1|)) (-15 -1608 ((-696) |#1|)) (-15 -3735 ((-348 |#1|) |#1|)) (-15 -3974 ((-348 |#1|) |#1|)) (-15 -3726 ((-85) |#1|)) (-15 -3129 ((-696)) -3956)) (-485)) (T -484)) -((-3129 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-484 *3)) (-4 *3 (-485))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-2049 (($ $ $) 102 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-2044 (($ $ $ $) 91 T ELT)) (-3778 (($ $) 66 T ELT)) (-3974 (((-348 $) $) 67 T ELT)) (-1609 (((-85) $ $) 145 T ELT)) (-3626 (((-486) $) 134 T ELT)) (-2444 (($ $ $) 105 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-486) "failed") $) 126 T ELT)) (-3159 (((-486) $) 127 T ELT)) (-2567 (($ $ $) 149 T ELT)) (-2281 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 124 T ELT) (((-632 (-486)) (-632 $)) 123 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3027 (((-3 (-350 (-486)) "failed") $) 99 T ELT)) (-3026 (((-85) $) 101 T ELT)) (-3025 (((-350 (-486)) $) 100 T ELT)) (-2997 (($) 98 T ELT) (($ $) 97 T ELT)) (-2566 (($ $ $) 148 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 143 T ELT)) (-3726 (((-85) $) 68 T ELT)) (-2042 (($ $ $ $) 89 T ELT)) (-2050 (($ $ $) 103 T ELT)) (-3189 (((-85) $) 136 T ELT)) (-1370 (($ $ $) 114 T ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 117 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2676 (((-85) $) 109 T ELT)) (-3448 (((-634 $) $) 111 T ELT)) (-3190 (((-85) $) 135 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 152 T ELT)) (-2043 (($ $ $ $) 90 T ELT)) (-2534 (($ $ $) 142 T ELT)) (-2860 (($ $ $) 141 T ELT)) (-2046 (($ $) 93 T ELT)) (-3836 (($ $) 106 T ELT)) (-2282 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 122 T ELT) (((-632 (-486)) (-1181 $)) 121 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2041 (($ $ $) 88 T ELT)) (-3449 (($) 110 T CONST)) (-2048 (($ $) 95 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-1368 (($ $) 115 T ELT)) (-3735 (((-348 $) $) 65 T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 151 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 150 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 144 T ELT)) (-2677 (((-85) $) 108 T ELT)) (-1608 (((-696) $) 146 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 147 T ELT)) (-3761 (($ $) 132 T ELT) (($ $ (-696)) 130 T ELT)) (-2047 (($ $) 94 T ELT)) (-3403 (($ $) 96 T ELT)) (-3975 (((-486) $) 128 T ELT) (((-475) $) 119 T ELT) (((-802 (-486)) $) 118 T ELT) (((-330) $) 113 T ELT) (((-179) $) 112 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-486)) 125 T ELT)) (-3129 (((-696)) 40 T CONST)) (-2051 (((-85) $ $) 104 T ELT)) (-3104 (($ $ $) 116 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2697 (($) 107 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2045 (($ $ $ $) 92 T ELT)) (-3386 (($ $) 133 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $) 131 T ELT) (($ $ (-696)) 129 T ELT)) (-2569 (((-85) $ $) 140 T ELT)) (-2570 (((-85) $ $) 138 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 139 T ELT)) (-2688 (((-85) $ $) 137 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-486) $) 120 T ELT))) -(((-485) (-113)) (T -485)) -((-2676 (*1 *2 *1) (-12 (-4 *1 (-485)) (-5 *2 (-85)))) (-2677 (*1 *2 *1) (-12 (-4 *1 (-485)) (-5 *2 (-85)))) (-2697 (*1 *1) (-4 *1 (-485))) (-3836 (*1 *1 *1) (-4 *1 (-485))) (-2444 (*1 *1 *1 *1) (-4 *1 (-485))) (-2051 (*1 *2 *1 *1) (-12 (-4 *1 (-485)) (-5 *2 (-85)))) (-2050 (*1 *1 *1 *1) (-4 *1 (-485))) (-2049 (*1 *1 *1 *1) (-4 *1 (-485))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-485)) (-5 *2 (-85)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-485)) (-5 *2 (-350 (-486))))) (-3027 (*1 *2 *1) (|partial| -12 (-4 *1 (-485)) (-5 *2 (-350 (-486))))) (-2997 (*1 *1) (-4 *1 (-485))) (-2997 (*1 *1 *1) (-4 *1 (-485))) (-3403 (*1 *1 *1) (-4 *1 (-485))) (-2048 (*1 *1 *1) (-4 *1 (-485))) (-2047 (*1 *1 *1) (-4 *1 (-485))) (-2046 (*1 *1 *1) (-4 *1 (-485))) (-2045 (*1 *1 *1 *1 *1) (-4 *1 (-485))) (-2044 (*1 *1 *1 *1 *1) (-4 *1 (-485))) (-2043 (*1 *1 *1 *1 *1) (-4 *1 (-485))) (-2042 (*1 *1 *1 *1 *1) (-4 *1 (-485))) (-2041 (*1 *1 *1 *1) (-4 *1 (-485)))) -(-13 (-1136) (-258) (-742) (-190) (-555 (-486)) (-952 (-486)) (-582 (-486)) (-555 (-475)) (-555 (-802 (-486))) (-798 (-486)) (-116) (-935) (-120) (-1068) (-10 -8 (-15 -2676 ((-85) $)) (-15 -2677 ((-85) $)) (-6 -3997) (-15 -2697 ($)) (-15 -3836 ($ $)) (-15 -2444 ($ $ $)) (-15 -2051 ((-85) $ $)) (-15 -2050 ($ $ $)) (-15 -2049 ($ $ $)) (-15 -3026 ((-85) $)) (-15 -3025 ((-350 (-486)) $)) (-15 -3027 ((-3 (-350 (-486)) "failed") $)) (-15 -2997 ($)) (-15 -2997 ($ $)) (-15 -3403 ($ $)) (-15 -2048 ($ $)) (-15 -2047 ($ $)) (-15 -2046 ($ $)) (-15 -2045 ($ $ $ $)) (-15 -2044 ($ $ $ $)) (-15 -2043 ($ $ $ $)) (-15 -2042 ($ $ $ $)) (-15 -2041 ($ $ $)) (-6 -3996))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-116) . T) ((-146) . T) ((-555 (-179)) . T) ((-555 (-330)) . T) ((-555 (-475)) . T) ((-555 (-486)) . T) ((-555 (-802 (-486))) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-246) . T) ((-258) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-486)) . T) ((-592 $) . T) ((-584 $) . T) ((-582 (-486)) . T) ((-656 $) . T) ((-665) . T) ((-716) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-742) . T) ((-757) . T) ((-758) . T) ((-761) . T) ((-798 (-486)) . T) ((-834) . T) ((-935) . T) ((-952 (-486)) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1068) . T) ((-1131) . T) ((-1136) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 8 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 77 T ELT)) (-2065 (($ $) 78 T ELT)) (-2063 (((-85) $) NIL T ELT)) (-2049 (($ $ $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2044 (($ $ $ $) 31 T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL T ELT)) (-2444 (($ $ $) 71 T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL T ELT)) (-2567 (($ $ $) 45 T ELT)) (-2281 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 53 T ELT) (((-632 (-486)) (-632 $)) 49 T ELT)) (-3470 (((-3 $ #1#) $) 74 T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) NIL T ELT)) (-3026 (((-85) $) NIL T ELT)) (-3025 (((-350 (-486)) $) NIL T ELT)) (-2997 (($) 55 T ELT) (($ $) 56 T ELT)) (-2566 (($ $ $) 70 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-2050 (($ $ $) 46 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1370 (($ $ $) NIL T ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL T ELT)) (-1216 (((-85) $ $) 110 T ELT)) (-2412 (((-85) $) 9 T ELT)) (-2676 (((-85) $) 64 T ELT)) (-3448 (((-634 $) $) NIL T ELT)) (-3190 (((-85) $) 21 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2043 (($ $ $ $) 32 T ELT)) (-2534 (($ $ $) 67 T ELT)) (-2860 (($ $ $) 66 T ELT)) (-2046 (($ $) NIL T ELT)) (-3836 (($ $) 29 T ELT)) (-2282 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL T ELT) (((-632 (-486)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) 44 T ELT)) (-2041 (($ $ $) NIL T ELT)) (-3449 (($) NIL T CONST)) (-2048 (($ $) 15 T ELT)) (-3246 (((-1035) $) 19 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 109 T ELT)) (-3147 (($ $ $) 75 T ELT) (($ (-585 $)) NIL T ELT)) (-1368 (($ $) NIL T ELT)) (-3735 (((-348 $) $) 95 T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) 93 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2677 (((-85) $) 65 T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 69 T ELT)) (-3761 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2047 (($ $) 17 T ELT)) (-3403 (($ $) 13 T ELT)) (-3975 (((-486) $) 28 T ELT) (((-475) $) 41 T ELT) (((-802 (-486)) $) NIL T ELT) (((-330) $) 35 T ELT) (((-179) $) 38 T ELT)) (-3950 (((-774) $) 26 T ELT) (($ (-486)) 27 T ELT) (($ $) NIL T ELT) (($ (-486)) 27 T ELT)) (-3129 (((-696)) NIL T CONST)) (-2051 (((-85) $ $) NIL T ELT)) (-3104 (($ $ $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2697 (($) 12 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) 112 T ELT)) (-2045 (($ $ $ $) 30 T ELT)) (-3386 (($ $) 54 T ELT)) (-2663 (($) 10 T CONST)) (-2669 (($) 11 T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2569 (((-85) $ $) 59 T ELT)) (-2570 (((-85) $ $) 57 T ELT)) (-3059 (((-85) $ $) 7 T ELT)) (-2687 (((-85) $ $) 58 T ELT)) (-2688 (((-85) $ $) 20 T ELT)) (-3840 (($ $) 42 T ELT) (($ $ $) 16 T ELT)) (-3842 (($ $ $) 14 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 63 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-486) $) 61 T ELT))) -(((-486) (-13 (-485) (-10 -7 (-6 -3985) (-6 -3990) (-6 -3986)))) (T -486)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT))) -(((-487) (-13 (-754) (-10 -8 (-15 -3727 ($) -3956)))) (T -487)) -((-3727 (*1 *1) (-5 *1 (-487)))) -((-486) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT))) -(((-488) (-13 (-754) (-10 -8 (-15 -3727 ($) -3956)))) (T -488)) -((-3727 (*1 *1) (-5 *1 (-488)))) -((-486) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT))) -(((-489) (-13 (-754) (-10 -8 (-15 -3727 ($) -3956)))) (T -489)) -((-3727 (*1 *1) (-5 *1 (-489)))) -((-486) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT))) -(((-490) (-13 (-754) (-10 -8 (-15 -3727 ($) -3956)))) (T -490)) -((-3727 (*1 *1) (-5 *1 (-490)))) -((-486) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2571 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3602 (($) NIL T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1187) $ |#1| |#1|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3248 (((-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-2234 (((-585 |#1|) $) NIL T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT)) (-3246 (((-1035) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-758)) ELT)) (-1731 (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1277 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-696) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3950 (((-774) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-1267 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-491 |#1| |#2| |#3|) (-1109 |#1| |#2|) (-1015) (-1015) (-1109 |#1| |#2|)) (T -491)) -NIL -((-2052 (((-521 |#2|) |#2| (-552 |#2|) (-552 |#2|) (-1 (-1087 |#2|) (-1087 |#2|))) 50 T ELT))) -(((-492 |#1| |#2|) (-10 -7 (-15 -2052 ((-521 |#2|) |#2| (-552 |#2|) (-552 |#2|) (-1 (-1087 |#2|) (-1087 |#2|))))) (-497) (-13 (-27) (-364 |#1|))) (T -492)) -((-2052 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-552 *3)) (-5 *5 (-1 (-1087 *3) (-1087 *3))) (-4 *3 (-13 (-27) (-364 *6))) (-4 *6 (-497)) (-5 *2 (-521 *3)) (-5 *1 (-492 *6 *3))))) -((-2054 (((-521 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2055 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2053 (((-521 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) -(((-493 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2053 ((-521 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2054 ((-521 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2055 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-497) (-952 (-486))) (-13 (-27) (-364 |#1|)) (-1157 |#2|) (-1157 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -493)) -((-2055 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-27) (-364 *4))) (-4 *4 (-13 (-497) (-952 (-486)))) (-4 *7 (-1157 (-350 *6))) (-5 *1 (-493 *4 *5 *6 *7 *2)) (-4 *2 (-291 *5 *6 *7)))) (-2054 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-13 (-27) (-364 *5))) (-4 *5 (-13 (-497) (-952 (-486)))) (-4 *8 (-1157 (-350 *7))) (-5 *2 (-521 *3)) (-5 *1 (-493 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-13 (-27) (-364 *5))) (-4 *5 (-13 (-497) (-952 (-486)))) (-4 *8 (-1157 (-350 *7))) (-5 *2 (-521 *3)) (-5 *1 (-493 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) -((-2058 (((-85) (-486) (-486)) 12 T ELT)) (-2056 (((-486) (-486)) 7 T ELT)) (-2057 (((-486) (-486) (-486)) 10 T ELT))) -(((-494) (-10 -7 (-15 -2056 ((-486) (-486))) (-15 -2057 ((-486) (-486) (-486))) (-15 -2058 ((-85) (-486) (-486))))) (T -494)) -((-2058 (*1 *2 *3 *3) (-12 (-5 *3 (-486)) (-5 *2 (-85)) (-5 *1 (-494)))) (-2057 (*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-494)))) (-2056 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-494))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2607 ((|#1| $) 77 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-3495 (($ $) 107 T ELT)) (-3642 (($ $) 90 T ELT)) (-2486 ((|#1| $) 78 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3040 (($ $) 89 T ELT)) (-3493 (($ $) 106 T ELT)) (-3641 (($ $) 91 T ELT)) (-3497 (($ $) 105 T ELT)) (-3640 (($ $) 92 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-486) "failed") $) 85 T ELT)) (-3159 (((-486) $) 86 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2061 (($ |#1| |#1|) 82 T ELT)) (-3189 (((-85) $) 76 T ELT)) (-3630 (($) 117 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 88 T ELT)) (-3190 (((-85) $) 75 T ELT)) (-2534 (($ $ $) 118 T ELT)) (-2860 (($ $ $) 119 T ELT)) (-3946 (($ $) 114 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2062 (($ |#1| |#1|) 83 T ELT) (($ |#1|) 81 T ELT) (($ (-350 (-486))) 80 T ELT)) (-2060 ((|#1| $) 79 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-3947 (($ $) 115 T ELT)) (-3498 (($ $) 104 T ELT)) (-3639 (($ $) 93 T ELT)) (-3496 (($ $) 103 T ELT)) (-3638 (($ $) 94 T ELT)) (-3494 (($ $) 102 T ELT)) (-3637 (($ $) 95 T ELT)) (-2059 (((-85) $ |#1|) 74 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-486)) 84 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3501 (($ $) 113 T ELT)) (-3489 (($ $) 101 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3499 (($ $) 112 T ELT)) (-3487 (($ $) 100 T ELT)) (-3503 (($ $) 111 T ELT)) (-3491 (($ $) 99 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3504 (($ $) 110 T ELT)) (-3492 (($ $) 98 T ELT)) (-3502 (($ $) 109 T ELT)) (-3490 (($ $) 97 T ELT)) (-3500 (($ $) 108 T ELT)) (-3488 (($ $) 96 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2569 (((-85) $ $) 120 T ELT)) (-2570 (((-85) $ $) 122 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 121 T ELT)) (-2688 (((-85) $ $) 123 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ $) 116 T ELT) (($ $ (-350 (-486))) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-495 |#1|) (-113) (-13 (-347) (-1117))) (T -495)) -((-2062 (*1 *1 *2 *2) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117))))) (-2061 (*1 *1 *2 *2) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117))))) (-2062 (*1 *1 *2) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117))))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-4 *1 (-495 *3)) (-4 *3 (-13 (-347) (-1117))))) (-2060 (*1 *2 *1) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117))))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117))))) (-2607 (*1 *2 *1) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117))))) (-3189 (*1 *2 *1) (-12 (-4 *1 (-495 *3)) (-4 *3 (-13 (-347) (-1117))) (-5 *2 (-85)))) (-3190 (*1 *2 *1) (-12 (-4 *1 (-495 *3)) (-4 *3 (-13 (-347) (-1117))) (-5 *2 (-85)))) (-2059 (*1 *2 *1 *3) (-12 (-4 *1 (-495 *3)) (-4 *3 (-13 (-347) (-1117))) (-5 *2 (-85))))) -(-13 (-393) (-758) (-1117) (-917) (-952 (-486)) (-10 -8 (-6 -3773) (-15 -2062 ($ |t#1| |t#1|)) (-15 -2061 ($ |t#1| |t#1|)) (-15 -2062 ($ |t#1|)) (-15 -2062 ($ (-350 (-486)))) (-15 -2060 (|t#1| $)) (-15 -2486 (|t#1| $)) (-15 -2607 (|t#1| $)) (-15 -3189 ((-85) $)) (-15 -3190 ((-85) $)) (-15 -2059 ((-85) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-239) . T) ((-246) . T) ((-393) . T) ((-434) . T) ((-497) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-758) . T) ((-761) . T) ((-917) . T) ((-952 (-486)) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1117) . T) ((-1120) . T) ((-1131) . T)) -((-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 9 T ELT)) (-2065 (($ $) 11 T ELT)) (-2063 (((-85) $) 20 T ELT)) (-3470 (((-3 $ "failed") $) 16 T ELT)) (-2064 (((-85) $ $) 22 T ELT))) -(((-496 |#1|) (-10 -7 (-15 -2063 ((-85) |#1|)) (-15 -2064 ((-85) |#1| |#1|)) (-15 -2065 (|#1| |#1|)) (-15 -2066 ((-2 (|:| -1777 |#1|) (|:| -3985 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3470 ((-3 |#1| "failed") |#1|))) (-497)) (T -496)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-497) (-113)) (T -497)) -((-3469 (*1 *1 *1 *1) (|partial| -4 *1 (-497))) (-2066 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1777 *1) (|:| -3985 *1) (|:| |associate| *1))) (-4 *1 (-497)))) (-2065 (*1 *1 *1) (-4 *1 (-497))) (-2064 (*1 *2 *1 *1) (-12 (-4 *1 (-497)) (-5 *2 (-85)))) (-2063 (*1 *2 *1) (-12 (-4 *1 (-497)) (-5 *2 (-85))))) -(-13 (-146) (-38 $) (-246) (-10 -8 (-15 -3469 ((-3 $ "failed") $ $)) (-15 -2066 ((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $)) (-15 -2065 ($ $)) (-15 -2064 ((-85) $ $)) (-15 -2063 ((-85) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-2068 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1092) (-585 |#2|)) 38 T ELT)) (-2070 (((-521 |#2|) |#2| (-1092)) 63 T ELT)) (-2069 (((-3 |#2| #1#) |#2| (-1092)) 156 T ELT)) (-2071 (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1092) (-552 |#2|) (-585 (-552 |#2|))) 159 T ELT)) (-2067 (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1092) |#2|) 41 T ELT))) -(((-498 |#1| |#2|) (-10 -7 (-15 -2067 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1092) |#2|)) (-15 -2068 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1092) (-585 |#2|))) (-15 -2069 ((-3 |#2| #1#) |#2| (-1092))) (-15 -2070 ((-521 |#2|) |#2| (-1092))) (-15 -2071 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1092) (-552 |#2|) (-585 (-552 |#2|))))) (-13 (-393) (-120) (-952 (-486)) (-582 (-486))) (-13 (-27) (-1117) (-364 |#1|))) (T -498)) -((-2071 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1092)) (-5 *6 (-585 (-552 *3))) (-5 *5 (-552 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *7))) (-4 *7 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-498 *7 *3)))) (-2070 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-521 *3)) (-5 *1 (-498 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) (-2069 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) (-5 *1 (-498 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4))))) (-2068 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-585 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-498 *6 *3)))) (-2067 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-498 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5)))))) -((-3974 (((-348 |#1|) |#1|) 17 T ELT)) (-3735 (((-348 |#1|) |#1|) 32 T ELT)) (-2073 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2072 (((-348 |#1|) |#1|) 59 T ELT))) -(((-499 |#1|) (-10 -7 (-15 -3735 ((-348 |#1|) |#1|)) (-15 -3974 ((-348 |#1|) |#1|)) (-15 -2072 ((-348 |#1|) |#1|)) (-15 -2073 ((-3 |#1| "failed") |#1|))) (-485)) (T -499)) -((-2073 (*1 *2 *2) (|partial| -12 (-5 *1 (-499 *2)) (-4 *2 (-485)))) (-2072 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-499 *3)) (-4 *3 (-485)))) (-3974 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-499 *3)) (-4 *3 (-485)))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-499 *3)) (-4 *3 (-485))))) -((-3086 (((-1087 (-350 (-1087 |#2|))) |#2| (-552 |#2|) (-552 |#2|) (-1087 |#2|)) 35 T ELT)) (-2076 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-552 |#2|) (-552 |#2|) (-585 |#2|) (-552 |#2|) |#2| (-350 (-1087 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-552 |#2|) (-552 |#2|) (-585 |#2|) |#2| (-1087 |#2|)) 115 T ELT)) (-2074 (((-521 |#2|) |#2| (-552 |#2|) (-552 |#2|) (-552 |#2|) |#2| (-350 (-1087 |#2|))) 85 T ELT) (((-521 |#2|) |#2| (-552 |#2|) (-552 |#2|) |#2| (-1087 |#2|)) 55 T ELT)) (-2075 (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-552 |#2|) (-552 |#2|) |#2| (-552 |#2|) |#2| (-350 (-1087 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-552 |#2|) (-552 |#2|) |#2| |#2| (-1087 |#2|)) 114 T ELT)) (-2077 (((-3 |#2| #1#) |#2| |#2| (-552 |#2|) (-552 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1092)) (-552 |#2|) |#2| (-350 (-1087 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-552 |#2|) (-552 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1092)) |#2| (-1087 |#2|)) 116 T ELT)) (-2078 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-585 |#2|))) |#3| |#2| (-552 |#2|) (-552 |#2|) (-552 |#2|) |#2| (-350 (-1087 |#2|))) 133 (|has| |#3| (-602 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-585 |#2|))) |#3| |#2| (-552 |#2|) (-552 |#2|) |#2| (-1087 |#2|)) 132 (|has| |#3| (-602 |#2|)) ELT)) (-3087 ((|#2| (-1087 (-350 (-1087 |#2|))) (-552 |#2|) |#2|) 53 T ELT)) (-3082 (((-1087 (-350 (-1087 |#2|))) (-1087 |#2|) (-552 |#2|)) 34 T ELT))) -(((-500 |#1| |#2| |#3|) (-10 -7 (-15 -2074 ((-521 |#2|) |#2| (-552 |#2|) (-552 |#2|) |#2| (-1087 |#2|))) (-15 -2074 ((-521 |#2|) |#2| (-552 |#2|) (-552 |#2|) (-552 |#2|) |#2| (-350 (-1087 |#2|)))) (-15 -2075 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-552 |#2|) (-552 |#2|) |#2| |#2| (-1087 |#2|))) (-15 -2075 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-552 |#2|) (-552 |#2|) |#2| (-552 |#2|) |#2| (-350 (-1087 |#2|)))) (-15 -2076 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-552 |#2|) (-552 |#2|) (-585 |#2|) |#2| (-1087 |#2|))) (-15 -2076 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-552 |#2|) (-552 |#2|) (-585 |#2|) (-552 |#2|) |#2| (-350 (-1087 |#2|)))) (-15 -2077 ((-3 |#2| #1#) |#2| |#2| (-552 |#2|) (-552 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1092)) |#2| (-1087 |#2|))) (-15 -2077 ((-3 |#2| #1#) |#2| |#2| (-552 |#2|) (-552 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1092)) (-552 |#2|) |#2| (-350 (-1087 |#2|)))) (-15 -3086 ((-1087 (-350 (-1087 |#2|))) |#2| (-552 |#2|) (-552 |#2|) (-1087 |#2|))) (-15 -3087 (|#2| (-1087 (-350 (-1087 |#2|))) (-552 |#2|) |#2|)) (-15 -3082 ((-1087 (-350 (-1087 |#2|))) (-1087 |#2|) (-552 |#2|))) (IF (|has| |#3| (-602 |#2|)) (PROGN (-15 -2078 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-585 |#2|))) |#3| |#2| (-552 |#2|) (-552 |#2|) |#2| (-1087 |#2|))) (-15 -2078 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-585 |#2|))) |#3| |#2| (-552 |#2|) (-552 |#2|) (-552 |#2|) |#2| (-350 (-1087 |#2|))))) |%noBranch|)) (-13 (-393) (-952 (-486)) (-120) (-582 (-486))) (-13 (-364 |#1|) (-27) (-1117)) (-1015)) (T -500)) -((-2078 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-552 *4)) (-5 *6 (-350 (-1087 *4))) (-4 *4 (-13 (-364 *7) (-27) (-1117))) (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-585 *4)))) (-5 *1 (-500 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1015)))) (-2078 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-552 *4)) (-5 *6 (-1087 *4)) (-4 *4 (-13 (-364 *7) (-27) (-1117))) (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-585 *4)))) (-5 *1 (-500 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1015)))) (-3082 (*1 *2 *3 *4) (-12 (-5 *4 (-552 *6)) (-4 *6 (-13 (-364 *5) (-27) (-1117))) (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-1087 (-350 (-1087 *6)))) (-5 *1 (-500 *5 *6 *7)) (-5 *3 (-1087 *6)) (-4 *7 (-1015)))) (-3087 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1087 (-350 (-1087 *2)))) (-5 *4 (-552 *2)) (-4 *2 (-13 (-364 *5) (-27) (-1117))) (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *1 (-500 *5 *2 *6)) (-4 *6 (-1015)))) (-3086 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-552 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1117))) (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-1087 (-350 (-1087 *3)))) (-5 *1 (-500 *6 *3 *7)) (-5 *5 (-1087 *3)) (-4 *7 (-1015)))) (-2077 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-552 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1092))) (-5 *5 (-350 (-1087 *2))) (-4 *2 (-13 (-364 *6) (-27) (-1117))) (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *1 (-500 *6 *2 *7)) (-4 *7 (-1015)))) (-2077 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-552 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1092))) (-5 *5 (-1087 *2)) (-4 *2 (-13 (-364 *6) (-27) (-1117))) (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *1 (-500 *6 *2 *7)) (-4 *7 (-1015)))) (-2076 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-585 *3)) (-5 *6 (-350 (-1087 *3))) (-4 *3 (-13 (-364 *7) (-27) (-1117))) (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-500 *7 *3 *8)) (-4 *8 (-1015)))) (-2076 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-585 *3)) (-5 *6 (-1087 *3)) (-4 *3 (-13 (-364 *7) (-27) (-1117))) (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-500 *7 *3 *8)) (-4 *8 (-1015)))) (-2075 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-350 (-1087 *3))) (-4 *3 (-13 (-364 *6) (-27) (-1117))) (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-500 *6 *3 *7)) (-4 *7 (-1015)))) (-2075 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-1087 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1117))) (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-500 *6 *3 *7)) (-4 *7 (-1015)))) (-2074 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-552 *3)) (-5 *5 (-350 (-1087 *3))) (-4 *3 (-13 (-364 *6) (-27) (-1117))) (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-521 *3)) (-5 *1 (-500 *6 *3 *7)) (-4 *7 (-1015)))) (-2074 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-552 *3)) (-5 *5 (-1087 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1117))) (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-521 *3)) (-5 *1 (-500 *6 *3 *7)) (-4 *7 (-1015))))) -((-2088 (((-486) (-486) (-696)) 87 T ELT)) (-2087 (((-486) (-486)) 85 T ELT)) (-2086 (((-486) (-486)) 82 T ELT)) (-2085 (((-486) (-486)) 89 T ELT)) (-2808 (((-486) (-486) (-486)) 67 T ELT)) (-2084 (((-486) (-486) (-486)) 64 T ELT)) (-2083 (((-350 (-486)) (-486)) 29 T ELT)) (-2082 (((-486) (-486)) 34 T ELT)) (-2081 (((-486) (-486)) 76 T ELT)) (-2805 (((-486) (-486)) 47 T ELT)) (-2080 (((-585 (-486)) (-486)) 81 T ELT)) (-2079 (((-486) (-486) (-486) (-486) (-486)) 60 T ELT)) (-2801 (((-350 (-486)) (-486)) 56 T ELT))) -(((-501) (-10 -7 (-15 -2801 ((-350 (-486)) (-486))) (-15 -2079 ((-486) (-486) (-486) (-486) (-486))) (-15 -2080 ((-585 (-486)) (-486))) (-15 -2805 ((-486) (-486))) (-15 -2081 ((-486) (-486))) (-15 -2082 ((-486) (-486))) (-15 -2083 ((-350 (-486)) (-486))) (-15 -2084 ((-486) (-486) (-486))) (-15 -2808 ((-486) (-486) (-486))) (-15 -2085 ((-486) (-486))) (-15 -2086 ((-486) (-486))) (-15 -2087 ((-486) (-486))) (-15 -2088 ((-486) (-486) (-696))))) (T -501)) -((-2088 (*1 *2 *2 *3) (-12 (-5 *2 (-486)) (-5 *3 (-696)) (-5 *1 (-501)))) (-2087 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) (-2086 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) (-2808 (*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) (-2084 (*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) (-2083 (*1 *2 *3) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-501)) (-5 *3 (-486)))) (-2082 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) (-2805 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) (-2080 (*1 *2 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-501)) (-5 *3 (-486)))) (-2079 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-501)) (-5 *3 (-486))))) -((-2089 (((-2 (|:| |answer| |#4|) (|:| -2137 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) -(((-502 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2089 ((-2 (|:| |answer| |#4|) (|:| -2137 |#4|)) |#4| (-1 |#2| |#2|)))) (-312) (-1157 |#1|) (-1157 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -502)) -((-2089 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) (-4 *7 (-1157 (-350 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2137 *3))) (-5 *1 (-502 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7))))) -((-2089 (((-2 (|:| |answer| (-350 |#2|)) (|:| -2137 (-350 |#2|)) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)) 18 T ELT))) -(((-503 |#1| |#2|) (-10 -7 (-15 -2089 ((-2 (|:| |answer| (-350 |#2|)) (|:| -2137 (-350 |#2|)) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)))) (-312) (-1157 |#1|)) (T -503)) -((-2089 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| (-350 *6)) (|:| -2137 (-350 *6)) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) (-5 *1 (-503 *5 *6)) (-5 *3 (-350 *6))))) -((-2092 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-552 |#2|) (-552 |#2|) (-585 |#2|)) 195 T ELT)) (-2090 (((-521 |#2|) |#2| (-552 |#2|) (-552 |#2|)) 97 T ELT)) (-2091 (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-552 |#2|) (-552 |#2|) |#2|) 191 T ELT)) (-2093 (((-3 |#2| #1#) |#2| |#2| |#2| (-552 |#2|) (-552 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1092))) 200 T ELT)) (-2094 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-585 |#2|))) |#3| |#2| (-552 |#2|) (-552 |#2|) (-1092)) 209 (|has| |#3| (-602 |#2|)) ELT))) -(((-504 |#1| |#2| |#3|) (-10 -7 (-15 -2090 ((-521 |#2|) |#2| (-552 |#2|) (-552 |#2|))) (-15 -2091 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-552 |#2|) (-552 |#2|) |#2|)) (-15 -2092 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-552 |#2|) (-552 |#2|) (-585 |#2|))) (-15 -2093 ((-3 |#2| #1#) |#2| |#2| |#2| (-552 |#2|) (-552 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1092)))) (IF (|has| |#3| (-602 |#2|)) (-15 -2094 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-585 |#2|))) |#3| |#2| (-552 |#2|) (-552 |#2|) (-1092))) |%noBranch|)) (-13 (-393) (-952 (-486)) (-120) (-582 (-486))) (-13 (-364 |#1|) (-27) (-1117)) (-1015)) (T -504)) -((-2094 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-552 *4)) (-5 *6 (-1092)) (-4 *4 (-13 (-364 *7) (-27) (-1117))) (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-585 *4)))) (-5 *1 (-504 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1015)))) (-2093 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-552 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1092))) (-4 *2 (-13 (-364 *5) (-27) (-1117))) (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *1 (-504 *5 *2 *6)) (-4 *6 (-1015)))) (-2092 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-585 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1117))) (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-504 *6 *3 *7)) (-4 *7 (-1015)))) (-2091 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-552 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1117))) (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-504 *5 *3 *6)) (-4 *6 (-1015)))) (-2090 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-552 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1117))) (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-521 *3)) (-5 *1 (-504 *5 *3 *6)) (-4 *6 (-1015))))) -((-2095 (((-2 (|:| -2340 |#2|) (|:| |nconst| |#2|)) |#2| (-1092)) 64 T ELT)) (-2097 (((-3 |#2| #1="failed") |#2| (-1092) (-752 |#2|) (-752 |#2|)) 174 (-12 (|has| |#2| (-1055)) (|has| |#1| (-555 (-802 (-486)))) (|has| |#1| (-798 (-486)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1092)) 145 (-12 (|has| |#2| (-571)) (|has| |#1| (-555 (-802 (-486)))) (|has| |#1| (-798 (-486)))) ELT)) (-2096 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1092)) 156 (-12 (|has| |#2| (-571)) (|has| |#1| (-555 (-802 (-486)))) (|has| |#1| (-798 (-486)))) ELT))) -(((-505 |#1| |#2|) (-10 -7 (-15 -2095 ((-2 (|:| -2340 |#2|) (|:| |nconst| |#2|)) |#2| (-1092))) (IF (|has| |#1| (-555 (-802 (-486)))) (IF (|has| |#1| (-798 (-486))) (PROGN (IF (|has| |#2| (-571)) (PROGN (-15 -2096 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1092))) (-15 -2097 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1092)))) |%noBranch|) (IF (|has| |#2| (-1055)) (-15 -2097 ((-3 |#2| #1#) |#2| (-1092) (-752 |#2|) (-752 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-952 (-486)) (-393) (-582 (-486))) (-13 (-27) (-1117) (-364 |#1|))) (T -505)) -((-2097 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1092)) (-5 *4 (-752 *2)) (-4 *2 (-1055)) (-4 *2 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-555 (-802 (-486)))) (-4 *5 (-798 (-486))) (-4 *5 (-13 (-952 (-486)) (-393) (-582 (-486)))) (-5 *1 (-505 *5 *2)))) (-2097 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-555 (-802 (-486)))) (-4 *5 (-798 (-486))) (-4 *5 (-13 (-952 (-486)) (-393) (-582 (-486)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-505 *5 *3)) (-4 *3 (-571)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) (-2096 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-555 (-802 (-486)))) (-4 *5 (-798 (-486))) (-4 *5 (-13 (-952 (-486)) (-393) (-582 (-486)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-505 *5 *3)) (-4 *3 (-571)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) (-2095 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-952 (-486)) (-393) (-582 (-486)))) (-5 *2 (-2 (|:| -2340 *3) (|:| |nconst| *3))) (-5 *1 (-505 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5)))))) -((-2100 (((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1="failed") (-350 |#2|) (-585 (-350 |#2|))) 41 T ELT)) (-3815 (((-521 (-350 |#2|)) (-350 |#2|)) 28 T ELT)) (-2098 (((-3 (-350 |#2|) #1#) (-350 |#2|)) 17 T ELT)) (-2099 (((-3 (-2 (|:| -2138 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-350 |#2|)) 48 T ELT))) -(((-506 |#1| |#2|) (-10 -7 (-15 -3815 ((-521 (-350 |#2|)) (-350 |#2|))) (-15 -2098 ((-3 (-350 |#2|) #1="failed") (-350 |#2|))) (-15 -2099 ((-3 (-2 (|:| -2138 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-350 |#2|))) (-15 -2100 ((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-585 (-350 |#2|))))) (-13 (-312) (-120) (-952 (-486))) (-1157 |#1|)) (T -506)) -((-2100 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-585 (-350 *6))) (-5 *3 (-350 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-486)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-506 *5 *6)))) (-2099 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-952 (-486)))) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -2138 (-350 *5)) (|:| |coeff| (-350 *5)))) (-5 *1 (-506 *4 *5)) (-5 *3 (-350 *5)))) (-2098 (*1 *2 *2) (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-312) (-120) (-952 (-486)))) (-5 *1 (-506 *3 *4)))) (-3815 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-952 (-486)))) (-4 *5 (-1157 *4)) (-5 *2 (-521 (-350 *5))) (-5 *1 (-506 *4 *5)) (-5 *3 (-350 *5))))) -((-2101 (((-3 (-486) "failed") |#1|) 14 T ELT)) (-3262 (((-85) |#1|) 13 T ELT)) (-3258 (((-486) |#1|) 9 T ELT))) -(((-507 |#1|) (-10 -7 (-15 -3258 ((-486) |#1|)) (-15 -3262 ((-85) |#1|)) (-15 -2101 ((-3 (-486) "failed") |#1|))) (-952 (-486))) (T -507)) -((-2101 (*1 *2 *3) (|partial| -12 (-5 *2 (-486)) (-5 *1 (-507 *3)) (-4 *3 (-952 *2)))) (-3262 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-507 *3)) (-4 *3 (-952 (-486))))) (-3258 (*1 *2 *3) (-12 (-5 *2 (-486)) (-5 *1 (-507 *3)) (-4 *3 (-952 *2))))) -((-2104 (((-3 (-2 (|:| |mainpart| (-350 (-859 |#1|))) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 (-859 |#1|))) (|:| |logand| (-350 (-859 |#1|))))))) #1="failed") (-350 (-859 |#1|)) (-1092) (-585 (-350 (-859 |#1|)))) 48 T ELT)) (-2102 (((-521 (-350 (-859 |#1|))) (-350 (-859 |#1|)) (-1092)) 28 T ELT)) (-2103 (((-3 (-350 (-859 |#1|)) #1#) (-350 (-859 |#1|)) (-1092)) 23 T ELT)) (-2105 (((-3 (-2 (|:| -2138 (-350 (-859 |#1|))) (|:| |coeff| (-350 (-859 |#1|)))) #1#) (-350 (-859 |#1|)) (-1092) (-350 (-859 |#1|))) 35 T ELT))) -(((-508 |#1|) (-10 -7 (-15 -2102 ((-521 (-350 (-859 |#1|))) (-350 (-859 |#1|)) (-1092))) (-15 -2103 ((-3 (-350 (-859 |#1|)) #1="failed") (-350 (-859 |#1|)) (-1092))) (-15 -2104 ((-3 (-2 (|:| |mainpart| (-350 (-859 |#1|))) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 (-859 |#1|))) (|:| |logand| (-350 (-859 |#1|))))))) #1#) (-350 (-859 |#1|)) (-1092) (-585 (-350 (-859 |#1|))))) (-15 -2105 ((-3 (-2 (|:| -2138 (-350 (-859 |#1|))) (|:| |coeff| (-350 (-859 |#1|)))) #1#) (-350 (-859 |#1|)) (-1092) (-350 (-859 |#1|))))) (-13 (-497) (-952 (-486)) (-120))) (T -508)) -((-2105 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)) (-120))) (-5 *2 (-2 (|:| -2138 (-350 (-859 *5))) (|:| |coeff| (-350 (-859 *5))))) (-5 *1 (-508 *5)) (-5 *3 (-350 (-859 *5))))) (-2104 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-585 (-350 (-859 *6)))) (-5 *3 (-350 (-859 *6))) (-4 *6 (-13 (-497) (-952 (-486)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-508 *6)))) (-2103 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-350 (-859 *4))) (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)) (-120))) (-5 *1 (-508 *4)))) (-2102 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)) (-120))) (-5 *2 (-521 (-350 (-859 *5)))) (-5 *1 (-508 *5)) (-5 *3 (-350 (-859 *5)))))) -((-2571 (((-85) $ $) 77 T ELT)) (-3191 (((-85) $) 49 T ELT)) (-2607 ((|#1| $) 39 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) 81 T ELT)) (-3495 (($ $) 142 T ELT)) (-3642 (($ $) 120 T ELT)) (-2486 ((|#1| $) 37 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $) NIL T ELT)) (-3493 (($ $) 144 T ELT)) (-3641 (($ $) 116 T ELT)) (-3497 (($ $) 146 T ELT)) (-3640 (($ $) 124 T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) 95 T ELT)) (-3159 (((-486) $) 97 T ELT)) (-3470 (((-3 $ #1#) $) 80 T ELT)) (-2061 (($ |#1| |#1|) 35 T ELT)) (-3189 (((-85) $) 44 T ELT)) (-3630 (($) 106 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 56 T ELT)) (-3014 (($ $ (-486)) NIL T ELT)) (-3190 (((-85) $) 46 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3946 (($ $) 108 T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2062 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-350 (-486))) 94 T ELT)) (-2060 ((|#1| $) 36 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) 83 T ELT) (($ (-585 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) 82 T ELT)) (-3947 (($ $) 110 T ELT)) (-3498 (($ $) 150 T ELT)) (-3639 (($ $) 122 T ELT)) (-3496 (($ $) 152 T ELT)) (-3638 (($ $) 126 T ELT)) (-3494 (($ $) 148 T ELT)) (-3637 (($ $) 118 T ELT)) (-2059 (((-85) $ |#1|) 42 T ELT)) (-3950 (((-774) $) 102 T ELT) (($ (-486)) 85 T ELT) (($ $) NIL T ELT) (($ (-486)) 85 T ELT)) (-3129 (((-696)) 104 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 164 T ELT)) (-3489 (($ $) 132 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 162 T ELT)) (-3487 (($ $) 128 T ELT)) (-3503 (($ $) 160 T ELT)) (-3491 (($ $) 140 T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) 158 T ELT)) (-3492 (($ $) 138 T ELT)) (-3502 (($ $) 156 T ELT)) (-3490 (($ $) 134 T ELT)) (-3500 (($ $) 154 T ELT)) (-3488 (($ $) 130 T ELT)) (-2663 (($) 30 T CONST)) (-2669 (($) 10 T CONST)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 50 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 48 T ELT)) (-3840 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3842 (($ $ $) 53 T ELT)) (** (($ $ (-832)) 73 T ELT) (($ $ (-696)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-350 (-486))) 166 T ELT)) (* (($ (-832) $) 67 T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 66 T ELT) (($ $ $) 62 T ELT))) -(((-509 |#1|) (-495 |#1|) (-13 (-347) (-1117))) (T -509)) -NIL -((-2707 (((-3 (-585 (-1087 (-486))) "failed") (-585 (-1087 (-486))) (-1087 (-486))) 27 T ELT))) -(((-510) (-10 -7 (-15 -2707 ((-3 (-585 (-1087 (-486))) "failed") (-585 (-1087 (-486))) (-1087 (-486)))))) (T -510)) -((-2707 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1087 (-486)))) (-5 *3 (-1087 (-486))) (-5 *1 (-510))))) -((-2106 (((-585 (-552 |#2|)) (-585 (-552 |#2|)) (-1092)) 19 T ELT)) (-2109 (((-585 (-552 |#2|)) (-585 |#2|) (-1092)) 23 T ELT)) (-3237 (((-585 (-552 |#2|)) (-585 (-552 |#2|)) (-585 (-552 |#2|))) 11 T ELT)) (-2110 ((|#2| |#2| (-1092)) 59 (|has| |#1| (-497)) ELT)) (-2111 ((|#2| |#2| (-1092)) 87 (-12 (|has| |#2| (-239)) (|has| |#1| (-393))) ELT)) (-2108 (((-552 |#2|) (-552 |#2|) (-585 (-552 |#2|)) (-1092)) 25 T ELT)) (-2107 (((-552 |#2|) (-585 (-552 |#2|))) 24 T ELT)) (-2112 (((-521 |#2|) |#2| (-1092) (-1 (-521 |#2|) |#2| (-1092)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092))) 115 (-12 (|has| |#2| (-239)) (|has| |#2| (-571)) (|has| |#2| (-952 (-1092))) (|has| |#1| (-555 (-802 (-486)))) (|has| |#1| (-393)) (|has| |#1| (-798 (-486)))) ELT))) -(((-511 |#1| |#2|) (-10 -7 (-15 -2106 ((-585 (-552 |#2|)) (-585 (-552 |#2|)) (-1092))) (-15 -2107 ((-552 |#2|) (-585 (-552 |#2|)))) (-15 -2108 ((-552 |#2|) (-552 |#2|) (-585 (-552 |#2|)) (-1092))) (-15 -3237 ((-585 (-552 |#2|)) (-585 (-552 |#2|)) (-585 (-552 |#2|)))) (-15 -2109 ((-585 (-552 |#2|)) (-585 |#2|) (-1092))) (IF (|has| |#1| (-497)) (-15 -2110 (|#2| |#2| (-1092))) |%noBranch|) (IF (|has| |#1| (-393)) (IF (|has| |#2| (-239)) (PROGN (-15 -2111 (|#2| |#2| (-1092))) (IF (|has| |#1| (-555 (-802 (-486)))) (IF (|has| |#1| (-798 (-486))) (IF (|has| |#2| (-571)) (IF (|has| |#2| (-952 (-1092))) (-15 -2112 ((-521 |#2|) |#2| (-1092) (-1 (-521 |#2|) |#2| (-1092)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1015) (-364 |#1|)) (T -511)) -((-2112 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-521 *3) *3 (-1092))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1092))) (-4 *3 (-239)) (-4 *3 (-571)) (-4 *3 (-952 *4)) (-4 *3 (-364 *7)) (-5 *4 (-1092)) (-4 *7 (-555 (-802 (-486)))) (-4 *7 (-393)) (-4 *7 (-798 (-486))) (-4 *7 (-1015)) (-5 *2 (-521 *3)) (-5 *1 (-511 *7 *3)))) (-2111 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-393)) (-4 *4 (-1015)) (-5 *1 (-511 *4 *2)) (-4 *2 (-239)) (-4 *2 (-364 *4)))) (-2110 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-4 *4 (-1015)) (-5 *1 (-511 *4 *2)) (-4 *2 (-364 *4)))) (-2109 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-1092)) (-4 *6 (-364 *5)) (-4 *5 (-1015)) (-5 *2 (-585 (-552 *6))) (-5 *1 (-511 *5 *6)))) (-3237 (*1 *2 *2 *2) (-12 (-5 *2 (-585 (-552 *4))) (-4 *4 (-364 *3)) (-4 *3 (-1015)) (-5 *1 (-511 *3 *4)))) (-2108 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-585 (-552 *6))) (-5 *4 (-1092)) (-5 *2 (-552 *6)) (-4 *6 (-364 *5)) (-4 *5 (-1015)) (-5 *1 (-511 *5 *6)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-585 (-552 *5))) (-4 *4 (-1015)) (-5 *2 (-552 *5)) (-5 *1 (-511 *4 *5)) (-4 *5 (-364 *4)))) (-2106 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-552 *5))) (-5 *3 (-1092)) (-4 *5 (-364 *4)) (-4 *4 (-1015)) (-5 *1 (-511 *4 *5))))) -((-2115 (((-2 (|:| |answer| (-521 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-585 |#1|) #1="failed") (-486) |#1| |#1|)) 199 T ELT)) (-2118 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-585 (-350 |#2|))) 174 T ELT)) (-2121 (((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-585 (-350 |#2|))) 171 T ELT)) (-2122 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2113 (((-2 (|:| |answer| (-521 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2120 (((-3 (-2 (|:| -2138 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-350 |#2|)) 202 T ELT)) (-2116 (((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2138 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-350 |#2|)) 205 T ELT)) (-2124 (((-2 (|:| |ir| (-521 (-350 |#2|))) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2125 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2119 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-85))) (-486) |#1|) (-585 (-350 |#2|))) 178 T ELT)) (-2123 (((-3 (-564 |#1| |#2|) #1#) (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-85))) (-486) |#1|)) 166 T ELT)) (-2114 (((-2 (|:| |answer| (-521 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-85))) (-486) |#1|)) 189 T ELT)) (-2117 (((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2138 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-85))) (-486) |#1|) (-350 |#2|)) 210 T ELT))) -(((-512 |#1| |#2|) (-10 -7 (-15 -2113 ((-2 (|:| |answer| (-521 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2114 ((-2 (|:| |answer| (-521 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-85))) (-486) |#1|))) (-15 -2115 ((-2 (|:| |answer| (-521 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-585 |#1|) #1#) (-486) |#1| |#1|))) (-15 -2116 ((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2138 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-350 |#2|))) (-15 -2117 ((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2138 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-85))) (-486) |#1|) (-350 |#2|))) (-15 -2118 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-585 (-350 |#2|)))) (-15 -2119 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-85))) (-486) |#1|) (-585 (-350 |#2|)))) (-15 -2120 ((-3 (-2 (|:| -2138 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-350 |#2|))) (-15 -2121 ((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-585 (-350 |#2|)))) (-15 -2122 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2123 ((-3 (-564 |#1| |#2|) #1#) (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-85))) (-486) |#1|))) (-15 -2124 ((-2 (|:| |ir| (-521 (-350 |#2|))) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|))) (-15 -2125 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-312) (-1157 |#1|)) (T -512)) -((-2125 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-512 *5 *3)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |ir| (-521 (-350 *6))) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) (-5 *1 (-512 *5 *6)) (-5 *3 (-350 *6)))) (-2123 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-564 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3140 *4) (|:| |sol?| (-85))) (-486) *4)) (-4 *4 (-312)) (-4 *5 (-1157 *4)) (-5 *1 (-512 *4 *5)))) (-2122 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-312)) (-5 *1 (-512 *4 *2)) (-4 *2 (-1157 *4)))) (-2121 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-585 (-350 *7))) (-4 *7 (-1157 *6)) (-5 *3 (-350 *7)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-512 *6 *7)))) (-2120 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -2138 (-350 *6)) (|:| |coeff| (-350 *6)))) (-5 *1 (-512 *5 *6)) (-5 *3 (-350 *6)))) (-2119 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3140 *7) (|:| |sol?| (-85))) (-486) *7)) (-5 *6 (-585 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1157 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-512 *7 *8)))) (-2118 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2138 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-585 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1157 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-512 *7 *8)))) (-2117 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3140 *6) (|:| |sol?| (-85))) (-486) *6)) (-4 *6 (-312)) (-4 *7 (-1157 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) (-2 (|:| -2138 (-350 *7)) (|:| |coeff| (-350 *7))) #1#)) (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7)))) (-2116 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2138 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1157 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) (-2 (|:| -2138 (-350 *7)) (|:| |coeff| (-350 *7))) #1#)) (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7)))) (-2115 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-585 *6) #1#) (-486) *6 *6)) (-4 *6 (-312)) (-4 *7 (-1157 *6)) (-5 *2 (-2 (|:| |answer| (-521 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7)))) (-2114 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3140 *6) (|:| |sol?| (-85))) (-486) *6)) (-4 *6 (-312)) (-4 *7 (-1157 *6)) (-5 *2 (-2 (|:| |answer| (-521 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7)))) (-2113 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2138 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1157 *6)) (-5 *2 (-2 (|:| |answer| (-521 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7))))) -((-2126 (((-3 |#2| "failed") |#2| (-1092) (-1092)) 10 T ELT))) -(((-513 |#1| |#2|) (-10 -7 (-15 -2126 ((-3 |#2| "failed") |#2| (-1092) (-1092)))) (-13 (-258) (-120) (-952 (-486)) (-582 (-486))) (-13 (-1117) (-873) (-1055) (-29 |#1|))) (T -513)) -((-2126 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *1 (-513 *4 *2)) (-4 *2 (-13 (-1117) (-873) (-1055) (-29 *4)))))) -((-2558 (((-634 (-1140)) $ (-1140)) 27 T ELT)) (-2559 (((-634 (-490)) $ (-490)) 26 T ELT)) (-2557 (((-696) $ (-102)) 28 T ELT)) (-2560 (((-634 (-101)) $ (-101)) 25 T ELT)) (-2002 (((-634 (-1140)) $) 12 T ELT)) (-1998 (((-634 (-1138)) $) 8 T ELT)) (-2000 (((-634 (-1137)) $) 10 T ELT)) (-2003 (((-634 (-490)) $) 13 T ELT)) (-1999 (((-634 (-488)) $) 9 T ELT)) (-2001 (((-634 (-487)) $) 11 T ELT)) (-1997 (((-696) $ (-102)) 7 T ELT)) (-2004 (((-634 (-101)) $) 14 T ELT)) (-1701 (($ $) 6 T ELT))) -(((-514) (-113)) (T -514)) -NIL -(-13 (-467) (-772)) -(((-147) . T) ((-467) . T) ((-772) . T)) -((-2558 (((-634 (-1140)) $ (-1140)) NIL T ELT)) (-2559 (((-634 (-490)) $ (-490)) NIL T ELT)) (-2557 (((-696) $ (-102)) NIL T ELT)) (-2560 (((-634 (-101)) $ (-101)) NIL T ELT)) (-2002 (((-634 (-1140)) $) NIL T ELT)) (-1998 (((-634 (-1138)) $) NIL T ELT)) (-2000 (((-634 (-1137)) $) NIL T ELT)) (-2003 (((-634 (-490)) $) NIL T ELT)) (-1999 (((-634 (-488)) $) NIL T ELT)) (-2001 (((-634 (-487)) $) NIL T ELT)) (-1997 (((-696) $ (-102)) NIL T ELT)) (-2004 (((-634 (-101)) $) NIL T ELT)) (-2561 (((-85) $) NIL T ELT)) (-2127 (($ (-338)) 14 T ELT) (($ (-1075)) 16 T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1701 (($ $) NIL T ELT))) -(((-515) (-13 (-514) (-554 (-774)) (-10 -8 (-15 -2127 ($ (-338))) (-15 -2127 ($ (-1075))) (-15 -2561 ((-85) $))))) (T -515)) -((-2127 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-515)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-515)))) (-2561 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-515))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3463 (($) 7 T CONST)) (-3245 (((-1075) $) NIL T ELT)) (-2130 (($) 6 T CONST)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 15 T ELT)) (-2128 (($) 9 T CONST)) (-2129 (($) 8 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 11 T ELT))) -(((-516) (-13 (-1015) (-10 -8 (-15 -2130 ($) -3956) (-15 -3463 ($) -3956) (-15 -2129 ($) -3956) (-15 -2128 ($) -3956)))) (T -516)) -((-2130 (*1 *1) (-5 *1 (-516))) (-3463 (*1 *1) (-5 *1 (-516))) (-2129 (*1 *1) (-5 *1 (-516))) (-2128 (*1 *1) (-5 *1 (-516)))) -((-2571 (((-85) $ $) NIL T ELT)) (-2131 (((-634 $) (-432)) 23 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2133 (($ (-1075)) 16 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 33 T ELT)) (-2132 (((-166 4 (-101)) $) 24 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 26 T ELT))) -(((-517) (-13 (-1015) (-10 -8 (-15 -2133 ($ (-1075))) (-15 -2132 ((-166 4 (-101)) $)) (-15 -2131 ((-634 $) (-432)))))) (T -517)) -((-2133 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-517)))) (-2132 (*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-517)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-432)) (-5 *2 (-634 (-517))) (-5 *1 (-517))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $ (-486)) 73 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2614 (($ (-1087 (-486)) (-486)) 79 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 64 T ELT)) (-2615 (($ $) 43 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3775 (((-696) $) 16 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2617 (((-486)) 37 T ELT)) (-2616 (((-486) $) 41 T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3772 (($ $ (-486)) 24 T ELT)) (-3469 (((-3 $ #1#) $ $) 70 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) 17 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 71 T ELT)) (-2618 (((-1071 (-486)) $) 19 T ELT)) (-2894 (($ $) 26 T ELT)) (-3950 (((-774) $) 100 T ELT) (($ (-486)) 59 T ELT) (($ $) NIL T ELT)) (-3129 (((-696)) 15 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3773 (((-486) $ (-486)) 46 T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 44 T CONST)) (-2669 (($) 21 T CONST)) (-3059 (((-85) $ $) 51 T ELT)) (-3840 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3842 (($ $ $) 57 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 60 T ELT) (($ $ $) 61 T ELT))) -(((-518 |#1| |#2|) (-781 |#1|) (-486) (-85)) (T -518)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 30 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3933 (((-696)) NIL T ELT)) (-3333 (($ $ (-832)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) 59 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 $ #1#) $) 95 T ELT)) (-3159 (($ $) 94 T ELT)) (-1797 (($ (-1181 $)) 93 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 47 T ELT)) (-2997 (($) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) 61 T ELT)) (-1681 (((-85) $) NIL T ELT)) (-1769 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) 49 (|has| $ (-320)) ELT)) (-2013 (((-85) $) NIL (|has| $ (-320)) ELT)) (-3135 (($ $ (-832)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-3448 (((-634 $) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 $) $ (-832)) NIL (|has| $ (-320)) ELT) (((-1087 $) $) 104 T ELT)) (-2012 (((-832) $) 67 T ELT)) (-1628 (((-1087 $) $) NIL (|has| $ (-320)) ELT)) (-1627 (((-3 (-1087 $) #1#) $ $) NIL (|has| $ (-320)) ELT) (((-1087 $) $) NIL (|has| $ (-320)) ELT)) (-1629 (($ $ (-1087 $)) NIL (|has| $ (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL T CONST)) (-2402 (($ (-832)) 60 T ELT)) (-3935 (((-85) $) 87 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($) 28 (|has| $ (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) 54 T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3934 (((-832)) 86 T ELT) (((-745 (-832))) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-3 (-696) #1#) $ $) NIL T ELT) (((-696) $) NIL T ELT)) (-3915 (((-107)) NIL T ELT)) (-3761 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3952 (((-832) $) 85 T ELT) (((-745 (-832)) $) NIL T ELT)) (-3188 (((-1087 $)) 102 T ELT)) (-1675 (($) 66 T ELT)) (-1630 (($) 50 (|has| $ (-320)) ELT)) (-3227 (((-632 $) (-1181 $)) NIL T ELT) (((-1181 $) $) 91 T ELT)) (-3975 (((-486) $) 42 T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) 45 T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT)) (-2705 (((-634 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3129 (((-696)) 51 T CONST)) (-1267 (((-85) $ $) 107 T ELT)) (-2014 (((-1181 $) (-832)) 97 T ELT) (((-1181 $)) 96 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2663 (($) 31 T CONST)) (-2669 (($) 27 T CONST)) (-3932 (($ $ (-696)) NIL (|has| $ (-320)) ELT) (($ $) NIL (|has| $ (-320)) ELT)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 34 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT))) -(((-519 |#1|) (-13 (-299) (-280 $) (-555 (-486))) (-832)) (T -519)) -NIL -((-2134 (((-1187) (-1075)) 10 T ELT))) -(((-520) (-10 -7 (-15 -2134 ((-1187) (-1075))))) (T -520)) -((-2134 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-520))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 77 T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-2138 ((|#1| $) 30 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2136 (((-585 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2139 (($ |#1| (-585 (-2 (|:| |scalar| (-350 (-486))) (|:| |coeff| (-1087 |#1|)) (|:| |logand| (-1087 |#1|)))) (-585 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2137 (((-585 (-2 (|:| |scalar| (-350 (-486))) (|:| |coeff| (-1087 |#1|)) (|:| |logand| (-1087 |#1|)))) $) 31 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2835 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1092)) 49 (|has| |#1| (-952 (-1092))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2135 (((-85) $) 35 T ELT)) (-3761 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1092)) 90 (|has| |#1| (-811 (-1092))) ELT)) (-3950 (((-774) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 18 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 86 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 16 T ELT) (($ (-350 (-486)) $) 41 T ELT) (($ $ (-350 (-486))) NIL T ELT))) -(((-521 |#1|) (-13 (-656 (-350 (-486))) (-952 |#1|) (-10 -8 (-15 -2139 ($ |#1| (-585 (-2 (|:| |scalar| (-350 (-486))) (|:| |coeff| (-1087 |#1|)) (|:| |logand| (-1087 |#1|)))) (-585 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2138 (|#1| $)) (-15 -2137 ((-585 (-2 (|:| |scalar| (-350 (-486))) (|:| |coeff| (-1087 |#1|)) (|:| |logand| (-1087 |#1|)))) $)) (-15 -2136 ((-585 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2135 ((-85) $)) (-15 -2835 ($ |#1| |#1|)) (-15 -3761 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-811 (-1092))) (-15 -3761 (|#1| $ (-1092))) |%noBranch|) (IF (|has| |#1| (-952 (-1092))) (-15 -2835 ($ |#1| (-1092))) |%noBranch|))) (-312)) (T -521)) -((-2139 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| |scalar| (-350 (-486))) (|:| |coeff| (-1087 *2)) (|:| |logand| (-1087 *2))))) (-5 *4 (-585 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) (-5 *1 (-521 *2)))) (-2138 (*1 *2 *1) (-12 (-5 *1 (-521 *2)) (-4 *2 (-312)))) (-2137 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |scalar| (-350 (-486))) (|:| |coeff| (-1087 *3)) (|:| |logand| (-1087 *3))))) (-5 *1 (-521 *3)) (-4 *3 (-312)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-521 *3)) (-4 *3 (-312)))) (-2135 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-521 *3)) (-4 *3 (-312)))) (-2835 (*1 *1 *2 *2) (-12 (-5 *1 (-521 *2)) (-4 *2 (-312)))) (-3761 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-521 *2)) (-4 *2 (-312)))) (-3761 (*1 *2 *1 *3) (-12 (-4 *2 (-312)) (-4 *2 (-811 *3)) (-5 *1 (-521 *2)) (-5 *3 (-1092)))) (-2835 (*1 *1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *1 (-521 *2)) (-4 *2 (-952 *3)) (-4 *2 (-312))))) -((-3846 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-521 |#2|) (-1 |#2| |#1|) (-521 |#1|)) 30 T ELT))) -(((-522 |#1| |#2|) (-10 -7 (-15 -3846 ((-521 |#2|) (-1 |#2| |#1|) (-521 |#1|))) (-15 -3846 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3846 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3846 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-312) (-312)) (T -522)) -((-3846 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) #1="failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-522 *5 *6)))) (-3846 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 #1#)) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-522 *5 *2)))) (-3846 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2138 *5) (|:| |coeff| *5)) #1#)) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| -2138 *6) (|:| |coeff| *6))) (-5 *1 (-522 *5 *6)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-521 *5)) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-521 *6)) (-5 *1 (-522 *5 *6))))) -((-3421 (((-521 |#2|) (-521 |#2|)) 42 T ELT)) (-3966 (((-585 |#2|) (-521 |#2|)) 44 T ELT)) (-2150 ((|#2| (-521 |#2|)) 50 T ELT))) -(((-523 |#1| |#2|) (-10 -7 (-15 -3421 ((-521 |#2|) (-521 |#2|))) (-15 -3966 ((-585 |#2|) (-521 |#2|))) (-15 -2150 (|#2| (-521 |#2|)))) (-13 (-393) (-952 (-486)) (-582 (-486))) (-13 (-29 |#1|) (-1117))) (T -523)) -((-2150 (*1 *2 *3) (-12 (-5 *3 (-521 *2)) (-4 *2 (-13 (-29 *4) (-1117))) (-5 *1 (-523 *4 *2)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-521 *5)) (-4 *5 (-13 (-29 *4) (-1117))) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-585 *5)) (-5 *1 (-523 *4 *5)))) (-3421 (*1 *2 *2) (-12 (-5 *2 (-521 *4)) (-4 *4 (-13 (-29 *3) (-1117))) (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-523 *3 *4))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2142 (($ (-448) (-534)) 14 T ELT)) (-2140 (($ (-448) (-534) $) 16 T ELT)) (-2141 (($ (-448) (-534)) 15 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-1097)) 7 T ELT) (((-1097) $) 6 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-524) (-13 (-1015) (-431 (-1097)) (-10 -8 (-15 -2142 ($ (-448) (-534))) (-15 -2141 ($ (-448) (-534))) (-15 -2140 ($ (-448) (-534) $))))) (T -524)) -((-2142 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-534)) (-5 *1 (-524)))) (-2141 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-534)) (-5 *1 (-524)))) (-2140 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-534)) (-5 *1 (-524))))) -((-2146 (((-85) |#1|) 16 T ELT)) (-2147 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2144 (((-2 (|:| -2697 |#1|) (|:| -2403 (-696))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-696)) 18 T ELT)) (-2143 (((-85) |#1| (-696)) 19 T ELT)) (-2148 ((|#1| |#1|) 41 T ELT)) (-2145 ((|#1| |#1| (-696)) 44 T ELT))) -(((-525 |#1|) (-10 -7 (-15 -2143 ((-85) |#1| (-696))) (-15 -2144 ((-3 |#1| #1="failed") |#1| (-696))) (-15 -2144 ((-2 (|:| -2697 |#1|) (|:| -2403 (-696))) |#1|)) (-15 -2145 (|#1| |#1| (-696))) (-15 -2146 ((-85) |#1|)) (-15 -2147 ((-3 |#1| #1#) |#1|)) (-15 -2148 (|#1| |#1|))) (-485)) (T -525)) -((-2148 (*1 *2 *2) (-12 (-5 *1 (-525 *2)) (-4 *2 (-485)))) (-2147 (*1 *2 *2) (|partial| -12 (-5 *1 (-525 *2)) (-4 *2 (-485)))) (-2146 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-525 *3)) (-4 *3 (-485)))) (-2145 (*1 *2 *2 *3) (-12 (-5 *3 (-696)) (-5 *1 (-525 *2)) (-4 *2 (-485)))) (-2144 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2697 *3) (|:| -2403 (-696)))) (-5 *1 (-525 *3)) (-4 *3 (-485)))) (-2144 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-696)) (-5 *1 (-525 *2)) (-4 *2 (-485)))) (-2143 (*1 *2 *3 *4) (-12 (-5 *4 (-696)) (-5 *2 (-85)) (-5 *1 (-525 *3)) (-4 *3 (-485))))) -((-2149 (((-1087 |#1|) (-832)) 44 T ELT))) -(((-526 |#1|) (-10 -7 (-15 -2149 ((-1087 |#1|) (-832)))) (-299)) (T -526)) -((-2149 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-526 *4)) (-4 *4 (-299))))) -((-3421 (((-521 (-350 (-859 |#1|))) (-521 (-350 (-859 |#1|)))) 27 T ELT)) (-3815 (((-3 (-265 |#1|) (-585 (-265 |#1|))) (-350 (-859 |#1|)) (-1092)) 33 (|has| |#1| (-120)) ELT)) (-3966 (((-585 (-265 |#1|)) (-521 (-350 (-859 |#1|)))) 19 T ELT)) (-2151 (((-265 |#1|) (-350 (-859 |#1|)) (-1092)) 31 (|has| |#1| (-120)) ELT)) (-2150 (((-265 |#1|) (-521 (-350 (-859 |#1|)))) 21 T ELT))) -(((-527 |#1|) (-10 -7 (-15 -3421 ((-521 (-350 (-859 |#1|))) (-521 (-350 (-859 |#1|))))) (-15 -3966 ((-585 (-265 |#1|)) (-521 (-350 (-859 |#1|))))) (-15 -2150 ((-265 |#1|) (-521 (-350 (-859 |#1|))))) (IF (|has| |#1| (-120)) (PROGN (-15 -3815 ((-3 (-265 |#1|) (-585 (-265 |#1|))) (-350 (-859 |#1|)) (-1092))) (-15 -2151 ((-265 |#1|) (-350 (-859 |#1|)) (-1092)))) |%noBranch|)) (-13 (-393) (-952 (-486)) (-582 (-486)))) (T -527)) -((-2151 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-120)) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-265 *5)) (-5 *1 (-527 *5)))) (-3815 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-120)) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 (-265 *5) (-585 (-265 *5)))) (-5 *1 (-527 *5)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-521 (-350 (-859 *4)))) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-265 *4)) (-5 *1 (-527 *4)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-521 (-350 (-859 *4)))) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-585 (-265 *4))) (-5 *1 (-527 *4)))) (-3421 (*1 *2 *2) (-12 (-5 *2 (-521 (-350 (-859 *3)))) (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-527 *3))))) -((-2153 (((-585 (-632 (-486))) (-585 (-832)) (-585 (-815 (-486)))) 80 T ELT) (((-585 (-632 (-486))) (-585 (-832))) 81 T ELT) (((-632 (-486)) (-585 (-832)) (-815 (-486))) 74 T ELT)) (-2152 (((-696) (-585 (-832))) 71 T ELT))) -(((-528) (-10 -7 (-15 -2152 ((-696) (-585 (-832)))) (-15 -2153 ((-632 (-486)) (-585 (-832)) (-815 (-486)))) (-15 -2153 ((-585 (-632 (-486))) (-585 (-832)))) (-15 -2153 ((-585 (-632 (-486))) (-585 (-832)) (-585 (-815 (-486))))))) (T -528)) -((-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-832))) (-5 *4 (-585 (-815 (-486)))) (-5 *2 (-585 (-632 (-486)))) (-5 *1 (-528)))) (-2153 (*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-585 (-632 (-486)))) (-5 *1 (-528)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-832))) (-5 *4 (-815 (-486))) (-5 *2 (-632 (-486))) (-5 *1 (-528)))) (-2152 (*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-696)) (-5 *1 (-528))))) -((-3216 (((-585 |#5|) |#5| (-85)) 97 T ELT)) (-2154 (((-85) |#5| (-585 |#5|)) 34 T ELT))) -(((-529 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3216 ((-585 |#5|) |#5| (-85))) (-15 -2154 ((-85) |#5| (-585 |#5|)))) (-13 (-258) (-120)) (-719) (-758) (-979 |#1| |#2| |#3|) (-1022 |#1| |#2| |#3| |#4|)) (T -529)) -((-2154 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-1022 *5 *6 *7 *8)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-529 *5 *6 *7 *8 *3)))) (-3216 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-585 *3)) (-5 *1 (-529 *5 *6 *7 *8 *3)) (-4 *3 (-1022 *5 *6 *7 *8))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3531 (((-1051) $) 12 T ELT)) (-3532 (((-1051) $) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 18 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-530) (-13 (-997) (-10 -8 (-15 -3532 ((-1051) $)) (-15 -3531 ((-1051) $))))) (T -530)) -((-3532 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-530)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-530))))) -((-3535 (((-2 (|:| |num| |#4|) (|:| |den| (-486))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-486))) |#4| |#2| (-1003 |#4|)) 32 T ELT))) -(((-531 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3535 ((-2 (|:| |num| |#4|) (|:| |den| (-486))) |#4| |#2| (-1003 |#4|))) (-15 -3535 ((-2 (|:| |num| |#4|) (|:| |den| (-486))) |#4| |#2|))) (-719) (-758) (-497) (-863 |#3| |#1| |#2|)) (T -531)) -((-3535 (*1 *2 *3 *4) (-12 (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-497)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-486)))) (-5 *1 (-531 *5 *4 *6 *3)) (-4 *3 (-863 *6 *5 *4)))) (-3535 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1003 *3)) (-4 *3 (-863 *7 *6 *4)) (-4 *6 (-719)) (-4 *4 (-758)) (-4 *7 (-497)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-486)))) (-5 *1 (-531 *6 *4 *7 *3))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 71 T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-486)) 58 T ELT) (($ $ (-486) (-486)) 59 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) $) 65 T ELT)) (-2185 (($ $) 109 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2183 (((-774) (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) (-941 (-752 (-486))) (-1092) |#1| (-350 (-486))) 232 T ELT)) (-3821 (($ (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|)))) 36 T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2895 (((-85) $) NIL T ELT)) (-3775 (((-486) $) 63 T ELT) (((-486) $ (-486)) 64 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3780 (($ $ (-832)) 83 T ELT)) (-3818 (($ (-1 |#1| (-486)) $) 80 T ELT)) (-3941 (((-85) $) 26 T ELT)) (-2896 (($ |#1| (-486)) 22 T ELT) (($ $ (-996) (-486)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-486))) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2189 (($ (-941 (-752 (-486))) (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|)))) 13 T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3815 (($ $) 120 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2186 (((-3 $ #1#) $ $ (-85)) 108 T ELT)) (-2184 (($ $ $) 116 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2187 (((-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) $) 15 T ELT)) (-2188 (((-941 (-752 (-486))) $) 14 T ELT)) (-3772 (($ $ (-486)) 47 T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-3771 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-486)))) ELT)) (-3803 ((|#1| $ (-486)) 62 T ELT) (($ $ $) NIL (|has| (-486) (-1027)) ELT)) (-3761 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-486) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-486) |#1|))) ELT)) (-3952 (((-486) $) NIL T ELT)) (-2894 (($ $) 48 T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) 29 T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ |#1|) 28 (|has| |#1| (-146)) ELT)) (-3680 ((|#1| $ (-486)) 61 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 39 T CONST)) (-3776 ((|#1| $) NIL T ELT)) (-2164 (($ $) 192 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2176 (($ $) 167 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2166 (($ $) 189 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2178 (($ $) 164 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2162 (($ $) 194 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2174 (($ $) 170 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2181 (($ $ (-350 (-486))) 157 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2182 (($ $ |#1|) 128 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2179 (($ $) 161 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2180 (($ $) 159 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2161 (($ $) 195 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2173 (($ $) 171 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2163 (($ $) 193 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2175 (($ $) 169 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2165 (($ $) 190 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2177 (($ $) 165 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2158 (($ $) 200 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2170 (($ $) 180 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2160 (($ $) 197 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2172 (($ $) 176 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2156 (($ $) 204 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2168 (($ $) 184 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2155 (($ $) 206 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2167 (($ $) 186 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2157 (($ $) 202 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2169 (($ $) 182 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2159 (($ $) 199 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2171 (($ $) 178 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3773 ((|#1| $ (-486)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-486)))) (|has| |#1| (-15 -3950 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 30 T CONST)) (-2669 (($) 40 T CONST)) (-2672 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-486) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-486) |#1|))) ELT)) (-3059 (((-85) $ $) 73 T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3842 (($ $ $) 88 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 111 T ELT)) (* (($ (-832) $) 98 T ELT) (($ (-696) $) 96 T ELT) (($ (-486) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-532 |#1|) (-13 (-1160 |#1| (-486)) (-10 -8 (-15 -2189 ($ (-941 (-752 (-486))) (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))))) (-15 -2188 ((-941 (-752 (-486))) $)) (-15 -2187 ((-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) $)) (-15 -3821 ($ (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))))) (-15 -3941 ((-85) $)) (-15 -3818 ($ (-1 |#1| (-486)) $)) (-15 -2186 ((-3 $ "failed") $ $ (-85))) (-15 -2185 ($ $)) (-15 -2184 ($ $ $)) (-15 -2183 ((-774) (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) (-941 (-752 (-486))) (-1092) |#1| (-350 (-486)))) (IF (|has| |#1| (-38 (-350 (-486)))) (PROGN (-15 -3815 ($ $)) (-15 -2182 ($ $ |#1|)) (-15 -2181 ($ $ (-350 (-486)))) (-15 -2180 ($ $)) (-15 -2179 ($ $)) (-15 -2178 ($ $)) (-15 -2177 ($ $)) (-15 -2176 ($ $)) (-15 -2175 ($ $)) (-15 -2174 ($ $)) (-15 -2173 ($ $)) (-15 -2172 ($ $)) (-15 -2171 ($ $)) (-15 -2170 ($ $)) (-15 -2169 ($ $)) (-15 -2168 ($ $)) (-15 -2167 ($ $)) (-15 -2166 ($ $)) (-15 -2165 ($ $)) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $))) |%noBranch|))) (-963)) (T -532)) -((-3941 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-532 *3)) (-4 *3 (-963)))) (-2189 (*1 *1 *2 *3) (-12 (-5 *2 (-941 (-752 (-486)))) (-5 *3 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *4)))) (-4 *4 (-963)) (-5 *1 (-532 *4)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-941 (-752 (-486)))) (-5 *1 (-532 *3)) (-4 *3 (-963)))) (-2187 (*1 *2 *1) (-12 (-5 *2 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *3)))) (-5 *1 (-532 *3)) (-4 *3 (-963)))) (-3821 (*1 *1 *2) (-12 (-5 *2 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *3)))) (-4 *3 (-963)) (-5 *1 (-532 *3)))) (-3818 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-486))) (-4 *3 (-963)) (-5 *1 (-532 *3)))) (-2186 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-532 *3)) (-4 *3 (-963)))) (-2185 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-963)))) (-2184 (*1 *1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-963)))) (-2183 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *6)))) (-5 *4 (-941 (-752 (-486)))) (-5 *5 (-1092)) (-5 *7 (-350 (-486))) (-4 *6 (-963)) (-5 *2 (-774)) (-5 *1 (-532 *6)))) (-3815 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2182 (*1 *1 *1 *2) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2181 (*1 *1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-532 *3)) (-4 *3 (-38 *2)) (-4 *3 (-963)))) (-2180 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2179 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2178 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2176 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2175 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2168 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 62 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3821 (($ (-1071 |#1|)) 9 T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) 44 T ELT)) (-2895 (((-85) $) 56 T ELT)) (-3775 (((-696) $) 61 T ELT) (((-696) $ (-696)) 60 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) 46 (|has| |#1| (-497)) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3820 (((-1071 |#1|) $) 25 T ELT)) (-3129 (((-696)) 55 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 10 T CONST)) (-2669 (($) 14 T CONST)) (-3059 (((-85) $ $) 24 T ELT)) (-3840 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3842 (($ $ $) 27 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 53 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-486)) 38 T ELT))) -(((-533 |#1|) (-13 (-963) (-82 |#1| |#1|) (-10 -8 (-15 -3820 ((-1071 |#1|) $)) (-15 -3821 ($ (-1071 |#1|))) (-15 -2895 ((-85) $)) (-15 -3775 ((-696) $)) (-15 -3775 ((-696) $ (-696))) (-15 * ($ $ (-486))) (IF (|has| |#1| (-497)) (-6 (-497)) |%noBranch|))) (-963)) (T -533)) -((-3820 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-533 *3)) (-4 *3 (-963)))) (-3821 (*1 *1 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-533 *3)))) (-2895 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-533 *3)) (-4 *3 (-963)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-533 *3)) (-4 *3 (-963)))) (-3775 (*1 *2 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-533 *3)) (-4 *3 (-963)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-533 *3)) (-4 *3 (-963))))) -((-2571 (((-85) $ $) NIL T ELT)) (-2192 (($) 8 T CONST)) (-2193 (($) 7 T CONST)) (-2190 (($ $ (-585 $)) 16 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2194 (($) 6 T CONST)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-1097)) 15 T ELT) (((-1097) $) 10 T ELT)) (-2191 (($) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-534) (-13 (-1015) (-431 (-1097)) (-10 -8 (-15 -2194 ($) -3956) (-15 -2193 ($) -3956) (-15 -2192 ($) -3956) (-15 -2191 ($) -3956) (-15 -2190 ($ $ (-585 $)))))) (T -534)) -((-2194 (*1 *1) (-5 *1 (-534))) (-2193 (*1 *1) (-5 *1 (-534))) (-2192 (*1 *1) (-5 *1 (-534))) (-2191 (*1 *1) (-5 *1 (-534))) (-2190 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-534))) (-5 *1 (-534))))) -((-3846 (((-538 |#2|) (-1 |#2| |#1|) (-538 |#1|)) 15 T ELT))) -(((-535 |#1| |#2|) (-13 (-1131) (-10 -7 (-15 -3846 ((-538 |#2|) (-1 |#2| |#1|) (-538 |#1|))))) (-1131) (-1131)) (T -535)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-538 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-538 *6)) (-5 *1 (-535 *5 *6))))) -((-3846 (((-1071 |#3|) (-1 |#3| |#1| |#2|) (-538 |#1|) (-1071 |#2|)) 20 T ELT) (((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-538 |#2|)) 19 T ELT) (((-538 |#3|) (-1 |#3| |#1| |#2|) (-538 |#1|) (-538 |#2|)) 18 T ELT))) -(((-536 |#1| |#2| |#3|) (-10 -7 (-15 -3846 ((-538 |#3|) (-1 |#3| |#1| |#2|) (-538 |#1|) (-538 |#2|))) (-15 -3846 ((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-538 |#2|))) (-15 -3846 ((-1071 |#3|) (-1 |#3| |#1| |#2|) (-538 |#1|) (-1071 |#2|)))) (-1131) (-1131) (-1131)) (T -536)) -((-3846 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-538 *6)) (-5 *5 (-1071 *7)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-1071 *8)) (-5 *1 (-536 *6 *7 *8)))) (-3846 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1071 *6)) (-5 *5 (-538 *7)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-1071 *8)) (-5 *1 (-536 *6 *7 *8)))) (-3846 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-538 *6)) (-5 *5 (-538 *7)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-538 *8)) (-5 *1 (-536 *6 *7 *8))))) -((-2199 ((|#3| |#3| (-585 (-552 |#3|)) (-585 (-1092))) 57 T ELT)) (-2198 (((-142 |#2|) |#3|) 122 T ELT)) (-2195 ((|#3| (-142 |#2|)) 46 T ELT)) (-2196 ((|#2| |#3|) 21 T ELT)) (-2197 ((|#3| |#2|) 35 T ELT))) -(((-537 |#1| |#2| |#3|) (-10 -7 (-15 -2195 (|#3| (-142 |#2|))) (-15 -2196 (|#2| |#3|)) (-15 -2197 (|#3| |#2|)) (-15 -2198 ((-142 |#2|) |#3|)) (-15 -2199 (|#3| |#3| (-585 (-552 |#3|)) (-585 (-1092))))) (-497) (-13 (-364 |#1|) (-917) (-1117)) (-13 (-364 (-142 |#1|)) (-917) (-1117))) (T -537)) -((-2199 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-585 (-552 *2))) (-5 *4 (-585 (-1092))) (-4 *2 (-13 (-364 (-142 *5)) (-917) (-1117))) (-4 *5 (-497)) (-5 *1 (-537 *5 *6 *2)) (-4 *6 (-13 (-364 *5) (-917) (-1117))))) (-2198 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-142 *5)) (-5 *1 (-537 *4 *5 *3)) (-4 *5 (-13 (-364 *4) (-917) (-1117))) (-4 *3 (-13 (-364 (-142 *4)) (-917) (-1117))))) (-2197 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *2 (-13 (-364 (-142 *4)) (-917) (-1117))) (-5 *1 (-537 *4 *3 *2)) (-4 *3 (-13 (-364 *4) (-917) (-1117))))) (-2196 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *2 (-13 (-364 *4) (-917) (-1117))) (-5 *1 (-537 *4 *2 *3)) (-4 *3 (-13 (-364 (-142 *4)) (-917) (-1117))))) (-2195 (*1 *2 *3) (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-364 *4) (-917) (-1117))) (-4 *4 (-497)) (-4 *2 (-13 (-364 (-142 *4)) (-917) (-1117))) (-5 *1 (-537 *4 *5 *2))))) -((-3713 (($ (-1 (-85) |#1|) $) 19 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3460 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3459 (($ (-1 (-85) |#1|) $) 15 T ELT)) (-3458 (($ (-1 (-85) |#1|) $) 17 T ELT)) (-3533 (((-1071 |#1|) $) 20 T ELT)) (-3950 (((-774) $) 25 T ELT))) -(((-538 |#1|) (-13 (-381 |#1|) (-554 (-774)) (-10 -8 (-15 -3459 ($ (-1 (-85) |#1|) $)) (-15 -3458 ($ (-1 (-85) |#1|) $)) (-15 -3713 ($ (-1 (-85) |#1|) $)) (-15 -3460 ($ (-1 |#1| |#1|) |#1|)) (-15 -3533 ((-1071 |#1|) $)))) (-1131)) (T -538)) -((-3459 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-538 *3)))) (-3458 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-538 *3)))) (-3713 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-538 *3)))) (-3460 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-538 *3)))) (-3533 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-538 *3)) (-4 *3 (-1131))))) -((-2200 (((-1187) $ |#2| |#2|) 34 T ELT)) (-2202 ((|#2| $) 23 T ELT)) (-2203 ((|#2| $) 21 T ELT)) (-3846 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3804 ((|#3| $) 26 T ELT)) (-2201 (($ $ |#3|) 32 T ELT)) (-2204 (((-85) |#3| $) 17 T ELT)) (-2207 (((-585 |#3|) $) 15 T ELT)) (-3803 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) -(((-539 |#1| |#2| |#3|) (-10 -7 (-15 -2200 ((-1187) |#1| |#2| |#2|)) (-15 -2201 (|#1| |#1| |#3|)) (-15 -3804 (|#3| |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2203 (|#2| |#1|)) (-15 -2204 ((-85) |#3| |#1|)) (-15 -2207 ((-585 |#3|) |#1|)) (-15 -3803 (|#3| |#1| |#2|)) (-15 -3803 (|#3| |#1| |#2| |#3|)) (-15 -3846 (|#1| (-1 |#3| |#3|) |#1|))) (-540 |#2| |#3|) (-72) (-1131)) (T -539)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-2200 (((-1187) $ |#1| |#1|) 35 (|has| $ (-1037 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) 47 (|has| $ (-1037 |#2|)) ELT)) (-3727 (($) 6 T CONST)) (-1577 ((|#2| $ |#1| |#2|) 48 (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) 46 T ELT)) (-2202 ((|#1| $) 38 (|has| |#1| (-758)) ELT)) (-2203 ((|#1| $) 39 (|has| |#1| (-758)) ELT)) (-3846 (($ (-1 |#2| |#2|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#2| (-1015)) ELT)) (-2205 (((-585 |#1|) $) 41 T ELT)) (-2206 (((-85) |#1| $) 42 T ELT)) (-3246 (((-1035) $) 20 (|has| |#2| (-1015)) ELT)) (-3804 ((|#2| $) 37 (|has| |#1| (-758)) ELT)) (-2201 (($ $ |#2|) 36 (|has| $ (-1037 |#2|)) ELT)) (-3771 (($ $ (-585 (-249 |#2|))) 25 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 22 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#2| $) 40 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) 43 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#2| $ |#1| |#2|) 45 T ELT) ((|#2| $ |#1|) 44 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-774) $) 16 (|has| |#2| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#2| (-72)) ELT))) -(((-540 |#1| |#2|) (-113) (-72) (-1131)) (T -540)) -((-2207 (*1 *2 *1) (-12 (-4 *1 (-540 *3 *4)) (-4 *3 (-72)) (-4 *4 (-1131)) (-5 *2 (-585 *4)))) (-2206 (*1 *2 *3 *1) (-12 (-4 *1 (-540 *3 *4)) (-4 *3 (-72)) (-4 *4 (-1131)) (-5 *2 (-85)))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-540 *3 *4)) (-4 *3 (-72)) (-4 *4 (-1131)) (-5 *2 (-585 *3)))) (-2204 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-72)) (-4 *1 (-540 *4 *3)) (-4 *4 (-72)) (-4 *3 (-1131)) (-5 *2 (-85)))) (-2203 (*1 *2 *1) (-12 (-4 *1 (-540 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-72)) (-4 *2 (-758)))) (-2202 (*1 *2 *1) (-12 (-4 *1 (-540 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-72)) (-4 *2 (-758)))) (-3804 (*1 *2 *1) (-12 (-4 *1 (-540 *3 *2)) (-4 *3 (-72)) (-4 *3 (-758)) (-4 *2 (-1131)))) (-2201 (*1 *1 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-540 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1131)))) (-2200 (*1 *2 *1 *3 *3) (-12 (-4 *1 (-1037 *4)) (-4 *1 (-540 *3 *4)) (-4 *3 (-72)) (-4 *4 (-1131)) (-5 *2 (-1187))))) -(-13 (-430 |t#2|) (-243 |t#1| |t#2|) (-10 -8 (-15 -2207 ((-585 |t#2|) $)) (-15 -2206 ((-85) |t#1| $)) (-15 -2205 ((-585 |t#1|) $)) (IF (|has| |t#2| (-72)) (IF (|has| $ (-318 |t#2|)) (-15 -2204 ((-85) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-758)) (PROGN (-15 -2203 (|t#1| $)) (-15 -2202 (|t#1| $)) (-15 -3804 (|t#2| $))) |%noBranch|) (IF (|has| $ (-1037 |t#2|)) (PROGN (-15 -2201 ($ $ |t#2|)) (-15 -2200 ((-1187) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#2| (-1015)) (|has| |#2| (-72))) ((-554 (-774)) OR (|has| |#2| (-1015)) (|has| |#2| (-554 (-774)))) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-381 |#2|) . T) ((-430 |#2|) . T) ((-457 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-13) . T) ((-1015) |has| |#2| (-1015)) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT) (((-1132) $) 15 T ELT) (($ (-585 (-1132))) 14 T ELT)) (-2208 (((-585 (-1132)) $) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-541) (-13 (-997) (-554 (-1132)) (-10 -8 (-15 -3950 ($ (-585 (-1132)))) (-15 -2208 ((-585 (-1132)) $))))) (T -541)) -((-3950 (*1 *1 *2) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-541)))) (-2208 (*1 *2 *1) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-541))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1777 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1314 (((-3 $ #1#) $ $) NIL T ELT)) (-3226 (((-1181 (-632 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1181 (-632 |#1|)) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1730 (((-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1704 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1793 (((-632 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1791 (((-632 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) $ (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2406 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1905 (((-1087 (-859 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2409 (($ $ (-832)) NIL T ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1706 (((-1087 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1795 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1724 (((-1087 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1797 (($ (-1181 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (($ (-1181 |#1|) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3470 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-3111 (((-832)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2436 (($ $ (-832)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1705 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1794 (((-632 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1729 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1792 (((-632 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) $ (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2407 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1909 (((-1087 (-859 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2408 (($ $ (-832)) NIL T ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1707 (((-1087 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1796 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1725 (((-1087 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3803 ((|#1| $ (-486)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-3227 (((-632 |#1|) (-1181 $)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1181 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) (-1181 $) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1181 |#1|) $ (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3975 (($ (-1181 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1181 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1897 (((-585 (-859 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-585 (-859 |#1|)) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2438 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3950 (((-774) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1708 (((-585 (-1181 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-2439 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2548 (($ (-632 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-2437 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2663 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) 24 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-542 |#1| |#2|) (-13 (-685 |#1|) (-554 |#2|) (-10 -8 (-15 -3950 ($ |#2|)) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-685 |#1|)) (T -542)) -((-3950 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-542 *3 *2)) (-4 *2 (-685 *3))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-101)) 6 T ELT) (((-101) $) 7 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-543) (-13 (-1015) (-431 (-101)))) (T -543)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2210 (($) 10 T CONST)) (-2232 (($) 8 T CONST)) (-2209 (($) 11 T CONST)) (-2228 (($) 9 T CONST)) (-2225 (($) 12 T CONST)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) -(((-544) (-13 (-1015) (-606) (-10 -8 (-15 -2232 ($) -3956) (-15 -2228 ($) -3956) (-15 -2210 ($) -3956) (-15 -2209 ($) -3956) (-15 -2225 ($) -3956)))) (T -544)) -((-2232 (*1 *1) (-5 *1 (-544))) (-2228 (*1 *1) (-5 *1 (-544))) (-2210 (*1 *1) (-5 *1 (-544))) (-2209 (*1 *1) (-5 *1 (-544))) (-2225 (*1 *1) (-5 *1 (-544)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2221 (($) 11 T CONST)) (-2215 (($) 17 T CONST)) (-2211 (($) 21 T CONST)) (-2213 (($) 19 T CONST)) (-2218 (($) 14 T CONST)) (-2212 (($) 20 T CONST)) (-2220 (($) 12 T CONST)) (-2219 (($) 13 T CONST)) (-2214 (($) 18 T CONST)) (-2217 (($) 15 T CONST)) (-2216 (($) 16 T CONST)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (((-101) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-545) (-13 (-1015) (-554 (-101)) (-10 -8 (-15 -2221 ($) -3956) (-15 -2220 ($) -3956) (-15 -2219 ($) -3956) (-15 -2218 ($) -3956) (-15 -2217 ($) -3956) (-15 -2216 ($) -3956) (-15 -2215 ($) -3956) (-15 -2214 ($) -3956) (-15 -2213 ($) -3956) (-15 -2212 ($) -3956) (-15 -2211 ($) -3956)))) (T -545)) -((-2221 (*1 *1) (-5 *1 (-545))) (-2220 (*1 *1) (-5 *1 (-545))) (-2219 (*1 *1) (-5 *1 (-545))) (-2218 (*1 *1) (-5 *1 (-545))) (-2217 (*1 *1) (-5 *1 (-545))) (-2216 (*1 *1) (-5 *1 (-545))) (-2215 (*1 *1) (-5 *1 (-545))) (-2214 (*1 *1) (-5 *1 (-545))) (-2213 (*1 *1) (-5 *1 (-545))) (-2212 (*1 *1) (-5 *1 (-545))) (-2211 (*1 *1) (-5 *1 (-545)))) -((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2223 (($) 13 T CONST)) (-2222 (($) 14 T CONST)) (-2229 (($) 11 T CONST)) (-2232 (($) 8 T CONST)) (-2230 (($) 10 T CONST)) (-2231 (($) 9 T CONST)) (-2228 (($) 12 T CONST)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) -(((-546) (-13 (-1015) (-606) (-10 -8 (-15 -2232 ($) -3956) (-15 -2231 ($) -3956) (-15 -2230 ($) -3956) (-15 -2229 ($) -3956) (-15 -2228 ($) -3956) (-15 -2223 ($) -3956) (-15 -2222 ($) -3956)))) (T -546)) -((-2232 (*1 *1) (-5 *1 (-546))) (-2231 (*1 *1) (-5 *1 (-546))) (-2230 (*1 *1) (-5 *1 (-546))) (-2229 (*1 *1) (-5 *1 (-546))) (-2228 (*1 *1) (-5 *1 (-546))) (-2223 (*1 *1) (-5 *1 (-546))) (-2222 (*1 *1) (-5 *1 (-546)))) -((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2227 (($) 13 T CONST)) (-2224 (($) 16 T CONST)) (-2229 (($) 11 T CONST)) (-2232 (($) 8 T CONST)) (-2230 (($) 10 T CONST)) (-2231 (($) 9 T CONST)) (-2226 (($) 14 T CONST)) (-2228 (($) 12 T CONST)) (-2225 (($) 15 T CONST)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) -(((-547) (-13 (-1015) (-606) (-10 -8 (-15 -2232 ($) -3956) (-15 -2231 ($) -3956) (-15 -2230 ($) -3956) (-15 -2229 ($) -3956) (-15 -2228 ($) -3956) (-15 -2227 ($) -3956) (-15 -2226 ($) -3956) (-15 -2225 ($) -3956) (-15 -2224 ($) -3956)))) (T -547)) -((-2232 (*1 *1) (-5 *1 (-547))) (-2231 (*1 *1) (-5 *1 (-547))) (-2230 (*1 *1) (-5 *1 (-547))) (-2229 (*1 *1) (-5 *1 (-547))) (-2228 (*1 *1) (-5 *1 (-547))) (-2227 (*1 *1) (-5 *1 (-547))) (-2226 (*1 *1) (-5 *1 (-547))) (-2225 (*1 *1) (-5 *1 (-547))) (-2224 (*1 *1) (-5 *1 (-547)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 19 T ELT) (($ (-543)) 12 T ELT) (((-543) $) 11 T ELT) (($ (-101)) NIL T ELT) (((-101) $) 14 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-548) (-13 (-1015) (-431 (-543)) (-431 (-101)))) (T -548)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-1698 (((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) $ (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) 40 T ELT)) (-3602 (($ (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2200 (((-1187) $ (-1075) (-1075)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ (-1075) |#1|) 50 (|has| $ (-1037 |#1|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) ELT)) (-2233 (((-3 |#1| #1="failed") (-1075) $) 53 T ELT)) (-3727 (($) NIL T CONST)) (-1702 (($ $ (-1075)) 25 T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-72))) ELT)) (-3408 (((-3 |#1| #1#) (-1075) $) 54 T ELT) (($ (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) ELT) (($ (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) $) NIL (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) ELT)) (-3409 (($ (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) ELT) (($ (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-72))) ELT)) (-3845 (((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT) (((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $ (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) NIL T ELT) (((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $ (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) NIL (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-72)) ELT)) (-1699 (((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1577 ((|#1| $ (-1075) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-1075)) NIL T ELT)) (-2273 (($ $) 55 T ELT)) (-1703 (($ (-338)) 23 T ELT) (($ (-338) (-1075)) 22 T ELT)) (-3545 (((-338) $) 41 T ELT)) (-2202 (((-1075) $) NIL (|has| (-1075) (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3248 (((-85) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-72)) ELT)) (-2203 (((-1075) $) NIL (|has| (-1075) (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2234 (((-585 (-1075)) $) 46 T ELT)) (-2235 (((-85) (-1075) $) NIL T ELT)) (-1700 (((-1075) $) 42 T ELT)) (-1276 (((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2205 (((-585 (-1075)) $) NIL T ELT)) (-2206 (((-85) (-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 ((|#1| $) NIL (|has| (-1075) (-758)) ELT)) (-1731 (((-3 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1277 (((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) 44 T ELT)) (-3803 ((|#1| $ (-1075) |#1|) NIL T ELT) ((|#1| $ (-1075)) 49 T ELT)) (-1467 (($ (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1732 (((-696) (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT) (((-696) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-72)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) NIL T ELT)) (-3950 (((-774) $) 21 T ELT)) (-1701 (($ $) 26 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1278 (($ (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3059 (((-85) $ $) 20 T ELT)) (-3961 (((-696) $) 48 T ELT))) -(((-549 |#1|) (-13 (-314 (-338) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) (-1109 (-1075) |#1|) (-10 -8 (-15 -2273 ($ $)))) (-1015)) (T -549)) -((-2273 (*1 *1 *1) (-12 (-5 *1 (-549 *2)) (-4 *2 (-1015))))) -((-2234 (((-585 |#2|) $) 19 T ELT)) (-2235 (((-85) |#2| $) 12 T ELT)) (-3803 ((|#3| $ |#2|) 20 T ELT) ((|#3| $ |#2| |#3|) 21 T ELT))) -(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -2234 ((-585 |#2|) |#1|)) (-15 -2235 ((-85) |#2| |#1|)) (-15 -3803 (|#3| |#1| |#2| |#3|)) (-15 -3803 (|#3| |#1| |#2|))) (-551 |#2| |#3|) (-1015) (-1015)) (T -550)) -NIL -((-2571 (((-85) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2200 (((-1187) $ |#1| |#1|) 82 (|has| $ (-1037 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) 70 (|has| $ (-1037 |#2|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 42 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| "failed") |#1| $) 59 T ELT)) (-3727 (($) 6 T CONST)) (-1355 (($ $) 51 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 44 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 43 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| "failed") |#1| $) 60 T ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 50 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-1577 ((|#2| $ |#1| |#2|) 69 (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) 71 T ELT)) (-2202 ((|#1| $) 79 (|has| |#1| (-758)) ELT)) (-2203 ((|#1| $) 78 (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 39 T ELT) (($ (-1 |#2| |#2|) $) 63 T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 26 T ELT) (($ (-1 |#2| |#2|) $) 64 T ELT)) (-3245 (((-1075) $) 21 (OR (|has| |#2| (-1015)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-2234 (((-585 |#1|) $) 61 T ELT)) (-2235 (((-85) |#1| $) 62 T ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 35 T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 36 T ELT)) (-2205 (((-585 |#1|) $) 76 T ELT)) (-2206 (((-85) |#1| $) 75 T ELT)) (-3246 (((-1035) $) 20 (OR (|has| |#2| (-1015)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-3804 ((|#2| $) 80 (|has| |#1| (-758)) ELT)) (-2201 (($ $ |#2|) 81 (|has| $ (-1037 |#2|)) ELT)) (-1277 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 37 T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) 25 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 24 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 23 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 22 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 68 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) 67 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) 66 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) 65 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#2| $) 77 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) 74 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#2| $ |#1|) 73 T ELT) ((|#2| $ |#1| |#2|) 72 T ELT)) (-1467 (($) 46 T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 45 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 52 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 47 T ELT)) (-3950 (((-774) $) 16 (OR (|has| |#2| (-554 (-774))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-774)))) ELT)) (-1267 (((-85) $ $) 19 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 38 T ELT)) (-3059 (((-85) $ $) 17 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT))) -(((-551 |#1| |#2|) (-113) (-1015) (-1015)) (T -551)) -((-2235 (*1 *2 *3 *1) (-12 (-4 *1 (-551 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-85)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-551 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-585 *3)))) (-3408 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-551 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015)))) (-2233 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-551 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015))))) -(-13 (-183 (-2 (|:| -3864 |t#1|) (|:| |entry| |t#2|))) (-540 |t#1| |t#2|) (-1037 |t#2|) (-10 -8 (-15 -2235 ((-85) |t#1| $)) (-15 -2234 ((-585 |t#1|) $)) (-15 -3408 ((-3 |t#2| "failed") |t#1| $)) (-15 -2233 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-76 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1015)) (|has| |#2| (-72))) ((-554 (-774)) OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-1015)) (|has| |#2| (-554 (-774)))) ((-124 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-555 (-475)) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ((-183 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-381 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-381 |#2|) . T) ((-430 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-430 |#2|) . T) ((-540 |#1| |#2|) . T) ((-457 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ((-457 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-13) . T) ((-1015) OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ((-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-1037 |#2|) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-2236 (((-3 (-1092) "failed") $) 46 T ELT)) (-1315 (((-1187) $ (-696)) 22 T ELT)) (-3422 (((-696) $) 20 T ELT)) (-3598 (((-86) $) 9 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2237 (($ (-86) (-585 |#1|) (-696)) 32 T ELT) (($ (-1092)) 33 T ELT)) (-2636 (((-85) $ (-86)) 15 T ELT) (((-85) $ (-1092)) 13 T ELT)) (-2606 (((-696) $) 17 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3975 (((-802 (-486)) $) 99 (|has| |#1| (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) 106 (|has| |#1| (-555 (-802 (-330)))) ELT) (((-475) $) 92 (|has| |#1| (-555 (-475))) ELT)) (-3950 (((-774) $) 74 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2238 (((-585 |#1|) $) 19 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 51 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 53 T ELT))) -(((-552 |#1|) (-13 (-105) (-758) (-796 |#1|) (-10 -8 (-15 -3598 ((-86) $)) (-15 -2238 ((-585 |#1|) $)) (-15 -2606 ((-696) $)) (-15 -2237 ($ (-86) (-585 |#1|) (-696))) (-15 -2237 ($ (-1092))) (-15 -2236 ((-3 (-1092) "failed") $)) (-15 -2636 ((-85) $ (-86))) (-15 -2636 ((-85) $ (-1092))) (IF (|has| |#1| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|))) (-1015)) (T -552)) -((-3598 (*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) (-2237 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-86)) (-5 *3 (-585 *5)) (-5 *4 (-696)) (-4 *5 (-1015)) (-5 *1 (-552 *5)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) (-2236 (*1 *2 *1) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) (-2636 (*1 *2 *1 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-552 *4)) (-4 *4 (-1015)))) (-2636 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-85)) (-5 *1 (-552 *4)) (-4 *4 (-1015))))) -((-2239 (((-552 |#2|) |#1|) 17 T ELT)) (-2240 (((-3 |#1| "failed") (-552 |#2|)) 21 T ELT))) -(((-553 |#1| |#2|) (-10 -7 (-15 -2239 ((-552 |#2|) |#1|)) (-15 -2240 ((-3 |#1| "failed") (-552 |#2|)))) (-1015) (-1015)) (T -553)) -((-2240 (*1 *2 *3) (|partial| -12 (-5 *3 (-552 *4)) (-4 *4 (-1015)) (-4 *2 (-1015)) (-5 *1 (-553 *2 *4)))) (-2239 (*1 *2 *3) (-12 (-5 *2 (-552 *4)) (-5 *1 (-553 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) -((-3950 ((|#1| $) 6 T ELT))) -(((-554 |#1|) (-113) (-1131)) (T -554)) -((-3950 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1131))))) -(-13 (-10 -8 (-15 -3950 (|t#1| $)))) -((-3975 ((|#1| $) 6 T ELT))) -(((-555 |#1|) (-113) (-1131)) (T -555)) -((-3975 (*1 *2 *1) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1131))))) -(-13 (-10 -8 (-15 -3975 (|t#1| $)))) -((-2241 (((-3 (-1087 (-350 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 (-348 |#2|) |#2|)) 15 T ELT) (((-3 (-1087 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)) 16 T ELT))) -(((-556 |#1| |#2|) (-10 -7 (-15 -2241 ((-3 (-1087 (-350 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|))) (-15 -2241 ((-3 (-1087 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 (-348 |#2|) |#2|)))) (-13 (-120) (-27) (-952 (-486)) (-952 (-350 (-486)))) (-1157 |#1|)) (T -556)) -((-2241 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-120) (-27) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-1087 (-350 *6))) (-5 *1 (-556 *5 *6)) (-5 *3 (-350 *6)))) (-2241 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-120) (-27) (-952 (-486)) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) (-5 *2 (-1087 (-350 *5))) (-5 *1 (-556 *4 *5)) (-5 *3 (-350 *5))))) -((-3950 (($ |#1|) 6 T ELT))) -(((-557 |#1|) (-113) (-1131)) (T -557)) -((-3950 (*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1131))))) -(-13 (-10 -8 (-15 -3950 ($ |t#1|)))) -((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-2242 (($) 11 T CONST)) (-2858 (($) 13 T CONST)) (-3139 (((-696)) 36 T ELT)) (-2997 (($) NIL T ELT)) (-2564 (($ $ $) 25 T ELT)) (-2563 (($ $) 23 T ELT)) (-2012 (((-832) $) 43 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) 42 T ELT)) (-2856 (($ $ $) 26 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2857 (($) 9 T CONST)) (-2855 (($ $ $) 27 T ELT)) (-3950 (((-774) $) 34 T ELT)) (-3569 (((-85) $ (|[\|\|]| -2857)) 20 T ELT) (((-85) $ (|[\|\|]| -2242)) 22 T ELT) (((-85) $ (|[\|\|]| -2858)) 18 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2565 (($ $ $) 24 T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3059 (((-85) $ $) 16 T ELT)) (-2314 (($ $ $) NIL T ELT))) -(((-558) (-13 (-882) (-320) (-10 -8 (-15 -2242 ($) -3956) (-15 -3569 ((-85) $ (|[\|\|]| -2857))) (-15 -3569 ((-85) $ (|[\|\|]| -2242))) (-15 -3569 ((-85) $ (|[\|\|]| -2858)))))) (T -558)) -((-2242 (*1 *1) (-5 *1 (-558))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2857)) (-5 *2 (-85)) (-5 *1 (-558)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2242)) (-5 *2 (-85)) (-5 *1 (-558)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2858)) (-5 *2 (-85)) (-5 *1 (-558))))) -((-3975 (($ |#1|) 6 T ELT))) -(((-559 |#1|) (-113) (-1131)) (T -559)) -((-3975 (*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-1131))))) -(-13 (-10 -8 (-15 -3975 ($ |t#1|)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| |#1| (-757)) ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3001 ((|#1| $) 13 T ELT)) (-3190 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3000 ((|#3| $) 15 T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3129 (((-696)) 20 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| |#1| (-757)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) 12 T CONST)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3953 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-560 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-757)) (-6 (-757)) |%noBranch|) (-15 -3953 ($ $ |#3|)) (-15 -3953 ($ |#1| |#3|)) (-15 -3001 (|#1| $)) (-15 -3000 (|#3| $)))) (-38 |#2|) (-146) (|SubsetCategory| (-665) |#2|)) (T -560)) -((-3953 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-560 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-665) *4)))) (-3953 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-560 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-665) *4)))) (-3001 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-560 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-665) *3)))) (-3000 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-665) *4)) (-5 *1 (-560 *3 *4 *2)) (-4 *3 (-38 *4))))) -((-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-561 |#1| |#2|) (-10 -7 (-15 -3950 (|#1| |#2|)) (-15 -3950 (|#1| (-486))) (-15 -3950 ((-774) |#1|))) (-562 |#2|) (-963)) (T -561)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 49 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#1| $) 50 T ELT))) -(((-562 |#1|) (-113) (-963)) (T -562)) -((-3950 (*1 *1 *2) (-12 (-4 *1 (-562 *2)) (-4 *2 (-963))))) -(-13 (-963) (-592 |t#1|) (-10 -8 (-15 -3950 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-665) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-2243 ((|#2| |#2| (-1092) (-1092)) 16 T ELT))) -(((-563 |#1| |#2|) (-10 -7 (-15 -2243 (|#2| |#2| (-1092) (-1092)))) (-13 (-258) (-120) (-952 (-486)) (-582 (-486))) (-13 (-1117) (-873) (-29 |#1|))) (T -563)) -((-2243 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1117) (-873) (-29 *4)))))) -((-2571 (((-85) $ $) 64 T ELT)) (-3191 (((-85) $) 58 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-2244 ((|#1| $) 55 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3754 (((-2 (|:| -1767 $) (|:| -1766 (-350 |#2|))) (-350 |#2|)) 111 (|has| |#1| (-312)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) 27 T ELT)) (-3470 (((-3 $ #1#) $) 88 T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3775 (((-486) $) 22 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (((-85) $) 40 T ELT)) (-2896 (($ |#1| (-486)) 24 T ELT)) (-3177 ((|#1| $) 57 T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 101 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ #1#) $ $) 93 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-696) $) 115 (|has| |#1| (-312)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 114 (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT)) (-3952 (((-486) $) 38 T ELT)) (-3975 (((-350 |#2|) $) 47 T ELT)) (-3950 (((-774) $) 69 T ELT) (($ (-486)) 35 T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3680 ((|#1| $ (-486)) 72 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 32 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 9 T CONST)) (-2669 (($) 14 T CONST)) (-2672 (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) 21 T ELT)) (-3840 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 90 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 29 T ELT) (($ $ $) 49 T ELT))) -(((-564 |#1| |#2|) (-13 (-184 |#2|) (-497) (-555 (-350 |#2|)) (-355 |#1|) (-952 |#2|) (-10 -8 (-15 -3941 ((-85) $)) (-15 -3952 ((-486) $)) (-15 -3775 ((-486) $)) (-15 -3962 ($ $)) (-15 -3177 (|#1| $)) (-15 -2244 (|#1| $)) (-15 -3680 (|#1| $ (-486))) (-15 -2896 ($ |#1| (-486))) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-258)) (-15 -3754 ((-2 (|:| -1767 $) (|:| -1766 (-350 |#2|))) (-350 |#2|)))) |%noBranch|))) (-497) (-1157 |#1|)) (T -564)) -((-3941 (*1 *2 *1) (-12 (-4 *3 (-497)) (-5 *2 (-85)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1157 *3)))) (-3952 (*1 *2 *1) (-12 (-4 *3 (-497)) (-5 *2 (-486)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1157 *3)))) (-3775 (*1 *2 *1) (-12 (-4 *3 (-497)) (-5 *2 (-486)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1157 *3)))) (-3962 (*1 *1 *1) (-12 (-4 *2 (-497)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1157 *2)))) (-3177 (*1 *2 *1) (-12 (-4 *2 (-497)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1157 *2)))) (-2244 (*1 *2 *1) (-12 (-4 *2 (-497)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1157 *2)))) (-3680 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *2 (-497)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1157 *2)))) (-2896 (*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-4 *2 (-497)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1157 *2)))) (-3754 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-497)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -1767 (-564 *4 *5)) (|:| -1766 (-350 *5)))) (-5 *1 (-564 *4 *5)) (-5 *3 (-350 *5))))) -((-3685 (((-585 |#6|) (-585 |#4|) (-85)) 54 T ELT)) (-2245 ((|#6| |#6|) 48 T ELT))) -(((-565 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2245 (|#6| |#6|)) (-15 -3685 ((-585 |#6|) (-585 |#4|) (-85)))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|) (-1022 |#1| |#2| |#3| |#4|)) (T -565)) -((-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 *10)) (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *10 (-1022 *5 *6 *7 *8)))) (-2245 (*1 *2 *2) (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *2 (-1022 *3 *4 *5 *6))))) -((-2246 (((-85) |#3| (-696) (-585 |#3|)) 30 T ELT)) (-2247 (((-3 (-2 (|:| |polfac| (-585 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-585 (-1087 |#3|)))) "failed") |#3| (-585 (-1087 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1784 (-585 (-2 (|:| |irr| |#4|) (|:| -2397 (-486)))))) (-585 |#3|) (-585 |#1|) (-585 |#3|)) 68 T ELT))) -(((-566 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2246 ((-85) |#3| (-696) (-585 |#3|))) (-15 -2247 ((-3 (-2 (|:| |polfac| (-585 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-585 (-1087 |#3|)))) "failed") |#3| (-585 (-1087 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1784 (-585 (-2 (|:| |irr| |#4|) (|:| -2397 (-486)))))) (-585 |#3|) (-585 |#1|) (-585 |#3|)))) (-758) (-719) (-258) (-863 |#3| |#2| |#1|)) (T -566)) -((-2247 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1784 (-585 (-2 (|:| |irr| *10) (|:| -2397 (-486))))))) (-5 *6 (-585 *3)) (-5 *7 (-585 *8)) (-4 *8 (-758)) (-4 *3 (-258)) (-4 *10 (-863 *3 *9 *8)) (-4 *9 (-719)) (-5 *2 (-2 (|:| |polfac| (-585 *10)) (|:| |correct| *3) (|:| |corrfact| (-585 (-1087 *3))))) (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-585 (-1087 *3))))) (-2246 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-696)) (-5 *5 (-585 *3)) (-4 *3 (-258)) (-4 *6 (-758)) (-4 *7 (-719)) (-5 *2 (-85)) (-5 *1 (-566 *6 *7 *3 *8)) (-4 *8 (-863 *3 *7 *6))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3531 (((-1051) $) 12 T ELT)) (-3532 (((-1051) $) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 18 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-567) (-13 (-997) (-10 -8 (-15 -3532 ((-1051) $)) (-15 -3531 ((-1051) $))))) (T -567)) -((-3532 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-567)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-567))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3938 (((-585 |#1|) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3940 (($ $) 77 T ELT)) (-3946 (((-608 |#1| |#2|) $) 60 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 81 T ELT)) (-2248 (((-585 (-249 |#2|)) $ $) 42 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3947 (($ (-608 |#1| |#2|)) 56 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-3950 (((-774) $) 66 T ELT) (((-1197 |#1| |#2|) $) NIL T ELT) (((-1202 |#1| |#2|) $) 74 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2669 (($) 61 T CONST)) (-2249 (((-585 (-2 (|:| |k| (-616 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2250 (((-585 (-608 |#1| |#2|)) (-585 |#1|)) 73 T ELT)) (-2668 (((-585 (-2 (|:| |k| (-805 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3059 (((-85) $ $) 62 T ELT)) (-3953 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ $ $) 52 T ELT))) -(((-568 |#1| |#2| |#3|) (-13 (-414) (-10 -8 (-15 -3947 ($ (-608 |#1| |#2|))) (-15 -3946 ((-608 |#1| |#2|) $)) (-15 -2668 ((-585 (-2 (|:| |k| (-805 |#1|)) (|:| |c| |#2|))) $)) (-15 -3950 ((-1197 |#1| |#2|) $)) (-15 -3950 ((-1202 |#1| |#2|) $)) (-15 -3940 ($ $)) (-15 -3938 ((-585 |#1|) $)) (-15 -2250 ((-585 (-608 |#1| |#2|)) (-585 |#1|))) (-15 -2249 ((-585 (-2 (|:| |k| (-616 |#1|)) (|:| |c| |#2|))) $)) (-15 -2248 ((-585 (-249 |#2|)) $ $)))) (-758) (-13 (-146) (-656 (-350 (-486)))) (-832)) (T -568)) -((-3947 (*1 *1 *2) (-12 (-5 *2 (-608 *3 *4)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-5 *1 (-568 *3 *4 *5)) (-14 *5 (-832)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-608 *3 *4)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |k| (-805 *3)) (|:| |c| *4)))) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-1202 *3 *4)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) (-3940 (*1 *1 *1) (-12 (-5 *1 (-568 *2 *3 *4)) (-4 *2 (-758)) (-4 *3 (-13 (-146) (-656 (-350 (-486))))) (-14 *4 (-832)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-758)) (-5 *2 (-585 (-608 *4 *5))) (-5 *1 (-568 *4 *5 *6)) (-4 *5 (-13 (-146) (-656 (-350 (-486))))) (-14 *6 (-832)))) (-2249 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |k| (-616 *3)) (|:| |c| *4)))) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) (-2248 (*1 *2 *1 *1) (-12 (-5 *2 (-585 (-249 *4))) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832))))) -((-3685 (((-585 (-1062 |#1| (-471 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|)))) (-585 (-705 |#1| (-775 |#2|))) (-85)) 103 T ELT) (((-585 (-960 |#1| |#2|)) (-585 (-705 |#1| (-775 |#2|))) (-85)) 77 T ELT)) (-2251 (((-85) (-585 (-705 |#1| (-775 |#2|)))) 26 T ELT)) (-2255 (((-585 (-1062 |#1| (-471 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|)))) (-585 (-705 |#1| (-775 |#2|))) (-85)) 102 T ELT)) (-2254 (((-585 (-960 |#1| |#2|)) (-585 (-705 |#1| (-775 |#2|))) (-85)) 76 T ELT)) (-2253 (((-585 (-705 |#1| (-775 |#2|))) (-585 (-705 |#1| (-775 |#2|)))) 30 T ELT)) (-2252 (((-3 (-585 (-705 |#1| (-775 |#2|))) "failed") (-585 (-705 |#1| (-775 |#2|)))) 29 T ELT))) -(((-569 |#1| |#2|) (-10 -7 (-15 -2251 ((-85) (-585 (-705 |#1| (-775 |#2|))))) (-15 -2252 ((-3 (-585 (-705 |#1| (-775 |#2|))) "failed") (-585 (-705 |#1| (-775 |#2|))))) (-15 -2253 ((-585 (-705 |#1| (-775 |#2|))) (-585 (-705 |#1| (-775 |#2|))))) (-15 -2254 ((-585 (-960 |#1| |#2|)) (-585 (-705 |#1| (-775 |#2|))) (-85))) (-15 -2255 ((-585 (-1062 |#1| (-471 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|)))) (-585 (-705 |#1| (-775 |#2|))) (-85))) (-15 -3685 ((-585 (-960 |#1| |#2|)) (-585 (-705 |#1| (-775 |#2|))) (-85))) (-15 -3685 ((-585 (-1062 |#1| (-471 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|)))) (-585 (-705 |#1| (-775 |#2|))) (-85)))) (-393) (-585 (-1092))) (T -569)) -((-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) (-14 *6 (-585 (-1092))) (-5 *2 (-585 (-1062 *5 (-471 (-775 *6)) (-775 *6) (-705 *5 (-775 *6))))) (-5 *1 (-569 *5 *6)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) (-14 *6 (-585 (-1092))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-569 *5 *6)))) (-2255 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) (-14 *6 (-585 (-1092))) (-5 *2 (-585 (-1062 *5 (-471 (-775 *6)) (-775 *6) (-705 *5 (-775 *6))))) (-5 *1 (-569 *5 *6)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) (-14 *6 (-585 (-1092))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-569 *5 *6)))) (-2253 (*1 *2 *2) (-12 (-5 *2 (-585 (-705 *3 (-775 *4)))) (-4 *3 (-393)) (-14 *4 (-585 (-1092))) (-5 *1 (-569 *3 *4)))) (-2252 (*1 *2 *2) (|partial| -12 (-5 *2 (-585 (-705 *3 (-775 *4)))) (-4 *3 (-393)) (-14 *4 (-585 (-1092))) (-5 *1 (-569 *3 *4)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-585 (-705 *4 (-775 *5)))) (-4 *4 (-393)) (-14 *5 (-585 (-1092))) (-5 *2 (-85)) (-5 *1 (-569 *4 *5))))) -((-3598 (((-86) (-86)) 88 T ELT)) (-2259 ((|#2| |#2|) 28 T ELT)) (-2835 ((|#2| |#2| (-1006 |#2|)) 84 T ELT) ((|#2| |#2| (-1092)) 50 T ELT)) (-2257 ((|#2| |#2|) 27 T ELT)) (-2258 ((|#2| |#2|) 29 T ELT)) (-2256 (((-85) (-86)) 33 T ELT)) (-2261 ((|#2| |#2|) 24 T ELT)) (-2262 ((|#2| |#2|) 26 T ELT)) (-2260 ((|#2| |#2|) 25 T ELT))) -(((-570 |#1| |#2|) (-10 -7 (-15 -2256 ((-85) (-86))) (-15 -3598 ((-86) (-86))) (-15 -2262 (|#2| |#2|)) (-15 -2261 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -2259 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -2835 (|#2| |#2| (-1092))) (-15 -2835 (|#2| |#2| (-1006 |#2|)))) (-497) (-13 (-364 |#1|) (-917) (-1117))) (T -570)) -((-2835 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-364 *4) (-917) (-1117))) (-4 *4 (-497)) (-5 *1 (-570 *4 *2)))) (-2835 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-364 *4) (-917) (-1117))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-364 *3) (-917) (-1117))))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-364 *3) (-917) (-1117))))) (-2259 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-364 *3) (-917) (-1117))))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-364 *3) (-917) (-1117))))) (-2261 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-364 *3) (-917) (-1117))))) (-2262 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-364 *3) (-917) (-1117))))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-570 *3 *4)) (-4 *4 (-13 (-364 *3) (-917) (-1117))))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-364 *4) (-917) (-1117)))))) -((-3495 (($ $) 38 T ELT)) (-3642 (($ $) 21 T ELT)) (-3493 (($ $) 37 T ELT)) (-3641 (($ $) 22 T ELT)) (-3497 (($ $) 36 T ELT)) (-3640 (($ $) 23 T ELT)) (-3630 (($) 48 T ELT)) (-3946 (($ $) 45 T ELT)) (-2259 (($ $) 17 T ELT)) (-2835 (($ $ (-1006 $)) 7 T ELT) (($ $ (-1092)) 6 T ELT)) (-3947 (($ $) 46 T ELT)) (-2257 (($ $) 15 T ELT)) (-2258 (($ $) 16 T ELT)) (-3498 (($ $) 35 T ELT)) (-3639 (($ $) 24 T ELT)) (-3496 (($ $) 34 T ELT)) (-3638 (($ $) 25 T ELT)) (-3494 (($ $) 33 T ELT)) (-3637 (($ $) 26 T ELT)) (-3501 (($ $) 44 T ELT)) (-3489 (($ $) 32 T ELT)) (-3499 (($ $) 43 T ELT)) (-3487 (($ $) 31 T ELT)) (-3503 (($ $) 42 T ELT)) (-3491 (($ $) 30 T ELT)) (-3504 (($ $) 41 T ELT)) (-3492 (($ $) 29 T ELT)) (-3502 (($ $) 40 T ELT)) (-3490 (($ $) 28 T ELT)) (-3500 (($ $) 39 T ELT)) (-3488 (($ $) 27 T ELT)) (-2261 (($ $) 19 T ELT)) (-2262 (($ $) 20 T ELT)) (-2260 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) -(((-571) (-113)) (T -571)) -((-2262 (*1 *1 *1) (-4 *1 (-571))) (-2261 (*1 *1 *1) (-4 *1 (-571))) (-2260 (*1 *1 *1) (-4 *1 (-571))) (-2259 (*1 *1 *1) (-4 *1 (-571))) (-2258 (*1 *1 *1) (-4 *1 (-571))) (-2257 (*1 *1 *1) (-4 *1 (-571)))) -(-13 (-873) (-1117) (-10 -8 (-15 -2262 ($ $)) (-15 -2261 ($ $)) (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)))) -(((-35) . T) ((-66) . T) ((-239) . T) ((-434) . T) ((-873) . T) ((-1117) . T) ((-1120) . T)) -((-2272 (((-422 |#1| |#2|) (-206 |#1| |#2|)) 65 T ELT)) (-2265 (((-585 (-206 |#1| |#2|)) (-585 (-422 |#1| |#2|))) 90 T ELT)) (-2266 (((-422 |#1| |#2|) (-585 (-422 |#1| |#2|)) (-775 |#1|)) 92 T ELT) (((-422 |#1| |#2|) (-585 (-422 |#1| |#2|)) (-585 (-422 |#1| |#2|)) (-775 |#1|)) 91 T ELT)) (-2263 (((-2 (|:| |gblist| (-585 (-206 |#1| |#2|))) (|:| |gvlist| (-585 (-486)))) (-585 (-422 |#1| |#2|))) 136 T ELT)) (-2270 (((-585 (-422 |#1| |#2|)) (-775 |#1|) (-585 (-422 |#1| |#2|)) (-585 (-422 |#1| |#2|))) 105 T ELT)) (-2264 (((-2 (|:| |glbase| (-585 (-206 |#1| |#2|))) (|:| |glval| (-585 (-486)))) (-585 (-206 |#1| |#2|))) 147 T ELT)) (-2268 (((-1181 |#2|) (-422 |#1| |#2|) (-585 (-422 |#1| |#2|))) 70 T ELT)) (-2267 (((-585 (-422 |#1| |#2|)) (-585 (-422 |#1| |#2|))) 47 T ELT)) (-2271 (((-206 |#1| |#2|) (-206 |#1| |#2|) (-585 (-206 |#1| |#2|))) 61 T ELT)) (-2269 (((-206 |#1| |#2|) (-585 |#2|) (-206 |#1| |#2|) (-585 (-206 |#1| |#2|))) 113 T ELT))) -(((-572 |#1| |#2|) (-10 -7 (-15 -2263 ((-2 (|:| |gblist| (-585 (-206 |#1| |#2|))) (|:| |gvlist| (-585 (-486)))) (-585 (-422 |#1| |#2|)))) (-15 -2264 ((-2 (|:| |glbase| (-585 (-206 |#1| |#2|))) (|:| |glval| (-585 (-486)))) (-585 (-206 |#1| |#2|)))) (-15 -2265 ((-585 (-206 |#1| |#2|)) (-585 (-422 |#1| |#2|)))) (-15 -2266 ((-422 |#1| |#2|) (-585 (-422 |#1| |#2|)) (-585 (-422 |#1| |#2|)) (-775 |#1|))) (-15 -2266 ((-422 |#1| |#2|) (-585 (-422 |#1| |#2|)) (-775 |#1|))) (-15 -2267 ((-585 (-422 |#1| |#2|)) (-585 (-422 |#1| |#2|)))) (-15 -2268 ((-1181 |#2|) (-422 |#1| |#2|) (-585 (-422 |#1| |#2|)))) (-15 -2269 ((-206 |#1| |#2|) (-585 |#2|) (-206 |#1| |#2|) (-585 (-206 |#1| |#2|)))) (-15 -2270 ((-585 (-422 |#1| |#2|)) (-775 |#1|) (-585 (-422 |#1| |#2|)) (-585 (-422 |#1| |#2|)))) (-15 -2271 ((-206 |#1| |#2|) (-206 |#1| |#2|) (-585 (-206 |#1| |#2|)))) (-15 -2272 ((-422 |#1| |#2|) (-206 |#1| |#2|)))) (-585 (-1092)) (-393)) (T -572)) -((-2272 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-393)) (-5 *2 (-422 *4 *5)) (-5 *1 (-572 *4 *5)))) (-2271 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-393)) (-5 *1 (-572 *4 *5)))) (-2270 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-585 (-422 *4 *5))) (-5 *3 (-775 *4)) (-14 *4 (-585 (-1092))) (-4 *5 (-393)) (-5 *1 (-572 *4 *5)))) (-2269 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-206 *5 *6))) (-4 *6 (-393)) (-5 *2 (-206 *5 *6)) (-14 *5 (-585 (-1092))) (-5 *1 (-572 *5 *6)))) (-2268 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-422 *5 *6))) (-5 *3 (-422 *5 *6)) (-14 *5 (-585 (-1092))) (-4 *6 (-393)) (-5 *2 (-1181 *6)) (-5 *1 (-572 *5 *6)))) (-2267 (*1 *2 *2) (-12 (-5 *2 (-585 (-422 *3 *4))) (-14 *3 (-585 (-1092))) (-4 *4 (-393)) (-5 *1 (-572 *3 *4)))) (-2266 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-422 *5 *6))) (-5 *4 (-775 *5)) (-14 *5 (-585 (-1092))) (-5 *2 (-422 *5 *6)) (-5 *1 (-572 *5 *6)) (-4 *6 (-393)))) (-2266 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-585 (-422 *5 *6))) (-5 *4 (-775 *5)) (-14 *5 (-585 (-1092))) (-5 *2 (-422 *5 *6)) (-5 *1 (-572 *5 *6)) (-4 *6 (-393)))) (-2265 (*1 *2 *3) (-12 (-5 *3 (-585 (-422 *4 *5))) (-14 *4 (-585 (-1092))) (-4 *5 (-393)) (-5 *2 (-585 (-206 *4 *5))) (-5 *1 (-572 *4 *5)))) (-2264 (*1 *2 *3) (-12 (-14 *4 (-585 (-1092))) (-4 *5 (-393)) (-5 *2 (-2 (|:| |glbase| (-585 (-206 *4 *5))) (|:| |glval| (-585 (-486))))) (-5 *1 (-572 *4 *5)) (-5 *3 (-585 (-206 *4 *5))))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-585 (-422 *4 *5))) (-14 *4 (-585 (-1092))) (-4 *5 (-393)) (-5 *2 (-2 (|:| |gblist| (-585 (-206 *4 *5))) (|:| |gvlist| (-585 (-486))))) (-5 *1 (-572 *4 *5))))) -((-2571 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-72))) ELT)) (-3602 (($) NIL T ELT) (($ (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) NIL T ELT)) (-2200 (((-1187) $ (-1075) (-1075)) NIL (|has| $ (-1037 (-51))) ELT)) (-3791 (((-51) $ (-1075) (-51)) NIL (|has| $ (-1037 (-51))) ELT) (((-51) $ (-1092) (-51)) 16 T ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) ELT)) (-2233 (((-3 (-51) #1="failed") (-1075) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-72))) ELT)) (-3408 (($ (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) $) NIL (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) ELT) (($ (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) ELT) (((-3 (-51) #1#) (-1075) $) NIL T ELT)) (-3409 (($ (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) ELT)) (-3845 (((-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-1 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) $ (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) NIL (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-72)) ELT) (((-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-1 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) $ (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) NIL T ELT) (((-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-1 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) $) NIL T ELT)) (-1577 (((-51) $ (-1075) (-51)) NIL (|has| $ (-1037 (-51))) ELT)) (-3115 (((-51) $ (-1075)) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2202 (((-1075) $) NIL (|has| (-1075) (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3248 (((-85) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-72)) ELT)) (-2203 (((-1075) $) NIL (|has| (-1075) (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2274 (($ (-338)) 8 T ELT)) (-3245 (((-1075) $) NIL (OR (|has| (-51) (-1015)) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-1015))) ELT)) (-2234 (((-585 (-1075)) $) NIL T ELT)) (-2235 (((-85) (-1075) $) NIL T ELT)) (-1276 (((-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) $) NIL T ELT)) (-2205 (((-585 (-1075)) $) NIL T ELT)) (-2206 (((-85) (-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL (OR (|has| (-51) (-1015)) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-1015))) ELT)) (-3804 (((-51) $) NIL (|has| (-1075) (-758)) ELT)) (-1731 (((-3 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2201 (($ $ (-51)) NIL (|has| $ (-1037 (-51))) ELT)) (-1277 (((-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-1015))) ELT) (($ $ (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-1015))) ELT) (($ $ (-585 (-51)) (-585 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1015))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1015))) ELT) (($ $ (-249 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1015))) ELT) (($ $ (-585 (-249 (-51)))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-1015))) ELT) (($ $ (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) (-51) $) NIL (-12 (|has| $ (-318 (-51))) (|has| (-51) (-72))) ELT)) (-2207 (((-585 (-51)) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 (((-51) $ (-1075)) NIL T ELT) (((-51) $ (-1075) (-51)) NIL T ELT) (((-51) $ (-1092)) 14 T ELT)) (-1467 (($) NIL T ELT) (($ (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) NIL T ELT)) (-1732 (((-696) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) NIL T ELT)) (-3950 (((-774) $) NIL (OR (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-554 (-774))) (|has| (-51) (-554 (-774)))) ELT)) (-1267 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| (-51))) (-72))) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-573) (-13 (-1109 (-1075) (-51)) (-241 (-1092) (-51)) (-10 -8 (-15 -2274 ($ (-338))) (-15 -2273 ($ $)) (-15 -3791 ((-51) $ (-1092) (-51)))))) (T -573)) -((-2274 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-573)))) (-2273 (*1 *1 *1) (-5 *1 (-573))) (-3791 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1092)) (-5 *1 (-573))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1777 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1314 (((-3 $ #1#) $ $) NIL T ELT)) (-3226 (((-1181 (-632 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1181 (-632 |#1|)) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1730 (((-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1704 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1793 (((-632 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1791 (((-632 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) $ (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2406 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1905 (((-1087 (-859 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2409 (($ $ (-832)) NIL T ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1706 (((-1087 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1795 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1724 (((-1087 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1797 (($ (-1181 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (($ (-1181 |#1|) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3470 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-3111 (((-832)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2436 (($ $ (-832)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1705 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1794 (((-632 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1729 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1792 (((-632 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) $ (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2407 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1909 (((-1087 (-859 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2408 (($ $ (-832)) NIL T ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1707 (((-1087 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-1796 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1725 (((-1087 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3803 ((|#1| $ (-486)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-3227 (((-632 |#1|) (-1181 $)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1181 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-632 |#1|) (-1181 $) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1181 |#1|) $ (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3975 (($ (-1181 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1181 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1897 (((-585 (-859 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-585 (-859 |#1|)) (-1181 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2438 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3950 (((-774) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1708 (((-585 (-1181 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-497))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-497)))) ELT)) (-2439 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2548 (($ (-632 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-2437 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2663 (($) 18 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) 19 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-574 |#1| |#2|) (-13 (-685 |#1|) (-554 |#2|) (-10 -8 (-15 -3950 ($ |#2|)) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-685 |#1|)) (T -574)) -((-3950 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-574 *3 *2)) (-4 *2 (-685 *3))))) -((-3953 (($ $ |#2|) 10 T ELT))) -(((-575 |#1| |#2|) (-10 -7 (-15 -3953 (|#1| |#1| |#2|))) (-576 |#2|) (-146)) (T -575)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3533 (($ $ $) 40 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 39 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-576 |#1|) (-113) (-146)) (T -576)) -((-3533 (*1 *1 *1 *1) (-12 (-4 *1 (-576 *2)) (-4 *2 (-146)))) (-3953 (*1 *1 *1 *2) (-12 (-4 *1 (-576 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) -(-13 (-656 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3533 ($ $ $)) (IF (|has| |t#1| (-312)) (-15 -3953 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) -((-2276 (((-3 (-752 |#2|) #1="failed") |#2| (-249 |#2|) (-1075)) 105 T ELT) (((-3 (-752 |#2|) (-2 (|:| |leftHandLimit| (-3 (-752 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-752 |#2|) #1#))) #1#) |#2| (-249 (-752 |#2|))) 130 T ELT)) (-2275 (((-3 (-745 |#2|) #1#) |#2| (-249 (-745 |#2|))) 135 T ELT))) -(((-577 |#1| |#2|) (-10 -7 (-15 -2276 ((-3 (-752 |#2|) (-2 (|:| |leftHandLimit| (-3 (-752 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-752 |#2|) #1#))) #1#) |#2| (-249 (-752 |#2|)))) (-15 -2275 ((-3 (-745 |#2|) #1#) |#2| (-249 (-745 |#2|)))) (-15 -2276 ((-3 (-752 |#2|) #1#) |#2| (-249 |#2|) (-1075)))) (-13 (-393) (-952 (-486)) (-582 (-486))) (-13 (-27) (-1117) (-364 |#1|))) (T -577)) -((-2276 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1075)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-752 *3)) (-5 *1 (-577 *6 *3)))) (-2275 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-249 (-745 *3))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-745 *3)) (-5 *1 (-577 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) (-2276 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-752 *3))) (-4 *3 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-3 (-752 *3) (-2 (|:| |leftHandLimit| (-3 (-752 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-752 *3) #1#))) #1#)) (-5 *1 (-577 *5 *3))))) -((-2276 (((-3 (-752 (-350 (-859 |#1|))) #1="failed") (-350 (-859 |#1|)) (-249 (-350 (-859 |#1|))) (-1075)) 86 T ELT) (((-3 (-752 (-350 (-859 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-752 (-350 (-859 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-752 (-350 (-859 |#1|))) #1#))) #1#) (-350 (-859 |#1|)) (-249 (-350 (-859 |#1|)))) 20 T ELT) (((-3 (-752 (-350 (-859 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-752 (-350 (-859 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-752 (-350 (-859 |#1|))) #1#))) #1#) (-350 (-859 |#1|)) (-249 (-752 (-859 |#1|)))) 35 T ELT)) (-2275 (((-745 (-350 (-859 |#1|))) (-350 (-859 |#1|)) (-249 (-350 (-859 |#1|)))) 23 T ELT) (((-745 (-350 (-859 |#1|))) (-350 (-859 |#1|)) (-249 (-745 (-859 |#1|)))) 43 T ELT))) -(((-578 |#1|) (-10 -7 (-15 -2276 ((-3 (-752 (-350 (-859 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-752 (-350 (-859 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-752 (-350 (-859 |#1|))) #1#))) #1#) (-350 (-859 |#1|)) (-249 (-752 (-859 |#1|))))) (-15 -2276 ((-3 (-752 (-350 (-859 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-752 (-350 (-859 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-752 (-350 (-859 |#1|))) #1#))) #1#) (-350 (-859 |#1|)) (-249 (-350 (-859 |#1|))))) (-15 -2275 ((-745 (-350 (-859 |#1|))) (-350 (-859 |#1|)) (-249 (-745 (-859 |#1|))))) (-15 -2275 ((-745 (-350 (-859 |#1|))) (-350 (-859 |#1|)) (-249 (-350 (-859 |#1|))))) (-15 -2276 ((-3 (-752 (-350 (-859 |#1|))) #1#) (-350 (-859 |#1|)) (-249 (-350 (-859 |#1|))) (-1075)))) (-393)) (T -578)) -((-2276 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 (-350 (-859 *6)))) (-5 *5 (-1075)) (-5 *3 (-350 (-859 *6))) (-4 *6 (-393)) (-5 *2 (-752 *3)) (-5 *1 (-578 *6)))) (-2275 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-350 (-859 *5)))) (-5 *3 (-350 (-859 *5))) (-4 *5 (-393)) (-5 *2 (-745 *3)) (-5 *1 (-578 *5)))) (-2275 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-745 (-859 *5)))) (-4 *5 (-393)) (-5 *2 (-745 (-350 (-859 *5)))) (-5 *1 (-578 *5)) (-5 *3 (-350 (-859 *5))))) (-2276 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-350 (-859 *5)))) (-5 *3 (-350 (-859 *5))) (-4 *5 (-393)) (-5 *2 (-3 (-752 *3) (-2 (|:| |leftHandLimit| (-3 (-752 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-752 *3) #1#))) #1#)) (-5 *1 (-578 *5)))) (-2276 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-752 (-859 *5)))) (-4 *5 (-393)) (-5 *2 (-3 (-752 (-350 (-859 *5))) (-2 (|:| |leftHandLimit| (-3 (-752 (-350 (-859 *5))) #1#)) (|:| |rightHandLimit| (-3 (-752 (-350 (-859 *5))) #1#))) #1#)) (-5 *1 (-578 *5)) (-5 *3 (-350 (-859 *5)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) 11 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2854 (($ (-168 |#1|)) 12 T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-775 |#1|)) 7 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT))) -(((-579 |#1|) (-13 (-754) (-557 (-775 |#1|)) (-10 -8 (-15 -2854 ($ (-168 |#1|))))) (-585 (-1092))) (T -579)) -((-2854 (*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-585 (-1092))) (-5 *1 (-579 *3))))) -((-2279 (((-3 (-1181 (-350 |#1|)) #1="failed") (-1181 |#2|) |#2|) 64 (-2563 (|has| |#1| (-312))) ELT) (((-3 (-1181 |#1|) #1#) (-1181 |#2|) |#2|) 49 (|has| |#1| (-312)) ELT)) (-2277 (((-85) (-1181 |#2|)) 33 T ELT)) (-2278 (((-3 (-1181 |#1|) #1#) (-1181 |#2|)) 40 T ELT))) -(((-580 |#1| |#2|) (-10 -7 (-15 -2277 ((-85) (-1181 |#2|))) (-15 -2278 ((-3 (-1181 |#1|) #1="failed") (-1181 |#2|))) (IF (|has| |#1| (-312)) (-15 -2279 ((-3 (-1181 |#1|) #1#) (-1181 |#2|) |#2|)) (-15 -2279 ((-3 (-1181 (-350 |#1|)) #1#) (-1181 |#2|) |#2|)))) (-497) (-13 (-963) (-582 |#1|))) (T -580)) -((-2279 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 *5))) (-2563 (-4 *5 (-312))) (-4 *5 (-497)) (-5 *2 (-1181 (-350 *5))) (-5 *1 (-580 *5 *4)))) (-2279 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 *5))) (-4 *5 (-312)) (-4 *5 (-497)) (-5 *2 (-1181 *5)) (-5 *1 (-580 *5 *4)))) (-2278 (*1 *2 *3) (|partial| -12 (-5 *3 (-1181 *5)) (-4 *5 (-13 (-963) (-582 *4))) (-4 *4 (-497)) (-5 *2 (-1181 *4)) (-5 *1 (-580 *4 *5)))) (-2277 (*1 *2 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-13 (-963) (-582 *4))) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-580 *4 *5))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3777 (((-585 (-455 |#1| (-579 |#2|))) $) NIL T ELT)) (-1314 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2896 (($ |#1| (-579 |#2|)) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2280 (($ (-585 |#1|)) 25 T ELT)) (-1985 (((-579 |#2|) $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3915 (((-107)) 16 T ELT)) (-3227 (((-1181 |#1|) $) 44 T ELT)) (-3975 (($ (-585 (-455 |#1| (-579 |#2|)))) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-579 |#2|)) 11 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 20 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 17 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-581 |#1| |#2|) (-13 (-1189 |#1|) (-557 (-579 |#2|)) (-451 |#1| (-579 |#2|)) (-10 -8 (-15 -2280 ($ (-585 |#1|))) (-15 -3227 ((-1181 |#1|) $)))) (-312) (-585 (-1092))) (T -581)) -((-2280 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-312)) (-5 *1 (-581 *3 *4)) (-14 *4 (-585 (-1092))))) (-3227 (*1 *2 *1) (-12 (-5 *2 (-1181 *3)) (-5 *1 (-581 *3 *4)) (-4 *3 (-312)) (-14 *4 (-585 (-1092)))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2281 (((-632 |#1|) (-632 $)) 36 T ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 35 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2282 (((-632 |#1|) (-1181 $)) 38 T ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 37 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT))) -(((-582 |#1|) (-113) (-963)) (T -582)) -((-2282 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-582 *4)) (-4 *4 (-963)) (-5 *2 (-632 *4)))) (-2282 (*1 *2 *3 *1) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-582 *4)) (-4 *4 (-963)) (-5 *2 (-2 (|:| |mat| (-632 *4)) (|:| |vec| (-1181 *4)))))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-632 *1)) (-4 *1 (-582 *4)) (-4 *4 (-963)) (-5 *2 (-632 *4)))) (-2281 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *1)) (-5 *4 (-1181 *1)) (-4 *1 (-582 *5)) (-4 *5 (-963)) (-5 *2 (-2 (|:| |mat| (-632 *5)) (|:| |vec| (-1181 *5))))))) -(-13 (-592 |t#1|) (-10 -8 (-15 -2282 ((-632 |t#1|) (-1181 $))) (-15 -2282 ((-2 (|:| |mat| (-632 |t#1|)) (|:| |vec| (-1181 |t#1|))) (-1181 $) $)) (-15 -2281 ((-632 |t#1|) (-632 $))) (-15 -2281 ((-2 (|:| |mat| (-632 |t#1|)) (|:| |vec| (-1181 |t#1|))) (-632 $) (-1181 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1216 (((-85) $ $) NIL T ELT)) (-2283 (($ (-585 |#1|)) 23 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 ((|#1| $ (-581 |#1| |#2|)) 46 T ELT)) (-3915 (((-107)) 13 T ELT)) (-3227 (((-1181 |#1|) $) 42 T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 18 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 14 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-583 |#1| |#2|) (-13 (-1189 |#1|) (-241 (-581 |#1| |#2|) |#1|) (-10 -8 (-15 -2283 ($ (-585 |#1|))) (-15 -3227 ((-1181 |#1|) $)))) (-312) (-585 (-1092))) (T -583)) -((-2283 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-312)) (-5 *1 (-583 *3 *4)) (-14 *4 (-585 (-1092))))) (-3227 (*1 *2 *1) (-12 (-5 *2 (-1181 *3)) (-5 *1 (-583 *3 *4)) (-4 *3 (-312)) (-14 *4 (-585 (-1092)))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) -(((-584 |#1|) (-113) (-1027)) (T -584)) -NIL -(-13 (-590 |t#1|) (-965 |t#1|)) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 |#1|) . T) ((-965 |#1|) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) NIL T ELT)) (-3798 ((|#1| $) NIL T ELT)) (-3800 (($ $) NIL T ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3788 (($ $ (-486)) 68 (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) $) NIL (|has| |#1| (-758)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1735 (($ $) NIL (-12 (|has| $ (-1037 |#1|)) (|has| |#1| (-758))) ELT) (($ (-1 (-85) |#1| |#1|) $) 65 (|has| $ (-1037 |#1|)) ELT)) (-2912 (($ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3445 (((-85) $ (-696)) NIL T ELT)) (-3028 ((|#1| $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3790 (($ $ $) 26 (|has| $ (-1037 |#1|)) ELT)) (-3789 ((|#1| $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 24 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-1037 |#1|)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) NIL (|has| $ (-1037 |#1|)) ELT)) (-2286 (($ $ $) 74 (|has| |#1| (-1015)) ELT)) (-2285 (($ $ $) 75 (|has| |#1| (-1015)) ELT)) (-2284 (($ $ $) 79 (|has| |#1| (-1015)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3799 ((|#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) 31 (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) 32 T ELT)) (-3802 (($ $) 21 T ELT) (($ $ (-696)) 35 T ELT)) (-2370 (($ $) 63 (|has| |#1| (-72)) ELT)) (-1355 (($ $) 73 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3409 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1577 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) NIL T ELT)) (-3446 (((-85) $) NIL T ELT)) (-3422 (((-486) |#1| $ (-486)) NIL (|has| |#1| (-72)) ELT) (((-486) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-486) (-1 (-85) |#1|) $) NIL T ELT)) (-2288 (((-85) $) 9 T ELT)) (-3034 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2289 (($) 7 T CONST)) (-3617 (($ (-696) |#1|) NIL T ELT)) (-3722 (((-85) $ (-696)) NIL T ELT)) (-2202 (((-486) $) 34 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 66 T ELT)) (-3521 (($ $ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2611 (((-585 |#1|) $) 30 T ELT)) (-3248 (((-85) |#1| $) 61 (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3537 (($ |#1|) NIL T ELT)) (-3719 (((-85) $ (-696)) NIL T ELT)) (-3033 (((-585 |#1|) $) NIL T ELT)) (-3530 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) 59 (|has| |#1| (-1015)) ELT)) (-3801 ((|#1| $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3612 (($ $ $ (-486)) NIL T ELT) (($ |#1| $ (-486)) NIL T ELT)) (-2306 (($ $ $ (-486)) NIL T ELT) (($ |#1| $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 16 T ELT) (($ $ (-696)) NIL T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3447 (((-85) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 15 T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) 20 T ELT)) (-3568 (($) 19 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT) ((|#1| $ (-486)) 78 T ELT) ((|#1| $ (-486) |#1|) NIL T ELT)) (-3032 (((-486) $ $) NIL T ELT)) (-1572 (($ $ (-1148 (-486))) NIL T ELT) (($ $ (-486)) NIL T ELT)) (-2307 (($ $ (-1148 (-486))) NIL T ELT) (($ $ (-486)) NIL T ELT)) (-3636 (((-85) $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-3793 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-3796 (((-696) $) NIL T ELT)) (-3797 (($ $) 40 T ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) NIL T ELT) (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) 36 T ELT)) (-3975 (((-475) $) 87 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 29 T ELT)) (-3464 (($ |#1| $) 10 T ELT)) (-3794 (($ $ $) 62 T ELT) (($ $ |#1|) NIL T ELT)) (-3805 (($ $ $) 72 T ELT) (($ |#1| $) 14 T ELT) (($ (-585 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3950 (((-774) $) 51 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) NIL T ELT)) (-3031 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2287 (($ $ $) 11 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 55 (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3961 (((-696) $) 13 T ELT))) -(((-585 |#1|) (-13 (-610 |#1|) (-10 -8 (-15 -2289 ($) -3956) (-15 -2288 ((-85) $)) (-15 -3464 ($ |#1| $)) (-15 -2287 ($ $ $)) (IF (|has| |#1| (-1015)) (PROGN (-15 -2286 ($ $ $)) (-15 -2285 ($ $ $)) (-15 -2284 ($ $ $))) |%noBranch|))) (-1131)) (T -585)) -((-2289 (*1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1131)))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-585 *3)) (-4 *3 (-1131)))) (-3464 (*1 *1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1131)))) (-2287 (*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1131)))) (-2286 (*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-1131)))) (-2285 (*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-1131)))) (-2284 (*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-1131))))) -((-3844 (((-585 |#2|) (-1 |#2| |#1| |#2|) (-585 |#1|) |#2|) 16 T ELT)) (-3845 ((|#2| (-1 |#2| |#1| |#2|) (-585 |#1|) |#2|) 18 T ELT)) (-3846 (((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)) 13 T ELT))) -(((-586 |#1| |#2|) (-10 -7 (-15 -3844 ((-585 |#2|) (-1 |#2| |#1| |#2|) (-585 |#1|) |#2|)) (-15 -3845 (|#2| (-1 |#2| |#1| |#2|) (-585 |#1|) |#2|)) (-15 -3846 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)))) (-1131) (-1131)) (T -586)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-585 *6)) (-5 *1 (-586 *5 *6)))) (-3845 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-585 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-586 *5 *2)))) (-3844 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-585 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-5 *2 (-585 *5)) (-5 *1 (-586 *6 *5))))) -((-3425 ((|#2| (-585 |#1|) (-585 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-585 |#1|) (-585 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|) |#2|) 17 T ELT) ((|#2| (-585 |#1|) (-585 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|)) 12 T ELT))) -(((-587 |#1| |#2|) (-10 -7 (-15 -3425 ((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|))) (-15 -3425 (|#2| (-585 |#1|) (-585 |#2|) |#1|)) (-15 -3425 ((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|) |#2|)) (-15 -3425 (|#2| (-585 |#1|) (-585 |#2|) |#1| |#2|)) (-15 -3425 ((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|) (-1 |#2| |#1|))) (-15 -3425 (|#2| (-585 |#1|) (-585 |#2|) |#1| (-1 |#2| |#1|)))) (-1015) (-1131)) (T -587)) -((-3425 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1015)) (-4 *2 (-1131)) (-5 *1 (-587 *5 *2)))) (-3425 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-585 *5)) (-5 *4 (-585 *6)) (-4 *5 (-1015)) (-4 *6 (-1131)) (-5 *1 (-587 *5 *6)))) (-3425 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-4 *5 (-1015)) (-4 *2 (-1131)) (-5 *1 (-587 *5 *2)))) (-3425 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 *5)) (-4 *6 (-1015)) (-4 *5 (-1131)) (-5 *2 (-1 *5 *6)) (-5 *1 (-587 *6 *5)))) (-3425 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-4 *5 (-1015)) (-4 *2 (-1131)) (-5 *1 (-587 *5 *2)))) (-3425 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *6)) (-4 *5 (-1015)) (-4 *6 (-1131)) (-5 *2 (-1 *6 *5)) (-5 *1 (-587 *5 *6))))) -((-3846 (((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|)) 21 T ELT))) -(((-588 |#1| |#2| |#3|) (-10 -7 (-15 -3846 ((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|)))) (-1131) (-1131) (-1131)) (T -588)) -((-3846 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-585 *7)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-585 *8)) (-5 *1 (-588 *6 *7 *8))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 11 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-589 |#1|) (-13 (-997) (-554 |#1|)) (-1015)) (T -589)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) -(((-590 |#1|) (-113) (-1027)) (T -590)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-1027))))) -(-13 (-1015) (-10 -8 (-15 * ($ |t#1| $)))) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2290 (($ |#1| |#1| $) 45 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 61 (|has| $ (-318 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2370 (($ $) 47 T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) 58 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 60 (|has| $ (-318 |#1|)) ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-2611 (((-585 |#1|) $) 9 T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 49 T ELT)) (-3612 (($ |#1| $) 30 T ELT) (($ |#1| $ (-696)) 44 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1277 ((|#1| $) 52 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 23 T ELT)) (-3568 (($) 29 T ELT)) (-2291 (((-85) $) 56 T ELT)) (-2369 (((-585 (-2 (|:| |entry| |#1|) (|:| -1732 (-696)))) $) 69 T ELT)) (-1467 (($) 26 T ELT) (($ (-585 |#1|)) 19 T ELT)) (-1732 (((-696) |#1| $) 65 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) 20 T ELT)) (-3975 (((-475) $) 36 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) NIL T ELT)) (-3950 (((-774) $) 14 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 24 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) 71 (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) 17 T ELT))) -(((-591 |#1|) (-13 (-636 |#1|) (-318 |#1|) (-10 -8 (-15 -2291 ((-85) $)) (-15 -2290 ($ |#1| |#1| $)))) (-1015)) (T -591)) -((-2291 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-591 *3)) (-4 *3 (-1015)))) (-2290 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1015))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT))) -(((-592 |#1|) (-113) (-972)) (T -592)) -NIL -(-13 (-21) (-590 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696) $) 17 T ELT)) (-2297 (($ $ |#1|) 68 T ELT)) (-2299 (($ $) 39 T ELT)) (-2300 (($ $) 37 T ELT)) (-3160 (((-3 |#1| "failed") $) 60 T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-2295 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3536 (((-774) $ (-1 (-774) (-774) (-774)) (-1 (-774) (-774) (-774)) (-486)) 55 T ELT)) (-2301 ((|#1| $ (-486)) 35 T ELT)) (-2302 ((|#2| $ (-486)) 34 T ELT)) (-2292 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2293 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2298 (($) 13 T ELT)) (-2304 (($ |#1| |#2|) 24 T ELT)) (-2303 (($ (-585 (-2 (|:| |gen| |#1|) (|:| -3947 |#2|)))) 25 T ELT)) (-2305 (((-585 (-2 (|:| |gen| |#1|) (|:| -3947 |#2|))) $) 14 T ELT)) (-2296 (($ |#1| $) 69 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2294 (((-85) $ $) 74 T ELT)) (-3950 (((-774) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 27 T ELT))) -(((-593 |#1| |#2| |#3|) (-13 (-1015) (-952 |#1|) (-10 -8 (-15 -3536 ((-774) $ (-1 (-774) (-774) (-774)) (-1 (-774) (-774) (-774)) (-486))) (-15 -2305 ((-585 (-2 (|:| |gen| |#1|) (|:| -3947 |#2|))) $)) (-15 -2304 ($ |#1| |#2|)) (-15 -2303 ($ (-585 (-2 (|:| |gen| |#1|) (|:| -3947 |#2|))))) (-15 -2302 (|#2| $ (-486))) (-15 -2301 (|#1| $ (-486))) (-15 -2300 ($ $)) (-15 -2299 ($ $)) (-15 -3139 ((-696) $)) (-15 -2298 ($)) (-15 -2297 ($ $ |#1|)) (-15 -2296 ($ |#1| $)) (-15 -2295 ($ |#1| |#2| $)) (-15 -2295 ($ $ $)) (-15 -2294 ((-85) $ $)) (-15 -2293 ($ (-1 |#2| |#2|) $)) (-15 -2292 ($ (-1 |#1| |#1|) $)))) (-1015) (-23) |#2|) (T -593)) -((-3536 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-774) (-774) (-774))) (-5 *4 (-486)) (-5 *2 (-774)) (-5 *1 (-593 *5 *6 *7)) (-4 *5 (-1015)) (-4 *6 (-23)) (-14 *7 *6))) (-2305 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3947 *4)))) (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)) (-4 *4 (-23)) (-14 *5 *4))) (-2304 (*1 *1 *2 *3) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2303 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3947 *4)))) (-4 *3 (-1015)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-593 *3 *4 *5)))) (-2302 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *2 (-23)) (-5 *1 (-593 *4 *2 *5)) (-4 *4 (-1015)) (-14 *5 *2))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *2 (-1015)) (-5 *1 (-593 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2300 (*1 *1 *1) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2299 (*1 *1 *1) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)) (-4 *4 (-23)) (-14 *5 *4))) (-2298 (*1 *1) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2297 (*1 *1 *1 *2) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2296 (*1 *1 *2 *1) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2295 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2295 (*1 *1 *1 *1) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2294 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)) (-4 *4 (-23)) (-14 *5 *4))) (-2293 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1015)) (-5 *1 (-593 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -((-2203 (((-486) $) 30 T ELT)) (-2306 (($ |#2| $ (-486)) 26 T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) 12 T ELT)) (-2206 (((-85) (-486) $) 17 T ELT)) (-3805 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT))) -(((-594 |#1| |#2|) (-10 -7 (-15 -2306 (|#1| |#1| |#1| (-486))) (-15 -2306 (|#1| |#2| |#1| (-486))) (-15 -3805 (|#1| (-585 |#1|))) (-15 -3805 (|#1| |#1| |#1|)) (-15 -3805 (|#1| |#2| |#1|)) (-15 -3805 (|#1| |#1| |#2|)) (-15 -2203 ((-486) |#1|)) (-15 -2205 ((-585 (-486)) |#1|)) (-15 -2206 ((-85) (-486) |#1|))) (-595 |#2|) (-1131)) (T -594)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) 35 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ (-486) |#1|) 47 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-1355 (($ $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3409 (($ |#1| $) 70 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 68 (|has| $ (-318 |#1|)) ELT)) (-1577 ((|#1| $ (-486) |#1|) 48 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 46 T ELT)) (-3617 (($ (-696) |#1|) 65 T ELT)) (-2202 (((-486) $) 38 (|has| (-486) (-758)) ELT)) (-2203 (((-486) $) 39 (|has| (-486) (-758)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) 57 T ELT) (($ $ $ (-486)) 56 T ELT)) (-2205 (((-585 (-486)) $) 41 T ELT)) (-2206 (((-85) (-486) $) 42 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 37 (|has| (-486) (-758)) ELT)) (-2201 (($ $ |#1|) 36 (|has| $ (-1037 |#1|)) ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) 43 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-486) |#1|) 45 T ELT) ((|#1| $ (-486)) 44 T ELT) (($ $ (-1148 (-486))) 66 T ELT)) (-2307 (($ $ (-486)) 59 T ELT) (($ $ (-1148 (-486))) 58 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 72 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 67 T ELT)) (-3805 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) -(((-595 |#1|) (-113) (-1131)) (T -595)) -((-3617 (*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) (-3805 (*1 *1 *1 *2) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1131)))) (-3805 (*1 *1 *2 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1131)))) (-3805 (*1 *1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1131)))) (-3805 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) (-3846 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) (-2307 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) (-2307 (*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-486))) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) (-2306 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-595 *2)) (-4 *2 (-1131)))) (-2306 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) (-3791 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1148 (-486))) (-4 *1 (-1037 *2)) (-4 *1 (-595 *2)) (-4 *2 (-1131))))) -(-13 (-540 (-486) |t#1|) (-124 |t#1|) (-241 (-1148 (-486)) $) (-10 -8 (-15 -3617 ($ (-696) |t#1|)) (-15 -3805 ($ $ |t#1|)) (-15 -3805 ($ |t#1| $)) (-15 -3805 ($ $ $)) (-15 -3805 ($ (-585 $))) (-15 -3846 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2307 ($ $ (-486))) (-15 -2307 ($ $ (-1148 (-486)))) (-15 -2306 ($ |t#1| $ (-486))) (-15 -2306 ($ $ $ (-486))) (IF (|has| $ (-1037 |t#1|)) (-15 -3791 (|t#1| $ (-1148 (-486)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 (-486) |#1|) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-540 (-486) |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 15 T ELT)) (-1314 (((-3 $ "failed") $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| |#1| (-716)) ELT)) (-3727 (($) NIL T CONST)) (-3189 (((-85) $) NIL (|has| |#1| (-716)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-3001 ((|#1| $) 23 T ELT)) (-3190 (((-85) $) NIL (|has| |#1| (-716)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-716)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-716)) ELT)) (-3245 (((-1075) $) 48 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3000 ((|#3| $) 24 T ELT)) (-3950 (((-774) $) 43 T ELT)) (-1267 (((-85) $ $) 22 T ELT)) (-3386 (($ $) NIL (|has| |#1| (-716)) ELT)) (-2663 (($) 10 T CONST)) (-2569 (((-85) $ $) NIL (|has| |#1| (-716)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-716)) ELT)) (-3059 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-716)) ELT)) (-2688 (((-85) $ $) 26 (|has| |#1| (-716)) ELT)) (-3953 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3840 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 29 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) -(((-596 |#1| |#2| |#3|) (-13 (-656 |#2|) (-10 -8 (IF (|has| |#1| (-716)) (-6 (-716)) |%noBranch|) (-15 -3953 ($ $ |#3|)) (-15 -3953 ($ |#1| |#3|)) (-15 -3001 (|#1| $)) (-15 -3000 (|#3| $)))) (-656 |#2|) (-146) (|SubsetCategory| (-665) |#2|)) (T -596)) -((-3953 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-596 *3 *4 *2)) (-4 *3 (-656 *4)) (-4 *2 (|SubsetCategory| (-665) *4)))) (-3953 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-596 *2 *4 *3)) (-4 *2 (-656 *4)) (-4 *3 (|SubsetCategory| (-665) *4)))) (-3001 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-656 *3)) (-5 *1 (-596 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-665) *3)))) (-3000 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-665) *4)) (-5 *1 (-596 *3 *4 *2)) (-4 *3 (-656 *4))))) -((-3576 (((-3 |#2| #1="failed") |#3| |#2| (-1092) |#2| (-585 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) #1#) |#3| |#2| (-1092)) 44 T ELT))) -(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -3576 ((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) #1="failed") |#3| |#2| (-1092))) (-15 -3576 ((-3 |#2| #1#) |#3| |#2| (-1092) |#2| (-585 |#2|)))) (-13 (-258) (-952 (-486)) (-582 (-486)) (-120)) (-13 (-29 |#1|) (-1117) (-873)) (-602 |#2|)) (T -597)) -((-3576 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-585 *2)) (-4 *2 (-13 (-29 *6) (-1117) (-873))) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *1 (-597 *6 *2 *3)) (-4 *3 (-602 *2)))) (-3576 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1092)) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-4 *4 (-13 (-29 *6) (-1117) (-873))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2014 (-585 *4)))) (-5 *1 (-597 *6 *4 *3)) (-4 *3 (-602 *4))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2310 (($ $ $) 28 (|has| |#1| (-312)) ELT)) (-2311 (($ $ (-696)) 31 (|has| |#1| (-312)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-696)) NIL T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-2823 (((-696) $) NIL T ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2546 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT)) (-3803 ((|#1| $ |#1|) 24 T ELT)) (-2312 (($ $ $) 33 (|has| |#1| (-312)) ELT)) (-3952 (((-696) $) NIL T ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT)) (-3950 (((-774) $) 20 T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (($ |#1|) NIL T ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-696)) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2548 ((|#1| $ |#1| |#1|) 23 T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2523 (($ $) NIL T ELT)) (-2663 (($) 21 T CONST)) (-2669 (($) 8 T CONST)) (-2672 (($) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-598 |#1| |#2|) (-602 |#1|) (-963) (-1 |#1| |#1|)) (T -598)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2310 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2311 (($ $ (-696)) NIL (|has| |#1| (-312)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-696)) NIL T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-2823 (((-696) $) NIL T ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2546 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT)) (-3803 ((|#1| $ |#1|) NIL T ELT)) (-2312 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3952 (((-696) $) NIL T ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (($ |#1|) NIL T ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-696)) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2548 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2523 (($ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-599 |#1|) (-602 |#1|) (-190)) (T -599)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2310 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2311 (($ $ (-696)) NIL (|has| |#1| (-312)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-696)) NIL T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-2823 (((-696) $) NIL T ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2546 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT)) (-3803 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2312 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3952 (((-696) $) NIL T ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (($ |#1|) NIL T ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-696)) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2548 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2523 (($ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-600 |#1| |#2|) (-13 (-602 |#1|) (-241 |#2| |#2|)) (-190) (-13 (-592 |#1|) (-10 -8 (-15 -3761 ($ $))))) (T -600)) -NIL -((-2308 (($ $) 29 T ELT)) (-2523 (($ $) 27 T ELT)) (-2672 (($) 13 T ELT))) -(((-601 |#1| |#2|) (-10 -7 (-15 -2308 (|#1| |#1|)) (-15 -2523 (|#1| |#1|)) (-15 -2672 (|#1|))) (-602 |#2|) (-963)) (T -601)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2308 (($ $) 96 (|has| |#1| (-312)) ELT)) (-2310 (($ $ $) 98 (|has| |#1| (-312)) ELT)) (-2311 (($ $ (-696)) 97 (|has| |#1| (-312)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2539 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2538 (((-3 $ #1="failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3160 (((-3 (-486) #2="failed") $) 88 (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #2#) $) 85 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #2#) $) 82 T ELT)) (-3159 (((-486) $) 87 (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) 84 (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 83 T ELT)) (-3962 (($ $) 77 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3506 (($ $) 68 (|has| |#1| (-393)) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2896 (($ |#1| (-696)) 75 T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 70 (|has| |#1| (-497)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 71 (|has| |#1| (-497)) ELT)) (-2823 (((-696) $) 79 T ELT)) (-2545 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2546 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2544 (((-3 $ #1#) $ $) 64 (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3177 ((|#1| $) 78 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3469 (((-3 $ #1#) $ |#1|) 72 (|has| |#1| (-497)) ELT)) (-3803 ((|#1| $ |#1|) 101 T ELT)) (-2312 (($ $ $) 95 (|has| |#1| (-312)) ELT)) (-3952 (((-696) $) 80 T ELT)) (-2820 ((|#1| $) 69 (|has| |#1| (-393)) ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 (-486))) 86 (|has| |#1| (-952 (-350 (-486)))) ELT) (($ |#1|) 81 T ELT)) (-3820 (((-585 |#1|) $) 74 T ELT)) (-3680 ((|#1| $ (-696)) 76 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2548 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2523 (($ $) 99 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($) 100 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT))) -(((-602 |#1|) (-113) (-963)) (T -602)) -((-2672 (*1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)))) (-2523 (*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)))) (-2310 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2311 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-602 *3)) (-4 *3 (-963)) (-4 *3 (-312)))) (-2308 (*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2312 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) -(-13 (-763 |t#1|) (-241 |t#1| |t#1|) (-10 -8 (-15 -2672 ($)) (-15 -2523 ($ $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -2310 ($ $ $)) (-15 -2311 ($ $ (-696))) (-15 -2308 ($ $)) (-15 -2312 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-557 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-241 |#1| |#1|) . T) ((-355 |#1|) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-665) . T) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-763 |#1|) . T)) -((-2309 (((-585 (-599 (-350 |#2|))) (-599 (-350 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3735 (((-585 (-599 (-350 |#2|))) (-599 (-350 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-585 (-599 (-350 |#2|))) (-599 (-350 |#2|)) (-1 (-585 |#1|) |#2|)) 19 T ELT))) -(((-603 |#1| |#2|) (-10 -7 (-15 -3735 ((-585 (-599 (-350 |#2|))) (-599 (-350 |#2|)) (-1 (-585 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3735 ((-585 (-599 (-350 |#2|))) (-599 (-350 |#2|)))) (-15 -2309 ((-585 (-599 (-350 |#2|))) (-599 (-350 |#2|))))) |%noBranch|)) (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486)))) (-1157 |#1|)) (T -603)) -((-2309 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) (-5 *2 (-585 (-599 (-350 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-350 *5))))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) (-5 *2 (-585 (-599 (-350 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-350 *5))))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) (-5 *2 (-585 (-599 (-350 *6)))) (-5 *1 (-603 *5 *6)) (-5 *3 (-599 (-350 *6)))))) -((-2310 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2311 ((|#2| |#2| (-696) (-1 |#1| |#1|)) 45 T ELT)) (-2312 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) -(((-604 |#1| |#2|) (-10 -7 (-15 -2310 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2311 (|#2| |#2| (-696) (-1 |#1| |#1|))) (-15 -2312 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-312) (-602 |#1|)) (T -604)) -((-2312 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-604 *4 *2)) (-4 *2 (-602 *4)))) (-2311 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-696)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-604 *5 *2)) (-4 *2 (-602 *5)))) (-2310 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-604 *4 *2)) (-4 *2 (-602 *4))))) -((-2313 (($ $ $) 9 T ELT))) -(((-605 |#1|) (-10 -7 (-15 -2313 (|#1| |#1| |#1|))) (-606)) (T -605)) -NIL -((-2315 (($ $) 8 T ELT)) (-2313 (($ $ $) 6 T ELT)) (-2314 (($ $ $) 7 T ELT))) -(((-606) (-113)) (T -606)) -((-2315 (*1 *1 *1) (-4 *1 (-606))) (-2314 (*1 *1 *1 *1) (-4 *1 (-606))) (-2313 (*1 *1 *1 *1) (-4 *1 (-606)))) -(-13 (-1131) (-10 -8 (-15 -2315 ($ $)) (-15 -2314 ($ $ $)) (-15 -2313 ($ $ $)))) -(((-13) . T) ((-1131) . T)) -((-2316 (((-3 (-585 (-1087 |#1|)) "failed") (-585 (-1087 |#1|)) (-1087 |#1|)) 33 T ELT))) -(((-607 |#1|) (-10 -7 (-15 -2316 ((-3 (-585 (-1087 |#1|)) "failed") (-585 (-1087 |#1|)) (-1087 |#1|)))) (-823)) (T -607)) -((-2316 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1087 *4))) (-5 *3 (-1087 *4)) (-4 *4 (-823)) (-5 *1 (-607 *4))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3938 (((-585 |#1|) $) 85 T ELT)) (-3951 (($ $ (-696)) 95 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3943 (((-1206 |#1| |#2|) (-1206 |#1| |#2|) $) 50 T ELT)) (-3160 (((-3 (-616 |#1|) #1#) $) NIL T ELT)) (-3159 (((-616 |#1|) $) NIL T ELT)) (-3962 (($ $) 94 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-3942 (($ (-616 |#1|) |#2|) 70 T ELT)) (-3940 (($ $) 90 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3944 (((-1206 |#1| |#2|) (-1206 |#1| |#2|) $) 49 T ELT)) (-1754 (((-2 (|:| |k| (-616 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2897 (((-616 |#1|) $) NIL T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3771 (($ $ |#1| $) 32 T ELT) (($ $ (-585 |#1|) (-585 $)) 34 T ELT)) (-3952 (((-696) $) 92 T ELT)) (-3533 (($ $ $) 20 T ELT) (($ (-616 |#1|) (-616 |#1|)) 79 T ELT) (($ (-616 |#1|) $) 77 T ELT) (($ $ (-616 |#1|)) 78 T ELT)) (-3950 (((-774) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1197 |#1| |#2|) $) 60 T ELT) (((-1206 |#1| |#2|) $) 43 T ELT) (($ (-616 |#1|)) 27 T ELT)) (-3820 (((-585 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-616 |#1|)) NIL T ELT)) (-3958 ((|#2| (-1206 |#1| |#2|) $) 45 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 23 T CONST)) (-2668 (((-585 (-2 (|:| |k| (-616 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3949 (((-3 $ #1#) (-1197 |#1| |#2|)) 62 T ELT)) (-1738 (($ (-616 |#1|)) 14 T ELT)) (-3059 (((-85) $ $) 46 T ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 31 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-616 |#1|)) NIL T ELT))) -(((-608 |#1| |#2|) (-13 (-326 |#1| |#2|) (-335 |#2| (-616 |#1|)) (-10 -8 (-15 -3949 ((-3 $ "failed") (-1197 |#1| |#2|))) (-15 -3533 ($ (-616 |#1|) (-616 |#1|))) (-15 -3533 ($ (-616 |#1|) $)) (-15 -3533 ($ $ (-616 |#1|))))) (-758) (-146)) (T -608)) -((-3949 (*1 *1 *2) (|partial| -12 (-5 *2 (-1197 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *1 (-608 *3 *4)))) (-3533 (*1 *1 *2 *2) (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-5 *1 (-608 *3 *4)) (-4 *4 (-146)))) (-3533 (*1 *1 *2 *1) (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-5 *1 (-608 *3 *4)) (-4 *4 (-146)))) (-3533 (*1 *1 *1 *2) (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-5 *1 (-608 *3 *4)) (-4 *4 (-146))))) -((-1737 (((-85) $) NIL T ELT) (((-85) (-1 (-85) |#2| |#2|) $) 59 T ELT)) (-1735 (($ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $) 12 T ELT)) (-1571 (($ (-1 (-85) |#2|) $) 29 T ELT)) (-2299 (($ $) 65 T ELT)) (-2370 (($ $) 74 T ELT)) (-3408 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 43 T ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3422 (((-486) |#2| $ (-486)) 71 T ELT) (((-486) |#2| $) NIL T ELT) (((-486) (-1 (-85) |#2|) $) 54 T ELT)) (-3617 (($ (-696) |#2|) 63 T ELT)) (-2859 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 31 T ELT)) (-3521 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 24 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3537 (($ |#2|) 15 T ELT)) (-3612 (($ $ $ (-486)) 42 T ELT) (($ |#2| $ (-486)) 40 T ELT)) (-1731 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 53 T ELT)) (-1572 (($ $ (-1148 (-486))) 51 T ELT) (($ $ (-486)) 44 T ELT)) (-1736 (($ $ $ (-486)) 70 T ELT)) (-3403 (($ $) 68 T ELT)) (-2688 (((-85) $ $) 76 T ELT))) -(((-609 |#1| |#2|) (-10 -7 (-15 -3537 (|#1| |#2|)) (-15 -1572 (|#1| |#1| (-486))) (-15 -1572 (|#1| |#1| (-1148 (-486)))) (-15 -3408 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3612 (|#1| |#2| |#1| (-486))) (-15 -3612 (|#1| |#1| |#1| (-486))) (-15 -2859 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1571 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3408 (|#1| |#2| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -2859 (|#1| |#1| |#1|)) (-15 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1731 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3521 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1737 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3422 ((-486) (-1 (-85) |#2|) |#1|)) (-15 -3422 ((-486) |#2| |#1|)) (-15 -3422 ((-486) |#2| |#1| (-486))) (-15 -3521 (|#1| |#1| |#1|)) (-15 -1737 ((-85) |#1|)) (-15 -1736 (|#1| |#1| |#1| (-486))) (-15 -2299 (|#1| |#1|)) (-15 -1735 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1735 (|#1| |#1|)) (-15 -2688 ((-85) |#1| |#1|)) (-15 -3617 (|#1| (-696) |#2|)) (-15 -3846 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3846 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3403 (|#1| |#1|))) (-610 |#2|) (-1131)) (T -609)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3798 ((|#1| $) 62 T ELT)) (-3800 (($ $) 64 T ELT)) (-2200 (((-1187) $ (-486) (-486)) 99 (|has| $ (-1037 |#1|)) ELT)) (-3788 (($ $ (-486)) 49 (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) $) 155 (|has| |#1| (-758)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) 149 T ELT)) (-1735 (($ $) 159 (-12 (|has| |#1| (-758)) (|has| $ (-1037 |#1|))) ELT) (($ (-1 (-85) |#1| |#1|) $) 158 (|has| $ (-1037 |#1|)) ELT)) (-2912 (($ $) 154 (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $) 148 T ELT)) (-3445 (((-85) $ (-696)) 82 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1037 |#1|)) ELT)) (-3790 (($ $ $) 53 (|has| $ (-1037 |#1|)) ELT)) (-3789 ((|#1| $ |#1|) 51 (|has| $ (-1037 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 54 (|has| $ (-1037 |#1|)) ELT) (($ $ #3="rest" $) 52 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 50 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 115 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-486) |#1|) 88 (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) 36 (|has| $ (-1037 |#1|)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 131 T ELT)) (-3713 (($ (-1 (-85) |#1|) $) 103 (|has| $ (-318 |#1|)) ELT)) (-3799 ((|#1| $) 63 T ELT)) (-3727 (($) 6 T CONST)) (-2299 (($ $) 157 (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) 147 T ELT)) (-3802 (($ $) 70 T ELT) (($ $ (-696)) 68 T ELT)) (-2370 (($ $) 133 (|has| |#1| (-72)) ELT)) (-1355 (($ $) 101 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 132 (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) 127 T ELT)) (-3409 (($ (-1 (-85) |#1|) $) 104 (|has| $ (-318 |#1|)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) 140 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 139 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 135 (|has| |#1| (-72)) ELT)) (-1577 ((|#1| $ (-486) |#1|) 87 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 89 T ELT)) (-3446 (((-85) $) 85 T ELT)) (-3422 (((-486) |#1| $ (-486)) 152 (|has| |#1| (-72)) ELT) (((-486) |#1| $) 151 (|has| |#1| (-72)) ELT) (((-486) (-1 (-85) |#1|) $) 150 T ELT)) (-3034 (((-585 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3617 (($ (-696) |#1|) 107 T ELT)) (-3722 (((-85) $ (-696)) 83 T ELT)) (-2202 (((-486) $) 97 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) 165 (|has| |#1| (-758)) ELT)) (-2859 (($ $ $) 134 (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 130 T ELT)) (-3521 (($ $ $) 153 (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 146 T ELT)) (-2611 (((-585 |#1|) $) 141 T ELT)) (-3248 (((-85) |#1| $) 136 (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) 96 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) 164 (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 124 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 110 T ELT)) (-3537 (($ |#1|) 123 T ELT)) (-3719 (((-85) $ (-696)) 84 T ELT)) (-3033 (((-585 |#1|) $) 40 T ELT)) (-3530 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3801 ((|#1| $) 67 T ELT) (($ $ (-696)) 65 T ELT)) (-3612 (($ $ $ (-486)) 129 T ELT) (($ |#1| $ (-486)) 128 T ELT)) (-2306 (($ $ $ (-486)) 114 T ELT) (($ |#1| $ (-486)) 113 T ELT)) (-2205 (((-585 (-486)) $) 94 T ELT)) (-2206 (((-85) (-486) $) 93 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 73 T ELT) (($ $ (-696)) 71 T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 138 T ELT)) (-2201 (($ $ |#1|) 98 (|has| $ (-1037 |#1|)) ELT)) (-3447 (((-85) $) 86 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 143 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#1| $) 95 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) 92 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT) ((|#1| $ #2#) 72 T ELT) (($ $ #3#) 69 T ELT) ((|#1| $ #4#) 66 T ELT) (($ $ (-1148 (-486))) 106 T ELT) ((|#1| $ (-486)) 91 T ELT) ((|#1| $ (-486) |#1|) 90 T ELT)) (-3032 (((-486) $ $) 39 T ELT)) (-1572 (($ $ (-1148 (-486))) 126 T ELT) (($ $ (-486)) 125 T ELT)) (-2307 (($ $ (-1148 (-486))) 112 T ELT) (($ $ (-486)) 111 T ELT)) (-3636 (((-85) $) 41 T ELT)) (-3795 (($ $) 59 T ELT)) (-3793 (($ $) 56 (|has| $ (-1037 |#1|)) ELT)) (-3796 (((-696) $) 60 T ELT)) (-3797 (($ $) 61 T ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) 142 T ELT) (((-696) |#1| $) 137 (|has| |#1| (-72)) ELT)) (-1736 (($ $ $ (-486)) 156 (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 100 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 105 T ELT)) (-3794 (($ $ $) 58 T ELT) (($ $ |#1|) 57 T ELT)) (-3805 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT) (($ (-585 $)) 109 T ELT) (($ $ |#1|) 108 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) 46 T ELT)) (-3031 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 144 T ELT)) (-2569 (((-85) $ $) 163 (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) 161 (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) 162 (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 160 (|has| |#1| (-758)) ELT)) (-3961 (((-696) $) 145 T ELT))) -(((-610 |#1|) (-113) (-1131)) (T -610)) -((-3537 (*1 *1 *2) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1131))))) -(-13 (-1066 |t#1|) (-324 |t#1|) (-237 |t#1|) (-10 -8 (-15 -3537 ($ |t#1|)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 (-486) |#1|) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-237 |#1|) . T) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-540 (-486) |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-925 |#1|) . T) ((-1015) OR (|has| |#1| (-1015)) (|has| |#1| (-758))) ((-1037 |#1|) . T) ((-1066 |#1|) . T) ((-1131) . T) ((-1170 |#1|) . T)) -((-3576 (((-585 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2014 (-585 |#3|)))) |#4| (-585 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2014 (-585 |#3|))) |#4| |#3|) 60 T ELT)) (-3111 (((-696) |#4| |#3|) 18 T ELT)) (-3343 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2317 (((-85) |#4| |#3|) 14 T ELT))) -(((-611 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3576 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2014 (-585 |#3|))) |#4| |#3|)) (-15 -3576 ((-585 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2014 (-585 |#3|)))) |#4| (-585 |#3|))) (-15 -3343 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2317 ((-85) |#4| |#3|)) (-15 -3111 ((-696) |#4| |#3|))) (-312) (-13 (-324 |#1|) (-1037 |#1|)) (-13 (-324 |#1|) (-1037 |#1|)) (-629 |#1| |#2| |#3|)) (T -611)) -((-3111 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1037 *5))) (-4 *4 (-13 (-324 *5) (-1037 *5))) (-5 *2 (-696)) (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4)))) (-2317 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1037 *5))) (-4 *4 (-13 (-324 *5) (-1037 *5))) (-5 *2 (-85)) (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4)))) (-3343 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-324 *4) (-1037 *4))) (-4 *2 (-13 (-324 *4) (-1037 *4))) (-5 *1 (-611 *4 *5 *2 *3)) (-4 *3 (-629 *4 *5 *2)))) (-3576 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1037 *5))) (-4 *7 (-13 (-324 *5) (-1037 *5))) (-5 *2 (-585 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2014 (-585 *7))))) (-5 *1 (-611 *5 *6 *7 *3)) (-5 *4 (-585 *7)) (-4 *3 (-629 *5 *6 *7)))) (-3576 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1037 *5))) (-4 *4 (-13 (-324 *5) (-1037 *5))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-585 *4)))) (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4))))) -((-3576 (((-585 (-2 (|:| |particular| (-3 (-1181 |#1|) #1="failed")) (|:| -2014 (-585 (-1181 |#1|))))) (-585 (-585 |#1|)) (-585 (-1181 |#1|))) 22 T ELT) (((-585 (-2 (|:| |particular| (-3 (-1181 |#1|) #1#)) (|:| -2014 (-585 (-1181 |#1|))))) (-632 |#1|) (-585 (-1181 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1181 |#1|) #1#)) (|:| -2014 (-585 (-1181 |#1|)))) (-585 (-585 |#1|)) (-1181 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1181 |#1|) #1#)) (|:| -2014 (-585 (-1181 |#1|)))) (-632 |#1|) (-1181 |#1|)) 14 T ELT)) (-3111 (((-696) (-632 |#1|) (-1181 |#1|)) 30 T ELT)) (-3343 (((-3 (-1181 |#1|) #1#) (-632 |#1|) (-1181 |#1|)) 24 T ELT)) (-2317 (((-85) (-632 |#1|) (-1181 |#1|)) 27 T ELT))) -(((-612 |#1|) (-10 -7 (-15 -3576 ((-2 (|:| |particular| (-3 (-1181 |#1|) #1="failed")) (|:| -2014 (-585 (-1181 |#1|)))) (-632 |#1|) (-1181 |#1|))) (-15 -3576 ((-2 (|:| |particular| (-3 (-1181 |#1|) #1#)) (|:| -2014 (-585 (-1181 |#1|)))) (-585 (-585 |#1|)) (-1181 |#1|))) (-15 -3576 ((-585 (-2 (|:| |particular| (-3 (-1181 |#1|) #1#)) (|:| -2014 (-585 (-1181 |#1|))))) (-632 |#1|) (-585 (-1181 |#1|)))) (-15 -3576 ((-585 (-2 (|:| |particular| (-3 (-1181 |#1|) #1#)) (|:| -2014 (-585 (-1181 |#1|))))) (-585 (-585 |#1|)) (-585 (-1181 |#1|)))) (-15 -3343 ((-3 (-1181 |#1|) #1#) (-632 |#1|) (-1181 |#1|))) (-15 -2317 ((-85) (-632 |#1|) (-1181 |#1|))) (-15 -3111 ((-696) (-632 |#1|) (-1181 |#1|)))) (-312)) (T -612)) -((-3111 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-312)) (-5 *2 (-696)) (-5 *1 (-612 *5)))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-312)) (-5 *2 (-85)) (-5 *1 (-612 *5)))) (-3343 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1181 *4)) (-5 *3 (-632 *4)) (-4 *4 (-312)) (-5 *1 (-612 *4)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 *5))) (-4 *5 (-312)) (-5 *2 (-585 (-2 (|:| |particular| (-3 (-1181 *5) #1="failed")) (|:| -2014 (-585 (-1181 *5)))))) (-5 *1 (-612 *5)) (-5 *4 (-585 (-1181 *5))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-4 *5 (-312)) (-5 *2 (-585 (-2 (|:| |particular| (-3 (-1181 *5) #1#)) (|:| -2014 (-585 (-1181 *5)))))) (-5 *1 (-612 *5)) (-5 *4 (-585 (-1181 *5))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 *5))) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 *5) #1#)) (|:| -2014 (-585 (-1181 *5))))) (-5 *1 (-612 *5)) (-5 *4 (-1181 *5)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 *5) #1#)) (|:| -2014 (-585 (-1181 *5))))) (-5 *1 (-612 *5)) (-5 *4 (-1181 *5))))) -((-2318 (((-2 (|:| |particular| (-3 (-1181 (-350 |#4|)) "failed")) (|:| -2014 (-585 (-1181 (-350 |#4|))))) (-585 |#4|) (-585 |#3|)) 51 T ELT))) -(((-613 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2318 ((-2 (|:| |particular| (-3 (-1181 (-350 |#4|)) "failed")) (|:| -2014 (-585 (-1181 (-350 |#4|))))) (-585 |#4|) (-585 |#3|)))) (-497) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -613)) -((-2318 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *7)) (-4 *7 (-758)) (-4 *8 (-863 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 (-350 *8)) "failed")) (|:| -2014 (-585 (-1181 (-350 *8)))))) (-5 *1 (-613 *5 *6 *7 *8))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1777 (((-3 $ #1="failed")) NIL (|has| |#2| (-497)) ELT)) (-3333 ((|#2| $) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1#) $ $) NIL T ELT)) (-3226 (((-1181 (-632 |#2|))) NIL T ELT) (((-1181 (-632 |#2|)) (-1181 $)) NIL T ELT)) (-3125 (((-85) $) NIL T ELT)) (-1730 (((-1181 $)) 41 T ELT)) (-3336 (($ |#2|) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3112 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3114 (((-197 |#1| |#2|) $ (-486)) NIL T ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (|has| |#2| (-497)) ELT)) (-1704 (((-3 $ #1#)) NIL (|has| |#2| (-497)) ELT)) (-1793 (((-632 |#2|)) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-1728 ((|#2| $) NIL T ELT)) (-1791 (((-632 |#2|) $) NIL T ELT) (((-632 |#2|) $ (-1181 $)) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| |#2| (-497)) ELT)) (-1905 (((-1087 (-859 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2409 (($ $ (-832)) NIL T ELT)) (-1726 ((|#2| $) NIL T ELT)) (-1706 (((-1087 |#2|) $) NIL (|has| |#2| (-497)) ELT)) (-1795 ((|#2|) NIL T ELT) ((|#2| (-1181 $)) NIL T ELT)) (-1724 (((-1087 |#2|) $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) ((|#2| $) NIL T ELT)) (-1797 (($ (-1181 |#2|)) NIL T ELT) (($ (-1181 |#2|) (-1181 $)) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3111 (((-696) $) NIL (|has| |#2| (-497)) ELT) (((-832)) 42 T ELT)) (-3115 ((|#2| $ (-486) (-486)) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-2436 (($ $ (-832)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3110 (((-696) $) NIL (|has| |#2| (-497)) ELT)) (-3109 (((-585 (-197 |#1| |#2|)) $) NIL (|has| |#2| (-497)) ELT)) (-3117 (((-696) $) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-3116 (((-696) $) NIL T ELT)) (-3330 ((|#2| $) NIL (|has| |#2| (-6 (-4000 #2="*"))) ELT)) (-3121 (((-486) $) NIL T ELT)) (-3119 (((-486) $) NIL T ELT)) (-2611 (((-585 |#2|) $) NIL T ELT)) (-3248 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3120 (((-486) $) NIL T ELT)) (-3118 (((-486) $) NIL T ELT)) (-3126 (($ (-585 (-585 |#2|))) NIL T ELT)) (-3846 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3597 (((-585 (-585 |#2|)) $) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (|has| |#2| (-497)) ELT)) (-1705 (((-3 $ #1#)) NIL (|has| |#2| (-497)) ELT)) (-1794 (((-632 |#2|)) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-1729 ((|#2| $) NIL T ELT)) (-1792 (((-632 |#2|) $) NIL T ELT) (((-632 |#2|) $ (-1181 $)) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-2407 (((-3 $ #1#) $) NIL (|has| |#2| (-497)) ELT)) (-1909 (((-1087 (-859 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2408 (($ $ (-832)) NIL T ELT)) (-1727 ((|#2| $) NIL T ELT)) (-1707 (((-1087 |#2|) $) NIL (|has| |#2| (-497)) ELT)) (-1796 ((|#2|) NIL T ELT) ((|#2| (-1181 $)) NIL T ELT)) (-1725 (((-1087 |#2|) $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-3593 (((-3 $ #1#) $) NIL (|has| |#2| (-312)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-1731 (((-3 |#2| #1#) (-1 (-85) |#2|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-497)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ (-486) (-486) |#2|) NIL T ELT) ((|#2| $ (-486) (-486)) 27 T ELT) ((|#2| $ (-486)) NIL T ELT)) (-3761 (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT)) (-3332 ((|#2| $) NIL T ELT)) (-3335 (($ (-585 |#2|)) NIL T ELT)) (-3124 (((-85) $) NIL T ELT)) (-3334 (((-197 |#1| |#2|) $) NIL T ELT)) (-3331 ((|#2| $) NIL (|has| |#2| (-6 (-4000 #2#))) ELT)) (-1732 (((-696) (-1 (-85) |#2|) $) NIL T ELT) (((-696) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3403 (($ $) NIL T ELT)) (-3227 (((-632 |#2|) (-1181 $)) NIL T ELT) (((-1181 |#2|) $) NIL T ELT) (((-632 |#2|) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 |#2|) $ (-1181 $)) 30 T ELT)) (-3975 (($ (-1181 |#2|)) NIL T ELT) (((-1181 |#2|) $) NIL T ELT)) (-1897 (((-585 (-859 |#2|))) NIL T ELT) (((-585 (-859 |#2|)) (-1181 $)) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL T ELT)) (-3113 (((-197 |#1| |#2|) $ (-486)) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (($ |#2|) NIL T ELT) (((-632 |#2|) $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) 40 T ELT)) (-1708 (((-585 (-1181 |#2|))) NIL (|has| |#2| (-497)) ELT)) (-2439 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-2548 (($ (-632 |#2|) $) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| |#2| (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) NIL T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) NIL T ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-614 |#1| |#2|) (-13 (-1039 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-554 (-632 |#2|)) (-361 |#2|)) (-832) (-146)) (T -614)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3251 (((-585 (-1051)) $) 12 T ELT)) (-3950 (((-774) $) 18 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-615) (-13 (-997) (-10 -8 (-15 -3251 ((-585 (-1051)) $))))) (T -615)) -((-3251 (*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-615))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3938 (((-585 |#1|) $) NIL T ELT)) (-3140 (($ $) 62 T ELT)) (-2667 (((-85) $) NIL T ELT)) (-3160 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-2321 (((-3 $ #1#) (-741 |#1|)) 28 T ELT)) (-2323 (((-85) (-741 |#1|)) 18 T ELT)) (-2322 (($ (-741 |#1|)) 29 T ELT)) (-2514 (((-85) $ $) 36 T ELT)) (-3836 (((-832) $) 43 T ELT)) (-3141 (($ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3735 (((-585 $) (-741 |#1|)) 20 T ELT)) (-3950 (((-774) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-741 |#1|) $) 47 T ELT) (((-620 |#1|) $) 52 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2320 (((-58 (-585 $)) (-585 |#1|) (-832)) 67 T ELT)) (-2319 (((-585 $) (-585 |#1|) (-832)) 70 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 63 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 46 T ELT))) -(((-616 |#1|) (-13 (-758) (-952 |#1|) (-10 -8 (-15 -2667 ((-85) $)) (-15 -3141 ($ $)) (-15 -3140 ($ $)) (-15 -3836 ((-832) $)) (-15 -2514 ((-85) $ $)) (-15 -3950 ((-741 |#1|) $)) (-15 -3950 ((-620 |#1|) $)) (-15 -3735 ((-585 $) (-741 |#1|))) (-15 -2323 ((-85) (-741 |#1|))) (-15 -2322 ($ (-741 |#1|))) (-15 -2321 ((-3 $ "failed") (-741 |#1|))) (-15 -3938 ((-585 |#1|) $)) (-15 -2320 ((-58 (-585 $)) (-585 |#1|) (-832))) (-15 -2319 ((-585 $) (-585 |#1|) (-832))))) (-758)) (T -616)) -((-2667 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) (-3141 (*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-758)))) (-3140 (*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-758)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) (-2514 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-741 *3)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-741 *4)) (-4 *4 (-758)) (-5 *2 (-585 (-616 *4))) (-5 *1 (-616 *4)))) (-2323 (*1 *2 *3) (-12 (-5 *3 (-741 *4)) (-4 *4 (-758)) (-5 *2 (-85)) (-5 *1 (-616 *4)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-741 *3)) (-4 *3 (-758)) (-5 *1 (-616 *3)))) (-2321 (*1 *1 *2) (|partial| -12 (-5 *2 (-741 *3)) (-4 *3 (-758)) (-5 *1 (-616 *3)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-832)) (-4 *5 (-758)) (-5 *2 (-58 (-585 (-616 *5)))) (-5 *1 (-616 *5)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-832)) (-4 *5 (-758)) (-5 *2 (-585 (-616 *5))) (-5 *1 (-616 *5))))) -((-3405 ((|#2| $) 96 T ELT)) (-3800 (($ $) 117 T ELT)) (-3445 (((-85) $ (-696)) 35 T ELT)) (-3802 (($ $) 105 T ELT) (($ $ (-696)) 108 T ELT)) (-3446 (((-85) $) 118 T ELT)) (-3034 (((-585 $) $) 92 T ELT)) (-3030 (((-85) $ $) 88 T ELT)) (-3722 (((-85) $ (-696)) 33 T ELT)) (-2202 (((-486) $) 62 T ELT)) (-2203 (((-486) $) 61 T ELT)) (-3719 (((-85) $ (-696)) 31 T ELT)) (-3530 (((-85) $) 94 T ELT)) (-3801 ((|#2| $) 109 T ELT) (($ $ (-696)) 113 T ELT)) (-2306 (($ $ $ (-486)) 79 T ELT) (($ |#2| $ (-486)) 78 T ELT)) (-2205 (((-585 (-486)) $) 60 T ELT)) (-2206 (((-85) (-486) $) 55 T ELT)) (-3804 ((|#2| $) NIL T ELT) (($ $ (-696)) 104 T ELT)) (-3772 (($ $ (-486)) 121 T ELT)) (-3447 (((-85) $) 120 T ELT)) (-2207 (((-585 |#2|) $) 42 T ELT)) (-3803 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 103 T ELT) (($ $ "rest") 107 T ELT) ((|#2| $ "last") 116 T ELT) (($ $ (-1148 (-486))) 75 T ELT) ((|#2| $ (-486)) 53 T ELT) ((|#2| $ (-486) |#2|) 54 T ELT)) (-3032 (((-486) $ $) 87 T ELT)) (-2307 (($ $ (-1148 (-486))) 74 T ELT) (($ $ (-486)) 68 T ELT)) (-3636 (((-85) $) 83 T ELT)) (-3795 (($ $) 101 T ELT)) (-3796 (((-696) $) 100 T ELT)) (-3797 (($ $) 99 T ELT)) (-3533 (($ (-585 |#2|)) 49 T ELT)) (-2894 (($ $) 122 T ELT)) (-3525 (((-585 $) $) 86 T ELT)) (-3031 (((-85) $ $) 85 T ELT)) (-3059 (((-85) $ $) 20 T ELT))) -(((-617 |#1| |#2|) (-10 -7 (-15 -3059 ((-85) |#1| |#1|)) (-15 -2894 (|#1| |#1|)) (-15 -3772 (|#1| |#1| (-486))) (-15 -3445 ((-85) |#1| (-696))) (-15 -3722 ((-85) |#1| (-696))) (-15 -3719 ((-85) |#1| (-696))) (-15 -3446 ((-85) |#1|)) (-15 -3447 ((-85) |#1|)) (-15 -3803 (|#2| |#1| (-486) |#2|)) (-15 -3803 (|#2| |#1| (-486))) (-15 -2207 ((-585 |#2|) |#1|)) (-15 -2206 ((-85) (-486) |#1|)) (-15 -2205 ((-585 (-486)) |#1|)) (-15 -2203 ((-486) |#1|)) (-15 -2202 ((-486) |#1|)) (-15 -3533 (|#1| (-585 |#2|))) (-15 -3803 (|#1| |#1| (-1148 (-486)))) (-15 -2307 (|#1| |#1| (-486))) (-15 -2307 (|#1| |#1| (-1148 (-486)))) (-15 -2306 (|#1| |#2| |#1| (-486))) (-15 -2306 (|#1| |#1| |#1| (-486))) (-15 -3795 (|#1| |#1|)) (-15 -3796 ((-696) |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3800 (|#1| |#1|)) (-15 -3801 (|#1| |#1| (-696))) (-15 -3803 (|#2| |#1| "last")) (-15 -3801 (|#2| |#1|)) (-15 -3802 (|#1| |#1| (-696))) (-15 -3803 (|#1| |#1| "rest")) (-15 -3802 (|#1| |#1|)) (-15 -3804 (|#1| |#1| (-696))) (-15 -3803 (|#2| |#1| "first")) (-15 -3804 (|#2| |#1|)) (-15 -3030 ((-85) |#1| |#1|)) (-15 -3031 ((-85) |#1| |#1|)) (-15 -3032 ((-486) |#1| |#1|)) (-15 -3636 ((-85) |#1|)) (-15 -3803 (|#2| |#1| "value")) (-15 -3405 (|#2| |#1|)) (-15 -3530 ((-85) |#1|)) (-15 -3034 ((-585 |#1|) |#1|)) (-15 -3525 ((-585 |#1|) |#1|))) (-618 |#2|) (-1131)) (T -617)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3798 ((|#1| $) 62 T ELT)) (-3800 (($ $) 64 T ELT)) (-2200 (((-1187) $ (-486) (-486)) 99 (|has| $ (-1037 |#1|)) ELT)) (-3788 (($ $ (-486)) 49 (|has| $ (-1037 |#1|)) ELT)) (-3445 (((-85) $ (-696)) 82 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1037 |#1|)) ELT)) (-3790 (($ $ $) 53 (|has| $ (-1037 |#1|)) ELT)) (-3789 ((|#1| $ |#1|) 51 (|has| $ (-1037 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 54 (|has| $ (-1037 |#1|)) ELT) (($ $ #3="rest" $) 52 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 50 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 115 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-486) |#1|) 88 (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) 36 (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 103 T ELT)) (-3799 ((|#1| $) 63 T ELT)) (-3727 (($) 6 T CONST)) (-2325 (($ $) 123 T ELT)) (-3802 (($ $) 70 T ELT) (($ $ (-696)) 68 T ELT)) (-1355 (($ $) 101 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3409 (($ |#1| $) 102 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 104 T ELT)) (-1577 ((|#1| $ (-486) |#1|) 87 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 89 T ELT)) (-3446 (((-85) $) 85 T ELT)) (-2324 (((-696) $) 122 T ELT)) (-3034 (((-585 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3617 (($ (-696) |#1|) 107 T ELT)) (-3722 (((-85) $ (-696)) 83 T ELT)) (-2202 (((-486) $) 97 (|has| (-486) (-758)) ELT)) (-2203 (((-486) $) 96 (|has| (-486) (-758)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 110 T ELT)) (-3719 (((-85) $ (-696)) 84 T ELT)) (-3033 (((-585 |#1|) $) 40 T ELT)) (-3530 (((-85) $) 44 T ELT)) (-2327 (($ $) 125 T ELT)) (-2328 (((-85) $) 126 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3801 ((|#1| $) 67 T ELT) (($ $ (-696)) 65 T ELT)) (-2306 (($ $ $ (-486)) 114 T ELT) (($ |#1| $ (-486)) 113 T ELT)) (-2205 (((-585 (-486)) $) 94 T ELT)) (-2206 (((-85) (-486) $) 93 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-2326 ((|#1| $) 124 T ELT)) (-3804 ((|#1| $) 73 T ELT) (($ $ (-696)) 71 T ELT)) (-2201 (($ $ |#1|) 98 (|has| $ (-1037 |#1|)) ELT)) (-3772 (($ $ (-486)) 121 T ELT)) (-3447 (((-85) $) 86 T ELT)) (-2329 (((-85) $) 127 T ELT)) (-2330 (((-85) $) 128 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#1| $) 95 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) 92 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT) ((|#1| $ #2#) 72 T ELT) (($ $ #3#) 69 T ELT) ((|#1| $ #4#) 66 T ELT) (($ $ (-1148 (-486))) 106 T ELT) ((|#1| $ (-486)) 91 T ELT) ((|#1| $ (-486) |#1|) 90 T ELT)) (-3032 (((-486) $ $) 39 T ELT)) (-2307 (($ $ (-1148 (-486))) 112 T ELT) (($ $ (-486)) 111 T ELT)) (-3636 (((-85) $) 41 T ELT)) (-3795 (($ $) 59 T ELT)) (-3793 (($ $) 56 (|has| $ (-1037 |#1|)) ELT)) (-3796 (((-696) $) 60 T ELT)) (-3797 (($ $) 61 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 100 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 105 T ELT)) (-3794 (($ $ $) 58 (|has| $ (-1037 |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (-1037 |#1|)) ELT)) (-3805 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT) (($ (-585 $)) 109 T ELT) (($ $ |#1|) 108 T ELT)) (-2894 (($ $) 120 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) 46 T ELT)) (-3031 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) -(((-618 |#1|) (-113) (-1131)) (T -618)) -((-3409 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-618 *3)) (-4 *3 (-1131)))) (-3713 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-618 *3)) (-4 *3 (-1131)))) (-2330 (*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1131)) (-5 *2 (-85)))) (-2329 (*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1131)) (-5 *2 (-85)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1131)) (-5 *2 (-85)))) (-2327 (*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1131)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1131)))) (-2325 (*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1131)))) (-2324 (*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1131)) (-5 *2 (-696)))) (-3772 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-618 *3)) (-4 *3 (-1131)))) (-2894 (*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1131))))) -(-13 (-1066 |t#1|) (-10 -8 (-15 -3409 ($ (-1 (-85) |t#1|) $)) (-15 -3713 ($ (-1 (-85) |t#1|) $)) (-15 -2330 ((-85) $)) (-15 -2329 ((-85) $)) (-15 -2328 ((-85) $)) (-15 -2327 ($ $)) (-15 -2326 (|t#1| $)) (-15 -2325 ($ $)) (-15 -2324 ((-696) $)) (-15 -3772 ($ $ (-486))) (-15 -2894 ($ $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 (-486) |#1|) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-540 (-486) |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-925 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1066 |#1|) . T) ((-1131) . T) ((-1170 |#1|) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3181 (((-424) $) 15 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 24 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-1051) $) 17 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-619) (-13 (-997) (-10 -8 (-15 -3181 ((-424) $)) (-15 -3236 ((-1051) $))))) (T -619)) -((-3181 (*1 *2 *1) (-12 (-5 *2 (-424)) (-5 *1 (-619)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-619))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3938 (((-585 |#1|) $) 15 T ELT)) (-3140 (($ $) 19 T ELT)) (-2667 (((-85) $) 20 T ELT)) (-3160 (((-3 |#1| "failed") $) 23 T ELT)) (-3159 ((|#1| $) 21 T ELT)) (-3802 (($ $) 37 T ELT)) (-3940 (($ $) 25 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-2514 (((-85) $ $) 46 T ELT)) (-3836 (((-832) $) 40 T ELT)) (-3141 (($ $) 18 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 ((|#1| $) 36 T ELT)) (-3950 (((-774) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-741 |#1|) $) 28 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 13 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) -(((-620 |#1|) (-13 (-758) (-952 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3950 ((-741 |#1|) $)) (-15 -3804 (|#1| $)) (-15 -3141 ($ $)) (-15 -3836 ((-832) $)) (-15 -2514 ((-85) $ $)) (-15 -3940 ($ $)) (-15 -3802 ($ $)) (-15 -2667 ((-85) $)) (-15 -3140 ($ $)) (-15 -3938 ((-585 |#1|) $)))) (-758)) (T -620)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-741 *3)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) (-3804 (*1 *2 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) (-3141 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) (-2514 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) (-3940 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) (-3802 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) (-3140 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-620 *3)) (-4 *3 (-758))))) -((-2339 ((|#1| (-1 |#1| (-696) |#1|) (-696) |#1|) 11 T ELT)) (-2331 ((|#1| (-1 |#1| |#1|) (-696) |#1|) 9 T ELT))) -(((-621 |#1|) (-10 -7 (-15 -2331 (|#1| (-1 |#1| |#1|) (-696) |#1|)) (-15 -2339 (|#1| (-1 |#1| (-696) |#1|) (-696) |#1|))) (-1015)) (T -621)) -((-2339 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-696) *2)) (-5 *4 (-696)) (-4 *2 (-1015)) (-5 *1 (-621 *2)))) (-2331 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-696)) (-4 *2 (-1015)) (-5 *1 (-621 *2))))) -((-2333 ((|#2| |#1| |#2|) 9 T ELT)) (-2332 ((|#1| |#1| |#2|) 8 T ELT))) -(((-622 |#1| |#2|) (-10 -7 (-15 -2332 (|#1| |#1| |#2|)) (-15 -2333 (|#2| |#1| |#2|))) (-1015) (-1015)) (T -622)) -((-2333 (*1 *2 *3 *2) (-12 (-5 *1 (-622 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015)))) (-2332 (*1 *2 *2 *3) (-12 (-5 *1 (-622 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) -((-2334 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) -(((-623 |#1| |#2| |#3|) (-10 -7 (-15 -2334 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1015) (-1015) (-1015)) (T -623)) -((-2334 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)) (-5 *1 (-623 *5 *6 *2))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3321 (((-1132) $) 22 T ELT)) (-3320 (((-585 (-1132)) $) 20 T ELT)) (-2335 (($ (-585 (-1132)) (-1132)) 15 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 30 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT) (((-1132) $) 23 T ELT) (($ (-1030)) 11 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-624) (-13 (-997) (-554 (-1132)) (-10 -8 (-15 -3950 ($ (-1030))) (-15 -2335 ($ (-585 (-1132)) (-1132))) (-15 -3320 ((-585 (-1132)) $)) (-15 -3321 ((-1132) $))))) (T -624)) -((-3950 (*1 *1 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-624)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-585 (-1132))) (-5 *3 (-1132)) (-5 *1 (-624)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-624)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-624))))) -((-2339 (((-1 |#1| (-696) |#1|) (-1 |#1| (-696) |#1|)) 26 T ELT)) (-2336 (((-1 |#1|) |#1|) 8 T ELT)) (-2338 ((|#1| |#1|) 19 T ELT)) (-2337 (((-585 |#1|) (-1 (-585 |#1|) (-585 |#1|)) (-486)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3950 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-696)) 23 T ELT))) -(((-625 |#1|) (-10 -7 (-15 -2336 ((-1 |#1|) |#1|)) (-15 -3950 ((-1 |#1|) |#1|)) (-15 -2337 (|#1| (-1 |#1| |#1|))) (-15 -2337 ((-585 |#1|) (-1 (-585 |#1|) (-585 |#1|)) (-486))) (-15 -2338 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-696))) (-15 -2339 ((-1 |#1| (-696) |#1|) (-1 |#1| (-696) |#1|)))) (-1015)) (T -625)) -((-2339 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-696) *3)) (-4 *3 (-1015)) (-5 *1 (-625 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-696)) (-4 *4 (-1015)) (-5 *1 (-625 *4)))) (-2338 (*1 *2 *2) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1015)))) (-2337 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-585 *5) (-585 *5))) (-5 *4 (-486)) (-5 *2 (-585 *5)) (-5 *1 (-625 *5)) (-4 *5 (-1015)))) (-2337 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-625 *2)) (-4 *2 (-1015)))) (-3950 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1015)))) (-2336 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1015))))) -((-2342 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2341 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3956 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2340 (((-1 |#2| |#1|) |#2|) 11 T ELT))) -(((-626 |#1| |#2|) (-10 -7 (-15 -2340 ((-1 |#2| |#1|) |#2|)) (-15 -2341 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3956 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2342 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1015) (-1015)) (T -626)) -((-2342 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1015)) (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)) (-4 *4 (-1015)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-5 *2 (-1 *5)) (-5 *1 (-626 *4 *5)))) (-2340 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-626 *4 *3)) (-4 *4 (-1015)) (-4 *3 (-1015))))) -((-2347 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2343 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2344 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2345 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2346 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) -(((-627 |#1| |#2| |#3|) (-10 -7 (-15 -2343 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2344 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2345 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2346 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2347 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1015) (-1015) (-1015)) (T -627)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-1 *7 *5)) (-5 *1 (-627 *5 *6 *7)))) (-2347 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-627 *4 *5 *6)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *4 (-1015)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-1015)))) (-2344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *4 *5 *6)))) (-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1015)) (-4 *4 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *5 *4 *6))))) -((-3841 (($ (-696) (-696)) 42 T ELT)) (-2352 (($ $ $) 73 T ELT)) (-3417 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3123 (((-85) $) 36 T ELT)) (-2351 (($ $ (-486) (-486)) 84 T ELT)) (-2350 (($ $ (-486) (-486)) 85 T ELT)) (-2349 (($ $ (-486) (-486) (-486) (-486)) 90 T ELT)) (-2354 (($ $) 71 T ELT)) (-3125 (((-85) $) 15 T ELT)) (-2348 (($ $ (-486) (-486) $) 91 T ELT)) (-3791 ((|#2| $ (-486) (-486) |#2|) NIL T ELT) (($ $ (-585 (-486)) (-585 (-486)) $) 89 T ELT)) (-3336 (($ (-696) |#2|) 55 T ELT)) (-3126 (($ (-585 (-585 |#2|))) 51 T ELT) (($ (-696) (-696) (-1 |#2| (-486) (-486))) 53 T ELT)) (-3597 (((-585 (-585 |#2|)) $) 80 T ELT)) (-2353 (($ $ $) 72 T ELT)) (-3469 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3803 ((|#2| $ (-486) (-486)) NIL T ELT) ((|#2| $ (-486) (-486) |#2|) NIL T ELT) (($ $ (-585 (-486)) (-585 (-486))) 88 T ELT)) (-3335 (($ (-585 |#2|)) 56 T ELT) (($ (-585 $)) 58 T ELT)) (-3124 (((-85) $) 28 T ELT)) (-3950 (($ |#4|) 63 T ELT) (((-774) $) NIL T ELT)) (-3122 (((-85) $) 38 T ELT)) (-3953 (($ $ |#2|) 124 T ELT)) (-3840 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3842 (($ $ $) 93 T ELT)) (** (($ $ (-696)) 111 T ELT) (($ $ (-486)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-486) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) -(((-628 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3950 ((-774) |#1|)) (-15 ** (|#1| |#1| (-486))) (-15 -3953 (|#1| |#1| |#2|)) (-15 -3469 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-696))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-486) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3842 (|#1| |#1| |#1|)) (-15 -2348 (|#1| |#1| (-486) (-486) |#1|)) (-15 -2349 (|#1| |#1| (-486) (-486) (-486) (-486))) (-15 -2350 (|#1| |#1| (-486) (-486))) (-15 -2351 (|#1| |#1| (-486) (-486))) (-15 -3791 (|#1| |#1| (-585 (-486)) (-585 (-486)) |#1|)) (-15 -3803 (|#1| |#1| (-585 (-486)) (-585 (-486)))) (-15 -3597 ((-585 (-585 |#2|)) |#1|)) (-15 -2352 (|#1| |#1| |#1|)) (-15 -2353 (|#1| |#1| |#1|)) (-15 -2354 (|#1| |#1|)) (-15 -3417 (|#1| |#1|)) (-15 -3417 (|#1| |#3|)) (-15 -3950 (|#1| |#4|)) (-15 -3335 (|#1| (-585 |#1|))) (-15 -3335 (|#1| (-585 |#2|))) (-15 -3336 (|#1| (-696) |#2|)) (-15 -3126 (|#1| (-696) (-696) (-1 |#2| (-486) (-486)))) (-15 -3126 (|#1| (-585 (-585 |#2|)))) (-15 -3841 (|#1| (-696) (-696))) (-15 -3122 ((-85) |#1|)) (-15 -3123 ((-85) |#1|)) (-15 -3124 ((-85) |#1|)) (-15 -3125 ((-85) |#1|)) (-15 -3791 (|#2| |#1| (-486) (-486) |#2|)) (-15 -3803 (|#2| |#1| (-486) (-486) |#2|)) (-15 -3803 (|#2| |#1| (-486) (-486)))) (-629 |#2| |#3| |#4|) (-963) (-324 |#2|) (-324 |#2|)) (T -628)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3841 (($ (-696) (-696)) 108 T ELT)) (-2352 (($ $ $) 97 T ELT)) (-3417 (($ |#2|) 101 T ELT) (($ $) 100 T ELT)) (-3123 (((-85) $) 110 T ELT)) (-2351 (($ $ (-486) (-486)) 93 T ELT)) (-2350 (($ $ (-486) (-486)) 92 T ELT)) (-2349 (($ $ (-486) (-486) (-486) (-486)) 91 T ELT)) (-2354 (($ $) 99 T ELT)) (-3125 (((-85) $) 112 T ELT)) (-2348 (($ $ (-486) (-486) $) 90 T ELT)) (-3791 ((|#1| $ (-486) (-486) |#1|) 52 T ELT) (($ $ (-585 (-486)) (-585 (-486)) $) 94 T ELT)) (-1259 (($ $ (-486) |#2|) 50 T ELT)) (-1258 (($ $ (-486) |#3|) 49 T ELT)) (-3336 (($ (-696) |#1|) 105 T ELT)) (-3727 (($) 6 T CONST)) (-3112 (($ $) 77 (|has| |#1| (-258)) ELT)) (-3114 ((|#2| $ (-486)) 54 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) 39 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 38 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| (-72)) ELT)) (-3111 (((-696) $) 76 (|has| |#1| (-497)) ELT)) (-1577 ((|#1| $ (-486) (-486) |#1|) 51 T ELT)) (-3115 ((|#1| $ (-486) (-486)) 56 T ELT)) (-3110 (((-696) $) 75 (|has| |#1| (-497)) ELT)) (-3109 (((-585 |#3|) $) 74 (|has| |#1| (-497)) ELT)) (-3117 (((-696) $) 59 T ELT)) (-3617 (($ (-696) (-696) |#1|) 65 T ELT)) (-3116 (((-696) $) 58 T ELT)) (-3330 ((|#1| $) 72 (|has| |#1| (-6 (-4000 #1="*"))) ELT)) (-3121 (((-486) $) 63 T ELT)) (-3119 (((-486) $) 61 T ELT)) (-2611 (((-585 |#1|) $) 40 T ELT)) (-3248 (((-85) |#1| $) 35 (|has| |#1| (-72)) ELT)) (-3120 (((-486) $) 62 T ELT)) (-3118 (((-486) $) 60 T ELT)) (-3126 (($ (-585 (-585 |#1|))) 107 T ELT) (($ (-696) (-696) (-1 |#1| (-486) (-486))) 106 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) 66 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 48 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 47 T ELT)) (-3597 (((-585 (-585 |#1|)) $) 96 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3593 (((-3 $ "failed") $) 71 (|has| |#1| (-312)) ELT)) (-2353 (($ $ $) 98 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 37 T ELT)) (-2201 (($ $ |#1|) 64 T ELT)) (-3469 (((-3 $ "failed") $ |#1|) 79 (|has| |#1| (-497)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 42 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-486) (-486)) 57 T ELT) ((|#1| $ (-486) (-486) |#1|) 55 T ELT) (($ $ (-585 (-486)) (-585 (-486))) 95 T ELT)) (-3335 (($ (-585 |#1|)) 104 T ELT) (($ (-585 $)) 103 T ELT)) (-3124 (((-85) $) 111 T ELT)) (-3331 ((|#1| $) 73 (|has| |#1| (-6 (-4000 #1#))) ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) 41 T ELT) (((-696) |#1| $) 36 (|has| |#1| (-72)) ELT)) (-3403 (($ $) 9 T ELT)) (-3113 ((|#3| $ (-486)) 53 T ELT)) (-3950 (($ |#3|) 102 T ELT) (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 43 T ELT)) (-3122 (((-85) $) 109 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3953 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3840 (($ $ $) 88 T ELT) (($ $) 87 T ELT)) (-3842 (($ $ $) 89 T ELT)) (** (($ $ (-696)) 80 T ELT) (($ $ (-486)) 70 (|has| |#1| (-312)) ELT)) (* (($ $ $) 86 T ELT) (($ |#1| $) 85 T ELT) (($ $ |#1|) 84 T ELT) (($ (-486) $) 83 T ELT) ((|#3| $ |#3|) 82 T ELT) ((|#2| |#2| $) 81 T ELT)) (-3961 (((-696) $) 44 T ELT))) -(((-629 |#1| |#2| |#3|) (-113) (-963) (-324 |t#1|) (-324 |t#1|)) (T -629)) -((-3125 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3841 (*1 *1 *2 *2) (-12 (-5 *2 (-696)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3126 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3126 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-696)) (-5 *3 (-1 *4 (-486) (-486))) (-4 *4 (-963)) (-4 *1 (-629 *4 *5 *6)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) (-3336 (*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3335 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3335 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3950 (*1 *1 *2) (-12 (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *2)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) (-3417 (*1 *1 *2) (-12 (-4 *3 (-963)) (-4 *1 (-629 *3 *2 *4)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) (-3417 (*1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2354 (*1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2353 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2352 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3597 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-585 (-585 *3))))) (-3803 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-585 (-486))) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3791 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-585 (-486))) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2351 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2350 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2349 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2348 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3842 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3840 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3840 (*1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-629 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-629 *3 *2 *4)) (-4 *3 (-963)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3469 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-497)))) (-3953 (*1 *1 *1 *2) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) (-3112 (*1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-258)))) (-3111 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-497)) (-5 *2 (-696)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-497)) (-5 *2 (-696)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-497)) (-5 *2 (-585 *5)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (|has| *2 (-6 (-4000 #1="*"))) (-4 *2 (-963)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (|has| *2 (-6 (-4000 #1#))) (-4 *2 (-963)))) (-3593 (*1 *1 *1) (|partial| -12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-312))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3125 ((-85) $)) (-15 -3124 ((-85) $)) (-15 -3123 ((-85) $)) (-15 -3122 ((-85) $)) (-15 -3841 ($ (-696) (-696))) (-15 -3126 ($ (-585 (-585 |t#1|)))) (-15 -3126 ($ (-696) (-696) (-1 |t#1| (-486) (-486)))) (-15 -3336 ($ (-696) |t#1|)) (-15 -3335 ($ (-585 |t#1|))) (-15 -3335 ($ (-585 $))) (-15 -3950 ($ |t#3|)) (-15 -3417 ($ |t#2|)) (-15 -3417 ($ $)) (-15 -2354 ($ $)) (-15 -2353 ($ $ $)) (-15 -2352 ($ $ $)) (-15 -3597 ((-585 (-585 |t#1|)) $)) (-15 -3803 ($ $ (-585 (-486)) (-585 (-486)))) (-15 -3791 ($ $ (-585 (-486)) (-585 (-486)) $)) (-15 -2351 ($ $ (-486) (-486))) (-15 -2350 ($ $ (-486) (-486))) (-15 -2349 ($ $ (-486) (-486) (-486) (-486))) (-15 -2348 ($ $ (-486) (-486) $)) (-15 -3842 ($ $ $)) (-15 -3840 ($ $ $)) (-15 -3840 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-486) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-696))) (IF (|has| |t#1| (-497)) (-15 -3469 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -3953 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-258)) (-15 -3112 ($ $)) |%noBranch|) (IF (|has| |t#1| (-497)) (PROGN (-15 -3111 ((-696) $)) (-15 -3110 ((-696) $)) (-15 -3109 ((-585 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4000 "*"))) (PROGN (-15 -3331 (|t#1| $)) (-15 -3330 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -3593 ((-3 $ "failed") $)) (-15 ** ($ $ (-486)))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-57 |#1| |#2| |#3|) . T) ((-1131) . T)) -((-3845 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3846 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) -(((-630 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3846 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3846 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3845 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-963) (-324 |#1|) (-324 |#1|) (-629 |#1| |#2| |#3|) (-963) (-324 |#5|) (-324 |#5|) (-629 |#5| |#6| |#7|)) (T -630)) -((-3845 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-963)) (-4 *2 (-963)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *8 (-324 *2)) (-4 *9 (-324 *2)) (-5 *1 (-630 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-629 *5 *6 *7)) (-4 *10 (-629 *2 *8 *9)))) (-3846 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-963)) (-4 *8 (-963)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-629 *8 *9 *10)) (-5 *1 (-630 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-629 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-963)) (-4 *8 (-963)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-629 *8 *9 *10)) (-5 *1 (-630 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-629 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8))))) -((-3112 ((|#4| |#4|) 90 (|has| |#1| (-258)) ELT)) (-3111 (((-696) |#4|) 92 (|has| |#1| (-497)) ELT)) (-3110 (((-696) |#4|) 94 (|has| |#1| (-497)) ELT)) (-3109 (((-585 |#3|) |#4|) 101 (|has| |#1| (-497)) ELT)) (-2382 (((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|) 124 (|has| |#1| (-258)) ELT)) (-3330 ((|#1| |#4|) 52 T ELT)) (-2359 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-497)) ELT)) (-3593 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-312)) ELT)) (-2358 ((|#4| |#4|) 76 (|has| |#1| (-497)) ELT)) (-2356 ((|#4| |#4| |#1| (-486) (-486)) 60 T ELT)) (-2355 ((|#4| |#4| (-486) (-486)) 55 T ELT)) (-2357 ((|#4| |#4| |#1| (-486) (-486)) 65 T ELT)) (-3331 ((|#1| |#4|) 96 T ELT)) (-2523 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-497)) ELT))) -(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3331 (|#1| |#4|)) (-15 -3330 (|#1| |#4|)) (-15 -2355 (|#4| |#4| (-486) (-486))) (-15 -2356 (|#4| |#4| |#1| (-486) (-486))) (-15 -2357 (|#4| |#4| |#1| (-486) (-486))) (IF (|has| |#1| (-497)) (PROGN (-15 -3111 ((-696) |#4|)) (-15 -3110 ((-696) |#4|)) (-15 -3109 ((-585 |#3|) |#4|)) (-15 -2358 (|#4| |#4|)) (-15 -2359 ((-3 |#4| #1="failed") |#4|)) (-15 -2523 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-258)) (PROGN (-15 -3112 (|#4| |#4|)) (-15 -2382 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3593 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-146) (-324 |#1|) (-324 |#1|) (-629 |#1| |#2| |#3|)) (T -631)) -((-3593 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-2382 (*1 *2 *3 *3) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-631 *3 *4 *5 *6)) (-4 *6 (-629 *3 *4 *5)))) (-3112 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-2523 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-2359 (*1 *2 *2) (|partial| -12 (-4 *3 (-497)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-497)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-585 *6)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-696)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3111 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-696)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-2357 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-486)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-629 *3 *5 *6)))) (-2356 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-486)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-629 *3 *5 *6)))) (-2355 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-486)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *1 (-631 *4 *5 *6 *2)) (-4 *2 (-629 *4 *5 *6)))) (-3330 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) (-3331 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5))))) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3841 (($ (-696) (-696)) 63 T ELT)) (-2352 (($ $ $) NIL T ELT)) (-3417 (($ (-1181 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-2351 (($ $ (-486) (-486)) 21 T ELT)) (-2350 (($ $ (-486) (-486)) NIL T ELT)) (-2349 (($ $ (-486) (-486) (-486) (-486)) NIL T ELT)) (-2354 (($ $) NIL T ELT)) (-3125 (((-85) $) NIL T ELT)) (-2348 (($ $ (-486) (-486) $) NIL T ELT)) (-3791 ((|#1| $ (-486) (-486) |#1|) NIL T ELT) (($ $ (-585 (-486)) (-585 (-486)) $) NIL T ELT)) (-1259 (($ $ (-486) (-1181 |#1|)) NIL T ELT)) (-1258 (($ $ (-486) (-1181 |#1|)) NIL T ELT)) (-3336 (($ (-696) |#1|) 37 T ELT)) (-3727 (($) NIL T CONST)) (-3112 (($ $) 46 (|has| |#1| (-258)) ELT)) (-3114 (((-1181 |#1|) $ (-486)) NIL T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-3111 (((-696) $) 48 (|has| |#1| (-497)) ELT)) (-1577 ((|#1| $ (-486) (-486) |#1|) 68 T ELT)) (-3115 ((|#1| $ (-486) (-486)) NIL T ELT)) (-3110 (((-696) $) 50 (|has| |#1| (-497)) ELT)) (-3109 (((-585 (-1181 |#1|)) $) 53 (|has| |#1| (-497)) ELT)) (-3117 (((-696) $) 31 T ELT)) (-3617 (($ (-696) (-696) |#1|) 27 T ELT)) (-3116 (((-696) $) 32 T ELT)) (-3330 ((|#1| $) 44 (|has| |#1| (-6 (-4000 #1="*"))) ELT)) (-3121 (((-486) $) 9 T ELT)) (-3119 (((-486) $) 10 T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3120 (((-486) $) 13 T ELT)) (-3118 (((-486) $) 64 T ELT)) (-3126 (($ (-585 (-585 |#1|))) NIL T ELT) (($ (-696) (-696) (-1 |#1| (-486) (-486))) NIL T ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3597 (((-585 (-585 |#1|)) $) 75 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3593 (((-3 $ #2="failed") $) 57 (|has| |#1| (-312)) ELT)) (-2353 (($ $ $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1731 (((-3 |#1| #2#) (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL T ELT)) (-3469 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-497)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-486) (-486)) NIL T ELT) ((|#1| $ (-486) (-486) |#1|) NIL T ELT) (($ $ (-585 (-486)) (-585 (-486))) NIL T ELT)) (-3335 (($ (-585 |#1|)) NIL T ELT) (($ (-585 $)) NIL T ELT) (($ (-1181 |#1|)) 69 T ELT)) (-3124 (((-85) $) NIL T ELT)) (-3331 ((|#1| $) 42 (|has| |#1| (-6 (-4000 #1#))) ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) NIL T ELT) (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) 79 (|has| |#1| (-555 (-475))) ELT)) (-3113 (((-1181 |#1|) $ (-486)) NIL T ELT)) (-3950 (($ (-1181 |#1|)) NIL T ELT) (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-696)) 38 T ELT) (($ $ (-486)) 61 (|has| |#1| (-312)) ELT)) (* (($ $ $) 23 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-486) $) NIL T ELT) (((-1181 |#1|) $ (-1181 |#1|)) NIL T ELT) (((-1181 |#1|) (-1181 |#1|) $) NIL T ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-632 |#1|) (-13 (-629 |#1| (-1181 |#1|) (-1181 |#1|)) (-10 -8 (-15 -3335 ($ (-1181 |#1|))) (IF (|has| |#1| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3593 ((-3 $ "failed") $)) |%noBranch|))) (-963)) (T -632)) -((-3593 (*1 *1 *1) (|partial| -12 (-5 *1 (-632 *2)) (-4 *2 (-312)) (-4 *2 (-963)))) (-3335 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-963)) (-5 *1 (-632 *3))))) -((-2365 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 37 T ELT)) (-2364 (((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|) 32 T ELT)) (-2366 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-696)) 43 T ELT)) (-2361 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 25 T ELT)) (-2362 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 29 T ELT) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 27 T ELT)) (-2363 (((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|)) 31 T ELT)) (-2360 (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 23 T ELT)) (** (((-632 |#1|) (-632 |#1|) (-696)) 46 T ELT))) -(((-633 |#1|) (-10 -7 (-15 -2360 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2361 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2362 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2362 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2363 ((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|))) (-15 -2364 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -2365 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2366 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-696))) (-15 ** ((-632 |#1|) (-632 |#1|) (-696)))) (-963)) (T -633)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-696)) (-4 *4 (-963)) (-5 *1 (-633 *4)))) (-2366 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-696)) (-4 *4 (-963)) (-5 *1 (-633 *4)))) (-2365 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) (-2364 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) (-2363 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) (-2362 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) (-2362 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) (-2361 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) (-2360 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) -((-3160 (((-3 |#1| "failed") $) 18 T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-2367 (($) 7 T CONST)) (-2368 (($ |#1|) 8 T ELT)) (-3950 (($ |#1|) 16 T ELT) (((-774) $) 23 T ELT)) (-3569 (((-85) $ (|[\|\|]| |#1|)) 14 T ELT) (((-85) $ (|[\|\|]| -2367)) 11 T ELT)) (-3575 ((|#1| $) 15 T ELT))) -(((-634 |#1|) (-13 (-1177) (-952 |#1|) (-554 (-774)) (-10 -8 (-15 -2368 ($ |#1|)) (-15 -3569 ((-85) $ (|[\|\|]| |#1|))) (-15 -3569 ((-85) $ (|[\|\|]| -2367))) (-15 -3575 (|#1| $)) (-15 -2367 ($) -3956))) (-554 (-774))) (T -634)) -((-2368 (*1 *1 *2) (-12 (-5 *1 (-634 *2)) (-4 *2 (-554 (-774))))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-554 (-774))) (-5 *2 (-85)) (-5 *1 (-634 *4)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2367)) (-5 *2 (-85)) (-5 *1 (-634 *4)) (-4 *4 (-554 (-774))))) (-3575 (*1 *2 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-554 (-774))))) (-2367 (*1 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-554 (-774)))))) -((-3744 (((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|)) 20 T ELT)) (-3742 ((|#1| (-632 |#2|)) 9 T ELT)) (-3743 (((-632 |#1|) (-632 |#2|)) 18 T ELT))) -(((-635 |#1| |#2|) (-10 -7 (-15 -3742 (|#1| (-632 |#2|))) (-15 -3743 ((-632 |#1|) (-632 |#2|))) (-15 -3744 ((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|)))) (-497) (-906 |#1|)) (T -635)) -((-3744 (*1 *2 *3) (-12 (-5 *3 (-632 *5)) (-4 *5 (-906 *4)) (-4 *4 (-497)) (-5 *2 (-2 (|:| |num| (-632 *4)) (|:| |den| *4))) (-5 *1 (-635 *4 *5)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-632 *5)) (-4 *5 (-906 *4)) (-4 *4 (-497)) (-5 *2 (-632 *4)) (-5 *1 (-635 *4 *5)))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-632 *4)) (-4 *4 (-906 *2)) (-4 *2 (-497)) (-5 *1 (-635 *2 *4))))) -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 42 (|has| $ (-318 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2370 (($ $) 55 T ELT)) (-1355 (($ $) 51 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 44 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 43 (|has| $ (-318 |#1|)) ELT)) (-3409 (($ |#1| $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT) (($ |#1| $ (-696)) 56 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-1277 ((|#1| $) 37 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-2369 (((-585 (-2 (|:| |entry| |#1|) (|:| -1732 (-696)))) $) 54 T ELT)) (-1467 (($) 46 T ELT) (($ (-585 |#1|)) 45 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 52 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 47 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) -(((-636 |#1|) (-113) (-1015)) (T -636)) -((-3612 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-636 *2)) (-4 *2 (-1015)))) (-2370 (*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1015)))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-636 *3)) (-4 *3 (-1015)) (-5 *2 (-585 (-2 (|:| |entry| *3) (|:| -1732 (-696)))))))) -(-13 (-193 |t#1|) (-10 -8 (-15 -3612 ($ |t#1| $ (-696))) (-15 -2370 ($ $)) (-15 -2369 ((-585 (-2 (|:| |entry| |t#1|) (|:| -1732 (-696)))) $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) -((-2373 (((-585 |#1|) (-585 (-2 (|:| -3735 |#1|) (|:| -3952 (-486)))) (-486)) 66 T ELT)) (-2371 ((|#1| |#1| (-486)) 63 T ELT)) (-3147 ((|#1| |#1| |#1| (-486)) 46 T ELT)) (-3735 (((-585 |#1|) |#1| (-486)) 49 T ELT)) (-2374 ((|#1| |#1| (-486) |#1| (-486)) 40 T ELT)) (-2372 (((-585 (-2 (|:| -3735 |#1|) (|:| -3952 (-486)))) |#1| (-486)) 62 T ELT))) -(((-637 |#1|) (-10 -7 (-15 -3147 (|#1| |#1| |#1| (-486))) (-15 -2371 (|#1| |#1| (-486))) (-15 -3735 ((-585 |#1|) |#1| (-486))) (-15 -2372 ((-585 (-2 (|:| -3735 |#1|) (|:| -3952 (-486)))) |#1| (-486))) (-15 -2373 ((-585 |#1|) (-585 (-2 (|:| -3735 |#1|) (|:| -3952 (-486)))) (-486))) (-15 -2374 (|#1| |#1| (-486) |#1| (-486)))) (-1157 (-486))) (T -637)) -((-2374 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-637 *2)) (-4 *2 (-1157 *3)))) (-2373 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| -3735 *5) (|:| -3952 (-486))))) (-5 *4 (-486)) (-4 *5 (-1157 *4)) (-5 *2 (-585 *5)) (-5 *1 (-637 *5)))) (-2372 (*1 *2 *3 *4) (-12 (-5 *4 (-486)) (-5 *2 (-585 (-2 (|:| -3735 *3) (|:| -3952 *4)))) (-5 *1 (-637 *3)) (-4 *3 (-1157 *4)))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-486)) (-5 *2 (-585 *3)) (-5 *1 (-637 *3)) (-4 *3 (-1157 *4)))) (-2371 (*1 *2 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-637 *2)) (-4 *2 (-1157 *3)))) (-3147 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-637 *2)) (-4 *2 (-1157 *3))))) -((-2378 (((-1 (-856 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 17 T ELT)) (-2375 (((-1049 (-179)) (-1049 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-585 (-221))) 53 T ELT) (((-1049 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-585 (-221))) 55 T ELT) (((-1049 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1003 (-179)) (-1003 (-179)) (-585 (-221))) 57 T ELT)) (-2377 (((-1049 (-179)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-585 (-221))) NIL T ELT)) (-2376 (((-1049 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1003 (-179)) (-1003 (-179)) (-585 (-221))) 58 T ELT))) -(((-638) (-10 -7 (-15 -2375 ((-1049 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1003 (-179)) (-1003 (-179)) (-585 (-221)))) (-15 -2375 ((-1049 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-585 (-221)))) (-15 -2375 ((-1049 (-179)) (-1049 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-585 (-221)))) (-15 -2376 ((-1049 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1003 (-179)) (-1003 (-179)) (-585 (-221)))) (-15 -2377 ((-1049 (-179)) (-265 (-486)) (-265 (-486)) (-265 (-486)) (-1 (-179) (-179)) (-1003 (-179)) (-585 (-221)))) (-15 -2378 ((-1 (-856 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -638)) -((-2378 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) (-5 *2 (-1 (-856 (-179)) (-179) (-179))) (-5 *1 (-638)))) (-2377 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) (-5 *6 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-638)))) (-2376 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined")) (-5 *5 (-1003 (-179))) (-5 *6 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-638)))) (-2375 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1049 (-179))) (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-179))) (-5 *5 (-585 (-221))) (-5 *1 (-638)))) (-2375 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-179))) (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-638)))) (-2375 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1#)) (-5 *5 (-1003 (-179))) (-5 *6 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-638))))) -((-3735 (((-348 (-1087 |#4|)) (-1087 |#4|)) 87 T ELT) (((-348 |#4|) |#4|) 270 T ELT))) -(((-639 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3735 ((-348 |#4|) |#4|)) (-15 -3735 ((-348 (-1087 |#4|)) (-1087 |#4|)))) (-758) (-719) (-299) (-863 |#3| |#2| |#1|)) (T -639)) -((-3735 (*1 *2 *3) (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-299)) (-4 *7 (-863 *6 *5 *4)) (-5 *2 (-348 (-1087 *7))) (-5 *1 (-639 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-639 *4 *5 *6 *3)) (-4 *3 (-863 *6 *5 *4))))) -((-2381 (((-632 |#1|) (-632 |#1|) |#1| |#1|) 85 T ELT)) (-3112 (((-632 |#1|) (-632 |#1|) |#1|) 66 T ELT)) (-2380 (((-632 |#1|) (-632 |#1|) |#1|) 86 T ELT)) (-2379 (((-632 |#1|) (-632 |#1|)) 67 T ELT)) (-2382 (((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|) 84 T ELT))) -(((-640 |#1|) (-10 -7 (-15 -2379 ((-632 |#1|) (-632 |#1|))) (-15 -3112 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -2380 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -2381 ((-632 |#1|) (-632 |#1|) |#1| |#1|)) (-15 -2382 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|))) (-258)) (T -640)) -((-2382 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-640 *3)) (-4 *3 (-258)))) (-2381 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3)))) (-2380 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3)))) (-3112 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3))))) -((-2388 (((-1 |#4| |#2| |#3|) |#1| (-1092) (-1092)) 19 T ELT)) (-2383 (((-1 |#4| |#2| |#3|) (-1092)) 12 T ELT))) -(((-641 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2383 ((-1 |#4| |#2| |#3|) (-1092))) (-15 -2388 ((-1 |#4| |#2| |#3|) |#1| (-1092) (-1092)))) (-555 (-475)) (-1131) (-1131) (-1131)) (T -641)) -((-2388 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *3 *5 *6 *7)) (-4 *3 (-555 (-475))) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)))) (-2383 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *4 *5 *6 *7)) (-4 *4 (-555 (-475))) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131))))) -((-2384 (((-1 (-179) (-179) (-179)) |#1| (-1092) (-1092)) 43 T ELT) (((-1 (-179) (-179)) |#1| (-1092)) 48 T ELT))) -(((-642 |#1|) (-10 -7 (-15 -2384 ((-1 (-179) (-179)) |#1| (-1092))) (-15 -2384 ((-1 (-179) (-179) (-179)) |#1| (-1092) (-1092)))) (-555 (-475))) (T -642)) -((-2384 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-642 *3)) (-4 *3 (-555 (-475))))) (-2384 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-642 *3)) (-4 *3 (-555 (-475)))))) -((-2385 (((-1092) |#1| (-1092) (-585 (-1092))) 10 T ELT) (((-1092) |#1| (-1092) (-1092) (-1092)) 13 T ELT) (((-1092) |#1| (-1092) (-1092)) 12 T ELT) (((-1092) |#1| (-1092)) 11 T ELT))) -(((-643 |#1|) (-10 -7 (-15 -2385 ((-1092) |#1| (-1092))) (-15 -2385 ((-1092) |#1| (-1092) (-1092))) (-15 -2385 ((-1092) |#1| (-1092) (-1092) (-1092))) (-15 -2385 ((-1092) |#1| (-1092) (-585 (-1092))))) (-555 (-475))) (T -643)) -((-2385 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-585 (-1092))) (-5 *2 (-1092)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-475))))) (-2385 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-475))))) (-2385 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-475))))) (-2385 (*1 *2 *3 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-475)))))) -((-2386 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) -(((-644 |#1| |#2|) (-10 -7 (-15 -2386 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1131) (-1131)) (T -644)) -((-2386 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-644 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131))))) -((-2387 (((-1 |#3| |#2|) (-1092)) 11 T ELT)) (-2388 (((-1 |#3| |#2|) |#1| (-1092)) 21 T ELT))) -(((-645 |#1| |#2| |#3|) (-10 -7 (-15 -2387 ((-1 |#3| |#2|) (-1092))) (-15 -2388 ((-1 |#3| |#2|) |#1| (-1092)))) (-555 (-475)) (-1131) (-1131)) (T -645)) -((-2388 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *3 *5 *6)) (-4 *3 (-555 (-475))) (-4 *5 (-1131)) (-4 *6 (-1131)))) (-2387 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *4 *5 *6)) (-4 *4 (-555 (-475))) (-4 *5 (-1131)) (-4 *6 (-1131))))) -((-2391 (((-3 (-585 (-1087 |#4|)) #1="failed") (-1087 |#4|) (-585 |#2|) (-585 (-1087 |#4|)) (-585 |#3|) (-585 |#4|) (-585 (-585 (-2 (|:| -3081 (-696)) (|:| |pcoef| |#4|)))) (-585 (-696)) (-1181 (-585 (-1087 |#3|))) |#3|) 92 T ELT)) (-2390 (((-3 (-585 (-1087 |#4|)) #1#) (-1087 |#4|) (-585 |#2|) (-585 (-1087 |#3|)) (-585 |#3|) (-585 |#4|) (-585 (-696)) |#3|) 110 T ELT)) (-2389 (((-3 (-585 (-1087 |#4|)) #1#) (-1087 |#4|) (-585 |#2|) (-585 |#3|) (-585 (-696)) (-585 (-1087 |#4|)) (-1181 (-585 (-1087 |#3|))) |#3|) 48 T ELT))) -(((-646 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2389 ((-3 (-585 (-1087 |#4|)) #1="failed") (-1087 |#4|) (-585 |#2|) (-585 |#3|) (-585 (-696)) (-585 (-1087 |#4|)) (-1181 (-585 (-1087 |#3|))) |#3|)) (-15 -2390 ((-3 (-585 (-1087 |#4|)) #1#) (-1087 |#4|) (-585 |#2|) (-585 (-1087 |#3|)) (-585 |#3|) (-585 |#4|) (-585 (-696)) |#3|)) (-15 -2391 ((-3 (-585 (-1087 |#4|)) #1#) (-1087 |#4|) (-585 |#2|) (-585 (-1087 |#4|)) (-585 |#3|) (-585 |#4|) (-585 (-585 (-2 (|:| -3081 (-696)) (|:| |pcoef| |#4|)))) (-585 (-696)) (-1181 (-585 (-1087 |#3|))) |#3|))) (-719) (-758) (-258) (-863 |#3| |#1| |#2|)) (T -646)) -((-2391 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-585 (-1087 *13))) (-5 *3 (-1087 *13)) (-5 *4 (-585 *12)) (-5 *5 (-585 *10)) (-5 *6 (-585 *13)) (-5 *7 (-585 (-585 (-2 (|:| -3081 (-696)) (|:| |pcoef| *13))))) (-5 *8 (-585 (-696))) (-5 *9 (-1181 (-585 (-1087 *10)))) (-4 *12 (-758)) (-4 *10 (-258)) (-4 *13 (-863 *10 *11 *12)) (-4 *11 (-719)) (-5 *1 (-646 *11 *12 *10 *13)))) (-2390 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-585 *11)) (-5 *5 (-585 (-1087 *9))) (-5 *6 (-585 *9)) (-5 *7 (-585 *12)) (-5 *8 (-585 (-696))) (-4 *11 (-758)) (-4 *9 (-258)) (-4 *12 (-863 *9 *10 *11)) (-4 *10 (-719)) (-5 *2 (-585 (-1087 *12))) (-5 *1 (-646 *10 *11 *9 *12)) (-5 *3 (-1087 *12)))) (-2389 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-585 (-1087 *11))) (-5 *3 (-1087 *11)) (-5 *4 (-585 *10)) (-5 *5 (-585 *8)) (-5 *6 (-585 (-696))) (-5 *7 (-1181 (-585 (-1087 *8)))) (-4 *10 (-758)) (-4 *8 (-258)) (-4 *11 (-863 *8 *9 *10)) (-4 *9 (-719)) (-5 *1 (-646 *9 *10 *8 *11))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3962 (($ $) 56 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2896 (($ |#1| (-696)) 54 T ELT)) (-2823 (((-696) $) 58 T ELT)) (-3177 ((|#1| $) 57 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3952 (((-696) $) 59 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 53 (|has| |#1| (-146)) ELT)) (-3680 ((|#1| $ (-696)) 55 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 61 T ELT) (($ |#1| $) 60 T ELT))) -(((-647 |#1|) (-113) (-963)) (T -647)) -((-3952 (*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-963)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-963)))) (-3680 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-647 *2)) (-4 *2 (-963)))) (-2896 (*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-647 *2)) (-4 *2 (-963))))) -(-13 (-963) (-82 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3952 ((-696) $)) (-15 -2823 ((-696) $)) (-15 -3177 (|t#1| $)) (-15 -3962 ($ $)) (-15 -3680 (|t#1| $ (-696))) (-15 -2896 ($ |t#1| (-696))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-665) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-3846 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) -(((-648 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3846 (|#6| (-1 |#4| |#1|) |#3|))) (-497) (-1157 |#1|) (-1157 (-350 |#2|)) (-497) (-1157 |#4|) (-1157 (-350 |#5|))) (T -648)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-497)) (-4 *7 (-497)) (-4 *6 (-1157 *5)) (-4 *2 (-1157 (-350 *8))) (-5 *1 (-648 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1157 (-350 *6))) (-4 *8 (-1157 *7))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2392 (((-1075) (-774)) 36 T ELT)) (-3620 (((-1187) (-1075)) 29 T ELT)) (-2394 (((-1075) (-774)) 26 T ELT)) (-2393 (((-1075) (-774)) 27 T ELT)) (-3950 (((-774) $) NIL T ELT) (((-1075) (-774)) 25 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-649) (-13 (-1015) (-10 -7 (-15 -3950 ((-1075) (-774))) (-15 -2394 ((-1075) (-774))) (-15 -2393 ((-1075) (-774))) (-15 -2392 ((-1075) (-774))) (-15 -3620 ((-1187) (-1075)))))) (T -649)) -((-3950 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1075)) (-5 *1 (-649)))) (-2394 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1075)) (-5 *1 (-649)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1075)) (-5 *1 (-649)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1075)) (-5 *1 (-649)))) (-3620 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-649))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL T ELT)) (-3845 (($ |#1| |#2|) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2617 ((|#2| $) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2404 (((-3 $ #1#) $ $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT))) -(((-650 |#1| |#2| |#3| |#4| |#5|) (-13 (-312) (-10 -8 (-15 -2617 (|#2| $)) (-15 -3950 (|#1| $)) (-15 -3845 ($ |#1| |#2|)) (-15 -2404 ((-3 $ #1="failed") $ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -650)) -((-2617 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-650 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #1#) *3 *3 *2)))) (-3950 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #1#) *2 *2 *3)))) (-3845 (*1 *1 *2 *3) (-12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #1#) *2 *2 *3)))) (-2404 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #1#) *2 *2 *3))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 37 T ELT)) (-3770 (((-1181 |#1|) $ (-696)) NIL T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3768 (($ (-1087 |#1|)) NIL T ELT)) (-3086 (((-1087 $) $ (-996)) NIL T ELT) (((-1087 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-996))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $ $) NIL (|has| |#1| (-497)) ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3139 (((-696)) 55 (|has| |#1| (-320)) ELT)) (-3764 (($ $ (-696)) NIL T ELT)) (-3763 (($ $ (-696)) NIL T ELT)) (-2401 ((|#2| |#2|) 51 T ELT)) (-3754 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-393)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-996) #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-996) $) NIL T ELT)) (-3759 (($ $ $ (-996)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) NIL (|has| |#1| (-146)) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) 72 T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3845 (($ |#2|) 49 T ELT)) (-3470 (((-3 $ #1#) $) 98 T ELT)) (-2997 (($) 59 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3762 (($ $ $) NIL T ELT)) (-3756 (($ $ $) NIL (|has| |#1| (-497)) ELT)) (-3755 (((-2 (|:| -3958 |#1|) (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT) (($ $ (-996)) NIL (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-2397 (((-871 $)) 89 T ELT)) (-1625 (($ $ |#1| (-696) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-996) (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-996) (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-3775 (((-696) $ $) NIL (|has| |#1| (-497)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-1068)) ELT)) (-3087 (($ (-1087 |#1|) (-996)) NIL T ELT) (($ (-1087 $) (-996)) NIL T ELT)) (-3780 (($ $ (-696)) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-696)) 86 T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-996)) NIL T ELT) (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2617 ((|#2|) 52 T ELT)) (-2823 (((-696) $) NIL T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-1626 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3769 (((-1087 |#1|) $) NIL T ELT)) (-3085 (((-3 (-996) #1#) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-320)) ELT)) (-3082 ((|#2| $) 48 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) 35 T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3765 (((-2 (|:| -1974 $) (|:| -2905 $)) $ (-696)) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-996)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3815 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3449 (($) NIL (|has| |#1| (-1068)) CONST)) (-2402 (($ (-832)) NIL (|has| |#1| (-320)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-2395 (($ $) 88 (|has| |#1| (-299)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-823)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-996) |#1|) NIL T ELT) (($ $ (-585 (-996)) (-585 |#1|)) NIL T ELT) (($ $ (-996) $) NIL T ELT) (($ $ (-585 (-996)) (-585 $)) NIL T ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-497)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-497)) ELT)) (-3767 (((-3 $ #1#) $ (-696)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 99 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-996)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-3952 (((-696) $) 39 T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-996) (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-996) (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-996) (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT) (($ $ (-996)) NIL (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-2396 (((-871 $)) 43 T ELT)) (-3757 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-497)) ELT)) (-3950 (((-774) $) 69 T ELT) (($ (-486)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-996)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-696)) 71 T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 26 T CONST)) (-2400 (((-1181 |#1|) $) 84 T ELT)) (-2399 (($ (-1181 |#1|)) 58 T ELT)) (-2669 (($) 9 T CONST)) (-2672 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-2398 (((-1181 |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) 77 T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 40 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 93 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT))) -(((-651 |#1| |#2|) (-13 (-1157 |#1|) (-557 |#2|) (-10 -8 (-15 -2401 (|#2| |#2|)) (-15 -2617 (|#2|)) (-15 -3845 ($ |#2|)) (-15 -3082 (|#2| $)) (-15 -2400 ((-1181 |#1|) $)) (-15 -2399 ($ (-1181 |#1|))) (-15 -2398 ((-1181 |#1|) $)) (-15 -2397 ((-871 $))) (-15 -2396 ((-871 $))) (IF (|has| |#1| (-299)) (-15 -2395 ($ $)) |%noBranch|) (IF (|has| |#1| (-320)) (-6 (-320)) |%noBranch|))) (-963) (-1157 |#1|)) (T -651)) -((-2401 (*1 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-651 *3 *2)) (-4 *2 (-1157 *3)))) (-2617 (*1 *2) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-651 *3 *2)) (-4 *3 (-963)))) (-3845 (*1 *1 *2) (-12 (-4 *3 (-963)) (-5 *1 (-651 *3 *2)) (-4 *2 (-1157 *3)))) (-3082 (*1 *2 *1) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-651 *3 *2)) (-4 *3 (-963)))) (-2400 (*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-1181 *3)) (-5 *1 (-651 *3 *4)) (-4 *4 (-1157 *3)))) (-2399 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-963)) (-5 *1 (-651 *3 *4)) (-4 *4 (-1157 *3)))) (-2398 (*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-1181 *3)) (-5 *1 (-651 *3 *4)) (-4 *4 (-1157 *3)))) (-2397 (*1 *2) (-12 (-4 *3 (-963)) (-5 *2 (-871 (-651 *3 *4))) (-5 *1 (-651 *3 *4)) (-4 *4 (-1157 *3)))) (-2396 (*1 *2) (-12 (-4 *3 (-963)) (-5 *2 (-871 (-651 *3 *4))) (-5 *1 (-651 *3 *4)) (-4 *4 (-1157 *3)))) (-2395 (*1 *1 *1) (-12 (-4 *2 (-299)) (-4 *2 (-963)) (-5 *1 (-651 *2 *3)) (-4 *3 (-1157 *2))))) -((-2571 (((-85) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 ((|#1| $) 13 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2403 ((|#2| $) 12 T ELT)) (-3533 (($ |#1| |#2|) 16 T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) 15 T ELT) (((-2 (|:| -2402 |#1|) (|:| -2403 |#2|)) $) 14 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 11 T ELT))) -(((-652 |#1| |#2| |#3|) (-13 (-758) (-431 (-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) (-10 -8 (-15 -2403 (|#2| $)) (-15 -2402 (|#1| $)) (-15 -3533 ($ |#1| |#2|)))) (-758) (-1015) (-1 (-85) (-2 (|:| -2402 |#1|) (|:| -2403 |#2|)) (-2 (|:| -2402 |#1|) (|:| -2403 |#2|)))) (T -652)) -((-2403 (*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-652 *3 *2 *4)) (-4 *3 (-758)) (-14 *4 (-1 (-85) (-2 (|:| -2402 *3) (|:| -2403 *2)) (-2 (|:| -2402 *3) (|:| -2403 *2)))))) (-2402 (*1 *2 *1) (-12 (-4 *2 (-758)) (-5 *1 (-652 *2 *3 *4)) (-4 *3 (-1015)) (-14 *4 (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *3)) (-2 (|:| -2402 *2) (|:| -2403 *3)))))) (-3533 (*1 *1 *2 *3) (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-758)) (-4 *3 (-1015)) (-14 *4 (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *3)) (-2 (|:| -2402 *2) (|:| -2403 *3))))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 66 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-86) #1#) $) 107 T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-86) $) 39 T ELT)) (-3470 (((-3 $ #1#) $) 102 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2519 ((|#2| (-86) |#2|) 93 T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2518 (($ |#1| (-310 (-86))) 14 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2520 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2521 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3803 ((|#2| $ |#2|) 33 T ELT)) (-2522 ((|#1| |#1|) 112 (|has| |#1| (-146)) ELT)) (-3950 (((-774) $) 73 T ELT) (($ (-486)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-86)) 23 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 37 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2523 (($ $) 111 (|has| |#1| (-146)) ELT) (($ $ $) 115 (|has| |#1| (-146)) ELT)) (-2663 (($) 21 T CONST)) (-2669 (($) 9 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 83 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ (-86) (-486)) NIL T ELT) (($ $ (-486)) 64 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-146)) ELT) (($ $ |#1|) 109 (|has| |#1| (-146)) ELT))) -(((-653 |#1| |#2|) (-13 (-963) (-952 |#1|) (-952 (-86)) (-241 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2523 ($ $)) (-15 -2523 ($ $ $)) (-15 -2522 (|#1| |#1|))) |%noBranch|) (-15 -2521 ($ $ (-1 |#2| |#2|))) (-15 -2520 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-86) (-486))) (-15 ** ($ $ (-486))) (-15 -2519 (|#2| (-86) |#2|)) (-15 -2518 ($ |#1| (-310 (-86)))))) (-963) (-592 |#1|)) (T -653)) -((-2523 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-963)) (-5 *1 (-653 *2 *3)) (-4 *3 (-592 *2)))) (-2523 (*1 *1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-963)) (-5 *1 (-653 *2 *3)) (-4 *3 (-592 *2)))) (-2522 (*1 *2 *2) (-12 (-4 *2 (-146)) (-4 *2 (-963)) (-5 *1 (-653 *2 *3)) (-4 *3 (-592 *2)))) (-2521 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-592 *3)) (-4 *3 (-963)) (-5 *1 (-653 *3 *4)))) (-2520 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-592 *3)) (-4 *3 (-963)) (-5 *1 (-653 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-486)) (-4 *4 (-963)) (-5 *1 (-653 *4 *5)) (-4 *5 (-592 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *3 (-963)) (-5 *1 (-653 *3 *4)) (-4 *4 (-592 *3)))) (-2519 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-4 *4 (-963)) (-5 *1 (-653 *4 *2)) (-4 *2 (-592 *4)))) (-2518 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-4 *2 (-963)) (-5 *1 (-653 *2 *4)) (-4 *4 (-592 *2))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 33 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3845 (($ |#1| |#2|) 25 T ELT)) (-3470 (((-3 $ #1#) $) 51 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 35 T ELT)) (-2617 ((|#2| $) 12 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 52 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2404 (((-3 $ #1#) $ $) 50 T ELT)) (-3950 (((-774) $) 24 T ELT) (($ (-486)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3129 (((-696)) 28 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 16 T CONST)) (-2669 (($) 30 T CONST)) (-3059 (((-85) $ $) 41 T ELT)) (-3840 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3842 (($ $ $) 43 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 21 T ELT) (($ $ $) 20 T ELT))) -(((-654 |#1| |#2| |#3| |#4| |#5|) (-13 (-963) (-10 -8 (-15 -2617 (|#2| $)) (-15 -3950 (|#1| $)) (-15 -3845 ($ |#1| |#2|)) (-15 -2404 ((-3 $ #1="failed") $ $)) (-15 -3470 ((-3 $ #1#) $)) (-15 -2487 ($ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -654)) -((-3470 (*1 *1 *1) (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #1#) *2 *2 *3)))) (-2617 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-654 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #1#) *3 *3 *2)))) (-3950 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #1#) *2 *2 *3)))) (-3845 (*1 *1 *2 *3) (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #1#) *2 *2 *3)))) (-2404 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #1#) *2 *2 *3)))) (-2487 (*1 *1 *1) (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #1#) *2 *2 *3))))) -((* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) -(((-655 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|))) (-656 |#2|) (-146)) (T -655)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-656 |#1|) (-113) (-146)) (T -656)) -NIL -(-13 (-82 |t#1| |t#1|) (-584 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-2444 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3851 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2405 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 16 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3771 ((|#1| $ |#1|) 24 T ELT) (((-745 |#1|) $ (-745 |#1|)) 32 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-3950 (((-774) $) 39 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2669 (($) 9 T CONST)) (-3059 (((-85) $ $) 48 T ELT)) (-3953 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ $ $) 14 T ELT))) -(((-657 |#1|) (-13 (-414) (-10 -8 (-15 -2405 ($ |#1| |#1| |#1| |#1|)) (-15 -2444 ($ |#1|)) (-15 -3851 ($ |#1|)) (-15 -3470 ($)) (-15 -2444 ($ $ |#1|)) (-15 -3851 ($ $ |#1|)) (-15 -3470 ($ $)) (-15 -3771 (|#1| $ |#1|)) (-15 -3771 ((-745 |#1|) $ (-745 |#1|))))) (-312)) (T -657)) -((-2405 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-2444 (*1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-3851 (*1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-3470 (*1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-2444 (*1 *1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-3851 (*1 *1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-3470 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-3771 (*1 *2 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-3771 (*1 *2 *1 *2) (-12 (-5 *2 (-745 *3)) (-4 *3 (-312)) (-5 *1 (-657 *3))))) -((-2409 (($ $ (-832)) 19 T ELT)) (-2408 (($ $ (-832)) 20 T ELT)) (** (($ $ (-832)) 10 T ELT))) -(((-658 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-832))) (-15 -2408 (|#1| |#1| (-832))) (-15 -2409 (|#1| |#1| (-832)))) (-659)) (T -658)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-2409 (($ $ (-832)) 19 T ELT)) (-2408 (($ $ (-832)) 18 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (** (($ $ (-832)) 17 T ELT)) (* (($ $ $) 20 T ELT))) -(((-659) (-113)) (T -659)) -((* (*1 *1 *1 *1) (-4 *1 (-659))) (-2409 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-832)))) (-2408 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-832)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-832))))) -(-13 (-1015) (-10 -8 (-15 * ($ $ $)) (-15 -2409 ($ $ (-832))) (-15 -2408 ($ $ (-832))) (-15 ** ($ $ (-832))))) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-2409 (($ $ (-832)) NIL T ELT) (($ $ (-696)) 18 T ELT)) (-2412 (((-85) $) 10 T ELT)) (-2408 (($ $ (-832)) NIL T ELT) (($ $ (-696)) 19 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 16 T ELT))) -(((-660 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-696))) (-15 -2408 (|#1| |#1| (-696))) (-15 -2409 (|#1| |#1| (-696))) (-15 -2412 ((-85) |#1|)) (-15 ** (|#1| |#1| (-832))) (-15 -2408 (|#1| |#1| (-832))) (-15 -2409 (|#1| |#1| (-832)))) (-661)) (T -660)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-2406 (((-3 $ "failed") $) 22 T ELT)) (-2409 (($ $ (-832)) 19 T ELT) (($ $ (-696)) 27 T ELT)) (-3470 (((-3 $ "failed") $) 24 T ELT)) (-2412 (((-85) $) 28 T ELT)) (-2407 (((-3 $ "failed") $) 23 T ELT)) (-2408 (($ $ (-832)) 18 T ELT) (($ $ (-696)) 26 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2669 (($) 29 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (** (($ $ (-832)) 17 T ELT) (($ $ (-696)) 25 T ELT)) (* (($ $ $) 20 T ELT))) +((-3778 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-747 (-834))))) (-1773 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-347)) (-5 *2 (-698)))) (-1772 (*1 *1 *1) (-4 *1 (-347))) (-1772 (*1 *1 *1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-698))))) +(-13 (-314) (-118) (-10 -8 (-15 -3778 ((-747 (-834)) $)) (-15 -1773 ((-3 (-698) "failed") $ $)) (-15 -1772 ($ $)) (-15 -1772 ($ $ (-698))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-352 (-488))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-559 (-352 (-488))) . T) ((-559 (-488)) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-203) . T) ((-248) . T) ((-260) . T) ((-314) . T) ((-395) . T) ((-499) . T) ((-13) . T) ((-592 (-352 (-488))) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 (-352 (-488))) . T) ((-594 $) . T) ((-586 (-352 (-488))) . T) ((-586 $) . T) ((-658 (-352 (-488))) . T) ((-658 $) . T) ((-667) . T) ((-836) . T) ((-967 (-352 (-488))) . T) ((-967 $) . T) ((-972 (-352 (-488))) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T) ((-1138) . T)) +((-3260 (($ (-488) (-488)) 11 T ELT) (($ (-488) (-488) (-834)) NIL T ELT)) (-2621 (((-834)) 19 T ELT) (((-834) (-834)) NIL T ELT))) +(((-348 |#1|) (-10 -7 (-15 -2621 ((-834) (-834))) (-15 -2621 ((-834))) (-15 -3260 (|#1| (-488) (-488) (-834))) (-15 -3260 (|#1| (-488) (-488)))) (-349)) (T -348)) +((-2621 (*1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-348 *3)) (-4 *3 (-349)))) (-2621 (*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-348 *3)) (-4 *3 (-349))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3135 (((-488) $) 108 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-3777 (($ $) 106 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3781 (($ $) 91 T ELT)) (-3977 (((-350 $) $) 90 T ELT)) (-3043 (($ $) 116 T ELT)) (-1612 (((-85) $ $) 75 T ELT)) (-3629 (((-488) $) 133 T ELT)) (-3730 (($) 23 T CONST)) (-3133 (($ $) 105 T ELT)) (-3163 (((-3 (-488) #1="failed") $) 121 T ELT) (((-3 (-352 (-488)) #1#) $) 118 T ELT)) (-3162 (((-488) $) 122 T ELT) (((-352 (-488)) $) 119 T ELT)) (-2570 (($ $ $) 71 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-2569 (($ $ $) 72 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 66 T ELT)) (-3729 (((-85) $) 89 T ELT)) (-1776 (((-834)) 149 T ELT) (((-834) (-834)) 146 (|has| $ (-6 -3992)) ELT)) (-3192 (((-85) $) 131 T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) 112 T ELT)) (-3778 (((-488) $) 155 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3017 (($ $ (-488)) 115 T ELT)) (-3138 (($ $) 111 T ELT)) (-3193 (((-85) $) 132 T ELT)) (-1609 (((-3 (-587 $) #2="failed") (-587 $) $) 68 T ELT)) (-2537 (($ $ $) 125 T ELT) (($) 143 (-12 (-2566 (|has| $ (-6 -3992))) (-2566 (|has| $ (-6 -3984)))) ELT)) (-2863 (($ $ $) 126 T ELT) (($) 142 (-12 (-2566 (|has| $ (-6 -3992))) (-2566 (|has| $ (-6 -3984)))) ELT)) (-1778 (((-488) $) 152 T ELT)) (-1899 (($ $ $) 60 T ELT) (($ (-587 $)) 59 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 88 T ELT)) (-1775 (((-834) (-488)) 145 (|has| $ (-6 -3992)) ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 58 T ELT)) (-3150 (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-3134 (($ $) 107 T ELT)) (-3136 (($ $) 109 T ELT)) (-3260 (($ (-488) (-488)) 157 T ELT) (($ (-488) (-488) (-834)) 156 T ELT)) (-3738 (((-350 $) $) 92 T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 65 T ELT)) (-2406 (((-488) $) 153 T ELT)) (-1611 (((-698) $) 74 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 73 T ELT)) (-2621 (((-834)) 150 T ELT) (((-834) (-834)) 147 (|has| $ (-6 -3992)) ELT)) (-1774 (((-834) (-488)) 144 (|has| $ (-6 -3992)) ELT)) (-3978 (((-332) $) 124 T ELT) (((-181) $) 123 T ELT) (((-804 (-332)) $) 113 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT) (($ (-352 (-488))) 84 T ELT) (($ (-488)) 120 T ELT) (($ (-352 (-488))) 117 T ELT)) (-3132 (((-698)) 40 T CONST)) (-3137 (($ $) 110 T ELT)) (-1777 (((-834)) 151 T ELT) (((-834) (-834)) 148 (|has| $ (-6 -3992)) ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2700 (((-834)) 154 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-3389 (($ $) 134 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2572 (((-85) $ $) 127 T ELT)) (-2573 (((-85) $ $) 129 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 128 T ELT)) (-2691 (((-85) $ $) 130 T ELT)) (-3956 (($ $ $) 83 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 87 T ELT) (($ $ (-352 (-488))) 114 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-352 (-488))) 86 T ELT) (($ (-352 (-488)) $) 85 T ELT))) +(((-349) (-113)) (T -349)) +((-3260 (*1 *1 *2 *2) (-12 (-5 *2 (-488)) (-4 *1 (-349)))) (-3260 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-488)) (-5 *3 (-834)) (-4 *1 (-349)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-488)))) (-2700 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-834)))) (-2406 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-488)))) (-1778 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-488)))) (-1777 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-834)))) (-2621 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-834)))) (-1776 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-834)))) (-1777 (*1 *2 *2) (-12 (-5 *2 (-834)) (|has| *1 (-6 -3992)) (-4 *1 (-349)))) (-2621 (*1 *2 *2) (-12 (-5 *2 (-834)) (|has| *1 (-6 -3992)) (-4 *1 (-349)))) (-1776 (*1 *2 *2) (-12 (-5 *2 (-834)) (|has| *1 (-6 -3992)) (-4 *1 (-349)))) (-1775 (*1 *2 *3) (-12 (-5 *3 (-488)) (|has| *1 (-6 -3992)) (-4 *1 (-349)) (-5 *2 (-834)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-488)) (|has| *1 (-6 -3992)) (-4 *1 (-349)) (-5 *2 (-834)))) (-2537 (*1 *1) (-12 (-4 *1 (-349)) (-2566 (|has| *1 (-6 -3992))) (-2566 (|has| *1 (-6 -3984))))) (-2863 (*1 *1) (-12 (-4 *1 (-349)) (-2566 (|has| *1 (-6 -3992))) (-2566 (|has| *1 (-6 -3984)))))) +(-13 (-977) (-10 -8 (-6 -3776) (-15 -3260 ($ (-488) (-488))) (-15 -3260 ($ (-488) (-488) (-834))) (-15 -3778 ((-488) $)) (-15 -2700 ((-834))) (-15 -2406 ((-488) $)) (-15 -1778 ((-488) $)) (-15 -1777 ((-834))) (-15 -2621 ((-834))) (-15 -1776 ((-834))) (IF (|has| $ (-6 -3992)) (PROGN (-15 -1777 ((-834) (-834))) (-15 -2621 ((-834) (-834))) (-15 -1776 ((-834) (-834))) (-15 -1775 ((-834) (-488))) (-15 -1774 ((-834) (-488)))) |%noBranch|) (IF (|has| $ (-6 -3984)) |%noBranch| (IF (|has| $ (-6 -3992)) |%noBranch| (PROGN (-15 -2537 ($)) (-15 -2863 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-352 (-488))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-559 (-352 (-488))) . T) ((-559 (-488)) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-557 (-181)) . T) ((-557 (-332)) . T) ((-557 (-804 (-332))) . T) ((-203) . T) ((-248) . T) ((-260) . T) ((-314) . T) ((-395) . T) ((-499) . T) ((-13) . T) ((-592 (-352 (-488))) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 (-352 (-488))) . T) ((-594 $) . T) ((-586 (-352 (-488))) . T) ((-586 $) . T) ((-658 (-352 (-488))) . T) ((-658 $) . T) ((-667) . T) ((-718) . T) ((-720) . T) ((-722) . T) ((-725) . T) ((-759) . T) ((-760) . T) ((-763) . T) ((-800 (-332)) . T) ((-836) . T) ((-919) . T) ((-937) . T) ((-977) . T) ((-954 (-352 (-488))) . T) ((-954 (-488)) . T) ((-967 (-352 (-488))) . T) ((-967 $) . T) ((-972 (-352 (-488))) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T) ((-1138) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 59 T ELT)) (-1779 (($ $) 77 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 189 T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) 48 T ELT)) (-1780 ((|#1| $) 16 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL (|has| |#1| (-1138)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-1138)) ELT)) (-1782 (($ |#1| (-488)) 42 T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3162 (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) 73 T ELT)) (-3473 (((-3 $ #1#) $) 163 T ELT)) (-3030 (((-3 (-352 (-488)) #1#) $) 84 (|has| |#1| (-487)) ELT)) (-3029 (((-85) $) 80 (|has| |#1| (-487)) ELT)) (-3028 (((-352 (-488)) $) 82 (|has| |#1| (-487)) ELT)) (-1783 (($ |#1| (-488)) 44 T ELT)) (-3729 (((-85) $) 209 (|has| |#1| (-1138)) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) 61 T ELT)) (-1842 (((-698) $) 51 T ELT)) (-1784 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-488)) 174 T ELT)) (-2304 ((|#1| $ (-488)) 173 T ELT)) (-1785 (((-488) $ (-488)) 172 T ELT)) (-1788 (($ |#1| (-488)) 41 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1839 (($ |#1| (-587 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-488))))) 78 T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-395)) ELT) (($ $ $) NIL (|has| |#1| (-395)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1786 (($ |#1| (-488)) 43 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#1| (-395)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-395)) ELT) (($ $ $) 190 (|has| |#1| (-395)) ELT)) (-1781 (($ |#1| (-488) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1787 (((-587 (-2 (|:| -3738 |#1|) (|:| -2406 (-488)))) $) 72 T ELT)) (-1956 (((-587 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-488)))) $) 12 T ELT)) (-3738 (((-350 $) $) NIL (|has| |#1| (-1138)) ELT)) (-3472 (((-3 $ #1#) $ $) 175 T ELT)) (-2406 (((-488) $) 166 T ELT)) (-3969 ((|#1| $) 74 T ELT)) (-3774 (($ $ (-587 |#1|) (-587 |#1|)) NIL (|has| |#1| (-262 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-262 |#1|)) ELT) (($ $ (-251 |#1|)) NIL (|has| |#1| (-262 |#1|)) ELT) (($ $ (-587 (-251 |#1|))) 99 (|has| |#1| (-262 |#1|)) ELT) (($ $ (-587 (-1094)) (-587 |#1|)) 105 (|has| |#1| (-459 (-1094) |#1|)) ELT) (($ $ (-1094) |#1|) NIL (|has| |#1| (-459 (-1094) |#1|)) ELT) (($ $ (-1094) $) NIL (|has| |#1| (-459 (-1094) $)) ELT) (($ $ (-587 (-1094)) (-587 $)) 106 (|has| |#1| (-459 (-1094) $)) ELT) (($ $ (-587 (-251 $))) 102 (|has| |#1| (-262 $)) ELT) (($ $ (-251 $)) NIL (|has| |#1| (-262 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-262 $)) ELT) (($ $ (-587 $) (-587 $)) NIL (|has| |#1| (-262 $)) ELT)) (-3806 (($ $ |#1|) 91 (|has| |#1| (-243 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-243 $ $)) ELT)) (-3764 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $) NIL (|has| |#1| (-191)) ELT) (($ $ (-698)) NIL (|has| |#1| (-191)) ELT) (($ $ (-1094)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-815 (-1094))) ELT)) (-3978 (((-477) $) 39 (|has| |#1| (-557 (-477))) ELT) (((-332) $) 112 (|has| |#1| (-937)) ELT) (((-181) $) 118 (|has| |#1| (-937)) ELT)) (-3953 (((-776) $) 145 T ELT) (($ (-488)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-352 (-488))) NIL (|has| |#1| (-954 (-352 (-488)))) ELT)) (-3132 (((-698)) 66 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 53 T CONST)) (-2672 (($) 52 T CONST)) (-2675 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $) NIL (|has| |#1| (-191)) ELT) (($ $ (-698)) NIL (|has| |#1| (-191)) ELT) (($ $ (-1094)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-815 (-1094))) ELT)) (-3062 (((-85) $ $) 158 T ELT)) (-3843 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 179 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 124 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) +(((-350 |#1|) (-13 (-499) (-186 |#1|) (-38 |#1|) (-290 |#1|) (-357 |#1|) (-383 |#1|) (-10 -8 (-15 -3969 (|#1| $)) (-15 -2406 ((-488) $)) (-15 -1839 ($ |#1| (-587 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-488)))))) (-15 -1956 ((-587 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-488)))) $)) (-15 -1788 ($ |#1| (-488))) (-15 -1787 ((-587 (-2 (|:| -3738 |#1|) (|:| -2406 (-488)))) $)) (-15 -1786 ($ |#1| (-488))) (-15 -1785 ((-488) $ (-488))) (-15 -2304 (|#1| $ (-488))) (-15 -1784 ((-3 #1# #2# #3# #4#) $ (-488))) (-15 -1842 ((-698) $)) (-15 -1783 ($ |#1| (-488))) (-15 -1782 ($ |#1| (-488))) (-15 -1781 ($ |#1| (-488) (-3 #1# #2# #3# #4#))) (-15 -1780 (|#1| $)) (-15 -1779 ($ $)) (IF (|has| |#1| (-395)) (-6 (-395)) |%noBranch|) (IF (|has| |#1| (-937)) (-6 (-937)) |%noBranch|) (IF (|has| |#1| (-1138)) (-6 (-1138)) |%noBranch|) (IF (|has| |#1| (-557 (-477))) (-6 (-557 (-477))) |%noBranch|) (IF (|has| |#1| (-487)) (PROGN (-15 -3029 ((-85) $)) (-15 -3028 ((-352 (-488)) $)) (-15 -3030 ((-3 (-352 (-488)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-243 $ $)) (-6 (-243 $ $)) |%noBranch|) (IF (|has| |#1| (-262 $)) (-6 (-262 $)) |%noBranch|) (IF (|has| |#1| (-459 (-1094) $)) (-6 (-459 (-1094) $)) |%noBranch|))) (-499)) (T -350)) +((-3969 (*1 *2 *1) (-12 (-5 *1 (-350 *2)) (-4 *2 (-499)))) (-2406 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-350 *3)) (-4 *3 (-499)))) (-1839 (*1 *1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-488))))) (-4 *2 (-499)) (-5 *1 (-350 *2)))) (-1956 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-488))))) (-5 *1 (-350 *3)) (-4 *3 (-499)))) (-1788 (*1 *1 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-350 *2)) (-4 *2 (-499)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| -3738 *3) (|:| -2406 (-488))))) (-5 *1 (-350 *3)) (-4 *3 (-499)))) (-1786 (*1 *1 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-350 *2)) (-4 *2 (-499)))) (-1785 (*1 *2 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-350 *3)) (-4 *3 (-499)))) (-2304 (*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-5 *1 (-350 *2)) (-4 *2 (-499)))) (-1784 (*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-350 *4)) (-4 *4 (-499)))) (-1842 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-350 *3)) (-4 *3 (-499)))) (-1783 (*1 *1 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-350 *2)) (-4 *2 (-499)))) (-1782 (*1 *1 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-350 *2)) (-4 *2 (-499)))) (-1781 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-488)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-350 *2)) (-4 *2 (-499)))) (-1780 (*1 *2 *1) (-12 (-5 *1 (-350 *2)) (-4 *2 (-499)))) (-1779 (*1 *1 *1) (-12 (-5 *1 (-350 *2)) (-4 *2 (-499)))) (-3029 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-350 *3)) (-4 *3 (-487)) (-4 *3 (-499)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-350 *3)) (-4 *3 (-487)) (-4 *3 (-499)))) (-3030 (*1 *2 *1) (|partial| -12 (-5 *2 (-352 (-488))) (-5 *1 (-350 *3)) (-4 *3 (-487)) (-4 *3 (-499))))) +((-3849 (((-350 |#2|) (-1 |#2| |#1|) (-350 |#1|)) 20 T ELT))) +(((-351 |#1| |#2|) (-10 -7 (-15 -3849 ((-350 |#2|) (-1 |#2| |#1|) (-350 |#1|)))) (-499) (-499)) (T -351)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-350 *5)) (-4 *5 (-499)) (-4 *6 (-499)) (-5 *2 (-350 *6)) (-5 *1 (-351 *5 *6))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 13 T ELT)) (-3135 ((|#1| $) 21 (|has| |#1| (-260)) ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3629 (((-488) $) NIL (|has| |#1| (-744)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1094) #1#) $) NIL (|has| |#1| (-954 (-1094))) ELT) (((-3 (-352 (-488)) #1#) $) 54 (|has| |#1| (-954 (-488))) ELT) (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT)) (-3162 ((|#1| $) 15 T ELT) (((-1094) $) NIL (|has| |#1| (-954 (-1094))) ELT) (((-352 (-488)) $) 51 (|has| |#1| (-954 (-488))) ELT) (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT)) (-2570 (($ $ $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#1|) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) 32 T ELT)) (-3000 (($) NIL (|has| |#1| (-487)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-3192 (((-85) $) NIL (|has| |#1| (-744)) ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (|has| |#1| (-800 (-488))) ELT) (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (|has| |#1| (-800 (-332))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) 38 T ELT)) (-3002 (($ $) NIL T ELT)) (-3004 ((|#1| $) 55 T ELT)) (-3451 (((-636 $) $) NIL (|has| |#1| (-1070)) ELT)) (-3193 (((-85) $) 22 (|has| |#1| (-744)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) NIL T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3452 (($) NIL (|has| |#1| (-1070)) CONST)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 82 T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3134 (($ $) NIL (|has| |#1| (-260)) ELT)) (-3136 ((|#1| $) 26 (|has| |#1| (-487)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) 133 (|has| |#1| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) 128 (|has| |#1| (-825)) ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-3774 (($ $ (-587 |#1|) (-587 |#1|)) NIL (|has| |#1| (-262 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-262 |#1|)) ELT) (($ $ (-251 |#1|)) NIL (|has| |#1| (-262 |#1|)) ELT) (($ $ (-587 (-251 |#1|))) NIL (|has| |#1| (-262 |#1|)) ELT) (($ $ (-587 (-1094)) (-587 |#1|)) NIL (|has| |#1| (-459 (-1094) |#1|)) ELT) (($ $ (-1094) |#1|) NIL (|has| |#1| (-459 (-1094) |#1|)) ELT)) (-1611 (((-698) $) NIL T ELT)) (-3806 (($ $ |#1|) NIL (|has| |#1| (-243 |#1| |#1|)) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-3764 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $) NIL (|has| |#1| (-191)) ELT) (($ $ (-698)) NIL (|has| |#1| (-191)) ELT)) (-3001 (($ $) NIL T ELT)) (-3003 ((|#1| $) 57 T ELT)) (-3978 (((-804 (-488)) $) NIL (|has| |#1| (-557 (-804 (-488)))) ELT) (((-804 (-332)) $) NIL (|has| |#1| (-557 (-804 (-332)))) ELT) (((-477) $) NIL (|has| |#1| (-557 (-477))) ELT) (((-332) $) NIL (|has| |#1| (-937)) ELT) (((-181) $) NIL (|has| |#1| (-937)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) 112 (-12 (|has| $ (-118)) (|has| |#1| (-825))) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1094)) NIL (|has| |#1| (-954 (-1094))) ELT)) (-2708 (((-636 $) $) 92 (OR (-12 (|has| $ (-118)) (|has| |#1| (-825))) (|has| |#1| (-118))) ELT)) (-3132 (((-698)) 93 T CONST)) (-3137 ((|#1| $) 24 (|has| |#1| (-487)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3389 (($ $) NIL (|has| |#1| (-744)) ELT)) (-2666 (($) 28 T CONST)) (-2672 (($) 8 T CONST)) (-2675 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $) NIL (|has| |#1| (-191)) ELT) (($ $ (-698)) NIL (|has| |#1| (-191)) ELT)) (-2572 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) 48 T ELT)) (-2690 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3956 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3843 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3845 (($ $ $) 35 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) 122 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) +(((-352 |#1|) (-13 (-908 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3988)) (IF (|has| |#1| (-395)) (IF (|has| |#1| (-6 -3999)) (-6 -3988) |%noBranch|) |%noBranch|) |%noBranch|))) (-499)) (T -352)) +NIL +((-3849 (((-352 |#2|) (-1 |#2| |#1|) (-352 |#1|)) 13 T ELT))) +(((-353 |#1| |#2|) (-10 -7 (-15 -3849 ((-352 |#2|) (-1 |#2| |#1|) (-352 |#1|)))) (-499) (-499)) (T -353)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-352 *5)) (-4 *5 (-499)) (-4 *6 (-499)) (-5 *2 (-352 *6)) (-5 *1 (-353 *5 *6))))) +((-1790 (((-634 |#2|) (-1183 $)) NIL T ELT) (((-634 |#2|)) 18 T ELT)) (-1800 (($ (-1183 |#2|) (-1183 $)) NIL T ELT) (($ (-1183 |#2|)) 24 T ELT)) (-1789 (((-634 |#2|) $ (-1183 $)) NIL T ELT) (((-634 |#2|) $) 40 T ELT)) (-2019 ((|#3| $) 69 T ELT)) (-3763 ((|#2| (-1183 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3230 (((-1183 |#2|) $ (-1183 $)) NIL T ELT) (((-634 |#2|) (-1183 $) (-1183 $)) NIL T ELT) (((-1183 |#2|) $) 22 T ELT) (((-634 |#2|) (-1183 $)) 38 T ELT)) (-3978 (((-1183 |#2|) $) 11 T ELT) (($ (-1183 |#2|)) 13 T ELT)) (-2455 ((|#3| $) 55 T ELT))) +(((-354 |#1| |#2| |#3|) (-10 -7 (-15 -1789 ((-634 |#2|) |#1|)) (-15 -3763 (|#2|)) (-15 -1790 ((-634 |#2|))) (-15 -3978 (|#1| (-1183 |#2|))) (-15 -3978 ((-1183 |#2|) |#1|)) (-15 -1800 (|#1| (-1183 |#2|))) (-15 -3230 ((-634 |#2|) (-1183 |#1|))) (-15 -3230 ((-1183 |#2|) |#1|)) (-15 -2019 (|#3| |#1|)) (-15 -2455 (|#3| |#1|)) (-15 -1790 ((-634 |#2|) (-1183 |#1|))) (-15 -3763 (|#2| (-1183 |#1|))) (-15 -1800 (|#1| (-1183 |#2|) (-1183 |#1|))) (-15 -3230 ((-634 |#2|) (-1183 |#1|) (-1183 |#1|))) (-15 -3230 ((-1183 |#2|) |#1| (-1183 |#1|))) (-15 -1789 ((-634 |#2|) |#1| (-1183 |#1|)))) (-355 |#2| |#3|) (-148) (-1159 |#2|)) (T -354)) +((-1790 (*1 *2) (-12 (-4 *4 (-148)) (-4 *5 (-1159 *4)) (-5 *2 (-634 *4)) (-5 *1 (-354 *3 *4 *5)) (-4 *3 (-355 *4 *5)))) (-3763 (*1 *2) (-12 (-4 *4 (-1159 *2)) (-4 *2 (-148)) (-5 *1 (-354 *3 *2 *4)) (-4 *3 (-355 *2 *4))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1790 (((-634 |#1|) (-1183 $)) 61 T ELT) (((-634 |#1|)) 77 T ELT)) (-3336 ((|#1| $) 67 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-1800 (($ (-1183 |#1|) (-1183 $)) 63 T ELT) (($ (-1183 |#1|)) 80 T ELT)) (-1789 (((-634 |#1|) $ (-1183 $)) 68 T ELT) (((-634 |#1|) $) 75 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3114 (((-834)) 69 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3138 ((|#1| $) 66 T ELT)) (-2019 ((|#2| $) 59 (|has| |#1| (-314)) ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3763 ((|#1| (-1183 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-3230 (((-1183 |#1|) $ (-1183 $)) 65 T ELT) (((-634 |#1|) (-1183 $) (-1183 $)) 64 T ELT) (((-1183 |#1|) $) 82 T ELT) (((-634 |#1|) (-1183 $)) 81 T ELT)) (-3978 (((-1183 |#1|) $) 79 T ELT) (($ (-1183 |#1|)) 78 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2708 (((-636 $) $) 58 (|has| |#1| (-118)) ELT)) (-2455 ((|#2| $) 60 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2017 (((-1183 $)) 83 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) +(((-355 |#1| |#2|) (-113) (-148) (-1159 |t#1|)) (T -355)) +((-2017 (*1 *2) (-12 (-4 *3 (-148)) (-4 *4 (-1159 *3)) (-5 *2 (-1183 *1)) (-4 *1 (-355 *3 *4)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-148)) (-4 *4 (-1159 *3)) (-5 *2 (-1183 *3)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-148)) (-4 *5 (-1159 *4)) (-5 *2 (-634 *4)))) (-1800 (*1 *1 *2) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-148)) (-4 *1 (-355 *3 *4)) (-4 *4 (-1159 *3)))) (-3978 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-148)) (-4 *4 (-1159 *3)) (-5 *2 (-1183 *3)))) (-3978 (*1 *1 *2) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-148)) (-4 *1 (-355 *3 *4)) (-4 *4 (-1159 *3)))) (-1790 (*1 *2) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-148)) (-4 *4 (-1159 *3)) (-5 *2 (-634 *3)))) (-3763 (*1 *2) (-12 (-4 *1 (-355 *2 *3)) (-4 *3 (-1159 *2)) (-4 *2 (-148)))) (-1789 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-148)) (-4 *4 (-1159 *3)) (-5 *2 (-634 *3))))) +(-13 (-324 |t#1| |t#2|) (-10 -8 (-15 -2017 ((-1183 $))) (-15 -3230 ((-1183 |t#1|) $)) (-15 -3230 ((-634 |t#1|) (-1183 $))) (-15 -1800 ($ (-1183 |t#1|))) (-15 -3978 ((-1183 |t#1|) $)) (-15 -3978 ($ (-1183 |t#1|))) (-15 -1790 ((-634 |t#1|))) (-15 -3763 (|t#1|)) (-15 -1789 ((-634 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-559 (-488)) . T) ((-559 |#1|) . T) ((-556 (-776)) . T) ((-324 |#1| |#2|) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-586 |#1|) . T) ((-658 |#1|) . T) ((-667) . T) ((-967 |#1|) . T) ((-972 |#1|) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-3163 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) 27 T ELT) (((-3 (-488) #1#) $) 19 T ELT)) (-3162 ((|#2| $) NIL T ELT) (((-352 (-488)) $) 24 T ELT) (((-488) $) 14 T ELT)) (-3953 (($ |#2|) NIL T ELT) (($ (-352 (-488))) 22 T ELT) (($ (-488)) 11 T ELT))) +(((-356 |#1| |#2|) (-10 -7 (-15 -3953 (|#1| (-488))) (-15 -3163 ((-3 (-488) #1="failed") |#1|)) (-15 -3162 ((-488) |#1|)) (-15 -3953 (|#1| (-352 (-488)))) (-15 -3163 ((-3 (-352 (-488)) #1#) |#1|)) (-15 -3162 ((-352 (-488)) |#1|)) (-15 -3162 (|#2| |#1|)) (-15 -3163 ((-3 |#2| #1#) |#1|)) (-15 -3953 (|#1| |#2|))) (-357 |#2|) (-1133)) (T -356)) +NIL +((-3163 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-352 (-488)) #1#) $) 16 (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 (-488) #1#) $) 13 (|has| |#1| (-954 (-488))) ELT)) (-3162 ((|#1| $) 8 T ELT) (((-352 (-488)) $) 17 (|has| |#1| (-954 (-352 (-488)))) ELT) (((-488) $) 14 (|has| |#1| (-954 (-488))) ELT)) (-3953 (($ |#1|) 6 T ELT) (($ (-352 (-488))) 15 (|has| |#1| (-954 (-352 (-488)))) ELT) (($ (-488)) 12 (|has| |#1| (-954 (-488))) ELT))) +(((-357 |#1|) (-113) (-1133)) (T -357)) +NIL +(-13 (-954 |t#1|) (-10 -7 (IF (|has| |t#1| (-954 (-488))) (-6 (-954 (-488))) |%noBranch|) (IF (|has| |t#1| (-954 (-352 (-488)))) (-6 (-954 (-352 (-488)))) |%noBranch|))) +(((-559 (-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((-559 (-488)) |has| |#1| (-954 (-488))) ((-559 |#1|) . T) ((-954 (-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((-954 (-488)) |has| |#1| (-954 (-488))) ((-954 |#1|) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3473 (((-3 $ "failed") $) NIL T ELT)) (-1791 ((|#4| (-698) (-1183 |#4|)) 55 T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3004 (((-1183 |#4|) $) 15 T ELT)) (-3138 ((|#2| $) 53 T ELT)) (-1792 (($ $) 156 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) 103 T ELT)) (-1973 (($ (-1183 |#4|)) 102 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3003 ((|#1| $) 16 T ELT)) (-3015 (($ $ $) NIL T ELT)) (-2441 (($ $ $) NIL T ELT)) (-3953 (((-776) $) 147 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 |#4|) $) 140 T ELT)) (-2672 (($) 11 T CONST)) (-3062 (((-85) $ $) 39 T ELT)) (-3956 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) 133 T ELT)) (* (($ $ $) 130 T ELT))) +(((-358 |#1| |#2| |#3| |#4|) (-13 (-416) (-10 -8 (-15 -1973 ($ (-1183 |#4|))) (-15 -2017 ((-1183 |#4|) $)) (-15 -3138 (|#2| $)) (-15 -3004 ((-1183 |#4|) $)) (-15 -3003 (|#1| $)) (-15 -1792 ($ $)) (-15 -1791 (|#4| (-698) (-1183 |#4|))))) (-260) (-908 |#1|) (-1159 |#2|) (-13 (-355 |#2| |#3|) (-954 |#2|))) (T -358)) +((-1973 (*1 *1 *2) (-12 (-5 *2 (-1183 *6)) (-4 *6 (-13 (-355 *4 *5) (-954 *4))) (-4 *4 (-908 *3)) (-4 *5 (-1159 *4)) (-4 *3 (-260)) (-5 *1 (-358 *3 *4 *5 *6)))) (-2017 (*1 *2 *1) (-12 (-4 *3 (-260)) (-4 *4 (-908 *3)) (-4 *5 (-1159 *4)) (-5 *2 (-1183 *6)) (-5 *1 (-358 *3 *4 *5 *6)) (-4 *6 (-13 (-355 *4 *5) (-954 *4))))) (-3138 (*1 *2 *1) (-12 (-4 *4 (-1159 *2)) (-4 *2 (-908 *3)) (-5 *1 (-358 *3 *2 *4 *5)) (-4 *3 (-260)) (-4 *5 (-13 (-355 *2 *4) (-954 *2))))) (-3004 (*1 *2 *1) (-12 (-4 *3 (-260)) (-4 *4 (-908 *3)) (-4 *5 (-1159 *4)) (-5 *2 (-1183 *6)) (-5 *1 (-358 *3 *4 *5 *6)) (-4 *6 (-13 (-355 *4 *5) (-954 *4))))) (-3003 (*1 *2 *1) (-12 (-4 *3 (-908 *2)) (-4 *4 (-1159 *3)) (-4 *2 (-260)) (-5 *1 (-358 *2 *3 *4 *5)) (-4 *5 (-13 (-355 *3 *4) (-954 *3))))) (-1792 (*1 *1 *1) (-12 (-4 *2 (-260)) (-4 *3 (-908 *2)) (-4 *4 (-1159 *3)) (-5 *1 (-358 *2 *3 *4 *5)) (-4 *5 (-13 (-355 *3 *4) (-954 *3))))) (-1791 (*1 *2 *3 *4) (-12 (-5 *3 (-698)) (-5 *4 (-1183 *2)) (-4 *5 (-260)) (-4 *6 (-908 *5)) (-4 *2 (-13 (-355 *6 *7) (-954 *6))) (-5 *1 (-358 *5 *6 *7 *2)) (-4 *7 (-1159 *6))))) +((-3849 (((-358 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-358 |#1| |#2| |#3| |#4|)) 35 T ELT))) +(((-359 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3849 ((-358 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-358 |#1| |#2| |#3| |#4|)))) (-260) (-908 |#1|) (-1159 |#2|) (-13 (-355 |#2| |#3|) (-954 |#2|)) (-260) (-908 |#5|) (-1159 |#6|) (-13 (-355 |#6| |#7|) (-954 |#6|))) (T -359)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-358 *5 *6 *7 *8)) (-4 *5 (-260)) (-4 *6 (-908 *5)) (-4 *7 (-1159 *6)) (-4 *8 (-13 (-355 *6 *7) (-954 *6))) (-4 *9 (-260)) (-4 *10 (-908 *9)) (-4 *11 (-1159 *10)) (-5 *2 (-358 *9 *10 *11 *12)) (-5 *1 (-359 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-355 *10 *11) (-954 *10)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3473 (((-3 $ "failed") $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3138 ((|#2| $) 69 T ELT)) (-1793 (($ (-1183 |#4|)) 27 T ELT) (($ (-358 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-954 |#2|)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 37 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 |#4|) $) 28 T ELT)) (-2672 (($) 26 T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ $ $) 80 T ELT))) +(((-360 |#1| |#2| |#3| |#4| |#5|) (-13 (-667) (-10 -8 (-15 -2017 ((-1183 |#4|) $)) (-15 -3138 (|#2| $)) (-15 -1793 ($ (-1183 |#4|))) (IF (|has| |#4| (-954 |#2|)) (-15 -1793 ($ (-358 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-260) (-908 |#1|) (-1159 |#2|) (-355 |#2| |#3|) (-1183 |#4|)) (T -360)) +((-2017 (*1 *2 *1) (-12 (-4 *3 (-260)) (-4 *4 (-908 *3)) (-4 *5 (-1159 *4)) (-5 *2 (-1183 *6)) (-5 *1 (-360 *3 *4 *5 *6 *7)) (-4 *6 (-355 *4 *5)) (-14 *7 *2))) (-3138 (*1 *2 *1) (-12 (-4 *4 (-1159 *2)) (-4 *2 (-908 *3)) (-5 *1 (-360 *3 *2 *4 *5 *6)) (-4 *3 (-260)) (-4 *5 (-355 *2 *4)) (-14 *6 (-1183 *5)))) (-1793 (*1 *1 *2) (-12 (-5 *2 (-1183 *6)) (-4 *6 (-355 *4 *5)) (-4 *4 (-908 *3)) (-4 *5 (-1159 *4)) (-4 *3 (-260)) (-5 *1 (-360 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1793 (*1 *1 *2) (-12 (-5 *2 (-358 *3 *4 *5 *6)) (-4 *6 (-954 *4)) (-4 *3 (-260)) (-4 *4 (-908 *3)) (-4 *5 (-1159 *4)) (-4 *6 (-355 *4 *5)) (-14 *7 (-1183 *6)) (-5 *1 (-360 *3 *4 *5 *6 *7))))) +((-3849 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) +(((-361 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3849 (|#3| (-1 |#4| |#2|) |#1|))) (-363 |#2|) (-148) (-363 |#4|) (-148)) (T -361)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-148)) (-4 *6 (-148)) (-4 *2 (-363 *6)) (-5 *1 (-361 *4 *5 *2 *6)) (-4 *4 (-363 *5))))) +((-1780 (((-3 $ #1="failed")) 99 T ELT)) (-3229 (((-1183 (-634 |#2|)) (-1183 $)) NIL T ELT) (((-1183 (-634 |#2|))) 104 T ELT)) (-1914 (((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) #1#)) 97 T ELT)) (-1707 (((-3 $ #1#)) 96 T ELT)) (-1796 (((-634 |#2|) (-1183 $)) NIL T ELT) (((-634 |#2|)) 115 T ELT)) (-1794 (((-634 |#2|) $ (-1183 $)) NIL T ELT) (((-634 |#2|) $) 123 T ELT)) (-1908 (((-1089 (-861 |#2|))) 64 T ELT)) (-1798 ((|#2| (-1183 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1800 (($ (-1183 |#2|) (-1183 $)) NIL T ELT) (($ (-1183 |#2|)) 125 T ELT)) (-1915 (((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) #1#)) 95 T ELT)) (-1708 (((-3 $ #1#)) 87 T ELT)) (-1797 (((-634 |#2|) (-1183 $)) NIL T ELT) (((-634 |#2|)) 113 T ELT)) (-1795 (((-634 |#2|) $ (-1183 $)) NIL T ELT) (((-634 |#2|) $) 121 T ELT)) (-1912 (((-1089 (-861 |#2|))) 63 T ELT)) (-1799 ((|#2| (-1183 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3230 (((-1183 |#2|) $ (-1183 $)) NIL T ELT) (((-634 |#2|) (-1183 $) (-1183 $)) NIL T ELT) (((-1183 |#2|) $) 124 T ELT) (((-634 |#2|) (-1183 $)) 133 T ELT)) (-3978 (((-1183 |#2|) $) 109 T ELT) (($ (-1183 |#2|)) 111 T ELT)) (-1900 (((-587 (-861 |#2|)) (-1183 $)) NIL T ELT) (((-587 (-861 |#2|))) 107 T ELT)) (-2551 (($ (-634 |#2|) $) 103 T ELT))) +(((-362 |#1| |#2|) (-10 -7 (-15 -2551 (|#1| (-634 |#2|) |#1|)) (-15 -1908 ((-1089 (-861 |#2|)))) (-15 -1912 ((-1089 (-861 |#2|)))) (-15 -1794 ((-634 |#2|) |#1|)) (-15 -1795 ((-634 |#2|) |#1|)) (-15 -1796 ((-634 |#2|))) (-15 -1797 ((-634 |#2|))) (-15 -1798 (|#2|)) (-15 -1799 (|#2|)) (-15 -3978 (|#1| (-1183 |#2|))) (-15 -3978 ((-1183 |#2|) |#1|)) (-15 -1800 (|#1| (-1183 |#2|))) (-15 -1900 ((-587 (-861 |#2|)))) (-15 -3229 ((-1183 (-634 |#2|)))) (-15 -3230 ((-634 |#2|) (-1183 |#1|))) (-15 -3230 ((-1183 |#2|) |#1|)) (-15 -1780 ((-3 |#1| #1="failed"))) (-15 -1707 ((-3 |#1| #1#))) (-15 -1708 ((-3 |#1| #1#))) (-15 -1914 ((-3 (-2 (|:| |particular| |#1|) (|:| -2017 (-587 |#1|))) #1#))) (-15 -1915 ((-3 (-2 (|:| |particular| |#1|) (|:| -2017 (-587 |#1|))) #1#))) (-15 -1796 ((-634 |#2|) (-1183 |#1|))) (-15 -1797 ((-634 |#2|) (-1183 |#1|))) (-15 -1798 (|#2| (-1183 |#1|))) (-15 -1799 (|#2| (-1183 |#1|))) (-15 -1800 (|#1| (-1183 |#2|) (-1183 |#1|))) (-15 -3230 ((-634 |#2|) (-1183 |#1|) (-1183 |#1|))) (-15 -3230 ((-1183 |#2|) |#1| (-1183 |#1|))) (-15 -1794 ((-634 |#2|) |#1| (-1183 |#1|))) (-15 -1795 ((-634 |#2|) |#1| (-1183 |#1|))) (-15 -3229 ((-1183 (-634 |#2|)) (-1183 |#1|))) (-15 -1900 ((-587 (-861 |#2|)) (-1183 |#1|)))) (-363 |#2|) (-148)) (T -362)) +((-3229 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-1183 (-634 *4))) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-1900 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-587 (-861 *4))) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-1799 (*1 *2) (-12 (-4 *2 (-148)) (-5 *1 (-362 *3 *2)) (-4 *3 (-363 *2)))) (-1798 (*1 *2) (-12 (-4 *2 (-148)) (-5 *1 (-362 *3 *2)) (-4 *3 (-363 *2)))) (-1797 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-634 *4)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-1796 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-634 *4)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-1912 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-1089 (-861 *4))) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-1908 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-1089 (-861 *4))) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1780 (((-3 $ #1="failed")) 48 (|has| |#1| (-499)) ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3229 (((-1183 (-634 |#1|)) (-1183 $)) 89 T ELT) (((-1183 (-634 |#1|))) 115 T ELT)) (-1733 (((-1183 $)) 92 T ELT)) (-3730 (($) 23 T CONST)) (-1914 (((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) #1#)) 51 (|has| |#1| (-499)) ELT)) (-1707 (((-3 $ #1#)) 49 (|has| |#1| (-499)) ELT)) (-1796 (((-634 |#1|) (-1183 $)) 76 T ELT) (((-634 |#1|)) 107 T ELT)) (-1731 ((|#1| $) 85 T ELT)) (-1794 (((-634 |#1|) $ (-1183 $)) 87 T ELT) (((-634 |#1|) $) 105 T ELT)) (-2409 (((-3 $ #1#) $) 56 (|has| |#1| (-499)) ELT)) (-1908 (((-1089 (-861 |#1|))) 103 (|has| |#1| (-314)) ELT)) (-2412 (($ $ (-834)) 37 T ELT)) (-1729 ((|#1| $) 83 T ELT)) (-1709 (((-1089 |#1|) $) 53 (|has| |#1| (-499)) ELT)) (-1798 ((|#1| (-1183 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1727 (((-1089 |#1|) $) 74 T ELT)) (-1721 (((-85)) 68 T ELT)) (-1800 (($ (-1183 |#1|) (-1183 $)) 80 T ELT) (($ (-1183 |#1|)) 113 T ELT)) (-3473 (((-3 $ #1#) $) 58 (|has| |#1| (-499)) ELT)) (-3114 (((-834)) 91 T ELT)) (-1718 (((-85)) 65 T ELT)) (-2439 (($ $ (-834)) 44 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-1714 (((-85)) 61 T ELT)) (-1712 (((-85)) 59 T ELT)) (-1716 (((-85)) 63 T ELT)) (-1915 (((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) #1#)) 52 (|has| |#1| (-499)) ELT)) (-1708 (((-3 $ #1#)) 50 (|has| |#1| (-499)) ELT)) (-1797 (((-634 |#1|) (-1183 $)) 77 T ELT) (((-634 |#1|)) 108 T ELT)) (-1732 ((|#1| $) 86 T ELT)) (-1795 (((-634 |#1|) $ (-1183 $)) 88 T ELT) (((-634 |#1|) $) 106 T ELT)) (-2410 (((-3 $ #1#) $) 57 (|has| |#1| (-499)) ELT)) (-1912 (((-1089 (-861 |#1|))) 104 (|has| |#1| (-314)) ELT)) (-2411 (($ $ (-834)) 38 T ELT)) (-1730 ((|#1| $) 84 T ELT)) (-1710 (((-1089 |#1|) $) 54 (|has| |#1| (-499)) ELT)) (-1799 ((|#1| (-1183 $)) 79 T ELT) ((|#1|) 110 T ELT)) (-1728 (((-1089 |#1|) $) 75 T ELT)) (-1722 (((-85)) 69 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-1713 (((-85)) 60 T ELT)) (-1715 (((-85)) 62 T ELT)) (-1717 (((-85)) 64 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-1720 (((-85)) 67 T ELT)) (-3806 ((|#1| $ (-488)) 119 T ELT)) (-3230 (((-1183 |#1|) $ (-1183 $)) 82 T ELT) (((-634 |#1|) (-1183 $) (-1183 $)) 81 T ELT) (((-1183 |#1|) $) 117 T ELT) (((-634 |#1|) (-1183 $)) 116 T ELT)) (-3978 (((-1183 |#1|) $) 112 T ELT) (($ (-1183 |#1|)) 111 T ELT)) (-1900 (((-587 (-861 |#1|)) (-1183 $)) 90 T ELT) (((-587 (-861 |#1|))) 114 T ELT)) (-2441 (($ $ $) 34 T ELT)) (-1726 (((-85)) 73 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2017 (((-1183 $)) 118 T ELT)) (-1711 (((-587 (-1183 |#1|))) 55 (|has| |#1| (-499)) ELT)) (-2442 (($ $ $ $) 35 T ELT)) (-1724 (((-85)) 71 T ELT)) (-2551 (($ (-634 |#1|) $) 102 T ELT)) (-2440 (($ $ $) 33 T ELT)) (-1725 (((-85)) 72 T ELT)) (-1723 (((-85)) 70 T ELT)) (-1719 (((-85)) 66 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 39 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +(((-363 |#1|) (-113) (-148)) (T -363)) +((-2017 (*1 *2) (-12 (-4 *3 (-148)) (-5 *2 (-1183 *1)) (-4 *1 (-363 *3)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-5 *2 (-1183 *3)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-363 *4)) (-4 *4 (-148)) (-5 *2 (-634 *4)))) (-3229 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-5 *2 (-1183 (-634 *3))))) (-1900 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-5 *2 (-587 (-861 *3))))) (-1800 (*1 *1 *2) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-148)) (-4 *1 (-363 *3)))) (-3978 (*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-5 *2 (-1183 *3)))) (-3978 (*1 *1 *2) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-148)) (-4 *1 (-363 *3)))) (-1799 (*1 *2) (-12 (-4 *1 (-363 *2)) (-4 *2 (-148)))) (-1798 (*1 *2) (-12 (-4 *1 (-363 *2)) (-4 *2 (-148)))) (-1797 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-5 *2 (-634 *3)))) (-1796 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-5 *2 (-634 *3)))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-5 *2 (-634 *3)))) (-1794 (*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-5 *2 (-634 *3)))) (-1912 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-4 *3 (-314)) (-5 *2 (-1089 (-861 *3))))) (-1908 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-4 *3 (-314)) (-5 *2 (-1089 (-861 *3))))) (-2551 (*1 *1 *2 *1) (-12 (-5 *2 (-634 *3)) (-4 *1 (-363 *3)) (-4 *3 (-148))))) +(-13 (-318 |t#1|) (-243 (-488) |t#1|) (-10 -8 (-15 -2017 ((-1183 $))) (-15 -3230 ((-1183 |t#1|) $)) (-15 -3230 ((-634 |t#1|) (-1183 $))) (-15 -3229 ((-1183 (-634 |t#1|)))) (-15 -1900 ((-587 (-861 |t#1|)))) (-15 -1800 ($ (-1183 |t#1|))) (-15 -3978 ((-1183 |t#1|) $)) (-15 -3978 ($ (-1183 |t#1|))) (-15 -1799 (|t#1|)) (-15 -1798 (|t#1|)) (-15 -1797 ((-634 |t#1|))) (-15 -1796 ((-634 |t#1|))) (-15 -1795 ((-634 |t#1|) $)) (-15 -1794 ((-634 |t#1|) $)) (IF (|has| |t#1| (-314)) (PROGN (-15 -1912 ((-1089 (-861 |t#1|)))) (-15 -1908 ((-1089 (-861 |t#1|))))) |%noBranch|) (-15 -2551 ($ (-634 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-776)) . T) ((-243 (-488) |#1|) . T) ((-318 |#1|) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-594 |#1|) . T) ((-586 |#1|) . T) ((-658 |#1|) . T) ((-661) . T) ((-687 |#1|) . T) ((-689) . T) ((-967 |#1|) . T) ((-972 |#1|) . T) ((-1017) . T) ((-1133) . T)) +((-3140 (((-350 |#1|) (-350 |#1|) (-1 (-350 |#1|) |#1|)) 28 T ELT)) (-1801 (((-350 |#1|) (-350 |#1|) (-350 |#1|)) 17 T ELT))) +(((-364 |#1|) (-10 -7 (-15 -3140 ((-350 |#1|) (-350 |#1|) (-1 (-350 |#1|) |#1|))) (-15 -1801 ((-350 |#1|) (-350 |#1|) (-350 |#1|)))) (-499)) (T -364)) +((-1801 (*1 *2 *2 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-499)) (-5 *1 (-364 *3)))) (-3140 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-350 *4) *4)) (-4 *4 (-499)) (-5 *2 (-350 *4)) (-5 *1 (-364 *4))))) +((-3087 (((-587 (-1094)) $) 81 T ELT)) (-3089 (((-352 (-1089 $)) $ (-554 $)) 313 T ELT)) (-1608 (($ $ (-251 $)) NIL T ELT) (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-587 (-554 $)) (-587 $)) 277 T ELT)) (-3163 (((-3 (-554 $) #1="failed") $) NIL T ELT) (((-3 (-1094) #1#) $) 84 T ELT) (((-3 (-488) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-352 (-861 |#2|)) #1#) $) 363 T ELT) (((-3 (-861 |#2|) #1#) $) 275 T ELT) (((-3 (-352 (-488)) #1#) $) NIL T ELT)) (-3162 (((-554 $) $) NIL T ELT) (((-1094) $) 28 T ELT) (((-488) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-352 (-861 |#2|)) $) 345 T ELT) (((-861 |#2|) $) 272 T ELT) (((-352 (-488)) $) NIL T ELT)) (-3601 (((-86) (-86)) 47 T ELT)) (-3002 (($ $) 99 T ELT)) (-1606 (((-3 (-554 $) #1#) $) 268 T ELT)) (-1605 (((-587 (-554 $)) $) 269 T ELT)) (-2829 (((-3 (-587 $) #1#) $) 287 T ELT)) (-2831 (((-3 (-2 (|:| |val| $) (|:| -2406 (-488))) #1#) $) 294 T ELT)) (-2828 (((-3 (-587 $) #1#) $) 285 T ELT)) (-1802 (((-3 (-2 (|:| -3961 (-488)) (|:| |var| (-554 $))) #1#) $) 304 T ELT)) (-2830 (((-3 (-2 (|:| |var| (-554 $)) (|:| -2406 (-488))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-554 $)) (|:| -2406 (-488))) #1#) $ (-86)) 255 T ELT) (((-3 (-2 (|:| |var| (-554 $)) (|:| -2406 (-488))) #1#) $ (-1094)) 257 T ELT)) (-1805 (((-85) $) 17 T ELT)) (-1804 ((|#2| $) 19 T ELT)) (-3774 (($ $ (-554 $) $) NIL T ELT) (($ $ (-587 (-554 $)) (-587 $)) 276 T ELT) (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-1 $ $))) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-1 $ (-587 $)))) 109 T ELT) (($ $ (-1094) (-1 $ (-587 $))) NIL T ELT) (($ $ (-1094) (-1 $ $)) NIL T ELT) (($ $ (-587 (-86)) (-587 (-1 $ $))) NIL T ELT) (($ $ (-587 (-86)) (-587 (-1 $ (-587 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-587 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1094)) 62 T ELT) (($ $ (-587 (-1094))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-86) $ (-1094)) 65 T ELT) (($ $ (-587 (-86)) (-587 $) (-1094)) 72 T ELT) (($ $ (-587 (-1094)) (-587 (-698)) (-587 (-1 $ $))) 120 T ELT) (($ $ (-587 (-1094)) (-587 (-698)) (-587 (-1 $ (-587 $)))) 282 T ELT) (($ $ (-1094) (-698) (-1 $ (-587 $))) 105 T ELT) (($ $ (-1094) (-698) (-1 $ $)) 104 T ELT)) (-3806 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-587 $)) 119 T ELT)) (-3764 (($ $ (-1094)) 278 T ELT) (($ $ (-587 (-1094))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT)) (-3001 (($ $) 324 T ELT)) (-3978 (((-804 (-488)) $) 297 T ELT) (((-804 (-332)) $) 301 T ELT) (($ (-350 $)) 359 T ELT) (((-477) $) NIL T ELT)) (-3953 (((-776) $) 279 T ELT) (($ (-554 $)) 93 T ELT) (($ (-1094)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1043 |#2| (-554 $))) NIL T ELT) (($ (-352 |#2|)) 329 T ELT) (($ (-861 (-352 |#2|))) 368 T ELT) (($ (-352 (-861 (-352 |#2|)))) 341 T ELT) (($ (-352 (-861 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-861 |#2|)) 216 T ELT) (($ (-488)) NIL T ELT) (($ (-352 (-488))) 373 T ELT)) (-3132 (((-698)) 88 T CONST)) (-2259 (((-85) (-86)) 42 T ELT)) (-1803 (($ (-1094) $) 31 T ELT) (($ (-1094) $ $) 32 T ELT) (($ (-1094) $ $ $) 33 T ELT) (($ (-1094) $ $ $ $) 34 T ELT) (($ (-1094) (-587 $)) 39 T ELT)) (* (($ (-352 (-488)) $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-834) $) NIL T ELT))) +(((-365 |#1| |#2|) (-10 -7 (-15 * (|#1| (-834) |#1|)) (-15 * (|#1| (-698) |#1|)) (-15 * (|#1| (-488) |#1|)) (-15 -3953 (|#1| (-352 (-488)))) (-15 -3163 ((-3 (-352 (-488)) #1="failed") |#1|)) (-15 -3162 ((-352 (-488)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3953 (|#1| (-488))) (-15 -3132 ((-698)) -3959) (-15 * (|#1| |#2| |#1|)) (-15 -3978 ((-477) |#1|)) (-15 -3953 (|#1| (-861 |#2|))) (-15 -3163 ((-3 (-861 |#2|) #1#) |#1|)) (-15 -3162 ((-861 |#2|) |#1|)) (-15 -3764 (|#1| |#1| (-587 (-1094)) (-587 (-698)))) (-15 -3764 (|#1| |#1| (-1094) (-698))) (-15 -3764 (|#1| |#1| (-587 (-1094)))) (-15 -3764 (|#1| |#1| (-1094))) (-15 * (|#1| |#1| |#2|)) (-15 -3953 (|#1| |#1|)) (-15 * (|#1| |#1| (-352 (-488)))) (-15 * (|#1| (-352 (-488)) |#1|)) (-15 -3953 (|#1| (-352 (-861 |#2|)))) (-15 -3163 ((-3 (-352 (-861 |#2|)) #1#) |#1|)) (-15 -3162 ((-352 (-861 |#2|)) |#1|)) (-15 -3089 ((-352 (-1089 |#1|)) |#1| (-554 |#1|))) (-15 -3953 (|#1| (-352 (-861 (-352 |#2|))))) (-15 -3953 (|#1| (-861 (-352 |#2|)))) (-15 -3953 (|#1| (-352 |#2|))) (-15 -3001 (|#1| |#1|)) (-15 -3978 (|#1| (-350 |#1|))) (-15 -3774 (|#1| |#1| (-1094) (-698) (-1 |#1| |#1|))) (-15 -3774 (|#1| |#1| (-1094) (-698) (-1 |#1| (-587 |#1|)))) (-15 -3774 (|#1| |#1| (-587 (-1094)) (-587 (-698)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -3774 (|#1| |#1| (-587 (-1094)) (-587 (-698)) (-587 (-1 |#1| |#1|)))) (-15 -2831 ((-3 (-2 (|:| |val| |#1|) (|:| -2406 (-488))) #1#) |#1|)) (-15 -2830 ((-3 (-2 (|:| |var| (-554 |#1|)) (|:| -2406 (-488))) #1#) |#1| (-1094))) (-15 -2830 ((-3 (-2 (|:| |var| (-554 |#1|)) (|:| -2406 (-488))) #1#) |#1| (-86))) (-15 -3002 (|#1| |#1|)) (-15 -3953 (|#1| (-1043 |#2| (-554 |#1|)))) (-15 -1802 ((-3 (-2 (|:| -3961 (-488)) (|:| |var| (-554 |#1|))) #1#) |#1|)) (-15 -2828 ((-3 (-587 |#1|) #1#) |#1|)) (-15 -2830 ((-3 (-2 (|:| |var| (-554 |#1|)) (|:| -2406 (-488))) #1#) |#1|)) (-15 -2829 ((-3 (-587 |#1|) #1#) |#1|)) (-15 -3774 (|#1| |#1| (-587 (-86)) (-587 |#1|) (-1094))) (-15 -3774 (|#1| |#1| (-86) |#1| (-1094))) (-15 -3774 (|#1| |#1|)) (-15 -3774 (|#1| |#1| (-587 (-1094)))) (-15 -3774 (|#1| |#1| (-1094))) (-15 -1803 (|#1| (-1094) (-587 |#1|))) (-15 -1803 (|#1| (-1094) |#1| |#1| |#1| |#1|)) (-15 -1803 (|#1| (-1094) |#1| |#1| |#1|)) (-15 -1803 (|#1| (-1094) |#1| |#1|)) (-15 -1803 (|#1| (-1094) |#1|)) (-15 -3087 ((-587 (-1094)) |#1|)) (-15 -1804 (|#2| |#1|)) (-15 -1805 ((-85) |#1|)) (-15 -3953 (|#1| |#2|)) (-15 -3163 ((-3 |#2| #1#) |#1|)) (-15 -3162 (|#2| |#1|)) (-15 -3162 ((-488) |#1|)) (-15 -3163 ((-3 (-488) #1#) |#1|)) (-15 -3978 ((-804 (-332)) |#1|)) (-15 -3978 ((-804 (-488)) |#1|)) (-15 -3953 (|#1| (-1094))) (-15 -3163 ((-3 (-1094) #1#) |#1|)) (-15 -3162 ((-1094) |#1|)) (-15 -3774 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3774 (|#1| |#1| (-86) (-1 |#1| (-587 |#1|)))) (-15 -3774 (|#1| |#1| (-587 (-86)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -3774 (|#1| |#1| (-587 (-86)) (-587 (-1 |#1| |#1|)))) (-15 -3774 (|#1| |#1| (-1094) (-1 |#1| |#1|))) (-15 -3774 (|#1| |#1| (-1094) (-1 |#1| (-587 |#1|)))) (-15 -3774 (|#1| |#1| (-587 (-1094)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -3774 (|#1| |#1| (-587 (-1094)) (-587 (-1 |#1| |#1|)))) (-15 -2259 ((-85) (-86))) (-15 -3601 ((-86) (-86))) (-15 -1605 ((-587 (-554 |#1|)) |#1|)) (-15 -1606 ((-3 (-554 |#1|) #1#) |#1|)) (-15 -1608 (|#1| |#1| (-587 (-554 |#1|)) (-587 |#1|))) (-15 -1608 (|#1| |#1| (-587 (-251 |#1|)))) (-15 -1608 (|#1| |#1| (-251 |#1|))) (-15 -3806 (|#1| (-86) (-587 |#1|))) (-15 -3806 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3806 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3806 (|#1| (-86) |#1| |#1|)) (-15 -3806 (|#1| (-86) |#1|)) (-15 -3774 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -3774 (|#1| |#1| |#1| |#1|)) (-15 -3774 (|#1| |#1| (-251 |#1|))) (-15 -3774 (|#1| |#1| (-587 (-251 |#1|)))) (-15 -3774 (|#1| |#1| (-587 (-554 |#1|)) (-587 |#1|))) (-15 -3774 (|#1| |#1| (-554 |#1|) |#1|)) (-15 -3953 (|#1| (-554 |#1|))) (-15 -3163 ((-3 (-554 |#1|) #1#) |#1|)) (-15 -3162 ((-554 |#1|) |#1|)) (-15 -3953 ((-776) |#1|))) (-366 |#2|) (-1017)) (T -365)) +((-3601 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *4 (-1017)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *5 (-1017)) (-5 *2 (-85)) (-5 *1 (-365 *4 *5)) (-4 *4 (-366 *5)))) (-3132 (*1 *2) (-12 (-4 *4 (-1017)) (-5 *2 (-698)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 129 (|has| |#1| (-25)) ELT)) (-3087 (((-587 (-1094)) $) 222 T ELT)) (-3089 (((-352 (-1089 $)) $ (-554 $)) 190 (|has| |#1| (-499)) ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 162 (|has| |#1| (-499)) ELT)) (-2068 (($ $) 163 (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) 165 (|has| |#1| (-499)) ELT)) (-1604 (((-587 (-554 $)) $) 42 T ELT)) (-1316 (((-3 $ "failed") $ $) 132 (|has| |#1| (-21)) ELT)) (-1608 (($ $ (-251 $)) 54 T ELT) (($ $ (-587 (-251 $))) 53 T ELT) (($ $ (-587 (-554 $)) (-587 $)) 52 T ELT)) (-3781 (($ $) 182 (|has| |#1| (-499)) ELT)) (-3977 (((-350 $) $) 183 (|has| |#1| (-499)) ELT)) (-1612 (((-85) $ $) 173 (|has| |#1| (-499)) ELT)) (-3730 (($) 117 (OR (|has| |#1| (-1029)) (|has| |#1| (-25))) CONST)) (-3163 (((-3 (-554 $) #1="failed") $) 67 T ELT) (((-3 (-1094) #1#) $) 235 T ELT) (((-3 (-488) #1#) $) 229 (|has| |#1| (-954 (-488))) ELT) (((-3 |#1| #1#) $) 226 T ELT) (((-3 (-352 (-861 |#1|)) #1#) $) 188 (|has| |#1| (-499)) ELT) (((-3 (-861 |#1|) #1#) $) 137 (|has| |#1| (-965)) ELT) (((-3 (-352 (-488)) #1#) $) 111 (OR (-12 (|has| |#1| (-954 (-488))) (|has| |#1| (-499))) (|has| |#1| (-954 (-352 (-488))))) ELT)) (-3162 (((-554 $) $) 68 T ELT) (((-1094) $) 236 T ELT) (((-488) $) 228 (|has| |#1| (-954 (-488))) ELT) ((|#1| $) 227 T ELT) (((-352 (-861 |#1|)) $) 189 (|has| |#1| (-499)) ELT) (((-861 |#1|) $) 138 (|has| |#1| (-965)) ELT) (((-352 (-488)) $) 112 (OR (-12 (|has| |#1| (-954 (-488))) (|has| |#1| (-499))) (|has| |#1| (-954 (-352 (-488))))) ELT)) (-2570 (($ $ $) 177 (|has| |#1| (-499)) ELT)) (-2284 (((-634 (-488)) (-634 $)) 155 (-2568 (|has| |#1| (-584 (-488))) (|has| |#1| (-965))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) 154 (-2568 (|has| |#1| (-584 (-488))) (|has| |#1| (-965))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) 153 (|has| |#1| (-965)) ELT) (((-634 |#1|) (-634 $)) 152 (|has| |#1| (-965)) ELT)) (-3473 (((-3 $ "failed") $) 119 (|has| |#1| (-1029)) ELT)) (-2569 (($ $ $) 176 (|has| |#1| (-499)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 171 (|has| |#1| (-499)) ELT)) (-3729 (((-85) $) 184 (|has| |#1| (-499)) ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) 231 (|has| |#1| (-800 (-488))) ELT) (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) 230 (|has| |#1| (-800 (-332))) ELT)) (-2579 (($ $) 49 T ELT) (($ (-587 $)) 48 T ELT)) (-1218 (((-85) $ $) 131 (|has| |#1| (-25)) ELT)) (-1603 (((-587 (-86)) $) 41 T ELT)) (-3601 (((-86) (-86)) 40 T ELT)) (-2415 (((-85) $) 118 (|has| |#1| (-1029)) ELT)) (-2679 (((-85) $) 20 (|has| $ (-954 (-488))) ELT)) (-3002 (($ $) 205 (|has| |#1| (-965)) ELT)) (-3004 (((-1043 |#1| (-554 $)) $) 206 (|has| |#1| (-965)) ELT)) (-1609 (((-3 (-587 $) #2="failed") (-587 $) $) 180 (|has| |#1| (-499)) ELT)) (-1601 (((-1089 $) (-554 $)) 23 (|has| $ (-965)) ELT)) (-3849 (($ (-1 $ $) (-554 $)) 34 T ELT)) (-1606 (((-3 (-554 $) "failed") $) 44 T ELT)) (-2285 (((-634 (-488)) (-1183 $)) 157 (-2568 (|has| |#1| (-584 (-488))) (|has| |#1| (-965))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) 156 (-2568 (|has| |#1| (-584 (-488))) (|has| |#1| (-965))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) 151 (|has| |#1| (-965)) ELT) (((-634 |#1|) (-1183 $)) 150 (|has| |#1| (-965)) ELT)) (-1899 (($ (-587 $)) 169 (|has| |#1| (-499)) ELT) (($ $ $) 168 (|has| |#1| (-499)) ELT)) (-3248 (((-1077) $) 11 T ELT)) (-1605 (((-587 (-554 $)) $) 43 T ELT)) (-2240 (($ (-86) $) 36 T ELT) (($ (-86) (-587 $)) 35 T ELT)) (-2829 (((-3 (-587 $) "failed") $) 211 (|has| |#1| (-1029)) ELT)) (-2831 (((-3 (-2 (|:| |val| $) (|:| -2406 (-488))) "failed") $) 202 (|has| |#1| (-965)) ELT)) (-2828 (((-3 (-587 $) "failed") $) 209 (|has| |#1| (-25)) ELT)) (-1802 (((-3 (-2 (|:| -3961 (-488)) (|:| |var| (-554 $))) "failed") $) 208 (|has| |#1| (-25)) ELT)) (-2830 (((-3 (-2 (|:| |var| (-554 $)) (|:| -2406 (-488))) "failed") $) 210 (|has| |#1| (-1029)) ELT) (((-3 (-2 (|:| |var| (-554 $)) (|:| -2406 (-488))) "failed") $ (-86)) 204 (|has| |#1| (-965)) ELT) (((-3 (-2 (|:| |var| (-554 $)) (|:| -2406 (-488))) "failed") $ (-1094)) 203 (|has| |#1| (-965)) ELT)) (-2639 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1094)) 37 T ELT)) (-2490 (($ $) 121 (OR (|has| |#1| (-416)) (|has| |#1| (-499))) ELT)) (-2609 (((-698) $) 45 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-1805 (((-85) $) 224 T ELT)) (-1804 ((|#1| $) 223 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 170 (|has| |#1| (-499)) ELT)) (-3150 (($ (-587 $)) 167 (|has| |#1| (-499)) ELT) (($ $ $) 166 (|has| |#1| (-499)) ELT)) (-1602 (((-85) $ $) 33 T ELT) (((-85) $ (-1094)) 32 T ELT)) (-3738 (((-350 $) $) 181 (|has| |#1| (-499)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 179 (|has| |#1| (-499)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 178 (|has| |#1| (-499)) ELT)) (-3472 (((-3 $ "failed") $ $) 161 (|has| |#1| (-499)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 172 (|has| |#1| (-499)) ELT)) (-2680 (((-85) $) 21 (|has| $ (-954 (-488))) ELT)) (-3774 (($ $ (-554 $) $) 65 T ELT) (($ $ (-587 (-554 $)) (-587 $)) 64 T ELT) (($ $ (-587 (-251 $))) 63 T ELT) (($ $ (-251 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-587 $) (-587 $)) 60 T ELT) (($ $ (-587 (-1094)) (-587 (-1 $ $))) 31 T ELT) (($ $ (-587 (-1094)) (-587 (-1 $ (-587 $)))) 30 T ELT) (($ $ (-1094) (-1 $ (-587 $))) 29 T ELT) (($ $ (-1094) (-1 $ $)) 28 T ELT) (($ $ (-587 (-86)) (-587 (-1 $ $))) 27 T ELT) (($ $ (-587 (-86)) (-587 (-1 $ (-587 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-587 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT) (($ $ (-1094)) 216 (|has| |#1| (-557 (-477))) ELT) (($ $ (-587 (-1094))) 215 (|has| |#1| (-557 (-477))) ELT) (($ $) 214 (|has| |#1| (-557 (-477))) ELT) (($ $ (-86) $ (-1094)) 213 (|has| |#1| (-557 (-477))) ELT) (($ $ (-587 (-86)) (-587 $) (-1094)) 212 (|has| |#1| (-557 (-477))) ELT) (($ $ (-587 (-1094)) (-587 (-698)) (-587 (-1 $ $))) 201 (|has| |#1| (-965)) ELT) (($ $ (-587 (-1094)) (-587 (-698)) (-587 (-1 $ (-587 $)))) 200 (|has| |#1| (-965)) ELT) (($ $ (-1094) (-698) (-1 $ (-587 $))) 199 (|has| |#1| (-965)) ELT) (($ $ (-1094) (-698) (-1 $ $)) 198 (|has| |#1| (-965)) ELT)) (-1611 (((-698) $) 174 (|has| |#1| (-499)) ELT)) (-3806 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-587 $)) 55 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 175 (|has| |#1| (-499)) ELT)) (-1607 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3764 (($ $ (-1094)) 148 (|has| |#1| (-965)) ELT) (($ $ (-587 (-1094))) 146 (|has| |#1| (-965)) ELT) (($ $ (-1094) (-698)) 145 (|has| |#1| (-965)) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 144 (|has| |#1| (-965)) ELT)) (-3001 (($ $) 195 (|has| |#1| (-499)) ELT)) (-3003 (((-1043 |#1| (-554 $)) $) 196 (|has| |#1| (-499)) ELT)) (-3191 (($ $) 22 (|has| $ (-965)) ELT)) (-3978 (((-804 (-488)) $) 233 (|has| |#1| (-557 (-804 (-488)))) ELT) (((-804 (-332)) $) 232 (|has| |#1| (-557 (-804 (-332)))) ELT) (($ (-350 $)) 197 (|has| |#1| (-499)) ELT) (((-477) $) 113 (|has| |#1| (-557 (-477))) ELT)) (-3015 (($ $ $) 124 (|has| |#1| (-416)) ELT)) (-2441 (($ $ $) 125 (|has| |#1| (-416)) ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-554 $)) 66 T ELT) (($ (-1094)) 234 T ELT) (($ |#1|) 225 T ELT) (($ (-1043 |#1| (-554 $))) 207 (|has| |#1| (-965)) ELT) (($ (-352 |#1|)) 193 (|has| |#1| (-499)) ELT) (($ (-861 (-352 |#1|))) 192 (|has| |#1| (-499)) ELT) (($ (-352 (-861 (-352 |#1|)))) 191 (|has| |#1| (-499)) ELT) (($ (-352 (-861 |#1|))) 187 (|has| |#1| (-499)) ELT) (($ $) 160 (|has| |#1| (-499)) ELT) (($ (-861 |#1|)) 136 (|has| |#1| (-965)) ELT) (($ (-352 (-488))) 110 (OR (|has| |#1| (-499)) (-12 (|has| |#1| (-954 (-488))) (|has| |#1| (-499))) (|has| |#1| (-954 (-352 (-488))))) ELT) (($ (-488)) 109 (OR (|has| |#1| (-965)) (|has| |#1| (-954 (-488)))) ELT)) (-2708 (((-636 $) $) 158 (|has| |#1| (-118)) ELT)) (-3132 (((-698)) 140 (|has| |#1| (-965)) CONST)) (-2596 (($ $) 51 T ELT) (($ (-587 $)) 50 T ELT)) (-2259 (((-85) (-86)) 39 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 164 (|has| |#1| (-499)) ELT)) (-1803 (($ (-1094) $) 221 T ELT) (($ (-1094) $ $) 220 T ELT) (($ (-1094) $ $ $) 219 T ELT) (($ (-1094) $ $ $ $) 218 T ELT) (($ (-1094) (-587 $)) 217 T ELT)) (-3131 (((-85) $ $) 139 (|has| |#1| (-965)) ELT)) (-2666 (($) 128 (|has| |#1| (-25)) CONST)) (-2672 (($) 116 (|has| |#1| (-1029)) CONST)) (-2675 (($ $ (-1094)) 147 (|has| |#1| (-965)) ELT) (($ $ (-587 (-1094))) 143 (|has| |#1| (-965)) ELT) (($ $ (-1094) (-698)) 142 (|has| |#1| (-965)) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 141 (|has| |#1| (-965)) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ (-1043 |#1| (-554 $)) (-1043 |#1| (-554 $))) 194 (|has| |#1| (-499)) ELT) (($ $ $) 122 (OR (|has| |#1| (-416)) (|has| |#1| (-499))) ELT)) (-3843 (($ $ $) 135 (|has| |#1| (-21)) ELT) (($ $) 134 (|has| |#1| (-21)) ELT)) (-3845 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-488)) 123 (OR (|has| |#1| (-416)) (|has| |#1| (-499))) ELT) (($ $ (-698)) 120 (|has| |#1| (-1029)) ELT) (($ $ (-834)) 115 (|has| |#1| (-1029)) ELT)) (* (($ (-352 (-488)) $) 186 (|has| |#1| (-499)) ELT) (($ $ (-352 (-488))) 185 (|has| |#1| (-499)) ELT) (($ $ |#1|) 159 (|has| |#1| (-148)) ELT) (($ |#1| $) 149 (|has| |#1| (-965)) ELT) (($ (-488) $) 133 (|has| |#1| (-21)) ELT) (($ (-698) $) 130 (|has| |#1| (-25)) ELT) (($ (-834) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1029)) ELT))) +(((-366 |#1|) (-113) (-1017)) (T -366)) +((-1805 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1017)) (-5 *2 (-85)))) (-1804 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1017)))) (-3087 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1017)) (-5 *2 (-587 (-1094))))) (-1803 (*1 *1 *2 *1) (-12 (-5 *2 (-1094)) (-4 *1 (-366 *3)) (-4 *3 (-1017)))) (-1803 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1094)) (-4 *1 (-366 *3)) (-4 *3 (-1017)))) (-1803 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1094)) (-4 *1 (-366 *3)) (-4 *3 (-1017)))) (-1803 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1094)) (-4 *1 (-366 *3)) (-4 *3 (-1017)))) (-1803 (*1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-587 *1)) (-4 *1 (-366 *4)) (-4 *4 (-1017)))) (-3774 (*1 *1 *1 *2) (-12 (-5 *2 (-1094)) (-4 *1 (-366 *3)) (-4 *3 (-1017)) (-4 *3 (-557 (-477))))) (-3774 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-1094))) (-4 *1 (-366 *3)) (-4 *3 (-1017)) (-4 *3 (-557 (-477))))) (-3774 (*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1017)) (-4 *2 (-557 (-477))))) (-3774 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1094)) (-4 *1 (-366 *4)) (-4 *4 (-1017)) (-4 *4 (-557 (-477))))) (-3774 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-587 (-86))) (-5 *3 (-587 *1)) (-5 *4 (-1094)) (-4 *1 (-366 *5)) (-4 *5 (-1017)) (-4 *5 (-557 (-477))))) (-2829 (*1 *2 *1) (|partial| -12 (-4 *3 (-1029)) (-4 *3 (-1017)) (-5 *2 (-587 *1)) (-4 *1 (-366 *3)))) (-2830 (*1 *2 *1) (|partial| -12 (-4 *3 (-1029)) (-4 *3 (-1017)) (-5 *2 (-2 (|:| |var| (-554 *1)) (|:| -2406 (-488)))) (-4 *1 (-366 *3)))) (-2828 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1017)) (-5 *2 (-587 *1)) (-4 *1 (-366 *3)))) (-1802 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1017)) (-5 *2 (-2 (|:| -3961 (-488)) (|:| |var| (-554 *1)))) (-4 *1 (-366 *3)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-1043 *3 (-554 *1))) (-4 *3 (-965)) (-4 *3 (-1017)) (-4 *1 (-366 *3)))) (-3004 (*1 *2 *1) (-12 (-4 *3 (-965)) (-4 *3 (-1017)) (-5 *2 (-1043 *3 (-554 *1))) (-4 *1 (-366 *3)))) (-3002 (*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1017)) (-4 *2 (-965)))) (-2830 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-4 *4 (-965)) (-4 *4 (-1017)) (-5 *2 (-2 (|:| |var| (-554 *1)) (|:| -2406 (-488)))) (-4 *1 (-366 *4)))) (-2830 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1094)) (-4 *4 (-965)) (-4 *4 (-1017)) (-5 *2 (-2 (|:| |var| (-554 *1)) (|:| -2406 (-488)))) (-4 *1 (-366 *4)))) (-2831 (*1 *2 *1) (|partial| -12 (-4 *3 (-965)) (-4 *3 (-1017)) (-5 *2 (-2 (|:| |val| *1) (|:| -2406 (-488)))) (-4 *1 (-366 *3)))) (-3774 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-587 (-1094))) (-5 *3 (-587 (-698))) (-5 *4 (-587 (-1 *1 *1))) (-4 *1 (-366 *5)) (-4 *5 (-1017)) (-4 *5 (-965)))) (-3774 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-587 (-1094))) (-5 *3 (-587 (-698))) (-5 *4 (-587 (-1 *1 (-587 *1)))) (-4 *1 (-366 *5)) (-4 *5 (-1017)) (-4 *5 (-965)))) (-3774 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1094)) (-5 *3 (-698)) (-5 *4 (-1 *1 (-587 *1))) (-4 *1 (-366 *5)) (-4 *5 (-1017)) (-4 *5 (-965)))) (-3774 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1094)) (-5 *3 (-698)) (-5 *4 (-1 *1 *1)) (-4 *1 (-366 *5)) (-4 *5 (-1017)) (-4 *5 (-965)))) (-3978 (*1 *1 *2) (-12 (-5 *2 (-350 *1)) (-4 *1 (-366 *3)) (-4 *3 (-499)) (-4 *3 (-1017)))) (-3003 (*1 *2 *1) (-12 (-4 *3 (-499)) (-4 *3 (-1017)) (-5 *2 (-1043 *3 (-554 *1))) (-4 *1 (-366 *3)))) (-3001 (*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1017)) (-4 *2 (-499)))) (-3956 (*1 *1 *2 *2) (-12 (-5 *2 (-1043 *3 (-554 *1))) (-4 *3 (-499)) (-4 *3 (-1017)) (-4 *1 (-366 *3)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-352 *3)) (-4 *3 (-499)) (-4 *3 (-1017)) (-4 *1 (-366 *3)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-861 (-352 *3))) (-4 *3 (-499)) (-4 *3 (-1017)) (-4 *1 (-366 *3)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-352 (-861 (-352 *3)))) (-4 *3 (-499)) (-4 *3 (-1017)) (-4 *1 (-366 *3)))) (-3089 (*1 *2 *1 *3) (-12 (-5 *3 (-554 *1)) (-4 *1 (-366 *4)) (-4 *4 (-1017)) (-4 *4 (-499)) (-5 *2 (-352 (-1089 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-366 *3)) (-4 *3 (-1017)) (-4 *3 (-1029))))) +(-13 (-256) (-954 (-1094)) (-798 |t#1|) (-345 |t#1|) (-357 |t#1|) (-10 -8 (-15 -1805 ((-85) $)) (-15 -1804 (|t#1| $)) (-15 -3087 ((-587 (-1094)) $)) (-15 -1803 ($ (-1094) $)) (-15 -1803 ($ (-1094) $ $)) (-15 -1803 ($ (-1094) $ $ $)) (-15 -1803 ($ (-1094) $ $ $ $)) (-15 -1803 ($ (-1094) (-587 $))) (IF (|has| |t#1| (-557 (-477))) (PROGN (-6 (-557 (-477))) (-15 -3774 ($ $ (-1094))) (-15 -3774 ($ $ (-587 (-1094)))) (-15 -3774 ($ $)) (-15 -3774 ($ $ (-86) $ (-1094))) (-15 -3774 ($ $ (-587 (-86)) (-587 $) (-1094)))) |%noBranch|) (IF (|has| |t#1| (-1029)) (PROGN (-6 (-667)) (-15 ** ($ $ (-698))) (-15 -2829 ((-3 (-587 $) "failed") $)) (-15 -2830 ((-3 (-2 (|:| |var| (-554 $)) (|:| -2406 (-488))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-416)) (-6 (-416)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2828 ((-3 (-587 $) "failed") $)) (-15 -1802 ((-3 (-2 (|:| -3961 (-488)) (|:| |var| (-554 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-965)) (PROGN (-6 (-965)) (-6 (-954 (-861 |t#1|))) (-6 (-813 (-1094))) (-6 (-331 |t#1|)) (-15 -3953 ($ (-1043 |t#1| (-554 $)))) (-15 -3004 ((-1043 |t#1| (-554 $)) $)) (-15 -3002 ($ $)) (-15 -2830 ((-3 (-2 (|:| |var| (-554 $)) (|:| -2406 (-488))) "failed") $ (-86))) (-15 -2830 ((-3 (-2 (|:| |var| (-554 $)) (|:| -2406 (-488))) "failed") $ (-1094))) (-15 -2831 ((-3 (-2 (|:| |val| $) (|:| -2406 (-488))) "failed") $)) (-15 -3774 ($ $ (-587 (-1094)) (-587 (-698)) (-587 (-1 $ $)))) (-15 -3774 ($ $ (-587 (-1094)) (-587 (-698)) (-587 (-1 $ (-587 $))))) (-15 -3774 ($ $ (-1094) (-698) (-1 $ (-587 $)))) (-15 -3774 ($ $ (-1094) (-698) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-499)) (PROGN (-6 (-314)) (-6 (-954 (-352 (-861 |t#1|)))) (-15 -3978 ($ (-350 $))) (-15 -3003 ((-1043 |t#1| (-554 $)) $)) (-15 -3001 ($ $)) (-15 -3956 ($ (-1043 |t#1| (-554 $)) (-1043 |t#1| (-554 $)))) (-15 -3953 ($ (-352 |t#1|))) (-15 -3953 ($ (-861 (-352 |t#1|)))) (-15 -3953 ($ (-352 (-861 (-352 |t#1|))))) (-15 -3089 ((-352 (-1089 $)) $ (-554 $))) (IF (|has| |t#1| (-954 (-488))) (-6 (-954 (-352 (-488)))) |%noBranch|)) |%noBranch|))) +(((-21) OR (|has| |#1| (-965)) (|has| |#1| (-499)) (|has| |#1| (-148)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-965)) (|has| |#1| (-499)) (|has| |#1| (-148)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-965)) (|has| |#1| (-499)) (|has| |#1| (-148)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-352 (-488))) |has| |#1| (-499)) ((-38 |#1|) |has| |#1| (-148)) ((-38 $) |has| |#1| (-499)) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) |has| |#1| (-499)) ((-82 |#1| |#1|) |has| |#1| (-148)) ((-82 $ $) |has| |#1| (-499)) ((-104) OR (|has| |#1| (-965)) (|has| |#1| (-499)) (|has| |#1| (-148)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) OR (|has| |#1| (-954 (-352 (-488)))) (|has| |#1| (-499))) ((-559 (-352 (-861 |#1|))) |has| |#1| (-499)) ((-559 (-488)) OR (|has| |#1| (-965)) (|has| |#1| (-954 (-488))) (|has| |#1| (-499)) (|has| |#1| (-148)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-559 (-554 $)) . T) ((-559 (-861 |#1|)) |has| |#1| (-965)) ((-559 (-1094)) . T) ((-559 |#1|) . T) ((-559 $) |has| |#1| (-499)) ((-556 (-776)) . T) ((-148) |has| |#1| (-499)) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-557 (-804 (-332))) |has| |#1| (-557 (-804 (-332)))) ((-557 (-804 (-488))) |has| |#1| (-557 (-804 (-488)))) ((-203) |has| |#1| (-499)) ((-248) |has| |#1| (-499)) ((-260) |has| |#1| (-499)) ((-262 $) . T) ((-256) . T) ((-314) |has| |#1| (-499)) ((-331 |#1|) |has| |#1| (-965)) ((-345 |#1|) . T) ((-357 |#1|) . T) ((-395) |has| |#1| (-499)) ((-416) |has| |#1| (-416)) ((-459 (-554 $) $) . T) ((-459 $ $) . T) ((-499) |has| |#1| (-499)) ((-13) . T) ((-592 (-352 (-488))) |has| |#1| (-499)) ((-592 (-488)) OR (|has| |#1| (-965)) (|has| |#1| (-499)) (|has| |#1| (-148)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-592 |#1|) OR (|has| |#1| (-965)) (|has| |#1| (-148))) ((-592 $) OR (|has| |#1| (-965)) (|has| |#1| (-499)) (|has| |#1| (-148)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-594 (-352 (-488))) |has| |#1| (-499)) ((-594 (-488)) -12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965))) ((-594 |#1|) OR (|has| |#1| (-965)) (|has| |#1| (-148))) ((-594 $) OR (|has| |#1| (-965)) (|has| |#1| (-499)) (|has| |#1| (-148)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-586 (-352 (-488))) |has| |#1| (-499)) ((-586 |#1|) |has| |#1| (-148)) ((-586 $) |has| |#1| (-499)) ((-584 (-488)) -12 (|has| |#1| (-584 (-488))) (|has| |#1| (-965))) ((-584 |#1|) |has| |#1| (-965)) ((-658 (-352 (-488))) |has| |#1| (-499)) ((-658 |#1|) |has| |#1| (-148)) ((-658 $) |has| |#1| (-499)) ((-667) OR (|has| |#1| (-1029)) (|has| |#1| (-965)) (|has| |#1| (-499)) (|has| |#1| (-416)) (|has| |#1| (-148)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-810 $ (-1094)) |has| |#1| (-965)) ((-813 (-1094)) |has| |#1| (-965)) ((-815 (-1094)) |has| |#1| (-965)) ((-800 (-332)) |has| |#1| (-800 (-332))) ((-800 (-488)) |has| |#1| (-800 (-488))) ((-798 |#1|) . T) ((-836) |has| |#1| (-499)) ((-954 (-352 (-488))) OR (|has| |#1| (-954 (-352 (-488)))) (-12 (|has| |#1| (-499)) (|has| |#1| (-954 (-488))))) ((-954 (-352 (-861 |#1|))) |has| |#1| (-499)) ((-954 (-488)) |has| |#1| (-954 (-488))) ((-954 (-554 $)) . T) ((-954 (-861 |#1|)) |has| |#1| (-965)) ((-954 (-1094)) . T) ((-954 |#1|) . T) ((-967 (-352 (-488))) |has| |#1| (-499)) ((-967 |#1|) |has| |#1| (-148)) ((-967 $) |has| |#1| (-499)) ((-972 (-352 (-488))) |has| |#1| (-499)) ((-972 |#1|) |has| |#1| (-148)) ((-972 $) |has| |#1| (-499)) ((-965) OR (|has| |#1| (-965)) (|has| |#1| (-499)) (|has| |#1| (-148)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-974) OR (|has| |#1| (-965)) (|has| |#1| (-499)) (|has| |#1| (-148)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1029) OR (|has| |#1| (-1029)) (|has| |#1| (-965)) (|has| |#1| (-499)) (|has| |#1| (-416)) (|has| |#1| (-148)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1065) OR (|has| |#1| (-965)) (|has| |#1| (-499)) (|has| |#1| (-148)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1017) . T) ((-1133) . T) ((-1138) |has| |#1| (-499))) +((-3849 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) +(((-367 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3849 (|#4| (-1 |#3| |#1|) |#2|))) (-965) (-366 |#1|) (-965) (-366 |#3|)) (T -367)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-965)) (-4 *6 (-965)) (-4 *2 (-366 *6)) (-5 *1 (-367 *5 *4 *6 *2)) (-4 *4 (-366 *5))))) +((-1809 ((|#2| |#2|) 182 T ELT)) (-1806 (((-3 (|:| |%expansion| (-266 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1077)) (|:| |prob| (-1077))))) |#2| (-85)) 60 T ELT))) +(((-368 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1806 ((-3 (|:| |%expansion| (-266 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1077)) (|:| |prob| (-1077))))) |#2| (-85))) (-15 -1809 (|#2| |#2|))) (-13 (-395) (-954 (-488)) (-584 (-488))) (-13 (-27) (-1119) (-366 |#1|)) (-1094) |#2|) (T -368)) +((-1809 (*1 *2 *2) (-12 (-4 *3 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-368 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1119) (-366 *3))) (-14 *4 (-1094)) (-14 *5 *2))) (-1806 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-3 (|:| |%expansion| (-266 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1077)) (|:| |prob| (-1077)))))) (-5 *1 (-368 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1119) (-366 *5))) (-14 *6 (-1094)) (-14 *7 *3)))) +((-1809 ((|#2| |#2|) 105 T ELT)) (-1807 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1077)) (|:| |prob| (-1077))))) |#2| (-85) (-1077)) 52 T ELT)) (-1808 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1077)) (|:| |prob| (-1077))))) |#2| (-85) (-1077)) 169 T ELT))) +(((-369 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1807 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1077)) (|:| |prob| (-1077))))) |#2| (-85) (-1077))) (-15 -1808 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1077)) (|:| |prob| (-1077))))) |#2| (-85) (-1077))) (-15 -1809 (|#2| |#2|))) (-13 (-395) (-954 (-488)) (-584 (-488))) (-13 (-27) (-1119) (-366 |#1|) (-10 -8 (-15 -3953 ($ |#3|)))) (-759) (-13 (-1162 |#2| |#3|) (-314) (-1119) (-10 -8 (-15 -3764 ($ $)) (-15 -3818 ($ $)))) (-900 |#4|) (-1094)) (T -369)) +((-1809 (*1 *2 *2) (-12 (-4 *3 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-4 *2 (-13 (-27) (-1119) (-366 *3) (-10 -8 (-15 -3953 ($ *4))))) (-4 *4 (-759)) (-4 *5 (-13 (-1162 *2 *4) (-314) (-1119) (-10 -8 (-15 -3764 ($ $)) (-15 -3818 ($ $))))) (-5 *1 (-369 *3 *2 *4 *5 *6 *7)) (-4 *6 (-900 *5)) (-14 *7 (-1094)))) (-1808 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-4 *3 (-13 (-27) (-1119) (-366 *6) (-10 -8 (-15 -3953 ($ *7))))) (-4 *7 (-759)) (-4 *8 (-13 (-1162 *3 *7) (-314) (-1119) (-10 -8 (-15 -3764 ($ $)) (-15 -3818 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1077)) (|:| |prob| (-1077)))))) (-5 *1 (-369 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1077)) (-4 *9 (-900 *8)) (-14 *10 (-1094)))) (-1807 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-4 *3 (-13 (-27) (-1119) (-366 *6) (-10 -8 (-15 -3953 ($ *7))))) (-4 *7 (-759)) (-4 *8 (-13 (-1162 *3 *7) (-314) (-1119) (-10 -8 (-15 -3764 ($ $)) (-15 -3818 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1077)) (|:| |prob| (-1077)))))) (-5 *1 (-369 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1077)) (-4 *9 (-900 *8)) (-14 *10 (-1094))))) +((-1810 (($) 51 T ELT)) (-3240 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3242 (($ $ $) 46 T ELT)) (-3241 (((-85) $ $) 35 T ELT)) (-3142 (((-698)) 55 T ELT)) (-3245 (($ (-587 |#2|)) 23 T ELT) (($) NIL T ELT)) (-3000 (($) 66 T ELT)) (-3247 (((-85) $ $) 15 T ELT)) (-2537 ((|#2| $) 77 T ELT)) (-2863 ((|#2| $) 75 T ELT)) (-2015 (((-834) $) 70 T ELT)) (-3244 (($ $ $) 42 T ELT)) (-2405 (($ (-834)) 60 T ELT)) (-3243 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1735 (((-698) |#2| $) 31 T ELT) (((-698) (-1 (-85) |#2|) $) NIL T ELT)) (-3536 (($ (-587 |#2|)) 27 T ELT)) (-1811 (($ $) 53 T ELT)) (-3953 (((-776) $) 40 T ELT)) (-1812 (((-698) $) 24 T ELT)) (-3246 (($ (-587 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3062 (((-85) $ $) 19 T ELT))) +(((-370 |#1| |#2|) (-10 -7 (-15 -3142 ((-698))) (-15 -2405 (|#1| (-834))) (-15 -2015 ((-834) |#1|)) (-15 -3000 (|#1|)) (-15 -2537 (|#2| |#1|)) (-15 -2863 (|#2| |#1|)) (-15 -1810 (|#1|)) (-15 -1811 (|#1| |#1|)) (-15 -1812 ((-698) |#1|)) (-15 -1735 ((-698) (-1 (-85) |#2|) |#1|)) (-15 -1735 ((-698) |#2| |#1|)) (-15 -3062 ((-85) |#1| |#1|)) (-15 -3953 ((-776) |#1|)) (-15 -3247 ((-85) |#1| |#1|)) (-15 -3246 (|#1|)) (-15 -3246 (|#1| (-587 |#2|))) (-15 -3245 (|#1|)) (-15 -3245 (|#1| (-587 |#2|))) (-15 -3244 (|#1| |#1| |#1|)) (-15 -3243 (|#1| |#1| |#1|)) (-15 -3243 (|#1| |#1| |#2|)) (-15 -3242 (|#1| |#1| |#1|)) (-15 -3241 ((-85) |#1| |#1|)) (-15 -3240 (|#1| |#1| |#1|)) (-15 -3240 (|#1| |#1| |#2|)) (-15 -3240 (|#1| |#2| |#1|)) (-15 -3536 (|#1| (-587 |#2|)))) (-371 |#2|) (-1017)) (T -370)) +((-3142 (*1 *2) (-12 (-4 *4 (-1017)) (-5 *2 (-698)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4))))) +((-2574 (((-85) $ $) 18 T ELT)) (-1810 (($) 61 (|has| |#1| (-322)) ELT)) (-3240 (($ |#1| $) 87 T ELT) (($ $ |#1|) 86 T ELT) (($ $ $) 85 T ELT)) (-3242 (($ $ $) 83 T ELT)) (-3241 (((-85) $ $) 84 T ELT)) (-3142 (((-698)) 55 (|has| |#1| (-322)) ELT)) (-3245 (($ (-587 |#1|)) 79 T ELT) (($) 78 T ELT)) (-1574 (($ (-1 (-85) |#1|) $) 42 (|has| $ (-320 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-320 |#1|)) ELT)) (-3730 (($) 6 T CONST)) (-1357 (($ $) 51 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-3411 (($ |#1| $) 44 (|has| $ (-320 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 43 (|has| $ (-320 |#1|)) ELT)) (-3412 (($ |#1| $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 48 (|has| $ (-320 |#1|)) ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 74 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 70 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 69 T ELT)) (-3000 (($) 58 (|has| |#1| (-322)) ELT)) (-3247 (((-85) $ $) 75 T ELT)) (-2537 ((|#1| $) 59 (|has| |#1| (-760)) ELT)) (-2614 (((-587 |#1|) $) 68 T ELT)) (-3251 (((-85) |#1| $) 73 (|has| |#1| (-72)) ELT)) (-2863 ((|#1| $) 60 (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-2015 (((-834) $) 57 (|has| |#1| (-322)) ELT)) (-3248 (((-1077) $) 21 T ELT)) (-3244 (($ $ $) 80 T ELT)) (-1278 ((|#1| $) 35 T ELT)) (-3615 (($ |#1| $) 36 T ELT)) (-2405 (($ (-834)) 56 (|has| |#1| (-322)) ELT)) (-3249 (((-1037) $) 20 T ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 71 T ELT)) (-1279 ((|#1| $) 37 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) 66 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3243 (($ $ |#1|) 82 T ELT) (($ $ $) 81 T ELT)) (-1470 (($) 46 T ELT) (($ (-587 |#1|)) 45 T ELT)) (-1735 (((-698) |#1| $) 72 (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) 67 T ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 52 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 47 T ELT)) (-1811 (($ $) 62 (|has| |#1| (-322)) ELT)) (-3953 (((-776) $) 16 T ELT)) (-1812 (((-698) $) 63 T ELT)) (-3246 (($ (-587 |#1|)) 77 T ELT) (($) 76 T ELT)) (-1269 (((-85) $ $) 19 T ELT)) (-1280 (($ (-587 |#1|)) 38 T ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) 65 T ELT)) (-3062 (((-85) $ $) 17 T ELT)) (-3964 (((-698) $) 64 T ELT))) +(((-371 |#1|) (-113) (-1017)) (T -371)) +((-1812 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-1017)) (-5 *2 (-698)))) (-1811 (*1 *1 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-1017)) (-4 *2 (-322)))) (-1810 (*1 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-322)) (-4 *2 (-1017)))) (-2863 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-1017)) (-4 *2 (-760)))) (-2537 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-1017)) (-4 *2 (-760))))) +(-13 (-185 |t#1|) (-1015 |t#1|) (-320 |t#1|) (-10 -8 (-15 -1812 ((-698) $)) (IF (|has| |t#1| (-322)) (PROGN (-6 (-322)) (-15 -1811 ($ $)) (-15 -1810 ($))) |%noBranch|) (IF (|has| |t#1| (-760)) (PROGN (-15 -2863 (|t#1| $)) (-15 -2537 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-556 (-776)) . T) ((-124 |#1|) . T) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-185 |#1|) . T) ((-195 |#1|) . T) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-322) |has| |#1| (-322)) ((-320 |#1|) . T) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-1015 |#1|) . T) ((-1017) . T) ((-1039 |#1|) . T) ((-1133) . T)) +((-3847 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3848 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3849 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) +(((-372 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3849 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3848 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3847 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1017) (-371 |#1|) (-1017) (-371 |#3|)) (T -372)) +((-3847 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1017)) (-4 *5 (-1017)) (-4 *2 (-371 *5)) (-5 *1 (-372 *6 *4 *5 *2)) (-4 *4 (-371 *6)))) (-3848 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1017)) (-4 *2 (-1017)) (-5 *1 (-372 *5 *4 *2 *6)) (-4 *4 (-371 *5)) (-4 *6 (-371 *2)))) (-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *2 (-371 *6)) (-5 *1 (-372 *5 *4 *6 *2)) (-4 *4 (-371 *5))))) +((-1813 (((-523 |#2|) |#2| (-1094)) 36 T ELT)) (-2105 (((-523 |#2|) |#2| (-1094)) 21 T ELT)) (-2154 ((|#2| |#2| (-1094)) 26 T ELT))) +(((-373 |#1| |#2|) (-10 -7 (-15 -2105 ((-523 |#2|) |#2| (-1094))) (-15 -1813 ((-523 |#2|) |#2| (-1094))) (-15 -2154 (|#2| |#2| (-1094)))) (-13 (-260) (-120) (-954 (-488)) (-584 (-488))) (-13 (-1119) (-29 |#1|))) (T -373)) +((-2154 (*1 *2 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-5 *1 (-373 *4 *2)) (-4 *2 (-13 (-1119) (-29 *4))))) (-1813 (*1 *2 *3 *4) (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 (-523 *3)) (-5 *1 (-373 *5 *3)) (-4 *3 (-13 (-1119) (-29 *5))))) (-2105 (*1 *2 *3 *4) (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 (-523 *3)) (-5 *1 (-373 *5 *3)) (-4 *3 (-13 (-1119) (-29 *5)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-1815 (($ |#2| |#1|) 37 T ELT)) (-1814 (($ |#2| |#1|) 35 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-283 |#2|)) 25 T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 10 T CONST)) (-2672 (($) 16 T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 36 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-374 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3988)) (IF (|has| |#1| (-6 -3988)) (-6 -3988) |%noBranch|) |%noBranch|) (-15 -3953 ($ |#1|)) (-15 -3953 ($ (-283 |#2|))) (-15 -1815 ($ |#2| |#1|)) (-15 -1814 ($ |#2| |#1|)))) (-13 (-148) (-38 (-352 (-488)))) (-13 (-760) (-21))) (T -374)) +((-3953 (*1 *1 *2) (-12 (-5 *1 (-374 *2 *3)) (-4 *2 (-13 (-148) (-38 (-352 (-488))))) (-4 *3 (-13 (-760) (-21))))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-283 *4)) (-4 *4 (-13 (-760) (-21))) (-5 *1 (-374 *3 *4)) (-4 *3 (-13 (-148) (-38 (-352 (-488))))))) (-1815 (*1 *1 *2 *3) (-12 (-5 *1 (-374 *3 *2)) (-4 *3 (-13 (-148) (-38 (-352 (-488))))) (-4 *2 (-13 (-760) (-21))))) (-1814 (*1 *1 *2 *3) (-12 (-5 *1 (-374 *3 *2)) (-4 *3 (-13 (-148) (-38 (-352 (-488))))) (-4 *2 (-13 (-760) (-21)))))) +((-3818 (((-3 |#2| (-587 |#2|)) |#2| (-1094)) 115 T ELT))) +(((-375 |#1| |#2|) (-10 -7 (-15 -3818 ((-3 |#2| (-587 |#2|)) |#2| (-1094)))) (-13 (-260) (-120) (-954 (-488)) (-584 (-488))) (-13 (-1119) (-875) (-29 |#1|))) (T -375)) +((-3818 (*1 *2 *3 *4) (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 (-3 *3 (-587 *3))) (-5 *1 (-375 *5 *3)) (-4 *3 (-13 (-1119) (-875) (-29 *5)))))) +((-3392 ((|#2| |#2| |#2|) 31 T ELT)) (-3601 (((-86) (-86)) 43 T ELT)) (-1817 ((|#2| |#2|) 63 T ELT)) (-1816 ((|#2| |#2|) 66 T ELT)) (-3391 ((|#2| |#2|) 30 T ELT)) (-3395 ((|#2| |#2| |#2|) 33 T ELT)) (-3397 ((|#2| |#2| |#2|) 35 T ELT)) (-3394 ((|#2| |#2| |#2|) 32 T ELT)) (-3396 ((|#2| |#2| |#2|) 34 T ELT)) (-2259 (((-85) (-86)) 41 T ELT)) (-3399 ((|#2| |#2|) 37 T ELT)) (-3398 ((|#2| |#2|) 36 T ELT)) (-3389 ((|#2| |#2|) 25 T ELT)) (-3393 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3390 ((|#2| |#2| |#2|) 29 T ELT))) +(((-376 |#1| |#2|) (-10 -7 (-15 -2259 ((-85) (-86))) (-15 -3601 ((-86) (-86))) (-15 -3389 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -3393 (|#2| |#2| |#2|)) (-15 -3390 (|#2| |#2| |#2|)) (-15 -3391 (|#2| |#2|)) (-15 -3392 (|#2| |#2| |#2|)) (-15 -3394 (|#2| |#2| |#2|)) (-15 -3395 (|#2| |#2| |#2|)) (-15 -3396 (|#2| |#2| |#2|)) (-15 -3397 (|#2| |#2| |#2|)) (-15 -3398 (|#2| |#2|)) (-15 -3399 (|#2| |#2|)) (-15 -1816 (|#2| |#2|)) (-15 -1817 (|#2| |#2|))) (-499) (-366 |#1|)) (T -376)) +((-1817 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) (-1816 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) (-3399 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) (-3398 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) (-3397 (*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) (-3396 (*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) (-3395 (*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) (-3394 (*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) (-3392 (*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) (-3391 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) (-3390 (*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) (-3393 (*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) (-3393 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) (-3389 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) (-3601 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-499)) (-5 *1 (-376 *3 *4)) (-4 *4 (-366 *3)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-499)) (-5 *2 (-85)) (-5 *1 (-376 *4 *5)) (-4 *5 (-366 *4))))) +((-2839 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1089 |#2|)) (|:| |pol2| (-1089 |#2|)) (|:| |prim| (-1089 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-587 (-1089 |#2|))) (|:| |prim| (-1089 |#2|))) (-587 |#2|)) 65 T ELT))) +(((-377 |#1| |#2|) (-10 -7 (-15 -2839 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-587 (-1089 |#2|))) (|:| |prim| (-1089 |#2|))) (-587 |#2|))) (IF (|has| |#2| (-27)) (-15 -2839 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1089 |#2|)) (|:| |pol2| (-1089 |#2|)) (|:| |prim| (-1089 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-499) (-120)) (-366 |#1|)) (T -377)) +((-2839 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-499) (-120))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1089 *3)) (|:| |pol2| (-1089 *3)) (|:| |prim| (-1089 *3)))) (-5 *1 (-377 *4 *3)) (-4 *3 (-27)) (-4 *3 (-366 *4)))) (-2839 (*1 *2 *3) (-12 (-5 *3 (-587 *5)) (-4 *5 (-366 *4)) (-4 *4 (-13 (-499) (-120))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-587 (-1089 *5))) (|:| |prim| (-1089 *5)))) (-5 *1 (-377 *4 *5))))) +((-1819 (((-1189)) 18 T ELT)) (-1818 (((-1089 (-352 (-488))) |#2| (-554 |#2|)) 40 T ELT) (((-352 (-488)) |#2|) 27 T ELT))) +(((-378 |#1| |#2|) (-10 -7 (-15 -1818 ((-352 (-488)) |#2|)) (-15 -1818 ((-1089 (-352 (-488))) |#2| (-554 |#2|))) (-15 -1819 ((-1189)))) (-13 (-499) (-954 (-488))) (-366 |#1|)) (T -378)) +((-1819 (*1 *2) (-12 (-4 *3 (-13 (-499) (-954 (-488)))) (-5 *2 (-1189)) (-5 *1 (-378 *3 *4)) (-4 *4 (-366 *3)))) (-1818 (*1 *2 *3 *4) (-12 (-5 *4 (-554 *3)) (-4 *3 (-366 *5)) (-4 *5 (-13 (-499) (-954 (-488)))) (-5 *2 (-1089 (-352 (-488)))) (-5 *1 (-378 *5 *3)))) (-1818 (*1 *2 *3) (-12 (-4 *4 (-13 (-499) (-954 (-488)))) (-5 *2 (-352 (-488))) (-5 *1 (-378 *4 *3)) (-4 *3 (-366 *4))))) +((-3651 (((-85) $) 33 T ELT)) (-1820 (((-85) $) 35 T ELT)) (-3265 (((-85) $) 36 T ELT)) (-1822 (((-85) $) 39 T ELT)) (-1824 (((-85) $) 34 T ELT)) (-1823 (((-85) $) 38 T ELT)) (-3953 (((-776) $) 20 T ELT) (($ (-1077)) 32 T ELT) (($ (-1094)) 30 T ELT) (((-1094) $) 24 T ELT) (((-1019) $) 23 T ELT)) (-1821 (((-85) $) 37 T ELT)) (-3062 (((-85) $ $) 17 T ELT))) +(((-379) (-13 (-556 (-776)) (-10 -8 (-15 -3953 ($ (-1077))) (-15 -3953 ($ (-1094))) (-15 -3953 ((-1094) $)) (-15 -3953 ((-1019) $)) (-15 -3651 ((-85) $)) (-15 -1824 ((-85) $)) (-15 -3265 ((-85) $)) (-15 -1823 ((-85) $)) (-15 -1822 ((-85) $)) (-15 -1821 ((-85) $)) (-15 -1820 ((-85) $)) (-15 -3062 ((-85) $ $))))) (T -379)) +((-3953 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-379)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-379)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-379)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-1019)) (-5 *1 (-379)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))) (-1824 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))) (-1823 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))) (-1821 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))) (-3062 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379))))) +((-1826 (((-3 (-350 (-1089 (-352 (-488)))) #1="failed") |#3|) 71 T ELT)) (-1825 (((-350 |#3|) |#3|) 34 T ELT)) (-1828 (((-3 (-350 (-1089 (-48))) #1#) |#3|) 29 (|has| |#2| (-954 (-48))) ELT)) (-1827 (((-3 (|:| |overq| (-1089 (-352 (-488)))) (|:| |overan| (-1089 (-48))) (|:| -2645 (-85))) |#3|) 37 T ELT))) +(((-380 |#1| |#2| |#3|) (-10 -7 (-15 -1825 ((-350 |#3|) |#3|)) (-15 -1826 ((-3 (-350 (-1089 (-352 (-488)))) #1="failed") |#3|)) (-15 -1827 ((-3 (|:| |overq| (-1089 (-352 (-488)))) (|:| |overan| (-1089 (-48))) (|:| -2645 (-85))) |#3|)) (IF (|has| |#2| (-954 (-48))) (-15 -1828 ((-3 (-350 (-1089 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-499) (-954 (-488))) (-366 |#1|) (-1159 |#2|)) (T -380)) +((-1828 (*1 *2 *3) (|partial| -12 (-4 *5 (-954 (-48))) (-4 *4 (-13 (-499) (-954 (-488)))) (-4 *5 (-366 *4)) (-5 *2 (-350 (-1089 (-48)))) (-5 *1 (-380 *4 *5 *3)) (-4 *3 (-1159 *5)))) (-1827 (*1 *2 *3) (-12 (-4 *4 (-13 (-499) (-954 (-488)))) (-4 *5 (-366 *4)) (-5 *2 (-3 (|:| |overq| (-1089 (-352 (-488)))) (|:| |overan| (-1089 (-48))) (|:| -2645 (-85)))) (-5 *1 (-380 *4 *5 *3)) (-4 *3 (-1159 *5)))) (-1826 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-499) (-954 (-488)))) (-4 *5 (-366 *4)) (-5 *2 (-350 (-1089 (-352 (-488))))) (-5 *1 (-380 *4 *5 *3)) (-4 *3 (-1159 *5)))) (-1825 (*1 *2 *3) (-12 (-4 *4 (-13 (-499) (-954 (-488)))) (-4 *5 (-366 *4)) (-5 *2 (-350 *3)) (-5 *1 (-380 *4 *5 *3)) (-4 *3 (-1159 *5))))) +((-2574 (((-85) $ $) NIL T ELT)) (-1838 (((-3 (|:| |fst| (-379)) (|:| -3917 #1="void")) $) 11 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1835 (($) 35 T ELT)) (-1832 (($) 41 T ELT)) (-1833 (($) 37 T ELT)) (-1830 (($) 39 T ELT)) (-1834 (($) 36 T ELT)) (-1831 (($) 38 T ELT)) (-1829 (($) 40 T ELT)) (-1836 (((-85) $) 8 T ELT)) (-1837 (((-587 (-861 (-488))) $) 19 T ELT)) (-3536 (($ (-3 (|:| |fst| (-379)) (|:| -3917 #1#)) (-587 (-1094)) (-85)) 29 T ELT) (($ (-3 (|:| |fst| (-379)) (|:| -3917 #1#)) (-587 (-861 (-488))) (-85)) 30 T ELT)) (-3953 (((-776) $) 24 T ELT) (($ (-379)) 32 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-381) (-13 (-1017) (-10 -8 (-15 -3953 ($ (-379))) (-15 -1838 ((-3 (|:| |fst| (-379)) (|:| -3917 #1="void")) $)) (-15 -1837 ((-587 (-861 (-488))) $)) (-15 -1836 ((-85) $)) (-15 -3536 ($ (-3 (|:| |fst| (-379)) (|:| -3917 #1#)) (-587 (-1094)) (-85))) (-15 -3536 ($ (-3 (|:| |fst| (-379)) (|:| -3917 #1#)) (-587 (-861 (-488))) (-85))) (-15 -1835 ($)) (-15 -1834 ($)) (-15 -1833 ($)) (-15 -1832 ($)) (-15 -1831 ($)) (-15 -1830 ($)) (-15 -1829 ($))))) (T -381)) +((-3953 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-381)))) (-1838 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-379)) (|:| -3917 #1="void"))) (-5 *1 (-381)))) (-1837 (*1 *2 *1) (-12 (-5 *2 (-587 (-861 (-488)))) (-5 *1 (-381)))) (-1836 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-381)))) (-3536 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-379)) (|:| -3917 #1#))) (-5 *3 (-587 (-1094))) (-5 *4 (-85)) (-5 *1 (-381)))) (-3536 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-379)) (|:| -3917 #1#))) (-5 *3 (-587 (-861 (-488)))) (-5 *4 (-85)) (-5 *1 (-381)))) (-1835 (*1 *1) (-5 *1 (-381))) (-1834 (*1 *1) (-5 *1 (-381))) (-1833 (*1 *1) (-5 *1 (-381))) (-1832 (*1 *1) (-5 *1 (-381))) (-1831 (*1 *1) (-5 *1 (-381))) (-1830 (*1 *1) (-5 *1 (-381))) (-1829 (*1 *1) (-5 *1 (-381)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3548 (((-1094) $) 8 T ELT)) (-3248 (((-1077) $) 17 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 11 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 14 T ELT))) +(((-382 |#1|) (-13 (-1017) (-10 -8 (-15 -3548 ((-1094) $)))) (-1094)) (T -382)) +((-3548 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-382 *3)) (-14 *3 *2)))) +((-3849 (($ (-1 |#1| |#1|) $) 6 T ELT))) +(((-383 |#1|) (-113) (-1133)) (T -383)) +((-3849 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-383 *3)) (-4 *3 (-1133))))) +(-13 (-1133) (-10 -8 (-15 -3849 ($ (-1 |t#1| |t#1|) $)))) +(((-13) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3325 (((-1032) $) 7 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 9 T ELT))) +(((-384) (-13 (-1017) (-10 -8 (-15 -3325 ((-1032) $))))) (T -384)) +((-3325 (*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-384))))) +((-1844 (((-85)) 18 T ELT)) (-1845 (((-85) (-85)) 19 T ELT)) (-1846 (((-85)) 14 T ELT)) (-1847 (((-85) (-85)) 15 T ELT)) (-1849 (((-85)) 16 T ELT)) (-1850 (((-85) (-85)) 17 T ELT)) (-1841 (((-834) (-834)) 22 T ELT) (((-834)) 21 T ELT)) (-1842 (((-698) (-587 (-2 (|:| -3738 |#1|) (|:| -3955 (-488))))) 52 T ELT)) (-1840 (((-834) (-834)) 24 T ELT) (((-834)) 23 T ELT)) (-1843 (((-2 (|:| -2584 (-488)) (|:| -1787 (-587 |#1|))) |#1|) 94 T ELT)) (-1839 (((-350 |#1|) (-2 (|:| |contp| (-488)) (|:| -1787 (-587 (-2 (|:| |irr| |#1|) (|:| -2400 (-488))))))) 176 T ELT)) (-3740 (((-2 (|:| |contp| (-488)) (|:| -1787 (-587 (-2 (|:| |irr| |#1|) (|:| -2400 (-488)))))) |#1| (-85)) 209 T ELT)) (-3739 (((-350 |#1|) |#1| (-698) (-698)) 224 T ELT) (((-350 |#1|) |#1| (-587 (-698)) (-698)) 221 T ELT) (((-350 |#1|) |#1| (-587 (-698))) 223 T ELT) (((-350 |#1|) |#1| (-698)) 222 T ELT) (((-350 |#1|) |#1|) 220 T ELT)) (-1861 (((-3 |#1| #1="failed") (-834) |#1| (-587 (-698)) (-698) (-85)) 226 T ELT) (((-3 |#1| #1#) (-834) |#1| (-587 (-698)) (-698)) 227 T ELT) (((-3 |#1| #1#) (-834) |#1| (-587 (-698))) 229 T ELT) (((-3 |#1| #1#) (-834) |#1| (-698)) 228 T ELT) (((-3 |#1| #1#) (-834) |#1|) 230 T ELT)) (-3738 (((-350 |#1|) |#1| (-698) (-698)) 219 T ELT) (((-350 |#1|) |#1| (-587 (-698)) (-698)) 215 T ELT) (((-350 |#1|) |#1| (-587 (-698))) 217 T ELT) (((-350 |#1|) |#1| (-698)) 216 T ELT) (((-350 |#1|) |#1|) 214 T ELT)) (-1848 (((-85) |#1|) 43 T ELT)) (-1860 (((-679 (-698)) (-587 (-2 (|:| -3738 |#1|) (|:| -3955 (-488))))) 99 T ELT)) (-1851 (((-2 (|:| |contp| (-488)) (|:| -1787 (-587 (-2 (|:| |irr| |#1|) (|:| -2400 (-488)))))) |#1| (-85) (-1013 (-698)) (-698)) 213 T ELT))) +(((-385 |#1|) (-10 -7 (-15 -1839 ((-350 |#1|) (-2 (|:| |contp| (-488)) (|:| -1787 (-587 (-2 (|:| |irr| |#1|) (|:| -2400 (-488)))))))) (-15 -1860 ((-679 (-698)) (-587 (-2 (|:| -3738 |#1|) (|:| -3955 (-488)))))) (-15 -1840 ((-834))) (-15 -1840 ((-834) (-834))) (-15 -1841 ((-834))) (-15 -1841 ((-834) (-834))) (-15 -1842 ((-698) (-587 (-2 (|:| -3738 |#1|) (|:| -3955 (-488)))))) (-15 -1843 ((-2 (|:| -2584 (-488)) (|:| -1787 (-587 |#1|))) |#1|)) (-15 -1844 ((-85))) (-15 -1845 ((-85) (-85))) (-15 -1846 ((-85))) (-15 -1847 ((-85) (-85))) (-15 -1848 ((-85) |#1|)) (-15 -1849 ((-85))) (-15 -1850 ((-85) (-85))) (-15 -3738 ((-350 |#1|) |#1|)) (-15 -3738 ((-350 |#1|) |#1| (-698))) (-15 -3738 ((-350 |#1|) |#1| (-587 (-698)))) (-15 -3738 ((-350 |#1|) |#1| (-587 (-698)) (-698))) (-15 -3738 ((-350 |#1|) |#1| (-698) (-698))) (-15 -3739 ((-350 |#1|) |#1|)) (-15 -3739 ((-350 |#1|) |#1| (-698))) (-15 -3739 ((-350 |#1|) |#1| (-587 (-698)))) (-15 -3739 ((-350 |#1|) |#1| (-587 (-698)) (-698))) (-15 -3739 ((-350 |#1|) |#1| (-698) (-698))) (-15 -1861 ((-3 |#1| #1="failed") (-834) |#1|)) (-15 -1861 ((-3 |#1| #1#) (-834) |#1| (-698))) (-15 -1861 ((-3 |#1| #1#) (-834) |#1| (-587 (-698)))) (-15 -1861 ((-3 |#1| #1#) (-834) |#1| (-587 (-698)) (-698))) (-15 -1861 ((-3 |#1| #1#) (-834) |#1| (-587 (-698)) (-698) (-85))) (-15 -3740 ((-2 (|:| |contp| (-488)) (|:| -1787 (-587 (-2 (|:| |irr| |#1|) (|:| -2400 (-488)))))) |#1| (-85))) (-15 -1851 ((-2 (|:| |contp| (-488)) (|:| -1787 (-587 (-2 (|:| |irr| |#1|) (|:| -2400 (-488)))))) |#1| (-85) (-1013 (-698)) (-698)))) (-1159 (-488))) (T -385)) +((-1851 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-85)) (-5 *5 (-1013 (-698))) (-5 *6 (-698)) (-5 *2 (-2 (|:| |contp| (-488)) (|:| -1787 (-587 (-2 (|:| |irr| *3) (|:| -2400 (-488))))))) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-3740 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-488)) (|:| -1787 (-587 (-2 (|:| |irr| *3) (|:| -2400 (-488))))))) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-1861 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-834)) (-5 *4 (-587 (-698))) (-5 *5 (-698)) (-5 *6 (-85)) (-5 *1 (-385 *2)) (-4 *2 (-1159 (-488))))) (-1861 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-834)) (-5 *4 (-587 (-698))) (-5 *5 (-698)) (-5 *1 (-385 *2)) (-4 *2 (-1159 (-488))))) (-1861 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-834)) (-5 *4 (-587 (-698))) (-5 *1 (-385 *2)) (-4 *2 (-1159 (-488))))) (-1861 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-834)) (-5 *4 (-698)) (-5 *1 (-385 *2)) (-4 *2 (-1159 (-488))))) (-1861 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-834)) (-5 *1 (-385 *2)) (-4 *2 (-1159 (-488))))) (-3739 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-698)) (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-3739 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-587 (-698))) (-5 *5 (-698)) (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-698))) (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-698)) (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-3739 (*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-3738 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-698)) (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-3738 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-587 (-698))) (-5 *5 (-698)) (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-3738 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-698))) (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-3738 (*1 *2 *3 *4) (-12 (-5 *4 (-698)) (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-3738 (*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-1850 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-1849 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-1848 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-1847 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-1846 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-1845 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-1844 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-1843 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2584 (-488)) (|:| -1787 (-587 *3)))) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-1842 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -3738 *4) (|:| -3955 (-488))))) (-4 *4 (-1159 (-488))) (-5 *2 (-698)) (-5 *1 (-385 *4)))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-1841 (*1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-1840 (*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-1840 (*1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) (-1860 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -3738 *4) (|:| -3955 (-488))))) (-4 *4 (-1159 (-488))) (-5 *2 (-679 (-698))) (-5 *1 (-385 *4)))) (-1839 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-488)) (|:| -1787 (-587 (-2 (|:| |irr| *4) (|:| -2400 (-488))))))) (-4 *4 (-1159 (-488))) (-5 *2 (-350 *4)) (-5 *1 (-385 *4))))) +((-1855 (((-488) |#2|) 52 T ELT) (((-488) |#2| (-698)) 51 T ELT)) (-1854 (((-488) |#2|) 64 T ELT)) (-1856 ((|#3| |#2|) 26 T ELT)) (-3138 ((|#3| |#2| (-834)) 15 T ELT)) (-3839 ((|#3| |#2|) 16 T ELT)) (-1857 ((|#3| |#2|) 9 T ELT)) (-2609 ((|#3| |#2|) 10 T ELT)) (-1853 ((|#3| |#2| (-834)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1852 (((-488) |#2|) 66 T ELT))) +(((-386 |#1| |#2| |#3|) (-10 -7 (-15 -1852 ((-488) |#2|)) (-15 -1853 (|#3| |#2|)) (-15 -1853 (|#3| |#2| (-834))) (-15 -1854 ((-488) |#2|)) (-15 -1855 ((-488) |#2| (-698))) (-15 -1855 ((-488) |#2|)) (-15 -3138 (|#3| |#2| (-834))) (-15 -1856 (|#3| |#2|)) (-15 -1857 (|#3| |#2|)) (-15 -2609 (|#3| |#2|)) (-15 -3839 (|#3| |#2|))) (-965) (-1159 |#1|) (-13 (-349) (-954 |#1|) (-314) (-1119) (-241))) (T -386)) +((-3839 (*1 *2 *3) (-12 (-4 *4 (-965)) (-4 *2 (-13 (-349) (-954 *4) (-314) (-1119) (-241))) (-5 *1 (-386 *4 *3 *2)) (-4 *3 (-1159 *4)))) (-2609 (*1 *2 *3) (-12 (-4 *4 (-965)) (-4 *2 (-13 (-349) (-954 *4) (-314) (-1119) (-241))) (-5 *1 (-386 *4 *3 *2)) (-4 *3 (-1159 *4)))) (-1857 (*1 *2 *3) (-12 (-4 *4 (-965)) (-4 *2 (-13 (-349) (-954 *4) (-314) (-1119) (-241))) (-5 *1 (-386 *4 *3 *2)) (-4 *3 (-1159 *4)))) (-1856 (*1 *2 *3) (-12 (-4 *4 (-965)) (-4 *2 (-13 (-349) (-954 *4) (-314) (-1119) (-241))) (-5 *1 (-386 *4 *3 *2)) (-4 *3 (-1159 *4)))) (-3138 (*1 *2 *3 *4) (-12 (-5 *4 (-834)) (-4 *5 (-965)) (-4 *2 (-13 (-349) (-954 *5) (-314) (-1119) (-241))) (-5 *1 (-386 *5 *3 *2)) (-4 *3 (-1159 *5)))) (-1855 (*1 *2 *3) (-12 (-4 *4 (-965)) (-5 *2 (-488)) (-5 *1 (-386 *4 *3 *5)) (-4 *3 (-1159 *4)) (-4 *5 (-13 (-349) (-954 *4) (-314) (-1119) (-241))))) (-1855 (*1 *2 *3 *4) (-12 (-5 *4 (-698)) (-4 *5 (-965)) (-5 *2 (-488)) (-5 *1 (-386 *5 *3 *6)) (-4 *3 (-1159 *5)) (-4 *6 (-13 (-349) (-954 *5) (-314) (-1119) (-241))))) (-1854 (*1 *2 *3) (-12 (-4 *4 (-965)) (-5 *2 (-488)) (-5 *1 (-386 *4 *3 *5)) (-4 *3 (-1159 *4)) (-4 *5 (-13 (-349) (-954 *4) (-314) (-1119) (-241))))) (-1853 (*1 *2 *3 *4) (-12 (-5 *4 (-834)) (-4 *5 (-965)) (-4 *2 (-13 (-349) (-954 *5) (-314) (-1119) (-241))) (-5 *1 (-386 *5 *3 *2)) (-4 *3 (-1159 *5)))) (-1853 (*1 *2 *3) (-12 (-4 *4 (-965)) (-4 *2 (-13 (-349) (-954 *4) (-314) (-1119) (-241))) (-5 *1 (-386 *4 *3 *2)) (-4 *3 (-1159 *4)))) (-1852 (*1 *2 *3) (-12 (-4 *4 (-965)) (-5 *2 (-488)) (-5 *1 (-386 *4 *3 *5)) (-4 *3 (-1159 *4)) (-4 *5 (-13 (-349) (-954 *4) (-314) (-1119) (-241)))))) +((-3360 ((|#2| (-1183 |#1|)) 42 T ELT)) (-1859 ((|#2| |#2| |#1|) 58 T ELT)) (-1858 ((|#2| |#2| |#1|) 49 T ELT)) (-2303 ((|#2| |#2|) 44 T ELT)) (-3179 (((-85) |#2|) 32 T ELT)) (-1862 (((-587 |#2|) (-834) (-350 |#2|)) 21 T ELT)) (-1861 ((|#2| (-834) (-350 |#2|)) 25 T ELT)) (-1860 (((-679 (-698)) (-350 |#2|)) 29 T ELT))) +(((-387 |#1| |#2|) (-10 -7 (-15 -3179 ((-85) |#2|)) (-15 -3360 (|#2| (-1183 |#1|))) (-15 -2303 (|#2| |#2|)) (-15 -1858 (|#2| |#2| |#1|)) (-15 -1859 (|#2| |#2| |#1|)) (-15 -1860 ((-679 (-698)) (-350 |#2|))) (-15 -1861 (|#2| (-834) (-350 |#2|))) (-15 -1862 ((-587 |#2|) (-834) (-350 |#2|)))) (-965) (-1159 |#1|)) (T -387)) +((-1862 (*1 *2 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-350 *6)) (-4 *6 (-1159 *5)) (-4 *5 (-965)) (-5 *2 (-587 *6)) (-5 *1 (-387 *5 *6)))) (-1861 (*1 *2 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-350 *2)) (-4 *2 (-1159 *5)) (-5 *1 (-387 *5 *2)) (-4 *5 (-965)))) (-1860 (*1 *2 *3) (-12 (-5 *3 (-350 *5)) (-4 *5 (-1159 *4)) (-4 *4 (-965)) (-5 *2 (-679 (-698))) (-5 *1 (-387 *4 *5)))) (-1859 (*1 *2 *2 *3) (-12 (-4 *3 (-965)) (-5 *1 (-387 *3 *2)) (-4 *2 (-1159 *3)))) (-1858 (*1 *2 *2 *3) (-12 (-4 *3 (-965)) (-5 *1 (-387 *3 *2)) (-4 *2 (-1159 *3)))) (-2303 (*1 *2 *2) (-12 (-4 *3 (-965)) (-5 *1 (-387 *3 *2)) (-4 *2 (-1159 *3)))) (-3360 (*1 *2 *3) (-12 (-5 *3 (-1183 *4)) (-4 *4 (-965)) (-4 *2 (-1159 *4)) (-5 *1 (-387 *4 *2)))) (-3179 (*1 *2 *3) (-12 (-4 *4 (-965)) (-5 *2 (-85)) (-5 *1 (-387 *4 *3)) (-4 *3 (-1159 *4))))) +((-1865 (((-698)) 59 T ELT)) (-1869 (((-698)) 29 (|has| |#1| (-349)) ELT) (((-698) (-698)) 28 (|has| |#1| (-349)) ELT)) (-1868 (((-488) |#1|) 25 (|has| |#1| (-349)) ELT)) (-1867 (((-488) |#1|) 27 (|has| |#1| (-349)) ELT)) (-1864 (((-698)) 58 T ELT) (((-698) (-698)) 57 T ELT)) (-1863 ((|#1| (-698) (-488)) 37 T ELT)) (-1866 (((-1189)) 61 T ELT))) +(((-388 |#1|) (-10 -7 (-15 -1863 (|#1| (-698) (-488))) (-15 -1864 ((-698) (-698))) (-15 -1864 ((-698))) (-15 -1865 ((-698))) (-15 -1866 ((-1189))) (IF (|has| |#1| (-349)) (PROGN (-15 -1867 ((-488) |#1|)) (-15 -1868 ((-488) |#1|)) (-15 -1869 ((-698) (-698))) (-15 -1869 ((-698)))) |%noBranch|)) (-965)) (T -388)) +((-1869 (*1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-388 *3)) (-4 *3 (-349)) (-4 *3 (-965)))) (-1869 (*1 *2 *2) (-12 (-5 *2 (-698)) (-5 *1 (-388 *3)) (-4 *3 (-349)) (-4 *3 (-965)))) (-1868 (*1 *2 *3) (-12 (-5 *2 (-488)) (-5 *1 (-388 *3)) (-4 *3 (-349)) (-4 *3 (-965)))) (-1867 (*1 *2 *3) (-12 (-5 *2 (-488)) (-5 *1 (-388 *3)) (-4 *3 (-349)) (-4 *3 (-965)))) (-1866 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-388 *3)) (-4 *3 (-965)))) (-1865 (*1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-388 *3)) (-4 *3 (-965)))) (-1864 (*1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-388 *3)) (-4 *3 (-965)))) (-1864 (*1 *2 *2) (-12 (-5 *2 (-698)) (-5 *1 (-388 *3)) (-4 *3 (-965)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-698)) (-5 *4 (-488)) (-5 *1 (-388 *2)) (-4 *2 (-965))))) +((-1870 (((-587 (-488)) (-488)) 76 T ELT)) (-3729 (((-85) (-144 (-488))) 84 T ELT)) (-3738 (((-350 (-144 (-488))) (-144 (-488))) 75 T ELT))) +(((-389) (-10 -7 (-15 -3738 ((-350 (-144 (-488))) (-144 (-488)))) (-15 -1870 ((-587 (-488)) (-488))) (-15 -3729 ((-85) (-144 (-488)))))) (T -389)) +((-3729 (*1 *2 *3) (-12 (-5 *3 (-144 (-488))) (-5 *2 (-85)) (-5 *1 (-389)))) (-1870 (*1 *2 *3) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-389)) (-5 *3 (-488)))) (-3738 (*1 *2 *3) (-12 (-5 *2 (-350 (-144 (-488)))) (-5 *1 (-389)) (-5 *3 (-144 (-488)))))) +((-2952 ((|#4| |#4| (-587 |#4|)) 20 (|has| |#1| (-314)) ELT)) (-2256 (((-587 |#4|) (-587 |#4|) (-1077) (-1077)) 46 T ELT) (((-587 |#4|) (-587 |#4|) (-1077)) 45 T ELT) (((-587 |#4|) (-587 |#4|)) 34 T ELT))) +(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2256 ((-587 |#4|) (-587 |#4|))) (-15 -2256 ((-587 |#4|) (-587 |#4|) (-1077))) (-15 -2256 ((-587 |#4|) (-587 |#4|) (-1077) (-1077))) (IF (|has| |#1| (-314)) (-15 -2952 (|#4| |#4| (-587 |#4|))) |%noBranch|)) (-395) (-721) (-760) (-865 |#1| |#2| |#3|)) (T -390)) +((-2952 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-865 *4 *5 *6)) (-4 *4 (-314)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-390 *4 *5 *6 *2)))) (-2256 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-1077)) (-4 *7 (-865 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-390 *4 *5 *6 *7)))) (-2256 (*1 *2 *2 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-1077)) (-4 *7 (-865 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-390 *4 *5 *6 *7)))) (-2256 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-865 *3 *4 *5)) (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-390 *3 *4 *5 *6))))) +((-1871 ((|#4| |#4| (-587 |#4|)) 82 T ELT)) (-1872 (((-587 |#4|) (-587 |#4|) (-1077) (-1077)) 22 T ELT) (((-587 |#4|) (-587 |#4|) (-1077)) 21 T ELT) (((-587 |#4|) (-587 |#4|)) 13 T ELT))) +(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1871 (|#4| |#4| (-587 |#4|))) (-15 -1872 ((-587 |#4|) (-587 |#4|))) (-15 -1872 ((-587 |#4|) (-587 |#4|) (-1077))) (-15 -1872 ((-587 |#4|) (-587 |#4|) (-1077) (-1077)))) (-260) (-721) (-760) (-865 |#1| |#2| |#3|)) (T -391)) +((-1872 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-1077)) (-4 *7 (-865 *4 *5 *6)) (-4 *4 (-260)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-391 *4 *5 *6 *7)))) (-1872 (*1 *2 *2 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-1077)) (-4 *7 (-865 *4 *5 *6)) (-4 *4 (-260)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-391 *4 *5 *6 *7)))) (-1872 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-865 *3 *4 *5)) (-4 *3 (-260)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-391 *3 *4 *5 *6)))) (-1871 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-865 *4 *5 *6)) (-4 *4 (-260)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-391 *4 *5 *6 *2))))) +((-1874 (((-587 (-587 |#4|)) (-587 |#4|) (-85)) 90 T ELT) (((-587 (-587 |#4|)) (-587 |#4|)) 89 T ELT) (((-587 (-587 |#4|)) (-587 |#4|) (-587 |#4|) (-85)) 83 T ELT) (((-587 (-587 |#4|)) (-587 |#4|) (-587 |#4|)) 84 T ELT)) (-1873 (((-587 (-587 |#4|)) (-587 |#4|) (-85)) 56 T ELT) (((-587 (-587 |#4|)) (-587 |#4|)) 78 T ELT))) +(((-392 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1873 ((-587 (-587 |#4|)) (-587 |#4|))) (-15 -1873 ((-587 (-587 |#4|)) (-587 |#4|) (-85))) (-15 -1874 ((-587 (-587 |#4|)) (-587 |#4|) (-587 |#4|))) (-15 -1874 ((-587 (-587 |#4|)) (-587 |#4|) (-587 |#4|) (-85))) (-15 -1874 ((-587 (-587 |#4|)) (-587 |#4|))) (-15 -1874 ((-587 (-587 |#4|)) (-587 |#4|) (-85)))) (-13 (-260) (-120)) (-721) (-760) (-865 |#1| |#2| |#3|)) (T -392)) +((-1874 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-260) (-120))) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *8 (-865 *5 *6 *7)) (-5 *2 (-587 (-587 *8))) (-5 *1 (-392 *5 *6 *7 *8)) (-5 *3 (-587 *8)))) (-1874 (*1 *2 *3) (-12 (-4 *4 (-13 (-260) (-120))) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-865 *4 *5 *6)) (-5 *2 (-587 (-587 *7))) (-5 *1 (-392 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-1874 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-260) (-120))) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *8 (-865 *5 *6 *7)) (-5 *2 (-587 (-587 *8))) (-5 *1 (-392 *5 *6 *7 *8)) (-5 *3 (-587 *8)))) (-1874 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-260) (-120))) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-865 *4 *5 *6)) (-5 *2 (-587 (-587 *7))) (-5 *1 (-392 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-1873 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-260) (-120))) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *8 (-865 *5 *6 *7)) (-5 *2 (-587 (-587 *8))) (-5 *1 (-392 *5 *6 *7 *8)) (-5 *3 (-587 *8)))) (-1873 (*1 *2 *3) (-12 (-4 *4 (-13 (-260) (-120))) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-865 *4 *5 *6)) (-5 *2 (-587 (-587 *7))) (-5 *1 (-392 *4 *5 *6 *7)) (-5 *3 (-587 *7))))) +((-1898 (((-698) |#4|) 12 T ELT)) (-1886 (((-587 (-2 (|:| |totdeg| (-698)) (|:| -2009 |#4|))) |#4| (-698) (-587 (-2 (|:| |totdeg| (-698)) (|:| -2009 |#4|)))) 39 T ELT)) (-1888 (((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1887 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1876 ((|#4| |#4| (-587 |#4|)) 54 T ELT)) (-1884 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-587 |#4|)) 96 T ELT)) (-1891 (((-1189) |#4|) 59 T ELT)) (-1894 (((-1189) (-587 |#4|)) 69 T ELT)) (-1892 (((-488) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-488) (-488) (-488)) 66 T ELT)) (-1895 (((-1189) (-488)) 110 T ELT)) (-1889 (((-587 |#4|) (-587 |#4|)) 104 T ELT)) (-1897 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-698)) (|:| -2009 |#4|)) |#4| (-698)) 31 T ELT)) (-1890 (((-488) |#4|) 109 T ELT)) (-1885 ((|#4| |#4|) 37 T ELT)) (-1877 (((-587 |#4|) (-587 |#4|) (-488) (-488)) 74 T ELT)) (-1893 (((-488) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-488) (-488) (-488) (-488)) 123 T ELT)) (-1896 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1878 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1883 (((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1882 (((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1879 (((-85) |#2| |#2|) 75 T ELT)) (-1881 (((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1880 (((-85) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1875 ((|#4| |#4| (-587 |#4|)) 97 T ELT))) +(((-393 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1875 (|#4| |#4| (-587 |#4|))) (-15 -1876 (|#4| |#4| (-587 |#4|))) (-15 -1877 ((-587 |#4|) (-587 |#4|) (-488) (-488))) (-15 -1878 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1879 ((-85) |#2| |#2|)) (-15 -1880 ((-85) |#2| |#2| |#2| |#2|)) (-15 -1881 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1882 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1883 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1884 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-587 |#4|))) (-15 -1885 (|#4| |#4|)) (-15 -1886 ((-587 (-2 (|:| |totdeg| (-698)) (|:| -2009 |#4|))) |#4| (-698) (-587 (-2 (|:| |totdeg| (-698)) (|:| -2009 |#4|))))) (-15 -1887 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1888 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1889 ((-587 |#4|) (-587 |#4|))) (-15 -1890 ((-488) |#4|)) (-15 -1891 ((-1189) |#4|)) (-15 -1892 ((-488) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-488) (-488) (-488))) (-15 -1893 ((-488) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-488) (-488) (-488) (-488))) (-15 -1894 ((-1189) (-587 |#4|))) (-15 -1895 ((-1189) (-488))) (-15 -1896 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1897 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-698)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-698)) (|:| -2009 |#4|)) |#4| (-698))) (-15 -1898 ((-698) |#4|))) (-395) (-721) (-760) (-865 |#1| |#2| |#3|)) (T -393)) +((-1898 (*1 *2 *3) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-698)) (-5 *1 (-393 *4 *5 *6 *3)) (-4 *3 (-865 *4 *5 *6)))) (-1897 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-698)) (|:| -2009 *4))) (-5 *5 (-698)) (-4 *4 (-865 *6 *7 *8)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-393 *6 *7 *8 *4)))) (-1896 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-698)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-721)) (-4 *7 (-865 *4 *5 *6)) (-4 *4 (-395)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-393 *4 *5 *6 *7)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-488)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-1189)) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *7 (-865 *4 *5 *6)))) (-1894 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-865 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-1189)) (-5 *1 (-393 *4 *5 *6 *7)))) (-1893 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-488)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-698)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-721)) (-4 *4 (-865 *5 *6 *7)) (-4 *5 (-395)) (-4 *7 (-760)) (-5 *1 (-393 *5 *6 *7 *4)))) (-1892 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-488)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-698)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-721)) (-4 *4 (-865 *5 *6 *7)) (-4 *5 (-395)) (-4 *7 (-760)) (-5 *1 (-393 *5 *6 *7 *4)))) (-1891 (*1 *2 *3) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-1189)) (-5 *1 (-393 *4 *5 *6 *3)) (-4 *3 (-865 *4 *5 *6)))) (-1890 (*1 *2 *3) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-488)) (-5 *1 (-393 *4 *5 *6 *3)) (-4 *3 (-865 *4 *5 *6)))) (-1889 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-865 *3 *4 *5)) (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-393 *3 *4 *5 *6)))) (-1888 (*1 *2 *2 *2) (-12 (-5 *2 (-587 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-698)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-721)) (-4 *6 (-865 *3 *4 *5)) (-4 *3 (-395)) (-4 *5 (-760)) (-5 *1 (-393 *3 *4 *5 *6)))) (-1887 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-698)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-721)) (-4 *2 (-865 *4 *5 *6)) (-5 *1 (-393 *4 *5 *6 *2)) (-4 *4 (-395)) (-4 *6 (-760)))) (-1886 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-587 (-2 (|:| |totdeg| (-698)) (|:| -2009 *3)))) (-5 *4 (-698)) (-4 *3 (-865 *5 *6 *7)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *1 (-393 *5 *6 *7 *3)))) (-1885 (*1 *2 *2) (-12 (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-393 *3 *4 *5 *2)) (-4 *2 (-865 *3 *4 *5)))) (-1884 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-865 *5 *6 *7)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-393 *5 *6 *7 *3)))) (-1883 (*1 *2 *3 *2) (-12 (-5 *2 (-587 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-698)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-721)) (-4 *6 (-865 *4 *3 *5)) (-4 *4 (-395)) (-4 *5 (-760)) (-5 *1 (-393 *4 *3 *5 *6)))) (-1882 (*1 *2 *2) (-12 (-5 *2 (-587 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-698)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-721)) (-4 *6 (-865 *3 *4 *5)) (-4 *3 (-395)) (-4 *5 (-760)) (-5 *1 (-393 *3 *4 *5 *6)))) (-1881 (*1 *2 *3 *2) (-12 (-5 *2 (-587 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-698)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-721)) (-4 *3 (-865 *4 *5 *6)) (-4 *4 (-395)) (-4 *6 (-760)) (-5 *1 (-393 *4 *5 *6 *3)))) (-1880 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-395)) (-4 *3 (-721)) (-4 *5 (-760)) (-5 *2 (-85)) (-5 *1 (-393 *4 *3 *5 *6)) (-4 *6 (-865 *4 *3 *5)))) (-1879 (*1 *2 *3 *3) (-12 (-4 *4 (-395)) (-4 *3 (-721)) (-4 *5 (-760)) (-5 *2 (-85)) (-5 *1 (-393 *4 *3 *5 *6)) (-4 *6 (-865 *4 *3 *5)))) (-1878 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-698)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-721)) (-4 *7 (-865 *4 *5 *6)) (-4 *4 (-395)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-393 *4 *5 *6 *7)))) (-1877 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-488)) (-4 *7 (-865 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-393 *4 *5 *6 *7)))) (-1876 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-865 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-393 *4 *5 *6 *2)))) (-1875 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-865 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-393 *4 *5 *6 *2))))) +((-1899 (($ $ $) 14 T ELT) (($ (-587 $)) 21 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 45 T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) 22 T ELT))) +(((-394 |#1|) (-10 -7 (-15 -2714 ((-1089 |#1|) (-1089 |#1|) (-1089 |#1|))) (-15 -1899 (|#1| (-587 |#1|))) (-15 -1899 (|#1| |#1| |#1|)) (-15 -3150 (|#1| (-587 |#1|))) (-15 -3150 (|#1| |#1| |#1|))) (-395)) (T -394)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-1899 (($ $ $) 60 T ELT) (($ (-587 $)) 59 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 58 T ELT)) (-3150 (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-395) (-113)) (T -395)) +((-3150 (*1 *1 *1 *1) (-4 *1 (-395))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-395)))) (-1899 (*1 *1 *1 *1) (-4 *1 (-395))) (-1899 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-395)))) (-2714 (*1 *2 *2 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-395))))) +(-13 (-499) (-10 -8 (-15 -3150 ($ $ $)) (-15 -3150 ($ (-587 $))) (-15 -1899 ($ $ $)) (-15 -1899 ($ (-587 $))) (-15 -2714 ((-1089 $) (-1089 $) (-1089 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-559 (-488)) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-248) . T) ((-499) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 $) . T) ((-586 $) . T) ((-658 $) . T) ((-667) . T) ((-967 $) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1780 (((-3 $ #1="failed")) NIL (|has| (-352 (-861 |#1|)) (-499)) ELT)) (-1316 (((-3 $ #1#) $ $) NIL T ELT)) (-3229 (((-1183 (-634 (-352 (-861 |#1|)))) (-1183 $)) NIL T ELT) (((-1183 (-634 (-352 (-861 |#1|))))) NIL T ELT)) (-1733 (((-1183 $)) NIL T ELT)) (-3730 (($) NIL T CONST)) (-1914 (((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) #1#)) NIL T ELT)) (-1707 (((-3 $ #1#)) NIL (|has| (-352 (-861 |#1|)) (-499)) ELT)) (-1796 (((-634 (-352 (-861 |#1|))) (-1183 $)) NIL T ELT) (((-634 (-352 (-861 |#1|)))) NIL T ELT)) (-1731 (((-352 (-861 |#1|)) $) NIL T ELT)) (-1794 (((-634 (-352 (-861 |#1|))) $ (-1183 $)) NIL T ELT) (((-634 (-352 (-861 |#1|))) $) NIL T ELT)) (-2409 (((-3 $ #1#) $) NIL (|has| (-352 (-861 |#1|)) (-499)) ELT)) (-1908 (((-1089 (-861 (-352 (-861 |#1|))))) NIL (|has| (-352 (-861 |#1|)) (-314)) ELT) (((-1089 (-352 (-861 |#1|)))) 89 (|has| |#1| (-499)) ELT)) (-2412 (($ $ (-834)) NIL T ELT)) (-1729 (((-352 (-861 |#1|)) $) NIL T ELT)) (-1709 (((-1089 (-352 (-861 |#1|))) $) 87 (|has| (-352 (-861 |#1|)) (-499)) ELT)) (-1798 (((-352 (-861 |#1|)) (-1183 $)) NIL T ELT) (((-352 (-861 |#1|))) NIL T ELT)) (-1727 (((-1089 (-352 (-861 |#1|))) $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-1800 (($ (-1183 (-352 (-861 |#1|))) (-1183 $)) 111 T ELT) (($ (-1183 (-352 (-861 |#1|)))) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL (|has| (-352 (-861 |#1|)) (-499)) ELT)) (-3114 (((-834)) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-2439 (($ $ (-834)) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-1915 (((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) #1#)) NIL T ELT)) (-1708 (((-3 $ #1#)) NIL (|has| (-352 (-861 |#1|)) (-499)) ELT)) (-1797 (((-634 (-352 (-861 |#1|))) (-1183 $)) NIL T ELT) (((-634 (-352 (-861 |#1|)))) NIL T ELT)) (-1732 (((-352 (-861 |#1|)) $) NIL T ELT)) (-1795 (((-634 (-352 (-861 |#1|))) $ (-1183 $)) NIL T ELT) (((-634 (-352 (-861 |#1|))) $) NIL T ELT)) (-2410 (((-3 $ #1#) $) NIL (|has| (-352 (-861 |#1|)) (-499)) ELT)) (-1912 (((-1089 (-861 (-352 (-861 |#1|))))) NIL (|has| (-352 (-861 |#1|)) (-314)) ELT) (((-1089 (-352 (-861 |#1|)))) 88 (|has| |#1| (-499)) ELT)) (-2411 (($ $ (-834)) NIL T ELT)) (-1730 (((-352 (-861 |#1|)) $) NIL T ELT)) (-1710 (((-1089 (-352 (-861 |#1|))) $) 84 (|has| (-352 (-861 |#1|)) (-499)) ELT)) (-1799 (((-352 (-861 |#1|)) (-1183 $)) NIL T ELT) (((-352 (-861 |#1|))) NIL T ELT)) (-1728 (((-1089 (-352 (-861 |#1|))) $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1902 (((-352 (-861 |#1|)) $ $) 75 (|has| |#1| (-499)) ELT)) (-1906 (((-352 (-861 |#1|)) $) 74 (|has| |#1| (-499)) ELT)) (-1905 (((-352 (-861 |#1|)) $) 101 (|has| |#1| (-499)) ELT)) (-1907 (((-1089 (-352 (-861 |#1|))) $) 93 (|has| |#1| (-499)) ELT)) (-1901 (((-352 (-861 |#1|))) 76 (|has| |#1| (-499)) ELT)) (-1904 (((-352 (-861 |#1|)) $ $) 64 (|has| |#1| (-499)) ELT)) (-1910 (((-352 (-861 |#1|)) $) 63 (|has| |#1| (-499)) ELT)) (-1909 (((-352 (-861 |#1|)) $) 100 (|has| |#1| (-499)) ELT)) (-1911 (((-1089 (-352 (-861 |#1|))) $) 92 (|has| |#1| (-499)) ELT)) (-1903 (((-352 (-861 |#1|))) 73 (|has| |#1| (-499)) ELT)) (-1913 (($) 107 T ELT) (($ (-1094)) 115 T ELT) (($ (-1183 (-1094))) 114 T ELT) (($ (-1183 $)) 102 T ELT) (($ (-1094) (-1183 $)) 113 T ELT) (($ (-1183 (-1094)) (-1183 $)) 112 T ELT)) (-1720 (((-85)) NIL T ELT)) (-3806 (((-352 (-861 |#1|)) $ (-488)) NIL T ELT)) (-3230 (((-1183 (-352 (-861 |#1|))) $ (-1183 $)) 104 T ELT) (((-634 (-352 (-861 |#1|))) (-1183 $) (-1183 $)) NIL T ELT) (((-1183 (-352 (-861 |#1|))) $) 44 T ELT) (((-634 (-352 (-861 |#1|))) (-1183 $)) NIL T ELT)) (-3978 (((-1183 (-352 (-861 |#1|))) $) NIL T ELT) (($ (-1183 (-352 (-861 |#1|)))) 41 T ELT)) (-1900 (((-587 (-861 (-352 (-861 |#1|)))) (-1183 $)) NIL T ELT) (((-587 (-861 (-352 (-861 |#1|))))) NIL T ELT) (((-587 (-861 |#1|)) (-1183 $)) 105 (|has| |#1| (-499)) ELT) (((-587 (-861 |#1|))) 106 (|has| |#1| (-499)) ELT)) (-2441 (($ $ $) NIL T ELT)) (-1726 (((-85)) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-1183 (-352 (-861 |#1|)))) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 $)) 66 T ELT)) (-1711 (((-587 (-1183 (-352 (-861 |#1|))))) NIL (|has| (-352 (-861 |#1|)) (-499)) ELT)) (-2442 (($ $ $ $) NIL T ELT)) (-1724 (((-85)) NIL T ELT)) (-2551 (($ (-634 (-352 (-861 |#1|))) $) NIL T ELT)) (-2440 (($ $ $) NIL T ELT)) (-1725 (((-85)) NIL T ELT)) (-1723 (((-85)) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-2666 (($) NIL T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-352 (-861 |#1|))) NIL T ELT) (($ (-352 (-861 |#1|)) $) NIL T ELT) (($ (-1060 |#2| (-352 (-861 |#1|))) $) NIL T ELT))) +(((-396 |#1| |#2| |#3| |#4|) (-13 (-363 (-352 (-861 |#1|))) (-594 (-1060 |#2| (-352 (-861 |#1|)))) (-10 -8 (-15 -3953 ($ (-1183 (-352 (-861 |#1|))))) (-15 -1915 ((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) #1="failed"))) (-15 -1914 ((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) #1#))) (-15 -1913 ($)) (-15 -1913 ($ (-1094))) (-15 -1913 ($ (-1183 (-1094)))) (-15 -1913 ($ (-1183 $))) (-15 -1913 ($ (-1094) (-1183 $))) (-15 -1913 ($ (-1183 (-1094)) (-1183 $))) (IF (|has| |#1| (-499)) (PROGN (-15 -1912 ((-1089 (-352 (-861 |#1|))))) (-15 -1911 ((-1089 (-352 (-861 |#1|))) $)) (-15 -1910 ((-352 (-861 |#1|)) $)) (-15 -1909 ((-352 (-861 |#1|)) $)) (-15 -1908 ((-1089 (-352 (-861 |#1|))))) (-15 -1907 ((-1089 (-352 (-861 |#1|))) $)) (-15 -1906 ((-352 (-861 |#1|)) $)) (-15 -1905 ((-352 (-861 |#1|)) $)) (-15 -1904 ((-352 (-861 |#1|)) $ $)) (-15 -1903 ((-352 (-861 |#1|)))) (-15 -1902 ((-352 (-861 |#1|)) $ $)) (-15 -1901 ((-352 (-861 |#1|)))) (-15 -1900 ((-587 (-861 |#1|)) (-1183 $))) (-15 -1900 ((-587 (-861 |#1|))))) |%noBranch|))) (-148) (-834) (-587 (-1094)) (-1183 (-634 |#1|))) (T -396)) +((-3953 (*1 *1 *2) (-12 (-5 *2 (-1183 (-352 (-861 *3)))) (-4 *3 (-148)) (-14 *6 (-1183 (-634 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))))) (-1915 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-396 *3 *4 *5 *6)) (|:| -2017 (-587 (-396 *3 *4 *5 *6))))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3))))) (-1914 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-396 *3 *4 *5 *6)) (|:| -2017 (-587 (-396 *3 *4 *5 *6))))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3))))) (-1913 (*1 *1) (-12 (-5 *1 (-396 *2 *3 *4 *5)) (-4 *2 (-148)) (-14 *3 (-834)) (-14 *4 (-587 (-1094))) (-14 *5 (-1183 (-634 *2))))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 *2)) (-14 *6 (-1183 (-634 *3))))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-1183 (-1094))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3))))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-1183 (-396 *3 *4 *5 *6))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3))))) (-1913 (*1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-1183 (-396 *4 *5 *6 *7))) (-5 *1 (-396 *4 *5 *6 *7)) (-4 *4 (-148)) (-14 *5 (-834)) (-14 *6 (-587 *2)) (-14 *7 (-1183 (-634 *4))))) (-1913 (*1 *1 *2 *3) (-12 (-5 *2 (-1183 (-1094))) (-5 *3 (-1183 (-396 *4 *5 *6 *7))) (-5 *1 (-396 *4 *5 *6 *7)) (-4 *4 (-148)) (-14 *5 (-834)) (-14 *6 (-587 (-1094))) (-14 *7 (-1183 (-634 *4))))) (-1912 (*1 *2) (-12 (-5 *2 (-1089 (-352 (-861 *3)))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3))))) (-1911 (*1 *2 *1) (-12 (-5 *2 (-1089 (-352 (-861 *3)))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3))))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-352 (-861 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3))))) (-1909 (*1 *2 *1) (-12 (-5 *2 (-352 (-861 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3))))) (-1908 (*1 *2) (-12 (-5 *2 (-1089 (-352 (-861 *3)))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3))))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-1089 (-352 (-861 *3)))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3))))) (-1906 (*1 *2 *1) (-12 (-5 *2 (-352 (-861 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3))))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-352 (-861 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3))))) (-1904 (*1 *2 *1 *1) (-12 (-5 *2 (-352 (-861 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3))))) (-1903 (*1 *2) (-12 (-5 *2 (-352 (-861 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3))))) (-1902 (*1 *2 *1 *1) (-12 (-5 *2 (-352 (-861 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3))))) (-1901 (*1 *2) (-12 (-5 *2 (-352 (-861 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3))))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-1183 (-396 *4 *5 *6 *7))) (-5 *2 (-587 (-861 *4))) (-5 *1 (-396 *4 *5 *6 *7)) (-4 *4 (-499)) (-4 *4 (-148)) (-14 *5 (-834)) (-14 *6 (-587 (-1094))) (-14 *7 (-1183 (-634 *4))))) (-1900 (*1 *2) (-12 (-5 *2 (-587 (-861 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 19 T ELT)) (-3087 (((-587 (-777 |#1|)) $) 88 T ELT)) (-3089 (((-1089 $) $ (-777 |#1|)) 53 T ELT) (((-1089 |#2|) $) 140 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#2| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#2| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#2| (-499)) ELT)) (-2825 (((-698) $) 28 T ELT) (((-698) $ (-587 (-777 |#1|))) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-3781 (($ $) NIL (|has| |#2| (-395)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#2| (-395)) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#2| (-954 (-352 (-488)))) ELT) (((-3 (-488) #1#) $) NIL (|has| |#2| (-954 (-488))) ELT) (((-3 (-777 |#1|) #1#) $) NIL T ELT)) (-3162 ((|#2| $) 49 T ELT) (((-352 (-488)) $) NIL (|has| |#2| (-954 (-352 (-488)))) ELT) (((-488) $) NIL (|has| |#2| (-954 (-488))) ELT) (((-777 |#1|) $) NIL T ELT)) (-3762 (($ $ $ (-777 |#1|)) NIL (|has| |#2| (-148)) ELT)) (-1945 (($ $ (-587 (-488))) 95 T ELT)) (-3965 (($ $) 81 T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#2|) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3509 (($ $) NIL (|has| |#2| (-395)) ELT) (($ $ (-777 |#1|)) NIL (|has| |#2| (-395)) ELT)) (-2824 (((-587 $) $) NIL T ELT)) (-3729 (((-85) $) NIL (|has| |#2| (-825)) ELT)) (-1628 (($ $ |#2| |#3| $) NIL T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (-12 (|has| (-777 |#1|) (-800 (-332))) (|has| |#2| (-800 (-332)))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (-12 (|has| (-777 |#1|) (-800 (-488))) (|has| |#2| (-800 (-488)))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2425 (((-698) $) 66 T ELT)) (-3090 (($ (-1089 |#2|) (-777 |#1|)) 145 T ELT) (($ (-1089 $) (-777 |#1|)) 59 T ELT)) (-2827 (((-587 $) $) NIL T ELT)) (-3944 (((-85) $) 69 T ELT)) (-2899 (($ |#2| |#3|) 36 T ELT) (($ $ (-777 |#1|) (-698)) 38 T ELT) (($ $ (-587 (-777 |#1|)) (-587 (-698))) NIL T ELT)) (-3769 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $ (-777 |#1|)) NIL T ELT)) (-2826 ((|#3| $) NIL T ELT) (((-698) $ (-777 |#1|)) 57 T ELT) (((-587 (-698)) $ (-587 (-777 |#1|))) 64 T ELT)) (-1629 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3849 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3088 (((-3 (-777 |#1|) #1#) $) 46 T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-1183 $) $) NIL T ELT) (((-634 |#2|) (-1183 $)) NIL T ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#2| $) 48 T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#2| (-395)) ELT) (($ $ $) NIL (|has| |#2| (-395)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2829 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2828 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2830 (((-3 (-2 (|:| |var| (-777 |#1|)) (|:| -2406 (-698))) #1#) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1805 (((-85) $) 47 T ELT)) (-1804 ((|#2| $) 138 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#2| (-395)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#2| (-395)) ELT) (($ $ $) 151 (|has| |#2| (-395)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#2| (-825)) ELT)) (-3472 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-499)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-499)) ELT)) (-3774 (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ (-777 |#1|) |#2|) 102 T ELT) (($ $ (-587 (-777 |#1|)) (-587 |#2|)) 108 T ELT) (($ $ (-777 |#1|) $) 100 T ELT) (($ $ (-587 (-777 |#1|)) (-587 $)) 126 T ELT)) (-3763 (($ $ (-777 |#1|)) NIL (|has| |#2| (-148)) ELT)) (-3764 (($ $ (-587 (-777 |#1|)) (-587 (-698))) NIL T ELT) (($ $ (-777 |#1|) (-698)) NIL T ELT) (($ $ (-587 (-777 |#1|))) NIL T ELT) (($ $ (-777 |#1|)) 60 T ELT)) (-3955 ((|#3| $) 80 T ELT) (((-698) $ (-777 |#1|)) 43 T ELT) (((-587 (-698)) $ (-587 (-777 |#1|))) 63 T ELT)) (-3978 (((-804 (-332)) $) NIL (-12 (|has| (-777 |#1|) (-557 (-804 (-332)))) (|has| |#2| (-557 (-804 (-332))))) ELT) (((-804 (-488)) $) NIL (-12 (|has| (-777 |#1|) (-557 (-804 (-488)))) (|has| |#2| (-557 (-804 (-488))))) ELT) (((-477) $) NIL (-12 (|has| (-777 |#1|) (-557 (-477))) (|has| |#2| (-557 (-477)))) ELT)) (-2823 ((|#2| $) 147 (|has| |#2| (-395)) ELT) (($ $ (-777 |#1|)) NIL (|has| |#2| (-395)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-825))) ELT)) (-3953 (((-776) $) 175 T ELT) (($ (-488)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-777 |#1|)) 40 T ELT) (($ (-352 (-488))) NIL (OR (|has| |#2| (-38 (-352 (-488)))) (|has| |#2| (-954 (-352 (-488))))) ELT) (($ $) NIL (|has| |#2| (-499)) ELT)) (-3823 (((-587 |#2|) $) NIL T ELT)) (-3683 ((|#2| $ |#3|) NIL T ELT) (($ $ (-777 |#1|) (-698)) NIL T ELT) (($ $ (-587 (-777 |#1|)) (-587 (-698))) NIL T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-825))) (|has| |#2| (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1627 (($ $ $ (-698)) NIL (|has| |#2| (-148)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL (|has| |#2| (-499)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 32 T CONST)) (-2675 (($ $ (-587 (-777 |#1|)) (-587 (-698))) NIL T ELT) (($ $ (-777 |#1|) (-698)) NIL T ELT) (($ $ (-587 (-777 |#1|))) NIL T ELT) (($ $ (-777 |#1|)) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#2|) 77 (|has| |#2| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 133 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 131 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-352 (-488))) NIL (|has| |#2| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) NIL (|has| |#2| (-38 (-352 (-488)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT))) +(((-397 |#1| |#2| |#3|) (-13 (-865 |#2| |#3| (-777 |#1|)) (-10 -8 (-15 -1945 ($ $ (-587 (-488)))))) (-587 (-1094)) (-965) (-198 (-3964 |#1|) (-698))) (T -397)) +((-1945 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-488))) (-14 *3 (-587 (-1094))) (-5 *1 (-397 *3 *4 *5)) (-4 *4 (-965)) (-4 *5 (-198 (-3964 *3) (-698)))))) +((-1919 (((-85) |#1| (-587 |#2|)) 90 T ELT)) (-1917 (((-3 (-1183 (-587 |#2|)) #1="failed") (-698) |#1| (-587 |#2|)) 99 T ELT)) (-1918 (((-3 (-587 |#2|) #1#) |#2| |#1| (-1183 (-587 |#2|))) 101 T ELT)) (-2042 ((|#2| |#2| |#1|) 35 T ELT)) (-1916 (((-698) |#2| (-587 |#2|)) 26 T ELT))) +(((-398 |#1| |#2|) (-10 -7 (-15 -2042 (|#2| |#2| |#1|)) (-15 -1916 ((-698) |#2| (-587 |#2|))) (-15 -1917 ((-3 (-1183 (-587 |#2|)) #1="failed") (-698) |#1| (-587 |#2|))) (-15 -1918 ((-3 (-587 |#2|) #1#) |#2| |#1| (-1183 (-587 |#2|)))) (-15 -1919 ((-85) |#1| (-587 |#2|)))) (-260) (-1159 |#1|)) (T -398)) +((-1919 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *5)) (-4 *5 (-1159 *3)) (-4 *3 (-260)) (-5 *2 (-85)) (-5 *1 (-398 *3 *5)))) (-1918 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1183 (-587 *3))) (-4 *4 (-260)) (-5 *2 (-587 *3)) (-5 *1 (-398 *4 *3)) (-4 *3 (-1159 *4)))) (-1917 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-698)) (-4 *4 (-260)) (-4 *6 (-1159 *4)) (-5 *2 (-1183 (-587 *6))) (-5 *1 (-398 *4 *6)) (-5 *5 (-587 *6)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-1159 *5)) (-4 *5 (-260)) (-5 *2 (-698)) (-5 *1 (-398 *5 *3)))) (-2042 (*1 *2 *2 *3) (-12 (-4 *3 (-260)) (-5 *1 (-398 *3 *2)) (-4 *2 (-1159 *3))))) +((-3738 (((-350 |#5|) |#5|) 24 T ELT))) +(((-399 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3738 ((-350 |#5|) |#5|))) (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $)) (-15 -3837 ((-3 $ "failed") (-1094))))) (-721) (-499) (-499) (-865 |#4| |#2| |#1|)) (T -399)) +((-3738 (*1 *2 *3) (-12 (-4 *4 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $)) (-15 -3837 ((-3 $ "failed") (-1094)))))) (-4 *5 (-721)) (-4 *7 (-499)) (-5 *2 (-350 *3)) (-5 *1 (-399 *4 *5 *6 *7 *3)) (-4 *6 (-499)) (-4 *3 (-865 *7 *5 *4))))) +((-2706 ((|#3|) 43 T ELT)) (-2714 (((-1089 |#4|) (-1089 |#4|) (-1089 |#4|)) 34 T ELT))) +(((-400 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2714 ((-1089 |#4|) (-1089 |#4|) (-1089 |#4|))) (-15 -2706 (|#3|))) (-721) (-760) (-825) (-865 |#3| |#1| |#2|)) (T -400)) +((-2706 (*1 *2) (-12 (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-825)) (-5 *1 (-400 *3 *4 *2 *5)) (-4 *5 (-865 *2 *3 *4)))) (-2714 (*1 *2 *2 *2) (-12 (-5 *2 (-1089 *6)) (-4 *6 (-865 *5 *3 *4)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *5 (-825)) (-5 *1 (-400 *3 *4 *5 *6))))) +((-3738 (((-350 (-1089 |#1|)) (-1089 |#1|)) 43 T ELT))) +(((-401 |#1|) (-10 -7 (-15 -3738 ((-350 (-1089 |#1|)) (-1089 |#1|)))) (-260)) (T -401)) +((-3738 (*1 *2 *3) (-12 (-4 *4 (-260)) (-5 *2 (-350 (-1089 *4))) (-5 *1 (-401 *4)) (-5 *3 (-1089 *4))))) +((-3735 (((-51) |#2| (-1094) (-251 |#2|) (-1150 (-698))) 44 T ELT) (((-51) (-1 |#2| (-488)) (-251 |#2|) (-1150 (-698))) 43 T ELT) (((-51) |#2| (-1094) (-251 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-488)) (-251 |#2|)) 29 T ELT)) (-3824 (((-51) |#2| (-1094) (-251 |#2|) (-1150 (-352 (-488))) (-352 (-488))) 88 T ELT) (((-51) (-1 |#2| (-352 (-488))) (-251 |#2|) (-1150 (-352 (-488))) (-352 (-488))) 87 T ELT) (((-51) |#2| (-1094) (-251 |#2|) (-1150 (-488))) 86 T ELT) (((-51) (-1 |#2| (-488)) (-251 |#2|) (-1150 (-488))) 85 T ELT) (((-51) |#2| (-1094) (-251 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-488)) (-251 |#2|)) 79 T ELT)) (-3788 (((-51) |#2| (-1094) (-251 |#2|) (-1150 (-352 (-488))) (-352 (-488))) 74 T ELT) (((-51) (-1 |#2| (-352 (-488))) (-251 |#2|) (-1150 (-352 (-488))) (-352 (-488))) 72 T ELT)) (-3785 (((-51) |#2| (-1094) (-251 |#2|) (-1150 (-488))) 51 T ELT) (((-51) (-1 |#2| (-488)) (-251 |#2|) (-1150 (-488))) 50 T ELT))) +(((-402 |#1| |#2|) (-10 -7 (-15 -3735 ((-51) (-1 |#2| (-488)) (-251 |#2|))) (-15 -3735 ((-51) |#2| (-1094) (-251 |#2|))) (-15 -3735 ((-51) (-1 |#2| (-488)) (-251 |#2|) (-1150 (-698)))) (-15 -3735 ((-51) |#2| (-1094) (-251 |#2|) (-1150 (-698)))) (-15 -3785 ((-51) (-1 |#2| (-488)) (-251 |#2|) (-1150 (-488)))) (-15 -3785 ((-51) |#2| (-1094) (-251 |#2|) (-1150 (-488)))) (-15 -3788 ((-51) (-1 |#2| (-352 (-488))) (-251 |#2|) (-1150 (-352 (-488))) (-352 (-488)))) (-15 -3788 ((-51) |#2| (-1094) (-251 |#2|) (-1150 (-352 (-488))) (-352 (-488)))) (-15 -3824 ((-51) (-1 |#2| (-488)) (-251 |#2|))) (-15 -3824 ((-51) |#2| (-1094) (-251 |#2|))) (-15 -3824 ((-51) (-1 |#2| (-488)) (-251 |#2|) (-1150 (-488)))) (-15 -3824 ((-51) |#2| (-1094) (-251 |#2|) (-1150 (-488)))) (-15 -3824 ((-51) (-1 |#2| (-352 (-488))) (-251 |#2|) (-1150 (-352 (-488))) (-352 (-488)))) (-15 -3824 ((-51) |#2| (-1094) (-251 |#2|) (-1150 (-352 (-488))) (-352 (-488))))) (-13 (-499) (-954 (-488)) (-584 (-488))) (-13 (-27) (-1119) (-366 |#1|))) (T -402)) +((-3824 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1094)) (-5 *5 (-251 *3)) (-5 *6 (-1150 (-352 (-488)))) (-5 *7 (-352 (-488))) (-4 *3 (-13 (-27) (-1119) (-366 *8))) (-4 *8 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-402 *8 *3)))) (-3824 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-352 (-488)))) (-5 *4 (-251 *8)) (-5 *5 (-1150 (-352 (-488)))) (-5 *6 (-352 (-488))) (-4 *8 (-13 (-27) (-1119) (-366 *7))) (-4 *7 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-402 *7 *8)))) (-3824 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1094)) (-5 *5 (-251 *3)) (-5 *6 (-1150 (-488))) (-4 *3 (-13 (-27) (-1119) (-366 *7))) (-4 *7 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-402 *7 *3)))) (-3824 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-488))) (-5 *4 (-251 *7)) (-5 *5 (-1150 (-488))) (-4 *7 (-13 (-27) (-1119) (-366 *6))) (-4 *6 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-402 *6 *7)))) (-3824 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1094)) (-5 *5 (-251 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *6))) (-4 *6 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-402 *6 *3)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-488))) (-5 *4 (-251 *6)) (-4 *6 (-13 (-27) (-1119) (-366 *5))) (-4 *5 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-402 *5 *6)))) (-3788 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1094)) (-5 *5 (-251 *3)) (-5 *6 (-1150 (-352 (-488)))) (-5 *7 (-352 (-488))) (-4 *3 (-13 (-27) (-1119) (-366 *8))) (-4 *8 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-402 *8 *3)))) (-3788 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-352 (-488)))) (-5 *4 (-251 *8)) (-5 *5 (-1150 (-352 (-488)))) (-5 *6 (-352 (-488))) (-4 *8 (-13 (-27) (-1119) (-366 *7))) (-4 *7 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-402 *7 *8)))) (-3785 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1094)) (-5 *5 (-251 *3)) (-5 *6 (-1150 (-488))) (-4 *3 (-13 (-27) (-1119) (-366 *7))) (-4 *7 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-402 *7 *3)))) (-3785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-488))) (-5 *4 (-251 *7)) (-5 *5 (-1150 (-488))) (-4 *7 (-13 (-27) (-1119) (-366 *6))) (-4 *6 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-402 *6 *7)))) (-3735 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1094)) (-5 *5 (-251 *3)) (-5 *6 (-1150 (-698))) (-4 *3 (-13 (-27) (-1119) (-366 *7))) (-4 *7 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-402 *7 *3)))) (-3735 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-488))) (-5 *4 (-251 *7)) (-5 *5 (-1150 (-698))) (-4 *7 (-13 (-27) (-1119) (-366 *6))) (-4 *6 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-402 *6 *7)))) (-3735 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1094)) (-5 *5 (-251 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *6))) (-4 *6 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-402 *6 *3)))) (-3735 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-488))) (-5 *4 (-251 *6)) (-4 *6 (-13 (-27) (-1119) (-366 *5))) (-4 *5 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) (-5 *1 (-402 *5 *6))))) +((-2042 ((|#2| |#2| |#1|) 15 T ELT)) (-1921 (((-587 |#2|) |#2| (-587 |#2|) |#1| (-834)) 82 T ELT)) (-1920 (((-2 (|:| |plist| (-587 |#2|)) (|:| |modulo| |#1|)) |#2| (-587 |#2|) |#1| (-834)) 71 T ELT))) +(((-403 |#1| |#2|) (-10 -7 (-15 -1920 ((-2 (|:| |plist| (-587 |#2|)) (|:| |modulo| |#1|)) |#2| (-587 |#2|) |#1| (-834))) (-15 -1921 ((-587 |#2|) |#2| (-587 |#2|) |#1| (-834))) (-15 -2042 (|#2| |#2| |#1|))) (-260) (-1159 |#1|)) (T -403)) +((-2042 (*1 *2 *2 *3) (-12 (-4 *3 (-260)) (-5 *1 (-403 *3 *2)) (-4 *2 (-1159 *3)))) (-1921 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-587 *3)) (-5 *5 (-834)) (-4 *3 (-1159 *4)) (-4 *4 (-260)) (-5 *1 (-403 *4 *3)))) (-1920 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-834)) (-4 *5 (-260)) (-4 *3 (-1159 *5)) (-5 *2 (-2 (|:| |plist| (-587 *3)) (|:| |modulo| *5))) (-5 *1 (-403 *5 *3)) (-5 *4 (-587 *3))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 28 T ELT)) (-3713 (($ |#3|) 25 T ELT)) (-1316 (((-3 $ "failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3965 (($ $) 32 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-1922 (($ |#2| |#4| $) 33 T ELT)) (-2899 (($ |#2| (-654 |#3| |#4| |#5|)) 24 T ELT)) (-2900 (((-654 |#3| |#4| |#5|) $) 15 T ELT)) (-1924 ((|#3| $) 19 T ELT)) (-1925 ((|#4| $) 17 T ELT)) (-3180 ((|#2| $) 29 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1923 (($ |#2| |#3| |#4|) 26 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) 36 T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 34 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-404 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-658 |#6|) (-658 |#2|) (-10 -8 (-15 -3180 (|#2| $)) (-15 -2900 ((-654 |#3| |#4| |#5|) $)) (-15 -1925 (|#4| $)) (-15 -1924 (|#3| $)) (-15 -3965 ($ $)) (-15 -2899 ($ |#2| (-654 |#3| |#4| |#5|))) (-15 -3713 ($ |#3|)) (-15 -1923 ($ |#2| |#3| |#4|)) (-15 -1922 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-587 (-1094)) (-148) (-760) (-198 (-3964 |#1|) (-698)) (-1 (-85) (-2 (|:| -2405 |#3|) (|:| -2406 |#4|)) (-2 (|:| -2405 |#3|) (|:| -2406 |#4|))) (-865 |#2| |#4| (-777 |#1|))) (T -404)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-587 (-1094))) (-4 *4 (-148)) (-4 *6 (-198 (-3964 *3) (-698))) (-14 *7 (-1 (-85) (-2 (|:| -2405 *5) (|:| -2406 *6)) (-2 (|:| -2405 *5) (|:| -2406 *6)))) (-5 *1 (-404 *3 *4 *5 *6 *7 *2)) (-4 *5 (-760)) (-4 *2 (-865 *4 *6 (-777 *3))))) (-3180 (*1 *2 *1) (-12 (-14 *3 (-587 (-1094))) (-4 *5 (-198 (-3964 *3) (-698))) (-14 *6 (-1 (-85) (-2 (|:| -2405 *4) (|:| -2406 *5)) (-2 (|:| -2405 *4) (|:| -2406 *5)))) (-4 *2 (-148)) (-5 *1 (-404 *3 *2 *4 *5 *6 *7)) (-4 *4 (-760)) (-4 *7 (-865 *2 *5 (-777 *3))))) (-2900 (*1 *2 *1) (-12 (-14 *3 (-587 (-1094))) (-4 *4 (-148)) (-4 *6 (-198 (-3964 *3) (-698))) (-14 *7 (-1 (-85) (-2 (|:| -2405 *5) (|:| -2406 *6)) (-2 (|:| -2405 *5) (|:| -2406 *6)))) (-5 *2 (-654 *5 *6 *7)) (-5 *1 (-404 *3 *4 *5 *6 *7 *8)) (-4 *5 (-760)) (-4 *8 (-865 *4 *6 (-777 *3))))) (-1925 (*1 *2 *1) (-12 (-14 *3 (-587 (-1094))) (-4 *4 (-148)) (-14 *6 (-1 (-85) (-2 (|:| -2405 *5) (|:| -2406 *2)) (-2 (|:| -2405 *5) (|:| -2406 *2)))) (-4 *2 (-198 (-3964 *3) (-698))) (-5 *1 (-404 *3 *4 *5 *2 *6 *7)) (-4 *5 (-760)) (-4 *7 (-865 *4 *2 (-777 *3))))) (-1924 (*1 *2 *1) (-12 (-14 *3 (-587 (-1094))) (-4 *4 (-148)) (-4 *5 (-198 (-3964 *3) (-698))) (-14 *6 (-1 (-85) (-2 (|:| -2405 *2) (|:| -2406 *5)) (-2 (|:| -2405 *2) (|:| -2406 *5)))) (-4 *2 (-760)) (-5 *1 (-404 *3 *4 *2 *5 *6 *7)) (-4 *7 (-865 *4 *5 (-777 *3))))) (-3965 (*1 *1 *1) (-12 (-14 *2 (-587 (-1094))) (-4 *3 (-148)) (-4 *5 (-198 (-3964 *2) (-698))) (-14 *6 (-1 (-85) (-2 (|:| -2405 *4) (|:| -2406 *5)) (-2 (|:| -2405 *4) (|:| -2406 *5)))) (-5 *1 (-404 *2 *3 *4 *5 *6 *7)) (-4 *4 (-760)) (-4 *7 (-865 *3 *5 (-777 *2))))) (-2899 (*1 *1 *2 *3) (-12 (-5 *3 (-654 *5 *6 *7)) (-4 *5 (-760)) (-4 *6 (-198 (-3964 *4) (-698))) (-14 *7 (-1 (-85) (-2 (|:| -2405 *5) (|:| -2406 *6)) (-2 (|:| -2405 *5) (|:| -2406 *6)))) (-14 *4 (-587 (-1094))) (-4 *2 (-148)) (-5 *1 (-404 *4 *2 *5 *6 *7 *8)) (-4 *8 (-865 *2 *6 (-777 *4))))) (-3713 (*1 *1 *2) (-12 (-14 *3 (-587 (-1094))) (-4 *4 (-148)) (-4 *5 (-198 (-3964 *3) (-698))) (-14 *6 (-1 (-85) (-2 (|:| -2405 *2) (|:| -2406 *5)) (-2 (|:| -2405 *2) (|:| -2406 *5)))) (-5 *1 (-404 *3 *4 *2 *5 *6 *7)) (-4 *2 (-760)) (-4 *7 (-865 *4 *5 (-777 *3))))) (-1923 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-587 (-1094))) (-4 *2 (-148)) (-4 *4 (-198 (-3964 *5) (-698))) (-14 *6 (-1 (-85) (-2 (|:| -2405 *3) (|:| -2406 *4)) (-2 (|:| -2405 *3) (|:| -2406 *4)))) (-5 *1 (-404 *5 *2 *3 *4 *6 *7)) (-4 *3 (-760)) (-4 *7 (-865 *2 *4 (-777 *5))))) (-1922 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-587 (-1094))) (-4 *2 (-148)) (-4 *3 (-198 (-3964 *4) (-698))) (-14 *6 (-1 (-85) (-2 (|:| -2405 *5) (|:| -2406 *3)) (-2 (|:| -2405 *5) (|:| -2406 *3)))) (-5 *1 (-404 *4 *2 *5 *3 *6 *7)) (-4 *5 (-760)) (-4 *7 (-865 *2 *3 (-777 *4)))))) +((-1926 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) +(((-405 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1926 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-721) (-760) (-499) (-865 |#3| |#1| |#2|) (-13 (-954 (-352 (-488))) (-314) (-10 -8 (-15 -3953 ($ |#4|)) (-15 -3004 (|#4| $)) (-15 -3003 (|#4| $))))) (T -405)) +((-1926 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-760)) (-4 *5 (-721)) (-4 *6 (-499)) (-4 *7 (-865 *6 *5 *3)) (-5 *1 (-405 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-954 (-352 (-488))) (-314) (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $)))))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3087 (((-587 |#3|) $) 40 T ELT)) (-2914 (((-85) $) NIL T ELT)) (-2905 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-2915 (((-2 (|:| |under| $) (|:| -3136 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3716 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-320 |#4|)) ELT)) (-3730 (($) NIL T CONST)) (-2910 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-2912 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-2911 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-2913 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-2906 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-499)) ELT)) (-2907 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-499)) ELT)) (-3163 (((-3 $ #1="failed") (-587 |#4|)) 48 T ELT)) (-3162 (($ (-587 |#4|)) NIL T ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 |#4|)) (|has| |#4| (-72))) ELT)) (-3412 (($ |#4| $) NIL (-12 (|has| $ (-320 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-320 |#4|)) ELT)) (-2908 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-499)) ELT)) (-3848 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT)) (-3186 ((|#3| $) 46 T ELT)) (-2614 (((-587 |#4|) $) 14 T ELT)) (-3251 (((-85) |#4| $) 25 (|has| |#4| (-72)) ELT)) (-3332 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-3849 (($ (-1 |#4| |#4|) $) 20 T ELT)) (-2920 (((-587 |#3|) $) NIL T ELT)) (-2919 (((-85) |#3| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2909 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-499)) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1734 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-1736 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3774 (($ $ (-587 |#4|) (-587 |#4|)) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-251 |#4|)) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-587 (-251 |#4|))) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) 38 T ELT)) (-3571 (($) 17 T ELT)) (-1735 (((-698) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-698) (-1 (-85) |#4|) $) NIL T ELT)) (-3406 (($ $) 16 T ELT)) (-3978 (((-477) $) NIL (|has| |#4| (-557 (-477))) ELT) (($ (-587 |#4|)) 50 T ELT)) (-3536 (($ (-587 |#4|)) 13 T ELT)) (-2916 (($ $ |#3|) NIL T ELT)) (-2918 (($ $ |#3|) NIL T ELT)) (-2917 (($ $ |#3|) NIL T ELT)) (-3953 (((-776) $) 37 T ELT) (((-587 |#4|) $) 49 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-1737 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3062 (((-85) $ $) 29 T ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-406 |#1| |#2| |#3| |#4|) (-13 (-893 |#1| |#2| |#3| |#4|) (-1039 |#4|) (-10 -8 (-15 -3978 ($ (-587 |#4|))))) (-965) (-721) (-760) (-981 |#1| |#2| |#3|)) (T -406)) +((-3978 (*1 *1 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-406 *3 *4 *5 *6))))) +((-2666 (($) 11 T CONST)) (-2672 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) +(((-407 |#1| |#2| |#3|) (-10 -7 (-15 -2672 (|#1|) -3959) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2666 (|#1|) -3959)) (-408 |#2| |#3|) (-148) (-23)) (T -407)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3163 (((-3 |#1| "failed") $) 30 T ELT)) (-3162 ((|#1| $) 31 T ELT)) (-3951 (($ $ $) 27 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3955 ((|#2| $) 23 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 22 T CONST)) (-2672 (($) 28 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +(((-408 |#1| |#2|) (-113) (-148) (-23)) (T -408)) +((-2672 (*1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-148)) (-4 *3 (-23)))) (-3951 (*1 *1 *1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-148)) (-4 *3 (-23))))) +(-13 (-413 |t#1| |t#2|) (-954 |t#1|) (-10 -8 (-15 -2672 ($) -3959) (-15 -3951 ($ $ $)))) +(((-72) . T) ((-559 |#1|) . T) ((-556 (-776)) . T) ((-413 |#1| |#2|) . T) ((-13) . T) ((-954 |#1|) . T) ((-1017) . T) ((-1133) . T)) +((-1927 (((-1183 (-1183 (-488))) (-1183 (-1183 (-488))) (-834)) 26 T ELT)) (-1928 (((-1183 (-1183 (-488))) (-834)) 21 T ELT))) +(((-409) (-10 -7 (-15 -1927 ((-1183 (-1183 (-488))) (-1183 (-1183 (-488))) (-834))) (-15 -1928 ((-1183 (-1183 (-488))) (-834))))) (T -409)) +((-1928 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1183 (-1183 (-488)))) (-5 *1 (-409)))) (-1927 (*1 *2 *2 *3) (-12 (-5 *2 (-1183 (-1183 (-488)))) (-5 *3 (-834)) (-5 *1 (-409))))) +((-2776 (((-488) (-488)) 32 T ELT) (((-488)) 24 T ELT)) (-2780 (((-488) (-488)) 28 T ELT) (((-488)) 20 T ELT)) (-2778 (((-488) (-488)) 30 T ELT) (((-488)) 22 T ELT)) (-1930 (((-85) (-85)) 14 T ELT) (((-85)) 12 T ELT)) (-1929 (((-85) (-85)) 13 T ELT) (((-85)) 11 T ELT)) (-1931 (((-85) (-85)) 26 T ELT) (((-85)) 17 T ELT))) +(((-410) (-10 -7 (-15 -1929 ((-85))) (-15 -1930 ((-85))) (-15 -1929 ((-85) (-85))) (-15 -1930 ((-85) (-85))) (-15 -1931 ((-85))) (-15 -2778 ((-488))) (-15 -2780 ((-488))) (-15 -2776 ((-488))) (-15 -1931 ((-85) (-85))) (-15 -2778 ((-488) (-488))) (-15 -2780 ((-488) (-488))) (-15 -2776 ((-488) (-488))))) (T -410)) +((-2776 (*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-410)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-410)))) (-2778 (*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-410)))) (-1931 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-410)))) (-2776 (*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-410)))) (-2780 (*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-410)))) (-2778 (*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-410)))) (-1931 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-410)))) (-1930 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-410)))) (-1929 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-410)))) (-1930 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-410)))) (-1929 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-410))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3858 (((-587 (-332)) $) 34 T ELT) (((-587 (-332)) $ (-587 (-332))) 145 T ELT)) (-1936 (((-587 (-1005 (-332))) $) 16 T ELT) (((-587 (-1005 (-332))) $ (-587 (-1005 (-332)))) 142 T ELT)) (-1933 (((-587 (-587 (-858 (-181)))) (-587 (-587 (-858 (-181)))) (-587 (-787))) 58 T ELT)) (-1937 (((-587 (-587 (-858 (-181)))) $) 137 T ELT)) (-3712 (((-1189) $ (-858 (-181)) (-787)) 162 T ELT)) (-1938 (($ $) 136 T ELT) (($ (-587 (-587 (-858 (-181))))) 148 T ELT) (($ (-587 (-587 (-858 (-181)))) (-587 (-787)) (-587 (-787)) (-587 (-834))) 147 T ELT) (($ (-587 (-587 (-858 (-181)))) (-587 (-787)) (-587 (-787)) (-587 (-834)) (-587 (-223))) 149 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3867 (((-488) $) 110 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1939 (($) 146 T ELT)) (-1932 (((-587 (-181)) (-587 (-587 (-858 (-181))))) 89 T ELT)) (-1935 (((-1189) $ (-587 (-858 (-181))) (-787) (-787) (-834)) 154 T ELT) (((-1189) $ (-858 (-181))) 156 T ELT) (((-1189) $ (-858 (-181)) (-787) (-787) (-834)) 155 T ELT)) (-3953 (((-776) $) 168 T ELT) (($ (-587 (-587 (-858 (-181))))) 163 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-1934 (((-1189) $ (-858 (-181))) 161 T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-411) (-13 (-1017) (-10 -8 (-15 -1939 ($)) (-15 -1938 ($ $)) (-15 -1938 ($ (-587 (-587 (-858 (-181)))))) (-15 -1938 ($ (-587 (-587 (-858 (-181)))) (-587 (-787)) (-587 (-787)) (-587 (-834)))) (-15 -1938 ($ (-587 (-587 (-858 (-181)))) (-587 (-787)) (-587 (-787)) (-587 (-834)) (-587 (-223)))) (-15 -1937 ((-587 (-587 (-858 (-181)))) $)) (-15 -3867 ((-488) $)) (-15 -1936 ((-587 (-1005 (-332))) $)) (-15 -1936 ((-587 (-1005 (-332))) $ (-587 (-1005 (-332))))) (-15 -3858 ((-587 (-332)) $)) (-15 -3858 ((-587 (-332)) $ (-587 (-332)))) (-15 -1935 ((-1189) $ (-587 (-858 (-181))) (-787) (-787) (-834))) (-15 -1935 ((-1189) $ (-858 (-181)))) (-15 -1935 ((-1189) $ (-858 (-181)) (-787) (-787) (-834))) (-15 -1934 ((-1189) $ (-858 (-181)))) (-15 -3712 ((-1189) $ (-858 (-181)) (-787))) (-15 -3953 ($ (-587 (-587 (-858 (-181)))))) (-15 -3953 ((-776) $)) (-15 -1933 ((-587 (-587 (-858 (-181)))) (-587 (-587 (-858 (-181)))) (-587 (-787)))) (-15 -1932 ((-587 (-181)) (-587 (-587 (-858 (-181))))))))) (T -411)) +((-3953 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-411)))) (-1939 (*1 *1) (-5 *1 (-411))) (-1938 (*1 *1 *1) (-5 *1 (-411))) (-1938 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-858 (-181))))) (-5 *1 (-411)))) (-1938 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-587 (-587 (-858 (-181))))) (-5 *3 (-587 (-787))) (-5 *4 (-587 (-834))) (-5 *1 (-411)))) (-1938 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-587 (-587 (-858 (-181))))) (-5 *3 (-587 (-787))) (-5 *4 (-587 (-834))) (-5 *5 (-587 (-223))) (-5 *1 (-411)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-858 (-181))))) (-5 *1 (-411)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-411)))) (-1936 (*1 *2 *1) (-12 (-5 *2 (-587 (-1005 (-332)))) (-5 *1 (-411)))) (-1936 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1005 (-332)))) (-5 *1 (-411)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-587 (-332))) (-5 *1 (-411)))) (-3858 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-332))) (-5 *1 (-411)))) (-1935 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-587 (-858 (-181)))) (-5 *4 (-787)) (-5 *5 (-834)) (-5 *2 (-1189)) (-5 *1 (-411)))) (-1935 (*1 *2 *1 *3) (-12 (-5 *3 (-858 (-181))) (-5 *2 (-1189)) (-5 *1 (-411)))) (-1935 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-858 (-181))) (-5 *4 (-787)) (-5 *5 (-834)) (-5 *2 (-1189)) (-5 *1 (-411)))) (-1934 (*1 *2 *1 *3) (-12 (-5 *3 (-858 (-181))) (-5 *2 (-1189)) (-5 *1 (-411)))) (-3712 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-858 (-181))) (-5 *4 (-787)) (-5 *2 (-1189)) (-5 *1 (-411)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-858 (-181))))) (-5 *1 (-411)))) (-1933 (*1 *2 *2 *3) (-12 (-5 *2 (-587 (-587 (-858 (-181))))) (-5 *3 (-587 (-787))) (-5 *1 (-411)))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-587 (-587 (-858 (-181))))) (-5 *2 (-587 (-181))) (-5 *1 (-411))))) +((-3843 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) +(((-412 |#1| |#2| |#3|) (-10 -7 (-15 -3843 (|#1| |#1| |#1|)) (-15 -3843 (|#1| |#1|))) (-413 |#2| |#3|) (-148) (-23)) (T -412)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3955 ((|#2| $) 23 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 22 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +(((-413 |#1| |#2|) (-113) (-148) (-23)) (T -413)) +((-3955 (*1 *2 *1) (-12 (-4 *1 (-413 *3 *2)) (-4 *3 (-148)) (-4 *2 (-23)))) (-2666 (*1 *1) (-12 (-4 *1 (-413 *2 *3)) (-4 *2 (-148)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-413 *2 *3)) (-4 *2 (-148)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-413 *2 *3)) (-4 *2 (-148)) (-4 *3 (-23)))) (-3843 (*1 *1 *1) (-12 (-4 *1 (-413 *2 *3)) (-4 *2 (-148)) (-4 *3 (-23)))) (-3845 (*1 *1 *1 *1) (-12 (-4 *1 (-413 *2 *3)) (-4 *2 (-148)) (-4 *3 (-23)))) (-3843 (*1 *1 *1 *1) (-12 (-4 *1 (-413 *2 *3)) (-4 *2 (-148)) (-4 *3 (-23))))) +(-13 (-1017) (-10 -8 (-15 -3955 (|t#2| $)) (-15 -2666 ($) -3959) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3843 ($ $)) (-15 -3845 ($ $ $)) (-15 -3843 ($ $ $)))) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-1941 (((-3 (-587 (-424 |#1| |#2|)) "failed") (-587 (-424 |#1| |#2|)) (-587 (-777 |#1|))) 135 T ELT)) (-1940 (((-587 (-587 (-208 |#1| |#2|))) (-587 (-208 |#1| |#2|)) (-587 (-777 |#1|))) 132 T ELT)) (-1942 (((-2 (|:| |dpolys| (-587 (-208 |#1| |#2|))) (|:| |coords| (-587 (-488)))) (-587 (-208 |#1| |#2|)) (-587 (-777 |#1|))) 87 T ELT))) +(((-414 |#1| |#2| |#3|) (-10 -7 (-15 -1940 ((-587 (-587 (-208 |#1| |#2|))) (-587 (-208 |#1| |#2|)) (-587 (-777 |#1|)))) (-15 -1941 ((-3 (-587 (-424 |#1| |#2|)) "failed") (-587 (-424 |#1| |#2|)) (-587 (-777 |#1|)))) (-15 -1942 ((-2 (|:| |dpolys| (-587 (-208 |#1| |#2|))) (|:| |coords| (-587 (-488)))) (-587 (-208 |#1| |#2|)) (-587 (-777 |#1|))))) (-587 (-1094)) (-395) (-395)) (T -414)) +((-1942 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-777 *5))) (-14 *5 (-587 (-1094))) (-4 *6 (-395)) (-5 *2 (-2 (|:| |dpolys| (-587 (-208 *5 *6))) (|:| |coords| (-587 (-488))))) (-5 *1 (-414 *5 *6 *7)) (-5 *3 (-587 (-208 *5 *6))) (-4 *7 (-395)))) (-1941 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-424 *4 *5))) (-5 *3 (-587 (-777 *4))) (-14 *4 (-587 (-1094))) (-4 *5 (-395)) (-5 *1 (-414 *4 *5 *6)) (-4 *6 (-395)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-777 *5))) (-14 *5 (-587 (-1094))) (-4 *6 (-395)) (-5 *2 (-587 (-587 (-208 *5 *6)))) (-5 *1 (-414 *5 *6 *7)) (-5 *3 (-587 (-208 *5 *6))) (-4 *7 (-395))))) +((-3473 (((-3 $ "failed") $) 11 T ELT)) (-3015 (($ $ $) 22 T ELT)) (-2441 (($ $ $) 23 T ELT)) (-3956 (($ $ $) 9 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) 21 T ELT))) +(((-415 |#1|) (-10 -7 (-15 -2441 (|#1| |#1| |#1|)) (-15 -3015 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-488))) (-15 -3956 (|#1| |#1| |#1|)) (-15 -3473 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-698))) (-15 ** (|#1| |#1| (-834)))) (-416)) (T -415)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 20 T ELT)) (-2415 (((-85) $) 22 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 30 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3015 (($ $ $) 27 T ELT)) (-2441 (($ $ $) 26 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2672 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ $) 29 T ELT)) (** (($ $ (-834)) 17 T ELT) (($ $ (-698)) 21 T ELT) (($ $ (-488)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-416) (-113)) (T -416)) +((-2490 (*1 *1 *1) (-4 *1 (-416))) (-3956 (*1 *1 *1 *1) (-4 *1 (-416))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-488)))) (-3015 (*1 *1 *1 *1) (-4 *1 (-416))) (-2441 (*1 *1 *1 *1) (-4 *1 (-416)))) +(-13 (-667) (-10 -8 (-15 -2490 ($ $)) (-15 -3956 ($ $ $)) (-15 ** ($ $ (-488))) (-6 -3998) (-15 -3015 ($ $ $)) (-15 -2441 ($ $ $)))) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-667) . T) ((-1029) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3087 (((-587 (-998)) $) NIL T ELT)) (-3837 (((-1094) $) 18 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3777 (($ $ (-352 (-488))) NIL T ELT) (($ $ (-352 (-488)) (-352 (-488))) NIL T ELT)) (-3780 (((-1073 (-2 (|:| |k| (-352 (-488))) (|:| |c| |#1|))) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3645 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-314)) ELT)) (-3043 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1612 (((-85) $ $) NIL (|has| |#1| (-314)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3644 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3824 (($ (-698) (-1073 (-2 (|:| |k| (-352 (-488))) (|:| |c| |#1|)))) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3643 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3730 (($) NIL T CONST)) (-2570 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3965 (($ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-2569 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL (|has| |#1| (-314)) ELT)) (-3729 (((-85) $) NIL (|has| |#1| (-314)) ELT)) (-2898 (((-85) $) NIL T ELT)) (-3633 (($) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3778 (((-352 (-488)) $) NIL T ELT) (((-352 (-488)) $ (-352 (-488))) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3017 (($ $ (-488)) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3783 (($ $ (-834)) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-352 (-488))) NIL T ELT) (($ $ (-998) (-352 (-488))) NIL T ELT) (($ $ (-587 (-998)) (-587 (-352 (-488)))) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3949 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3818 (($ $) 29 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-1094)) 35 (OR (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-29 (-488))) (|has| |#1| (-875)) (|has| |#1| (-1119))) (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-15 -3818 (|#1| |#1| (-1094)))) (|has| |#1| (-15 -3087 ((-587 (-1094)) |#1|))))) ELT) (($ $ (-1180 |#2|)) 30 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#1| (-314)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#1| (-314)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3775 (($ $ (-352 (-488))) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL (|has| |#1| (-499)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-3950 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3774 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-352 (-488))))) ELT)) (-1611 (((-698) $) NIL (|has| |#1| (-314)) ELT)) (-3806 ((|#1| $ (-352 (-488))) NIL T ELT) (($ $ $) NIL (|has| (-352 (-488)) (-1029)) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3764 (($ $ (-1094)) 28 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-698)) NIL (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-1180 |#2|)) 16 T ELT)) (-3955 (((-352 (-488)) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-148)) ELT) (($ (-1180 |#2|)) NIL T ELT) (($ (-1164 |#1| |#2| |#3|)) 9 T ELT) (($ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $) NIL (|has| |#1| (-499)) ELT)) (-3683 ((|#1| $ (-352 (-488))) NIL T ELT)) (-2708 (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-3132 (((-698)) NIL T CONST)) (-3779 ((|#1| $) 21 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3506 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3776 ((|#1| $ (-352 (-488))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-352 (-488))))) (|has| |#1| (-15 -3953 (|#1| (-1094))))) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3507 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3505 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $ (-1094)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-698)) NIL (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-1180 |#2|)) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-417 |#1| |#2| |#3|) (-13 (-1166 |#1|) (-810 $ (-1180 |#2|)) (-10 -8 (-15 -3953 ($ (-1180 |#2|))) (-15 -3953 ($ (-1164 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-352 (-488)))) (-15 -3818 ($ $ (-1180 |#2|))) |%noBranch|))) (-965) (-1094) |#1|) (T -417)) +((-3953 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-417 *3 *4 *5)) (-4 *3 (-965)) (-14 *5 *3))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-1164 *3 *4 *5)) (-4 *3 (-965)) (-14 *4 (-1094)) (-14 *5 *3) (-5 *1 (-417 *3 *4 *5)))) (-3818 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-417 *3 *4 *5)) (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)) (-14 *5 *3)))) +((-2574 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3605 (($) NIL T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2203 (((-1189) $ |#1| |#1|) NIL (|has| $ (-1039 |#2|)) ELT)) (-3794 ((|#2| $ |#1| |#2|) 18 (|has| $ (-1039 |#2|)) ELT)) (-1574 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3716 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-2236 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3730 (($) NIL T CONST)) (-1357 (($ $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3411 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3412 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3848 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1580 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-3118 ((|#2| $ |#1|) NIL T ELT)) (-2205 ((|#1| $) NIL (|has| |#1| (-760)) ELT)) (-2614 (((-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3251 (((-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2206 ((|#1| $) NIL (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3849 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017))) ELT)) (-2237 (((-587 |#1|) $) NIL T ELT)) (-2238 (((-85) |#1| $) NIL T ELT)) (-1278 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3615 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2208 (((-587 |#1|) $) NIL T ELT)) (-2209 (((-85) |#1| $) NIL T ELT)) (-3249 (((-1037) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017))) ELT)) (-3807 ((|#2| $) NIL (|has| |#1| (-760)) ELT)) (-1734 (((-3 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2204 (($ $ |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-1279 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1736 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-251 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 (-251 |#2|))) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#2| $) NIL (-12 (|has| $ (-320 |#2|)) (|has| |#2| (-72))) ELT)) (-2210 (((-587 |#2|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1470 (($) NIL T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1735 (((-698) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-698) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-557 (-477))) ELT)) (-3536 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3953 (((-776) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-556 (-776))) (|has| |#2| (-556 (-776)))) ELT)) (-1269 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1280 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1737 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3062 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-418 |#1| |#2| |#3| |#4|) (-1111 |#1| |#2|) (-1017) (-1017) (-1111 |#1| |#2|) |#2|) (T -418)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3687 (((-587 (-2 (|:| -3868 $) (|:| -1706 (-587 |#4|)))) (-587 |#4|)) NIL T ELT)) (-3688 (((-587 $) (-587 |#4|)) NIL T ELT)) (-3087 (((-587 |#3|) $) NIL T ELT)) (-2914 (((-85) $) NIL T ELT)) (-2905 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3699 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3694 ((|#4| |#4| $) NIL T ELT)) (-2915 (((-2 (|:| |under| $) (|:| -3136 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3716 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-320 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2910 (((-85) $) 28 (|has| |#1| (-499)) ELT)) (-2912 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-2911 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-2913 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3695 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2906 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-499)) ELT)) (-2907 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-499)) ELT)) (-3163 (((-3 $ #1#) (-587 |#4|)) NIL T ELT)) (-3162 (($ (-587 |#4|)) NIL T ELT)) (-3805 (((-3 $ #1#) $) 44 T ELT)) (-3691 ((|#4| |#4| $) NIL T ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 |#4|)) (|has| |#4| (-72))) ELT)) (-3412 (($ |#4| $) NIL (-12 (|has| $ (-320 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-320 |#4|)) ELT)) (-2908 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-499)) ELT)) (-3700 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3848 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3702 (((-2 (|:| -3868 (-587 |#4|)) (|:| -1706 (-587 |#4|))) $) NIL T ELT)) (-3701 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3186 ((|#3| $) 37 T ELT)) (-2614 (((-587 |#4|) $) 18 T ELT)) (-3251 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3332 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3849 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2920 (((-587 |#3|) $) NIL T ELT)) (-2919 (((-85) |#3| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3804 (((-3 |#4| #1#) $) 41 T ELT)) (-3703 (((-587 |#4|) $) NIL T ELT)) (-3697 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3692 ((|#4| |#4| $) NIL T ELT)) (-3705 (((-85) $ $) NIL T ELT)) (-2909 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-499)) ELT)) (-3698 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3693 ((|#4| |#4| $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3807 (((-3 |#4| #1#) $) 39 T ELT)) (-1734 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3685 (((-3 $ #1#) $ |#4|) 54 T ELT)) (-3775 (($ $ |#4|) NIL T ELT)) (-1736 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3774 (($ $ (-587 |#4|) (-587 |#4|)) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-251 |#4|)) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-587 (-251 |#4|))) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) 17 T ELT)) (-3571 (($) 14 T ELT)) (-3955 (((-698) $) NIL T ELT)) (-1735 (((-698) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-698) (-1 (-85) |#4|) $) NIL T ELT)) (-3406 (($ $) 13 T ELT)) (-3978 (((-477) $) NIL (|has| |#4| (-557 (-477))) ELT)) (-3536 (($ (-587 |#4|)) 21 T ELT)) (-2916 (($ $ |#3|) 48 T ELT)) (-2918 (($ $ |#3|) 50 T ELT)) (-3690 (($ $) NIL T ELT)) (-2917 (($ $ |#3|) NIL T ELT)) (-3953 (((-776) $) 34 T ELT) (((-587 |#4|) $) 45 T ELT)) (-3684 (((-698) $) NIL (|has| |#3| (-322)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3704 (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#4|))) #1#) (-587 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#4|))) #1#) (-587 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3696 (((-85) $ (-1 (-85) |#4| (-587 |#4|))) NIL T ELT)) (-1737 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3686 (((-587 |#3|) $) NIL T ELT)) (-3940 (((-85) |#3| $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-419 |#1| |#2| |#3| |#4|) (-1128 |#1| |#2| |#3| |#4|) (-499) (-721) (-760) (-981 |#1| |#2| |#3|)) (T -419)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL T ELT)) (-3162 (((-488) $) NIL T ELT) (((-352 (-488)) $) NIL T ELT)) (-2570 (($ $ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-3633 (($) 17 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-3978 (((-332) $) 21 T ELT) (((-181) $) 24 T ELT) (((-352 (-1089 (-488))) $) 18 T ELT) (((-477) $) 53 T ELT)) (-3953 (((-776) $) 51 T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (((-181) $) 23 T ELT) (((-332) $) 20 T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 37 T CONST)) (-2672 (($) 8 T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT))) +(((-420) (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))) (-937) (-556 (-181)) (-556 (-332)) (-557 (-352 (-1089 (-488)))) (-557 (-477)) (-10 -8 (-15 -3633 ($))))) (T -420)) +((-3633 (*1 *1) (-5 *1 (-420)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3534 (((-1053) $) 12 T ELT)) (-3535 (((-1053) $) 10 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 18 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-421) (-13 (-999) (-10 -8 (-15 -3535 ((-1053) $)) (-15 -3534 ((-1053) $))))) (T -421)) +((-3535 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-421)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-421))))) +((-2574 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3605 (($) NIL T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2203 (((-1189) $ |#1| |#1|) NIL (|has| $ (-1039 |#2|)) ELT)) (-3794 ((|#2| $ |#1| |#2|) 16 (|has| $ (-1039 |#2|)) ELT)) (-1574 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3716 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-2236 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3730 (($) NIL T CONST)) (-1357 (($ $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3411 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3412 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3848 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1580 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-3118 ((|#2| $ |#1|) NIL T ELT)) (-2205 ((|#1| $) NIL (|has| |#1| (-760)) ELT)) (-2614 (((-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3251 (((-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2206 ((|#1| $) NIL (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3849 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017))) ELT)) (-2237 (((-587 |#1|) $) 13 T ELT)) (-2238 (((-85) |#1| $) NIL T ELT)) (-1278 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3615 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2208 (((-587 |#1|) $) NIL T ELT)) (-2209 (((-85) |#1| $) NIL T ELT)) (-3249 (((-1037) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017))) ELT)) (-3807 ((|#2| $) NIL (|has| |#1| (-760)) ELT)) (-1734 (((-3 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2204 (($ $ |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-1279 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1736 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-251 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 (-251 |#2|))) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#2| $) NIL (-12 (|has| $ (-320 |#2|)) (|has| |#2| (-72))) ELT)) (-2210 (((-587 |#2|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) 19 T ELT)) (-3806 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1470 (($) NIL T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1735 (((-698) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-698) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-557 (-477))) ELT)) (-3536 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3953 (((-776) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-556 (-776))) (|has| |#2| (-556 (-776)))) ELT)) (-1269 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1280 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1737 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3062 (((-85) $ $) 11 (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3964 (((-698) $) 15 T ELT))) +(((-422 |#1| |#2| |#3|) (-1111 |#1| |#2|) (-1017) (-1017) (-1077)) (T -422)) +NIL +((-1943 (((-488) (-488) (-488)) 19 T ELT)) (-1944 (((-85) (-488) (-488) (-488) (-488)) 28 T ELT)) (-3463 (((-1183 (-587 (-488))) (-698) (-698)) 42 T ELT))) +(((-423) (-10 -7 (-15 -1943 ((-488) (-488) (-488))) (-15 -1944 ((-85) (-488) (-488) (-488) (-488))) (-15 -3463 ((-1183 (-587 (-488))) (-698) (-698))))) (T -423)) +((-3463 (*1 *2 *3 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1183 (-587 (-488)))) (-5 *1 (-423)))) (-1944 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-488)) (-5 *2 (-85)) (-5 *1 (-423)))) (-1943 (*1 *2 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-423))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3087 (((-587 (-777 |#1|)) $) NIL T ELT)) (-3089 (((-1089 $) $ (-777 |#1|)) NIL T ELT) (((-1089 |#2|) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#2| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#2| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#2| (-499)) ELT)) (-2825 (((-698) $) NIL T ELT) (((-698) $ (-587 (-777 |#1|))) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-3781 (($ $) NIL (|has| |#2| (-395)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#2| (-395)) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#2| (-954 (-352 (-488)))) ELT) (((-3 (-488) #1#) $) NIL (|has| |#2| (-954 (-488))) ELT) (((-3 (-777 |#1|) #1#) $) NIL T ELT)) (-3162 ((|#2| $) NIL T ELT) (((-352 (-488)) $) NIL (|has| |#2| (-954 (-352 (-488)))) ELT) (((-488) $) NIL (|has| |#2| (-954 (-488))) ELT) (((-777 |#1|) $) NIL T ELT)) (-3762 (($ $ $ (-777 |#1|)) NIL (|has| |#2| (-148)) ELT)) (-1945 (($ $ (-587 (-488))) NIL T ELT)) (-3965 (($ $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#2|) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3509 (($ $) NIL (|has| |#2| (-395)) ELT) (($ $ (-777 |#1|)) NIL (|has| |#2| (-395)) ELT)) (-2824 (((-587 $) $) NIL T ELT)) (-3729 (((-85) $) NIL (|has| |#2| (-825)) ELT)) (-1628 (($ $ |#2| (-425 (-3964 |#1|) (-698)) $) NIL T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (-12 (|has| (-777 |#1|) (-800 (-332))) (|has| |#2| (-800 (-332)))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (-12 (|has| (-777 |#1|) (-800 (-488))) (|has| |#2| (-800 (-488)))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2425 (((-698) $) NIL T ELT)) (-3090 (($ (-1089 |#2|) (-777 |#1|)) NIL T ELT) (($ (-1089 $) (-777 |#1|)) NIL T ELT)) (-2827 (((-587 $) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#2| (-425 (-3964 |#1|) (-698))) NIL T ELT) (($ $ (-777 |#1|) (-698)) NIL T ELT) (($ $ (-587 (-777 |#1|)) (-587 (-698))) NIL T ELT)) (-3769 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $ (-777 |#1|)) NIL T ELT)) (-2826 (((-425 (-3964 |#1|) (-698)) $) NIL T ELT) (((-698) $ (-777 |#1|)) NIL T ELT) (((-587 (-698)) $ (-587 (-777 |#1|))) NIL T ELT)) (-1629 (($ (-1 (-425 (-3964 |#1|) (-698)) (-425 (-3964 |#1|) (-698))) $) NIL T ELT)) (-3849 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3088 (((-3 (-777 |#1|) #1#) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-1183 $) $) NIL T ELT) (((-634 |#2|) (-1183 $)) NIL T ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#2| $) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#2| (-395)) ELT) (($ $ $) NIL (|has| |#2| (-395)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2829 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2828 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2830 (((-3 (-2 (|:| |var| (-777 |#1|)) (|:| -2406 (-698))) #1#) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1805 (((-85) $) NIL T ELT)) (-1804 ((|#2| $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#2| (-395)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#2| (-395)) ELT) (($ $ $) NIL (|has| |#2| (-395)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#2| (-825)) ELT)) (-3472 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-499)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-499)) ELT)) (-3774 (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ (-777 |#1|) |#2|) NIL T ELT) (($ $ (-587 (-777 |#1|)) (-587 |#2|)) NIL T ELT) (($ $ (-777 |#1|) $) NIL T ELT) (($ $ (-587 (-777 |#1|)) (-587 $)) NIL T ELT)) (-3763 (($ $ (-777 |#1|)) NIL (|has| |#2| (-148)) ELT)) (-3764 (($ $ (-587 (-777 |#1|)) (-587 (-698))) NIL T ELT) (($ $ (-777 |#1|) (-698)) NIL T ELT) (($ $ (-587 (-777 |#1|))) NIL T ELT) (($ $ (-777 |#1|)) NIL T ELT)) (-3955 (((-425 (-3964 |#1|) (-698)) $) NIL T ELT) (((-698) $ (-777 |#1|)) NIL T ELT) (((-587 (-698)) $ (-587 (-777 |#1|))) NIL T ELT)) (-3978 (((-804 (-332)) $) NIL (-12 (|has| (-777 |#1|) (-557 (-804 (-332)))) (|has| |#2| (-557 (-804 (-332))))) ELT) (((-804 (-488)) $) NIL (-12 (|has| (-777 |#1|) (-557 (-804 (-488)))) (|has| |#2| (-557 (-804 (-488))))) ELT) (((-477) $) NIL (-12 (|has| (-777 |#1|) (-557 (-477))) (|has| |#2| (-557 (-477)))) ELT)) (-2823 ((|#2| $) NIL (|has| |#2| (-395)) ELT) (($ $ (-777 |#1|)) NIL (|has| |#2| (-395)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-825))) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-777 |#1|)) NIL T ELT) (($ (-352 (-488))) NIL (OR (|has| |#2| (-38 (-352 (-488)))) (|has| |#2| (-954 (-352 (-488))))) ELT) (($ $) NIL (|has| |#2| (-499)) ELT)) (-3823 (((-587 |#2|) $) NIL T ELT)) (-3683 ((|#2| $ (-425 (-3964 |#1|) (-698))) NIL T ELT) (($ $ (-777 |#1|) (-698)) NIL T ELT) (($ $ (-587 (-777 |#1|)) (-587 (-698))) NIL T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-825))) (|has| |#2| (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1627 (($ $ $ (-698)) NIL (|has| |#2| (-148)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL (|has| |#2| (-499)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $ (-587 (-777 |#1|)) (-587 (-698))) NIL T ELT) (($ $ (-777 |#1|) (-698)) NIL T ELT) (($ $ (-587 (-777 |#1|))) NIL T ELT) (($ $ (-777 |#1|)) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#2|) NIL (|has| |#2| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL (|has| |#2| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) NIL (|has| |#2| (-38 (-352 (-488)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-424 |#1| |#2|) (-13 (-865 |#2| (-425 (-3964 |#1|) (-698)) (-777 |#1|)) (-10 -8 (-15 -1945 ($ $ (-587 (-488)))))) (-587 (-1094)) (-965)) (T -424)) +((-1945 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-424 *3 *4)) (-14 *3 (-587 (-1094))) (-4 *4 (-965))))) +((-2574 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3194 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3713 (($ (-834)) NIL (|has| |#2| (-965)) ELT)) (-2203 (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 |#2|)) ELT)) (-2489 (($ $ $) NIL (|has| |#2| (-721)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3142 (((-698)) NIL (|has| |#2| (-322)) ELT)) (-3794 ((|#2| $ (-488) |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL (-12 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (-12 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1017)) ELT)) (-3162 (((-488) $) NIL (-12 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017))) ELT) (((-352 (-488)) $) NIL (-12 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017))) ELT) ((|#2| $) NIL (|has| |#2| (-1017)) ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (-12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (-12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 $) (-1183 $)) NIL (|has| |#2| (-965)) ELT) (((-634 |#2|) (-634 $)) NIL (|has| |#2| (-965)) ELT)) (-3848 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL (|has| |#2| (-965)) ELT)) (-3000 (($) NIL (|has| |#2| (-322)) ELT)) (-1580 ((|#2| $ (-488) |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-3118 ((|#2| $ (-488)) 11 T ELT)) (-3192 (((-85) $) NIL (|has| |#2| (-721)) ELT)) (-1218 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2415 (((-85) $) NIL (|has| |#2| (-965)) ELT)) (-2205 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL (|has| |#2| (-760)) ELT)) (-2614 (((-587 |#2|) $) NIL T ELT)) (-3251 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2206 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#2| (-760)) ELT)) (-3849 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2015 (((-834) $) NIL (|has| |#2| (-322)) ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (-12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (-12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-1183 $) $) NIL (|has| |#2| (-965)) ELT) (((-634 |#2|) (-1183 $)) NIL (|has| |#2| (-965)) ELT)) (-3248 (((-1077) $) NIL (|has| |#2| (-1017)) ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) NIL T ELT)) (-2405 (($ (-834)) NIL (|has| |#2| (-322)) ELT)) (-3249 (((-1037) $) NIL (|has| |#2| (-1017)) ELT)) (-3807 ((|#2| $) NIL (|has| (-488) (-760)) ELT)) (-1734 (((-3 |#2| #1#) (-1 (-85) |#2|) $) NIL T ELT)) (-2204 (($ $ |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-1736 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#2|))) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-251 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#2| $) NIL (-12 (|has| $ (-320 |#2|)) (|has| |#2| (-72))) ELT)) (-2210 (((-587 |#2|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#2| $ (-488) |#2|) NIL T ELT) ((|#2| $ (-488)) NIL T ELT)) (-3842 ((|#2| $ $) NIL (|has| |#2| (-965)) ELT)) (-1472 (($ (-1183 |#2|)) NIL T ELT)) (-3918 (((-107)) NIL (|has| |#2| (-314)) ELT)) (-3764 (($ $ (-698)) NIL (-12 (|has| |#2| (-191)) (|has| |#2| (-965))) ELT) (($ $) NIL (-12 (|has| |#2| (-191)) (|has| |#2| (-965))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1094)) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-965)) ELT) (($ $ (-1 |#2| |#2|) (-698)) NIL (|has| |#2| (-965)) ELT)) (-1735 (((-698) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-698) (-1 (-85) |#2|) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3953 (((-1183 |#2|) $) NIL T ELT) (($ (-488)) NIL (OR (-12 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017))) (|has| |#2| (-965))) ELT) (($ (-352 (-488))) NIL (-12 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017))) ELT) (($ |#2|) NIL (|has| |#2| (-1017)) ELT) (((-776) $) NIL (|has| |#2| (-556 (-776))) ELT)) (-3132 (((-698)) NIL (|has| |#2| (-965)) CONST)) (-1269 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3131 (((-85) $ $) NIL (|has| |#2| (-965)) ELT)) (-2666 (($) NIL (|has| |#2| (-23)) CONST)) (-2672 (($) NIL (|has| |#2| (-965)) CONST)) (-2675 (($ $ (-698)) NIL (-12 (|has| |#2| (-191)) (|has| |#2| (-965))) ELT) (($ $) NIL (-12 (|has| |#2| (-191)) (|has| |#2| (-965))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1094)) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-965)) ELT) (($ $ (-1 |#2| |#2|) (-698)) NIL (|has| |#2| (-965)) ELT)) (-2572 (((-85) $ $) NIL (|has| |#2| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#2| (-760)) ELT)) (-3062 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2690 (((-85) $ $) NIL (|has| |#2| (-760)) ELT)) (-2691 (((-85) $ $) 17 (|has| |#2| (-760)) ELT)) (-3956 (($ $ |#2|) NIL (|has| |#2| (-314)) ELT)) (-3843 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3845 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-698)) NIL (|has| |#2| (-965)) ELT) (($ $ (-834)) NIL (|has| |#2| (-965)) ELT)) (* (($ $ $) NIL (|has| |#2| (-965)) ELT) (($ $ |#2|) NIL (|has| |#2| (-667)) ELT) (($ |#2| $) NIL (|has| |#2| (-667)) ELT) (($ (-488) $) NIL (|has| |#2| (-21)) ELT) (($ (-698) $) NIL (|has| |#2| (-23)) ELT) (($ (-834) $) NIL (|has| |#2| (-25)) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-425 |#1| |#2|) (-198 |#1| |#2|) (-698) (-721)) (T -425)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-1946 (((-587 (-789)) $) 16 T ELT)) (-3548 (((-450) $) 14 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1947 (($ (-450) (-587 (-789))) 12 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 23 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-426) (-13 (-999) (-10 -8 (-15 -1947 ($ (-450) (-587 (-789)))) (-15 -3548 ((-450) $)) (-15 -1946 ((-587 (-789)) $))))) (T -426)) +((-1947 (*1 *1 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-587 (-789))) (-5 *1 (-426)))) (-3548 (*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-426)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-587 (-789))) (-5 *1 (-426))))) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3730 (($) NIL T CONST)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-2862 (($ $ $) 48 T ELT)) (-3524 (($ $ $) 47 T ELT)) (-2614 (((-587 |#1|) $) NIL T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2863 ((|#1| $) 40 T ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-1278 ((|#1| $) 41 T ELT)) (-3615 (($ |#1| $) 18 T ELT)) (-1948 (($ (-587 |#1|)) 19 T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1279 ((|#1| $) 34 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) 11 T ELT)) (-1735 (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3953 (((-776) $) NIL (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1280 (($ (-587 |#1|)) 45 T ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3062 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) 29 T ELT))) +(((-427 |#1|) (-13 (-885 |#1|) (-10 -8 (-15 -1948 ($ (-587 |#1|))))) (-760)) (T -427)) +((-1948 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-760)) (-5 *1 (-427 *3))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3848 (($ $) 71 T ELT)) (-1641 (((-85) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1973 (((-358 |#2| (-352 |#2|) |#3| |#4|) $) 45 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2414 (((-3 |#4| #1#) $) 117 T ELT)) (-1642 (($ (-358 |#2| (-352 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-488)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3441 (((-2 (|:| -2341 (-358 |#2| (-352 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3953 (((-776) $) 110 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) 32 T CONST)) (-3062 (((-85) $ $) 121 T ELT)) (-3843 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 72 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 77 T ELT))) +(((-428 |#1| |#2| |#3| |#4|) (-288 |#1| |#2| |#3| |#4|) (-314) (-1159 |#1|) (-1159 (-352 |#2|)) (-293 |#1| |#2| |#3|)) (T -428)) +NIL +((-1952 (((-488) (-587 (-488))) 53 T ELT)) (-1949 ((|#1| (-587 |#1|)) 94 T ELT)) (-1951 (((-587 |#1|) (-587 |#1|)) 95 T ELT)) (-1950 (((-587 |#1|) (-587 |#1|)) 97 T ELT)) (-3150 ((|#1| (-587 |#1|)) 96 T ELT)) (-2823 (((-587 (-488)) (-587 |#1|)) 56 T ELT))) +(((-429 |#1|) (-10 -7 (-15 -3150 (|#1| (-587 |#1|))) (-15 -1949 (|#1| (-587 |#1|))) (-15 -1950 ((-587 |#1|) (-587 |#1|))) (-15 -1951 ((-587 |#1|) (-587 |#1|))) (-15 -2823 ((-587 (-488)) (-587 |#1|))) (-15 -1952 ((-488) (-587 (-488))))) (-1159 (-488))) (T -429)) +((-1952 (*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-488)) (-5 *1 (-429 *4)) (-4 *4 (-1159 *2)))) (-2823 (*1 *2 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-1159 (-488))) (-5 *2 (-587 (-488))) (-5 *1 (-429 *4)))) (-1951 (*1 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1159 (-488))) (-5 *1 (-429 *3)))) (-1950 (*1 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1159 (-488))) (-5 *1 (-429 *3)))) (-1949 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-5 *1 (-429 *2)) (-4 *2 (-1159 (-488))))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-5 *1 (-429 *2)) (-4 *2 (-1159 (-488)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3135 (((-488) $) NIL (|has| (-488) (-260)) ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-488) (-825)) ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| (-488) (-825)) ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3629 (((-488) $) NIL (|has| (-488) (-744)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL T ELT) (((-3 (-1094) #1#) $) NIL (|has| (-488) (-954 (-1094))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| (-488) (-954 (-488))) ELT) (((-3 (-488) #1#) $) NIL (|has| (-488) (-954 (-488))) ELT)) (-3162 (((-488) $) NIL T ELT) (((-1094) $) NIL (|has| (-488) (-954 (-1094))) ELT) (((-352 (-488)) $) NIL (|has| (-488) (-954 (-488))) ELT) (((-488) $) NIL (|has| (-488) (-954 (-488))) ELT)) (-2570 (($ $ $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| (-488) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| (-488) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL T ELT) (((-634 (-488)) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3000 (($) NIL (|has| (-488) (-487)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-3192 (((-85) $) NIL (|has| (-488) (-744)) ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (|has| (-488) (-800 (-488))) ELT) (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (|has| (-488) (-800 (-332))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3002 (($ $) NIL T ELT)) (-3004 (((-488) $) NIL T ELT)) (-3451 (((-636 $) $) NIL (|has| (-488) (-1070)) ELT)) (-3193 (((-85) $) NIL (|has| (-488) (-744)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2537 (($ $ $) NIL (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| (-488) (-760)) ELT)) (-3849 (($ (-1 (-488) (-488)) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| (-488) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| (-488) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL T ELT) (((-634 (-488)) (-1183 $)) NIL T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3452 (($) NIL (|has| (-488) (-1070)) CONST)) (-1953 (($ (-352 (-488))) 9 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3134 (($ $) NIL (|has| (-488) (-260)) ELT) (((-352 (-488)) $) NIL T ELT)) (-3136 (((-488) $) NIL (|has| (-488) (-487)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-488) (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-488) (-825)) ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-3774 (($ $ (-587 (-488)) (-587 (-488))) NIL (|has| (-488) (-262 (-488))) ELT) (($ $ (-488) (-488)) NIL (|has| (-488) (-262 (-488))) ELT) (($ $ (-251 (-488))) NIL (|has| (-488) (-262 (-488))) ELT) (($ $ (-587 (-251 (-488)))) NIL (|has| (-488) (-262 (-488))) ELT) (($ $ (-587 (-1094)) (-587 (-488))) NIL (|has| (-488) (-459 (-1094) (-488))) ELT) (($ $ (-1094) (-488)) NIL (|has| (-488) (-459 (-1094) (-488))) ELT)) (-1611 (((-698) $) NIL T ELT)) (-3806 (($ $ (-488)) NIL (|has| (-488) (-243 (-488) (-488))) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-3764 (($ $ (-1 (-488) (-488))) NIL T ELT) (($ $ (-1 (-488) (-488)) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $) NIL (|has| (-488) (-191)) ELT) (($ $ (-698)) NIL (|has| (-488) (-191)) ELT)) (-3001 (($ $) NIL T ELT)) (-3003 (((-488) $) NIL T ELT)) (-3978 (((-804 (-488)) $) NIL (|has| (-488) (-557 (-804 (-488)))) ELT) (((-804 (-332)) $) NIL (|has| (-488) (-557 (-804 (-332)))) ELT) (((-477) $) NIL (|has| (-488) (-557 (-477))) ELT) (((-332) $) NIL (|has| (-488) (-937)) ELT) (((-181) $) NIL (|has| (-488) (-937)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| (-488) (-825))) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) 8 T ELT) (($ (-488)) NIL T ELT) (($ (-1094)) NIL (|has| (-488) (-954 (-1094))) ELT) (((-352 (-488)) $) NIL T ELT) (((-921 16) $) 10 T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-488) (-825))) (|has| (-488) (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-3137 (((-488) $) NIL (|has| (-488) (-487)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3389 (($ $) NIL (|has| (-488) (-744)) ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $ (-1 (-488) (-488))) NIL T ELT) (($ $ (-1 (-488) (-488)) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $) NIL (|has| (-488) (-191)) ELT) (($ $ (-698)) NIL (|has| (-488) (-191)) ELT)) (-2572 (((-85) $ $) NIL (|has| (-488) (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| (-488) (-760)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL (|has| (-488) (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| (-488) (-760)) ELT)) (-3956 (($ $ $) NIL T ELT) (($ (-488) (-488)) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ (-488)) NIL T ELT))) +(((-430) (-13 (-908 (-488)) (-556 (-352 (-488))) (-556 (-921 16)) (-10 -8 (-15 -3134 ((-352 (-488)) $)) (-15 -1953 ($ (-352 (-488))))))) (T -430)) +((-3134 (*1 *2 *1) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-430)))) (-1953 (*1 *1 *2) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-430))))) +((-3774 (($ $ (-587 (-251 |#2|))) 13 T ELT) (($ $ (-251 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-587 |#2|) (-587 |#2|)) NIL T ELT))) +(((-431 |#1| |#2|) (-10 -7 (-15 -3774 (|#1| |#1| (-587 |#2|) (-587 |#2|))) (-15 -3774 (|#1| |#1| |#2| |#2|)) (-15 -3774 (|#1| |#1| (-251 |#2|))) (-15 -3774 (|#1| |#1| (-587 (-251 |#2|))))) (-432 |#2|) (-1133)) (T -431)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3730 (($) 6 T CONST)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3406 (($ $) 9 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-432 |#1|) (-113) (-1133)) (T -432)) +NIL +(-13 (-34) (-383 |t#1|) (-10 -7 (IF (|has| |t#1| (-556 (-776))) (-6 (-556 (-776))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1017)) (-6 (-1017)) |%noBranch|) (IF (|has| |t#1| (-1017)) (IF (|has| |t#1| (-262 |t#1|)) (-6 (-262 |t#1|)) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-383 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-1017) |has| |#1| (-1017)) ((-1133) . T)) +((-3953 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) +(((-433 |#1|) (-113) (-1133)) (T -433)) +NIL +(-13 (-556 |t#1|) (-559 |t#1|)) +(((-559 |#1|) . T) ((-556 |#1|) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1954 (($ (-1077)) 8 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 15 T ELT) (((-1077) $) 12 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 11 T ELT))) +(((-434) (-13 (-1017) (-556 (-1077)) (-10 -8 (-15 -1954 ($ (-1077)))))) (T -434)) +((-1954 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-434))))) +((-3498 (($ $) 15 T ELT)) (-3496 (($ $) 24 T ELT)) (-3500 (($ $) 12 T ELT)) (-3501 (($ $) 10 T ELT)) (-3499 (($ $) 17 T ELT)) (-3497 (($ $) 22 T ELT))) +(((-435 |#1|) (-10 -7 (-15 -3497 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3498 (|#1| |#1|))) (-436)) (T -435)) +NIL +((-3498 (($ $) 11 T ELT)) (-3496 (($ $) 10 T ELT)) (-3500 (($ $) 9 T ELT)) (-3501 (($ $) 8 T ELT)) (-3499 (($ $) 7 T ELT)) (-3497 (($ $) 6 T ELT))) +(((-436) (-113)) (T -436)) +((-3498 (*1 *1 *1) (-4 *1 (-436))) (-3496 (*1 *1 *1) (-4 *1 (-436))) (-3500 (*1 *1 *1) (-4 *1 (-436))) (-3501 (*1 *1 *1) (-4 *1 (-436))) (-3499 (*1 *1 *1) (-4 *1 (-436))) (-3497 (*1 *1 *1) (-4 *1 (-436)))) +(-13 (-10 -8 (-15 -3497 ($ $)) (-15 -3499 ($ $)) (-15 -3501 ($ $)) (-15 -3500 ($ $)) (-15 -3496 ($ $)) (-15 -3498 ($ $)))) +((-3738 (((-350 |#4|) |#4| (-1 (-350 |#2|) |#2|)) 54 T ELT))) +(((-437 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3738 ((-350 |#4|) |#4| (-1 (-350 |#2|) |#2|)))) (-314) (-1159 |#1|) (-13 (-314) (-120) (-665 |#1| |#2|)) (-1159 |#3|)) (T -437)) +((-3738 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-350 *6) *6)) (-4 *6 (-1159 *5)) (-4 *5 (-314)) (-4 *7 (-13 (-314) (-120) (-665 *5 *6))) (-5 *2 (-350 *3)) (-5 *1 (-437 *5 *6 *7 *3)) (-4 *3 (-1159 *7))))) +((-2574 (((-85) $ $) NIL T ELT)) (-1219 (((-587 $) (-1089 $) (-1094)) NIL T ELT) (((-587 $) (-1089 $)) NIL T ELT) (((-587 $) (-861 $)) NIL T ELT)) (-1220 (($ (-1089 $) (-1094)) NIL T ELT) (($ (-1089 $)) NIL T ELT) (($ (-861 $)) NIL T ELT)) (-3194 (((-85) $) 39 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1955 (((-85) $ $) 72 T ELT)) (-1604 (((-587 (-554 $)) $) 49 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1608 (($ $ (-251 $)) NIL T ELT) (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-587 (-554 $)) (-587 $)) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-3043 (($ $) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-1221 (((-587 $) (-1089 $) (-1094)) NIL T ELT) (((-587 $) (-1089 $)) NIL T ELT) (((-587 $) (-861 $)) NIL T ELT)) (-3189 (($ (-1089 $) (-1094)) NIL T ELT) (($ (-1089 $)) NIL T ELT) (($ (-861 $)) NIL T ELT)) (-3163 (((-3 (-554 $) #1#) $) NIL T ELT) (((-3 (-488) #1#) $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL T ELT)) (-3162 (((-554 $) $) NIL T ELT) (((-488) $) NIL T ELT) (((-352 (-488)) $) 54 T ELT)) (-2570 (($ $ $) NIL T ELT)) (-2284 (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL T ELT) (((-634 (-488)) (-634 $)) NIL T ELT) (((-2 (|:| |mat| (-634 (-352 (-488)))) (|:| |vec| (-1183 (-352 (-488))))) (-634 $) (-1183 $)) NIL T ELT) (((-634 (-352 (-488))) (-634 $)) NIL T ELT)) (-3848 (($ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-2579 (($ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-1603 (((-587 (-86)) $) NIL T ELT)) (-3601 (((-86) (-86)) NIL T ELT)) (-2415 (((-85) $) 42 T ELT)) (-2679 (((-85) $) NIL (|has| $ (-954 (-488))) ELT)) (-3004 (((-1043 (-488) (-554 $)) $) 37 T ELT)) (-3017 (($ $ (-488)) NIL T ELT)) (-3138 (((-1089 $) (-1089 $) (-554 $)) 86 T ELT) (((-1089 $) (-1089 $) (-587 (-554 $))) 61 T ELT) (($ $ (-554 $)) 75 T ELT) (($ $ (-587 (-554 $))) 76 T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-1601 (((-1089 $) (-554 $)) 73 (|has| $ (-965)) ELT)) (-3849 (($ (-1 $ $) (-554 $)) NIL T ELT)) (-1606 (((-3 (-554 $) #1#) $) NIL T ELT)) (-2285 (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL T ELT) (((-634 (-488)) (-1183 $)) NIL T ELT) (((-2 (|:| |mat| (-634 (-352 (-488)))) (|:| |vec| (-1183 (-352 (-488))))) (-1183 $) $) NIL T ELT) (((-634 (-352 (-488))) (-1183 $)) NIL T ELT)) (-1899 (($ (-587 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1605 (((-587 (-554 $)) $) NIL T ELT)) (-2240 (($ (-86) $) NIL T ELT) (($ (-86) (-587 $)) NIL T ELT)) (-2639 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1094)) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-2609 (((-698) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ (-587 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1602 (((-85) $ $) NIL T ELT) (((-85) $ (-1094)) NIL T ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-2680 (((-85) $) NIL (|has| $ (-954 (-488))) ELT)) (-3774 (($ $ (-554 $) $) NIL T ELT) (($ $ (-587 (-554 $)) (-587 $)) NIL T ELT) (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-1 $ $))) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-1 $ (-587 $)))) NIL T ELT) (($ $ (-1094) (-1 $ (-587 $))) NIL T ELT) (($ $ (-1094) (-1 $ $)) NIL T ELT) (($ $ (-587 (-86)) (-587 (-1 $ $))) NIL T ELT) (($ $ (-587 (-86)) (-587 (-1 $ (-587 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-587 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-3806 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-587 $)) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-1607 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3764 (($ $) 36 T ELT) (($ $ (-698)) NIL T ELT)) (-3003 (((-1043 (-488) (-554 $)) $) 20 T ELT)) (-3191 (($ $) NIL (|has| $ (-965)) ELT)) (-3978 (((-332) $) 100 T ELT) (((-181) $) 108 T ELT) (((-144 (-332)) $) 116 T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-554 $)) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ $) NIL T ELT) (($ (-488)) NIL T ELT) (($ (-1043 (-488) (-554 $))) 21 T ELT)) (-3132 (((-698)) NIL T CONST)) (-2596 (($ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-2259 (((-85) (-86)) 92 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 10 T CONST)) (-2672 (($) 22 T CONST)) (-2675 (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-3062 (((-85) $ $) 24 T ELT)) (-3956 (($ $ $) 44 T ELT)) (-3843 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-352 (-488))) NIL T ELT) (($ $ (-488)) 47 T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-834)) NIL T ELT)) (* (($ (-352 (-488)) $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-488) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-834) $) NIL T ELT))) +(((-438) (-13 (-256) (-27) (-954 (-488)) (-954 (-352 (-488))) (-584 (-488)) (-937) (-584 (-352 (-488))) (-120) (-557 (-144 (-332))) (-192) (-559 (-1043 (-488) (-554 $))) (-10 -8 (-15 -3004 ((-1043 (-488) (-554 $)) $)) (-15 -3003 ((-1043 (-488) (-554 $)) $)) (-15 -3848 ($ $)) (-15 -1955 ((-85) $ $)) (-15 -3138 ((-1089 $) (-1089 $) (-554 $))) (-15 -3138 ((-1089 $) (-1089 $) (-587 (-554 $)))) (-15 -3138 ($ $ (-554 $))) (-15 -3138 ($ $ (-587 (-554 $))))))) (T -438)) +((-3004 (*1 *2 *1) (-12 (-5 *2 (-1043 (-488) (-554 (-438)))) (-5 *1 (-438)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-1043 (-488) (-554 (-438)))) (-5 *1 (-438)))) (-3848 (*1 *1 *1) (-5 *1 (-438))) (-1955 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-438)))) (-3138 (*1 *2 *2 *3) (-12 (-5 *2 (-1089 (-438))) (-5 *3 (-554 (-438))) (-5 *1 (-438)))) (-3138 (*1 *2 *2 *3) (-12 (-5 *2 (-1089 (-438))) (-5 *3 (-587 (-554 (-438)))) (-5 *1 (-438)))) (-3138 (*1 *1 *1 *2) (-12 (-5 *2 (-554 (-438))) (-5 *1 (-438)))) (-3138 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-554 (-438)))) (-5 *1 (-438))))) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 |#1|)) ELT)) (-1740 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-760)) ELT)) (-1738 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1039 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1039 |#1|)) (|has| |#1| (-760))) ELT)) (-2915 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-760)) ELT)) (-3794 ((|#1| $ (-488) |#1|) 19 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-1150 (-488)) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3730 (($) NIL T CONST)) (-2302 (($ $) NIL (|has| $ (-1039 |#1|)) ELT)) (-2303 (($ $) NIL T ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-3412 (($ |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1580 ((|#1| $ (-488) |#1|) 14 (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-488)) 13 T ELT)) (-3425 (((-488) (-1 (-85) |#1|) $) NIL T ELT) (((-488) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-488) |#1| $ (-488)) NIL (|has| |#1| (-72)) ELT)) (-3620 (($ (-698) |#1|) NIL T ELT)) (-2205 (((-488) $) 9 (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-3524 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-2614 (((-587 |#1|) $) NIL T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2206 (((-488) $) 16 (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-2309 (($ |#1| $ (-488)) NIL T ELT) (($ $ $ (-488)) NIL T ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) NIL T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-3807 ((|#1| $) NIL (|has| (-488) (-760)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2204 (($ $ |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#1| $ (-488) |#1|) NIL T ELT) ((|#1| $ (-488)) 18 T ELT) (($ $ (-1150 (-488))) NIL T ELT)) (-2310 (($ $ (-488)) NIL T ELT) (($ $ (-1150 (-488))) NIL T ELT)) (-1735 (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) NIL T ELT)) (-1739 (($ $ $ (-488)) NIL (|has| $ (-1039 |#1|)) ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) NIL (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) NIL T ELT)) (-3808 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3953 (((-776) $) NIL (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2572 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2690 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-439 |#1| |#2|) (-19 |#1|) (-1133) (-488)) (T -439)) +NIL +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3794 ((|#1| $ (-488) (-488) |#1|) 44 T ELT)) (-1261 (($ $ (-488) |#2|) NIL T ELT)) (-1260 (($ $ (-488) |#3|) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3117 ((|#2| $ (-488)) 53 T ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1580 ((|#1| $ (-488) (-488) |#1|) 43 T ELT)) (-3118 ((|#1| $ (-488) (-488)) 38 T ELT)) (-3120 (((-698) $) 28 T ELT)) (-3620 (($ (-698) (-698) |#1|) 24 T ELT)) (-3119 (((-698) $) 30 T ELT)) (-3124 (((-488) $) 26 T ELT)) (-3122 (((-488) $) 27 T ELT)) (-2614 (((-587 |#1|) $) NIL T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3123 (((-488) $) 29 T ELT)) (-3121 (((-488) $) 31 T ELT)) (-3332 (($ (-1 |#1| |#1|) $) 66 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 64 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 70 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 74 T ELT)) (-3248 (((-1077) $) 48 (|has| |#1| (-1017)) ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2204 (($ $ |#1|) 61 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) 33 T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#1| $ (-488) (-488)) 41 T ELT) ((|#1| $ (-488) (-488) |#1|) 72 T ELT)) (-1735 (((-698) (-1 (-85) |#1|) $) NIL T ELT) (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3406 (($ $) 59 T ELT)) (-3116 ((|#3| $ (-488)) 55 T ELT)) (-3953 (((-776) $) NIL (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3062 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-440 |#1| |#2| |#3|) (-57 |#1| |#2| |#3|) (-1133) (-326 |#1|) (-326 |#1|)) (T -440)) +NIL +((-1957 (((-587 (-2 (|:| -2017 (-634 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-634 |#2|)))) (-2 (|:| -2017 (-634 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-634 |#2|))) (-698) (-698)) 32 T ELT)) (-1956 (((-587 (-1089 |#1|)) |#1| (-698) (-698) (-698)) 43 T ELT)) (-2082 (((-2 (|:| -2017 (-634 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-634 |#2|))) (-587 |#3|) (-587 (-2 (|:| -2017 (-634 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-634 |#2|)))) (-698)) 107 T ELT))) +(((-441 |#1| |#2| |#3|) (-10 -7 (-15 -1956 ((-587 (-1089 |#1|)) |#1| (-698) (-698) (-698))) (-15 -1957 ((-587 (-2 (|:| -2017 (-634 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-634 |#2|)))) (-2 (|:| -2017 (-634 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-634 |#2|))) (-698) (-698))) (-15 -2082 ((-2 (|:| -2017 (-634 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-634 |#2|))) (-587 |#3|) (-587 (-2 (|:| -2017 (-634 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-634 |#2|)))) (-698)))) (-301) (-1159 |#1|) (-1159 |#2|)) (T -441)) +((-2082 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 (-2 (|:| -2017 (-634 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-634 *7))))) (-5 *5 (-698)) (-4 *8 (-1159 *7)) (-4 *7 (-1159 *6)) (-4 *6 (-301)) (-5 *2 (-2 (|:| -2017 (-634 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-634 *7)))) (-5 *1 (-441 *6 *7 *8)))) (-1957 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-698)) (-4 *5 (-301)) (-4 *6 (-1159 *5)) (-5 *2 (-587 (-2 (|:| -2017 (-634 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-634 *6))))) (-5 *1 (-441 *5 *6 *7)) (-5 *3 (-2 (|:| -2017 (-634 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-634 *6)))) (-4 *7 (-1159 *6)))) (-1956 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-698)) (-4 *3 (-301)) (-4 *5 (-1159 *3)) (-5 *2 (-587 (-1089 *3))) (-5 *1 (-441 *3 *5 *6)) (-4 *6 (-1159 *5))))) +((-1963 (((-2 (|:| -2017 (-634 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-634 |#1|))) (-2 (|:| -2017 (-634 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-634 |#1|))) (-2 (|:| -2017 (-634 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-634 |#1|)))) 70 T ELT)) (-1958 ((|#1| (-634 |#1|) |#1| (-698)) 24 T ELT)) (-1960 (((-698) (-698) (-698)) 34 T ELT)) (-1962 (((-634 |#1|) (-634 |#1|) (-634 |#1|)) 50 T ELT)) (-1961 (((-634 |#1|) (-634 |#1|) (-634 |#1|) |#1|) 58 T ELT) (((-634 |#1|) (-634 |#1|) (-634 |#1|)) 55 T ELT)) (-1959 ((|#1| (-634 |#1|) (-634 |#1|) |#1| (-488)) 28 T ELT)) (-3335 ((|#1| (-634 |#1|)) 18 T ELT))) +(((-442 |#1| |#2| |#3|) (-10 -7 (-15 -3335 (|#1| (-634 |#1|))) (-15 -1958 (|#1| (-634 |#1|) |#1| (-698))) (-15 -1959 (|#1| (-634 |#1|) (-634 |#1|) |#1| (-488))) (-15 -1960 ((-698) (-698) (-698))) (-15 -1961 ((-634 |#1|) (-634 |#1|) (-634 |#1|))) (-15 -1961 ((-634 |#1|) (-634 |#1|) (-634 |#1|) |#1|)) (-15 -1962 ((-634 |#1|) (-634 |#1|) (-634 |#1|))) (-15 -1963 ((-2 (|:| -2017 (-634 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-634 |#1|))) (-2 (|:| -2017 (-634 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-634 |#1|))) (-2 (|:| -2017 (-634 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-634 |#1|)))))) (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $)))) (-1159 |#1|) (-355 |#1| |#2|)) (T -442)) +((-1963 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2017 (-634 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-634 *3)))) (-4 *3 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) (-4 *4 (-1159 *3)) (-5 *1 (-442 *3 *4 *5)) (-4 *5 (-355 *3 *4)))) (-1962 (*1 *2 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) (-4 *4 (-1159 *3)) (-5 *1 (-442 *3 *4 *5)) (-4 *5 (-355 *3 *4)))) (-1961 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-634 *3)) (-4 *3 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) (-4 *4 (-1159 *3)) (-5 *1 (-442 *3 *4 *5)) (-4 *5 (-355 *3 *4)))) (-1961 (*1 *2 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) (-4 *4 (-1159 *3)) (-5 *1 (-442 *3 *4 *5)) (-4 *5 (-355 *3 *4)))) (-1960 (*1 *2 *2 *2) (-12 (-5 *2 (-698)) (-4 *3 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) (-4 *4 (-1159 *3)) (-5 *1 (-442 *3 *4 *5)) (-4 *5 (-355 *3 *4)))) (-1959 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-634 *2)) (-5 *4 (-488)) (-4 *2 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) (-4 *5 (-1159 *2)) (-5 *1 (-442 *2 *5 *6)) (-4 *6 (-355 *2 *5)))) (-1958 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-634 *2)) (-5 *4 (-698)) (-4 *2 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) (-4 *5 (-1159 *2)) (-5 *1 (-442 *2 *5 *6)) (-4 *6 (-355 *2 *5)))) (-3335 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *4 (-1159 *2)) (-4 *2 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) (-5 *1 (-442 *2 *4 *5)) (-4 *5 (-355 *2 *4))))) +((-2574 (((-85) $ $) NIL T ELT)) (-2318 (($ $) 53 T ELT)) (-3327 (($ $ $) 51 T ELT)) (-2203 (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 (-85))) ELT)) (-1740 (((-85) $) NIL (|has| (-85) (-760)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1738 (($ $) NIL (-12 (|has| $ (-1039 (-85))) (|has| (-85) (-760))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-1039 (-85))) ELT)) (-2915 (($ $) NIL (|has| (-85) (-760)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3794 (((-85) $ (-1150 (-488)) (-85)) NIL (|has| $ (-1039 (-85))) ELT) (((-85) $ (-488) (-85)) 52 (|has| $ (-1039 (-85))) ELT)) (-3716 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-320 (-85))) ELT)) (-3730 (($) NIL T CONST)) (-2302 (($ $) NIL (|has| $ (-1039 (-85))) ELT)) (-2303 (($ $) NIL T ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 (-85))) (|has| (-85) (-72))) ELT)) (-3412 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-320 (-85))) ELT) (($ (-85) $) NIL (-12 (|has| $ (-320 (-85))) (|has| (-85) (-72))) ELT)) (-3848 (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (|has| (-85) (-72)) ELT)) (-1580 (((-85) $ (-488) (-85)) NIL (|has| $ (-1039 (-85))) ELT)) (-3118 (((-85) $ (-488)) NIL T ELT)) (-3425 (((-488) (-85) $ (-488)) NIL (|has| (-85) (-72)) ELT) (((-488) (-85) $) NIL (|has| (-85) (-72)) ELT) (((-488) (-1 (-85) (-85)) $) NIL T ELT)) (-2567 (($ $ $) 49 T ELT)) (-2566 (($ $) NIL T ELT)) (-1304 (($ $ $) NIL T ELT)) (-3620 (($ (-698) (-85)) 27 T ELT)) (-1305 (($ $ $) NIL T ELT)) (-2205 (((-488) $) 8 (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL T ELT)) (-3524 (($ $ $) NIL (|has| (-85) (-760)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2614 (((-587 (-85)) $) NIL T ELT)) (-3251 (((-85) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-2206 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL T ELT)) (-3332 (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3849 (($ (-1 (-85) (-85) (-85)) $ $) 47 T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2309 (($ $ $ (-488)) NIL T ELT) (($ (-85) $ (-488)) NIL T ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3807 (((-85) $) NIL (|has| (-488) (-760)) ELT)) (-1734 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2204 (($ $ (-85)) NIL (|has| $ (-1039 (-85))) ELT)) (-1736 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-3774 (($ $ (-587 (-85)) (-587 (-85))) NIL (-12 (|has| (-85) (-262 (-85))) (|has| (-85) (-1017))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-262 (-85))) (|has| (-85) (-1017))) ELT) (($ $ (-251 (-85))) NIL (-12 (|has| (-85) (-262 (-85))) (|has| (-85) (-1017))) ELT) (($ $ (-587 (-251 (-85)))) NIL (-12 (|has| (-85) (-262 (-85))) (|has| (-85) (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) (-85) $) NIL (-12 (|has| $ (-320 (-85))) (|has| (-85) (-72))) ELT)) (-2210 (((-587 (-85)) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) 29 T ELT)) (-3806 (($ $ (-1150 (-488))) NIL T ELT) (((-85) $ (-488)) 22 T ELT) (((-85) $ (-488) (-85)) NIL T ELT)) (-2310 (($ $ (-1150 (-488))) NIL T ELT) (($ $ (-488)) NIL T ELT)) (-1735 (((-698) (-1 (-85) (-85)) $) NIL T ELT) (((-698) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-1739 (($ $ $ (-488)) NIL (|has| $ (-1039 (-85))) ELT)) (-3406 (($ $) 30 T ELT)) (-3978 (((-477) $) NIL (|has| (-85) (-557 (-477))) ELT)) (-3536 (($ (-587 (-85))) NIL T ELT)) (-3808 (($ (-587 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3953 (((-776) $) 26 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-1737 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-2568 (($ $ $) 48 T ELT)) (-2316 (($ $ $) 55 T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 31 T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 43 T ELT)) (-2317 (($ $ $) 54 T ELT)) (-3964 (((-698) $) 13 T ELT))) +(((-443 |#1|) (-96) (-488)) (T -443)) +NIL +((-1965 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1089 |#4|)) 35 T ELT)) (-1964 (((-1089 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1089 |#4|)) 22 T ELT)) (-1966 (((-3 (-634 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-634 (-1089 |#4|))) 46 T ELT)) (-1967 (((-1089 (-1089 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) +(((-444 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1964 (|#2| (-1 |#1| |#4|) (-1089 |#4|))) (-15 -1964 ((-1089 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1965 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1089 |#4|))) (-15 -1966 ((-3 (-634 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-634 (-1089 |#4|)))) (-15 -1967 ((-1089 (-1089 |#4|)) (-1 |#4| |#1|) |#3|))) (-965) (-1159 |#1|) (-1159 |#2|) (-965)) (T -444)) +((-1967 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-965)) (-4 *7 (-965)) (-4 *6 (-1159 *5)) (-5 *2 (-1089 (-1089 *7))) (-5 *1 (-444 *5 *6 *4 *7)) (-4 *4 (-1159 *6)))) (-1966 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 #1="failed") *8)) (-5 *4 (-634 (-1089 *8))) (-4 *5 (-965)) (-4 *8 (-965)) (-4 *6 (-1159 *5)) (-5 *2 (-634 *6)) (-5 *1 (-444 *5 *6 *7 *8)) (-4 *7 (-1159 *6)))) (-1965 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 #1#) *7)) (-5 *4 (-1089 *7)) (-4 *5 (-965)) (-4 *7 (-965)) (-4 *2 (-1159 *5)) (-5 *1 (-444 *5 *2 *6 *7)) (-4 *6 (-1159 *2)))) (-1964 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-965)) (-4 *7 (-965)) (-4 *4 (-1159 *5)) (-5 *2 (-1089 *7)) (-5 *1 (-444 *5 *4 *6 *7)) (-4 *6 (-1159 *4)))) (-1964 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1089 *7)) (-4 *5 (-965)) (-4 *7 (-965)) (-4 *2 (-1159 *5)) (-5 *1 (-444 *5 *2 *6 *7)) (-4 *6 (-1159 *2))))) +((-2574 (((-85) $ $) NIL T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1968 (((-1189) $) 25 T ELT)) (-3806 (((-1077) $ (-1094)) 30 T ELT)) (-3623 (((-1189) $) 20 T ELT)) (-3953 (((-776) $) 27 T ELT) (($ (-1077)) 26 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 12 T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 10 T ELT))) +(((-445) (-13 (-760) (-559 (-1077)) (-10 -8 (-15 -3806 ((-1077) $ (-1094))) (-15 -3623 ((-1189) $)) (-15 -1968 ((-1189) $))))) (T -445)) +((-3806 (*1 *2 *1 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-1077)) (-5 *1 (-445)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-445)))) (-1968 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-445))))) +((-3747 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3745 ((|#1| |#4|) 10 T ELT)) (-3746 ((|#3| |#4|) 17 T ELT))) +(((-446 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3745 (|#1| |#4|)) (-15 -3746 (|#3| |#4|)) (-15 -3747 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-499) (-908 |#1|) (-326 |#1|) (-326 |#2|)) (T -446)) +((-3747 (*1 *2 *3) (-12 (-4 *4 (-499)) (-4 *5 (-908 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-446 *4 *5 *6 *3)) (-4 *6 (-326 *4)) (-4 *3 (-326 *5)))) (-3746 (*1 *2 *3) (-12 (-4 *4 (-499)) (-4 *5 (-908 *4)) (-4 *2 (-326 *4)) (-5 *1 (-446 *4 *5 *2 *3)) (-4 *3 (-326 *5)))) (-3745 (*1 *2 *3) (-12 (-4 *4 (-908 *2)) (-4 *2 (-499)) (-5 *1 (-446 *2 *4 *5 *3)) (-4 *5 (-326 *2)) (-4 *3 (-326 *4))))) +((-2574 (((-85) $ $) NIL T ELT)) (-1978 (((-85) $ (-587 |#3|)) 127 T ELT) (((-85) $) 128 T ELT)) (-3194 (((-85) $) 178 T ELT)) (-1970 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-587 |#3|)) 122 T ELT)) (-1969 (((-1084 (-587 (-861 |#1|)) (-587 (-251 (-861 |#1|)))) (-587 |#4|)) 171 (|has| |#3| (-557 (-1094))) ELT)) (-1977 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2415 (((-85) $) 177 T ELT)) (-1974 (($ $) 132 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3244 (($ $ $) 99 T ELT) (($ (-587 $)) 101 T ELT)) (-1979 (((-85) |#4| $) 130 T ELT)) (-1980 (((-85) $ $) 82 T ELT)) (-1973 (($ (-587 |#4|)) 106 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1972 (($ (-587 |#4|)) 175 T ELT)) (-1971 (((-85) $) 176 T ELT)) (-2256 (($ $) 85 T ELT)) (-2701 (((-587 |#4|) $) 73 T ELT)) (-1976 (((-2 (|:| |mval| (-634 |#1|)) (|:| |invmval| (-634 |#1|)) (|:| |genIdeal| $)) $ (-587 |#3|)) NIL T ELT)) (-1981 (((-85) |#4| $) 89 T ELT)) (-3918 (((-488) $ (-587 |#3|)) 134 T ELT) (((-488) $) 135 T ELT)) (-3953 (((-776) $) 174 T ELT) (($ (-587 |#4|)) 102 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-1975 (($ (-2 (|:| |mval| (-634 |#1|)) (|:| |invmval| (-634 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3062 (((-85) $ $) 84 T ELT)) (-3845 (($ $ $) 109 T ELT)) (** (($ $ (-698)) 115 T ELT)) (* (($ $ $) 113 T ELT))) +(((-447 |#1| |#2| |#3| |#4|) (-13 (-1017) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-698))) (-15 -3845 ($ $ $)) (-15 -2415 ((-85) $)) (-15 -3194 ((-85) $)) (-15 -1981 ((-85) |#4| $)) (-15 -1980 ((-85) $ $)) (-15 -1979 ((-85) |#4| $)) (-15 -1978 ((-85) $ (-587 |#3|))) (-15 -1978 ((-85) $)) (-15 -3244 ($ $ $)) (-15 -3244 ($ (-587 $))) (-15 -1977 ($ $ $)) (-15 -1977 ($ $ |#4|)) (-15 -2256 ($ $)) (-15 -1976 ((-2 (|:| |mval| (-634 |#1|)) (|:| |invmval| (-634 |#1|)) (|:| |genIdeal| $)) $ (-587 |#3|))) (-15 -1975 ($ (-2 (|:| |mval| (-634 |#1|)) (|:| |invmval| (-634 |#1|)) (|:| |genIdeal| $)))) (-15 -3918 ((-488) $ (-587 |#3|))) (-15 -3918 ((-488) $)) (-15 -1974 ($ $)) (-15 -1973 ($ (-587 |#4|))) (-15 -1972 ($ (-587 |#4|))) (-15 -1971 ((-85) $)) (-15 -2701 ((-587 |#4|) $)) (-15 -3953 ($ (-587 |#4|))) (-15 -1970 ($ $ |#4|)) (-15 -1970 ($ $ |#4| (-587 |#3|))) (IF (|has| |#3| (-557 (-1094))) (-15 -1969 ((-1084 (-587 (-861 |#1|)) (-587 (-251 (-861 |#1|)))) (-587 |#4|))) |%noBranch|))) (-314) (-721) (-760) (-865 |#1| |#2| |#3|)) (T -447)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-314)) (-4 *3 (-721)) (-4 *4 (-760)) (-5 *1 (-447 *2 *3 *4 *5)) (-4 *5 (-865 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *6 (-865 *3 *4 *5)))) (-3845 (*1 *1 *1 *1) (-12 (-4 *2 (-314)) (-4 *3 (-721)) (-4 *4 (-760)) (-5 *1 (-447 *2 *3 *4 *5)) (-4 *5 (-865 *2 *3 *4)))) (-2415 (*1 *2 *1) (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *6 (-865 *3 *4 *5)))) (-3194 (*1 *2 *1) (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *6 (-865 *3 *4 *5)))) (-1981 (*1 *2 *3 *1) (-12 (-4 *4 (-314)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-865 *4 *5 *6)))) (-1980 (*1 *2 *1 *1) (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *6 (-865 *3 *4 *5)))) (-1979 (*1 *2 *3 *1) (-12 (-4 *4 (-314)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-865 *4 *5 *6)))) (-1978 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *6)) (-4 *6 (-760)) (-4 *4 (-314)) (-4 *5 (-721)) (-5 *2 (-85)) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *7 (-865 *4 *5 *6)))) (-1978 (*1 *2 *1) (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *6 (-865 *3 *4 *5)))) (-3244 (*1 *1 *1 *1) (-12 (-4 *2 (-314)) (-4 *3 (-721)) (-4 *4 (-760)) (-5 *1 (-447 *2 *3 *4 *5)) (-4 *5 (-865 *2 *3 *4)))) (-3244 (*1 *1 *2) (-12 (-5 *2 (-587 (-447 *3 *4 *5 *6))) (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *6 (-865 *3 *4 *5)))) (-1977 (*1 *1 *1 *1) (-12 (-4 *2 (-314)) (-4 *3 (-721)) (-4 *4 (-760)) (-5 *1 (-447 *2 *3 *4 *5)) (-4 *5 (-865 *2 *3 *4)))) (-1977 (*1 *1 *1 *2) (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-447 *3 *4 *5 *2)) (-4 *2 (-865 *3 *4 *5)))) (-2256 (*1 *1 *1) (-12 (-4 *2 (-314)) (-4 *3 (-721)) (-4 *4 (-760)) (-5 *1 (-447 *2 *3 *4 *5)) (-4 *5 (-865 *2 *3 *4)))) (-1976 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *6)) (-4 *6 (-760)) (-4 *4 (-314)) (-4 *5 (-721)) (-5 *2 (-2 (|:| |mval| (-634 *4)) (|:| |invmval| (-634 *4)) (|:| |genIdeal| (-447 *4 *5 *6 *7)))) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *7 (-865 *4 *5 *6)))) (-1975 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-634 *3)) (|:| |invmval| (-634 *3)) (|:| |genIdeal| (-447 *3 *4 *5 *6)))) (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *6 (-865 *3 *4 *5)))) (-3918 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *6)) (-4 *6 (-760)) (-4 *4 (-314)) (-4 *5 (-721)) (-5 *2 (-488)) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *7 (-865 *4 *5 *6)))) (-3918 (*1 *2 *1) (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-488)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *6 (-865 *3 *4 *5)))) (-1974 (*1 *1 *1) (-12 (-4 *2 (-314)) (-4 *3 (-721)) (-4 *4 (-760)) (-5 *1 (-447 *2 *3 *4 *5)) (-4 *5 (-865 *2 *3 *4)))) (-1973 (*1 *1 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-865 *3 *4 *5)) (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-447 *3 *4 *5 *6)))) (-1972 (*1 *1 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-865 *3 *4 *5)) (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-447 *3 *4 *5 *6)))) (-1971 (*1 *2 *1) (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *6 (-865 *3 *4 *5)))) (-2701 (*1 *2 *1) (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-587 *6)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *6 (-865 *3 *4 *5)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-865 *3 *4 *5)) (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-447 *3 *4 *5 *6)))) (-1970 (*1 *1 *1 *2) (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-447 *3 *4 *5 *2)) (-4 *2 (-865 *3 *4 *5)))) (-1970 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-587 *6)) (-4 *6 (-760)) (-4 *4 (-314)) (-4 *5 (-721)) (-5 *1 (-447 *4 *5 *6 *2)) (-4 *2 (-865 *4 *5 *6)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-865 *4 *5 *6)) (-4 *6 (-557 (-1094))) (-4 *4 (-314)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-1084 (-587 (-861 *4)) (-587 (-251 (-861 *4))))) (-5 *1 (-447 *4 *5 *6 *7))))) +((-1982 (((-85) (-447 (-352 (-488)) (-199 |#2| (-698)) (-777 |#1|) (-208 |#1| (-352 (-488))))) 178 T ELT)) (-1983 (((-85) (-447 (-352 (-488)) (-199 |#2| (-698)) (-777 |#1|) (-208 |#1| (-352 (-488))))) 179 T ELT)) (-1984 (((-447 (-352 (-488)) (-199 |#2| (-698)) (-777 |#1|) (-208 |#1| (-352 (-488)))) (-447 (-352 (-488)) (-199 |#2| (-698)) (-777 |#1|) (-208 |#1| (-352 (-488))))) 129 T ELT)) (-3729 (((-85) (-447 (-352 (-488)) (-199 |#2| (-698)) (-777 |#1|) (-208 |#1| (-352 (-488))))) NIL T ELT)) (-1985 (((-587 (-447 (-352 (-488)) (-199 |#2| (-698)) (-777 |#1|) (-208 |#1| (-352 (-488))))) (-447 (-352 (-488)) (-199 |#2| (-698)) (-777 |#1|) (-208 |#1| (-352 (-488))))) 181 T ELT)) (-1986 (((-447 (-352 (-488)) (-199 |#2| (-698)) (-777 |#1|) (-208 |#1| (-352 (-488)))) (-447 (-352 (-488)) (-199 |#2| (-698)) (-777 |#1|) (-208 |#1| (-352 (-488)))) (-587 (-777 |#1|))) 197 T ELT))) +(((-448 |#1| |#2|) (-10 -7 (-15 -1982 ((-85) (-447 (-352 (-488)) (-199 |#2| (-698)) (-777 |#1|) (-208 |#1| (-352 (-488)))))) (-15 -1983 ((-85) (-447 (-352 (-488)) (-199 |#2| (-698)) (-777 |#1|) (-208 |#1| (-352 (-488)))))) (-15 -3729 ((-85) (-447 (-352 (-488)) (-199 |#2| (-698)) (-777 |#1|) (-208 |#1| (-352 (-488)))))) (-15 -1984 ((-447 (-352 (-488)) (-199 |#2| (-698)) (-777 |#1|) (-208 |#1| (-352 (-488)))) (-447 (-352 (-488)) (-199 |#2| (-698)) (-777 |#1|) (-208 |#1| (-352 (-488)))))) (-15 -1985 ((-587 (-447 (-352 (-488)) (-199 |#2| (-698)) (-777 |#1|) (-208 |#1| (-352 (-488))))) (-447 (-352 (-488)) (-199 |#2| (-698)) (-777 |#1|) (-208 |#1| (-352 (-488)))))) (-15 -1986 ((-447 (-352 (-488)) (-199 |#2| (-698)) (-777 |#1|) (-208 |#1| (-352 (-488)))) (-447 (-352 (-488)) (-199 |#2| (-698)) (-777 |#1|) (-208 |#1| (-352 (-488)))) (-587 (-777 |#1|))))) (-587 (-1094)) (-698)) (T -448)) +((-1986 (*1 *2 *2 *3) (-12 (-5 *2 (-447 (-352 (-488)) (-199 *5 (-698)) (-777 *4) (-208 *4 (-352 (-488))))) (-5 *3 (-587 (-777 *4))) (-14 *4 (-587 (-1094))) (-14 *5 (-698)) (-5 *1 (-448 *4 *5)))) (-1985 (*1 *2 *3) (-12 (-14 *4 (-587 (-1094))) (-14 *5 (-698)) (-5 *2 (-587 (-447 (-352 (-488)) (-199 *5 (-698)) (-777 *4) (-208 *4 (-352 (-488)))))) (-5 *1 (-448 *4 *5)) (-5 *3 (-447 (-352 (-488)) (-199 *5 (-698)) (-777 *4) (-208 *4 (-352 (-488))))))) (-1984 (*1 *2 *2) (-12 (-5 *2 (-447 (-352 (-488)) (-199 *4 (-698)) (-777 *3) (-208 *3 (-352 (-488))))) (-14 *3 (-587 (-1094))) (-14 *4 (-698)) (-5 *1 (-448 *3 *4)))) (-3729 (*1 *2 *3) (-12 (-5 *3 (-447 (-352 (-488)) (-199 *5 (-698)) (-777 *4) (-208 *4 (-352 (-488))))) (-14 *4 (-587 (-1094))) (-14 *5 (-698)) (-5 *2 (-85)) (-5 *1 (-448 *4 *5)))) (-1983 (*1 *2 *3) (-12 (-5 *3 (-447 (-352 (-488)) (-199 *5 (-698)) (-777 *4) (-208 *4 (-352 (-488))))) (-14 *4 (-587 (-1094))) (-14 *5 (-698)) (-5 *2 (-85)) (-5 *1 (-448 *4 *5)))) (-1982 (*1 *2 *3) (-12 (-5 *3 (-447 (-352 (-488)) (-199 *5 (-698)) (-777 *4) (-208 *4 (-352 (-488))))) (-14 *4 (-587 (-1094))) (-14 *5 (-698)) (-5 *2 (-85)) (-5 *1 (-448 *4 *5))))) +((-3806 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-449 |#1|) (-113) (-72)) (T -449)) +NIL +(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (-3062 (|f| |x| |x|) |x|)))))) +(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1987 (($) 6 T ELT)) (-3953 (((-776) $) 10 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 8 T ELT))) +(((-450) (-13 (-1017) (-10 -8 (-15 -1987 ($))))) (T -450)) +((-1987 (*1 *1) (-5 *1 (-450)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3780 (((-587 (-457 |#1| |#2|)) $) 10 T ELT)) (-1316 (((-3 $ "failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3965 (($ $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2899 (($ |#1| |#2|) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1988 ((|#2| $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3978 (($ (-587 (-457 |#1| |#2|))) 15 T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) 20 T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) 16 T ELT) (($ $ $) 36 T ELT)) (-3845 (($ $ $) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 25 T ELT))) +(((-451 |#1| |#2|) (-13 (-21) (-453 |#1| |#2|)) (-21) (-763)) (T -451)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 16 T ELT)) (-3780 (((-587 (-457 |#1| |#2|)) $) 13 T ELT)) (-3730 (($) NIL T CONST)) (-3965 (($ $) 39 T ELT)) (-1218 (((-85) $ $) 44 T ELT)) (-2899 (($ |#1| |#2|) 36 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-1988 ((|#2| $) NIL T ELT)) (-3180 ((|#1| $) 41 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3978 (($ (-587 (-457 |#1| |#2|))) 11 T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) 12 T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3845 (($ $ $) 30 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) 35 T ELT))) +(((-452 |#1| |#2|) (-13 (-23) (-453 |#1| |#2|)) (-23) (-763)) (T -452)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3780 (((-587 (-457 |#1| |#2|)) $) 17 T ELT)) (-3965 (($ $) 18 T ELT)) (-2899 (($ |#1| |#2|) 21 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-1988 ((|#2| $) 19 T ELT)) (-3180 ((|#1| $) 20 T ELT)) (-3248 (((-1077) $) 16 (-12 (|has| |#2| (-1017)) (|has| |#1| (-1017))) ELT)) (-3249 (((-1037) $) 15 (-12 (|has| |#2| (-1017)) (|has| |#1| (-1017))) ELT)) (-3978 (($ (-587 (-457 |#1| |#2|))) 22 T ELT)) (-3953 (((-776) $) 14 (-12 (|has| |#2| (-1017)) (|has| |#1| (-1017))) ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT))) +(((-453 |#1| |#2|) (-113) (-72) (-763)) (T -453)) +((-2899 (*1 *1 *2 *3) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-72)) (-4 *3 (-763)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-453 *2 *3)) (-4 *3 (-763)) (-4 *2 (-72)))) (-1988 (*1 *2 *1) (-12 (-4 *1 (-453 *3 *2)) (-4 *3 (-72)) (-4 *2 (-763)))) (-3965 (*1 *1 *1) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-72)) (-4 *3 (-763)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-453 *3 *4)) (-4 *3 (-72)) (-4 *4 (-763)) (-5 *2 (-587 (-457 *3 *4)))))) +(-13 (-72) (-383 |t#1|) (-561 (-587 (-457 |t#1| |t#2|))) (-10 -8 (IF (|has| |t#1| (-1017)) (IF (|has| |t#2| (-1017)) (-6 (-1017)) |%noBranch|) |%noBranch|) (-15 -2899 ($ |t#1| |t#2|)) (-15 -3180 (|t#1| $)) (-15 -1988 (|t#2| $)) (-15 -3965 ($ $)) (-15 -3780 ((-587 (-457 |t#1| |t#2|)) $)))) +(((-72) . T) ((-556 (-776)) -12 (|has| |#1| (-1017)) (|has| |#2| (-1017))) ((-561 (-587 (-457 |#1| |#2|))) . T) ((-383 |#1|) . T) ((-13) . T) ((-1017) -12 (|has| |#1| (-1017)) (|has| |#2| (-1017))) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3780 (((-587 (-457 |#1| |#2|)) $) 33 T ELT)) (-3965 (($ $) 28 T ELT)) (-2899 (($ |#1| |#2|) 24 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-1988 ((|#2| $) 32 T ELT)) (-3180 ((|#1| $) 31 T ELT)) (-3248 (((-1077) $) NIL (-12 (|has| |#1| (-1017)) (|has| |#2| (-1017))) ELT)) (-3249 (((-1037) $) NIL (-12 (|has| |#1| (-1017)) (|has| |#2| (-1017))) ELT)) (-3978 (($ (-587 (-457 |#1| |#2|))) 34 T ELT)) (-1989 (($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|)) 44 T ELT)) (-3953 (((-776) $) 18 (-12 (|has| |#1| (-1017)) (|has| |#2| (-1017))) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 22 T ELT))) +(((-454 |#1| |#2|) (-13 (-453 |#1| |#2|) (-10 -8 (-15 -1989 ($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|))))) (-72) (-763)) (T -454)) +((-1989 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72)) (-5 *1 (-454 *4 *5)) (-4 *5 (-763))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3780 (((-587 (-457 |#1| |#2|)) $) 10 T ELT)) (-3730 (($) NIL T CONST)) (-3965 (($ $) NIL T ELT)) (-3192 (((-85) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2899 (($ |#1| |#2|) NIL T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1988 ((|#2| $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3978 (($ (-587 (-457 |#1| |#2|))) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 21 T ELT)) (-3845 (($ $ $) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT))) +(((-455 |#1| |#2|) (-13 (-720) (-453 |#1| |#2|)) (-720) (-763)) (T -455)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3780 (((-587 (-457 |#1| |#2|)) $) NIL T ELT)) (-2489 (($ $ $) 24 T ELT)) (-1316 (((-3 $ "failed") $ $) 20 T ELT)) (-3730 (($) NIL T CONST)) (-3965 (($ $) NIL T ELT)) (-3192 (((-85) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2899 (($ |#1| |#2|) NIL T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1988 ((|#2| $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3978 (($ (-587 (-457 |#1| |#2|))) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT))) +(((-456 |#1| |#2|) (-13 (-721) (-453 |#1| |#2|)) (-721) (-760)) (T -456)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-1990 (($ |#2| |#1|) 9 T ELT)) (-2405 ((|#2| $) 11 T ELT)) (-3953 (((-786 |#2| |#1|) $) 14 T ELT)) (-3683 ((|#1| $) 13 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-457 |#1| |#2|) (-13 (-72) (-556 (-786 |#2| |#1|)) (-10 -8 (-15 -1990 ($ |#2| |#1|)) (-15 -2405 (|#2| $)) (-15 -3683 (|#1| $)))) (-72) (-763)) (T -457)) +((-1990 (*1 *1 *2 *3) (-12 (-5 *1 (-457 *3 *2)) (-4 *3 (-72)) (-4 *2 (-763)))) (-2405 (*1 *2 *1) (-12 (-4 *2 (-763)) (-5 *1 (-457 *3 *2)) (-4 *3 (-72)))) (-3683 (*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-457 *2 *3)) (-4 *3 (-763))))) +((-3774 (($ $ (-587 |#2|) (-587 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) +(((-458 |#1| |#2| |#3|) (-10 -7 (-15 -3774 (|#1| |#1| |#2| |#3|)) (-15 -3774 (|#1| |#1| (-587 |#2|) (-587 |#3|)))) (-459 |#2| |#3|) (-1017) (-1133)) (T -458)) +NIL +((-3774 (($ $ (-587 |#1|) (-587 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) +(((-459 |#1| |#2|) (-113) (-1017) (-1133)) (T -459)) +((-3774 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 *5)) (-4 *1 (-459 *4 *5)) (-4 *4 (-1017)) (-4 *5 (-1133)))) (-3774 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1133))))) +(-13 (-10 -8 (-15 -3774 ($ $ |t#1| |t#2|)) (-15 -3774 ($ $ (-587 |t#1|) (-587 |t#2|))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 17 T ELT)) (-3780 (((-587 (-2 (|:| |gen| |#1|) (|:| -3950 |#2|))) $) 19 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3142 (((-698) $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) NIL T ELT)) (-3162 ((|#1| $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2304 ((|#1| $ (-488)) 24 T ELT)) (-1626 ((|#2| $ (-488)) 22 T ELT)) (-2295 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1625 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1624 (($ $ $) 55 (|has| |#2| (-720)) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3683 ((|#2| |#1| $) 51 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) 11 T CONST)) (-3062 (((-85) $ $) 30 T ELT)) (-3845 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) +(((-460 |#1| |#2| |#3|) (-276 |#1| |#2|) (-1017) (-104) |#2|) (T -460)) +NIL +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 |#1|)) ELT)) (-1740 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-760)) ELT)) (-1738 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1039 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1039 |#1|)) (|has| |#1| (-760))) ELT)) (-2915 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-760)) ELT)) (-1991 (((-85) (-85)) 32 T ELT)) (-3794 ((|#1| $ (-488) |#1|) 42 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-1150 (-488)) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-1574 (($ (-1 (-85) |#1|) $) 79 T ELT)) (-3716 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3730 (($) NIL T CONST)) (-2302 (($ $) NIL (|has| $ (-1039 |#1|)) ELT)) (-2303 (($ $) NIL T ELT)) (-2373 (($ $) 83 (|has| |#1| (-72)) ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-3411 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) 66 T ELT)) (-3412 (($ |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1580 ((|#1| $ (-488) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-488)) NIL T ELT)) (-3425 (((-488) (-1 (-85) |#1|) $) NIL T ELT) (((-488) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-488) |#1| $ (-488)) NIL (|has| |#1| (-72)) ELT)) (-1992 (($ $ (-488)) 19 T ELT)) (-1993 (((-698) $) 13 T ELT)) (-3620 (($ (-698) |#1|) 31 T ELT)) (-2205 (((-488) $) 29 (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-2862 (($ $ $) NIL (|has| |#1| (-760)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 57 T ELT)) (-3524 (($ (-1 (-85) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-2614 (((-587 |#1|) $) NIL T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2206 (((-488) $) 28 (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-3615 (($ $ $ (-488)) 75 T ELT) (($ |#1| $ (-488)) 59 T ELT)) (-2309 (($ |#1| $ (-488)) NIL T ELT) (($ $ $ (-488)) NIL T ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) NIL T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-1994 (($ (-587 |#1|)) 43 T ELT)) (-3807 ((|#1| $) NIL (|has| (-488) (-760)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2204 (($ $ |#1|) 24 (|has| $ (-1039 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 62 T ELT)) (-2207 (((-85) |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) 21 T ELT)) (-3806 ((|#1| $ (-488) |#1|) NIL T ELT) ((|#1| $ (-488)) 55 T ELT) (($ $ (-1150 (-488))) NIL T ELT)) (-1575 (($ $ (-1150 (-488))) 73 T ELT) (($ $ (-488)) 67 T ELT)) (-2310 (($ $ (-488)) NIL T ELT) (($ $ (-1150 (-488))) NIL T ELT)) (-1735 (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) NIL T ELT)) (-1739 (($ $ $ (-488)) 63 (|has| $ (-1039 |#1|)) ELT)) (-3406 (($ $) 53 T ELT)) (-3978 (((-477) $) NIL (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) NIL T ELT)) (-3797 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3808 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3953 (((-776) $) NIL (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2572 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2690 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3964 (((-698) $) 22 T ELT))) +(((-461 |#1| |#2|) (-13 (-19 |#1|) (-239 |#1|) (-10 -8 (-15 -1994 ($ (-587 |#1|))) (-15 -1993 ((-698) $)) (-15 -1992 ($ $ (-488))) (-15 -1991 ((-85) (-85))))) (-1133) (-488)) (T -461)) +((-1994 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1133)) (-5 *1 (-461 *3 *4)) (-14 *4 (-488)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-461 *3 *4)) (-4 *3 (-1133)) (-14 *4 (-488)))) (-1992 (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-461 *3 *4)) (-4 *3 (-1133)) (-14 *4 *2))) (-1991 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-461 *3 *4)) (-4 *3 (-1133)) (-14 *4 (-488))))) +((-2574 (((-85) $ $) NIL T ELT)) (-1996 (((-1053) $) 12 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1995 (((-1053) $) 14 T ELT)) (-3929 (((-1053) $) 10 T ELT)) (-3953 (((-776) $) 20 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-462) (-13 (-999) (-10 -8 (-15 -3929 ((-1053) $)) (-15 -1996 ((-1053) $)) (-15 -1995 ((-1053) $))))) (T -462)) +((-3929 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-462)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-462)))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-462))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3936 (((-698)) NIL T ELT)) (-3336 (((-521 |#1|) $) NIL T ELT) (($ $ (-834)) NIL (|has| (-521 |#1|) (-322)) ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) NIL (|has| (-521 |#1|) (-322)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) NIL (|has| (-521 |#1|) (-322)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-521 |#1|) #1#) $) NIL T ELT)) (-3162 (((-521 |#1|) $) NIL T ELT)) (-1800 (($ (-1183 (-521 |#1|))) NIL T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-521 |#1|) (-322)) ELT)) (-2570 (($ $ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3000 (($) NIL (|has| (-521 |#1|) (-322)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-2839 (($) NIL (|has| (-521 |#1|) (-322)) ELT)) (-1684 (((-85) $) NIL (|has| (-521 |#1|) (-322)) ELT)) (-1772 (($ $ (-698)) NIL (OR (|has| (-521 |#1|) (-118)) (|has| (-521 |#1|) (-322))) ELT) (($ $) NIL (OR (|has| (-521 |#1|) (-118)) (|has| (-521 |#1|) (-322))) ELT)) (-3729 (((-85) $) NIL T ELT)) (-3778 (((-834) $) NIL (|has| (-521 |#1|) (-322)) ELT) (((-747 (-834)) $) NIL (OR (|has| (-521 |#1|) (-118)) (|has| (-521 |#1|) (-322))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2018 (($) NIL (|has| (-521 |#1|) (-322)) ELT)) (-2016 (((-85) $) NIL (|has| (-521 |#1|) (-322)) ELT)) (-3138 (((-521 |#1|) $) NIL T ELT) (($ $ (-834)) NIL (|has| (-521 |#1|) (-322)) ELT)) (-3451 (((-636 $) $) NIL (|has| (-521 |#1|) (-322)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2019 (((-1089 (-521 |#1|)) $) NIL T ELT) (((-1089 $) $ (-834)) NIL (|has| (-521 |#1|) (-322)) ELT)) (-2015 (((-834) $) NIL (|has| (-521 |#1|) (-322)) ELT)) (-1631 (((-1089 (-521 |#1|)) $) NIL (|has| (-521 |#1|) (-322)) ELT)) (-1630 (((-1089 (-521 |#1|)) $) NIL (|has| (-521 |#1|) (-322)) ELT) (((-3 (-1089 (-521 |#1|)) #1#) $ $) NIL (|has| (-521 |#1|) (-322)) ELT)) (-1632 (($ $ (-1089 (-521 |#1|))) NIL (|has| (-521 |#1|) (-322)) ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3452 (($) NIL (|has| (-521 |#1|) (-322)) CONST)) (-2405 (($ (-834)) NIL (|has| (-521 |#1|) (-322)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2414 (($) NIL (|has| (-521 |#1|) (-322)) ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) NIL (|has| (-521 |#1|) (-322)) ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-3937 (((-747 (-834))) NIL T ELT) (((-834)) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-1773 (((-698) $) NIL (|has| (-521 |#1|) (-322)) ELT) (((-3 (-698) #1#) $ $) NIL (OR (|has| (-521 |#1|) (-118)) (|has| (-521 |#1|) (-322))) ELT)) (-3918 (((-107)) NIL T ELT)) (-3764 (($ $ (-698)) NIL (|has| (-521 |#1|) (-322)) ELT) (($ $) NIL (|has| (-521 |#1|) (-322)) ELT)) (-3955 (((-747 (-834)) $) NIL T ELT) (((-834) $) NIL T ELT)) (-3191 (((-1089 (-521 |#1|))) NIL T ELT)) (-1678 (($) NIL (|has| (-521 |#1|) (-322)) ELT)) (-1633 (($) NIL (|has| (-521 |#1|) (-322)) ELT)) (-3230 (((-1183 (-521 |#1|)) $) NIL T ELT) (((-634 (-521 |#1|)) (-1183 $)) NIL T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (|has| (-521 |#1|) (-322)) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ (-521 |#1|)) NIL T ELT)) (-2708 (($ $) NIL (|has| (-521 |#1|) (-322)) ELT) (((-636 $) $) NIL (OR (|has| (-521 |#1|) (-118)) (|has| (-521 |#1|) (-322))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 $)) NIL T ELT) (((-1183 $) (-834)) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-3935 (($ $) NIL (|has| (-521 |#1|) (-322)) ELT) (($ $ (-698)) NIL (|has| (-521 |#1|) (-322)) ELT)) (-2675 (($ $ (-698)) NIL (|has| (-521 |#1|) (-322)) ELT) (($ $) NIL (|has| (-521 |#1|) (-322)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ $) NIL T ELT) (($ $ (-521 |#1|)) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ $ (-521 |#1|)) NIL T ELT) (($ (-521 |#1|) $) NIL T ELT))) +(((-463 |#1| |#2|) (-282 (-521 |#1|)) (-834) (-834)) (T -463)) +NIL +((-3115 ((|#4| |#4|) 38 T ELT)) (-3114 (((-698) |#4|) 45 T ELT)) (-3113 (((-698) |#4|) 46 T ELT)) (-3112 (((-587 |#3|) |#4|) 57 (|has| |#3| (-1039 |#1|)) ELT)) (-3596 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1997 ((|#4| |#4|) 61 T ELT)) (-3334 ((|#1| |#4|) 60 T ELT))) +(((-464 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3115 (|#4| |#4|)) (-15 -3114 ((-698) |#4|)) (-15 -3113 ((-698) |#4|)) (IF (|has| |#3| (-1039 |#1|)) (-15 -3112 ((-587 |#3|) |#4|)) |%noBranch|) (-15 -3334 (|#1| |#4|)) (-15 -1997 (|#4| |#4|)) (-15 -3596 ((-3 |#4| "failed") |#4|))) (-314) (-326 |#1|) (-326 |#1|) (-631 |#1| |#2| |#3|)) (T -464)) +((-3596 (*1 *2 *2) (|partial| -12 (-4 *3 (-314)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *1 (-464 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5)))) (-1997 (*1 *2 *2) (-12 (-4 *3 (-314)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *1 (-464 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5)))) (-3334 (*1 *2 *3) (-12 (-4 *4 (-326 *2)) (-4 *5 (-326 *2)) (-4 *2 (-314)) (-5 *1 (-464 *2 *4 *5 *3)) (-4 *3 (-631 *2 *4 *5)))) (-3112 (*1 *2 *3) (-12 (-4 *6 (-1039 *4)) (-4 *4 (-314)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) (-5 *2 (-587 *6)) (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-631 *4 *5 *6)))) (-3113 (*1 *2 *3) (-12 (-4 *4 (-314)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) (-5 *2 (-698)) (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-631 *4 *5 *6)))) (-3114 (*1 *2 *3) (-12 (-4 *4 (-314)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) (-5 *2 (-698)) (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-631 *4 *5 *6)))) (-3115 (*1 *2 *2) (-12 (-4 *3 (-314)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *1 (-464 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5))))) +((-3115 ((|#8| |#4|) 20 T ELT)) (-3112 (((-587 |#3|) |#4|) 29 (|has| |#7| (-1039 |#5|)) ELT)) (-3596 (((-3 |#8| "failed") |#4|) 23 T ELT))) +(((-465 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3115 (|#8| |#4|)) (-15 -3596 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-1039 |#5|)) (-15 -3112 ((-587 |#3|) |#4|)) |%noBranch|)) (-499) (-326 |#1|) (-326 |#1|) (-631 |#1| |#2| |#3|) (-908 |#1|) (-326 |#5|) (-326 |#5|) (-631 |#5| |#6| |#7|)) (T -465)) +((-3112 (*1 *2 *3) (-12 (-4 *9 (-1039 *7)) (-4 *4 (-499)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) (-4 *7 (-908 *4)) (-4 *8 (-326 *7)) (-4 *9 (-326 *7)) (-5 *2 (-587 *6)) (-5 *1 (-465 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-631 *4 *5 *6)) (-4 *10 (-631 *7 *8 *9)))) (-3596 (*1 *2 *3) (|partial| -12 (-4 *4 (-499)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) (-4 *7 (-908 *4)) (-4 *2 (-631 *7 *8 *9)) (-5 *1 (-465 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-631 *4 *5 *6)) (-4 *8 (-326 *7)) (-4 *9 (-326 *7)))) (-3115 (*1 *2 *3) (-12 (-4 *4 (-499)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) (-4 *7 (-908 *4)) (-4 *2 (-631 *7 *8 *9)) (-5 *1 (-465 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-631 *4 *5 *6)) (-4 *8 (-326 *7)) (-4 *9 (-326 *7))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1998 (((-587 (-1134)) $) 14 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 20 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT) (($ (-587 (-1134))) 12 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-466) (-13 (-999) (-10 -8 (-15 -3953 ($ (-587 (-1134)))) (-15 -1998 ((-587 (-1134)) $))))) (T -466)) +((-3953 (*1 *1 *2) (-12 (-5 *2 (-587 (-1134))) (-5 *1 (-466)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-587 (-1134))) (-5 *1 (-466))))) +((-2574 (((-85) $ $) NIL T ELT)) (-1999 (((-1053) $) 15 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3456 (((-450) $) 12 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 22 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-467) (-13 (-999) (-10 -8 (-15 -3456 ((-450) $)) (-15 -1999 ((-1053) $))))) (T -467)) +((-3456 (*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-467)))) (-1999 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-467))))) +((-2005 (((-636 (-1142)) $) 15 T ELT)) (-2001 (((-636 (-1140)) $) 38 T ELT)) (-2003 (((-636 (-1139)) $) 29 T ELT)) (-2006 (((-636 (-492)) $) 12 T ELT)) (-2002 (((-636 (-490)) $) 42 T ELT)) (-2004 (((-636 (-489)) $) 33 T ELT)) (-2000 (((-698) $ (-102)) 54 T ELT))) +(((-468 |#1|) (-10 -7 (-15 -2000 ((-698) |#1| (-102))) (-15 -2001 ((-636 (-1140)) |#1|)) (-15 -2002 ((-636 (-490)) |#1|)) (-15 -2003 ((-636 (-1139)) |#1|)) (-15 -2004 ((-636 (-489)) |#1|)) (-15 -2005 ((-636 (-1142)) |#1|)) (-15 -2006 ((-636 (-492)) |#1|))) (-469)) (T -468)) +NIL +((-2005 (((-636 (-1142)) $) 12 T ELT)) (-2001 (((-636 (-1140)) $) 8 T ELT)) (-2003 (((-636 (-1139)) $) 10 T ELT)) (-2006 (((-636 (-492)) $) 13 T ELT)) (-2002 (((-636 (-490)) $) 9 T ELT)) (-2004 (((-636 (-489)) $) 11 T ELT)) (-2000 (((-698) $ (-102)) 7 T ELT)) (-2007 (((-636 (-101)) $) 14 T ELT)) (-1704 (($ $) 6 T ELT))) +(((-469) (-113)) (T -469)) +((-2007 (*1 *2 *1) (-12 (-4 *1 (-469)) (-5 *2 (-636 (-101))))) (-2006 (*1 *2 *1) (-12 (-4 *1 (-469)) (-5 *2 (-636 (-492))))) (-2005 (*1 *2 *1) (-12 (-4 *1 (-469)) (-5 *2 (-636 (-1142))))) (-2004 (*1 *2 *1) (-12 (-4 *1 (-469)) (-5 *2 (-636 (-489))))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-469)) (-5 *2 (-636 (-1139))))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-469)) (-5 *2 (-636 (-490))))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-469)) (-5 *2 (-636 (-1140))))) (-2000 (*1 *2 *1 *3) (-12 (-4 *1 (-469)) (-5 *3 (-102)) (-5 *2 (-698))))) +(-13 (-149) (-10 -8 (-15 -2007 ((-636 (-101)) $)) (-15 -2006 ((-636 (-492)) $)) (-15 -2005 ((-636 (-1142)) $)) (-15 -2004 ((-636 (-489)) $)) (-15 -2003 ((-636 (-1139)) $)) (-15 -2002 ((-636 (-490)) $)) (-15 -2001 ((-636 (-1140)) $)) (-15 -2000 ((-698) $ (-102))))) +(((-149) . T)) +((-2010 (((-1089 |#1|) (-698)) 114 T ELT)) (-3336 (((-1183 |#1|) (-1183 |#1|) (-834)) 107 T ELT)) (-2008 (((-1189) (-1183 (-587 (-2 (|:| -3408 |#1|) (|:| -2405 (-1037))))) |#1|) 122 T ELT)) (-2012 (((-1183 |#1|) (-1183 |#1|) (-698)) 53 T ELT)) (-3000 (((-1183 |#1|) (-834)) 109 T ELT)) (-2014 (((-1183 |#1|) (-1183 |#1|) (-488)) 30 T ELT)) (-2009 (((-1089 |#1|) (-1183 |#1|)) 115 T ELT)) (-2018 (((-1183 |#1|) (-834)) 136 T ELT)) (-2016 (((-85) (-1183 |#1|)) 119 T ELT)) (-3138 (((-1183 |#1|) (-1183 |#1|) (-834)) 99 T ELT)) (-2019 (((-1089 |#1|) (-1183 |#1|)) 130 T ELT)) (-2015 (((-834) (-1183 |#1|)) 95 T ELT)) (-2490 (((-1183 |#1|) (-1183 |#1|)) 38 T ELT)) (-2405 (((-1183 |#1|) (-834) (-834)) 139 T ELT)) (-2013 (((-1183 |#1|) (-1183 |#1|) (-1037) (-1037)) 29 T ELT)) (-2011 (((-1183 |#1|) (-1183 |#1|) (-698) (-1037)) 54 T ELT)) (-2017 (((-1183 (-1183 |#1|)) (-834)) 135 T ELT)) (-3956 (((-1183 |#1|) (-1183 |#1|) (-1183 |#1|)) 120 T ELT)) (** (((-1183 |#1|) (-1183 |#1|) (-488)) 67 T ELT)) (* (((-1183 |#1|) (-1183 |#1|) (-1183 |#1|)) 31 T ELT))) +(((-470 |#1|) (-10 -7 (-15 -2008 ((-1189) (-1183 (-587 (-2 (|:| -3408 |#1|) (|:| -2405 (-1037))))) |#1|)) (-15 -3000 ((-1183 |#1|) (-834))) (-15 -2405 ((-1183 |#1|) (-834) (-834))) (-15 -2009 ((-1089 |#1|) (-1183 |#1|))) (-15 -2010 ((-1089 |#1|) (-698))) (-15 -2011 ((-1183 |#1|) (-1183 |#1|) (-698) (-1037))) (-15 -2012 ((-1183 |#1|) (-1183 |#1|) (-698))) (-15 -2013 ((-1183 |#1|) (-1183 |#1|) (-1037) (-1037))) (-15 -2014 ((-1183 |#1|) (-1183 |#1|) (-488))) (-15 ** ((-1183 |#1|) (-1183 |#1|) (-488))) (-15 * ((-1183 |#1|) (-1183 |#1|) (-1183 |#1|))) (-15 -3956 ((-1183 |#1|) (-1183 |#1|) (-1183 |#1|))) (-15 -3138 ((-1183 |#1|) (-1183 |#1|) (-834))) (-15 -3336 ((-1183 |#1|) (-1183 |#1|) (-834))) (-15 -2490 ((-1183 |#1|) (-1183 |#1|))) (-15 -2015 ((-834) (-1183 |#1|))) (-15 -2016 ((-85) (-1183 |#1|))) (-15 -2017 ((-1183 (-1183 |#1|)) (-834))) (-15 -2018 ((-1183 |#1|) (-834))) (-15 -2019 ((-1089 |#1|) (-1183 |#1|)))) (-301)) (T -470)) +((-2019 (*1 *2 *3) (-12 (-5 *3 (-1183 *4)) (-4 *4 (-301)) (-5 *2 (-1089 *4)) (-5 *1 (-470 *4)))) (-2018 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1183 *4)) (-5 *1 (-470 *4)) (-4 *4 (-301)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1183 (-1183 *4))) (-5 *1 (-470 *4)) (-4 *4 (-301)))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-1183 *4)) (-4 *4 (-301)) (-5 *2 (-85)) (-5 *1 (-470 *4)))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-1183 *4)) (-4 *4 (-301)) (-5 *2 (-834)) (-5 *1 (-470 *4)))) (-2490 (*1 *2 *2) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-301)) (-5 *1 (-470 *3)))) (-3336 (*1 *2 *2 *3) (-12 (-5 *2 (-1183 *4)) (-5 *3 (-834)) (-4 *4 (-301)) (-5 *1 (-470 *4)))) (-3138 (*1 *2 *2 *3) (-12 (-5 *2 (-1183 *4)) (-5 *3 (-834)) (-4 *4 (-301)) (-5 *1 (-470 *4)))) (-3956 (*1 *2 *2 *2) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-301)) (-5 *1 (-470 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-301)) (-5 *1 (-470 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1183 *4)) (-5 *3 (-488)) (-4 *4 (-301)) (-5 *1 (-470 *4)))) (-2014 (*1 *2 *2 *3) (-12 (-5 *2 (-1183 *4)) (-5 *3 (-488)) (-4 *4 (-301)) (-5 *1 (-470 *4)))) (-2013 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1183 *4)) (-5 *3 (-1037)) (-4 *4 (-301)) (-5 *1 (-470 *4)))) (-2012 (*1 *2 *2 *3) (-12 (-5 *2 (-1183 *4)) (-5 *3 (-698)) (-4 *4 (-301)) (-5 *1 (-470 *4)))) (-2011 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1183 *5)) (-5 *3 (-698)) (-5 *4 (-1037)) (-4 *5 (-301)) (-5 *1 (-470 *5)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1089 *4)) (-5 *1 (-470 *4)) (-4 *4 (-301)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-1183 *4)) (-4 *4 (-301)) (-5 *2 (-1089 *4)) (-5 *1 (-470 *4)))) (-2405 (*1 *2 *3 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1183 *4)) (-5 *1 (-470 *4)) (-4 *4 (-301)))) (-3000 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1183 *4)) (-5 *1 (-470 *4)) (-4 *4 (-301)))) (-2008 (*1 *2 *3 *4) (-12 (-5 *3 (-1183 (-587 (-2 (|:| -3408 *4) (|:| -2405 (-1037)))))) (-4 *4 (-301)) (-5 *2 (-1189)) (-5 *1 (-470 *4))))) +((-2005 (((-636 (-1142)) $) NIL T ELT)) (-2001 (((-636 (-1140)) $) NIL T ELT)) (-2003 (((-636 (-1139)) $) NIL T ELT)) (-2006 (((-636 (-492)) $) NIL T ELT)) (-2002 (((-636 (-490)) $) NIL T ELT)) (-2004 (((-636 (-489)) $) NIL T ELT)) (-2000 (((-698) $ (-102)) NIL T ELT)) (-2007 (((-636 (-101)) $) 26 T ELT)) (-2020 (((-1037) $ (-1037)) 31 T ELT)) (-3425 (((-1037) $) 30 T ELT)) (-2564 (((-85) $) 20 T ELT)) (-2022 (($ (-340)) 14 T ELT) (($ (-1077)) 16 T ELT)) (-2021 (((-85) $) 27 T ELT)) (-3953 (((-776) $) 34 T ELT)) (-1704 (($ $) 28 T ELT))) +(((-471) (-13 (-469) (-556 (-776)) (-10 -8 (-15 -2022 ($ (-340))) (-15 -2022 ($ (-1077))) (-15 -2021 ((-85) $)) (-15 -2564 ((-85) $)) (-15 -3425 ((-1037) $)) (-15 -2020 ((-1037) $ (-1037)))))) (T -471)) +((-2022 (*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-471)))) (-2022 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-471)))) (-2021 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-471)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-471)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-1037)) (-5 *1 (-471)))) (-2020 (*1 *2 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-471))))) +((-2024 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2023 (((-1 |#1| |#1|)) 10 T ELT))) +(((-472 |#1|) (-10 -7 (-15 -2023 ((-1 |#1| |#1|))) (-15 -2024 ((-1 |#1| |#1|) |#1|))) (-13 (-667) (-25))) (T -472)) +((-2024 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-472 *3)) (-4 *3 (-13 (-667) (-25))))) (-2023 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-472 *3)) (-4 *3 (-13 (-667) (-25)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3780 (((-587 (-457 (-698) |#1|)) $) NIL T ELT)) (-2489 (($ $ $) NIL T ELT)) (-1316 (((-3 $ "failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3965 (($ $) NIL T ELT)) (-3192 (((-85) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2899 (($ (-698) |#1|) NIL T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-3849 (($ (-1 (-698) (-698)) $) NIL T ELT)) (-1988 ((|#1| $) NIL T ELT)) (-3180 (((-698) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3978 (($ (-587 (-457 (-698) |#1|))) NIL T ELT)) (-3953 (((-776) $) 28 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT))) +(((-473 |#1|) (-13 (-721) (-453 (-698) |#1|)) (-760)) (T -473)) +NIL +((-2026 (((-587 |#2|) (-1089 |#1|) |#3|) 98 T ELT)) (-2027 (((-587 (-2 (|:| |outval| |#2|) (|:| |outmult| (-488)) (|:| |outvect| (-587 (-634 |#2|))))) (-634 |#1|) |#3| (-1 (-350 (-1089 |#1|)) (-1089 |#1|))) 114 T ELT)) (-2025 (((-1089 |#1|) (-634 |#1|)) 110 T ELT))) +(((-474 |#1| |#2| |#3|) (-10 -7 (-15 -2025 ((-1089 |#1|) (-634 |#1|))) (-15 -2026 ((-587 |#2|) (-1089 |#1|) |#3|)) (-15 -2027 ((-587 (-2 (|:| |outval| |#2|) (|:| |outmult| (-488)) (|:| |outvect| (-587 (-634 |#2|))))) (-634 |#1|) |#3| (-1 (-350 (-1089 |#1|)) (-1089 |#1|))))) (-314) (-314) (-13 (-314) (-759))) (T -474)) +((-2027 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *6)) (-5 *5 (-1 (-350 (-1089 *6)) (-1089 *6))) (-4 *6 (-314)) (-5 *2 (-587 (-2 (|:| |outval| *7) (|:| |outmult| (-488)) (|:| |outvect| (-587 (-634 *7)))))) (-5 *1 (-474 *6 *7 *4)) (-4 *7 (-314)) (-4 *4 (-13 (-314) (-759))))) (-2026 (*1 *2 *3 *4) (-12 (-5 *3 (-1089 *5)) (-4 *5 (-314)) (-5 *2 (-587 *6)) (-5 *1 (-474 *5 *6 *4)) (-4 *6 (-314)) (-4 *4 (-13 (-314) (-759))))) (-2025 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-314)) (-5 *2 (-1089 *4)) (-5 *1 (-474 *4 *5 *6)) (-4 *5 (-314)) (-4 *6 (-13 (-314) (-759)))))) +((-2561 (((-636 (-1142)) $ (-1142)) NIL T ELT)) (-2562 (((-636 (-492)) $ (-492)) NIL T ELT)) (-2560 (((-698) $ (-102)) 39 T ELT)) (-2563 (((-636 (-101)) $ (-101)) 40 T ELT)) (-2005 (((-636 (-1142)) $) NIL T ELT)) (-2001 (((-636 (-1140)) $) NIL T ELT)) (-2003 (((-636 (-1139)) $) NIL T ELT)) (-2006 (((-636 (-492)) $) NIL T ELT)) (-2002 (((-636 (-490)) $) NIL T ELT)) (-2004 (((-636 (-489)) $) NIL T ELT)) (-2000 (((-698) $ (-102)) 35 T ELT)) (-2007 (((-636 (-101)) $) 37 T ELT)) (-2445 (((-85) $) 27 T ELT)) (-2446 (((-636 $) (-519) (-869)) 18 T ELT) (((-636 $) (-434) (-869)) 24 T ELT)) (-3953 (((-776) $) 48 T ELT)) (-1704 (($ $) 42 T ELT))) +(((-475) (-13 (-695 (-519)) (-556 (-776)) (-10 -8 (-15 -2446 ((-636 $) (-434) (-869)))))) (T -475)) +((-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-434)) (-5 *4 (-869)) (-5 *2 (-636 (-475))) (-5 *1 (-475))))) +((-2533 (((-754 (-488))) 12 T ELT)) (-2532 (((-754 (-488))) 14 T ELT)) (-2520 (((-747 (-488))) 9 T ELT))) +(((-476) (-10 -7 (-15 -2520 ((-747 (-488)))) (-15 -2533 ((-754 (-488)))) (-15 -2532 ((-754 (-488)))))) (T -476)) +((-2532 (*1 *2) (-12 (-5 *2 (-754 (-488))) (-5 *1 (-476)))) (-2533 (*1 *2) (-12 (-5 *2 (-754 (-488))) (-5 *1 (-476)))) (-2520 (*1 *2) (-12 (-5 *2 (-747 (-488))) (-5 *1 (-476))))) +((-2574 (((-85) $ $) NIL T ELT)) (-2031 (((-1077) $) 55 T ELT)) (-3266 (((-85) $) 51 T ELT)) (-3262 (((-1094) $) 52 T ELT)) (-3267 (((-85) $) 49 T ELT)) (-3541 (((-1077) $) 50 T ELT)) (-2030 (($ (-1077)) 56 T ELT)) (-3269 (((-85) $) NIL T ELT)) (-3271 (((-85) $) NIL T ELT)) (-3268 (((-85) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2033 (($ $ (-587 (-1094))) 21 T ELT)) (-2036 (((-51) $) 23 T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3261 (((-488) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2388 (($ $ (-587 (-1094)) (-1094)) 73 T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3260 (((-181) $) NIL T ELT)) (-2032 (($ $) 44 T ELT)) (-3259 (((-776) $) NIL T ELT)) (-3272 (((-85) $ $) NIL T ELT)) (-3806 (($ $ (-488)) NIL T ELT) (($ $ (-587 (-488))) NIL T ELT)) (-3263 (((-587 $) $) 30 T ELT)) (-2029 (((-1094) (-587 $)) 57 T ELT)) (-3978 (($ (-1077)) NIL T ELT) (($ (-1094)) 19 T ELT) (($ (-488)) 8 T ELT) (($ (-181)) 28 T ELT) (($ (-776)) NIL T ELT) (($ (-587 $)) 65 T ELT) (((-1019) $) 12 T ELT) (($ (-1019)) 13 T ELT)) (-2028 (((-1094) (-1094) (-587 $)) 60 T ELT)) (-3953 (((-776) $) 54 T ELT)) (-3257 (($ $) 59 T ELT)) (-3258 (($ $) 58 T ELT)) (-2034 (($ $ (-587 $)) 66 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3270 (((-85) $) 29 T ELT)) (-2666 (($) 9 T CONST)) (-2672 (($) 11 T CONST)) (-3062 (((-85) $ $) 74 T ELT)) (-3956 (($ $ $) 82 T ELT)) (-3845 (($ $ $) 75 T ELT)) (** (($ $ (-698)) 81 T ELT) (($ $ (-488)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3964 (((-488) $) NIL T ELT))) +(((-477) (-13 (-1020 (-1077) (-1094) (-488) (-181) (-776)) (-557 (-1019)) (-10 -8 (-15 -2036 ((-51) $)) (-15 -3978 ($ (-1019))) (-15 -2034 ($ $ (-587 $))) (-15 -2388 ($ $ (-587 (-1094)) (-1094))) (-15 -2033 ($ $ (-587 (-1094)))) (-15 -3845 ($ $ $)) (-15 * ($ $ $)) (-15 -3956 ($ $ $)) (-15 ** ($ $ (-698))) (-15 ** ($ $ (-488))) (-15 -2666 ($) -3959) (-15 -2672 ($) -3959) (-15 -2032 ($ $)) (-15 -2031 ((-1077) $)) (-15 -2030 ($ (-1077))) (-15 -2029 ((-1094) (-587 $))) (-15 -2028 ((-1094) (-1094) (-587 $)))))) (T -477)) +((-2036 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-477)))) (-3978 (*1 *1 *2) (-12 (-5 *2 (-1019)) (-5 *1 (-477)))) (-2034 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-477))) (-5 *1 (-477)))) (-2388 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-1094))) (-5 *3 (-1094)) (-5 *1 (-477)))) (-2033 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-1094))) (-5 *1 (-477)))) (-3845 (*1 *1 *1 *1) (-5 *1 (-477))) (* (*1 *1 *1 *1) (-5 *1 (-477))) (-3956 (*1 *1 *1 *1) (-5 *1 (-477))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-477)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-477)))) (-2666 (*1 *1) (-5 *1 (-477))) (-2672 (*1 *1) (-5 *1 (-477))) (-2032 (*1 *1 *1) (-5 *1 (-477))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-477)))) (-2030 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-477)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-587 (-477))) (-5 *2 (-1094)) (-5 *1 (-477)))) (-2028 (*1 *2 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-587 (-477))) (-5 *1 (-477))))) +((-2035 (((-477) (-1094)) 15 T ELT)) (-2036 ((|#1| (-477)) 20 T ELT))) +(((-478 |#1|) (-10 -7 (-15 -2035 ((-477) (-1094))) (-15 -2036 (|#1| (-477)))) (-1133)) (T -478)) +((-2036 (*1 *2 *3) (-12 (-5 *3 (-477)) (-5 *1 (-478 *2)) (-4 *2 (-1133)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-477)) (-5 *1 (-478 *4)) (-4 *4 (-1133))))) +((-3459 ((|#2| |#2|) 17 T ELT)) (-3457 ((|#2| |#2|) 13 T ELT)) (-3460 ((|#2| |#2| (-488) (-488)) 20 T ELT)) (-3458 ((|#2| |#2|) 15 T ELT))) +(((-479 |#1| |#2|) (-10 -7 (-15 -3457 (|#2| |#2|)) (-15 -3458 (|#2| |#2|)) (-15 -3459 (|#2| |#2|)) (-15 -3460 (|#2| |#2| (-488) (-488)))) (-13 (-499) (-120)) (-1176 |#1|)) (T -479)) +((-3460 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-488)) (-4 *4 (-13 (-499) (-120))) (-5 *1 (-479 *4 *2)) (-4 *2 (-1176 *4)))) (-3459 (*1 *2 *2) (-12 (-4 *3 (-13 (-499) (-120))) (-5 *1 (-479 *3 *2)) (-4 *2 (-1176 *3)))) (-3458 (*1 *2 *2) (-12 (-4 *3 (-13 (-499) (-120))) (-5 *1 (-479 *3 *2)) (-4 *2 (-1176 *3)))) (-3457 (*1 *2 *2) (-12 (-4 *3 (-13 (-499) (-120))) (-5 *1 (-479 *3 *2)) (-4 *2 (-1176 *3))))) +((-2039 (((-587 (-251 (-861 |#2|))) (-587 |#2|) (-587 (-1094))) 32 T ELT)) (-2037 (((-587 |#2|) (-861 |#1|) |#3|) 54 T ELT) (((-587 |#2|) (-1089 |#1|) |#3|) 53 T ELT)) (-2038 (((-587 (-587 |#2|)) (-587 (-861 |#1|)) (-587 (-861 |#1|)) (-587 (-1094)) |#3|) 106 T ELT))) +(((-480 |#1| |#2| |#3|) (-10 -7 (-15 -2037 ((-587 |#2|) (-1089 |#1|) |#3|)) (-15 -2037 ((-587 |#2|) (-861 |#1|) |#3|)) (-15 -2038 ((-587 (-587 |#2|)) (-587 (-861 |#1|)) (-587 (-861 |#1|)) (-587 (-1094)) |#3|)) (-15 -2039 ((-587 (-251 (-861 |#2|))) (-587 |#2|) (-587 (-1094))))) (-395) (-314) (-13 (-314) (-759))) (T -480)) +((-2039 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 (-1094))) (-4 *6 (-314)) (-5 *2 (-587 (-251 (-861 *6)))) (-5 *1 (-480 *5 *6 *7)) (-4 *5 (-395)) (-4 *7 (-13 (-314) (-759))))) (-2038 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-587 (-861 *6))) (-5 *4 (-587 (-1094))) (-4 *6 (-395)) (-5 *2 (-587 (-587 *7))) (-5 *1 (-480 *6 *7 *5)) (-4 *7 (-314)) (-4 *5 (-13 (-314) (-759))))) (-2037 (*1 *2 *3 *4) (-12 (-5 *3 (-861 *5)) (-4 *5 (-395)) (-5 *2 (-587 *6)) (-5 *1 (-480 *5 *6 *4)) (-4 *6 (-314)) (-4 *4 (-13 (-314) (-759))))) (-2037 (*1 *2 *3 *4) (-12 (-5 *3 (-1089 *5)) (-4 *5 (-395)) (-5 *2 (-587 *6)) (-5 *1 (-480 *5 *6 *4)) (-4 *6 (-314)) (-4 *4 (-13 (-314) (-759)))))) +((-2042 ((|#2| |#2| |#1|) 17 T ELT)) (-2040 ((|#2| (-587 |#2|)) 30 T ELT)) (-2041 ((|#2| (-587 |#2|)) 51 T ELT))) +(((-481 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2040 (|#2| (-587 |#2|))) (-15 -2041 (|#2| (-587 |#2|))) (-15 -2042 (|#2| |#2| |#1|))) (-260) (-1159 |#1|) |#1| (-1 |#1| |#1| (-698))) (T -481)) +((-2042 (*1 *2 *2 *3) (-12 (-4 *3 (-260)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-698))) (-5 *1 (-481 *3 *2 *4 *5)) (-4 *2 (-1159 *3)))) (-2041 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-1159 *4)) (-5 *1 (-481 *4 *2 *5 *6)) (-4 *4 (-260)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-698))))) (-2040 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-1159 *4)) (-5 *1 (-481 *4 *2 *5 *6)) (-4 *4 (-260)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-698)))))) +((-3738 (((-350 (-1089 |#4|)) (-1089 |#4|) (-1 (-350 (-1089 |#3|)) (-1089 |#3|))) 90 T ELT) (((-350 |#4|) |#4| (-1 (-350 (-1089 |#3|)) (-1089 |#3|))) 213 T ELT))) +(((-482 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3738 ((-350 |#4|) |#4| (-1 (-350 (-1089 |#3|)) (-1089 |#3|)))) (-15 -3738 ((-350 (-1089 |#4|)) (-1089 |#4|) (-1 (-350 (-1089 |#3|)) (-1089 |#3|))))) (-760) (-721) (-13 (-260) (-120)) (-865 |#3| |#2| |#1|)) (T -482)) +((-3738 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-350 (-1089 *7)) (-1089 *7))) (-4 *7 (-13 (-260) (-120))) (-4 *5 (-760)) (-4 *6 (-721)) (-4 *8 (-865 *7 *6 *5)) (-5 *2 (-350 (-1089 *8))) (-5 *1 (-482 *5 *6 *7 *8)) (-5 *3 (-1089 *8)))) (-3738 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-350 (-1089 *7)) (-1089 *7))) (-4 *7 (-13 (-260) (-120))) (-4 *5 (-760)) (-4 *6 (-721)) (-5 *2 (-350 *3)) (-5 *1 (-482 *5 *6 *7 *3)) (-4 *3 (-865 *7 *6 *5))))) +((-3459 ((|#4| |#4|) 74 T ELT)) (-3457 ((|#4| |#4|) 70 T ELT)) (-3460 ((|#4| |#4| (-488) (-488)) 76 T ELT)) (-3458 ((|#4| |#4|) 72 T ELT))) +(((-483 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3457 (|#4| |#4|)) (-15 -3458 (|#4| |#4|)) (-15 -3459 (|#4| |#4|)) (-15 -3460 (|#4| |#4| (-488) (-488)))) (-13 (-314) (-322) (-557 (-488))) (-1159 |#1|) (-665 |#1| |#2|) (-1176 |#3|)) (T -483)) +((-3460 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-488)) (-4 *4 (-13 (-314) (-322) (-557 *3))) (-4 *5 (-1159 *4)) (-4 *6 (-665 *4 *5)) (-5 *1 (-483 *4 *5 *6 *2)) (-4 *2 (-1176 *6)))) (-3459 (*1 *2 *2) (-12 (-4 *3 (-13 (-314) (-322) (-557 (-488)))) (-4 *4 (-1159 *3)) (-4 *5 (-665 *3 *4)) (-5 *1 (-483 *3 *4 *5 *2)) (-4 *2 (-1176 *5)))) (-3458 (*1 *2 *2) (-12 (-4 *3 (-13 (-314) (-322) (-557 (-488)))) (-4 *4 (-1159 *3)) (-4 *5 (-665 *3 *4)) (-5 *1 (-483 *3 *4 *5 *2)) (-4 *2 (-1176 *5)))) (-3457 (*1 *2 *2) (-12 (-4 *3 (-13 (-314) (-322) (-557 (-488)))) (-4 *4 (-1159 *3)) (-4 *5 (-665 *3 *4)) (-5 *1 (-483 *3 *4 *5 *2)) (-4 *2 (-1176 *5))))) +((-3459 ((|#2| |#2|) 27 T ELT)) (-3457 ((|#2| |#2|) 23 T ELT)) (-3460 ((|#2| |#2| (-488) (-488)) 29 T ELT)) (-3458 ((|#2| |#2|) 25 T ELT))) +(((-484 |#1| |#2|) (-10 -7 (-15 -3457 (|#2| |#2|)) (-15 -3458 (|#2| |#2|)) (-15 -3459 (|#2| |#2|)) (-15 -3460 (|#2| |#2| (-488) (-488)))) (-13 (-314) (-322) (-557 (-488))) (-1176 |#1|)) (T -484)) +((-3460 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-488)) (-4 *4 (-13 (-314) (-322) (-557 *3))) (-5 *1 (-484 *4 *2)) (-4 *2 (-1176 *4)))) (-3459 (*1 *2 *2) (-12 (-4 *3 (-13 (-314) (-322) (-557 (-488)))) (-5 *1 (-484 *3 *2)) (-4 *2 (-1176 *3)))) (-3458 (*1 *2 *2) (-12 (-4 *3 (-13 (-314) (-322) (-557 (-488)))) (-5 *1 (-484 *3 *2)) (-4 *2 (-1176 *3)))) (-3457 (*1 *2 *2) (-12 (-4 *3 (-13 (-314) (-322) (-557 (-488)))) (-5 *1 (-484 *3 *2)) (-4 *2 (-1176 *3))))) +((-2043 (((-3 (-488) #1="failed") |#2| |#1| (-1 (-3 (-488) #1#) |#1|)) 18 T ELT) (((-3 (-488) #1#) |#2| |#1| (-488) (-1 (-3 (-488) #1#) |#1|)) 14 T ELT) (((-3 (-488) #1#) |#2| (-488) (-1 (-3 (-488) #1#) |#1|)) 30 T ELT))) +(((-485 |#1| |#2|) (-10 -7 (-15 -2043 ((-3 (-488) #1="failed") |#2| (-488) (-1 (-3 (-488) #1#) |#1|))) (-15 -2043 ((-3 (-488) #1#) |#2| |#1| (-488) (-1 (-3 (-488) #1#) |#1|))) (-15 -2043 ((-3 (-488) #1#) |#2| |#1| (-1 (-3 (-488) #1#) |#1|)))) (-965) (-1159 |#1|)) (T -485)) +((-2043 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-488) #1="failed") *4)) (-4 *4 (-965)) (-5 *2 (-488)) (-5 *1 (-485 *4 *3)) (-4 *3 (-1159 *4)))) (-2043 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-488) #1#) *4)) (-4 *4 (-965)) (-5 *2 (-488)) (-5 *1 (-485 *4 *3)) (-4 *3 (-1159 *4)))) (-2043 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-488) #1#) *5)) (-4 *5 (-965)) (-5 *2 (-488)) (-5 *1 (-485 *5 *3)) (-4 *3 (-1159 *5))))) +((-2052 (($ $ $) 87 T ELT)) (-3977 (((-350 $) $) 50 T ELT)) (-3163 (((-3 (-488) #1="failed") $) 62 T ELT)) (-3162 (((-488) $) 40 T ELT)) (-3030 (((-3 (-352 (-488)) #1#) $) 80 T ELT)) (-3029 (((-85) $) 24 T ELT)) (-3028 (((-352 (-488)) $) 78 T ELT)) (-3729 (((-85) $) 53 T ELT)) (-2045 (($ $ $ $) 94 T ELT)) (-1372 (($ $ $) 60 T ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) 75 T ELT)) (-3451 (((-636 $) $) 70 T ELT)) (-2049 (($ $) 22 T ELT)) (-2044 (($ $ $) 92 T ELT)) (-3452 (($) 63 T CONST)) (-1370 (($ $) 56 T ELT)) (-3738 (((-350 $) $) 48 T ELT)) (-2680 (((-85) $) 15 T ELT)) (-1611 (((-698) $) 30 T ELT)) (-3764 (($ $) 11 T ELT) (($ $ (-698)) NIL T ELT)) (-3406 (($ $) 16 T ELT)) (-3978 (((-488) $) NIL T ELT) (((-477) $) 39 T ELT) (((-804 (-488)) $) 43 T ELT) (((-332) $) 33 T ELT) (((-181) $) 36 T ELT)) (-3132 (((-698)) 9 T CONST)) (-2054 (((-85) $ $) 19 T ELT)) (-3107 (($ $ $) 58 T ELT))) +(((-486 |#1|) (-10 -7 (-15 -2044 (|#1| |#1| |#1|)) (-15 -2045 (|#1| |#1| |#1| |#1|)) (-15 -2049 (|#1| |#1|)) (-15 -3406 (|#1| |#1|)) (-15 -3030 ((-3 (-352 (-488)) #1="failed") |#1|)) (-15 -3028 ((-352 (-488)) |#1|)) (-15 -3029 ((-85) |#1|)) (-15 -2052 (|#1| |#1| |#1|)) (-15 -2054 ((-85) |#1| |#1|)) (-15 -2680 ((-85) |#1|)) (-15 -3452 (|#1|) -3959) (-15 -3451 ((-636 |#1|) |#1|)) (-15 -3978 ((-181) |#1|)) (-15 -3978 ((-332) |#1|)) (-15 -1372 (|#1| |#1| |#1|)) (-15 -1370 (|#1| |#1|)) (-15 -3107 (|#1| |#1| |#1|)) (-15 -2802 ((-802 (-488) |#1|) |#1| (-804 (-488)) (-802 (-488) |#1|))) (-15 -3978 ((-804 (-488)) |#1|)) (-15 -3978 ((-477) |#1|)) (-15 -3163 ((-3 (-488) #1#) |#1|)) (-15 -3162 ((-488) |#1|)) (-15 -3978 ((-488) |#1|)) (-15 -3764 (|#1| |#1| (-698))) (-15 -3764 (|#1| |#1|)) (-15 -1611 ((-698) |#1|)) (-15 -3738 ((-350 |#1|) |#1|)) (-15 -3977 ((-350 |#1|) |#1|)) (-15 -3729 ((-85) |#1|)) (-15 -3132 ((-698)) -3959)) (-487)) (T -486)) +((-3132 (*1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-486 *3)) (-4 *3 (-487))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-2052 (($ $ $) 102 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-2047 (($ $ $ $) 91 T ELT)) (-3781 (($ $) 66 T ELT)) (-3977 (((-350 $) $) 67 T ELT)) (-1612 (((-85) $ $) 145 T ELT)) (-3629 (((-488) $) 134 T ELT)) (-2447 (($ $ $) 105 T ELT)) (-3730 (($) 23 T CONST)) (-3163 (((-3 (-488) "failed") $) 126 T ELT)) (-3162 (((-488) $) 127 T ELT)) (-2570 (($ $ $) 149 T ELT)) (-2284 (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) 124 T ELT) (((-634 (-488)) (-634 $)) 123 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3030 (((-3 (-352 (-488)) "failed") $) 99 T ELT)) (-3029 (((-85) $) 101 T ELT)) (-3028 (((-352 (-488)) $) 100 T ELT)) (-3000 (($) 98 T ELT) (($ $) 97 T ELT)) (-2569 (($ $ $) 148 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 143 T ELT)) (-3729 (((-85) $) 68 T ELT)) (-2045 (($ $ $ $) 89 T ELT)) (-2053 (($ $ $) 103 T ELT)) (-3192 (((-85) $) 136 T ELT)) (-1372 (($ $ $) 114 T ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) 117 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-2679 (((-85) $) 109 T ELT)) (-3451 (((-636 $) $) 111 T ELT)) (-3193 (((-85) $) 135 T ELT)) (-1609 (((-3 (-587 $) #1="failed") (-587 $) $) 152 T ELT)) (-2046 (($ $ $ $) 90 T ELT)) (-2537 (($ $ $) 142 T ELT)) (-2863 (($ $ $) 141 T ELT)) (-2049 (($ $) 93 T ELT)) (-3839 (($ $) 106 T ELT)) (-2285 (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) 122 T ELT) (((-634 (-488)) (-1183 $)) 121 T ELT)) (-1899 (($ $ $) 60 T ELT) (($ (-587 $)) 59 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2044 (($ $ $) 88 T ELT)) (-3452 (($) 110 T CONST)) (-2051 (($ $) 95 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 58 T ELT)) (-3150 (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-1370 (($ $) 115 T ELT)) (-3738 (((-350 $) $) 65 T ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 151 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 150 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 144 T ELT)) (-2680 (((-85) $) 108 T ELT)) (-1611 (((-698) $) 146 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 147 T ELT)) (-3764 (($ $) 132 T ELT) (($ $ (-698)) 130 T ELT)) (-2050 (($ $) 94 T ELT)) (-3406 (($ $) 96 T ELT)) (-3978 (((-488) $) 128 T ELT) (((-477) $) 119 T ELT) (((-804 (-488)) $) 118 T ELT) (((-332) $) 113 T ELT) (((-181) $) 112 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT) (($ (-488)) 125 T ELT)) (-3132 (((-698)) 40 T CONST)) (-2054 (((-85) $ $) 104 T ELT)) (-3107 (($ $ $) 116 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2700 (($) 107 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2048 (($ $ $ $) 92 T ELT)) (-3389 (($ $) 133 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $) 131 T ELT) (($ $ (-698)) 129 T ELT)) (-2572 (((-85) $ $) 140 T ELT)) (-2573 (((-85) $ $) 138 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 139 T ELT)) (-2691 (((-85) $ $) 137 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-488) $) 120 T ELT))) +(((-487) (-113)) (T -487)) +((-2679 (*1 *2 *1) (-12 (-4 *1 (-487)) (-5 *2 (-85)))) (-2680 (*1 *2 *1) (-12 (-4 *1 (-487)) (-5 *2 (-85)))) (-2700 (*1 *1) (-4 *1 (-487))) (-3839 (*1 *1 *1) (-4 *1 (-487))) (-2447 (*1 *1 *1 *1) (-4 *1 (-487))) (-2054 (*1 *2 *1 *1) (-12 (-4 *1 (-487)) (-5 *2 (-85)))) (-2053 (*1 *1 *1 *1) (-4 *1 (-487))) (-2052 (*1 *1 *1 *1) (-4 *1 (-487))) (-3029 (*1 *2 *1) (-12 (-4 *1 (-487)) (-5 *2 (-85)))) (-3028 (*1 *2 *1) (-12 (-4 *1 (-487)) (-5 *2 (-352 (-488))))) (-3030 (*1 *2 *1) (|partial| -12 (-4 *1 (-487)) (-5 *2 (-352 (-488))))) (-3000 (*1 *1) (-4 *1 (-487))) (-3000 (*1 *1 *1) (-4 *1 (-487))) (-3406 (*1 *1 *1) (-4 *1 (-487))) (-2051 (*1 *1 *1) (-4 *1 (-487))) (-2050 (*1 *1 *1) (-4 *1 (-487))) (-2049 (*1 *1 *1) (-4 *1 (-487))) (-2048 (*1 *1 *1 *1 *1) (-4 *1 (-487))) (-2047 (*1 *1 *1 *1 *1) (-4 *1 (-487))) (-2046 (*1 *1 *1 *1 *1) (-4 *1 (-487))) (-2045 (*1 *1 *1 *1 *1) (-4 *1 (-487))) (-2044 (*1 *1 *1 *1) (-4 *1 (-487)))) +(-13 (-1138) (-260) (-744) (-192) (-557 (-488)) (-954 (-488)) (-584 (-488)) (-557 (-477)) (-557 (-804 (-488))) (-800 (-488)) (-116) (-937) (-120) (-1070) (-10 -8 (-15 -2679 ((-85) $)) (-15 -2680 ((-85) $)) (-6 -4000) (-15 -2700 ($)) (-15 -3839 ($ $)) (-15 -2447 ($ $ $)) (-15 -2054 ((-85) $ $)) (-15 -2053 ($ $ $)) (-15 -2052 ($ $ $)) (-15 -3029 ((-85) $)) (-15 -3028 ((-352 (-488)) $)) (-15 -3030 ((-3 (-352 (-488)) "failed") $)) (-15 -3000 ($)) (-15 -3000 ($ $)) (-15 -3406 ($ $)) (-15 -2051 ($ $)) (-15 -2050 ($ $)) (-15 -2049 ($ $)) (-15 -2048 ($ $ $ $)) (-15 -2047 ($ $ $ $)) (-15 -2046 ($ $ $ $)) (-15 -2045 ($ $ $ $)) (-15 -2044 ($ $ $)) (-6 -3999))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-559 (-488)) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-116) . T) ((-148) . T) ((-557 (-181)) . T) ((-557 (-332)) . T) ((-557 (-477)) . T) ((-557 (-488)) . T) ((-557 (-804 (-488))) . T) ((-188 $) . T) ((-192) . T) ((-191) . T) ((-248) . T) ((-260) . T) ((-395) . T) ((-499) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 (-488)) . T) ((-594 $) . T) ((-586 $) . T) ((-584 (-488)) . T) ((-658 $) . T) ((-667) . T) ((-718) . T) ((-720) . T) ((-722) . T) ((-725) . T) ((-744) . T) ((-759) . T) ((-760) . T) ((-763) . T) ((-800 (-488)) . T) ((-836) . T) ((-937) . T) ((-954 (-488)) . T) ((-967 $) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1070) . T) ((-1133) . T) ((-1138) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 8 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 77 T ELT)) (-2068 (($ $) 78 T ELT)) (-2066 (((-85) $) NIL T ELT)) (-2052 (($ $ $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2047 (($ $ $ $) 31 T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3629 (((-488) $) NIL T ELT)) (-2447 (($ $ $) 71 T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL T ELT)) (-3162 (((-488) $) NIL T ELT)) (-2570 (($ $ $) 45 T ELT)) (-2284 (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) 53 T ELT) (((-634 (-488)) (-634 $)) 49 T ELT)) (-3473 (((-3 $ #1#) $) 74 T ELT)) (-3030 (((-3 (-352 (-488)) #1#) $) NIL T ELT)) (-3029 (((-85) $) NIL T ELT)) (-3028 (((-352 (-488)) $) NIL T ELT)) (-3000 (($) 55 T ELT) (($ $) 56 T ELT)) (-2569 (($ $ $) 70 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-2045 (($ $ $ $) NIL T ELT)) (-2053 (($ $ $) 46 T ELT)) (-3192 (((-85) $) 22 T ELT)) (-1372 (($ $ $) NIL T ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL T ELT)) (-1218 (((-85) $ $) 110 T ELT)) (-2415 (((-85) $) 9 T ELT)) (-2679 (((-85) $) 64 T ELT)) (-3451 (((-636 $) $) NIL T ELT)) (-3193 (((-85) $) 21 T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2046 (($ $ $ $) 32 T ELT)) (-2537 (($ $ $) 67 T ELT)) (-2863 (($ $ $) 66 T ELT)) (-2049 (($ $) NIL T ELT)) (-3839 (($ $) 29 T ELT)) (-2285 (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL T ELT) (((-634 (-488)) (-1183 $)) NIL T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) 44 T ELT)) (-2044 (($ $ $) NIL T ELT)) (-3452 (($) NIL T CONST)) (-2051 (($ $) 15 T ELT)) (-3249 (((-1037) $) 19 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 109 T ELT)) (-3150 (($ $ $) 75 T ELT) (($ (-587 $)) NIL T ELT)) (-1370 (($ $) NIL T ELT)) (-3738 (((-350 $) $) 95 T ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) 93 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-2680 (((-85) $) 65 T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 69 T ELT)) (-3764 (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-2050 (($ $) 17 T ELT)) (-3406 (($ $) 13 T ELT)) (-3978 (((-488) $) 28 T ELT) (((-477) $) 41 T ELT) (((-804 (-488)) $) NIL T ELT) (((-332) $) 35 T ELT) (((-181) $) 38 T ELT)) (-3953 (((-776) $) 26 T ELT) (($ (-488)) 27 T ELT) (($ $) NIL T ELT) (($ (-488)) 27 T ELT)) (-3132 (((-698)) NIL T CONST)) (-2054 (((-85) $ $) NIL T ELT)) (-3107 (($ $ $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2700 (($) 12 T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) 112 T ELT)) (-2048 (($ $ $ $) 30 T ELT)) (-3389 (($ $) 54 T ELT)) (-2666 (($) 10 T CONST)) (-2672 (($) 11 T CONST)) (-2675 (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-2572 (((-85) $ $) 59 T ELT)) (-2573 (((-85) $ $) 57 T ELT)) (-3062 (((-85) $ $) 7 T ELT)) (-2690 (((-85) $ $) 58 T ELT)) (-2691 (((-85) $ $) 20 T ELT)) (-3843 (($ $) 42 T ELT) (($ $ $) 16 T ELT)) (-3845 (($ $ $) 14 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 63 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-488) $) 61 T ELT))) +(((-488) (-13 (-487) (-10 -7 (-6 -3988) (-6 -3993) (-6 -3989)))) (T -488)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3000 (($) NIL T ELT)) (-2537 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2863 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2015 (((-834) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2405 (($ (-834)) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) NIL T ELT))) +(((-489) (-13 (-756) (-10 -8 (-15 -3730 ($) -3959)))) (T -489)) +((-3730 (*1 *1) (-5 *1 (-489)))) +((-488) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3000 (($) NIL T ELT)) (-2537 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2863 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2015 (((-834) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2405 (($ (-834)) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) NIL T ELT))) +(((-490) (-13 (-756) (-10 -8 (-15 -3730 ($) -3959)))) (T -490)) +((-3730 (*1 *1) (-5 *1 (-490)))) +((-488) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3000 (($) NIL T ELT)) (-2537 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2863 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2015 (((-834) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2405 (($ (-834)) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) NIL T ELT))) +(((-491) (-13 (-756) (-10 -8 (-15 -3730 ($) -3959)))) (T -491)) +((-3730 (*1 *1) (-5 *1 (-491)))) +((-488) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3000 (($) NIL T ELT)) (-2537 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2863 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2015 (((-834) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2405 (($ (-834)) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) NIL T ELT))) +(((-492) (-13 (-756) (-10 -8 (-15 -3730 ($) -3959)))) (T -492)) +((-3730 (*1 *1) (-5 *1 (-492)))) +((-488) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) +((-2574 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3605 (($) NIL T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2203 (((-1189) $ |#1| |#1|) NIL (|has| $ (-1039 |#2|)) ELT)) (-3794 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-1574 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3716 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-2236 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-1357 (($ $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3411 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3412 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3848 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1580 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-3118 ((|#2| $ |#1|) NIL T ELT)) (-2205 ((|#1| $) NIL (|has| |#1| (-760)) ELT)) (-2614 (((-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3251 (((-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2206 ((|#1| $) NIL (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3849 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017))) ELT)) (-2237 (((-587 |#1|) $) NIL T ELT)) (-2238 (((-85) |#1| $) NIL T ELT)) (-1278 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3615 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2208 (((-587 |#1|) $) NIL T ELT)) (-2209 (((-85) |#1| $) NIL T ELT)) (-3249 (((-1037) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017))) ELT)) (-3807 ((|#2| $) NIL (|has| |#1| (-760)) ELT)) (-1734 (((-3 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2204 (($ $ |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-1279 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1736 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-251 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 (-251 |#2|))) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#2| $) NIL (-12 (|has| $ (-320 |#2|)) (|has| |#2| (-72))) ELT)) (-2210 (((-587 |#2|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1470 (($) NIL T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1735 (((-698) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-698) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-557 (-477))) ELT)) (-3536 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3953 (((-776) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-556 (-776))) (|has| |#2| (-556 (-776)))) ELT)) (-1269 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1280 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1737 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3062 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-493 |#1| |#2| |#3|) (-1111 |#1| |#2|) (-1017) (-1017) (-1111 |#1| |#2|)) (T -493)) +NIL +((-2055 (((-523 |#2|) |#2| (-554 |#2|) (-554 |#2|) (-1 (-1089 |#2|) (-1089 |#2|))) 50 T ELT))) +(((-494 |#1| |#2|) (-10 -7 (-15 -2055 ((-523 |#2|) |#2| (-554 |#2|) (-554 |#2|) (-1 (-1089 |#2|) (-1089 |#2|))))) (-499) (-13 (-27) (-366 |#1|))) (T -494)) +((-2055 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-554 *3)) (-5 *5 (-1 (-1089 *3) (-1089 *3))) (-4 *3 (-13 (-27) (-366 *6))) (-4 *6 (-499)) (-5 *2 (-523 *3)) (-5 *1 (-494 *6 *3))))) +((-2057 (((-523 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2058 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2056 (((-523 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) +(((-495 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2056 ((-523 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2057 ((-523 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2058 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-499) (-954 (-488))) (-13 (-27) (-366 |#1|)) (-1159 |#2|) (-1159 (-352 |#3|)) (-293 |#2| |#3| |#4|)) (T -495)) +((-2058 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1159 *5)) (-4 *5 (-13 (-27) (-366 *4))) (-4 *4 (-13 (-499) (-954 (-488)))) (-4 *7 (-1159 (-352 *6))) (-5 *1 (-495 *4 *5 *6 *7 *2)) (-4 *2 (-293 *5 *6 *7)))) (-2057 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1159 *6)) (-4 *6 (-13 (-27) (-366 *5))) (-4 *5 (-13 (-499) (-954 (-488)))) (-4 *8 (-1159 (-352 *7))) (-5 *2 (-523 *3)) (-5 *1 (-495 *5 *6 *7 *8 *3)) (-4 *3 (-293 *6 *7 *8)))) (-2056 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1159 *6)) (-4 *6 (-13 (-27) (-366 *5))) (-4 *5 (-13 (-499) (-954 (-488)))) (-4 *8 (-1159 (-352 *7))) (-5 *2 (-523 *3)) (-5 *1 (-495 *5 *6 *7 *8 *3)) (-4 *3 (-293 *6 *7 *8))))) +((-2061 (((-85) (-488) (-488)) 12 T ELT)) (-2059 (((-488) (-488)) 7 T ELT)) (-2060 (((-488) (-488) (-488)) 10 T ELT))) +(((-496) (-10 -7 (-15 -2059 ((-488) (-488))) (-15 -2060 ((-488) (-488) (-488))) (-15 -2061 ((-85) (-488) (-488))))) (T -496)) +((-2061 (*1 *2 *3 *3) (-12 (-5 *3 (-488)) (-5 *2 (-85)) (-5 *1 (-496)))) (-2060 (*1 *2 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-496)))) (-2059 (*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-496))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2610 ((|#1| $) 77 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-3498 (($ $) 107 T ELT)) (-3645 (($ $) 90 T ELT)) (-2489 ((|#1| $) 78 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3043 (($ $) 89 T ELT)) (-3496 (($ $) 106 T ELT)) (-3644 (($ $) 91 T ELT)) (-3500 (($ $) 105 T ELT)) (-3643 (($ $) 92 T ELT)) (-3730 (($) 23 T CONST)) (-3163 (((-3 (-488) "failed") $) 85 T ELT)) (-3162 (((-488) $) 86 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-2064 (($ |#1| |#1|) 82 T ELT)) (-3192 (((-85) $) 76 T ELT)) (-3633 (($) 117 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3017 (($ $ (-488)) 88 T ELT)) (-3193 (((-85) $) 75 T ELT)) (-2537 (($ $ $) 118 T ELT)) (-2863 (($ $ $) 119 T ELT)) (-3949 (($ $) 114 T ELT)) (-1899 (($ $ $) 60 T ELT) (($ (-587 $)) 59 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2065 (($ |#1| |#1|) 83 T ELT) (($ |#1|) 81 T ELT) (($ (-352 (-488))) 80 T ELT)) (-2063 ((|#1| $) 79 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 58 T ELT)) (-3150 (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-3950 (($ $) 115 T ELT)) (-3501 (($ $) 104 T ELT)) (-3642 (($ $) 93 T ELT)) (-3499 (($ $) 103 T ELT)) (-3641 (($ $) 94 T ELT)) (-3497 (($ $) 102 T ELT)) (-3640 (($ $) 95 T ELT)) (-2062 (((-85) $ |#1|) 74 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT) (($ (-488)) 84 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3504 (($ $) 113 T ELT)) (-3492 (($ $) 101 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-3502 (($ $) 112 T ELT)) (-3490 (($ $) 100 T ELT)) (-3506 (($ $) 111 T ELT)) (-3494 (($ $) 99 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-3507 (($ $) 110 T ELT)) (-3495 (($ $) 98 T ELT)) (-3505 (($ $) 109 T ELT)) (-3493 (($ $) 97 T ELT)) (-3503 (($ $) 108 T ELT)) (-3491 (($ $) 96 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2572 (((-85) $ $) 120 T ELT)) (-2573 (((-85) $ $) 122 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 121 T ELT)) (-2691 (((-85) $ $) 123 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ $) 116 T ELT) (($ $ (-352 (-488))) 87 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-497 |#1|) (-113) (-13 (-349) (-1119))) (T -497)) +((-2065 (*1 *1 *2 *2) (-12 (-4 *1 (-497 *2)) (-4 *2 (-13 (-349) (-1119))))) (-2064 (*1 *1 *2 *2) (-12 (-4 *1 (-497 *2)) (-4 *2 (-13 (-349) (-1119))))) (-2065 (*1 *1 *2) (-12 (-4 *1 (-497 *2)) (-4 *2 (-13 (-349) (-1119))))) (-2065 (*1 *1 *2) (-12 (-5 *2 (-352 (-488))) (-4 *1 (-497 *3)) (-4 *3 (-13 (-349) (-1119))))) (-2063 (*1 *2 *1) (-12 (-4 *1 (-497 *2)) (-4 *2 (-13 (-349) (-1119))))) (-2489 (*1 *2 *1) (-12 (-4 *1 (-497 *2)) (-4 *2 (-13 (-349) (-1119))))) (-2610 (*1 *2 *1) (-12 (-4 *1 (-497 *2)) (-4 *2 (-13 (-349) (-1119))))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-497 *3)) (-4 *3 (-13 (-349) (-1119))) (-5 *2 (-85)))) (-3193 (*1 *2 *1) (-12 (-4 *1 (-497 *3)) (-4 *3 (-13 (-349) (-1119))) (-5 *2 (-85)))) (-2062 (*1 *2 *1 *3) (-12 (-4 *1 (-497 *3)) (-4 *3 (-13 (-349) (-1119))) (-5 *2 (-85))))) +(-13 (-395) (-760) (-1119) (-919) (-954 (-488)) (-10 -8 (-6 -3776) (-15 -2065 ($ |t#1| |t#1|)) (-15 -2064 ($ |t#1| |t#1|)) (-15 -2065 ($ |t#1|)) (-15 -2065 ($ (-352 (-488)))) (-15 -2063 (|t#1| $)) (-15 -2489 (|t#1| $)) (-15 -2610 (|t#1| $)) (-15 -3192 ((-85) $)) (-15 -3193 ((-85) $)) (-15 -2062 ((-85) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-559 (-488)) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-241) . T) ((-248) . T) ((-395) . T) ((-436) . T) ((-499) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 $) . T) ((-586 $) . T) ((-658 $) . T) ((-667) . T) ((-760) . T) ((-763) . T) ((-919) . T) ((-954 (-488)) . T) ((-967 $) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1119) . T) ((-1122) . T) ((-1133) . T)) +((-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 9 T ELT)) (-2068 (($ $) 11 T ELT)) (-2066 (((-85) $) 20 T ELT)) (-3473 (((-3 $ "failed") $) 16 T ELT)) (-2067 (((-85) $ $) 22 T ELT))) +(((-498 |#1|) (-10 -7 (-15 -2066 ((-85) |#1|)) (-15 -2067 ((-85) |#1| |#1|)) (-15 -2068 (|#1| |#1|)) (-15 -2069 ((-2 (|:| -1780 |#1|) (|:| -3988 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3473 ((-3 |#1| "failed") |#1|))) (-499)) (T -498)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-499) (-113)) (T -499)) +((-3472 (*1 *1 *1 *1) (|partial| -4 *1 (-499))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1780 *1) (|:| -3988 *1) (|:| |associate| *1))) (-4 *1 (-499)))) (-2068 (*1 *1 *1) (-4 *1 (-499))) (-2067 (*1 *2 *1 *1) (-12 (-4 *1 (-499)) (-5 *2 (-85)))) (-2066 (*1 *2 *1) (-12 (-4 *1 (-499)) (-5 *2 (-85))))) +(-13 (-148) (-38 $) (-248) (-10 -8 (-15 -3472 ((-3 $ "failed") $ $)) (-15 -2069 ((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $)) (-15 -2068 ($ $)) (-15 -2067 ((-85) $ $)) (-15 -2066 ((-85) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-559 (-488)) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-248) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 $) . T) ((-586 $) . T) ((-658 $) . T) ((-667) . T) ((-967 $) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-2071 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1094) (-587 |#2|)) 38 T ELT)) (-2073 (((-523 |#2|) |#2| (-1094)) 63 T ELT)) (-2072 (((-3 |#2| #1#) |#2| (-1094)) 156 T ELT)) (-2074 (((-3 (-2 (|:| -2141 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1094) (-554 |#2|) (-587 (-554 |#2|))) 159 T ELT)) (-2070 (((-3 (-2 (|:| -2141 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1094) |#2|) 41 T ELT))) +(((-500 |#1| |#2|) (-10 -7 (-15 -2070 ((-3 (-2 (|:| -2141 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1094) |#2|)) (-15 -2071 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1094) (-587 |#2|))) (-15 -2072 ((-3 |#2| #1#) |#2| (-1094))) (-15 -2073 ((-523 |#2|) |#2| (-1094))) (-15 -2074 ((-3 (-2 (|:| -2141 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1094) (-554 |#2|) (-587 (-554 |#2|))))) (-13 (-395) (-120) (-954 (-488)) (-584 (-488))) (-13 (-27) (-1119) (-366 |#1|))) (T -500)) +((-2074 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1094)) (-5 *6 (-587 (-554 *3))) (-5 *5 (-554 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *7))) (-4 *7 (-13 (-395) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 (-2 (|:| -2141 *3) (|:| |coeff| *3))) (-5 *1 (-500 *7 *3)))) (-2073 (*1 *2 *3 *4) (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-395) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 (-523 *3)) (-5 *1 (-500 *5 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))))) (-2072 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1094)) (-4 *4 (-13 (-395) (-120) (-954 (-488)) (-584 (-488)))) (-5 *1 (-500 *4 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *4))))) (-2071 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1094)) (-5 *5 (-587 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *6))) (-4 *6 (-13 (-395) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-500 *6 *3)))) (-2070 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1094)) (-4 *5 (-13 (-395) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 (-2 (|:| -2141 *3) (|:| |coeff| *3))) (-5 *1 (-500 *5 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5)))))) +((-3977 (((-350 |#1|) |#1|) 17 T ELT)) (-3738 (((-350 |#1|) |#1|) 32 T ELT)) (-2076 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2075 (((-350 |#1|) |#1|) 59 T ELT))) +(((-501 |#1|) (-10 -7 (-15 -3738 ((-350 |#1|) |#1|)) (-15 -3977 ((-350 |#1|) |#1|)) (-15 -2075 ((-350 |#1|) |#1|)) (-15 -2076 ((-3 |#1| "failed") |#1|))) (-487)) (T -501)) +((-2076 (*1 *2 *2) (|partial| -12 (-5 *1 (-501 *2)) (-4 *2 (-487)))) (-2075 (*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-501 *3)) (-4 *3 (-487)))) (-3977 (*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-501 *3)) (-4 *3 (-487)))) (-3738 (*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-501 *3)) (-4 *3 (-487))))) +((-3089 (((-1089 (-352 (-1089 |#2|))) |#2| (-554 |#2|) (-554 |#2|) (-1089 |#2|)) 35 T ELT)) (-2079 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-554 |#2|) (-554 |#2|) (-587 |#2|) (-554 |#2|) |#2| (-352 (-1089 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-554 |#2|) (-554 |#2|) (-587 |#2|) |#2| (-1089 |#2|)) 115 T ELT)) (-2077 (((-523 |#2|) |#2| (-554 |#2|) (-554 |#2|) (-554 |#2|) |#2| (-352 (-1089 |#2|))) 85 T ELT) (((-523 |#2|) |#2| (-554 |#2|) (-554 |#2|) |#2| (-1089 |#2|)) 55 T ELT)) (-2078 (((-3 (-2 (|:| -2141 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-554 |#2|) (-554 |#2|) |#2| (-554 |#2|) |#2| (-352 (-1089 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2141 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-554 |#2|) (-554 |#2|) |#2| |#2| (-1089 |#2|)) 114 T ELT)) (-2080 (((-3 |#2| #1#) |#2| |#2| (-554 |#2|) (-554 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1094)) (-554 |#2|) |#2| (-352 (-1089 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-554 |#2|) (-554 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1094)) |#2| (-1089 |#2|)) 116 T ELT)) (-2081 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2017 (-587 |#2|))) |#3| |#2| (-554 |#2|) (-554 |#2|) (-554 |#2|) |#2| (-352 (-1089 |#2|))) 133 (|has| |#3| (-604 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2017 (-587 |#2|))) |#3| |#2| (-554 |#2|) (-554 |#2|) |#2| (-1089 |#2|)) 132 (|has| |#3| (-604 |#2|)) ELT)) (-3090 ((|#2| (-1089 (-352 (-1089 |#2|))) (-554 |#2|) |#2|) 53 T ELT)) (-3085 (((-1089 (-352 (-1089 |#2|))) (-1089 |#2|) (-554 |#2|)) 34 T ELT))) +(((-502 |#1| |#2| |#3|) (-10 -7 (-15 -2077 ((-523 |#2|) |#2| (-554 |#2|) (-554 |#2|) |#2| (-1089 |#2|))) (-15 -2077 ((-523 |#2|) |#2| (-554 |#2|) (-554 |#2|) (-554 |#2|) |#2| (-352 (-1089 |#2|)))) (-15 -2078 ((-3 (-2 (|:| -2141 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-554 |#2|) (-554 |#2|) |#2| |#2| (-1089 |#2|))) (-15 -2078 ((-3 (-2 (|:| -2141 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-554 |#2|) (-554 |#2|) |#2| (-554 |#2|) |#2| (-352 (-1089 |#2|)))) (-15 -2079 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-554 |#2|) (-554 |#2|) (-587 |#2|) |#2| (-1089 |#2|))) (-15 -2079 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-554 |#2|) (-554 |#2|) (-587 |#2|) (-554 |#2|) |#2| (-352 (-1089 |#2|)))) (-15 -2080 ((-3 |#2| #1#) |#2| |#2| (-554 |#2|) (-554 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1094)) |#2| (-1089 |#2|))) (-15 -2080 ((-3 |#2| #1#) |#2| |#2| (-554 |#2|) (-554 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1094)) (-554 |#2|) |#2| (-352 (-1089 |#2|)))) (-15 -3089 ((-1089 (-352 (-1089 |#2|))) |#2| (-554 |#2|) (-554 |#2|) (-1089 |#2|))) (-15 -3090 (|#2| (-1089 (-352 (-1089 |#2|))) (-554 |#2|) |#2|)) (-15 -3085 ((-1089 (-352 (-1089 |#2|))) (-1089 |#2|) (-554 |#2|))) (IF (|has| |#3| (-604 |#2|)) (PROGN (-15 -2081 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2017 (-587 |#2|))) |#3| |#2| (-554 |#2|) (-554 |#2|) |#2| (-1089 |#2|))) (-15 -2081 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2017 (-587 |#2|))) |#3| |#2| (-554 |#2|) (-554 |#2|) (-554 |#2|) |#2| (-352 (-1089 |#2|))))) |%noBranch|)) (-13 (-395) (-954 (-488)) (-120) (-584 (-488))) (-13 (-366 |#1|) (-27) (-1119)) (-1017)) (T -502)) +((-2081 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-554 *4)) (-5 *6 (-352 (-1089 *4))) (-4 *4 (-13 (-366 *7) (-27) (-1119))) (-4 *7 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2017 (-587 *4)))) (-5 *1 (-502 *7 *4 *3)) (-4 *3 (-604 *4)) (-4 *3 (-1017)))) (-2081 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-554 *4)) (-5 *6 (-1089 *4)) (-4 *4 (-13 (-366 *7) (-27) (-1119))) (-4 *7 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2017 (-587 *4)))) (-5 *1 (-502 *7 *4 *3)) (-4 *3 (-604 *4)) (-4 *3 (-1017)))) (-3085 (*1 *2 *3 *4) (-12 (-5 *4 (-554 *6)) (-4 *6 (-13 (-366 *5) (-27) (-1119))) (-4 *5 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-1089 (-352 (-1089 *6)))) (-5 *1 (-502 *5 *6 *7)) (-5 *3 (-1089 *6)) (-4 *7 (-1017)))) (-3090 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1089 (-352 (-1089 *2)))) (-5 *4 (-554 *2)) (-4 *2 (-13 (-366 *5) (-27) (-1119))) (-4 *5 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *1 (-502 *5 *2 *6)) (-4 *6 (-1017)))) (-3089 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-554 *3)) (-4 *3 (-13 (-366 *6) (-27) (-1119))) (-4 *6 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-1089 (-352 (-1089 *3)))) (-5 *1 (-502 *6 *3 *7)) (-5 *5 (-1089 *3)) (-4 *7 (-1017)))) (-2080 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-554 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1094))) (-5 *5 (-352 (-1089 *2))) (-4 *2 (-13 (-366 *6) (-27) (-1119))) (-4 *6 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *1 (-502 *6 *2 *7)) (-4 *7 (-1017)))) (-2080 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-554 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1094))) (-5 *5 (-1089 *2)) (-4 *2 (-13 (-366 *6) (-27) (-1119))) (-4 *6 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *1 (-502 *6 *2 *7)) (-4 *7 (-1017)))) (-2079 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-554 *3)) (-5 *5 (-587 *3)) (-5 *6 (-352 (-1089 *3))) (-4 *3 (-13 (-366 *7) (-27) (-1119))) (-4 *7 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-502 *7 *3 *8)) (-4 *8 (-1017)))) (-2079 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-554 *3)) (-5 *5 (-587 *3)) (-5 *6 (-1089 *3)) (-4 *3 (-13 (-366 *7) (-27) (-1119))) (-4 *7 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-502 *7 *3 *8)) (-4 *8 (-1017)))) (-2078 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-554 *3)) (-5 *5 (-352 (-1089 *3))) (-4 *3 (-13 (-366 *6) (-27) (-1119))) (-4 *6 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-2 (|:| -2141 *3) (|:| |coeff| *3))) (-5 *1 (-502 *6 *3 *7)) (-4 *7 (-1017)))) (-2078 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-554 *3)) (-5 *5 (-1089 *3)) (-4 *3 (-13 (-366 *6) (-27) (-1119))) (-4 *6 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-2 (|:| -2141 *3) (|:| |coeff| *3))) (-5 *1 (-502 *6 *3 *7)) (-4 *7 (-1017)))) (-2077 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-554 *3)) (-5 *5 (-352 (-1089 *3))) (-4 *3 (-13 (-366 *6) (-27) (-1119))) (-4 *6 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-523 *3)) (-5 *1 (-502 *6 *3 *7)) (-4 *7 (-1017)))) (-2077 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-554 *3)) (-5 *5 (-1089 *3)) (-4 *3 (-13 (-366 *6) (-27) (-1119))) (-4 *6 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-523 *3)) (-5 *1 (-502 *6 *3 *7)) (-4 *7 (-1017))))) +((-2091 (((-488) (-488) (-698)) 87 T ELT)) (-2090 (((-488) (-488)) 85 T ELT)) (-2089 (((-488) (-488)) 82 T ELT)) (-2088 (((-488) (-488)) 89 T ELT)) (-2811 (((-488) (-488) (-488)) 67 T ELT)) (-2087 (((-488) (-488) (-488)) 64 T ELT)) (-2086 (((-352 (-488)) (-488)) 29 T ELT)) (-2085 (((-488) (-488)) 34 T ELT)) (-2084 (((-488) (-488)) 76 T ELT)) (-2808 (((-488) (-488)) 47 T ELT)) (-2083 (((-587 (-488)) (-488)) 81 T ELT)) (-2082 (((-488) (-488) (-488) (-488) (-488)) 60 T ELT)) (-2804 (((-352 (-488)) (-488)) 56 T ELT))) +(((-503) (-10 -7 (-15 -2804 ((-352 (-488)) (-488))) (-15 -2082 ((-488) (-488) (-488) (-488) (-488))) (-15 -2083 ((-587 (-488)) (-488))) (-15 -2808 ((-488) (-488))) (-15 -2084 ((-488) (-488))) (-15 -2085 ((-488) (-488))) (-15 -2086 ((-352 (-488)) (-488))) (-15 -2087 ((-488) (-488) (-488))) (-15 -2811 ((-488) (-488) (-488))) (-15 -2088 ((-488) (-488))) (-15 -2089 ((-488) (-488))) (-15 -2090 ((-488) (-488))) (-15 -2091 ((-488) (-488) (-698))))) (T -503)) +((-2091 (*1 *2 *2 *3) (-12 (-5 *2 (-488)) (-5 *3 (-698)) (-5 *1 (-503)))) (-2090 (*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-503)))) (-2089 (*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-503)))) (-2088 (*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-503)))) (-2811 (*1 *2 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-503)))) (-2087 (*1 *2 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-503)))) (-2086 (*1 *2 *3) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-503)) (-5 *3 (-488)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-503)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-503)))) (-2808 (*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-503)))) (-2083 (*1 *2 *3) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-503)) (-5 *3 (-488)))) (-2082 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-503)))) (-2804 (*1 *2 *3) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-503)) (-5 *3 (-488))))) +((-2092 (((-2 (|:| |answer| |#4|) (|:| -2140 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) +(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2092 ((-2 (|:| |answer| |#4|) (|:| -2140 |#4|)) |#4| (-1 |#2| |#2|)))) (-314) (-1159 |#1|) (-1159 (-352 |#2|)) (-293 |#1| |#2| |#3|)) (T -504)) +((-2092 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1159 *5)) (-4 *5 (-314)) (-4 *7 (-1159 (-352 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2140 *3))) (-5 *1 (-504 *5 *6 *7 *3)) (-4 *3 (-293 *5 *6 *7))))) +((-2092 (((-2 (|:| |answer| (-352 |#2|)) (|:| -2140 (-352 |#2|)) (|:| |specpart| (-352 |#2|)) (|:| |polypart| |#2|)) (-352 |#2|) (-1 |#2| |#2|)) 18 T ELT))) +(((-505 |#1| |#2|) (-10 -7 (-15 -2092 ((-2 (|:| |answer| (-352 |#2|)) (|:| -2140 (-352 |#2|)) (|:| |specpart| (-352 |#2|)) (|:| |polypart| |#2|)) (-352 |#2|) (-1 |#2| |#2|)))) (-314) (-1159 |#1|)) (T -505)) +((-2092 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1159 *5)) (-4 *5 (-314)) (-5 *2 (-2 (|:| |answer| (-352 *6)) (|:| -2140 (-352 *6)) (|:| |specpart| (-352 *6)) (|:| |polypart| *6))) (-5 *1 (-505 *5 *6)) (-5 *3 (-352 *6))))) +((-2095 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-554 |#2|) (-554 |#2|) (-587 |#2|)) 195 T ELT)) (-2093 (((-523 |#2|) |#2| (-554 |#2|) (-554 |#2|)) 97 T ELT)) (-2094 (((-3 (-2 (|:| -2141 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-554 |#2|) (-554 |#2|) |#2|) 191 T ELT)) (-2096 (((-3 |#2| #1#) |#2| |#2| |#2| (-554 |#2|) (-554 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1094))) 200 T ELT)) (-2097 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2017 (-587 |#2|))) |#3| |#2| (-554 |#2|) (-554 |#2|) (-1094)) 209 (|has| |#3| (-604 |#2|)) ELT))) +(((-506 |#1| |#2| |#3|) (-10 -7 (-15 -2093 ((-523 |#2|) |#2| (-554 |#2|) (-554 |#2|))) (-15 -2094 ((-3 (-2 (|:| -2141 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-554 |#2|) (-554 |#2|) |#2|)) (-15 -2095 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-554 |#2|) (-554 |#2|) (-587 |#2|))) (-15 -2096 ((-3 |#2| #1#) |#2| |#2| |#2| (-554 |#2|) (-554 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1094)))) (IF (|has| |#3| (-604 |#2|)) (-15 -2097 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2017 (-587 |#2|))) |#3| |#2| (-554 |#2|) (-554 |#2|) (-1094))) |%noBranch|)) (-13 (-395) (-954 (-488)) (-120) (-584 (-488))) (-13 (-366 |#1|) (-27) (-1119)) (-1017)) (T -506)) +((-2097 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-554 *4)) (-5 *6 (-1094)) (-4 *4 (-13 (-366 *7) (-27) (-1119))) (-4 *7 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2017 (-587 *4)))) (-5 *1 (-506 *7 *4 *3)) (-4 *3 (-604 *4)) (-4 *3 (-1017)))) (-2096 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-554 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1094))) (-4 *2 (-13 (-366 *5) (-27) (-1119))) (-4 *5 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *1 (-506 *5 *2 *6)) (-4 *6 (-1017)))) (-2095 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-554 *3)) (-5 *5 (-587 *3)) (-4 *3 (-13 (-366 *6) (-27) (-1119))) (-4 *6 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-506 *6 *3 *7)) (-4 *7 (-1017)))) (-2094 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-554 *3)) (-4 *3 (-13 (-366 *5) (-27) (-1119))) (-4 *5 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-2 (|:| -2141 *3) (|:| |coeff| *3))) (-5 *1 (-506 *5 *3 *6)) (-4 *6 (-1017)))) (-2093 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-554 *3)) (-4 *3 (-13 (-366 *5) (-27) (-1119))) (-4 *5 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-523 *3)) (-5 *1 (-506 *5 *3 *6)) (-4 *6 (-1017))))) +((-2098 (((-2 (|:| -2343 |#2|) (|:| |nconst| |#2|)) |#2| (-1094)) 64 T ELT)) (-2100 (((-3 |#2| #1="failed") |#2| (-1094) (-754 |#2|) (-754 |#2|)) 174 (-12 (|has| |#2| (-1057)) (|has| |#1| (-557 (-804 (-488)))) (|has| |#1| (-800 (-488)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1094)) 145 (-12 (|has| |#2| (-573)) (|has| |#1| (-557 (-804 (-488)))) (|has| |#1| (-800 (-488)))) ELT)) (-2099 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1094)) 156 (-12 (|has| |#2| (-573)) (|has| |#1| (-557 (-804 (-488)))) (|has| |#1| (-800 (-488)))) ELT))) +(((-507 |#1| |#2|) (-10 -7 (-15 -2098 ((-2 (|:| -2343 |#2|) (|:| |nconst| |#2|)) |#2| (-1094))) (IF (|has| |#1| (-557 (-804 (-488)))) (IF (|has| |#1| (-800 (-488))) (PROGN (IF (|has| |#2| (-573)) (PROGN (-15 -2099 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1094))) (-15 -2100 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1094)))) |%noBranch|) (IF (|has| |#2| (-1057)) (-15 -2100 ((-3 |#2| #1#) |#2| (-1094) (-754 |#2|) (-754 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-954 (-488)) (-395) (-584 (-488))) (-13 (-27) (-1119) (-366 |#1|))) (T -507)) +((-2100 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1094)) (-5 *4 (-754 *2)) (-4 *2 (-1057)) (-4 *2 (-13 (-27) (-1119) (-366 *5))) (-4 *5 (-557 (-804 (-488)))) (-4 *5 (-800 (-488))) (-4 *5 (-13 (-954 (-488)) (-395) (-584 (-488)))) (-5 *1 (-507 *5 *2)))) (-2100 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1094)) (-4 *5 (-557 (-804 (-488)))) (-4 *5 (-800 (-488))) (-4 *5 (-13 (-954 (-488)) (-395) (-584 (-488)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-507 *5 *3)) (-4 *3 (-573)) (-4 *3 (-13 (-27) (-1119) (-366 *5))))) (-2099 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1094)) (-4 *5 (-557 (-804 (-488)))) (-4 *5 (-800 (-488))) (-4 *5 (-13 (-954 (-488)) (-395) (-584 (-488)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-507 *5 *3)) (-4 *3 (-573)) (-4 *3 (-13 (-27) (-1119) (-366 *5))))) (-2098 (*1 *2 *3 *4) (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-954 (-488)) (-395) (-584 (-488)))) (-5 *2 (-2 (|:| -2343 *3) (|:| |nconst| *3))) (-5 *1 (-507 *5 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5)))))) +((-2103 (((-3 (-2 (|:| |mainpart| (-352 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-352 |#2|)) (|:| |logand| (-352 |#2|)))))) #1="failed") (-352 |#2|) (-587 (-352 |#2|))) 41 T ELT)) (-3818 (((-523 (-352 |#2|)) (-352 |#2|)) 28 T ELT)) (-2101 (((-3 (-352 |#2|) #1#) (-352 |#2|)) 17 T ELT)) (-2102 (((-3 (-2 (|:| -2141 (-352 |#2|)) (|:| |coeff| (-352 |#2|))) #1#) (-352 |#2|) (-352 |#2|)) 48 T ELT))) +(((-508 |#1| |#2|) (-10 -7 (-15 -3818 ((-523 (-352 |#2|)) (-352 |#2|))) (-15 -2101 ((-3 (-352 |#2|) #1="failed") (-352 |#2|))) (-15 -2102 ((-3 (-2 (|:| -2141 (-352 |#2|)) (|:| |coeff| (-352 |#2|))) #1#) (-352 |#2|) (-352 |#2|))) (-15 -2103 ((-3 (-2 (|:| |mainpart| (-352 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-352 |#2|)) (|:| |logand| (-352 |#2|)))))) #1#) (-352 |#2|) (-587 (-352 |#2|))))) (-13 (-314) (-120) (-954 (-488))) (-1159 |#1|)) (T -508)) +((-2103 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-587 (-352 *6))) (-5 *3 (-352 *6)) (-4 *6 (-1159 *5)) (-4 *5 (-13 (-314) (-120) (-954 (-488)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-508 *5 *6)))) (-2102 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-314) (-120) (-954 (-488)))) (-4 *5 (-1159 *4)) (-5 *2 (-2 (|:| -2141 (-352 *5)) (|:| |coeff| (-352 *5)))) (-5 *1 (-508 *4 *5)) (-5 *3 (-352 *5)))) (-2101 (*1 *2 *2) (|partial| -12 (-5 *2 (-352 *4)) (-4 *4 (-1159 *3)) (-4 *3 (-13 (-314) (-120) (-954 (-488)))) (-5 *1 (-508 *3 *4)))) (-3818 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-120) (-954 (-488)))) (-4 *5 (-1159 *4)) (-5 *2 (-523 (-352 *5))) (-5 *1 (-508 *4 *5)) (-5 *3 (-352 *5))))) +((-2104 (((-3 (-488) "failed") |#1|) 14 T ELT)) (-3265 (((-85) |#1|) 13 T ELT)) (-3261 (((-488) |#1|) 9 T ELT))) +(((-509 |#1|) (-10 -7 (-15 -3261 ((-488) |#1|)) (-15 -3265 ((-85) |#1|)) (-15 -2104 ((-3 (-488) "failed") |#1|))) (-954 (-488))) (T -509)) +((-2104 (*1 *2 *3) (|partial| -12 (-5 *2 (-488)) (-5 *1 (-509 *3)) (-4 *3 (-954 *2)))) (-3265 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-509 *3)) (-4 *3 (-954 (-488))))) (-3261 (*1 *2 *3) (-12 (-5 *2 (-488)) (-5 *1 (-509 *3)) (-4 *3 (-954 *2))))) +((-2107 (((-3 (-2 (|:| |mainpart| (-352 (-861 |#1|))) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-352 (-861 |#1|))) (|:| |logand| (-352 (-861 |#1|))))))) #1="failed") (-352 (-861 |#1|)) (-1094) (-587 (-352 (-861 |#1|)))) 48 T ELT)) (-2105 (((-523 (-352 (-861 |#1|))) (-352 (-861 |#1|)) (-1094)) 28 T ELT)) (-2106 (((-3 (-352 (-861 |#1|)) #1#) (-352 (-861 |#1|)) (-1094)) 23 T ELT)) (-2108 (((-3 (-2 (|:| -2141 (-352 (-861 |#1|))) (|:| |coeff| (-352 (-861 |#1|)))) #1#) (-352 (-861 |#1|)) (-1094) (-352 (-861 |#1|))) 35 T ELT))) +(((-510 |#1|) (-10 -7 (-15 -2105 ((-523 (-352 (-861 |#1|))) (-352 (-861 |#1|)) (-1094))) (-15 -2106 ((-3 (-352 (-861 |#1|)) #1="failed") (-352 (-861 |#1|)) (-1094))) (-15 -2107 ((-3 (-2 (|:| |mainpart| (-352 (-861 |#1|))) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-352 (-861 |#1|))) (|:| |logand| (-352 (-861 |#1|))))))) #1#) (-352 (-861 |#1|)) (-1094) (-587 (-352 (-861 |#1|))))) (-15 -2108 ((-3 (-2 (|:| -2141 (-352 (-861 |#1|))) (|:| |coeff| (-352 (-861 |#1|)))) #1#) (-352 (-861 |#1|)) (-1094) (-352 (-861 |#1|))))) (-13 (-499) (-954 (-488)) (-120))) (T -510)) +((-2108 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1094)) (-4 *5 (-13 (-499) (-954 (-488)) (-120))) (-5 *2 (-2 (|:| -2141 (-352 (-861 *5))) (|:| |coeff| (-352 (-861 *5))))) (-5 *1 (-510 *5)) (-5 *3 (-352 (-861 *5))))) (-2107 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1094)) (-5 *5 (-587 (-352 (-861 *6)))) (-5 *3 (-352 (-861 *6))) (-4 *6 (-13 (-499) (-954 (-488)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6)))) (-2106 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-352 (-861 *4))) (-5 *3 (-1094)) (-4 *4 (-13 (-499) (-954 (-488)) (-120))) (-5 *1 (-510 *4)))) (-2105 (*1 *2 *3 *4) (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-499) (-954 (-488)) (-120))) (-5 *2 (-523 (-352 (-861 *5)))) (-5 *1 (-510 *5)) (-5 *3 (-352 (-861 *5)))))) +((-2574 (((-85) $ $) 77 T ELT)) (-3194 (((-85) $) 49 T ELT)) (-2610 ((|#1| $) 39 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) 81 T ELT)) (-3498 (($ $) 142 T ELT)) (-3645 (($ $) 120 T ELT)) (-2489 ((|#1| $) 37 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3043 (($ $) NIL T ELT)) (-3496 (($ $) 144 T ELT)) (-3644 (($ $) 116 T ELT)) (-3500 (($ $) 146 T ELT)) (-3643 (($ $) 124 T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) 95 T ELT)) (-3162 (((-488) $) 97 T ELT)) (-3473 (((-3 $ #1#) $) 80 T ELT)) (-2064 (($ |#1| |#1|) 35 T ELT)) (-3192 (((-85) $) 44 T ELT)) (-3633 (($) 106 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) 56 T ELT)) (-3017 (($ $ (-488)) NIL T ELT)) (-3193 (((-85) $) 46 T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-3949 (($ $) 108 T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2065 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-352 (-488))) 94 T ELT)) (-2063 ((|#1| $) 36 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) 83 T ELT) (($ (-587 $)) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) 82 T ELT)) (-3950 (($ $) 110 T ELT)) (-3501 (($ $) 150 T ELT)) (-3642 (($ $) 122 T ELT)) (-3499 (($ $) 152 T ELT)) (-3641 (($ $) 126 T ELT)) (-3497 (($ $) 148 T ELT)) (-3640 (($ $) 118 T ELT)) (-2062 (((-85) $ |#1|) 42 T ELT)) (-3953 (((-776) $) 102 T ELT) (($ (-488)) 85 T ELT) (($ $) NIL T ELT) (($ (-488)) 85 T ELT)) (-3132 (((-698)) 104 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3504 (($ $) 164 T ELT)) (-3492 (($ $) 132 T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 162 T ELT)) (-3490 (($ $) 128 T ELT)) (-3506 (($ $) 160 T ELT)) (-3494 (($ $) 140 T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3507 (($ $) 158 T ELT)) (-3495 (($ $) 138 T ELT)) (-3505 (($ $) 156 T ELT)) (-3493 (($ $) 134 T ELT)) (-3503 (($ $) 154 T ELT)) (-3491 (($ $) 130 T ELT)) (-2666 (($) 30 T CONST)) (-2672 (($) 10 T CONST)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 50 T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 48 T ELT)) (-3843 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3845 (($ $ $) 53 T ELT)) (** (($ $ (-834)) 73 T ELT) (($ $ (-698)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-352 (-488))) 166 T ELT)) (* (($ (-834) $) 67 T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 66 T ELT) (($ $ $) 62 T ELT))) +(((-511 |#1|) (-497 |#1|) (-13 (-349) (-1119))) (T -511)) +NIL +((-2710 (((-3 (-587 (-1089 (-488))) "failed") (-587 (-1089 (-488))) (-1089 (-488))) 27 T ELT))) +(((-512) (-10 -7 (-15 -2710 ((-3 (-587 (-1089 (-488))) "failed") (-587 (-1089 (-488))) (-1089 (-488)))))) (T -512)) +((-2710 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-1089 (-488)))) (-5 *3 (-1089 (-488))) (-5 *1 (-512))))) +((-2109 (((-587 (-554 |#2|)) (-587 (-554 |#2|)) (-1094)) 19 T ELT)) (-2112 (((-587 (-554 |#2|)) (-587 |#2|) (-1094)) 23 T ELT)) (-3240 (((-587 (-554 |#2|)) (-587 (-554 |#2|)) (-587 (-554 |#2|))) 11 T ELT)) (-2113 ((|#2| |#2| (-1094)) 59 (|has| |#1| (-499)) ELT)) (-2114 ((|#2| |#2| (-1094)) 87 (-12 (|has| |#2| (-241)) (|has| |#1| (-395))) ELT)) (-2111 (((-554 |#2|) (-554 |#2|) (-587 (-554 |#2|)) (-1094)) 25 T ELT)) (-2110 (((-554 |#2|) (-587 (-554 |#2|))) 24 T ELT)) (-2115 (((-523 |#2|) |#2| (-1094) (-1 (-523 |#2|) |#2| (-1094)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1094))) 115 (-12 (|has| |#2| (-241)) (|has| |#2| (-573)) (|has| |#2| (-954 (-1094))) (|has| |#1| (-557 (-804 (-488)))) (|has| |#1| (-395)) (|has| |#1| (-800 (-488)))) ELT))) +(((-513 |#1| |#2|) (-10 -7 (-15 -2109 ((-587 (-554 |#2|)) (-587 (-554 |#2|)) (-1094))) (-15 -2110 ((-554 |#2|) (-587 (-554 |#2|)))) (-15 -2111 ((-554 |#2|) (-554 |#2|) (-587 (-554 |#2|)) (-1094))) (-15 -3240 ((-587 (-554 |#2|)) (-587 (-554 |#2|)) (-587 (-554 |#2|)))) (-15 -2112 ((-587 (-554 |#2|)) (-587 |#2|) (-1094))) (IF (|has| |#1| (-499)) (-15 -2113 (|#2| |#2| (-1094))) |%noBranch|) (IF (|has| |#1| (-395)) (IF (|has| |#2| (-241)) (PROGN (-15 -2114 (|#2| |#2| (-1094))) (IF (|has| |#1| (-557 (-804 (-488)))) (IF (|has| |#1| (-800 (-488))) (IF (|has| |#2| (-573)) (IF (|has| |#2| (-954 (-1094))) (-15 -2115 ((-523 |#2|) |#2| (-1094) (-1 (-523 |#2|) |#2| (-1094)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1094)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1017) (-366 |#1|)) (T -513)) +((-2115 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-523 *3) *3 (-1094))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1094))) (-4 *3 (-241)) (-4 *3 (-573)) (-4 *3 (-954 *4)) (-4 *3 (-366 *7)) (-5 *4 (-1094)) (-4 *7 (-557 (-804 (-488)))) (-4 *7 (-395)) (-4 *7 (-800 (-488))) (-4 *7 (-1017)) (-5 *2 (-523 *3)) (-5 *1 (-513 *7 *3)))) (-2114 (*1 *2 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-395)) (-4 *4 (-1017)) (-5 *1 (-513 *4 *2)) (-4 *2 (-241)) (-4 *2 (-366 *4)))) (-2113 (*1 *2 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-499)) (-4 *4 (-1017)) (-5 *1 (-513 *4 *2)) (-4 *2 (-366 *4)))) (-2112 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *6)) (-5 *4 (-1094)) (-4 *6 (-366 *5)) (-4 *5 (-1017)) (-5 *2 (-587 (-554 *6))) (-5 *1 (-513 *5 *6)))) (-3240 (*1 *2 *2 *2) (-12 (-5 *2 (-587 (-554 *4))) (-4 *4 (-366 *3)) (-4 *3 (-1017)) (-5 *1 (-513 *3 *4)))) (-2111 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-587 (-554 *6))) (-5 *4 (-1094)) (-5 *2 (-554 *6)) (-4 *6 (-366 *5)) (-4 *5 (-1017)) (-5 *1 (-513 *5 *6)))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-587 (-554 *5))) (-4 *4 (-1017)) (-5 *2 (-554 *5)) (-5 *1 (-513 *4 *5)) (-4 *5 (-366 *4)))) (-2109 (*1 *2 *2 *3) (-12 (-5 *2 (-587 (-554 *5))) (-5 *3 (-1094)) (-4 *5 (-366 *4)) (-4 *4 (-1017)) (-5 *1 (-513 *4 *5))))) +((-2118 (((-2 (|:| |answer| (-523 (-352 |#2|))) (|:| |a0| |#1|)) (-352 |#2|) (-1 |#2| |#2|) (-1 (-3 (-587 |#1|) #1="failed") (-488) |#1| |#1|)) 199 T ELT)) (-2121 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-352 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-352 |#2|)) (|:| |logand| (-352 |#2|))))))) (|:| |a0| |#1|)) #1#) (-352 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2141 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-587 (-352 |#2|))) 174 T ELT)) (-2124 (((-3 (-2 (|:| |mainpart| (-352 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-352 |#2|)) (|:| |logand| (-352 |#2|)))))) #1#) (-352 |#2|) (-1 |#2| |#2|) (-587 (-352 |#2|))) 171 T ELT)) (-2125 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2141 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2116 (((-2 (|:| |answer| (-523 (-352 |#2|))) (|:| |a0| |#1|)) (-352 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2141 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2123 (((-3 (-2 (|:| -2141 (-352 |#2|)) (|:| |coeff| (-352 |#2|))) #1#) (-352 |#2|) (-1 |#2| |#2|) (-352 |#2|)) 202 T ELT)) (-2119 (((-3 (-2 (|:| |answer| (-352 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2141 (-352 |#2|)) (|:| |coeff| (-352 |#2|))) #1#) (-352 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2141 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-352 |#2|)) 205 T ELT)) (-2127 (((-2 (|:| |ir| (-523 (-352 |#2|))) (|:| |specpart| (-352 |#2|)) (|:| |polypart| |#2|)) (-352 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2128 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2122 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-352 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-352 |#2|)) (|:| |logand| (-352 |#2|))))))) (|:| |a0| |#1|)) #1#) (-352 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3143 |#1|) (|:| |sol?| (-85))) (-488) |#1|) (-587 (-352 |#2|))) 178 T ELT)) (-2126 (((-3 (-566 |#1| |#2|) #1#) (-566 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3143 |#1|) (|:| |sol?| (-85))) (-488) |#1|)) 166 T ELT)) (-2117 (((-2 (|:| |answer| (-523 (-352 |#2|))) (|:| |a0| |#1|)) (-352 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3143 |#1|) (|:| |sol?| (-85))) (-488) |#1|)) 189 T ELT)) (-2120 (((-3 (-2 (|:| |answer| (-352 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2141 (-352 |#2|)) (|:| |coeff| (-352 |#2|))) #1#) (-352 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3143 |#1|) (|:| |sol?| (-85))) (-488) |#1|) (-352 |#2|)) 210 T ELT))) +(((-514 |#1| |#2|) (-10 -7 (-15 -2116 ((-2 (|:| |answer| (-523 (-352 |#2|))) (|:| |a0| |#1|)) (-352 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2141 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2117 ((-2 (|:| |answer| (-523 (-352 |#2|))) (|:| |a0| |#1|)) (-352 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3143 |#1|) (|:| |sol?| (-85))) (-488) |#1|))) (-15 -2118 ((-2 (|:| |answer| (-523 (-352 |#2|))) (|:| |a0| |#1|)) (-352 |#2|) (-1 |#2| |#2|) (-1 (-3 (-587 |#1|) #1#) (-488) |#1| |#1|))) (-15 -2119 ((-3 (-2 (|:| |answer| (-352 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2141 (-352 |#2|)) (|:| |coeff| (-352 |#2|))) #1#) (-352 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2141 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-352 |#2|))) (-15 -2120 ((-3 (-2 (|:| |answer| (-352 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2141 (-352 |#2|)) (|:| |coeff| (-352 |#2|))) #1#) (-352 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3143 |#1|) (|:| |sol?| (-85))) (-488) |#1|) (-352 |#2|))) (-15 -2121 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-352 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-352 |#2|)) (|:| |logand| (-352 |#2|))))))) (|:| |a0| |#1|)) #1#) (-352 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2141 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-587 (-352 |#2|)))) (-15 -2122 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-352 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-352 |#2|)) (|:| |logand| (-352 |#2|))))))) (|:| |a0| |#1|)) #1#) (-352 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3143 |#1|) (|:| |sol?| (-85))) (-488) |#1|) (-587 (-352 |#2|)))) (-15 -2123 ((-3 (-2 (|:| -2141 (-352 |#2|)) (|:| |coeff| (-352 |#2|))) #1#) (-352 |#2|) (-1 |#2| |#2|) (-352 |#2|))) (-15 -2124 ((-3 (-2 (|:| |mainpart| (-352 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-352 |#2|)) (|:| |logand| (-352 |#2|)))))) #1#) (-352 |#2|) (-1 |#2| |#2|) (-587 (-352 |#2|)))) (-15 -2125 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2141 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2126 ((-3 (-566 |#1| |#2|) #1#) (-566 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3143 |#1|) (|:| |sol?| (-85))) (-488) |#1|))) (-15 -2127 ((-2 (|:| |ir| (-523 (-352 |#2|))) (|:| |specpart| (-352 |#2|)) (|:| |polypart| |#2|)) (-352 |#2|) (-1 |#2| |#2|))) (-15 -2128 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-314) (-1159 |#1|)) (T -514)) +((-2128 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1159 *5)) (-4 *5 (-314)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-514 *5 *3)))) (-2127 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1159 *5)) (-4 *5 (-314)) (-5 *2 (-2 (|:| |ir| (-523 (-352 *6))) (|:| |specpart| (-352 *6)) (|:| |polypart| *6))) (-5 *1 (-514 *5 *6)) (-5 *3 (-352 *6)))) (-2126 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-566 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3143 *4) (|:| |sol?| (-85))) (-488) *4)) (-4 *4 (-314)) (-4 *5 (-1159 *4)) (-5 *1 (-514 *4 *5)))) (-2125 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2141 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-314)) (-5 *1 (-514 *4 *2)) (-4 *2 (-1159 *4)))) (-2124 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-587 (-352 *7))) (-4 *7 (-1159 *6)) (-5 *3 (-352 *7)) (-4 *6 (-314)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-514 *6 *7)))) (-2123 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1159 *5)) (-4 *5 (-314)) (-5 *2 (-2 (|:| -2141 (-352 *6)) (|:| |coeff| (-352 *6)))) (-5 *1 (-514 *5 *6)) (-5 *3 (-352 *6)))) (-2122 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3143 *7) (|:| |sol?| (-85))) (-488) *7)) (-5 *6 (-587 (-352 *8))) (-4 *7 (-314)) (-4 *8 (-1159 *7)) (-5 *3 (-352 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-514 *7 *8)))) (-2121 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2141 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-587 (-352 *8))) (-4 *7 (-314)) (-4 *8 (-1159 *7)) (-5 *3 (-352 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-514 *7 *8)))) (-2120 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3143 *6) (|:| |sol?| (-85))) (-488) *6)) (-4 *6 (-314)) (-4 *7 (-1159 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-352 *7)) (|:| |a0| *6)) (-2 (|:| -2141 (-352 *7)) (|:| |coeff| (-352 *7))) #1#)) (-5 *1 (-514 *6 *7)) (-5 *3 (-352 *7)))) (-2119 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2141 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-314)) (-4 *7 (-1159 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-352 *7)) (|:| |a0| *6)) (-2 (|:| -2141 (-352 *7)) (|:| |coeff| (-352 *7))) #1#)) (-5 *1 (-514 *6 *7)) (-5 *3 (-352 *7)))) (-2118 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-587 *6) #1#) (-488) *6 *6)) (-4 *6 (-314)) (-4 *7 (-1159 *6)) (-5 *2 (-2 (|:| |answer| (-523 (-352 *7))) (|:| |a0| *6))) (-5 *1 (-514 *6 *7)) (-5 *3 (-352 *7)))) (-2117 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3143 *6) (|:| |sol?| (-85))) (-488) *6)) (-4 *6 (-314)) (-4 *7 (-1159 *6)) (-5 *2 (-2 (|:| |answer| (-523 (-352 *7))) (|:| |a0| *6))) (-5 *1 (-514 *6 *7)) (-5 *3 (-352 *7)))) (-2116 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2141 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-314)) (-4 *7 (-1159 *6)) (-5 *2 (-2 (|:| |answer| (-523 (-352 *7))) (|:| |a0| *6))) (-5 *1 (-514 *6 *7)) (-5 *3 (-352 *7))))) +((-2129 (((-3 |#2| "failed") |#2| (-1094) (-1094)) 10 T ELT))) +(((-515 |#1| |#2|) (-10 -7 (-15 -2129 ((-3 |#2| "failed") |#2| (-1094) (-1094)))) (-13 (-260) (-120) (-954 (-488)) (-584 (-488))) (-13 (-1119) (-875) (-1057) (-29 |#1|))) (T -515)) +((-2129 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1094)) (-4 *4 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-5 *1 (-515 *4 *2)) (-4 *2 (-13 (-1119) (-875) (-1057) (-29 *4)))))) +((-2561 (((-636 (-1142)) $ (-1142)) 27 T ELT)) (-2562 (((-636 (-492)) $ (-492)) 26 T ELT)) (-2560 (((-698) $ (-102)) 28 T ELT)) (-2563 (((-636 (-101)) $ (-101)) 25 T ELT)) (-2005 (((-636 (-1142)) $) 12 T ELT)) (-2001 (((-636 (-1140)) $) 8 T ELT)) (-2003 (((-636 (-1139)) $) 10 T ELT)) (-2006 (((-636 (-492)) $) 13 T ELT)) (-2002 (((-636 (-490)) $) 9 T ELT)) (-2004 (((-636 (-489)) $) 11 T ELT)) (-2000 (((-698) $ (-102)) 7 T ELT)) (-2007 (((-636 (-101)) $) 14 T ELT)) (-1704 (($ $) 6 T ELT))) +(((-516) (-113)) (T -516)) +NIL +(-13 (-469) (-774)) +(((-149) . T) ((-469) . T) ((-774) . T)) +((-2561 (((-636 (-1142)) $ (-1142)) NIL T ELT)) (-2562 (((-636 (-492)) $ (-492)) NIL T ELT)) (-2560 (((-698) $ (-102)) NIL T ELT)) (-2563 (((-636 (-101)) $ (-101)) NIL T ELT)) (-2005 (((-636 (-1142)) $) NIL T ELT)) (-2001 (((-636 (-1140)) $) NIL T ELT)) (-2003 (((-636 (-1139)) $) NIL T ELT)) (-2006 (((-636 (-492)) $) NIL T ELT)) (-2002 (((-636 (-490)) $) NIL T ELT)) (-2004 (((-636 (-489)) $) NIL T ELT)) (-2000 (((-698) $ (-102)) NIL T ELT)) (-2007 (((-636 (-101)) $) NIL T ELT)) (-2564 (((-85) $) NIL T ELT)) (-2130 (($ (-340)) 14 T ELT) (($ (-1077)) 16 T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1704 (($ $) NIL T ELT))) +(((-517) (-13 (-516) (-556 (-776)) (-10 -8 (-15 -2130 ($ (-340))) (-15 -2130 ($ (-1077))) (-15 -2564 ((-85) $))))) (T -517)) +((-2130 (*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-517)))) (-2130 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-517)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-517))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3466 (($) 7 T CONST)) (-3248 (((-1077) $) NIL T ELT)) (-2133 (($) 6 T CONST)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 15 T ELT)) (-2131 (($) 9 T CONST)) (-2132 (($) 8 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 11 T ELT))) +(((-518) (-13 (-1017) (-10 -8 (-15 -2133 ($) -3959) (-15 -3466 ($) -3959) (-15 -2132 ($) -3959) (-15 -2131 ($) -3959)))) (T -518)) +((-2133 (*1 *1) (-5 *1 (-518))) (-3466 (*1 *1) (-5 *1 (-518))) (-2132 (*1 *1) (-5 *1 (-518))) (-2131 (*1 *1) (-5 *1 (-518)))) +((-2574 (((-85) $ $) NIL T ELT)) (-2134 (((-636 $) (-434)) 23 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2136 (($ (-1077)) 16 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 33 T ELT)) (-2135 (((-168 4 (-101)) $) 24 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 26 T ELT))) +(((-519) (-13 (-1017) (-10 -8 (-15 -2136 ($ (-1077))) (-15 -2135 ((-168 4 (-101)) $)) (-15 -2134 ((-636 $) (-434)))))) (T -519)) +((-2136 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-519)))) (-2135 (*1 *2 *1) (-12 (-5 *2 (-168 4 (-101))) (-5 *1 (-519)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-434)) (-5 *2 (-636 (-519))) (-5 *1 (-519))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3043 (($ $ (-488)) 73 T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2617 (($ (-1089 (-488)) (-488)) 79 T ELT)) (-2570 (($ $ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) 64 T ELT)) (-2618 (($ $) 43 T ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3778 (((-698) $) 16 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2620 (((-488)) 37 T ELT)) (-2619 (((-488) $) 41 T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3775 (($ $ (-488)) 24 T ELT)) (-3472 (((-3 $ #1#) $ $) 70 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-1611 (((-698) $) 17 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 71 T ELT)) (-2621 (((-1073 (-488)) $) 19 T ELT)) (-2897 (($ $) 26 T ELT)) (-3953 (((-776) $) 100 T ELT) (($ (-488)) 59 T ELT) (($ $) NIL T ELT)) (-3132 (((-698)) 15 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3776 (((-488) $ (-488)) 46 T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 44 T CONST)) (-2672 (($) 21 T CONST)) (-3062 (((-85) $ $) 51 T ELT)) (-3843 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3845 (($ $ $) 57 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 60 T ELT) (($ $ $) 61 T ELT))) +(((-520 |#1| |#2|) (-783 |#1|) (-488) (-85)) (T -520)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 30 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3936 (((-698)) NIL T ELT)) (-3336 (($ $ (-834)) NIL (|has| $ (-322)) ELT) (($ $) NIL T ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) 59 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 $ #1#) $) 95 T ELT)) (-3162 (($ $) 94 T ELT)) (-1800 (($ (-1183 $)) 93 T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2570 (($ $ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) 47 T ELT)) (-3000 (($) NIL T ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-2839 (($) 61 T ELT)) (-1684 (((-85) $) NIL T ELT)) (-1772 (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-3778 (((-747 (-834)) $) NIL T ELT) (((-834) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2018 (($) 49 (|has| $ (-322)) ELT)) (-2016 (((-85) $) NIL (|has| $ (-322)) ELT)) (-3138 (($ $ (-834)) NIL (|has| $ (-322)) ELT) (($ $) NIL T ELT)) (-3451 (((-636 $) $) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2019 (((-1089 $) $ (-834)) NIL (|has| $ (-322)) ELT) (((-1089 $) $) 104 T ELT)) (-2015 (((-834) $) 67 T ELT)) (-1631 (((-1089 $) $) NIL (|has| $ (-322)) ELT)) (-1630 (((-3 (-1089 $) #1#) $ $) NIL (|has| $ (-322)) ELT) (((-1089 $) $) NIL (|has| $ (-322)) ELT)) (-1632 (($ $ (-1089 $)) NIL (|has| $ (-322)) ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3452 (($) NIL T CONST)) (-2405 (($ (-834)) 60 T ELT)) (-3938 (((-85) $) 87 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2414 (($) 28 (|has| $ (-322)) ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) 54 T ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-3937 (((-834)) 86 T ELT) (((-747 (-834))) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-1773 (((-3 (-698) #1#) $ $) NIL T ELT) (((-698) $) NIL T ELT)) (-3918 (((-107)) NIL T ELT)) (-3764 (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-3955 (((-834) $) 85 T ELT) (((-747 (-834)) $) NIL T ELT)) (-3191 (((-1089 $)) 102 T ELT)) (-1678 (($) 66 T ELT)) (-1633 (($) 50 (|has| $ (-322)) ELT)) (-3230 (((-634 $) (-1183 $)) NIL T ELT) (((-1183 $) $) 91 T ELT)) (-3978 (((-488) $) 42 T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) 45 T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT)) (-2708 (((-636 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3132 (((-698)) 51 T CONST)) (-1269 (((-85) $ $) 107 T ELT)) (-2017 (((-1183 $) (-834)) 97 T ELT) (((-1183 $)) 96 T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2666 (($) 31 T CONST)) (-2672 (($) 27 T CONST)) (-3935 (($ $ (-698)) NIL (|has| $ (-322)) ELT) (($ $) NIL (|has| $ (-322)) ELT)) (-2675 (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) 34 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT))) +(((-521 |#1|) (-13 (-301) (-282 $) (-557 (-488))) (-834)) (T -521)) +NIL +((-2137 (((-1189) (-1077)) 10 T ELT))) +(((-522) (-10 -7 (-15 -2137 ((-1189) (-1077))))) (T -522)) +((-2137 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-522))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) 77 T ELT)) (-3162 ((|#1| $) NIL T ELT)) (-2141 ((|#1| $) 30 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2139 (((-587 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2142 (($ |#1| (-587 (-2 (|:| |scalar| (-352 (-488))) (|:| |coeff| (-1089 |#1|)) (|:| |logand| (-1089 |#1|)))) (-587 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2140 (((-587 (-2 (|:| |scalar| (-352 (-488))) (|:| |coeff| (-1089 |#1|)) (|:| |logand| (-1089 |#1|)))) $) 31 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2838 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1094)) 49 (|has| |#1| (-954 (-1094))) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2138 (((-85) $) 35 T ELT)) (-3764 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1094)) 90 (|has| |#1| (-813 (-1094))) ELT)) (-3953 (((-776) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) 18 T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 86 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 16 T ELT) (($ (-352 (-488)) $) 41 T ELT) (($ $ (-352 (-488))) NIL T ELT))) +(((-523 |#1|) (-13 (-658 (-352 (-488))) (-954 |#1|) (-10 -8 (-15 -2142 ($ |#1| (-587 (-2 (|:| |scalar| (-352 (-488))) (|:| |coeff| (-1089 |#1|)) (|:| |logand| (-1089 |#1|)))) (-587 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2141 (|#1| $)) (-15 -2140 ((-587 (-2 (|:| |scalar| (-352 (-488))) (|:| |coeff| (-1089 |#1|)) (|:| |logand| (-1089 |#1|)))) $)) (-15 -2139 ((-587 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2138 ((-85) $)) (-15 -2838 ($ |#1| |#1|)) (-15 -3764 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-813 (-1094))) (-15 -3764 (|#1| $ (-1094))) |%noBranch|) (IF (|has| |#1| (-954 (-1094))) (-15 -2838 ($ |#1| (-1094))) |%noBranch|))) (-314)) (T -523)) +((-2142 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-587 (-2 (|:| |scalar| (-352 (-488))) (|:| |coeff| (-1089 *2)) (|:| |logand| (-1089 *2))))) (-5 *4 (-587 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-314)) (-5 *1 (-523 *2)))) (-2141 (*1 *2 *1) (-12 (-5 *1 (-523 *2)) (-4 *2 (-314)))) (-2140 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |scalar| (-352 (-488))) (|:| |coeff| (-1089 *3)) (|:| |logand| (-1089 *3))))) (-5 *1 (-523 *3)) (-4 *3 (-314)))) (-2139 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-523 *3)) (-4 *3 (-314)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-314)))) (-2838 (*1 *1 *2 *2) (-12 (-5 *1 (-523 *2)) (-4 *2 (-314)))) (-3764 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-523 *2)) (-4 *2 (-314)))) (-3764 (*1 *2 *1 *3) (-12 (-4 *2 (-314)) (-4 *2 (-813 *3)) (-5 *1 (-523 *2)) (-5 *3 (-1094)))) (-2838 (*1 *1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *1 (-523 *2)) (-4 *2 (-954 *3)) (-4 *2 (-314))))) +((-3849 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2141 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2141 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-523 |#2|) (-1 |#2| |#1|) (-523 |#1|)) 30 T ELT))) +(((-524 |#1| |#2|) (-10 -7 (-15 -3849 ((-523 |#2|) (-1 |#2| |#1|) (-523 |#1|))) (-15 -3849 ((-3 (-2 (|:| -2141 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2141 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3849 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3849 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-314) (-314)) (T -524)) +((-3849 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) #1="failed")) (-4 *5 (-314)) (-4 *6 (-314)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-524 *5 *6)))) (-3849 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 #1#)) (-4 *5 (-314)) (-4 *2 (-314)) (-5 *1 (-524 *5 *2)))) (-3849 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2141 *5) (|:| |coeff| *5)) #1#)) (-4 *5 (-314)) (-4 *6 (-314)) (-5 *2 (-2 (|:| -2141 *6) (|:| |coeff| *6))) (-5 *1 (-524 *5 *6)))) (-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-523 *5)) (-4 *5 (-314)) (-4 *6 (-314)) (-5 *2 (-523 *6)) (-5 *1 (-524 *5 *6))))) +((-3424 (((-523 |#2|) (-523 |#2|)) 42 T ELT)) (-3969 (((-587 |#2|) (-523 |#2|)) 44 T ELT)) (-2153 ((|#2| (-523 |#2|)) 50 T ELT))) +(((-525 |#1| |#2|) (-10 -7 (-15 -3424 ((-523 |#2|) (-523 |#2|))) (-15 -3969 ((-587 |#2|) (-523 |#2|))) (-15 -2153 (|#2| (-523 |#2|)))) (-13 (-395) (-954 (-488)) (-584 (-488))) (-13 (-29 |#1|) (-1119))) (T -525)) +((-2153 (*1 *2 *3) (-12 (-5 *3 (-523 *2)) (-4 *2 (-13 (-29 *4) (-1119))) (-5 *1 (-525 *4 *2)) (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-523 *5)) (-4 *5 (-13 (-29 *4) (-1119))) (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-587 *5)) (-5 *1 (-525 *4 *5)))) (-3424 (*1 *2 *2) (-12 (-5 *2 (-523 *4)) (-4 *4 (-13 (-29 *3) (-1119))) (-4 *3 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-525 *3 *4))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2145 (($ (-450) (-536)) 14 T ELT)) (-2143 (($ (-450) (-536) $) 16 T ELT)) (-2144 (($ (-450) (-536)) 15 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-1099)) 7 T ELT) (((-1099) $) 6 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-526) (-13 (-1017) (-433 (-1099)) (-10 -8 (-15 -2145 ($ (-450) (-536))) (-15 -2144 ($ (-450) (-536))) (-15 -2143 ($ (-450) (-536) $))))) (T -526)) +((-2145 (*1 *1 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-536)) (-5 *1 (-526)))) (-2144 (*1 *1 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-536)) (-5 *1 (-526)))) (-2143 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-450)) (-5 *3 (-536)) (-5 *1 (-526))))) +((-2149 (((-85) |#1|) 16 T ELT)) (-2150 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2147 (((-2 (|:| -2700 |#1|) (|:| -2406 (-698))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-698)) 18 T ELT)) (-2146 (((-85) |#1| (-698)) 19 T ELT)) (-2151 ((|#1| |#1|) 41 T ELT)) (-2148 ((|#1| |#1| (-698)) 44 T ELT))) +(((-527 |#1|) (-10 -7 (-15 -2146 ((-85) |#1| (-698))) (-15 -2147 ((-3 |#1| #1="failed") |#1| (-698))) (-15 -2147 ((-2 (|:| -2700 |#1|) (|:| -2406 (-698))) |#1|)) (-15 -2148 (|#1| |#1| (-698))) (-15 -2149 ((-85) |#1|)) (-15 -2150 ((-3 |#1| #1#) |#1|)) (-15 -2151 (|#1| |#1|))) (-487)) (T -527)) +((-2151 (*1 *2 *2) (-12 (-5 *1 (-527 *2)) (-4 *2 (-487)))) (-2150 (*1 *2 *2) (|partial| -12 (-5 *1 (-527 *2)) (-4 *2 (-487)))) (-2149 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-527 *3)) (-4 *3 (-487)))) (-2148 (*1 *2 *2 *3) (-12 (-5 *3 (-698)) (-5 *1 (-527 *2)) (-4 *2 (-487)))) (-2147 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2700 *3) (|:| -2406 (-698)))) (-5 *1 (-527 *3)) (-4 *3 (-487)))) (-2147 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-698)) (-5 *1 (-527 *2)) (-4 *2 (-487)))) (-2146 (*1 *2 *3 *4) (-12 (-5 *4 (-698)) (-5 *2 (-85)) (-5 *1 (-527 *3)) (-4 *3 (-487))))) +((-2152 (((-1089 |#1|) (-834)) 44 T ELT))) +(((-528 |#1|) (-10 -7 (-15 -2152 ((-1089 |#1|) (-834)))) (-301)) (T -528)) +((-2152 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1089 *4)) (-5 *1 (-528 *4)) (-4 *4 (-301))))) +((-3424 (((-523 (-352 (-861 |#1|))) (-523 (-352 (-861 |#1|)))) 27 T ELT)) (-3818 (((-3 (-267 |#1|) (-587 (-267 |#1|))) (-352 (-861 |#1|)) (-1094)) 33 (|has| |#1| (-120)) ELT)) (-3969 (((-587 (-267 |#1|)) (-523 (-352 (-861 |#1|)))) 19 T ELT)) (-2154 (((-267 |#1|) (-352 (-861 |#1|)) (-1094)) 31 (|has| |#1| (-120)) ELT)) (-2153 (((-267 |#1|) (-523 (-352 (-861 |#1|)))) 21 T ELT))) +(((-529 |#1|) (-10 -7 (-15 -3424 ((-523 (-352 (-861 |#1|))) (-523 (-352 (-861 |#1|))))) (-15 -3969 ((-587 (-267 |#1|)) (-523 (-352 (-861 |#1|))))) (-15 -2153 ((-267 |#1|) (-523 (-352 (-861 |#1|))))) (IF (|has| |#1| (-120)) (PROGN (-15 -3818 ((-3 (-267 |#1|) (-587 (-267 |#1|))) (-352 (-861 |#1|)) (-1094))) (-15 -2154 ((-267 |#1|) (-352 (-861 |#1|)) (-1094)))) |%noBranch|)) (-13 (-395) (-954 (-488)) (-584 (-488)))) (T -529)) +((-2154 (*1 *2 *3 *4) (-12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-1094)) (-4 *5 (-120)) (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-267 *5)) (-5 *1 (-529 *5)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-1094)) (-4 *5 (-120)) (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-3 (-267 *5) (-587 (-267 *5)))) (-5 *1 (-529 *5)))) (-2153 (*1 *2 *3) (-12 (-5 *3 (-523 (-352 (-861 *4)))) (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-267 *4)) (-5 *1 (-529 *4)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-523 (-352 (-861 *4)))) (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-587 (-267 *4))) (-5 *1 (-529 *4)))) (-3424 (*1 *2 *2) (-12 (-5 *2 (-523 (-352 (-861 *3)))) (-4 *3 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-529 *3))))) +((-2156 (((-587 (-634 (-488))) (-587 (-834)) (-587 (-817 (-488)))) 80 T ELT) (((-587 (-634 (-488))) (-587 (-834))) 81 T ELT) (((-634 (-488)) (-587 (-834)) (-817 (-488))) 74 T ELT)) (-2155 (((-698) (-587 (-834))) 71 T ELT))) +(((-530) (-10 -7 (-15 -2155 ((-698) (-587 (-834)))) (-15 -2156 ((-634 (-488)) (-587 (-834)) (-817 (-488)))) (-15 -2156 ((-587 (-634 (-488))) (-587 (-834)))) (-15 -2156 ((-587 (-634 (-488))) (-587 (-834)) (-587 (-817 (-488))))))) (T -530)) +((-2156 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-834))) (-5 *4 (-587 (-817 (-488)))) (-5 *2 (-587 (-634 (-488)))) (-5 *1 (-530)))) (-2156 (*1 *2 *3) (-12 (-5 *3 (-587 (-834))) (-5 *2 (-587 (-634 (-488)))) (-5 *1 (-530)))) (-2156 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-834))) (-5 *4 (-817 (-488))) (-5 *2 (-634 (-488))) (-5 *1 (-530)))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-587 (-834))) (-5 *2 (-698)) (-5 *1 (-530))))) +((-3219 (((-587 |#5|) |#5| (-85)) 97 T ELT)) (-2157 (((-85) |#5| (-587 |#5|)) 34 T ELT))) +(((-531 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3219 ((-587 |#5|) |#5| (-85))) (-15 -2157 ((-85) |#5| (-587 |#5|)))) (-13 (-260) (-120)) (-721) (-760) (-981 |#1| |#2| |#3|) (-1024 |#1| |#2| |#3| |#4|)) (T -531)) +((-2157 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-1024 *5 *6 *7 *8)) (-4 *5 (-13 (-260) (-120))) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *8 (-981 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-531 *5 *6 *7 *8 *3)))) (-3219 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-260) (-120))) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *8 (-981 *5 *6 *7)) (-5 *2 (-587 *3)) (-5 *1 (-531 *5 *6 *7 *8 *3)) (-4 *3 (-1024 *5 *6 *7 *8))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3534 (((-1053) $) 12 T ELT)) (-3535 (((-1053) $) 10 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 18 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-532) (-13 (-999) (-10 -8 (-15 -3535 ((-1053) $)) (-15 -3534 ((-1053) $))))) (T -532)) +((-3535 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-532)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-532))))) +((-3538 (((-2 (|:| |num| |#4|) (|:| |den| (-488))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-488))) |#4| |#2| (-1005 |#4|)) 32 T ELT))) +(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3538 ((-2 (|:| |num| |#4|) (|:| |den| (-488))) |#4| |#2| (-1005 |#4|))) (-15 -3538 ((-2 (|:| |num| |#4|) (|:| |den| (-488))) |#4| |#2|))) (-721) (-760) (-499) (-865 |#3| |#1| |#2|)) (T -533)) +((-3538 (*1 *2 *3 *4) (-12 (-4 *5 (-721)) (-4 *4 (-760)) (-4 *6 (-499)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-488)))) (-5 *1 (-533 *5 *4 *6 *3)) (-4 *3 (-865 *6 *5 *4)))) (-3538 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1005 *3)) (-4 *3 (-865 *7 *6 *4)) (-4 *6 (-721)) (-4 *4 (-760)) (-4 *7 (-499)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-488)))) (-5 *1 (-533 *6 *4 *7 *3))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 71 T ELT)) (-3087 (((-587 (-998)) $) NIL T ELT)) (-3837 (((-1094) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3777 (($ $ (-488)) 58 T ELT) (($ $ (-488) (-488)) 59 T ELT)) (-3780 (((-1073 (-2 (|:| |k| (-488)) (|:| |c| |#1|))) $) 65 T ELT)) (-2188 (($ $) 109 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2186 (((-776) (-1073 (-2 (|:| |k| (-488)) (|:| |c| |#1|))) (-943 (-754 (-488))) (-1094) |#1| (-352 (-488))) 232 T ELT)) (-3824 (($ (-1073 (-2 (|:| |k| (-488)) (|:| |c| |#1|)))) 36 T ELT)) (-3730 (($) NIL T CONST)) (-3965 (($ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-2898 (((-85) $) NIL T ELT)) (-3778 (((-488) $) 63 T ELT) (((-488) $ (-488)) 64 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3783 (($ $ (-834)) 83 T ELT)) (-3821 (($ (-1 |#1| (-488)) $) 80 T ELT)) (-3944 (((-85) $) 26 T ELT)) (-2899 (($ |#1| (-488)) 22 T ELT) (($ $ (-998) (-488)) NIL T ELT) (($ $ (-587 (-998)) (-587 (-488))) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2192 (($ (-943 (-754 (-488))) (-1073 (-2 (|:| |k| (-488)) (|:| |c| |#1|)))) 13 T ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3818 (($ $) 120 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2189 (((-3 $ #1#) $ $ (-85)) 108 T ELT)) (-2187 (($ $ $) 116 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2190 (((-1073 (-2 (|:| |k| (-488)) (|:| |c| |#1|))) $) 15 T ELT)) (-2191 (((-943 (-754 (-488))) $) 14 T ELT)) (-3775 (($ $ (-488)) 47 T ELT)) (-3472 (((-3 $ #1#) $ $) NIL (|has| |#1| (-499)) ELT)) (-3774 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-488)))) ELT)) (-3806 ((|#1| $ (-488)) 62 T ELT) (($ $ $) NIL (|has| (-488) (-1029)) ELT)) (-3764 (($ $ (-1094)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-488) |#1|))) ELT) (($ $ (-698)) NIL (|has| |#1| (-15 * (|#1| (-488) |#1|))) ELT)) (-3955 (((-488) $) NIL T ELT)) (-2897 (($ $) 48 T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) 29 T ELT) (($ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $) NIL (|has| |#1| (-499)) ELT) (($ |#1|) 28 (|has| |#1| (-148)) ELT)) (-3683 ((|#1| $ (-488)) 61 T ELT)) (-2708 (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-3132 (((-698)) 39 T CONST)) (-3779 ((|#1| $) NIL T ELT)) (-2167 (($ $) 192 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2179 (($ $) 167 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2169 (($ $) 189 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2181 (($ $) 164 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2165 (($ $) 194 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2177 (($ $) 170 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2184 (($ $ (-352 (-488))) 157 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2185 (($ $ |#1|) 128 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2182 (($ $) 161 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2183 (($ $) 159 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2164 (($ $) 195 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2176 (($ $) 171 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2166 (($ $) 193 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2178 (($ $) 169 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2168 (($ $) 190 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2180 (($ $) 165 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2161 (($ $) 200 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2173 (($ $) 180 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2163 (($ $) 197 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2175 (($ $) 176 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2159 (($ $) 204 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2171 (($ $) 184 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2158 (($ $) 206 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2170 (($ $) 186 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2160 (($ $) 202 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2172 (($ $) 182 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2162 (($ $) 199 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2174 (($ $) 178 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3776 ((|#1| $ (-488)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-488)))) (|has| |#1| (-15 -3953 (|#1| (-1094))))) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 30 T CONST)) (-2672 (($) 40 T CONST)) (-2675 (($ $ (-1094)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-488) |#1|))) ELT) (($ $ (-698)) NIL (|has| |#1| (-15 * (|#1| (-488) |#1|))) ELT)) (-3062 (((-85) $ $) 73 T ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3845 (($ $ $) 88 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 111 T ELT)) (* (($ (-834) $) 98 T ELT) (($ (-698) $) 96 T ELT) (($ (-488) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-534 |#1|) (-13 (-1162 |#1| (-488)) (-10 -8 (-15 -2192 ($ (-943 (-754 (-488))) (-1073 (-2 (|:| |k| (-488)) (|:| |c| |#1|))))) (-15 -2191 ((-943 (-754 (-488))) $)) (-15 -2190 ((-1073 (-2 (|:| |k| (-488)) (|:| |c| |#1|))) $)) (-15 -3824 ($ (-1073 (-2 (|:| |k| (-488)) (|:| |c| |#1|))))) (-15 -3944 ((-85) $)) (-15 -3821 ($ (-1 |#1| (-488)) $)) (-15 -2189 ((-3 $ "failed") $ $ (-85))) (-15 -2188 ($ $)) (-15 -2187 ($ $ $)) (-15 -2186 ((-776) (-1073 (-2 (|:| |k| (-488)) (|:| |c| |#1|))) (-943 (-754 (-488))) (-1094) |#1| (-352 (-488)))) (IF (|has| |#1| (-38 (-352 (-488)))) (PROGN (-15 -3818 ($ $)) (-15 -2185 ($ $ |#1|)) (-15 -2184 ($ $ (-352 (-488)))) (-15 -2183 ($ $)) (-15 -2182 ($ $)) (-15 -2181 ($ $)) (-15 -2180 ($ $)) (-15 -2179 ($ $)) (-15 -2178 ($ $)) (-15 -2177 ($ $)) (-15 -2176 ($ $)) (-15 -2175 ($ $)) (-15 -2174 ($ $)) (-15 -2173 ($ $)) (-15 -2172 ($ $)) (-15 -2171 ($ $)) (-15 -2170 ($ $)) (-15 -2169 ($ $)) (-15 -2168 ($ $)) (-15 -2167 ($ $)) (-15 -2166 ($ $)) (-15 -2165 ($ $)) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $))) |%noBranch|))) (-965)) (T -534)) +((-3944 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-534 *3)) (-4 *3 (-965)))) (-2192 (*1 *1 *2 *3) (-12 (-5 *2 (-943 (-754 (-488)))) (-5 *3 (-1073 (-2 (|:| |k| (-488)) (|:| |c| *4)))) (-4 *4 (-965)) (-5 *1 (-534 *4)))) (-2191 (*1 *2 *1) (-12 (-5 *2 (-943 (-754 (-488)))) (-5 *1 (-534 *3)) (-4 *3 (-965)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-1073 (-2 (|:| |k| (-488)) (|:| |c| *3)))) (-5 *1 (-534 *3)) (-4 *3 (-965)))) (-3824 (*1 *1 *2) (-12 (-5 *2 (-1073 (-2 (|:| |k| (-488)) (|:| |c| *3)))) (-4 *3 (-965)) (-5 *1 (-534 *3)))) (-3821 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-488))) (-4 *3 (-965)) (-5 *1 (-534 *3)))) (-2189 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-534 *3)) (-4 *3 (-965)))) (-2188 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-965)))) (-2187 (*1 *1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-965)))) (-2186 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1073 (-2 (|:| |k| (-488)) (|:| |c| *6)))) (-5 *4 (-943 (-754 (-488)))) (-5 *5 (-1094)) (-5 *7 (-352 (-488))) (-4 *6 (-965)) (-5 *2 (-776)) (-5 *1 (-534 *6)))) (-3818 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2185 (*1 *1 *1 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2184 (*1 *1 *1 *2) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-534 *3)) (-4 *3 (-38 *2)) (-4 *3 (-965)))) (-2183 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2182 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2181 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2180 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2179 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2178 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2176 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2175 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2168 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 62 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3824 (($ (-1073 |#1|)) 9 T ELT)) (-3730 (($) NIL T CONST)) (-3473 (((-3 $ #1#) $) 44 T ELT)) (-2898 (((-85) $) 56 T ELT)) (-3778 (((-698) $) 61 T ELT) (((-698) $ (-698)) 60 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) 46 (|has| |#1| (-499)) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL (|has| |#1| (-499)) ELT)) (-3823 (((-1073 |#1|) $) 25 T ELT)) (-3132 (((-698)) 55 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 10 T CONST)) (-2672 (($) 14 T CONST)) (-3062 (((-85) $ $) 24 T ELT)) (-3843 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3845 (($ $ $) 27 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 53 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-488)) 38 T ELT))) +(((-535 |#1|) (-13 (-965) (-82 |#1| |#1|) (-10 -8 (-15 -3823 ((-1073 |#1|) $)) (-15 -3824 ($ (-1073 |#1|))) (-15 -2898 ((-85) $)) (-15 -3778 ((-698) $)) (-15 -3778 ((-698) $ (-698))) (-15 * ($ $ (-488))) (IF (|has| |#1| (-499)) (-6 (-499)) |%noBranch|))) (-965)) (T -535)) +((-3823 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-535 *3)) (-4 *3 (-965)))) (-3824 (*1 *1 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-535 *3)))) (-2898 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-535 *3)) (-4 *3 (-965)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-535 *3)) (-4 *3 (-965)))) (-3778 (*1 *2 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-535 *3)) (-4 *3 (-965)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-535 *3)) (-4 *3 (-965))))) +((-2574 (((-85) $ $) NIL T ELT)) (-2195 (($) 8 T CONST)) (-2196 (($) 7 T CONST)) (-2193 (($ $ (-587 $)) 16 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2197 (($) 6 T CONST)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-1099)) 15 T ELT) (((-1099) $) 10 T ELT)) (-2194 (($) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-536) (-13 (-1017) (-433 (-1099)) (-10 -8 (-15 -2197 ($) -3959) (-15 -2196 ($) -3959) (-15 -2195 ($) -3959) (-15 -2194 ($) -3959) (-15 -2193 ($ $ (-587 $)))))) (T -536)) +((-2197 (*1 *1) (-5 *1 (-536))) (-2196 (*1 *1) (-5 *1 (-536))) (-2195 (*1 *1) (-5 *1 (-536))) (-2194 (*1 *1) (-5 *1 (-536))) (-2193 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-536))) (-5 *1 (-536))))) +((-3849 (((-540 |#2|) (-1 |#2| |#1|) (-540 |#1|)) 15 T ELT))) +(((-537 |#1| |#2|) (-13 (-1133) (-10 -7 (-15 -3849 ((-540 |#2|) (-1 |#2| |#1|) (-540 |#1|))))) (-1133) (-1133)) (T -537)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-540 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-540 *6)) (-5 *1 (-537 *5 *6))))) +((-3849 (((-1073 |#3|) (-1 |#3| |#1| |#2|) (-540 |#1|) (-1073 |#2|)) 20 T ELT) (((-1073 |#3|) (-1 |#3| |#1| |#2|) (-1073 |#1|) (-540 |#2|)) 19 T ELT) (((-540 |#3|) (-1 |#3| |#1| |#2|) (-540 |#1|) (-540 |#2|)) 18 T ELT))) +(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -3849 ((-540 |#3|) (-1 |#3| |#1| |#2|) (-540 |#1|) (-540 |#2|))) (-15 -3849 ((-1073 |#3|) (-1 |#3| |#1| |#2|) (-1073 |#1|) (-540 |#2|))) (-15 -3849 ((-1073 |#3|) (-1 |#3| |#1| |#2|) (-540 |#1|) (-1073 |#2|)))) (-1133) (-1133) (-1133)) (T -538)) +((-3849 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-540 *6)) (-5 *5 (-1073 *7)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-4 *8 (-1133)) (-5 *2 (-1073 *8)) (-5 *1 (-538 *6 *7 *8)))) (-3849 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1073 *6)) (-5 *5 (-540 *7)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-4 *8 (-1133)) (-5 *2 (-1073 *8)) (-5 *1 (-538 *6 *7 *8)))) (-3849 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-540 *6)) (-5 *5 (-540 *7)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-4 *8 (-1133)) (-5 *2 (-540 *8)) (-5 *1 (-538 *6 *7 *8))))) +((-2202 ((|#3| |#3| (-587 (-554 |#3|)) (-587 (-1094))) 57 T ELT)) (-2201 (((-144 |#2|) |#3|) 122 T ELT)) (-2198 ((|#3| (-144 |#2|)) 46 T ELT)) (-2199 ((|#2| |#3|) 21 T ELT)) (-2200 ((|#3| |#2|) 35 T ELT))) +(((-539 |#1| |#2| |#3|) (-10 -7 (-15 -2198 (|#3| (-144 |#2|))) (-15 -2199 (|#2| |#3|)) (-15 -2200 (|#3| |#2|)) (-15 -2201 ((-144 |#2|) |#3|)) (-15 -2202 (|#3| |#3| (-587 (-554 |#3|)) (-587 (-1094))))) (-499) (-13 (-366 |#1|) (-919) (-1119)) (-13 (-366 (-144 |#1|)) (-919) (-1119))) (T -539)) +((-2202 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-587 (-554 *2))) (-5 *4 (-587 (-1094))) (-4 *2 (-13 (-366 (-144 *5)) (-919) (-1119))) (-4 *5 (-499)) (-5 *1 (-539 *5 *6 *2)) (-4 *6 (-13 (-366 *5) (-919) (-1119))))) (-2201 (*1 *2 *3) (-12 (-4 *4 (-499)) (-5 *2 (-144 *5)) (-5 *1 (-539 *4 *5 *3)) (-4 *5 (-13 (-366 *4) (-919) (-1119))) (-4 *3 (-13 (-366 (-144 *4)) (-919) (-1119))))) (-2200 (*1 *2 *3) (-12 (-4 *4 (-499)) (-4 *2 (-13 (-366 (-144 *4)) (-919) (-1119))) (-5 *1 (-539 *4 *3 *2)) (-4 *3 (-13 (-366 *4) (-919) (-1119))))) (-2199 (*1 *2 *3) (-12 (-4 *4 (-499)) (-4 *2 (-13 (-366 *4) (-919) (-1119))) (-5 *1 (-539 *4 *2 *3)) (-4 *3 (-13 (-366 (-144 *4)) (-919) (-1119))))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-144 *5)) (-4 *5 (-13 (-366 *4) (-919) (-1119))) (-4 *4 (-499)) (-4 *2 (-13 (-366 (-144 *4)) (-919) (-1119))) (-5 *1 (-539 *4 *5 *2))))) +((-3716 (($ (-1 (-85) |#1|) $) 19 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3463 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3462 (($ (-1 (-85) |#1|) $) 15 T ELT)) (-3461 (($ (-1 (-85) |#1|) $) 17 T ELT)) (-3536 (((-1073 |#1|) $) 20 T ELT)) (-3953 (((-776) $) 25 T ELT))) +(((-540 |#1|) (-13 (-383 |#1|) (-556 (-776)) (-10 -8 (-15 -3462 ($ (-1 (-85) |#1|) $)) (-15 -3461 ($ (-1 (-85) |#1|) $)) (-15 -3716 ($ (-1 (-85) |#1|) $)) (-15 -3463 ($ (-1 |#1| |#1|) |#1|)) (-15 -3536 ((-1073 |#1|) $)))) (-1133)) (T -540)) +((-3462 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1133)) (-5 *1 (-540 *3)))) (-3461 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1133)) (-5 *1 (-540 *3)))) (-3716 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1133)) (-5 *1 (-540 *3)))) (-3463 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1133)) (-5 *1 (-540 *3)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-540 *3)) (-4 *3 (-1133))))) +((-2203 (((-1189) $ |#2| |#2|) 34 T ELT)) (-2205 ((|#2| $) 23 T ELT)) (-2206 ((|#2| $) 21 T ELT)) (-3849 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3807 ((|#3| $) 26 T ELT)) (-2204 (($ $ |#3|) 32 T ELT)) (-2207 (((-85) |#3| $) 17 T ELT)) (-2210 (((-587 |#3|) $) 15 T ELT)) (-3806 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) +(((-541 |#1| |#2| |#3|) (-10 -7 (-15 -2203 ((-1189) |#1| |#2| |#2|)) (-15 -2204 (|#1| |#1| |#3|)) (-15 -3807 (|#3| |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -2207 ((-85) |#3| |#1|)) (-15 -2210 ((-587 |#3|) |#1|)) (-15 -3806 (|#3| |#1| |#2|)) (-15 -3806 (|#3| |#1| |#2| |#3|)) (-15 -3849 (|#1| (-1 |#3| |#3|) |#1|))) (-542 |#2| |#3|) (-72) (-1133)) (T -541)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-2203 (((-1189) $ |#1| |#1|) 35 (|has| $ (-1039 |#2|)) ELT)) (-3794 ((|#2| $ |#1| |#2|) 47 (|has| $ (-1039 |#2|)) ELT)) (-3730 (($) 6 T CONST)) (-1580 ((|#2| $ |#1| |#2|) 48 (|has| $ (-1039 |#2|)) ELT)) (-3118 ((|#2| $ |#1|) 46 T ELT)) (-2205 ((|#1| $) 38 (|has| |#1| (-760)) ELT)) (-2206 ((|#1| $) 39 (|has| |#1| (-760)) ELT)) (-3849 (($ (-1 |#2| |#2|) $) 26 T ELT)) (-3248 (((-1077) $) 21 (|has| |#2| (-1017)) ELT)) (-2208 (((-587 |#1|) $) 41 T ELT)) (-2209 (((-85) |#1| $) 42 T ELT)) (-3249 (((-1037) $) 20 (|has| |#2| (-1017)) ELT)) (-3807 ((|#2| $) 37 (|has| |#1| (-760)) ELT)) (-2204 (($ $ |#2|) 36 (|has| $ (-1039 |#2|)) ELT)) (-3774 (($ $ (-587 (-251 |#2|))) 25 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-251 |#2|)) 24 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ |#2| |#2|) 23 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) 22 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-2207 (((-85) |#2| $) 40 (-12 (|has| $ (-320 |#2|)) (|has| |#2| (-72))) ELT)) (-2210 (((-587 |#2|) $) 43 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#2| $ |#1| |#2|) 45 T ELT) ((|#2| $ |#1|) 44 T ELT)) (-3406 (($ $) 9 T ELT)) (-3953 (((-776) $) 16 (|has| |#2| (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-3062 (((-85) $ $) 17 (|has| |#2| (-72)) ELT))) +(((-542 |#1| |#2|) (-113) (-72) (-1133)) (T -542)) +((-2210 (*1 *2 *1) (-12 (-4 *1 (-542 *3 *4)) (-4 *3 (-72)) (-4 *4 (-1133)) (-5 *2 (-587 *4)))) (-2209 (*1 *2 *3 *1) (-12 (-4 *1 (-542 *3 *4)) (-4 *3 (-72)) (-4 *4 (-1133)) (-5 *2 (-85)))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-542 *3 *4)) (-4 *3 (-72)) (-4 *4 (-1133)) (-5 *2 (-587 *3)))) (-2207 (*1 *2 *3 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-72)) (-4 *1 (-542 *4 *3)) (-4 *4 (-72)) (-4 *3 (-1133)) (-5 *2 (-85)))) (-2206 (*1 *2 *1) (-12 (-4 *1 (-542 *2 *3)) (-4 *3 (-1133)) (-4 *2 (-72)) (-4 *2 (-760)))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-542 *2 *3)) (-4 *3 (-1133)) (-4 *2 (-72)) (-4 *2 (-760)))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-542 *3 *2)) (-4 *3 (-72)) (-4 *3 (-760)) (-4 *2 (-1133)))) (-2204 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-542 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1133)))) (-2203 (*1 *2 *1 *3 *3) (-12 (-4 *1 (-1039 *4)) (-4 *1 (-542 *3 *4)) (-4 *3 (-72)) (-4 *4 (-1133)) (-5 *2 (-1189))))) +(-13 (-432 |t#2|) (-245 |t#1| |t#2|) (-10 -8 (-15 -2210 ((-587 |t#2|) $)) (-15 -2209 ((-85) |t#1| $)) (-15 -2208 ((-587 |t#1|) $)) (IF (|has| |t#2| (-72)) (IF (|has| $ (-320 |t#2|)) (-15 -2207 ((-85) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-760)) (PROGN (-15 -2206 (|t#1| $)) (-15 -2205 (|t#1| $)) (-15 -3807 (|t#2| $))) |%noBranch|) (IF (|has| $ (-1039 |t#2|)) (PROGN (-15 -2204 ($ $ |t#2|)) (-15 -2203 ((-1189) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#2| (-1017)) (|has| |#2| (-72))) ((-556 (-776)) OR (|has| |#2| (-1017)) (|has| |#2| (-556 (-776)))) ((-243 |#1| |#2|) . T) ((-245 |#1| |#2|) . T) ((-262 |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ((-383 |#2|) . T) ((-432 |#2|) . T) ((-459 |#2| |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ((-13) . T) ((-1017) |has| |#2| (-1017)) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT) (((-1134) $) 15 T ELT) (($ (-587 (-1134))) 14 T ELT)) (-2211 (((-587 (-1134)) $) 12 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-543) (-13 (-999) (-556 (-1134)) (-10 -8 (-15 -3953 ($ (-587 (-1134)))) (-15 -2211 ((-587 (-1134)) $))))) (T -543)) +((-3953 (*1 *1 *2) (-12 (-5 *2 (-587 (-1134))) (-5 *1 (-543)))) (-2211 (*1 *2 *1) (-12 (-5 *2 (-587 (-1134))) (-5 *1 (-543))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1780 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-1316 (((-3 $ #1#) $ $) NIL T ELT)) (-3229 (((-1183 (-634 |#1|))) NIL (|has| |#2| (-363 |#1|)) ELT) (((-1183 (-634 |#1|)) (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1733 (((-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-3730 (($) NIL T CONST)) (-1914 (((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) #1#)) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-1707 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-1796 (((-634 |#1|)) NIL (|has| |#2| (-363 |#1|)) ELT) (((-634 |#1|) (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1731 ((|#1| $) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1794 (((-634 |#1|) $) NIL (|has| |#2| (-363 |#1|)) ELT) (((-634 |#1|) $ (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-2409 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-1908 (((-1089 (-861 |#1|))) NIL (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-314))) ELT)) (-2412 (($ $ (-834)) NIL T ELT)) (-1729 ((|#1| $) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1709 (((-1089 |#1|) $) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-1798 ((|#1|) NIL (|has| |#2| (-363 |#1|)) ELT) ((|#1| (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1727 (((-1089 |#1|) $) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1721 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1800 (($ (-1183 |#1|)) NIL (|has| |#2| (-363 |#1|)) ELT) (($ (-1183 |#1|) (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-3473 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-3114 (((-834)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-2439 (($ $ (-834)) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-1714 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1915 (((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) #1#)) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-1708 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-1797 (((-634 |#1|)) NIL (|has| |#2| (-363 |#1|)) ELT) (((-634 |#1|) (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1732 ((|#1| $) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1795 (((-634 |#1|) $) NIL (|has| |#2| (-363 |#1|)) ELT) (((-634 |#1|) $ (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-2410 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-1912 (((-1089 (-861 |#1|))) NIL (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-314))) ELT)) (-2411 (($ $ (-834)) NIL T ELT)) (-1730 ((|#1| $) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1710 (((-1089 |#1|) $) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-1799 ((|#1|) NIL (|has| |#2| (-363 |#1|)) ELT) ((|#1| (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1728 (((-1089 |#1|) $) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1722 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1713 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1720 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-3806 ((|#1| $ (-488)) NIL (|has| |#2| (-363 |#1|)) ELT)) (-3230 (((-634 |#1|) (-1183 $)) NIL (|has| |#2| (-363 |#1|)) ELT) (((-1183 |#1|) $) NIL (|has| |#2| (-363 |#1|)) ELT) (((-634 |#1|) (-1183 $) (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT) (((-1183 |#1|) $ (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-3978 (($ (-1183 |#1|)) NIL (|has| |#2| (-363 |#1|)) ELT) (((-1183 |#1|) $) NIL (|has| |#2| (-363 |#1|)) ELT)) (-1900 (((-587 (-861 |#1|))) NIL (|has| |#2| (-363 |#1|)) ELT) (((-587 (-861 |#1|)) (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-2441 (($ $ $) NIL T ELT)) (-1726 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-3953 (((-776) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 $)) NIL (|has| |#2| (-363 |#1|)) ELT)) (-1711 (((-587 (-1183 |#1|))) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-2442 (($ $ $ $) NIL T ELT)) (-1724 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-2551 (($ (-634 |#1|) $) NIL (|has| |#2| (-363 |#1|)) ELT)) (-2440 (($ $ $) NIL T ELT)) (-1725 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1723 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-2666 (($) NIL T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) 24 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-544 |#1| |#2|) (-13 (-687 |#1|) (-556 |#2|) (-10 -8 (-15 -3953 ($ |#2|)) (IF (|has| |#2| (-363 |#1|)) (-6 (-363 |#1|)) |%noBranch|) (IF (|has| |#2| (-318 |#1|)) (-6 (-318 |#1|)) |%noBranch|))) (-148) (-687 |#1|)) (T -544)) +((-3953 (*1 *1 *2) (-12 (-4 *3 (-148)) (-5 *1 (-544 *3 *2)) (-4 *2 (-687 *3))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-101)) 6 T ELT) (((-101) $) 7 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-545) (-13 (-1017) (-433 (-101)))) (T -545)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-2318 (($ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2213 (($) 10 T CONST)) (-2235 (($) 8 T CONST)) (-2212 (($) 11 T CONST)) (-2231 (($) 9 T CONST)) (-2228 (($) 12 T CONST)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2316 (($ $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2317 (($ $ $) NIL T ELT))) +(((-546) (-13 (-1017) (-608) (-10 -8 (-15 -2235 ($) -3959) (-15 -2231 ($) -3959) (-15 -2213 ($) -3959) (-15 -2212 ($) -3959) (-15 -2228 ($) -3959)))) (T -546)) +((-2235 (*1 *1) (-5 *1 (-546))) (-2231 (*1 *1) (-5 *1 (-546))) (-2213 (*1 *1) (-5 *1 (-546))) (-2212 (*1 *1) (-5 *1 (-546))) (-2228 (*1 *1) (-5 *1 (-546)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2224 (($) 11 T CONST)) (-2218 (($) 17 T CONST)) (-2214 (($) 21 T CONST)) (-2216 (($) 19 T CONST)) (-2221 (($) 14 T CONST)) (-2215 (($) 20 T CONST)) (-2223 (($) 12 T CONST)) (-2222 (($) 13 T CONST)) (-2217 (($) 18 T CONST)) (-2220 (($) 15 T CONST)) (-2219 (($) 16 T CONST)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (((-101) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-547) (-13 (-1017) (-556 (-101)) (-10 -8 (-15 -2224 ($) -3959) (-15 -2223 ($) -3959) (-15 -2222 ($) -3959) (-15 -2221 ($) -3959) (-15 -2220 ($) -3959) (-15 -2219 ($) -3959) (-15 -2218 ($) -3959) (-15 -2217 ($) -3959) (-15 -2216 ($) -3959) (-15 -2215 ($) -3959) (-15 -2214 ($) -3959)))) (T -547)) +((-2224 (*1 *1) (-5 *1 (-547))) (-2223 (*1 *1) (-5 *1 (-547))) (-2222 (*1 *1) (-5 *1 (-547))) (-2221 (*1 *1) (-5 *1 (-547))) (-2220 (*1 *1) (-5 *1 (-547))) (-2219 (*1 *1) (-5 *1 (-547))) (-2218 (*1 *1) (-5 *1 (-547))) (-2217 (*1 *1) (-5 *1 (-547))) (-2216 (*1 *1) (-5 *1 (-547))) (-2215 (*1 *1) (-5 *1 (-547))) (-2214 (*1 *1) (-5 *1 (-547)))) +((-2574 (((-85) $ $) NIL T ELT)) (-2318 (($ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2226 (($) 13 T CONST)) (-2225 (($) 14 T CONST)) (-2232 (($) 11 T CONST)) (-2235 (($) 8 T CONST)) (-2233 (($) 10 T CONST)) (-2234 (($) 9 T CONST)) (-2231 (($) 12 T CONST)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2316 (($ $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2317 (($ $ $) NIL T ELT))) +(((-548) (-13 (-1017) (-608) (-10 -8 (-15 -2235 ($) -3959) (-15 -2234 ($) -3959) (-15 -2233 ($) -3959) (-15 -2232 ($) -3959) (-15 -2231 ($) -3959) (-15 -2226 ($) -3959) (-15 -2225 ($) -3959)))) (T -548)) +((-2235 (*1 *1) (-5 *1 (-548))) (-2234 (*1 *1) (-5 *1 (-548))) (-2233 (*1 *1) (-5 *1 (-548))) (-2232 (*1 *1) (-5 *1 (-548))) (-2231 (*1 *1) (-5 *1 (-548))) (-2226 (*1 *1) (-5 *1 (-548))) (-2225 (*1 *1) (-5 *1 (-548)))) +((-2574 (((-85) $ $) NIL T ELT)) (-2318 (($ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2230 (($) 13 T CONST)) (-2227 (($) 16 T CONST)) (-2232 (($) 11 T CONST)) (-2235 (($) 8 T CONST)) (-2233 (($) 10 T CONST)) (-2234 (($) 9 T CONST)) (-2229 (($) 14 T CONST)) (-2231 (($) 12 T CONST)) (-2228 (($) 15 T CONST)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2316 (($ $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2317 (($ $ $) NIL T ELT))) +(((-549) (-13 (-1017) (-608) (-10 -8 (-15 -2235 ($) -3959) (-15 -2234 ($) -3959) (-15 -2233 ($) -3959) (-15 -2232 ($) -3959) (-15 -2231 ($) -3959) (-15 -2230 ($) -3959) (-15 -2229 ($) -3959) (-15 -2228 ($) -3959) (-15 -2227 ($) -3959)))) (T -549)) +((-2235 (*1 *1) (-5 *1 (-549))) (-2234 (*1 *1) (-5 *1 (-549))) (-2233 (*1 *1) (-5 *1 (-549))) (-2232 (*1 *1) (-5 *1 (-549))) (-2231 (*1 *1) (-5 *1 (-549))) (-2230 (*1 *1) (-5 *1 (-549))) (-2229 (*1 *1) (-5 *1 (-549))) (-2228 (*1 *1) (-5 *1 (-549))) (-2227 (*1 *1) (-5 *1 (-549)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 19 T ELT) (($ (-545)) 12 T ELT) (((-545) $) 11 T ELT) (($ (-101)) NIL T ELT) (((-101) $) 14 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-550) (-13 (-1017) (-433 (-545)) (-433 (-101)))) (T -550)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-1701 (((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) $ (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) 40 T ELT)) (-3605 (($ (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2203 (((-1189) $ (-1077) (-1077)) NIL (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ (-1077) |#1|) 50 (|has| $ (-1039 |#1|)) ELT)) (-1574 (($ (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) ELT)) (-3716 (($ (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) ELT)) (-2236 (((-3 |#1| #1="failed") (-1077) $) 53 T ELT)) (-3730 (($) NIL T CONST)) (-1705 (($ $ (-1077)) 25 T ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-72))) ELT)) (-3411 (((-3 |#1| #1#) (-1077) $) 54 T ELT) (($ (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) ELT) (($ (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) $) NIL (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) ELT)) (-3412 (($ (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) ELT) (($ (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-72))) ELT)) (-3848 (((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL T ELT) (((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $ (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) NIL T ELT) (((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $ (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) NIL (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-72)) ELT)) (-1702 (((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1580 ((|#1| $ (-1077) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-1077)) NIL T ELT)) (-2276 (($ $) 55 T ELT)) (-1706 (($ (-340)) 23 T ELT) (($ (-340) (-1077)) 22 T ELT)) (-3548 (((-340) $) 41 T ELT)) (-2205 (((-1077) $) NIL (|has| (-1077) (-760)) ELT)) (-2614 (((-587 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3251 (((-85) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-72)) ELT)) (-2206 (((-1077) $) NIL (|has| (-1077) (-760)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2237 (((-587 (-1077)) $) 46 T ELT)) (-2238 (((-85) (-1077) $) NIL T ELT)) (-1703 (((-1077) $) 42 T ELT)) (-1278 (((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3615 (($ (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2208 (((-587 (-1077)) $) NIL T ELT)) (-2209 (((-85) (-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3807 ((|#1| $) NIL (|has| (-1077) (-760)) ELT)) (-1734 (((-3 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2204 (($ $ |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-1279 (((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1736 (((-85) (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1017))) ELT) (($ $ (-587 (-251 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) 44 T ELT)) (-3806 ((|#1| $ (-1077) |#1|) NIL T ELT) ((|#1| $ (-1077)) 49 T ELT)) (-1470 (($ (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1735 (((-698) (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL T ELT) (((-698) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-72)) ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) NIL (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-557 (-477))) ELT)) (-3536 (($ (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) NIL T ELT)) (-3953 (((-776) $) 21 T ELT)) (-1704 (($ $) 26 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-1280 (($ (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) NIL T ELT)) (-1737 (((-85) (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3062 (((-85) $ $) 20 T ELT)) (-3964 (((-698) $) 48 T ELT))) +(((-551 |#1|) (-13 (-316 (-340) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) (-1111 (-1077) |#1|) (-10 -8 (-15 -2276 ($ $)))) (-1017)) (T -551)) +((-2276 (*1 *1 *1) (-12 (-5 *1 (-551 *2)) (-4 *2 (-1017))))) +((-2237 (((-587 |#2|) $) 19 T ELT)) (-2238 (((-85) |#2| $) 12 T ELT)) (-3806 ((|#3| $ |#2|) 20 T ELT) ((|#3| $ |#2| |#3|) 21 T ELT))) +(((-552 |#1| |#2| |#3|) (-10 -7 (-15 -2237 ((-587 |#2|) |#1|)) (-15 -2238 ((-85) |#2| |#1|)) (-15 -3806 (|#3| |#1| |#2| |#3|)) (-15 -3806 (|#3| |#1| |#2|))) (-553 |#2| |#3|) (-1017) (-1017)) (T -552)) +NIL +((-2574 (((-85) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2203 (((-1189) $ |#1| |#1|) 82 (|has| $ (-1039 |#2|)) ELT)) (-3794 ((|#2| $ |#1| |#2|) 70 (|has| $ (-1039 |#2|)) ELT)) (-1574 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 42 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3716 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-2236 (((-3 |#2| "failed") |#1| $) 59 T ELT)) (-3730 (($) 6 T CONST)) (-1357 (($ $) 51 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) ELT)) (-3411 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 44 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 43 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| "failed") |#1| $) 60 T ELT)) (-3412 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 50 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-1580 ((|#2| $ |#1| |#2|) 69 (|has| $ (-1039 |#2|)) ELT)) (-3118 ((|#2| $ |#1|) 71 T ELT)) (-2205 ((|#1| $) 79 (|has| |#1| (-760)) ELT)) (-2206 ((|#1| $) 78 (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 39 T ELT) (($ (-1 |#2| |#2|) $) 63 T ELT)) (-3849 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 26 T ELT) (($ (-1 |#2| |#2|) $) 64 T ELT)) (-3248 (((-1077) $) 21 (OR (|has| |#2| (-1017)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT)) (-2237 (((-587 |#1|) $) 61 T ELT)) (-2238 (((-85) |#1| $) 62 T ELT)) (-1278 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 35 T ELT)) (-3615 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 36 T ELT)) (-2208 (((-587 |#1|) $) 76 T ELT)) (-2209 (((-85) |#1| $) 75 T ELT)) (-3249 (((-1037) $) 20 (OR (|has| |#2| (-1017)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT)) (-3807 ((|#2| $) 80 (|has| |#1| (-760)) ELT)) (-2204 (($ $ |#2|) 81 (|has| $ (-1039 |#2|)) ELT)) (-1279 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 37 T ELT)) (-3774 (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) 25 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 24 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 23 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 22 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) 68 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ |#2| |#2|) 67 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-251 |#2|)) 66 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 (-251 |#2|))) 65 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-2207 (((-85) |#2| $) 77 (-12 (|has| $ (-320 |#2|)) (|has| |#2| (-72))) ELT)) (-2210 (((-587 |#2|) $) 74 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#2| $ |#1|) 73 T ELT) ((|#2| $ |#1| |#2|) 72 T ELT)) (-1470 (($) 46 T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 45 T ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 52 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-557 (-477))) ELT)) (-3536 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 47 T ELT)) (-3953 (((-776) $) 16 (OR (|has| |#2| (-556 (-776))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-556 (-776)))) ELT)) (-1269 (((-85) $ $) 19 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1280 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 38 T ELT)) (-3062 (((-85) $ $) 17 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT))) +(((-553 |#1| |#2|) (-113) (-1017) (-1017)) (T -553)) +((-2238 (*1 *2 *3 *1) (-12 (-4 *1 (-553 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-5 *2 (-85)))) (-2237 (*1 *2 *1) (-12 (-4 *1 (-553 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-5 *2 (-587 *3)))) (-3411 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-553 *3 *2)) (-4 *3 (-1017)) (-4 *2 (-1017)))) (-2236 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-553 *3 *2)) (-4 *3 (-1017)) (-4 *2 (-1017))))) +(-13 (-185 (-2 (|:| -3867 |t#1|) (|:| |entry| |t#2|))) (-542 |t#1| |t#2|) (-1039 |t#2|) (-10 -8 (-15 -2238 ((-85) |t#1| $)) (-15 -2237 ((-587 |t#1|) $)) (-15 -3411 ((-3 |t#2| "failed") |t#1| $)) (-15 -2236 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-76 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1017)) (|has| |#2| (-72))) ((-556 (-776)) OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-556 (-776))) (|has| |#2| (-1017)) (|has| |#2| (-556 (-776)))) ((-124 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-557 (-477)) |has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-557 (-477))) ((-185 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-195 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-243 |#1| |#2|) . T) ((-245 |#1| |#2|) . T) ((-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ((-262 |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ((-383 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-383 |#2|) . T) ((-432 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-432 |#2|) . T) ((-542 |#1| |#2|) . T) ((-459 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ((-459 |#2| |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ((-13) . T) ((-1017) OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017))) ((-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-1039 |#2|) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-2239 (((-3 (-1094) "failed") $) 46 T ELT)) (-1317 (((-1189) $ (-698)) 22 T ELT)) (-3425 (((-698) $) 20 T ELT)) (-3601 (((-86) $) 9 T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2240 (($ (-86) (-587 |#1|) (-698)) 32 T ELT) (($ (-1094)) 33 T ELT)) (-2639 (((-85) $ (-86)) 15 T ELT) (((-85) $ (-1094)) 13 T ELT)) (-2609 (((-698) $) 17 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3978 (((-804 (-488)) $) 99 (|has| |#1| (-557 (-804 (-488)))) ELT) (((-804 (-332)) $) 106 (|has| |#1| (-557 (-804 (-332)))) ELT) (((-477) $) 92 (|has| |#1| (-557 (-477))) ELT)) (-3953 (((-776) $) 74 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2241 (((-587 |#1|) $) 19 T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 51 T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 53 T ELT))) +(((-554 |#1|) (-13 (-105) (-760) (-798 |#1|) (-10 -8 (-15 -3601 ((-86) $)) (-15 -2241 ((-587 |#1|) $)) (-15 -2609 ((-698) $)) (-15 -2240 ($ (-86) (-587 |#1|) (-698))) (-15 -2240 ($ (-1094))) (-15 -2239 ((-3 (-1094) "failed") $)) (-15 -2639 ((-85) $ (-86))) (-15 -2639 ((-85) $ (-1094))) (IF (|has| |#1| (-557 (-477))) (-6 (-557 (-477))) |%noBranch|))) (-1017)) (T -554)) +((-3601 (*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-554 *3)) (-4 *3 (-1017)))) (-2241 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-554 *3)) (-4 *3 (-1017)))) (-2609 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-554 *3)) (-4 *3 (-1017)))) (-2240 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-86)) (-5 *3 (-587 *5)) (-5 *4 (-698)) (-4 *5 (-1017)) (-5 *1 (-554 *5)))) (-2240 (*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-554 *3)) (-4 *3 (-1017)))) (-2239 (*1 *2 *1) (|partial| -12 (-5 *2 (-1094)) (-5 *1 (-554 *3)) (-4 *3 (-1017)))) (-2639 (*1 *2 *1 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-554 *4)) (-4 *4 (-1017)))) (-2639 (*1 *2 *1 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-85)) (-5 *1 (-554 *4)) (-4 *4 (-1017))))) +((-2242 (((-554 |#2|) |#1|) 17 T ELT)) (-2243 (((-3 |#1| "failed") (-554 |#2|)) 21 T ELT))) +(((-555 |#1| |#2|) (-10 -7 (-15 -2242 ((-554 |#2|) |#1|)) (-15 -2243 ((-3 |#1| "failed") (-554 |#2|)))) (-1017) (-1017)) (T -555)) +((-2243 (*1 *2 *3) (|partial| -12 (-5 *3 (-554 *4)) (-4 *4 (-1017)) (-4 *2 (-1017)) (-5 *1 (-555 *2 *4)))) (-2242 (*1 *2 *3) (-12 (-5 *2 (-554 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017))))) +((-3953 ((|#1| $) 6 T ELT))) +(((-556 |#1|) (-113) (-1133)) (T -556)) +((-3953 (*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1133))))) +(-13 (-10 -8 (-15 -3953 (|t#1| $)))) +((-3978 ((|#1| $) 6 T ELT))) +(((-557 |#1|) (-113) (-1133)) (T -557)) +((-3978 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1133))))) +(-13 (-10 -8 (-15 -3978 (|t#1| $)))) +((-2244 (((-3 (-1089 (-352 |#2|)) #1="failed") (-352 |#2|) (-352 |#2|) (-352 |#2|) (-1 (-350 |#2|) |#2|)) 15 T ELT) (((-3 (-1089 (-352 |#2|)) #1#) (-352 |#2|) (-352 |#2|) (-352 |#2|)) 16 T ELT))) +(((-558 |#1| |#2|) (-10 -7 (-15 -2244 ((-3 (-1089 (-352 |#2|)) #1="failed") (-352 |#2|) (-352 |#2|) (-352 |#2|))) (-15 -2244 ((-3 (-1089 (-352 |#2|)) #1#) (-352 |#2|) (-352 |#2|) (-352 |#2|) (-1 (-350 |#2|) |#2|)))) (-13 (-120) (-27) (-954 (-488)) (-954 (-352 (-488)))) (-1159 |#1|)) (T -558)) +((-2244 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-350 *6) *6)) (-4 *6 (-1159 *5)) (-4 *5 (-13 (-120) (-27) (-954 (-488)) (-954 (-352 (-488))))) (-5 *2 (-1089 (-352 *6))) (-5 *1 (-558 *5 *6)) (-5 *3 (-352 *6)))) (-2244 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-120) (-27) (-954 (-488)) (-954 (-352 (-488))))) (-4 *5 (-1159 *4)) (-5 *2 (-1089 (-352 *5))) (-5 *1 (-558 *4 *5)) (-5 *3 (-352 *5))))) +((-3953 (($ |#1|) 6 T ELT))) +(((-559 |#1|) (-113) (-1133)) (T -559)) +((-3953 (*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-1133))))) +(-13 (-10 -8 (-15 -3953 ($ |t#1|)))) +((-2574 (((-85) $ $) NIL T ELT)) (-2318 (($ $) NIL T ELT)) (-2245 (($) 11 T CONST)) (-2861 (($) 13 T CONST)) (-3142 (((-698)) 36 T ELT)) (-3000 (($) NIL T ELT)) (-2567 (($ $ $) 25 T ELT)) (-2566 (($ $) 23 T ELT)) (-2015 (((-834) $) 43 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2405 (($ (-834)) 42 T ELT)) (-2859 (($ $ $) 26 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2860 (($) 9 T CONST)) (-2858 (($ $ $) 27 T ELT)) (-3953 (((-776) $) 34 T ELT)) (-3572 (((-85) $ (|[\|\|]| -2860)) 20 T ELT) (((-85) $ (|[\|\|]| -2245)) 22 T ELT) (((-85) $ (|[\|\|]| -2861)) 18 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2568 (($ $ $) 24 T ELT)) (-2316 (($ $ $) NIL T ELT)) (-3062 (((-85) $ $) 16 T ELT)) (-2317 (($ $ $) NIL T ELT))) +(((-560) (-13 (-884) (-322) (-10 -8 (-15 -2245 ($) -3959) (-15 -3572 ((-85) $ (|[\|\|]| -2860))) (-15 -3572 ((-85) $ (|[\|\|]| -2245))) (-15 -3572 ((-85) $ (|[\|\|]| -2861)))))) (T -560)) +((-2245 (*1 *1) (-5 *1 (-560))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2860)) (-5 *2 (-85)) (-5 *1 (-560)))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2245)) (-5 *2 (-85)) (-5 *1 (-560)))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2861)) (-5 *2 (-85)) (-5 *1 (-560))))) +((-3978 (($ |#1|) 6 T ELT))) +(((-561 |#1|) (-113) (-1133)) (T -561)) +((-3978 (*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-1133))))) +(-13 (-10 -8 (-15 -3978 ($ |t#1|)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3629 (((-488) $) NIL (|has| |#1| (-759)) ELT)) (-3730 (($) NIL T CONST)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3192 (((-85) $) NIL (|has| |#1| (-759)) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3004 ((|#1| $) 13 T ELT)) (-3193 (((-85) $) NIL (|has| |#1| (-759)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-759)) ELT)) (-2863 (($ $ $) NIL (|has| |#1| (-759)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3003 ((|#3| $) 15 T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3132 (((-698)) 20 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3389 (($ $) NIL (|has| |#1| (-759)) ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) 12 T CONST)) (-2572 (((-85) $ $) NIL (|has| |#1| (-759)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#1| (-759)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL (|has| |#1| (-759)) ELT)) (-2691 (((-85) $ $) NIL (|has| |#1| (-759)) ELT)) (-3956 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-562 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-759)) (-6 (-759)) |%noBranch|) (-15 -3956 ($ $ |#3|)) (-15 -3956 ($ |#1| |#3|)) (-15 -3004 (|#1| $)) (-15 -3003 (|#3| $)))) (-38 |#2|) (-148) (|SubsetCategory| (-667) |#2|)) (T -562)) +((-3956 (*1 *1 *1 *2) (-12 (-4 *4 (-148)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-667) *4)))) (-3956 (*1 *1 *2 *3) (-12 (-4 *4 (-148)) (-5 *1 (-562 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-667) *4)))) (-3004 (*1 *2 *1) (-12 (-4 *3 (-148)) (-4 *2 (-38 *3)) (-5 *1 (-562 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-667) *3)))) (-3003 (*1 *2 *1) (-12 (-4 *4 (-148)) (-4 *2 (|SubsetCategory| (-667) *4)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-38 *4))))) +((-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-563 |#1| |#2|) (-10 -7 (-15 -3953 (|#1| |#2|)) (-15 -3953 (|#1| (-488))) (-15 -3953 ((-776) |#1|))) (-564 |#2|) (-965)) (T -563)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#1|) 49 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#1| $) 50 T ELT))) +(((-564 |#1|) (-113) (-965)) (T -564)) +((-3953 (*1 *1 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-965))))) +(-13 (-965) (-594 |t#1|) (-10 -8 (-15 -3953 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-559 (-488)) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-667) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-2246 ((|#2| |#2| (-1094) (-1094)) 16 T ELT))) +(((-565 |#1| |#2|) (-10 -7 (-15 -2246 (|#2| |#2| (-1094) (-1094)))) (-13 (-260) (-120) (-954 (-488)) (-584 (-488))) (-13 (-1119) (-875) (-29 |#1|))) (T -565)) +((-2246 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-5 *1 (-565 *4 *2)) (-4 *2 (-13 (-1119) (-875) (-29 *4)))))) +((-2574 (((-85) $ $) 64 T ELT)) (-3194 (((-85) $) 58 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-2247 ((|#1| $) 55 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1612 (((-85) $ $) NIL (|has| |#1| (-314)) ELT)) (-3757 (((-2 (|:| -1770 $) (|:| -1769 (-352 |#2|))) (-352 |#2|)) 111 (|has| |#1| (-314)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3162 (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2570 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3965 (($ $) 27 T ELT)) (-3473 (((-3 $ #1#) $) 88 T ELT)) (-2569 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL (|has| |#1| (-314)) ELT)) (-3778 (((-488) $) 22 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-3944 (((-85) $) 40 T ELT)) (-2899 (($ |#1| (-488)) 24 T ELT)) (-3180 ((|#1| $) 57 T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#1| (-314)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) 101 (|has| |#1| (-314)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3472 (((-3 $ #1#) $ $) 93 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-1611 (((-698) $) 115 (|has| |#1| (-314)) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 114 (|has| |#1| (-314)) ELT)) (-3764 (($ $ (-1 |#2| |#2|) (-698)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-191)) ELT) (($ $ (-698)) NIL (|has| |#2| (-191)) ELT) (($ $ (-1094)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#2| (-815 (-1094))) ELT)) (-3955 (((-488) $) 38 T ELT)) (-3978 (((-352 |#2|) $) 47 T ELT)) (-3953 (((-776) $) 69 T ELT) (($ (-488)) 35 T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3683 ((|#1| $ (-488)) 72 T ELT)) (-2708 (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-3132 (((-698)) 32 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 9 T CONST)) (-2672 (($) 14 T CONST)) (-2675 (($ $ (-1 |#2| |#2|) (-698)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-191)) ELT) (($ $ (-698)) NIL (|has| |#2| (-191)) ELT) (($ $ (-1094)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#2| (-815 (-1094))) ELT)) (-3062 (((-85) $ $) 21 T ELT)) (-3843 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 90 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 29 T ELT) (($ $ $) 49 T ELT))) +(((-566 |#1| |#2|) (-13 (-186 |#2|) (-499) (-557 (-352 |#2|)) (-357 |#1|) (-954 |#2|) (-10 -8 (-15 -3944 ((-85) $)) (-15 -3955 ((-488) $)) (-15 -3778 ((-488) $)) (-15 -3965 ($ $)) (-15 -3180 (|#1| $)) (-15 -2247 (|#1| $)) (-15 -3683 (|#1| $ (-488))) (-15 -2899 ($ |#1| (-488))) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-314)) (PROGN (-6 (-260)) (-15 -3757 ((-2 (|:| -1770 $) (|:| -1769 (-352 |#2|))) (-352 |#2|)))) |%noBranch|))) (-499) (-1159 |#1|)) (T -566)) +((-3944 (*1 *2 *1) (-12 (-4 *3 (-499)) (-5 *2 (-85)) (-5 *1 (-566 *3 *4)) (-4 *4 (-1159 *3)))) (-3955 (*1 *2 *1) (-12 (-4 *3 (-499)) (-5 *2 (-488)) (-5 *1 (-566 *3 *4)) (-4 *4 (-1159 *3)))) (-3778 (*1 *2 *1) (-12 (-4 *3 (-499)) (-5 *2 (-488)) (-5 *1 (-566 *3 *4)) (-4 *4 (-1159 *3)))) (-3965 (*1 *1 *1) (-12 (-4 *2 (-499)) (-5 *1 (-566 *2 *3)) (-4 *3 (-1159 *2)))) (-3180 (*1 *2 *1) (-12 (-4 *2 (-499)) (-5 *1 (-566 *2 *3)) (-4 *3 (-1159 *2)))) (-2247 (*1 *2 *1) (-12 (-4 *2 (-499)) (-5 *1 (-566 *2 *3)) (-4 *3 (-1159 *2)))) (-3683 (*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-4 *2 (-499)) (-5 *1 (-566 *2 *4)) (-4 *4 (-1159 *2)))) (-2899 (*1 *1 *2 *3) (-12 (-5 *3 (-488)) (-4 *2 (-499)) (-5 *1 (-566 *2 *4)) (-4 *4 (-1159 *2)))) (-3757 (*1 *2 *3) (-12 (-4 *4 (-314)) (-4 *4 (-499)) (-4 *5 (-1159 *4)) (-5 *2 (-2 (|:| -1770 (-566 *4 *5)) (|:| -1769 (-352 *5)))) (-5 *1 (-566 *4 *5)) (-5 *3 (-352 *5))))) +((-3688 (((-587 |#6|) (-587 |#4|) (-85)) 54 T ELT)) (-2248 ((|#6| |#6|) 48 T ELT))) +(((-567 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2248 (|#6| |#6|)) (-15 -3688 ((-587 |#6|) (-587 |#4|) (-85)))) (-395) (-721) (-760) (-981 |#1| |#2| |#3|) (-987 |#1| |#2| |#3| |#4|) (-1024 |#1| |#2| |#3| |#4|)) (T -567)) +((-3688 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-587 *10)) (-5 *1 (-567 *5 *6 *7 *8 *9 *10)) (-4 *9 (-987 *5 *6 *7 *8)) (-4 *10 (-1024 *5 *6 *7 *8)))) (-2248 (*1 *2 *2) (-12 (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *1 (-567 *3 *4 *5 *6 *7 *2)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *2 (-1024 *3 *4 *5 *6))))) +((-2249 (((-85) |#3| (-698) (-587 |#3|)) 30 T ELT)) (-2250 (((-3 (-2 (|:| |polfac| (-587 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-587 (-1089 |#3|)))) "failed") |#3| (-587 (-1089 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1787 (-587 (-2 (|:| |irr| |#4|) (|:| -2400 (-488)))))) (-587 |#3|) (-587 |#1|) (-587 |#3|)) 68 T ELT))) +(((-568 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2249 ((-85) |#3| (-698) (-587 |#3|))) (-15 -2250 ((-3 (-2 (|:| |polfac| (-587 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-587 (-1089 |#3|)))) "failed") |#3| (-587 (-1089 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1787 (-587 (-2 (|:| |irr| |#4|) (|:| -2400 (-488)))))) (-587 |#3|) (-587 |#1|) (-587 |#3|)))) (-760) (-721) (-260) (-865 |#3| |#2| |#1|)) (T -568)) +((-2250 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1787 (-587 (-2 (|:| |irr| *10) (|:| -2400 (-488))))))) (-5 *6 (-587 *3)) (-5 *7 (-587 *8)) (-4 *8 (-760)) (-4 *3 (-260)) (-4 *10 (-865 *3 *9 *8)) (-4 *9 (-721)) (-5 *2 (-2 (|:| |polfac| (-587 *10)) (|:| |correct| *3) (|:| |corrfact| (-587 (-1089 *3))))) (-5 *1 (-568 *8 *9 *3 *10)) (-5 *4 (-587 (-1089 *3))))) (-2249 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-698)) (-5 *5 (-587 *3)) (-4 *3 (-260)) (-4 *6 (-760)) (-4 *7 (-721)) (-5 *2 (-85)) (-5 *1 (-568 *6 *7 *3 *8)) (-4 *8 (-865 *3 *7 *6))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3534 (((-1053) $) 12 T ELT)) (-3535 (((-1053) $) 10 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 18 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-569) (-13 (-999) (-10 -8 (-15 -3535 ((-1053) $)) (-15 -3534 ((-1053) $))))) (T -569)) +((-3535 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-569)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-569))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3941 (((-587 |#1|) $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3473 (((-3 $ "failed") $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3943 (($ $) 77 T ELT)) (-3949 (((-610 |#1| |#2|) $) 60 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) 81 T ELT)) (-2251 (((-587 (-251 |#2|)) $ $) 42 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3950 (($ (-610 |#1| |#2|)) 56 T ELT)) (-3015 (($ $ $) NIL T ELT)) (-2441 (($ $ $) NIL T ELT)) (-3953 (((-776) $) 66 T ELT) (((-1199 |#1| |#2|) $) NIL T ELT) (((-1204 |#1| |#2|) $) 74 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2672 (($) 61 T CONST)) (-2252 (((-587 (-2 (|:| |k| (-618 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2253 (((-587 (-610 |#1| |#2|)) (-587 |#1|)) 73 T ELT)) (-2671 (((-587 (-2 (|:| |k| (-807 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3062 (((-85) $ $) 62 T ELT)) (-3956 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ $ $) 52 T ELT))) +(((-570 |#1| |#2| |#3|) (-13 (-416) (-10 -8 (-15 -3950 ($ (-610 |#1| |#2|))) (-15 -3949 ((-610 |#1| |#2|) $)) (-15 -2671 ((-587 (-2 (|:| |k| (-807 |#1|)) (|:| |c| |#2|))) $)) (-15 -3953 ((-1199 |#1| |#2|) $)) (-15 -3953 ((-1204 |#1| |#2|) $)) (-15 -3943 ($ $)) (-15 -3941 ((-587 |#1|) $)) (-15 -2253 ((-587 (-610 |#1| |#2|)) (-587 |#1|))) (-15 -2252 ((-587 (-2 (|:| |k| (-618 |#1|)) (|:| |c| |#2|))) $)) (-15 -2251 ((-587 (-251 |#2|)) $ $)))) (-760) (-13 (-148) (-658 (-352 (-488)))) (-834)) (T -570)) +((-3950 (*1 *1 *2) (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-760)) (-4 *4 (-13 (-148) (-658 (-352 (-488))))) (-5 *1 (-570 *3 *4 *5)) (-14 *5 (-834)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-610 *3 *4)) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-760)) (-4 *4 (-13 (-148) (-658 (-352 (-488))))) (-14 *5 (-834)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |k| (-807 *3)) (|:| |c| *4)))) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-760)) (-4 *4 (-13 (-148) (-658 (-352 (-488))))) (-14 *5 (-834)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-760)) (-4 *4 (-13 (-148) (-658 (-352 (-488))))) (-14 *5 (-834)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-1204 *3 *4)) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-760)) (-4 *4 (-13 (-148) (-658 (-352 (-488))))) (-14 *5 (-834)))) (-3943 (*1 *1 *1) (-12 (-5 *1 (-570 *2 *3 *4)) (-4 *2 (-760)) (-4 *3 (-13 (-148) (-658 (-352 (-488))))) (-14 *4 (-834)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-760)) (-4 *4 (-13 (-148) (-658 (-352 (-488))))) (-14 *5 (-834)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-760)) (-5 *2 (-587 (-610 *4 *5))) (-5 *1 (-570 *4 *5 *6)) (-4 *5 (-13 (-148) (-658 (-352 (-488))))) (-14 *6 (-834)))) (-2252 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |k| (-618 *3)) (|:| |c| *4)))) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-760)) (-4 *4 (-13 (-148) (-658 (-352 (-488))))) (-14 *5 (-834)))) (-2251 (*1 *2 *1 *1) (-12 (-5 *2 (-587 (-251 *4))) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-760)) (-4 *4 (-13 (-148) (-658 (-352 (-488))))) (-14 *5 (-834))))) +((-3688 (((-587 (-1064 |#1| (-473 (-777 |#2|)) (-777 |#2|) (-707 |#1| (-777 |#2|)))) (-587 (-707 |#1| (-777 |#2|))) (-85)) 103 T ELT) (((-587 (-962 |#1| |#2|)) (-587 (-707 |#1| (-777 |#2|))) (-85)) 77 T ELT)) (-2254 (((-85) (-587 (-707 |#1| (-777 |#2|)))) 26 T ELT)) (-2258 (((-587 (-1064 |#1| (-473 (-777 |#2|)) (-777 |#2|) (-707 |#1| (-777 |#2|)))) (-587 (-707 |#1| (-777 |#2|))) (-85)) 102 T ELT)) (-2257 (((-587 (-962 |#1| |#2|)) (-587 (-707 |#1| (-777 |#2|))) (-85)) 76 T ELT)) (-2256 (((-587 (-707 |#1| (-777 |#2|))) (-587 (-707 |#1| (-777 |#2|)))) 30 T ELT)) (-2255 (((-3 (-587 (-707 |#1| (-777 |#2|))) "failed") (-587 (-707 |#1| (-777 |#2|)))) 29 T ELT))) +(((-571 |#1| |#2|) (-10 -7 (-15 -2254 ((-85) (-587 (-707 |#1| (-777 |#2|))))) (-15 -2255 ((-3 (-587 (-707 |#1| (-777 |#2|))) "failed") (-587 (-707 |#1| (-777 |#2|))))) (-15 -2256 ((-587 (-707 |#1| (-777 |#2|))) (-587 (-707 |#1| (-777 |#2|))))) (-15 -2257 ((-587 (-962 |#1| |#2|)) (-587 (-707 |#1| (-777 |#2|))) (-85))) (-15 -2258 ((-587 (-1064 |#1| (-473 (-777 |#2|)) (-777 |#2|) (-707 |#1| (-777 |#2|)))) (-587 (-707 |#1| (-777 |#2|))) (-85))) (-15 -3688 ((-587 (-962 |#1| |#2|)) (-587 (-707 |#1| (-777 |#2|))) (-85))) (-15 -3688 ((-587 (-1064 |#1| (-473 (-777 |#2|)) (-777 |#2|) (-707 |#1| (-777 |#2|)))) (-587 (-707 |#1| (-777 |#2|))) (-85)))) (-395) (-587 (-1094))) (T -571)) +((-3688 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-707 *5 (-777 *6)))) (-5 *4 (-85)) (-4 *5 (-395)) (-14 *6 (-587 (-1094))) (-5 *2 (-587 (-1064 *5 (-473 (-777 *6)) (-777 *6) (-707 *5 (-777 *6))))) (-5 *1 (-571 *5 *6)))) (-3688 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-707 *5 (-777 *6)))) (-5 *4 (-85)) (-4 *5 (-395)) (-14 *6 (-587 (-1094))) (-5 *2 (-587 (-962 *5 *6))) (-5 *1 (-571 *5 *6)))) (-2258 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-707 *5 (-777 *6)))) (-5 *4 (-85)) (-4 *5 (-395)) (-14 *6 (-587 (-1094))) (-5 *2 (-587 (-1064 *5 (-473 (-777 *6)) (-777 *6) (-707 *5 (-777 *6))))) (-5 *1 (-571 *5 *6)))) (-2257 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-707 *5 (-777 *6)))) (-5 *4 (-85)) (-4 *5 (-395)) (-14 *6 (-587 (-1094))) (-5 *2 (-587 (-962 *5 *6))) (-5 *1 (-571 *5 *6)))) (-2256 (*1 *2 *2) (-12 (-5 *2 (-587 (-707 *3 (-777 *4)))) (-4 *3 (-395)) (-14 *4 (-587 (-1094))) (-5 *1 (-571 *3 *4)))) (-2255 (*1 *2 *2) (|partial| -12 (-5 *2 (-587 (-707 *3 (-777 *4)))) (-4 *3 (-395)) (-14 *4 (-587 (-1094))) (-5 *1 (-571 *3 *4)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-587 (-707 *4 (-777 *5)))) (-4 *4 (-395)) (-14 *5 (-587 (-1094))) (-5 *2 (-85)) (-5 *1 (-571 *4 *5))))) +((-3601 (((-86) (-86)) 88 T ELT)) (-2262 ((|#2| |#2|) 28 T ELT)) (-2838 ((|#2| |#2| (-1008 |#2|)) 84 T ELT) ((|#2| |#2| (-1094)) 50 T ELT)) (-2260 ((|#2| |#2|) 27 T ELT)) (-2261 ((|#2| |#2|) 29 T ELT)) (-2259 (((-85) (-86)) 33 T ELT)) (-2264 ((|#2| |#2|) 24 T ELT)) (-2265 ((|#2| |#2|) 26 T ELT)) (-2263 ((|#2| |#2|) 25 T ELT))) +(((-572 |#1| |#2|) (-10 -7 (-15 -2259 ((-85) (-86))) (-15 -3601 ((-86) (-86))) (-15 -2265 (|#2| |#2|)) (-15 -2264 (|#2| |#2|)) (-15 -2263 (|#2| |#2|)) (-15 -2262 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -2261 (|#2| |#2|)) (-15 -2838 (|#2| |#2| (-1094))) (-15 -2838 (|#2| |#2| (-1008 |#2|)))) (-499) (-13 (-366 |#1|) (-919) (-1119))) (T -572)) +((-2838 (*1 *2 *2 *3) (-12 (-5 *3 (-1008 *2)) (-4 *2 (-13 (-366 *4) (-919) (-1119))) (-4 *4 (-499)) (-5 *1 (-572 *4 *2)))) (-2838 (*1 *2 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-499)) (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-366 *4) (-919) (-1119))))) (-2261 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-572 *3 *2)) (-4 *2 (-13 (-366 *3) (-919) (-1119))))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-572 *3 *2)) (-4 *2 (-13 (-366 *3) (-919) (-1119))))) (-2262 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-572 *3 *2)) (-4 *2 (-13 (-366 *3) (-919) (-1119))))) (-2263 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-572 *3 *2)) (-4 *2 (-13 (-366 *3) (-919) (-1119))))) (-2264 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-572 *3 *2)) (-4 *2 (-13 (-366 *3) (-919) (-1119))))) (-2265 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-572 *3 *2)) (-4 *2 (-13 (-366 *3) (-919) (-1119))))) (-3601 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-499)) (-5 *1 (-572 *3 *4)) (-4 *4 (-13 (-366 *3) (-919) (-1119))))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-499)) (-5 *2 (-85)) (-5 *1 (-572 *4 *5)) (-4 *5 (-13 (-366 *4) (-919) (-1119)))))) +((-3498 (($ $) 38 T ELT)) (-3645 (($ $) 21 T ELT)) (-3496 (($ $) 37 T ELT)) (-3644 (($ $) 22 T ELT)) (-3500 (($ $) 36 T ELT)) (-3643 (($ $) 23 T ELT)) (-3633 (($) 48 T ELT)) (-3949 (($ $) 45 T ELT)) (-2262 (($ $) 17 T ELT)) (-2838 (($ $ (-1008 $)) 7 T ELT) (($ $ (-1094)) 6 T ELT)) (-3950 (($ $) 46 T ELT)) (-2260 (($ $) 15 T ELT)) (-2261 (($ $) 16 T ELT)) (-3501 (($ $) 35 T ELT)) (-3642 (($ $) 24 T ELT)) (-3499 (($ $) 34 T ELT)) (-3641 (($ $) 25 T ELT)) (-3497 (($ $) 33 T ELT)) (-3640 (($ $) 26 T ELT)) (-3504 (($ $) 44 T ELT)) (-3492 (($ $) 32 T ELT)) (-3502 (($ $) 43 T ELT)) (-3490 (($ $) 31 T ELT)) (-3506 (($ $) 42 T ELT)) (-3494 (($ $) 30 T ELT)) (-3507 (($ $) 41 T ELT)) (-3495 (($ $) 29 T ELT)) (-3505 (($ $) 40 T ELT)) (-3493 (($ $) 28 T ELT)) (-3503 (($ $) 39 T ELT)) (-3491 (($ $) 27 T ELT)) (-2264 (($ $) 19 T ELT)) (-2265 (($ $) 20 T ELT)) (-2263 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) +(((-573) (-113)) (T -573)) +((-2265 (*1 *1 *1) (-4 *1 (-573))) (-2264 (*1 *1 *1) (-4 *1 (-573))) (-2263 (*1 *1 *1) (-4 *1 (-573))) (-2262 (*1 *1 *1) (-4 *1 (-573))) (-2261 (*1 *1 *1) (-4 *1 (-573))) (-2260 (*1 *1 *1) (-4 *1 (-573)))) +(-13 (-875) (-1119) (-10 -8 (-15 -2265 ($ $)) (-15 -2264 ($ $)) (-15 -2263 ($ $)) (-15 -2262 ($ $)) (-15 -2261 ($ $)) (-15 -2260 ($ $)))) +(((-35) . T) ((-66) . T) ((-241) . T) ((-436) . T) ((-875) . T) ((-1119) . T) ((-1122) . T)) +((-2275 (((-424 |#1| |#2|) (-208 |#1| |#2|)) 65 T ELT)) (-2268 (((-587 (-208 |#1| |#2|)) (-587 (-424 |#1| |#2|))) 90 T ELT)) (-2269 (((-424 |#1| |#2|) (-587 (-424 |#1| |#2|)) (-777 |#1|)) 92 T ELT) (((-424 |#1| |#2|) (-587 (-424 |#1| |#2|)) (-587 (-424 |#1| |#2|)) (-777 |#1|)) 91 T ELT)) (-2266 (((-2 (|:| |gblist| (-587 (-208 |#1| |#2|))) (|:| |gvlist| (-587 (-488)))) (-587 (-424 |#1| |#2|))) 136 T ELT)) (-2273 (((-587 (-424 |#1| |#2|)) (-777 |#1|) (-587 (-424 |#1| |#2|)) (-587 (-424 |#1| |#2|))) 105 T ELT)) (-2267 (((-2 (|:| |glbase| (-587 (-208 |#1| |#2|))) (|:| |glval| (-587 (-488)))) (-587 (-208 |#1| |#2|))) 147 T ELT)) (-2271 (((-1183 |#2|) (-424 |#1| |#2|) (-587 (-424 |#1| |#2|))) 70 T ELT)) (-2270 (((-587 (-424 |#1| |#2|)) (-587 (-424 |#1| |#2|))) 47 T ELT)) (-2274 (((-208 |#1| |#2|) (-208 |#1| |#2|) (-587 (-208 |#1| |#2|))) 61 T ELT)) (-2272 (((-208 |#1| |#2|) (-587 |#2|) (-208 |#1| |#2|) (-587 (-208 |#1| |#2|))) 113 T ELT))) +(((-574 |#1| |#2|) (-10 -7 (-15 -2266 ((-2 (|:| |gblist| (-587 (-208 |#1| |#2|))) (|:| |gvlist| (-587 (-488)))) (-587 (-424 |#1| |#2|)))) (-15 -2267 ((-2 (|:| |glbase| (-587 (-208 |#1| |#2|))) (|:| |glval| (-587 (-488)))) (-587 (-208 |#1| |#2|)))) (-15 -2268 ((-587 (-208 |#1| |#2|)) (-587 (-424 |#1| |#2|)))) (-15 -2269 ((-424 |#1| |#2|) (-587 (-424 |#1| |#2|)) (-587 (-424 |#1| |#2|)) (-777 |#1|))) (-15 -2269 ((-424 |#1| |#2|) (-587 (-424 |#1| |#2|)) (-777 |#1|))) (-15 -2270 ((-587 (-424 |#1| |#2|)) (-587 (-424 |#1| |#2|)))) (-15 -2271 ((-1183 |#2|) (-424 |#1| |#2|) (-587 (-424 |#1| |#2|)))) (-15 -2272 ((-208 |#1| |#2|) (-587 |#2|) (-208 |#1| |#2|) (-587 (-208 |#1| |#2|)))) (-15 -2273 ((-587 (-424 |#1| |#2|)) (-777 |#1|) (-587 (-424 |#1| |#2|)) (-587 (-424 |#1| |#2|)))) (-15 -2274 ((-208 |#1| |#2|) (-208 |#1| |#2|) (-587 (-208 |#1| |#2|)))) (-15 -2275 ((-424 |#1| |#2|) (-208 |#1| |#2|)))) (-587 (-1094)) (-395)) (T -574)) +((-2275 (*1 *2 *3) (-12 (-5 *3 (-208 *4 *5)) (-14 *4 (-587 (-1094))) (-4 *5 (-395)) (-5 *2 (-424 *4 *5)) (-5 *1 (-574 *4 *5)))) (-2274 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-208 *4 *5))) (-5 *2 (-208 *4 *5)) (-14 *4 (-587 (-1094))) (-4 *5 (-395)) (-5 *1 (-574 *4 *5)))) (-2273 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-587 (-424 *4 *5))) (-5 *3 (-777 *4)) (-14 *4 (-587 (-1094))) (-4 *5 (-395)) (-5 *1 (-574 *4 *5)))) (-2272 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 (-208 *5 *6))) (-4 *6 (-395)) (-5 *2 (-208 *5 *6)) (-14 *5 (-587 (-1094))) (-5 *1 (-574 *5 *6)))) (-2271 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-424 *5 *6))) (-5 *3 (-424 *5 *6)) (-14 *5 (-587 (-1094))) (-4 *6 (-395)) (-5 *2 (-1183 *6)) (-5 *1 (-574 *5 *6)))) (-2270 (*1 *2 *2) (-12 (-5 *2 (-587 (-424 *3 *4))) (-14 *3 (-587 (-1094))) (-4 *4 (-395)) (-5 *1 (-574 *3 *4)))) (-2269 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-424 *5 *6))) (-5 *4 (-777 *5)) (-14 *5 (-587 (-1094))) (-5 *2 (-424 *5 *6)) (-5 *1 (-574 *5 *6)) (-4 *6 (-395)))) (-2269 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-587 (-424 *5 *6))) (-5 *4 (-777 *5)) (-14 *5 (-587 (-1094))) (-5 *2 (-424 *5 *6)) (-5 *1 (-574 *5 *6)) (-4 *6 (-395)))) (-2268 (*1 *2 *3) (-12 (-5 *3 (-587 (-424 *4 *5))) (-14 *4 (-587 (-1094))) (-4 *5 (-395)) (-5 *2 (-587 (-208 *4 *5))) (-5 *1 (-574 *4 *5)))) (-2267 (*1 *2 *3) (-12 (-14 *4 (-587 (-1094))) (-4 *5 (-395)) (-5 *2 (-2 (|:| |glbase| (-587 (-208 *4 *5))) (|:| |glval| (-587 (-488))))) (-5 *1 (-574 *4 *5)) (-5 *3 (-587 (-208 *4 *5))))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-587 (-424 *4 *5))) (-14 *4 (-587 (-1094))) (-4 *5 (-395)) (-5 *2 (-2 (|:| |gblist| (-587 (-208 *4 *5))) (|:| |gvlist| (-587 (-488))))) (-5 *1 (-574 *4 *5))))) +((-2574 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-72))) ELT)) (-3605 (($) NIL T ELT) (($ (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) NIL T ELT)) (-2203 (((-1189) $ (-1077) (-1077)) NIL (|has| $ (-1039 (-51))) ELT)) (-3794 (((-51) $ (-1077) (-51)) NIL (|has| $ (-1039 (-51))) ELT) (((-51) $ (-1094) (-51)) 16 T ELT)) (-1574 (($ (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) $) NIL (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) ELT)) (-3716 (($ (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) $) NIL (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) ELT)) (-2236 (((-3 (-51) #1="failed") (-1077) $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-1357 (($ $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-72))) ELT)) (-3411 (($ (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) $) NIL (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) ELT) (($ (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) $) NIL (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) ELT) (((-3 (-51) #1#) (-1077) $) NIL T ELT)) (-3412 (($ (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) $) NIL (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) ELT)) (-3848 (((-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-1 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) $ (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) NIL (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-72)) ELT) (((-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-1 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) $ (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) NIL T ELT) (((-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-1 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) $) NIL T ELT)) (-1580 (((-51) $ (-1077) (-51)) NIL (|has| $ (-1039 (-51))) ELT)) (-3118 (((-51) $ (-1077)) NIL T ELT)) (-2276 (($ $) NIL T ELT)) (-2205 (((-1077) $) NIL (|has| (-1077) (-760)) ELT)) (-2614 (((-587 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3251 (((-85) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-72)) ELT)) (-2206 (((-1077) $) NIL (|has| (-1077) (-760)) ELT)) (-3332 (($ (-1 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT)) (-3849 (($ (-1 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2277 (($ (-340)) 8 T ELT)) (-3248 (((-1077) $) NIL (OR (|has| (-51) (-1017)) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-1017))) ELT)) (-2237 (((-587 (-1077)) $) NIL T ELT)) (-2238 (((-85) (-1077) $) NIL T ELT)) (-1278 (((-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) $) NIL T ELT)) (-3615 (($ (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) $) NIL T ELT)) (-2208 (((-587 (-1077)) $) NIL T ELT)) (-2209 (((-85) (-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL (OR (|has| (-51) (-1017)) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-1017))) ELT)) (-3807 (((-51) $) NIL (|has| (-1077) (-760)) ELT)) (-1734 (((-3 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2204 (($ $ (-51)) NIL (|has| $ (-1039 (-51))) ELT)) (-1279 (((-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) $) NIL T ELT)) (-1736 (((-85) (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-1017))) ELT) (($ $ (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-1017))) ELT) (($ $ (-587 (-51)) (-587 (-51))) NIL (-12 (|has| (-51) (-262 (-51))) (|has| (-51) (-1017))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-262 (-51))) (|has| (-51) (-1017))) ELT) (($ $ (-251 (-51))) NIL (-12 (|has| (-51) (-262 (-51))) (|has| (-51) (-1017))) ELT) (($ $ (-587 (-251 (-51)))) NIL (-12 (|has| (-51) (-262 (-51))) (|has| (-51) (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-1017))) ELT) (($ $ (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-1017))) ELT) (($ $ (-587 (-251 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) (-51) $) NIL (-12 (|has| $ (-320 (-51))) (|has| (-51) (-72))) ELT)) (-2210 (((-587 (-51)) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 (((-51) $ (-1077)) NIL T ELT) (((-51) $ (-1077) (-51)) NIL T ELT) (((-51) $ (-1094)) 14 T ELT)) (-1470 (($) NIL T ELT) (($ (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) NIL T ELT)) (-1735 (((-698) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-72)) ELT) (((-698) (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) NIL (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-557 (-477))) ELT)) (-3536 (($ (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) NIL T ELT)) (-3953 (((-776) $) NIL (OR (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-556 (-776))) (|has| (-51) (-556 (-776)))) ELT)) (-1269 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-72))) ELT)) (-1280 (($ (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))))) NIL T ELT)) (-1737 (((-85) (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3062 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| (-51))) (-72))) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-575) (-13 (-1111 (-1077) (-51)) (-243 (-1094) (-51)) (-10 -8 (-15 -2277 ($ (-340))) (-15 -2276 ($ $)) (-15 -3794 ((-51) $ (-1094) (-51)))))) (T -575)) +((-2277 (*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-575)))) (-2276 (*1 *1 *1) (-5 *1 (-575))) (-3794 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1094)) (-5 *1 (-575))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1780 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-1316 (((-3 $ #1#) $ $) NIL T ELT)) (-3229 (((-1183 (-634 |#1|))) NIL (|has| |#2| (-363 |#1|)) ELT) (((-1183 (-634 |#1|)) (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1733 (((-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-3730 (($) NIL T CONST)) (-1914 (((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) #1#)) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-1707 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-1796 (((-634 |#1|)) NIL (|has| |#2| (-363 |#1|)) ELT) (((-634 |#1|) (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1731 ((|#1| $) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1794 (((-634 |#1|) $) NIL (|has| |#2| (-363 |#1|)) ELT) (((-634 |#1|) $ (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-2409 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-1908 (((-1089 (-861 |#1|))) NIL (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-314))) ELT)) (-2412 (($ $ (-834)) NIL T ELT)) (-1729 ((|#1| $) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1709 (((-1089 |#1|) $) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-1798 ((|#1|) NIL (|has| |#2| (-363 |#1|)) ELT) ((|#1| (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1727 (((-1089 |#1|) $) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1721 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1800 (($ (-1183 |#1|)) NIL (|has| |#2| (-363 |#1|)) ELT) (($ (-1183 |#1|) (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-3473 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-3114 (((-834)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-2439 (($ $ (-834)) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-1714 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1915 (((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) #1#)) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-1708 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-1797 (((-634 |#1|)) NIL (|has| |#2| (-363 |#1|)) ELT) (((-634 |#1|) (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1732 ((|#1| $) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1795 (((-634 |#1|) $) NIL (|has| |#2| (-363 |#1|)) ELT) (((-634 |#1|) $ (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-2410 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-1912 (((-1089 (-861 |#1|))) NIL (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-314))) ELT)) (-2411 (($ $ (-834)) NIL T ELT)) (-1730 ((|#1| $) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1710 (((-1089 |#1|) $) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-1799 ((|#1|) NIL (|has| |#2| (-363 |#1|)) ELT) ((|#1| (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1728 (((-1089 |#1|) $) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1722 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1713 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1720 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-3806 ((|#1| $ (-488)) NIL (|has| |#2| (-363 |#1|)) ELT)) (-3230 (((-634 |#1|) (-1183 $)) NIL (|has| |#2| (-363 |#1|)) ELT) (((-1183 |#1|) $) NIL (|has| |#2| (-363 |#1|)) ELT) (((-634 |#1|) (-1183 $) (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT) (((-1183 |#1|) $ (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-3978 (($ (-1183 |#1|)) NIL (|has| |#2| (-363 |#1|)) ELT) (((-1183 |#1|) $) NIL (|has| |#2| (-363 |#1|)) ELT)) (-1900 (((-587 (-861 |#1|))) NIL (|has| |#2| (-363 |#1|)) ELT) (((-587 (-861 |#1|)) (-1183 $)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-2441 (($ $ $) NIL T ELT)) (-1726 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-3953 (((-776) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 $)) NIL (|has| |#2| (-363 |#1|)) ELT)) (-1711 (((-587 (-1183 |#1|))) NIL (OR (-12 (|has| |#2| (-318 |#1|)) (|has| |#1| (-499))) (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-499)))) ELT)) (-2442 (($ $ $ $) NIL T ELT)) (-1724 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-2551 (($ (-634 |#1|) $) NIL (|has| |#2| (-363 |#1|)) ELT)) (-2440 (($ $ $) NIL T ELT)) (-1725 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1723 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-318 |#1|)) ELT)) (-2666 (($) 18 T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) 19 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-576 |#1| |#2|) (-13 (-687 |#1|) (-556 |#2|) (-10 -8 (-15 -3953 ($ |#2|)) (IF (|has| |#2| (-363 |#1|)) (-6 (-363 |#1|)) |%noBranch|) (IF (|has| |#2| (-318 |#1|)) (-6 (-318 |#1|)) |%noBranch|))) (-148) (-687 |#1|)) (T -576)) +((-3953 (*1 *1 *2) (-12 (-4 *3 (-148)) (-5 *1 (-576 *3 *2)) (-4 *2 (-687 *3))))) +((-3956 (($ $ |#2|) 10 T ELT))) +(((-577 |#1| |#2|) (-10 -7 (-15 -3956 (|#1| |#1| |#2|))) (-578 |#2|) (-148)) (T -577)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-1218 (((-85) $ $) 20 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3536 (($ $ $) 40 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ |#1|) 39 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-578 |#1|) (-113) (-148)) (T -578)) +((-3536 (*1 *1 *1 *1) (-12 (-4 *1 (-578 *2)) (-4 *2 (-148)))) (-3956 (*1 *1 *1 *2) (-12 (-4 *1 (-578 *2)) (-4 *2 (-148)) (-4 *2 (-314))))) +(-13 (-658 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3536 ($ $ $)) (IF (|has| |t#1| (-314)) (-15 -3956 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-594 |#1|) . T) ((-586 |#1|) . T) ((-658 |#1|) . T) ((-967 |#1|) . T) ((-972 |#1|) . T) ((-1017) . T) ((-1133) . T)) +((-2279 (((-3 (-754 |#2|) #1="failed") |#2| (-251 |#2|) (-1077)) 105 T ELT) (((-3 (-754 |#2|) (-2 (|:| |leftHandLimit| (-3 (-754 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-754 |#2|) #1#))) #1#) |#2| (-251 (-754 |#2|))) 130 T ELT)) (-2278 (((-3 (-747 |#2|) #1#) |#2| (-251 (-747 |#2|))) 135 T ELT))) +(((-579 |#1| |#2|) (-10 -7 (-15 -2279 ((-3 (-754 |#2|) (-2 (|:| |leftHandLimit| (-3 (-754 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-754 |#2|) #1#))) #1#) |#2| (-251 (-754 |#2|)))) (-15 -2278 ((-3 (-747 |#2|) #1#) |#2| (-251 (-747 |#2|)))) (-15 -2279 ((-3 (-754 |#2|) #1#) |#2| (-251 |#2|) (-1077)))) (-13 (-395) (-954 (-488)) (-584 (-488))) (-13 (-27) (-1119) (-366 |#1|))) (T -579)) +((-2279 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-251 *3)) (-5 *5 (-1077)) (-4 *3 (-13 (-27) (-1119) (-366 *6))) (-4 *6 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-754 *3)) (-5 *1 (-579 *6 *3)))) (-2278 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-251 (-747 *3))) (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-747 *3)) (-5 *1 (-579 *5 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))))) (-2279 (*1 *2 *3 *4) (-12 (-5 *4 (-251 (-754 *3))) (-4 *3 (-13 (-27) (-1119) (-366 *5))) (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-3 (-754 *3) (-2 (|:| |leftHandLimit| (-3 (-754 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-754 *3) #1#))) #1#)) (-5 *1 (-579 *5 *3))))) +((-2279 (((-3 (-754 (-352 (-861 |#1|))) #1="failed") (-352 (-861 |#1|)) (-251 (-352 (-861 |#1|))) (-1077)) 86 T ELT) (((-3 (-754 (-352 (-861 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-754 (-352 (-861 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-754 (-352 (-861 |#1|))) #1#))) #1#) (-352 (-861 |#1|)) (-251 (-352 (-861 |#1|)))) 20 T ELT) (((-3 (-754 (-352 (-861 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-754 (-352 (-861 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-754 (-352 (-861 |#1|))) #1#))) #1#) (-352 (-861 |#1|)) (-251 (-754 (-861 |#1|)))) 35 T ELT)) (-2278 (((-747 (-352 (-861 |#1|))) (-352 (-861 |#1|)) (-251 (-352 (-861 |#1|)))) 23 T ELT) (((-747 (-352 (-861 |#1|))) (-352 (-861 |#1|)) (-251 (-747 (-861 |#1|)))) 43 T ELT))) +(((-580 |#1|) (-10 -7 (-15 -2279 ((-3 (-754 (-352 (-861 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-754 (-352 (-861 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-754 (-352 (-861 |#1|))) #1#))) #1#) (-352 (-861 |#1|)) (-251 (-754 (-861 |#1|))))) (-15 -2279 ((-3 (-754 (-352 (-861 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-754 (-352 (-861 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-754 (-352 (-861 |#1|))) #1#))) #1#) (-352 (-861 |#1|)) (-251 (-352 (-861 |#1|))))) (-15 -2278 ((-747 (-352 (-861 |#1|))) (-352 (-861 |#1|)) (-251 (-747 (-861 |#1|))))) (-15 -2278 ((-747 (-352 (-861 |#1|))) (-352 (-861 |#1|)) (-251 (-352 (-861 |#1|))))) (-15 -2279 ((-3 (-754 (-352 (-861 |#1|))) #1#) (-352 (-861 |#1|)) (-251 (-352 (-861 |#1|))) (-1077)))) (-395)) (T -580)) +((-2279 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-251 (-352 (-861 *6)))) (-5 *5 (-1077)) (-5 *3 (-352 (-861 *6))) (-4 *6 (-395)) (-5 *2 (-754 *3)) (-5 *1 (-580 *6)))) (-2278 (*1 *2 *3 *4) (-12 (-5 *4 (-251 (-352 (-861 *5)))) (-5 *3 (-352 (-861 *5))) (-4 *5 (-395)) (-5 *2 (-747 *3)) (-5 *1 (-580 *5)))) (-2278 (*1 *2 *3 *4) (-12 (-5 *4 (-251 (-747 (-861 *5)))) (-4 *5 (-395)) (-5 *2 (-747 (-352 (-861 *5)))) (-5 *1 (-580 *5)) (-5 *3 (-352 (-861 *5))))) (-2279 (*1 *2 *3 *4) (-12 (-5 *4 (-251 (-352 (-861 *5)))) (-5 *3 (-352 (-861 *5))) (-4 *5 (-395)) (-5 *2 (-3 (-754 *3) (-2 (|:| |leftHandLimit| (-3 (-754 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-754 *3) #1#))) #1#)) (-5 *1 (-580 *5)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *4 (-251 (-754 (-861 *5)))) (-4 *5 (-395)) (-5 *2 (-3 (-754 (-352 (-861 *5))) (-2 (|:| |leftHandLimit| (-3 (-754 (-352 (-861 *5))) #1#)) (|:| |rightHandLimit| (-3 (-754 (-352 (-861 *5))) #1#))) #1#)) (-5 *1 (-580 *5)) (-5 *3 (-352 (-861 *5)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) NIL T ELT)) (-3000 (($) NIL T ELT)) (-2537 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2863 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2015 (((-834) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2405 (($ (-834)) 11 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2857 (($ (-170 |#1|)) 12 T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-777 |#1|)) 7 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) NIL T ELT))) +(((-581 |#1|) (-13 (-756) (-559 (-777 |#1|)) (-10 -8 (-15 -2857 ($ (-170 |#1|))))) (-587 (-1094))) (T -581)) +((-2857 (*1 *1 *2) (-12 (-5 *2 (-170 *3)) (-14 *3 (-587 (-1094))) (-5 *1 (-581 *3))))) +((-2282 (((-3 (-1183 (-352 |#1|)) #1="failed") (-1183 |#2|) |#2|) 64 (-2566 (|has| |#1| (-314))) ELT) (((-3 (-1183 |#1|) #1#) (-1183 |#2|) |#2|) 49 (|has| |#1| (-314)) ELT)) (-2280 (((-85) (-1183 |#2|)) 33 T ELT)) (-2281 (((-3 (-1183 |#1|) #1#) (-1183 |#2|)) 40 T ELT))) +(((-582 |#1| |#2|) (-10 -7 (-15 -2280 ((-85) (-1183 |#2|))) (-15 -2281 ((-3 (-1183 |#1|) #1="failed") (-1183 |#2|))) (IF (|has| |#1| (-314)) (-15 -2282 ((-3 (-1183 |#1|) #1#) (-1183 |#2|) |#2|)) (-15 -2282 ((-3 (-1183 (-352 |#1|)) #1#) (-1183 |#2|) |#2|)))) (-499) (-13 (-965) (-584 |#1|))) (T -582)) +((-2282 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1183 *4)) (-4 *4 (-13 (-965) (-584 *5))) (-2566 (-4 *5 (-314))) (-4 *5 (-499)) (-5 *2 (-1183 (-352 *5))) (-5 *1 (-582 *5 *4)))) (-2282 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1183 *4)) (-4 *4 (-13 (-965) (-584 *5))) (-4 *5 (-314)) (-4 *5 (-499)) (-5 *2 (-1183 *5)) (-5 *1 (-582 *5 *4)))) (-2281 (*1 *2 *3) (|partial| -12 (-5 *3 (-1183 *5)) (-4 *5 (-13 (-965) (-584 *4))) (-4 *4 (-499)) (-5 *2 (-1183 *4)) (-5 *1 (-582 *4 *5)))) (-2280 (*1 *2 *3) (-12 (-5 *3 (-1183 *5)) (-4 *5 (-13 (-965) (-584 *4))) (-4 *4 (-499)) (-5 *2 (-85)) (-5 *1 (-582 *4 *5))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3780 (((-587 (-457 |#1| (-581 |#2|))) $) NIL T ELT)) (-1316 (((-3 $ "failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3965 (($ $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2899 (($ |#1| (-581 |#2|)) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2283 (($ (-587 |#1|)) 25 T ELT)) (-1988 (((-581 |#2|) $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3918 (((-107)) 16 T ELT)) (-3230 (((-1183 |#1|) $) 44 T ELT)) (-3978 (($ (-587 (-457 |#1| (-581 |#2|)))) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-581 |#2|)) 11 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) 20 T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#1|) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 17 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-583 |#1| |#2|) (-13 (-1191 |#1|) (-559 (-581 |#2|)) (-453 |#1| (-581 |#2|)) (-10 -8 (-15 -2283 ($ (-587 |#1|))) (-15 -3230 ((-1183 |#1|) $)))) (-314) (-587 (-1094))) (T -583)) +((-2283 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-314)) (-5 *1 (-583 *3 *4)) (-14 *4 (-587 (-1094))))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-1183 *3)) (-5 *1 (-583 *3 *4)) (-4 *3 (-314)) (-14 *4 (-587 (-1094)))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-2284 (((-634 |#1|) (-634 $)) 36 T ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) 35 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2285 (((-634 |#1|) (-1183 $)) 38 T ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) 37 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ |#1| $) 33 T ELT))) +(((-584 |#1|) (-113) (-965)) (T -584)) +((-2285 (*1 *2 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-584 *4)) (-4 *4 (-965)) (-5 *2 (-634 *4)))) (-2285 (*1 *2 *3 *1) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-584 *4)) (-4 *4 (-965)) (-5 *2 (-2 (|:| |mat| (-634 *4)) (|:| |vec| (-1183 *4)))))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-634 *1)) (-4 *1 (-584 *4)) (-4 *4 (-965)) (-5 *2 (-634 *4)))) (-2284 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *1)) (-5 *4 (-1183 *1)) (-4 *1 (-584 *5)) (-4 *5 (-965)) (-5 *2 (-2 (|:| |mat| (-634 *5)) (|:| |vec| (-1183 *5))))))) +(-13 (-594 |t#1|) (-10 -8 (-15 -2285 ((-634 |t#1|) (-1183 $))) (-15 -2285 ((-2 (|:| |mat| (-634 |t#1|)) (|:| |vec| (-1183 |t#1|))) (-1183 $) $)) (-15 -2284 ((-634 |t#1|) (-634 $))) (-15 -2284 ((-2 (|:| |mat| (-634 |t#1|)) (|:| |vec| (-1183 |t#1|))) (-634 $) (-1183 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-594 |#1|) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1316 (((-3 $ "failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-1218 (((-85) $ $) NIL T ELT)) (-2286 (($ (-587 |#1|)) 23 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3806 ((|#1| $ (-583 |#1| |#2|)) 46 T ELT)) (-3918 (((-107)) 13 T ELT)) (-3230 (((-1183 |#1|) $) 42 T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) 18 T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#1|) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 14 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-585 |#1| |#2|) (-13 (-1191 |#1|) (-243 (-583 |#1| |#2|) |#1|) (-10 -8 (-15 -2286 ($ (-587 |#1|))) (-15 -3230 ((-1183 |#1|) $)))) (-314) (-587 (-1094))) (T -585)) +((-2286 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-314)) (-5 *1 (-585 *3 *4)) (-14 *4 (-587 (-1094))))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-1183 *3)) (-5 *1 (-585 *3 *4)) (-4 *3 (-314)) (-14 *4 (-587 (-1094)))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) +(((-586 |#1|) (-113) (-1029)) (T -586)) +NIL +(-13 (-592 |t#1|) (-967 |t#1|)) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 |#1|) . T) ((-967 |#1|) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3408 ((|#1| $) NIL T ELT)) (-3801 ((|#1| $) NIL T ELT)) (-3803 (($ $) NIL T ELT)) (-2203 (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 |#1|)) ELT)) (-3791 (($ $ (-488)) 68 (|has| $ (-1039 |#1|)) ELT)) (-1740 (((-85) $) NIL (|has| |#1| (-760)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1738 (($ $) NIL (-12 (|has| $ (-1039 |#1|)) (|has| |#1| (-760))) ELT) (($ (-1 (-85) |#1| |#1|) $) 65 (|has| $ (-1039 |#1|)) ELT)) (-2915 (($ $) NIL (|has| |#1| (-760)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3448 (((-85) $ (-698)) NIL T ELT)) (-3031 ((|#1| $ |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3793 (($ $ $) 26 (|has| $ (-1039 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3795 ((|#1| $ |#1|) 24 (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1039 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-1039 |#1|)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-1150 (-488)) |#1|) NIL (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-488) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3032 (($ $ (-587 $)) NIL (|has| $ (-1039 |#1|)) ELT)) (-2289 (($ $ $) 74 (|has| |#1| (-1017)) ELT)) (-2288 (($ $ $) 75 (|has| |#1| (-1017)) ELT)) (-2287 (($ $ $) 79 (|has| |#1| (-1017)) ELT)) (-1574 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3716 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3802 ((|#1| $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2302 (($ $) 31 (|has| $ (-1039 |#1|)) ELT)) (-2303 (($ $) 32 T ELT)) (-3805 (($ $) 21 T ELT) (($ $ (-698)) 35 T ELT)) (-2373 (($ $) 63 (|has| |#1| (-72)) ELT)) (-1357 (($ $) 73 (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-3411 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3412 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1580 ((|#1| $ (-488) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-488)) NIL T ELT)) (-3449 (((-85) $) NIL T ELT)) (-3425 (((-488) |#1| $ (-488)) NIL (|has| |#1| (-72)) ELT) (((-488) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-488) (-1 (-85) |#1|) $) NIL T ELT)) (-2291 (((-85) $) 9 T ELT)) (-3037 (((-587 $) $) NIL T ELT)) (-3033 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2292 (($) 7 T CONST)) (-3620 (($ (-698) |#1|) NIL T ELT)) (-3725 (((-85) $ (-698)) NIL T ELT)) (-2205 (((-488) $) 34 (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-2862 (($ $ $) NIL (|has| |#1| (-760)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 66 T ELT)) (-3524 (($ $ $) NIL (|has| |#1| (-760)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2614 (((-587 |#1|) $) 30 T ELT)) (-3251 (((-85) |#1| $) 61 (|has| |#1| (-72)) ELT)) (-2206 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3540 (($ |#1|) NIL T ELT)) (-3722 (((-85) $ (-698)) NIL T ELT)) (-3036 (((-587 |#1|) $) NIL T ELT)) (-3533 (((-85) $) NIL T ELT)) (-3248 (((-1077) $) 59 (|has| |#1| (-1017)) ELT)) (-3804 ((|#1| $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-3615 (($ $ $ (-488)) NIL T ELT) (($ |#1| $ (-488)) NIL T ELT)) (-2309 (($ $ $ (-488)) NIL T ELT) (($ |#1| $ (-488)) NIL T ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) NIL T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-3807 ((|#1| $) 16 T ELT) (($ $ (-698)) NIL T ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2204 (($ $ |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3450 (((-85) $) NIL T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 15 T ELT)) (-2207 (((-85) |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) NIL T ELT)) (-3409 (((-85) $) 20 T ELT)) (-3571 (($) 19 T ELT)) (-3806 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1150 (-488))) NIL T ELT) ((|#1| $ (-488)) 78 T ELT) ((|#1| $ (-488) |#1|) NIL T ELT)) (-3035 (((-488) $ $) NIL T ELT)) (-1575 (($ $ (-1150 (-488))) NIL T ELT) (($ $ (-488)) NIL T ELT)) (-2310 (($ $ (-1150 (-488))) NIL T ELT) (($ $ (-488)) NIL T ELT)) (-3639 (((-85) $) NIL T ELT)) (-3798 (($ $) NIL T ELT)) (-3796 (($ $) NIL (|has| $ (-1039 |#1|)) ELT)) (-3799 (((-698) $) NIL T ELT)) (-3800 (($ $) 40 T ELT)) (-1735 (((-698) (-1 (-85) |#1|) $) NIL T ELT) (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1739 (($ $ $ (-488)) NIL (|has| $ (-1039 |#1|)) ELT)) (-3406 (($ $) 36 T ELT)) (-3978 (((-477) $) 87 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 29 T ELT)) (-3467 (($ |#1| $) 10 T ELT)) (-3797 (($ $ $) 62 T ELT) (($ $ |#1|) NIL T ELT)) (-3808 (($ $ $) 72 T ELT) (($ |#1| $) 14 T ELT) (($ (-587 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3953 (((-776) $) 51 (|has| |#1| (-556 (-776))) ELT)) (-3528 (((-587 $) $) NIL T ELT)) (-3034 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2290 (($ $ $) 11 T ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2572 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) 55 (|has| |#1| (-72)) ELT)) (-2690 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3964 (((-698) $) 13 T ELT))) +(((-587 |#1|) (-13 (-612 |#1|) (-10 -8 (-15 -2292 ($) -3959) (-15 -2291 ((-85) $)) (-15 -3467 ($ |#1| $)) (-15 -2290 ($ $ $)) (IF (|has| |#1| (-1017)) (PROGN (-15 -2289 ($ $ $)) (-15 -2288 ($ $ $)) (-15 -2287 ($ $ $))) |%noBranch|))) (-1133)) (T -587)) +((-2292 (*1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1133)))) (-2291 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-587 *3)) (-4 *3 (-1133)))) (-3467 (*1 *1 *2 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1133)))) (-2290 (*1 *1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1133)))) (-2289 (*1 *1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1017)) (-4 *2 (-1133)))) (-2288 (*1 *1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1017)) (-4 *2 (-1133)))) (-2287 (*1 *1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1017)) (-4 *2 (-1133))))) +((-3847 (((-587 |#2|) (-1 |#2| |#1| |#2|) (-587 |#1|) |#2|) 16 T ELT)) (-3848 ((|#2| (-1 |#2| |#1| |#2|) (-587 |#1|) |#2|) 18 T ELT)) (-3849 (((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)) 13 T ELT))) +(((-588 |#1| |#2|) (-10 -7 (-15 -3847 ((-587 |#2|) (-1 |#2| |#1| |#2|) (-587 |#1|) |#2|)) (-15 -3848 (|#2| (-1 |#2| |#1| |#2|) (-587 |#1|) |#2|)) (-15 -3849 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)))) (-1133) (-1133)) (T -588)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-587 *6)) (-5 *1 (-588 *5 *6)))) (-3848 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-587 *5)) (-4 *5 (-1133)) (-4 *2 (-1133)) (-5 *1 (-588 *5 *2)))) (-3847 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-587 *6)) (-4 *6 (-1133)) (-4 *5 (-1133)) (-5 *2 (-587 *5)) (-5 *1 (-588 *6 *5))))) +((-3428 ((|#2| (-587 |#1|) (-587 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-587 |#1|) (-587 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|) |#2|) 17 T ELT) ((|#2| (-587 |#1|) (-587 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|)) 12 T ELT))) +(((-589 |#1| |#2|) (-10 -7 (-15 -3428 ((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|))) (-15 -3428 (|#2| (-587 |#1|) (-587 |#2|) |#1|)) (-15 -3428 ((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|) |#2|)) (-15 -3428 (|#2| (-587 |#1|) (-587 |#2|) |#1| |#2|)) (-15 -3428 ((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|) (-1 |#2| |#1|))) (-15 -3428 (|#2| (-587 |#1|) (-587 |#2|) |#1| (-1 |#2| |#1|)))) (-1017) (-1133)) (T -589)) +((-3428 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1017)) (-4 *2 (-1133)) (-5 *1 (-589 *5 *2)))) (-3428 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-587 *5)) (-5 *4 (-587 *6)) (-4 *5 (-1017)) (-4 *6 (-1133)) (-5 *1 (-589 *5 *6)))) (-3428 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *2)) (-4 *5 (-1017)) (-4 *2 (-1133)) (-5 *1 (-589 *5 *2)))) (-3428 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 *5)) (-4 *6 (-1017)) (-4 *5 (-1133)) (-5 *2 (-1 *5 *6)) (-5 *1 (-589 *6 *5)))) (-3428 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *2)) (-4 *5 (-1017)) (-4 *2 (-1133)) (-5 *1 (-589 *5 *2)))) (-3428 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *6)) (-4 *5 (-1017)) (-4 *6 (-1133)) (-5 *2 (-1 *6 *5)) (-5 *1 (-589 *5 *6))))) +((-3849 (((-587 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-587 |#2|)) 21 T ELT))) +(((-590 |#1| |#2| |#3|) (-10 -7 (-15 -3849 ((-587 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-587 |#2|)))) (-1133) (-1133) (-1133)) (T -590)) +((-3849 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-587 *6)) (-5 *5 (-587 *7)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-4 *8 (-1133)) (-5 *2 (-587 *8)) (-5 *1 (-590 *6 *7 *8))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 11 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-591 |#1|) (-13 (-999) (-556 |#1|)) (-1017)) (T -591)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) +(((-592 |#1|) (-113) (-1029)) (T -592)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1029))))) +(-13 (-1017) (-10 -8 (-15 * ($ |t#1| $)))) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2293 (($ |#1| |#1| $) 45 T ELT)) (-1574 (($ (-1 (-85) |#1|) $) 61 (|has| $ (-320 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3730 (($) NIL T CONST)) (-2373 (($ $) 47 T ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-3411 (($ |#1| $) 58 (|has| $ (-320 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 60 (|has| $ (-320 |#1|)) ELT)) (-3412 (($ |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-2614 (((-587 |#1|) $) 9 T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-1278 ((|#1| $) 49 T ELT)) (-3615 (($ |#1| $) 30 T ELT) (($ |#1| $ (-698)) 44 T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1279 ((|#1| $) 52 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) 23 T ELT)) (-3571 (($) 29 T ELT)) (-2294 (((-85) $) 56 T ELT)) (-2372 (((-587 (-2 (|:| |entry| |#1|) (|:| -1735 (-698)))) $) 69 T ELT)) (-1470 (($) 26 T ELT) (($ (-587 |#1|)) 19 T ELT)) (-1735 (((-698) |#1| $) 65 (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) NIL T ELT)) (-3406 (($ $) 20 T ELT)) (-3978 (((-477) $) 36 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) NIL T ELT)) (-3953 (((-776) $) 14 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1280 (($ (-587 |#1|)) 24 T ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3062 (((-85) $ $) 71 (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) 17 T ELT))) +(((-593 |#1|) (-13 (-638 |#1|) (-320 |#1|) (-10 -8 (-15 -2294 ((-85) $)) (-15 -2293 ($ |#1| |#1| $)))) (-1017)) (T -593)) +((-2294 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-593 *3)) (-4 *3 (-1017)))) (-2293 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1017))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-1218 (((-85) $ $) 20 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ |#1| $) 33 T ELT))) +(((-594 |#1|) (-113) (-974)) (T -594)) +NIL +(-13 (-21) (-592 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3142 (((-698) $) 17 T ELT)) (-2300 (($ $ |#1|) 68 T ELT)) (-2302 (($ $) 39 T ELT)) (-2303 (($ $) 37 T ELT)) (-3163 (((-3 |#1| "failed") $) 60 T ELT)) (-3162 ((|#1| $) NIL T ELT)) (-2298 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3539 (((-776) $ (-1 (-776) (-776) (-776)) (-1 (-776) (-776) (-776)) (-488)) 55 T ELT)) (-2304 ((|#1| $ (-488)) 35 T ELT)) (-2305 ((|#2| $ (-488)) 34 T ELT)) (-2295 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2296 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2301 (($) 13 T ELT)) (-2307 (($ |#1| |#2|) 24 T ELT)) (-2306 (($ (-587 (-2 (|:| |gen| |#1|) (|:| -3950 |#2|)))) 25 T ELT)) (-2308 (((-587 (-2 (|:| |gen| |#1|) (|:| -3950 |#2|))) $) 14 T ELT)) (-2299 (($ |#1| $) 69 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2297 (((-85) $ $) 74 T ELT)) (-3953 (((-776) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 27 T ELT))) +(((-595 |#1| |#2| |#3|) (-13 (-1017) (-954 |#1|) (-10 -8 (-15 -3539 ((-776) $ (-1 (-776) (-776) (-776)) (-1 (-776) (-776) (-776)) (-488))) (-15 -2308 ((-587 (-2 (|:| |gen| |#1|) (|:| -3950 |#2|))) $)) (-15 -2307 ($ |#1| |#2|)) (-15 -2306 ($ (-587 (-2 (|:| |gen| |#1|) (|:| -3950 |#2|))))) (-15 -2305 (|#2| $ (-488))) (-15 -2304 (|#1| $ (-488))) (-15 -2303 ($ $)) (-15 -2302 ($ $)) (-15 -3142 ((-698) $)) (-15 -2301 ($)) (-15 -2300 ($ $ |#1|)) (-15 -2299 ($ |#1| $)) (-15 -2298 ($ |#1| |#2| $)) (-15 -2298 ($ $ $)) (-15 -2297 ((-85) $ $)) (-15 -2296 ($ (-1 |#2| |#2|) $)) (-15 -2295 ($ (-1 |#1| |#1|) $)))) (-1017) (-23) |#2|) (T -595)) +((-3539 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-776) (-776) (-776))) (-5 *4 (-488)) (-5 *2 (-776)) (-5 *1 (-595 *5 *6 *7)) (-4 *5 (-1017)) (-4 *6 (-23)) (-14 *7 *6))) (-2308 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3950 *4)))) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1017)) (-4 *4 (-23)) (-14 *5 *4))) (-2307 (*1 *1 *2 *3) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1017)) (-4 *3 (-23)) (-14 *4 *3))) (-2306 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3950 *4)))) (-4 *3 (-1017)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-595 *3 *4 *5)))) (-2305 (*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-4 *2 (-23)) (-5 *1 (-595 *4 *2 *5)) (-4 *4 (-1017)) (-14 *5 *2))) (-2304 (*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-4 *2 (-1017)) (-5 *1 (-595 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2303 (*1 *1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1017)) (-4 *3 (-23)) (-14 *4 *3))) (-2302 (*1 *1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1017)) (-4 *3 (-23)) (-14 *4 *3))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1017)) (-4 *4 (-23)) (-14 *5 *4))) (-2301 (*1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1017)) (-4 *3 (-23)) (-14 *4 *3))) (-2300 (*1 *1 *1 *2) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1017)) (-4 *3 (-23)) (-14 *4 *3))) (-2299 (*1 *1 *2 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1017)) (-4 *3 (-23)) (-14 *4 *3))) (-2298 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1017)) (-4 *3 (-23)) (-14 *4 *3))) (-2298 (*1 *1 *1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1017)) (-4 *3 (-23)) (-14 *4 *3))) (-2297 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1017)) (-4 *4 (-23)) (-14 *5 *4))) (-2296 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1017)))) (-2295 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1017)) (-5 *1 (-595 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +((-2206 (((-488) $) 30 T ELT)) (-2309 (($ |#2| $ (-488)) 26 T ELT) (($ $ $ (-488)) NIL T ELT)) (-2208 (((-587 (-488)) $) 12 T ELT)) (-2209 (((-85) (-488) $) 17 T ELT)) (-3808 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT))) +(((-596 |#1| |#2|) (-10 -7 (-15 -2309 (|#1| |#1| |#1| (-488))) (-15 -2309 (|#1| |#2| |#1| (-488))) (-15 -3808 (|#1| (-587 |#1|))) (-15 -3808 (|#1| |#1| |#1|)) (-15 -3808 (|#1| |#2| |#1|)) (-15 -3808 (|#1| |#1| |#2|)) (-15 -2206 ((-488) |#1|)) (-15 -2208 ((-587 (-488)) |#1|)) (-15 -2209 ((-85) (-488) |#1|))) (-597 |#2|) (-1133)) (T -596)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2203 (((-1189) $ (-488) (-488)) 35 (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ (-488) |#1|) 47 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-1150 (-488)) |#1|) 55 (|has| $ (-1039 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) 69 (|has| $ (-320 |#1|)) ELT)) (-3730 (($) 6 T CONST)) (-1357 (($ $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-3412 (($ |#1| $) 70 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 68 (|has| $ (-320 |#1|)) ELT)) (-1580 ((|#1| $ (-488) |#1|) 48 (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-488)) 46 T ELT)) (-3620 (($ (-698) |#1|) 65 T ELT)) (-2205 (((-488) $) 38 (|has| (-488) (-760)) ELT)) (-2206 (((-488) $) 39 (|has| (-488) (-760)) ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-2309 (($ |#1| $ (-488)) 57 T ELT) (($ $ $ (-488)) 56 T ELT)) (-2208 (((-587 (-488)) $) 41 T ELT)) (-2209 (((-85) (-488) $) 42 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-3807 ((|#1| $) 37 (|has| (-488) (-760)) ELT)) (-2204 (($ $ |#1|) 36 (|has| $ (-1039 |#1|)) ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-2207 (((-85) |#1| $) 40 (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) 43 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#1| $ (-488) |#1|) 45 T ELT) ((|#1| $ (-488)) 44 T ELT) (($ $ (-1150 (-488))) 66 T ELT)) (-2310 (($ $ (-488)) 59 T ELT) (($ $ (-1150 (-488))) 58 T ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 72 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 67 T ELT)) (-3808 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-597 |#1|) (-113) (-1133)) (T -597)) +((-3620 (*1 *1 *2 *3) (-12 (-5 *2 (-698)) (-4 *1 (-597 *3)) (-4 *3 (-1133)))) (-3808 (*1 *1 *1 *2) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1133)))) (-3808 (*1 *1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1133)))) (-3808 (*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1133)))) (-3808 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-597 *3)) (-4 *3 (-1133)))) (-3849 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-597 *3)) (-4 *3 (-1133)))) (-2310 (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-597 *3)) (-4 *3 (-1133)))) (-2310 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 (-488))) (-4 *1 (-597 *3)) (-4 *3 (-1133)))) (-2309 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-488)) (-4 *1 (-597 *2)) (-4 *2 (-1133)))) (-2309 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-597 *3)) (-4 *3 (-1133)))) (-3794 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1150 (-488))) (-4 *1 (-1039 *2)) (-4 *1 (-597 *2)) (-4 *2 (-1133))))) +(-13 (-542 (-488) |t#1|) (-124 |t#1|) (-243 (-1150 (-488)) $) (-10 -8 (-15 -3620 ($ (-698) |t#1|)) (-15 -3808 ($ $ |t#1|)) (-15 -3808 ($ |t#1| $)) (-15 -3808 ($ $ $)) (-15 -3808 ($ (-587 $))) (-15 -3849 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2310 ($ $ (-488))) (-15 -2310 ($ $ (-1150 (-488)))) (-15 -2309 ($ |t#1| $ (-488))) (-15 -2309 ($ $ $ (-488))) (IF (|has| $ (-1039 |t#1|)) (-15 -3794 (|t#1| $ (-1150 (-488)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-124 |#1|) . T) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-243 (-488) |#1|) . T) ((-243 (-1150 (-488)) $) . T) ((-245 (-488) |#1|) . T) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-542 (-488) |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-1017) |has| |#1| (-1017)) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 15 T ELT)) (-1316 (((-3 $ "failed") $ $) NIL T ELT)) (-3629 (((-488) $) NIL (|has| |#1| (-718)) ELT)) (-3730 (($) NIL T CONST)) (-3192 (((-85) $) NIL (|has| |#1| (-718)) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-3004 ((|#1| $) 23 T ELT)) (-3193 (((-85) $) NIL (|has| |#1| (-718)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-718)) ELT)) (-2863 (($ $ $) NIL (|has| |#1| (-718)) ELT)) (-3248 (((-1077) $) 48 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3003 ((|#3| $) 24 T ELT)) (-3953 (((-776) $) 43 T ELT)) (-1269 (((-85) $ $) 22 T ELT)) (-3389 (($ $) NIL (|has| |#1| (-718)) ELT)) (-2666 (($) 10 T CONST)) (-2572 (((-85) $ $) NIL (|has| |#1| (-718)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#1| (-718)) ELT)) (-3062 (((-85) $ $) 20 T ELT)) (-2690 (((-85) $ $) NIL (|has| |#1| (-718)) ELT)) (-2691 (((-85) $ $) 26 (|has| |#1| (-718)) ELT)) (-3956 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3843 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 29 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) +(((-598 |#1| |#2| |#3|) (-13 (-658 |#2|) (-10 -8 (IF (|has| |#1| (-718)) (-6 (-718)) |%noBranch|) (-15 -3956 ($ $ |#3|)) (-15 -3956 ($ |#1| |#3|)) (-15 -3004 (|#1| $)) (-15 -3003 (|#3| $)))) (-658 |#2|) (-148) (|SubsetCategory| (-667) |#2|)) (T -598)) +((-3956 (*1 *1 *1 *2) (-12 (-4 *4 (-148)) (-5 *1 (-598 *3 *4 *2)) (-4 *3 (-658 *4)) (-4 *2 (|SubsetCategory| (-667) *4)))) (-3956 (*1 *1 *2 *3) (-12 (-4 *4 (-148)) (-5 *1 (-598 *2 *4 *3)) (-4 *2 (-658 *4)) (-4 *3 (|SubsetCategory| (-667) *4)))) (-3004 (*1 *2 *1) (-12 (-4 *3 (-148)) (-4 *2 (-658 *3)) (-5 *1 (-598 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-667) *3)))) (-3003 (*1 *2 *1) (-12 (-4 *4 (-148)) (-4 *2 (|SubsetCategory| (-667) *4)) (-5 *1 (-598 *3 *4 *2)) (-4 *3 (-658 *4))))) +((-3579 (((-3 |#2| #1="failed") |#3| |#2| (-1094) |#2| (-587 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2017 (-587 |#2|))) #1#) |#3| |#2| (-1094)) 44 T ELT))) +(((-599 |#1| |#2| |#3|) (-10 -7 (-15 -3579 ((-3 (-2 (|:| |particular| |#2|) (|:| -2017 (-587 |#2|))) #1="failed") |#3| |#2| (-1094))) (-15 -3579 ((-3 |#2| #1#) |#3| |#2| (-1094) |#2| (-587 |#2|)))) (-13 (-260) (-954 (-488)) (-584 (-488)) (-120)) (-13 (-29 |#1|) (-1119) (-875)) (-604 |#2|)) (T -599)) +((-3579 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1094)) (-5 *5 (-587 *2)) (-4 *2 (-13 (-29 *6) (-1119) (-875))) (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-5 *1 (-599 *6 *2 *3)) (-4 *3 (-604 *2)))) (-3579 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1094)) (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-4 *4 (-13 (-29 *6) (-1119) (-875))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2017 (-587 *4)))) (-5 *1 (-599 *6 *4 *3)) (-4 *3 (-604 *4))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2311 (($ $) NIL (|has| |#1| (-314)) ELT)) (-2313 (($ $ $) 28 (|has| |#1| (-314)) ELT)) (-2314 (($ $ (-698)) 31 (|has| |#1| (-314)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2542 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#1| (-314)) ELT)) (-2555 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3163 (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3162 (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) NIL T ELT)) (-3965 (($ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3509 (($ $) NIL (|has| |#1| (-395)) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-698)) NIL T ELT)) (-2553 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-499)) ELT)) (-2552 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-499)) ELT)) (-2826 (((-698) $) NIL T ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2546 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-2547 (((-3 $ #1#) $ $) NIL (|has| |#1| (-314)) ELT)) (-2554 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3180 ((|#1| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3472 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-499)) ELT)) (-3806 ((|#1| $ |#1|) 24 T ELT)) (-2315 (($ $ $) 33 (|has| |#1| (-314)) ELT)) (-3955 (((-698) $) NIL T ELT)) (-2823 ((|#1| $) NIL (|has| |#1| (-395)) ELT)) (-3953 (((-776) $) 20 T ELT) (($ (-488)) NIL T ELT) (($ (-352 (-488))) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (($ |#1|) NIL T ELT)) (-3823 (((-587 |#1|) $) NIL T ELT)) (-3683 ((|#1| $ (-698)) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2551 ((|#1| $ |#1| |#1|) 23 T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2526 (($ $) NIL T ELT)) (-2666 (($) 21 T CONST)) (-2672 (($) 8 T CONST)) (-2675 (($) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-600 |#1| |#2|) (-604 |#1|) (-965) (-1 |#1| |#1|)) (T -600)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2311 (($ $) NIL (|has| |#1| (-314)) ELT)) (-2313 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2314 (($ $ (-698)) NIL (|has| |#1| (-314)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2542 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#1| (-314)) ELT)) (-2555 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3163 (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3162 (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) NIL T ELT)) (-3965 (($ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3509 (($ $) NIL (|has| |#1| (-395)) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-698)) NIL T ELT)) (-2553 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-499)) ELT)) (-2552 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-499)) ELT)) (-2826 (((-698) $) NIL T ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2546 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-2547 (((-3 $ #1#) $ $) NIL (|has| |#1| (-314)) ELT)) (-2554 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3180 ((|#1| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3472 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-499)) ELT)) (-3806 ((|#1| $ |#1|) NIL T ELT)) (-2315 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3955 (((-698) $) NIL T ELT)) (-2823 ((|#1| $) NIL (|has| |#1| (-395)) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ (-352 (-488))) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (($ |#1|) NIL T ELT)) (-3823 (((-587 |#1|) $) NIL T ELT)) (-3683 ((|#1| $ (-698)) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2551 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2526 (($ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-601 |#1|) (-604 |#1|) (-192)) (T -601)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2311 (($ $) NIL (|has| |#1| (-314)) ELT)) (-2313 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2314 (($ $ (-698)) NIL (|has| |#1| (-314)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2542 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#1| (-314)) ELT)) (-2555 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3163 (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3162 (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) NIL T ELT)) (-3965 (($ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3509 (($ $) NIL (|has| |#1| (-395)) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-698)) NIL T ELT)) (-2553 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-499)) ELT)) (-2552 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-499)) ELT)) (-2826 (((-698) $) NIL T ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2546 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-2547 (((-3 $ #1#) $ $) NIL (|has| |#1| (-314)) ELT)) (-2554 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3180 ((|#1| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3472 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-499)) ELT)) (-3806 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2315 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3955 (((-698) $) NIL T ELT)) (-2823 ((|#1| $) NIL (|has| |#1| (-395)) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ (-352 (-488))) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (($ |#1|) NIL T ELT)) (-3823 (((-587 |#1|) $) NIL T ELT)) (-3683 ((|#1| $ (-698)) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2551 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2526 (($ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-602 |#1| |#2|) (-13 (-604 |#1|) (-243 |#2| |#2|)) (-192) (-13 (-594 |#1|) (-10 -8 (-15 -3764 ($ $))))) (T -602)) +NIL +((-2311 (($ $) 29 T ELT)) (-2526 (($ $) 27 T ELT)) (-2675 (($) 13 T ELT))) +(((-603 |#1| |#2|) (-10 -7 (-15 -2311 (|#1| |#1|)) (-15 -2526 (|#1| |#1|)) (-15 -2675 (|#1|))) (-604 |#2|) (-965)) (T -603)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2311 (($ $) 96 (|has| |#1| (-314)) ELT)) (-2313 (($ $ $) 98 (|has| |#1| (-314)) ELT)) (-2314 (($ $ (-698)) 97 (|has| |#1| (-314)) ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-2542 (($ $ $) 58 (|has| |#1| (-314)) ELT)) (-2543 (($ $ $) 59 (|has| |#1| (-314)) ELT)) (-2544 (($ $ $) 61 (|has| |#1| (-314)) ELT)) (-2540 (($ $ $) 56 (|has| |#1| (-314)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 55 (|has| |#1| (-314)) ELT)) (-2541 (((-3 $ #1="failed") $ $) 57 (|has| |#1| (-314)) ELT)) (-2555 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 60 (|has| |#1| (-314)) ELT)) (-3163 (((-3 (-488) #2="failed") $) 88 (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #2#) $) 85 (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #2#) $) 82 T ELT)) (-3162 (((-488) $) 87 (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) 84 (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) 83 T ELT)) (-3965 (($ $) 77 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3509 (($ $) 68 (|has| |#1| (-395)) ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-2899 (($ |#1| (-698)) 75 T ELT)) (-2553 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 70 (|has| |#1| (-499)) ELT)) (-2552 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 71 (|has| |#1| (-499)) ELT)) (-2826 (((-698) $) 79 T ELT)) (-2548 (($ $ $) 65 (|has| |#1| (-314)) ELT)) (-2549 (($ $ $) 66 (|has| |#1| (-314)) ELT)) (-2538 (($ $ $) 54 (|has| |#1| (-314)) ELT)) (-2546 (($ $ $) 63 (|has| |#1| (-314)) ELT)) (-2545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 62 (|has| |#1| (-314)) ELT)) (-2547 (((-3 $ #1#) $ $) 64 (|has| |#1| (-314)) ELT)) (-2554 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 67 (|has| |#1| (-314)) ELT)) (-3180 ((|#1| $) 78 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3472 (((-3 $ #1#) $ |#1|) 72 (|has| |#1| (-499)) ELT)) (-3806 ((|#1| $ |#1|) 101 T ELT)) (-2315 (($ $ $) 95 (|has| |#1| (-314)) ELT)) (-3955 (((-698) $) 80 T ELT)) (-2823 ((|#1| $) 69 (|has| |#1| (-395)) ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ (-352 (-488))) 86 (|has| |#1| (-954 (-352 (-488)))) ELT) (($ |#1|) 81 T ELT)) (-3823 (((-587 |#1|) $) 74 T ELT)) (-3683 ((|#1| $ (-698)) 76 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2551 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2526 (($ $) 99 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($) 100 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT))) +(((-604 |#1|) (-113) (-965)) (T -604)) +((-2675 (*1 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-965)))) (-2526 (*1 *1 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-965)))) (-2313 (*1 *1 *1 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-965)) (-4 *2 (-314)))) (-2314 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-604 *3)) (-4 *3 (-965)) (-4 *3 (-314)))) (-2311 (*1 *1 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-965)) (-4 *2 (-314)))) (-2315 (*1 *1 *1 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-965)) (-4 *2 (-314))))) +(-13 (-765 |t#1|) (-243 |t#1| |t#1|) (-10 -8 (-15 -2675 ($)) (-15 -2526 ($ $)) (IF (|has| |t#1| (-314)) (PROGN (-15 -2313 ($ $ $)) (-15 -2314 ($ $ (-698))) (-15 -2311 ($ $)) (-15 -2315 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-148)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-559 (-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((-559 (-488)) . T) ((-559 |#1|) . T) ((-556 (-776)) . T) ((-243 |#1| |#1|) . T) ((-357 |#1|) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-586 |#1|) |has| |#1| (-148)) ((-658 |#1|) |has| |#1| (-148)) ((-667) . T) ((-954 (-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((-954 (-488)) |has| |#1| (-954 (-488))) ((-954 |#1|) . T) ((-967 |#1|) . T) ((-972 |#1|) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T) ((-765 |#1|) . T)) +((-2312 (((-587 (-601 (-352 |#2|))) (-601 (-352 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3738 (((-587 (-601 (-352 |#2|))) (-601 (-352 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-587 (-601 (-352 |#2|))) (-601 (-352 |#2|)) (-1 (-587 |#1|) |#2|)) 19 T ELT))) +(((-605 |#1| |#2|) (-10 -7 (-15 -3738 ((-587 (-601 (-352 |#2|))) (-601 (-352 |#2|)) (-1 (-587 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3738 ((-587 (-601 (-352 |#2|))) (-601 (-352 |#2|)))) (-15 -2312 ((-587 (-601 (-352 |#2|))) (-601 (-352 |#2|))))) |%noBranch|)) (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488)))) (-1159 |#1|)) (T -605)) +((-2312 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) (-4 *5 (-1159 *4)) (-5 *2 (-587 (-601 (-352 *5)))) (-5 *1 (-605 *4 *5)) (-5 *3 (-601 (-352 *5))))) (-3738 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) (-4 *5 (-1159 *4)) (-5 *2 (-587 (-601 (-352 *5)))) (-5 *1 (-605 *4 *5)) (-5 *3 (-601 (-352 *5))))) (-3738 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-587 *5) *6)) (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) (-4 *6 (-1159 *5)) (-5 *2 (-587 (-601 (-352 *6)))) (-5 *1 (-605 *5 *6)) (-5 *3 (-601 (-352 *6)))))) +((-2313 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2314 ((|#2| |#2| (-698) (-1 |#1| |#1|)) 45 T ELT)) (-2315 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) +(((-606 |#1| |#2|) (-10 -7 (-15 -2313 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2314 (|#2| |#2| (-698) (-1 |#1| |#1|))) (-15 -2315 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-314) (-604 |#1|)) (T -606)) +((-2315 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-314)) (-5 *1 (-606 *4 *2)) (-4 *2 (-604 *4)))) (-2314 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-698)) (-5 *4 (-1 *5 *5)) (-4 *5 (-314)) (-5 *1 (-606 *5 *2)) (-4 *2 (-604 *5)))) (-2313 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-314)) (-5 *1 (-606 *4 *2)) (-4 *2 (-604 *4))))) +((-2316 (($ $ $) 9 T ELT))) +(((-607 |#1|) (-10 -7 (-15 -2316 (|#1| |#1| |#1|))) (-608)) (T -607)) +NIL +((-2318 (($ $) 8 T ELT)) (-2316 (($ $ $) 6 T ELT)) (-2317 (($ $ $) 7 T ELT))) +(((-608) (-113)) (T -608)) +((-2318 (*1 *1 *1) (-4 *1 (-608))) (-2317 (*1 *1 *1 *1) (-4 *1 (-608))) (-2316 (*1 *1 *1 *1) (-4 *1 (-608)))) +(-13 (-1133) (-10 -8 (-15 -2318 ($ $)) (-15 -2317 ($ $ $)) (-15 -2316 ($ $ $)))) +(((-13) . T) ((-1133) . T)) +((-2319 (((-3 (-587 (-1089 |#1|)) "failed") (-587 (-1089 |#1|)) (-1089 |#1|)) 33 T ELT))) +(((-609 |#1|) (-10 -7 (-15 -2319 ((-3 (-587 (-1089 |#1|)) "failed") (-587 (-1089 |#1|)) (-1089 |#1|)))) (-825)) (T -609)) +((-2319 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-1089 *4))) (-5 *3 (-1089 *4)) (-4 *4 (-825)) (-5 *1 (-609 *4))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3941 (((-587 |#1|) $) 85 T ELT)) (-3954 (($ $ (-698)) 95 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3946 (((-1208 |#1| |#2|) (-1208 |#1| |#2|) $) 50 T ELT)) (-3163 (((-3 (-618 |#1|) #1#) $) NIL T ELT)) (-3162 (((-618 |#1|) $) NIL T ELT)) (-3965 (($ $) 94 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2425 (((-698) $) NIL T ELT)) (-2827 (((-587 $) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-3945 (($ (-618 |#1|) |#2|) 70 T ELT)) (-3943 (($ $) 90 T ELT)) (-3849 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3947 (((-1208 |#1| |#2|) (-1208 |#1| |#2|) $) 49 T ELT)) (-1757 (((-2 (|:| |k| (-618 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2900 (((-618 |#1|) $) NIL T ELT)) (-3180 ((|#2| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3774 (($ $ |#1| $) 32 T ELT) (($ $ (-587 |#1|) (-587 $)) 34 T ELT)) (-3955 (((-698) $) 92 T ELT)) (-3536 (($ $ $) 20 T ELT) (($ (-618 |#1|) (-618 |#1|)) 79 T ELT) (($ (-618 |#1|) $) 77 T ELT) (($ $ (-618 |#1|)) 78 T ELT)) (-3953 (((-776) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1199 |#1| |#2|) $) 60 T ELT) (((-1208 |#1| |#2|) $) 43 T ELT) (($ (-618 |#1|)) 27 T ELT)) (-3823 (((-587 |#2|) $) NIL T ELT)) (-3683 ((|#2| $ (-618 |#1|)) NIL T ELT)) (-3961 ((|#2| (-1208 |#1| |#2|) $) 45 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) 23 T CONST)) (-2671 (((-587 (-2 (|:| |k| (-618 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3952 (((-3 $ #1#) (-1199 |#1| |#2|)) 62 T ELT)) (-1741 (($ (-618 |#1|)) 14 T ELT)) (-3062 (((-85) $ $) 46 T ELT)) (-3956 (($ $ |#2|) NIL (|has| |#2| (-314)) ELT)) (-3843 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 31 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-618 |#1|)) NIL T ELT))) +(((-610 |#1| |#2|) (-13 (-328 |#1| |#2|) (-337 |#2| (-618 |#1|)) (-10 -8 (-15 -3952 ((-3 $ "failed") (-1199 |#1| |#2|))) (-15 -3536 ($ (-618 |#1|) (-618 |#1|))) (-15 -3536 ($ (-618 |#1|) $)) (-15 -3536 ($ $ (-618 |#1|))))) (-760) (-148)) (T -610)) +((-3952 (*1 *1 *2) (|partial| -12 (-5 *2 (-1199 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)) (-5 *1 (-610 *3 *4)))) (-3536 (*1 *1 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-760)) (-5 *1 (-610 *3 *4)) (-4 *4 (-148)))) (-3536 (*1 *1 *2 *1) (-12 (-5 *2 (-618 *3)) (-4 *3 (-760)) (-5 *1 (-610 *3 *4)) (-4 *4 (-148)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-760)) (-5 *1 (-610 *3 *4)) (-4 *4 (-148))))) +((-1740 (((-85) $) NIL T ELT) (((-85) (-1 (-85) |#2| |#2|) $) 59 T ELT)) (-1738 (($ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $) 12 T ELT)) (-1574 (($ (-1 (-85) |#2|) $) 29 T ELT)) (-2302 (($ $) 65 T ELT)) (-2373 (($ $) 74 T ELT)) (-3411 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 43 T ELT)) (-3848 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3425 (((-488) |#2| $ (-488)) 71 T ELT) (((-488) |#2| $) NIL T ELT) (((-488) (-1 (-85) |#2|) $) 54 T ELT)) (-3620 (($ (-698) |#2|) 63 T ELT)) (-2862 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 31 T ELT)) (-3524 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 24 T ELT)) (-3849 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3540 (($ |#2|) 15 T ELT)) (-3615 (($ $ $ (-488)) 42 T ELT) (($ |#2| $ (-488)) 40 T ELT)) (-1734 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 53 T ELT)) (-1575 (($ $ (-1150 (-488))) 51 T ELT) (($ $ (-488)) 44 T ELT)) (-1739 (($ $ $ (-488)) 70 T ELT)) (-3406 (($ $) 68 T ELT)) (-2691 (((-85) $ $) 76 T ELT))) +(((-611 |#1| |#2|) (-10 -7 (-15 -3540 (|#1| |#2|)) (-15 -1575 (|#1| |#1| (-488))) (-15 -1575 (|#1| |#1| (-1150 (-488)))) (-15 -3411 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3615 (|#1| |#2| |#1| (-488))) (-15 -3615 (|#1| |#1| |#1| (-488))) (-15 -2862 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1574 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3411 (|#1| |#2| |#1|)) (-15 -2373 (|#1| |#1|)) (-15 -2862 (|#1| |#1| |#1|)) (-15 -3848 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1734 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3848 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3848 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3524 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1740 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3425 ((-488) (-1 (-85) |#2|) |#1|)) (-15 -3425 ((-488) |#2| |#1|)) (-15 -3425 ((-488) |#2| |#1| (-488))) (-15 -3524 (|#1| |#1| |#1|)) (-15 -1740 ((-85) |#1|)) (-15 -1739 (|#1| |#1| |#1| (-488))) (-15 -2302 (|#1| |#1|)) (-15 -1738 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -2691 ((-85) |#1| |#1|)) (-15 -3620 (|#1| (-698) |#2|)) (-15 -3849 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3849 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3406 (|#1| |#1|))) (-612 |#2|) (-1133)) (T -611)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3408 ((|#1| $) 43 T ELT)) (-3801 ((|#1| $) 62 T ELT)) (-3803 (($ $) 64 T ELT)) (-2203 (((-1189) $ (-488) (-488)) 99 (|has| $ (-1039 |#1|)) ELT)) (-3791 (($ $ (-488)) 49 (|has| $ (-1039 |#1|)) ELT)) (-1740 (((-85) $) 155 (|has| |#1| (-760)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) 149 T ELT)) (-1738 (($ $) 159 (-12 (|has| |#1| (-760)) (|has| $ (-1039 |#1|))) ELT) (($ (-1 (-85) |#1| |#1|) $) 158 (|has| $ (-1039 |#1|)) ELT)) (-2915 (($ $) 154 (|has| |#1| (-760)) ELT) (($ (-1 (-85) |#1| |#1|) $) 148 T ELT)) (-3448 (((-85) $ (-698)) 82 T ELT)) (-3031 ((|#1| $ |#1|) 34 (|has| $ (-1039 |#1|)) ELT)) (-3793 (($ $ $) 53 (|has| $ (-1039 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 51 (|has| $ (-1039 |#1|)) ELT)) (-3795 ((|#1| $ |#1|) 55 (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 54 (|has| $ (-1039 |#1|)) ELT) (($ $ #3="rest" $) 52 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 50 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-1150 (-488)) |#1|) 115 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-488) |#1|) 88 (|has| $ (-1039 |#1|)) ELT)) (-3032 (($ $ (-587 $)) 36 (|has| $ (-1039 |#1|)) ELT)) (-1574 (($ (-1 (-85) |#1|) $) 131 T ELT)) (-3716 (($ (-1 (-85) |#1|) $) 103 (|has| $ (-320 |#1|)) ELT)) (-3802 ((|#1| $) 63 T ELT)) (-3730 (($) 6 T CONST)) (-2302 (($ $) 157 (|has| $ (-1039 |#1|)) ELT)) (-2303 (($ $) 147 T ELT)) (-3805 (($ $) 70 T ELT) (($ $ (-698)) 68 T ELT)) (-2373 (($ $) 133 (|has| |#1| (-72)) ELT)) (-1357 (($ $) 101 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-3411 (($ |#1| $) 132 (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) 127 T ELT)) (-3412 (($ (-1 (-85) |#1|) $) 104 (|has| $ (-320 |#1|)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $) 140 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 139 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 135 (|has| |#1| (-72)) ELT)) (-1580 ((|#1| $ (-488) |#1|) 87 (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-488)) 89 T ELT)) (-3449 (((-85) $) 85 T ELT)) (-3425 (((-488) |#1| $ (-488)) 152 (|has| |#1| (-72)) ELT) (((-488) |#1| $) 151 (|has| |#1| (-72)) ELT) (((-488) (-1 (-85) |#1|) $) 150 T ELT)) (-3037 (((-587 $) $) 45 T ELT)) (-3033 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3620 (($ (-698) |#1|) 107 T ELT)) (-3725 (((-85) $ (-698)) 83 T ELT)) (-2205 (((-488) $) 97 (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) 165 (|has| |#1| (-760)) ELT)) (-2862 (($ $ $) 134 (|has| |#1| (-760)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 130 T ELT)) (-3524 (($ $ $) 153 (|has| |#1| (-760)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 146 T ELT)) (-2614 (((-587 |#1|) $) 141 T ELT)) (-3251 (((-85) |#1| $) 136 (|has| |#1| (-72)) ELT)) (-2206 (((-488) $) 96 (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) 164 (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 124 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 110 T ELT)) (-3540 (($ |#1|) 123 T ELT)) (-3722 (((-85) $ (-698)) 84 T ELT)) (-3036 (((-587 |#1|) $) 40 T ELT)) (-3533 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-3804 ((|#1| $) 67 T ELT) (($ $ (-698)) 65 T ELT)) (-3615 (($ $ $ (-488)) 129 T ELT) (($ |#1| $ (-488)) 128 T ELT)) (-2309 (($ $ $ (-488)) 114 T ELT) (($ |#1| $ (-488)) 113 T ELT)) (-2208 (((-587 (-488)) $) 94 T ELT)) (-2209 (((-85) (-488) $) 93 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-3807 ((|#1| $) 73 T ELT) (($ $ (-698)) 71 T ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 138 T ELT)) (-2204 (($ $ |#1|) 98 (|has| $ (-1039 |#1|)) ELT)) (-3450 (((-85) $) 86 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) 143 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-2207 (((-85) |#1| $) 95 (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) 92 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#1| $ #1#) 42 T ELT) ((|#1| $ #2#) 72 T ELT) (($ $ #3#) 69 T ELT) ((|#1| $ #4#) 66 T ELT) (($ $ (-1150 (-488))) 106 T ELT) ((|#1| $ (-488)) 91 T ELT) ((|#1| $ (-488) |#1|) 90 T ELT)) (-3035 (((-488) $ $) 39 T ELT)) (-1575 (($ $ (-1150 (-488))) 126 T ELT) (($ $ (-488)) 125 T ELT)) (-2310 (($ $ (-1150 (-488))) 112 T ELT) (($ $ (-488)) 111 T ELT)) (-3639 (((-85) $) 41 T ELT)) (-3798 (($ $) 59 T ELT)) (-3796 (($ $) 56 (|has| $ (-1039 |#1|)) ELT)) (-3799 (((-698) $) 60 T ELT)) (-3800 (($ $) 61 T ELT)) (-1735 (((-698) (-1 (-85) |#1|) $) 142 T ELT) (((-698) |#1| $) 137 (|has| |#1| (-72)) ELT)) (-1739 (($ $ $ (-488)) 156 (|has| $ (-1039 |#1|)) ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 100 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 105 T ELT)) (-3797 (($ $ $) 58 T ELT) (($ $ |#1|) 57 T ELT)) (-3808 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT) (($ (-587 $)) 109 T ELT) (($ $ |#1|) 108 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-3528 (((-587 $) $) 46 T ELT)) (-3034 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) 144 T ELT)) (-2572 (((-85) $ $) 163 (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) 161 (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2690 (((-85) $ $) 162 (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) 160 (|has| |#1| (-760)) ELT)) (-3964 (((-698) $) 145 T ELT))) +(((-612 |#1|) (-113) (-1133)) (T -612)) +((-3540 (*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1133))))) +(-13 (-1068 |t#1|) (-326 |t#1|) (-239 |t#1|) (-10 -8 (-15 -3540 ($ |t#1|)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-760)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-760)) (|has| |#1| (-556 (-776)))) ((-124 |#1|) . T) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-243 (-488) |#1|) . T) ((-243 (-1150 (-488)) $) . T) ((-245 (-488) |#1|) . T) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-239 |#1|) . T) ((-320 |#1|) . T) ((-326 |#1|) . T) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-542 (-488) |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-597 |#1|) . T) ((-760) |has| |#1| (-760)) ((-763) |has| |#1| (-760)) ((-927 |#1|) . T) ((-1017) OR (|has| |#1| (-1017)) (|has| |#1| (-760))) ((-1039 |#1|) . T) ((-1068 |#1|) . T) ((-1133) . T) ((-1172 |#1|) . T)) +((-3579 (((-587 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2017 (-587 |#3|)))) |#4| (-587 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2017 (-587 |#3|))) |#4| |#3|) 60 T ELT)) (-3114 (((-698) |#4| |#3|) 18 T ELT)) (-3346 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2320 (((-85) |#4| |#3|) 14 T ELT))) +(((-613 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3579 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2017 (-587 |#3|))) |#4| |#3|)) (-15 -3579 ((-587 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2017 (-587 |#3|)))) |#4| (-587 |#3|))) (-15 -3346 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2320 ((-85) |#4| |#3|)) (-15 -3114 ((-698) |#4| |#3|))) (-314) (-13 (-326 |#1|) (-1039 |#1|)) (-13 (-326 |#1|) (-1039 |#1|)) (-631 |#1| |#2| |#3|)) (T -613)) +((-3114 (*1 *2 *3 *4) (-12 (-4 *5 (-314)) (-4 *6 (-13 (-326 *5) (-1039 *5))) (-4 *4 (-13 (-326 *5) (-1039 *5))) (-5 *2 (-698)) (-5 *1 (-613 *5 *6 *4 *3)) (-4 *3 (-631 *5 *6 *4)))) (-2320 (*1 *2 *3 *4) (-12 (-4 *5 (-314)) (-4 *6 (-13 (-326 *5) (-1039 *5))) (-4 *4 (-13 (-326 *5) (-1039 *5))) (-5 *2 (-85)) (-5 *1 (-613 *5 *6 *4 *3)) (-4 *3 (-631 *5 *6 *4)))) (-3346 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-314)) (-4 *5 (-13 (-326 *4) (-1039 *4))) (-4 *2 (-13 (-326 *4) (-1039 *4))) (-5 *1 (-613 *4 *5 *2 *3)) (-4 *3 (-631 *4 *5 *2)))) (-3579 (*1 *2 *3 *4) (-12 (-4 *5 (-314)) (-4 *6 (-13 (-326 *5) (-1039 *5))) (-4 *7 (-13 (-326 *5) (-1039 *5))) (-5 *2 (-587 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2017 (-587 *7))))) (-5 *1 (-613 *5 *6 *7 *3)) (-5 *4 (-587 *7)) (-4 *3 (-631 *5 *6 *7)))) (-3579 (*1 *2 *3 *4) (-12 (-4 *5 (-314)) (-4 *6 (-13 (-326 *5) (-1039 *5))) (-4 *4 (-13 (-326 *5) (-1039 *5))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2017 (-587 *4)))) (-5 *1 (-613 *5 *6 *4 *3)) (-4 *3 (-631 *5 *6 *4))))) +((-3579 (((-587 (-2 (|:| |particular| (-3 (-1183 |#1|) #1="failed")) (|:| -2017 (-587 (-1183 |#1|))))) (-587 (-587 |#1|)) (-587 (-1183 |#1|))) 22 T ELT) (((-587 (-2 (|:| |particular| (-3 (-1183 |#1|) #1#)) (|:| -2017 (-587 (-1183 |#1|))))) (-634 |#1|) (-587 (-1183 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1183 |#1|) #1#)) (|:| -2017 (-587 (-1183 |#1|)))) (-587 (-587 |#1|)) (-1183 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1183 |#1|) #1#)) (|:| -2017 (-587 (-1183 |#1|)))) (-634 |#1|) (-1183 |#1|)) 14 T ELT)) (-3114 (((-698) (-634 |#1|) (-1183 |#1|)) 30 T ELT)) (-3346 (((-3 (-1183 |#1|) #1#) (-634 |#1|) (-1183 |#1|)) 24 T ELT)) (-2320 (((-85) (-634 |#1|) (-1183 |#1|)) 27 T ELT))) +(((-614 |#1|) (-10 -7 (-15 -3579 ((-2 (|:| |particular| (-3 (-1183 |#1|) #1="failed")) (|:| -2017 (-587 (-1183 |#1|)))) (-634 |#1|) (-1183 |#1|))) (-15 -3579 ((-2 (|:| |particular| (-3 (-1183 |#1|) #1#)) (|:| -2017 (-587 (-1183 |#1|)))) (-587 (-587 |#1|)) (-1183 |#1|))) (-15 -3579 ((-587 (-2 (|:| |particular| (-3 (-1183 |#1|) #1#)) (|:| -2017 (-587 (-1183 |#1|))))) (-634 |#1|) (-587 (-1183 |#1|)))) (-15 -3579 ((-587 (-2 (|:| |particular| (-3 (-1183 |#1|) #1#)) (|:| -2017 (-587 (-1183 |#1|))))) (-587 (-587 |#1|)) (-587 (-1183 |#1|)))) (-15 -3346 ((-3 (-1183 |#1|) #1#) (-634 |#1|) (-1183 |#1|))) (-15 -2320 ((-85) (-634 |#1|) (-1183 |#1|))) (-15 -3114 ((-698) (-634 |#1|) (-1183 |#1|)))) (-314)) (T -614)) +((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-1183 *5)) (-4 *5 (-314)) (-5 *2 (-698)) (-5 *1 (-614 *5)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-1183 *5)) (-4 *5 (-314)) (-5 *2 (-85)) (-5 *1 (-614 *5)))) (-3346 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1183 *4)) (-5 *3 (-634 *4)) (-4 *4 (-314)) (-5 *1 (-614 *4)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-587 *5))) (-4 *5 (-314)) (-5 *2 (-587 (-2 (|:| |particular| (-3 (-1183 *5) #1="failed")) (|:| -2017 (-587 (-1183 *5)))))) (-5 *1 (-614 *5)) (-5 *4 (-587 (-1183 *5))))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-4 *5 (-314)) (-5 *2 (-587 (-2 (|:| |particular| (-3 (-1183 *5) #1#)) (|:| -2017 (-587 (-1183 *5)))))) (-5 *1 (-614 *5)) (-5 *4 (-587 (-1183 *5))))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-587 *5))) (-4 *5 (-314)) (-5 *2 (-2 (|:| |particular| (-3 (-1183 *5) #1#)) (|:| -2017 (-587 (-1183 *5))))) (-5 *1 (-614 *5)) (-5 *4 (-1183 *5)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-4 *5 (-314)) (-5 *2 (-2 (|:| |particular| (-3 (-1183 *5) #1#)) (|:| -2017 (-587 (-1183 *5))))) (-5 *1 (-614 *5)) (-5 *4 (-1183 *5))))) +((-2321 (((-2 (|:| |particular| (-3 (-1183 (-352 |#4|)) "failed")) (|:| -2017 (-587 (-1183 (-352 |#4|))))) (-587 |#4|) (-587 |#3|)) 51 T ELT))) +(((-615 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2321 ((-2 (|:| |particular| (-3 (-1183 (-352 |#4|)) "failed")) (|:| -2017 (-587 (-1183 (-352 |#4|))))) (-587 |#4|) (-587 |#3|)))) (-499) (-721) (-760) (-865 |#1| |#2| |#3|)) (T -615)) +((-2321 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *7)) (-4 *7 (-760)) (-4 *8 (-865 *5 *6 *7)) (-4 *5 (-499)) (-4 *6 (-721)) (-5 *2 (-2 (|:| |particular| (-3 (-1183 (-352 *8)) "failed")) (|:| -2017 (-587 (-1183 (-352 *8)))))) (-5 *1 (-615 *5 *6 *7 *8))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1780 (((-3 $ #1="failed")) NIL (|has| |#2| (-499)) ELT)) (-3336 ((|#2| $) NIL T ELT)) (-3126 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1#) $ $) NIL T ELT)) (-3229 (((-1183 (-634 |#2|))) NIL T ELT) (((-1183 (-634 |#2|)) (-1183 $)) NIL T ELT)) (-3128 (((-85) $) NIL T ELT)) (-1733 (((-1183 $)) 41 T ELT)) (-3339 (($ |#2|) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3115 (($ $) NIL (|has| |#2| (-260)) ELT)) (-3117 (((-199 |#1| |#2|) $ (-488)) NIL T ELT)) (-1914 (((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) #1#)) NIL (|has| |#2| (-499)) ELT)) (-1707 (((-3 $ #1#)) NIL (|has| |#2| (-499)) ELT)) (-1796 (((-634 |#2|)) NIL T ELT) (((-634 |#2|) (-1183 $)) NIL T ELT)) (-1731 ((|#2| $) NIL T ELT)) (-1794 (((-634 |#2|) $) NIL T ELT) (((-634 |#2|) $ (-1183 $)) NIL T ELT)) (-2409 (((-3 $ #1#) $) NIL (|has| |#2| (-499)) ELT)) (-1908 (((-1089 (-861 |#2|))) NIL (|has| |#2| (-314)) ELT)) (-2412 (($ $ (-834)) NIL T ELT)) (-1729 ((|#2| $) NIL T ELT)) (-1709 (((-1089 |#2|) $) NIL (|has| |#2| (-499)) ELT)) (-1798 ((|#2|) NIL T ELT) ((|#2| (-1183 $)) NIL T ELT)) (-1727 (((-1089 |#2|) $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-3163 (((-3 (-488) #1#) $) NIL (|has| |#2| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#2| (-954 (-352 (-488)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3162 (((-488) $) NIL (|has| |#2| (-954 (-488))) ELT) (((-352 (-488)) $) NIL (|has| |#2| (-954 (-352 (-488)))) ELT) ((|#2| $) NIL T ELT)) (-1800 (($ (-1183 |#2|)) NIL T ELT) (($ (-1183 |#2|) (-1183 $)) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#2|) (-634 $)) NIL T ELT)) (-3848 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3114 (((-698) $) NIL (|has| |#2| (-499)) ELT) (((-834)) 42 T ELT)) (-3118 ((|#2| $ (-488) (-488)) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-2439 (($ $ (-834)) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3113 (((-698) $) NIL (|has| |#2| (-499)) ELT)) (-3112 (((-587 (-199 |#1| |#2|)) $) NIL (|has| |#2| (-499)) ELT)) (-3120 (((-698) $) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-3119 (((-698) $) NIL T ELT)) (-3333 ((|#2| $) NIL (|has| |#2| (-6 (-4003 #2="*"))) ELT)) (-3124 (((-488) $) NIL T ELT)) (-3122 (((-488) $) NIL T ELT)) (-2614 (((-587 |#2|) $) NIL T ELT)) (-3251 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3123 (((-488) $) NIL T ELT)) (-3121 (((-488) $) NIL T ELT)) (-3129 (($ (-587 (-587 |#2|))) NIL T ELT)) (-3849 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3600 (((-587 (-587 |#2|)) $) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-1915 (((-3 (-2 (|:| |particular| $) (|:| -2017 (-587 $))) #1#)) NIL (|has| |#2| (-499)) ELT)) (-1708 (((-3 $ #1#)) NIL (|has| |#2| (-499)) ELT)) (-1797 (((-634 |#2|)) NIL T ELT) (((-634 |#2|) (-1183 $)) NIL T ELT)) (-1732 ((|#2| $) NIL T ELT)) (-1795 (((-634 |#2|) $) NIL T ELT) (((-634 |#2|) $ (-1183 $)) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-1183 $) $) NIL T ELT) (((-634 |#2|) (-1183 $)) NIL T ELT)) (-2410 (((-3 $ #1#) $) NIL (|has| |#2| (-499)) ELT)) (-1912 (((-1089 (-861 |#2|))) NIL (|has| |#2| (-314)) ELT)) (-2411 (($ $ (-834)) NIL T ELT)) (-1730 ((|#2| $) NIL T ELT)) (-1710 (((-1089 |#2|) $) NIL (|has| |#2| (-499)) ELT)) (-1799 ((|#2|) NIL T ELT) ((|#2| (-1183 $)) NIL T ELT)) (-1728 (((-1089 |#2|) $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-3596 (((-3 $ #1#) $) NIL (|has| |#2| (-314)) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-1734 (((-3 |#2| #1#) (-1 (-85) |#2|) $) NIL T ELT)) (-3472 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-499)) ELT)) (-1736 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#2|))) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-251 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#2| $ (-488) (-488) |#2|) NIL T ELT) ((|#2| $ (-488) (-488)) 27 T ELT) ((|#2| $ (-488)) NIL T ELT)) (-3764 (($ $ (-1 |#2| |#2|) (-698)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-191)) ELT) (($ $ (-698)) NIL (|has| |#2| (-191)) ELT) (($ $ (-1094)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#2| (-815 (-1094))) ELT)) (-3335 ((|#2| $) NIL T ELT)) (-3338 (($ (-587 |#2|)) NIL T ELT)) (-3127 (((-85) $) NIL T ELT)) (-3337 (((-199 |#1| |#2|) $) NIL T ELT)) (-3334 ((|#2| $) NIL (|has| |#2| (-6 (-4003 #2#))) ELT)) (-1735 (((-698) (-1 (-85) |#2|) $) NIL T ELT) (((-698) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3406 (($ $) NIL T ELT)) (-3230 (((-634 |#2|) (-1183 $)) NIL T ELT) (((-1183 |#2|) $) NIL T ELT) (((-634 |#2|) (-1183 $) (-1183 $)) NIL T ELT) (((-1183 |#2|) $ (-1183 $)) 30 T ELT)) (-3978 (($ (-1183 |#2|)) NIL T ELT) (((-1183 |#2|) $) NIL T ELT)) (-1900 (((-587 (-861 |#2|))) NIL T ELT) (((-587 (-861 |#2|)) (-1183 $)) NIL T ELT)) (-2441 (($ $ $) NIL T ELT)) (-1726 (((-85)) NIL T ELT)) (-3116 (((-199 |#1| |#2|) $ (-488)) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ (-352 (-488))) NIL (|has| |#2| (-954 (-352 (-488)))) ELT) (($ |#2|) NIL T ELT) (((-634 |#2|) $) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 $)) 40 T ELT)) (-1711 (((-587 (-1183 |#2|))) NIL (|has| |#2| (-499)) ELT)) (-2442 (($ $ $ $) NIL T ELT)) (-1724 (((-85)) NIL T ELT)) (-2551 (($ (-634 |#2|) $) NIL T ELT)) (-1737 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3125 (((-85) $) NIL T ELT)) (-2440 (($ $ $) NIL T ELT)) (-1725 (((-85)) NIL T ELT)) (-1723 (((-85)) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $ (-1 |#2| |#2|) (-698)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-191)) ELT) (($ $ (-698)) NIL (|has| |#2| (-191)) ELT) (($ $ (-1094)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#2| (-815 (-1094))) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#2|) NIL (|has| |#2| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL (|has| |#2| (-314)) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-199 |#1| |#2|) $ (-199 |#1| |#2|)) NIL T ELT) (((-199 |#1| |#2|) (-199 |#1| |#2|) $) NIL T ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-616 |#1| |#2|) (-13 (-1041 |#1| |#2| (-199 |#1| |#2|) (-199 |#1| |#2|)) (-556 (-634 |#2|)) (-363 |#2|)) (-834) (-148)) (T -616)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3254 (((-587 (-1053)) $) 12 T ELT)) (-3953 (((-776) $) 18 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-617) (-13 (-999) (-10 -8 (-15 -3254 ((-587 (-1053)) $))))) (T -617)) +((-3254 (*1 *2 *1) (-12 (-5 *2 (-587 (-1053))) (-5 *1 (-617))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3941 (((-587 |#1|) $) NIL T ELT)) (-3143 (($ $) 62 T ELT)) (-2670 (((-85) $) NIL T ELT)) (-3163 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3162 ((|#1| $) NIL T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-2324 (((-3 $ #1#) (-743 |#1|)) 28 T ELT)) (-2326 (((-85) (-743 |#1|)) 18 T ELT)) (-2325 (($ (-743 |#1|)) 29 T ELT)) (-2517 (((-85) $ $) 36 T ELT)) (-3839 (((-834) $) 43 T ELT)) (-3144 (($ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3738 (((-587 $) (-743 |#1|)) 20 T ELT)) (-3953 (((-776) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-743 |#1|) $) 47 T ELT) (((-622 |#1|) $) 52 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2323 (((-58 (-587 $)) (-587 |#1|) (-834)) 67 T ELT)) (-2322 (((-587 $) (-587 |#1|) (-834)) 70 T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 63 T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 46 T ELT))) +(((-618 |#1|) (-13 (-760) (-954 |#1|) (-10 -8 (-15 -2670 ((-85) $)) (-15 -3144 ($ $)) (-15 -3143 ($ $)) (-15 -3839 ((-834) $)) (-15 -2517 ((-85) $ $)) (-15 -3953 ((-743 |#1|) $)) (-15 -3953 ((-622 |#1|) $)) (-15 -3738 ((-587 $) (-743 |#1|))) (-15 -2326 ((-85) (-743 |#1|))) (-15 -2325 ($ (-743 |#1|))) (-15 -2324 ((-3 $ "failed") (-743 |#1|))) (-15 -3941 ((-587 |#1|) $)) (-15 -2323 ((-58 (-587 $)) (-587 |#1|) (-834))) (-15 -2322 ((-587 $) (-587 |#1|) (-834))))) (-760)) (T -618)) +((-2670 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-760)))) (-3144 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-760)))) (-3143 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-760)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-618 *3)) (-4 *3 (-760)))) (-2517 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-760)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-743 *3)) (-5 *1 (-618 *3)) (-4 *3 (-760)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-618 *3)) (-4 *3 (-760)))) (-3738 (*1 *2 *3) (-12 (-5 *3 (-743 *4)) (-4 *4 (-760)) (-5 *2 (-587 (-618 *4))) (-5 *1 (-618 *4)))) (-2326 (*1 *2 *3) (-12 (-5 *3 (-743 *4)) (-4 *4 (-760)) (-5 *2 (-85)) (-5 *1 (-618 *4)))) (-2325 (*1 *1 *2) (-12 (-5 *2 (-743 *3)) (-4 *3 (-760)) (-5 *1 (-618 *3)))) (-2324 (*1 *1 *2) (|partial| -12 (-5 *2 (-743 *3)) (-4 *3 (-760)) (-5 *1 (-618 *3)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-618 *3)) (-4 *3 (-760)))) (-2323 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *5)) (-5 *4 (-834)) (-4 *5 (-760)) (-5 *2 (-58 (-587 (-618 *5)))) (-5 *1 (-618 *5)))) (-2322 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *5)) (-5 *4 (-834)) (-4 *5 (-760)) (-5 *2 (-587 (-618 *5))) (-5 *1 (-618 *5))))) +((-3408 ((|#2| $) 96 T ELT)) (-3803 (($ $) 117 T ELT)) (-3448 (((-85) $ (-698)) 35 T ELT)) (-3805 (($ $) 105 T ELT) (($ $ (-698)) 108 T ELT)) (-3449 (((-85) $) 118 T ELT)) (-3037 (((-587 $) $) 92 T ELT)) (-3033 (((-85) $ $) 88 T ELT)) (-3725 (((-85) $ (-698)) 33 T ELT)) (-2205 (((-488) $) 62 T ELT)) (-2206 (((-488) $) 61 T ELT)) (-3722 (((-85) $ (-698)) 31 T ELT)) (-3533 (((-85) $) 94 T ELT)) (-3804 ((|#2| $) 109 T ELT) (($ $ (-698)) 113 T ELT)) (-2309 (($ $ $ (-488)) 79 T ELT) (($ |#2| $ (-488)) 78 T ELT)) (-2208 (((-587 (-488)) $) 60 T ELT)) (-2209 (((-85) (-488) $) 55 T ELT)) (-3807 ((|#2| $) NIL T ELT) (($ $ (-698)) 104 T ELT)) (-3775 (($ $ (-488)) 121 T ELT)) (-3450 (((-85) $) 120 T ELT)) (-2210 (((-587 |#2|) $) 42 T ELT)) (-3806 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 103 T ELT) (($ $ "rest") 107 T ELT) ((|#2| $ "last") 116 T ELT) (($ $ (-1150 (-488))) 75 T ELT) ((|#2| $ (-488)) 53 T ELT) ((|#2| $ (-488) |#2|) 54 T ELT)) (-3035 (((-488) $ $) 87 T ELT)) (-2310 (($ $ (-1150 (-488))) 74 T ELT) (($ $ (-488)) 68 T ELT)) (-3639 (((-85) $) 83 T ELT)) (-3798 (($ $) 101 T ELT)) (-3799 (((-698) $) 100 T ELT)) (-3800 (($ $) 99 T ELT)) (-3536 (($ (-587 |#2|)) 49 T ELT)) (-2897 (($ $) 122 T ELT)) (-3528 (((-587 $) $) 86 T ELT)) (-3034 (((-85) $ $) 85 T ELT)) (-3062 (((-85) $ $) 20 T ELT))) +(((-619 |#1| |#2|) (-10 -7 (-15 -3062 ((-85) |#1| |#1|)) (-15 -2897 (|#1| |#1|)) (-15 -3775 (|#1| |#1| (-488))) (-15 -3448 ((-85) |#1| (-698))) (-15 -3725 ((-85) |#1| (-698))) (-15 -3722 ((-85) |#1| (-698))) (-15 -3449 ((-85) |#1|)) (-15 -3450 ((-85) |#1|)) (-15 -3806 (|#2| |#1| (-488) |#2|)) (-15 -3806 (|#2| |#1| (-488))) (-15 -2210 ((-587 |#2|) |#1|)) (-15 -2209 ((-85) (-488) |#1|)) (-15 -2208 ((-587 (-488)) |#1|)) (-15 -2206 ((-488) |#1|)) (-15 -2205 ((-488) |#1|)) (-15 -3536 (|#1| (-587 |#2|))) (-15 -3806 (|#1| |#1| (-1150 (-488)))) (-15 -2310 (|#1| |#1| (-488))) (-15 -2310 (|#1| |#1| (-1150 (-488)))) (-15 -2309 (|#1| |#2| |#1| (-488))) (-15 -2309 (|#1| |#1| |#1| (-488))) (-15 -3798 (|#1| |#1|)) (-15 -3799 ((-698) |#1|)) (-15 -3800 (|#1| |#1|)) (-15 -3803 (|#1| |#1|)) (-15 -3804 (|#1| |#1| (-698))) (-15 -3806 (|#2| |#1| "last")) (-15 -3804 (|#2| |#1|)) (-15 -3805 (|#1| |#1| (-698))) (-15 -3806 (|#1| |#1| "rest")) (-15 -3805 (|#1| |#1|)) (-15 -3807 (|#1| |#1| (-698))) (-15 -3806 (|#2| |#1| "first")) (-15 -3807 (|#2| |#1|)) (-15 -3033 ((-85) |#1| |#1|)) (-15 -3034 ((-85) |#1| |#1|)) (-15 -3035 ((-488) |#1| |#1|)) (-15 -3639 ((-85) |#1|)) (-15 -3806 (|#2| |#1| "value")) (-15 -3408 (|#2| |#1|)) (-15 -3533 ((-85) |#1|)) (-15 -3037 ((-587 |#1|) |#1|)) (-15 -3528 ((-587 |#1|) |#1|))) (-620 |#2|) (-1133)) (T -619)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3408 ((|#1| $) 43 T ELT)) (-3801 ((|#1| $) 62 T ELT)) (-3803 (($ $) 64 T ELT)) (-2203 (((-1189) $ (-488) (-488)) 99 (|has| $ (-1039 |#1|)) ELT)) (-3791 (($ $ (-488)) 49 (|has| $ (-1039 |#1|)) ELT)) (-3448 (((-85) $ (-698)) 82 T ELT)) (-3031 ((|#1| $ |#1|) 34 (|has| $ (-1039 |#1|)) ELT)) (-3793 (($ $ $) 53 (|has| $ (-1039 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 51 (|has| $ (-1039 |#1|)) ELT)) (-3795 ((|#1| $ |#1|) 55 (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 54 (|has| $ (-1039 |#1|)) ELT) (($ $ #3="rest" $) 52 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 50 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-1150 (-488)) |#1|) 115 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-488) |#1|) 88 (|has| $ (-1039 |#1|)) ELT)) (-3032 (($ $ (-587 $)) 36 (|has| $ (-1039 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) 103 T ELT)) (-3802 ((|#1| $) 63 T ELT)) (-3730 (($) 6 T CONST)) (-2328 (($ $) 123 T ELT)) (-3805 (($ $) 70 T ELT) (($ $ (-698)) 68 T ELT)) (-1357 (($ $) 101 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-3412 (($ |#1| $) 102 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 104 T ELT)) (-1580 ((|#1| $ (-488) |#1|) 87 (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-488)) 89 T ELT)) (-3449 (((-85) $) 85 T ELT)) (-2327 (((-698) $) 122 T ELT)) (-3037 (((-587 $) $) 45 T ELT)) (-3033 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3620 (($ (-698) |#1|) 107 T ELT)) (-3725 (((-85) $ (-698)) 83 T ELT)) (-2205 (((-488) $) 97 (|has| (-488) (-760)) ELT)) (-2206 (((-488) $) 96 (|has| (-488) (-760)) ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 110 T ELT)) (-3722 (((-85) $ (-698)) 84 T ELT)) (-3036 (((-587 |#1|) $) 40 T ELT)) (-3533 (((-85) $) 44 T ELT)) (-2330 (($ $) 125 T ELT)) (-2331 (((-85) $) 126 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-3804 ((|#1| $) 67 T ELT) (($ $ (-698)) 65 T ELT)) (-2309 (($ $ $ (-488)) 114 T ELT) (($ |#1| $ (-488)) 113 T ELT)) (-2208 (((-587 (-488)) $) 94 T ELT)) (-2209 (((-85) (-488) $) 93 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-2329 ((|#1| $) 124 T ELT)) (-3807 ((|#1| $) 73 T ELT) (($ $ (-698)) 71 T ELT)) (-2204 (($ $ |#1|) 98 (|has| $ (-1039 |#1|)) ELT)) (-3775 (($ $ (-488)) 121 T ELT)) (-3450 (((-85) $) 86 T ELT)) (-2332 (((-85) $) 127 T ELT)) (-2333 (((-85) $) 128 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-2207 (((-85) |#1| $) 95 (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) 92 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#1| $ #1#) 42 T ELT) ((|#1| $ #2#) 72 T ELT) (($ $ #3#) 69 T ELT) ((|#1| $ #4#) 66 T ELT) (($ $ (-1150 (-488))) 106 T ELT) ((|#1| $ (-488)) 91 T ELT) ((|#1| $ (-488) |#1|) 90 T ELT)) (-3035 (((-488) $ $) 39 T ELT)) (-2310 (($ $ (-1150 (-488))) 112 T ELT) (($ $ (-488)) 111 T ELT)) (-3639 (((-85) $) 41 T ELT)) (-3798 (($ $) 59 T ELT)) (-3796 (($ $) 56 (|has| $ (-1039 |#1|)) ELT)) (-3799 (((-698) $) 60 T ELT)) (-3800 (($ $) 61 T ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 100 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 105 T ELT)) (-3797 (($ $ $) 58 (|has| $ (-1039 |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (-1039 |#1|)) ELT)) (-3808 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT) (($ (-587 $)) 109 T ELT) (($ $ |#1|) 108 T ELT)) (-2897 (($ $) 120 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-3528 (((-587 $) $) 46 T ELT)) (-3034 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-620 |#1|) (-113) (-1133)) (T -620)) +((-3412 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-620 *3)) (-4 *3 (-1133)))) (-3716 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-620 *3)) (-4 *3 (-1133)))) (-2333 (*1 *2 *1) (-12 (-4 *1 (-620 *3)) (-4 *3 (-1133)) (-5 *2 (-85)))) (-2332 (*1 *2 *1) (-12 (-4 *1 (-620 *3)) (-4 *3 (-1133)) (-5 *2 (-85)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-620 *3)) (-4 *3 (-1133)) (-5 *2 (-85)))) (-2330 (*1 *1 *1) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1133)))) (-2329 (*1 *2 *1) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1133)))) (-2328 (*1 *1 *1) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1133)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-620 *3)) (-4 *3 (-1133)) (-5 *2 (-698)))) (-3775 (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-620 *3)) (-4 *3 (-1133)))) (-2897 (*1 *1 *1) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1133))))) +(-13 (-1068 |t#1|) (-10 -8 (-15 -3412 ($ (-1 (-85) |t#1|) $)) (-15 -3716 ($ (-1 (-85) |t#1|) $)) (-15 -2333 ((-85) $)) (-15 -2332 ((-85) $)) (-15 -2331 ((-85) $)) (-15 -2330 ($ $)) (-15 -2329 (|t#1| $)) (-15 -2328 ($ $)) (-15 -2327 ((-698) $)) (-15 -3775 ($ $ (-488))) (-15 -2897 ($ $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-124 |#1|) . T) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-243 (-488) |#1|) . T) ((-243 (-1150 (-488)) $) . T) ((-245 (-488) |#1|) . T) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-542 (-488) |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-597 |#1|) . T) ((-927 |#1|) . T) ((-1017) |has| |#1| (-1017)) ((-1068 |#1|) . T) ((-1133) . T) ((-1172 |#1|) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3184 (((-426) $) 15 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 24 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-3239 (((-1053) $) 17 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-621) (-13 (-999) (-10 -8 (-15 -3184 ((-426) $)) (-15 -3239 ((-1053) $))))) (T -621)) +((-3184 (*1 *2 *1) (-12 (-5 *2 (-426)) (-5 *1 (-621)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-621))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3941 (((-587 |#1|) $) 15 T ELT)) (-3143 (($ $) 19 T ELT)) (-2670 (((-85) $) 20 T ELT)) (-3163 (((-3 |#1| "failed") $) 23 T ELT)) (-3162 ((|#1| $) 21 T ELT)) (-3805 (($ $) 37 T ELT)) (-3943 (($ $) 25 T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-2517 (((-85) $ $) 46 T ELT)) (-3839 (((-834) $) 40 T ELT)) (-3144 (($ $) 18 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3807 ((|#1| $) 36 T ELT)) (-3953 (((-776) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-743 |#1|) $) 28 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 13 T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) +(((-622 |#1|) (-13 (-760) (-954 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3953 ((-743 |#1|) $)) (-15 -3807 (|#1| $)) (-15 -3144 ($ $)) (-15 -3839 ((-834) $)) (-15 -2517 ((-85) $ $)) (-15 -3943 ($ $)) (-15 -3805 ($ $)) (-15 -2670 ((-85) $)) (-15 -3143 ($ $)) (-15 -3941 ((-587 |#1|) $)))) (-760)) (T -622)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-760)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-743 *3)) (-5 *1 (-622 *3)) (-4 *3 (-760)))) (-3807 (*1 *2 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-760)))) (-3144 (*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-760)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-622 *3)) (-4 *3 (-760)))) (-2517 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-622 *3)) (-4 *3 (-760)))) (-3943 (*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-760)))) (-3805 (*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-760)))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-622 *3)) (-4 *3 (-760)))) (-3143 (*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-760)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-622 *3)) (-4 *3 (-760))))) +((-2342 ((|#1| (-1 |#1| (-698) |#1|) (-698) |#1|) 11 T ELT)) (-2334 ((|#1| (-1 |#1| |#1|) (-698) |#1|) 9 T ELT))) +(((-623 |#1|) (-10 -7 (-15 -2334 (|#1| (-1 |#1| |#1|) (-698) |#1|)) (-15 -2342 (|#1| (-1 |#1| (-698) |#1|) (-698) |#1|))) (-1017)) (T -623)) +((-2342 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-698) *2)) (-5 *4 (-698)) (-4 *2 (-1017)) (-5 *1 (-623 *2)))) (-2334 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-698)) (-4 *2 (-1017)) (-5 *1 (-623 *2))))) +((-2336 ((|#2| |#1| |#2|) 9 T ELT)) (-2335 ((|#1| |#1| |#2|) 8 T ELT))) +(((-624 |#1| |#2|) (-10 -7 (-15 -2335 (|#1| |#1| |#2|)) (-15 -2336 (|#2| |#1| |#2|))) (-1017) (-1017)) (T -624)) +((-2336 (*1 *2 *3 *2) (-12 (-5 *1 (-624 *3 *2)) (-4 *3 (-1017)) (-4 *2 (-1017)))) (-2335 (*1 *2 *2 *3) (-12 (-5 *1 (-624 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1017))))) +((-2337 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) +(((-625 |#1| |#2| |#3|) (-10 -7 (-15 -2337 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1017) (-1017) (-1017)) (T -625)) +((-2337 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *2 (-1017)) (-5 *1 (-625 *5 *6 *2))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3324 (((-1134) $) 22 T ELT)) (-3323 (((-587 (-1134)) $) 20 T ELT)) (-2338 (($ (-587 (-1134)) (-1134)) 15 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 30 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT) (((-1134) $) 23 T ELT) (($ (-1032)) 11 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-626) (-13 (-999) (-556 (-1134)) (-10 -8 (-15 -3953 ($ (-1032))) (-15 -2338 ($ (-587 (-1134)) (-1134))) (-15 -3323 ((-587 (-1134)) $)) (-15 -3324 ((-1134) $))))) (T -626)) +((-3953 (*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-626)))) (-2338 (*1 *1 *2 *3) (-12 (-5 *2 (-587 (-1134))) (-5 *3 (-1134)) (-5 *1 (-626)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-587 (-1134))) (-5 *1 (-626)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-626))))) +((-2342 (((-1 |#1| (-698) |#1|) (-1 |#1| (-698) |#1|)) 26 T ELT)) (-2339 (((-1 |#1|) |#1|) 8 T ELT)) (-2341 ((|#1| |#1|) 19 T ELT)) (-2340 (((-587 |#1|) (-1 (-587 |#1|) (-587 |#1|)) (-488)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3953 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-698)) 23 T ELT))) +(((-627 |#1|) (-10 -7 (-15 -2339 ((-1 |#1|) |#1|)) (-15 -3953 ((-1 |#1|) |#1|)) (-15 -2340 (|#1| (-1 |#1| |#1|))) (-15 -2340 ((-587 |#1|) (-1 (-587 |#1|) (-587 |#1|)) (-488))) (-15 -2341 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-698))) (-15 -2342 ((-1 |#1| (-698) |#1|) (-1 |#1| (-698) |#1|)))) (-1017)) (T -627)) +((-2342 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-698) *3)) (-4 *3 (-1017)) (-5 *1 (-627 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-698)) (-4 *4 (-1017)) (-5 *1 (-627 *4)))) (-2341 (*1 *2 *2) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1017)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-587 *5) (-587 *5))) (-5 *4 (-488)) (-5 *2 (-587 *5)) (-5 *1 (-627 *5)) (-4 *5 (-1017)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-627 *2)) (-4 *2 (-1017)))) (-3953 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-627 *3)) (-4 *3 (-1017)))) (-2339 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-627 *3)) (-4 *3 (-1017))))) +((-2345 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2344 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3959 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2343 (((-1 |#2| |#1|) |#2|) 11 T ELT))) +(((-628 |#1| |#2|) (-10 -7 (-15 -2343 ((-1 |#2| |#1|) |#2|)) (-15 -2344 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3959 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2345 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1017) (-1017)) (T -628)) +((-2345 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-5 *2 (-1 *5 *4)) (-5 *1 (-628 *4 *5)))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1017)) (-5 *2 (-1 *5 *4)) (-5 *1 (-628 *4 *5)) (-4 *4 (-1017)))) (-2344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-5 *2 (-1 *5)) (-5 *1 (-628 *4 *5)))) (-2343 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-628 *4 *3)) (-4 *4 (-1017)) (-4 *3 (-1017))))) +((-2350 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2346 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2347 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2348 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2349 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) +(((-629 |#1| |#2| |#3|) (-10 -7 (-15 -2346 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2347 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2348 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2349 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2350 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1017) (-1017) (-1017)) (T -629)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-1 *7 *5)) (-5 *1 (-629 *5 *6 *7)))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-629 *4 *5 *6)))) (-2349 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-629 *4 *5 *6)) (-4 *4 (-1017)))) (-2348 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1017)) (-4 *6 (-1017)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-629 *4 *5 *6)) (-4 *5 (-1017)))) (-2347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-5 *2 (-1 *6 *5)) (-5 *1 (-629 *4 *5 *6)))) (-2346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1017)) (-4 *4 (-1017)) (-4 *6 (-1017)) (-5 *2 (-1 *6 *5)) (-5 *1 (-629 *5 *4 *6))))) +((-3844 (($ (-698) (-698)) 42 T ELT)) (-2355 (($ $ $) 73 T ELT)) (-3420 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3126 (((-85) $) 36 T ELT)) (-2354 (($ $ (-488) (-488)) 84 T ELT)) (-2353 (($ $ (-488) (-488)) 85 T ELT)) (-2352 (($ $ (-488) (-488) (-488) (-488)) 90 T ELT)) (-2357 (($ $) 71 T ELT)) (-3128 (((-85) $) 15 T ELT)) (-2351 (($ $ (-488) (-488) $) 91 T ELT)) (-3794 ((|#2| $ (-488) (-488) |#2|) NIL T ELT) (($ $ (-587 (-488)) (-587 (-488)) $) 89 T ELT)) (-3339 (($ (-698) |#2|) 55 T ELT)) (-3129 (($ (-587 (-587 |#2|))) 51 T ELT) (($ (-698) (-698) (-1 |#2| (-488) (-488))) 53 T ELT)) (-3600 (((-587 (-587 |#2|)) $) 80 T ELT)) (-2356 (($ $ $) 72 T ELT)) (-3472 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3806 ((|#2| $ (-488) (-488)) NIL T ELT) ((|#2| $ (-488) (-488) |#2|) NIL T ELT) (($ $ (-587 (-488)) (-587 (-488))) 88 T ELT)) (-3338 (($ (-587 |#2|)) 56 T ELT) (($ (-587 $)) 58 T ELT)) (-3127 (((-85) $) 28 T ELT)) (-3953 (($ |#4|) 63 T ELT) (((-776) $) NIL T ELT)) (-3125 (((-85) $) 38 T ELT)) (-3956 (($ $ |#2|) 124 T ELT)) (-3843 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3845 (($ $ $) 93 T ELT)) (** (($ $ (-698)) 111 T ELT) (($ $ (-488)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-488) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) +(((-630 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3953 ((-776) |#1|)) (-15 ** (|#1| |#1| (-488))) (-15 -3956 (|#1| |#1| |#2|)) (-15 -3472 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-698))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-488) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -3843 (|#1| |#1| |#1|)) (-15 -3845 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1| (-488) (-488) |#1|)) (-15 -2352 (|#1| |#1| (-488) (-488) (-488) (-488))) (-15 -2353 (|#1| |#1| (-488) (-488))) (-15 -2354 (|#1| |#1| (-488) (-488))) (-15 -3794 (|#1| |#1| (-587 (-488)) (-587 (-488)) |#1|)) (-15 -3806 (|#1| |#1| (-587 (-488)) (-587 (-488)))) (-15 -3600 ((-587 (-587 |#2|)) |#1|)) (-15 -2355 (|#1| |#1| |#1|)) (-15 -2356 (|#1| |#1| |#1|)) (-15 -2357 (|#1| |#1|)) (-15 -3420 (|#1| |#1|)) (-15 -3420 (|#1| |#3|)) (-15 -3953 (|#1| |#4|)) (-15 -3338 (|#1| (-587 |#1|))) (-15 -3338 (|#1| (-587 |#2|))) (-15 -3339 (|#1| (-698) |#2|)) (-15 -3129 (|#1| (-698) (-698) (-1 |#2| (-488) (-488)))) (-15 -3129 (|#1| (-587 (-587 |#2|)))) (-15 -3844 (|#1| (-698) (-698))) (-15 -3125 ((-85) |#1|)) (-15 -3126 ((-85) |#1|)) (-15 -3127 ((-85) |#1|)) (-15 -3128 ((-85) |#1|)) (-15 -3794 (|#2| |#1| (-488) (-488) |#2|)) (-15 -3806 (|#2| |#1| (-488) (-488) |#2|)) (-15 -3806 (|#2| |#1| (-488) (-488)))) (-631 |#2| |#3| |#4|) (-965) (-326 |#2|) (-326 |#2|)) (T -630)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3844 (($ (-698) (-698)) 108 T ELT)) (-2355 (($ $ $) 97 T ELT)) (-3420 (($ |#2|) 101 T ELT) (($ $) 100 T ELT)) (-3126 (((-85) $) 110 T ELT)) (-2354 (($ $ (-488) (-488)) 93 T ELT)) (-2353 (($ $ (-488) (-488)) 92 T ELT)) (-2352 (($ $ (-488) (-488) (-488) (-488)) 91 T ELT)) (-2357 (($ $) 99 T ELT)) (-3128 (((-85) $) 112 T ELT)) (-2351 (($ $ (-488) (-488) $) 90 T ELT)) (-3794 ((|#1| $ (-488) (-488) |#1|) 52 T ELT) (($ $ (-587 (-488)) (-587 (-488)) $) 94 T ELT)) (-1261 (($ $ (-488) |#2|) 50 T ELT)) (-1260 (($ $ (-488) |#3|) 49 T ELT)) (-3339 (($ (-698) |#1|) 105 T ELT)) (-3730 (($) 6 T CONST)) (-3115 (($ $) 77 (|has| |#1| (-260)) ELT)) (-3117 ((|#2| $ (-488)) 54 T ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $) 39 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 38 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| (-72)) ELT)) (-3114 (((-698) $) 76 (|has| |#1| (-499)) ELT)) (-1580 ((|#1| $ (-488) (-488) |#1|) 51 T ELT)) (-3118 ((|#1| $ (-488) (-488)) 56 T ELT)) (-3113 (((-698) $) 75 (|has| |#1| (-499)) ELT)) (-3112 (((-587 |#3|) $) 74 (|has| |#1| (-499)) ELT)) (-3120 (((-698) $) 59 T ELT)) (-3620 (($ (-698) (-698) |#1|) 65 T ELT)) (-3119 (((-698) $) 58 T ELT)) (-3333 ((|#1| $) 72 (|has| |#1| (-6 (-4003 #1="*"))) ELT)) (-3124 (((-488) $) 63 T ELT)) (-3122 (((-488) $) 61 T ELT)) (-2614 (((-587 |#1|) $) 40 T ELT)) (-3251 (((-85) |#1| $) 35 (|has| |#1| (-72)) ELT)) (-3123 (((-488) $) 62 T ELT)) (-3121 (((-488) $) 60 T ELT)) (-3129 (($ (-587 (-587 |#1|))) 107 T ELT) (($ (-698) (-698) (-1 |#1| (-488) (-488))) 106 T ELT)) (-3332 (($ (-1 |#1| |#1|) $) 66 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 48 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 47 T ELT)) (-3600 (((-587 (-587 |#1|)) $) 96 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-3596 (((-3 $ "failed") $) 71 (|has| |#1| (-314)) ELT)) (-2356 (($ $ $) 98 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 37 T ELT)) (-2204 (($ $ |#1|) 64 T ELT)) (-3472 (((-3 $ "failed") $ |#1|) 79 (|has| |#1| (-499)) ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) 42 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#1| $ (-488) (-488)) 57 T ELT) ((|#1| $ (-488) (-488) |#1|) 55 T ELT) (($ $ (-587 (-488)) (-587 (-488))) 95 T ELT)) (-3338 (($ (-587 |#1|)) 104 T ELT) (($ (-587 $)) 103 T ELT)) (-3127 (((-85) $) 111 T ELT)) (-3334 ((|#1| $) 73 (|has| |#1| (-6 (-4003 #1#))) ELT)) (-1735 (((-698) (-1 (-85) |#1|) $) 41 T ELT) (((-698) |#1| $) 36 (|has| |#1| (-72)) ELT)) (-3406 (($ $) 9 T ELT)) (-3116 ((|#3| $ (-488)) 53 T ELT)) (-3953 (($ |#3|) 102 T ELT) (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) 43 T ELT)) (-3125 (((-85) $) 109 T ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3956 (($ $ |#1|) 78 (|has| |#1| (-314)) ELT)) (-3843 (($ $ $) 88 T ELT) (($ $) 87 T ELT)) (-3845 (($ $ $) 89 T ELT)) (** (($ $ (-698)) 80 T ELT) (($ $ (-488)) 70 (|has| |#1| (-314)) ELT)) (* (($ $ $) 86 T ELT) (($ |#1| $) 85 T ELT) (($ $ |#1|) 84 T ELT) (($ (-488) $) 83 T ELT) ((|#3| $ |#3|) 82 T ELT) ((|#2| |#2| $) 81 T ELT)) (-3964 (((-698) $) 44 T ELT))) +(((-631 |#1| |#2| |#3|) (-113) (-965) (-326 |t#1|) (-326 |t#1|)) (T -631)) +((-3128 (*1 *2 *1) (-12 (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *2 (-85)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *2 (-85)))) (-3126 (*1 *2 *1) (-12 (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *2 (-85)))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *2 (-85)))) (-3844 (*1 *1 *2 *2) (-12 (-5 *2 (-698)) (-4 *3 (-965)) (-4 *1 (-631 *3 *4 *5)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) (-3129 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-965)) (-4 *1 (-631 *3 *4 *5)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) (-3129 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-698)) (-5 *3 (-1 *4 (-488) (-488))) (-4 *4 (-965)) (-4 *1 (-631 *4 *5 *6)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)))) (-3339 (*1 *1 *2 *3) (-12 (-5 *2 (-698)) (-4 *3 (-965)) (-4 *1 (-631 *3 *4 *5)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) (-3338 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-965)) (-4 *1 (-631 *3 *4 *5)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) (-3338 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *3 (-965)) (-4 *1 (-631 *3 *4 *5)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) (-3953 (*1 *1 *2) (-12 (-4 *3 (-965)) (-4 *1 (-631 *3 *4 *2)) (-4 *4 (-326 *3)) (-4 *2 (-326 *3)))) (-3420 (*1 *1 *2) (-12 (-4 *3 (-965)) (-4 *1 (-631 *3 *2 *4)) (-4 *2 (-326 *3)) (-4 *4 (-326 *3)))) (-3420 (*1 *1 *1) (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) (-4 *4 (-326 *2)))) (-2357 (*1 *1 *1) (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) (-4 *4 (-326 *2)))) (-2356 (*1 *1 *1 *1) (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) (-4 *4 (-326 *2)))) (-2355 (*1 *1 *1 *1) (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) (-4 *4 (-326 *2)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *2 (-587 (-587 *3))))) (-3806 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-587 (-488))) (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) (-3794 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-587 (-488))) (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) (-2354 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-488)) (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) (-2353 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-488)) (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) (-2352 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-488)) (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) (-2351 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-488)) (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) (-3845 (*1 *1 *1 *1) (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) (-4 *4 (-326 *2)))) (-3843 (*1 *1 *1 *1) (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) (-4 *4 (-326 *2)))) (-3843 (*1 *1 *1) (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) (-4 *4 (-326 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) (-4 *4 (-326 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) (-4 *4 (-326 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) (-4 *4 (-326 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-488)) (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-631 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-326 *3)) (-4 *2 (-326 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-631 *3 *2 *4)) (-4 *3 (-965)) (-4 *2 (-326 *3)) (-4 *4 (-326 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) (-3472 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) (-4 *4 (-326 *2)) (-4 *2 (-499)))) (-3956 (*1 *1 *1 *2) (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) (-4 *4 (-326 *2)) (-4 *2 (-314)))) (-3115 (*1 *1 *1) (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) (-4 *4 (-326 *2)) (-4 *2 (-260)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-4 *3 (-499)) (-5 *2 (-698)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-4 *3 (-499)) (-5 *2 (-698)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-4 *3 (-499)) (-5 *2 (-587 *5)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *3 (-326 *2)) (-4 *4 (-326 *2)) (|has| *2 (-6 (-4003 #1="*"))) (-4 *2 (-965)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *3 (-326 *2)) (-4 *4 (-326 *2)) (|has| *2 (-6 (-4003 #1#))) (-4 *2 (-965)))) (-3596 (*1 *1 *1) (|partial| -12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) (-4 *4 (-326 *2)) (-4 *2 (-314)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-4 *3 (-314))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3128 ((-85) $)) (-15 -3127 ((-85) $)) (-15 -3126 ((-85) $)) (-15 -3125 ((-85) $)) (-15 -3844 ($ (-698) (-698))) (-15 -3129 ($ (-587 (-587 |t#1|)))) (-15 -3129 ($ (-698) (-698) (-1 |t#1| (-488) (-488)))) (-15 -3339 ($ (-698) |t#1|)) (-15 -3338 ($ (-587 |t#1|))) (-15 -3338 ($ (-587 $))) (-15 -3953 ($ |t#3|)) (-15 -3420 ($ |t#2|)) (-15 -3420 ($ $)) (-15 -2357 ($ $)) (-15 -2356 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -3600 ((-587 (-587 |t#1|)) $)) (-15 -3806 ($ $ (-587 (-488)) (-587 (-488)))) (-15 -3794 ($ $ (-587 (-488)) (-587 (-488)) $)) (-15 -2354 ($ $ (-488) (-488))) (-15 -2353 ($ $ (-488) (-488))) (-15 -2352 ($ $ (-488) (-488) (-488) (-488))) (-15 -2351 ($ $ (-488) (-488) $)) (-15 -3845 ($ $ $)) (-15 -3843 ($ $ $)) (-15 -3843 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-488) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-698))) (IF (|has| |t#1| (-499)) (-15 -3472 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-314)) (-15 -3956 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-260)) (-15 -3115 ($ $)) |%noBranch|) (IF (|has| |t#1| (-499)) (PROGN (-15 -3114 ((-698) $)) (-15 -3113 ((-698) $)) (-15 -3112 ((-587 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4003 "*"))) (PROGN (-15 -3334 (|t#1| $)) (-15 -3333 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-314)) (PROGN (-15 -3596 ((-3 $ "failed") $)) (-15 ** ($ $ (-488)))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-320 |#1|) . T) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-1017) |has| |#1| (-1017)) ((-1039 |#1|) . T) ((-57 |#1| |#2| |#3|) . T) ((-1133) . T)) +((-3848 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3849 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) +(((-632 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3849 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3849 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3848 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-965) (-326 |#1|) (-326 |#1|) (-631 |#1| |#2| |#3|) (-965) (-326 |#5|) (-326 |#5|) (-631 |#5| |#6| |#7|)) (T -632)) +((-3848 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-965)) (-4 *2 (-965)) (-4 *6 (-326 *5)) (-4 *7 (-326 *5)) (-4 *8 (-326 *2)) (-4 *9 (-326 *2)) (-5 *1 (-632 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-631 *5 *6 *7)) (-4 *10 (-631 *2 *8 *9)))) (-3849 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-965)) (-4 *8 (-965)) (-4 *6 (-326 *5)) (-4 *7 (-326 *5)) (-4 *2 (-631 *8 *9 *10)) (-5 *1 (-632 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-631 *5 *6 *7)) (-4 *9 (-326 *8)) (-4 *10 (-326 *8)))) (-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-965)) (-4 *8 (-965)) (-4 *6 (-326 *5)) (-4 *7 (-326 *5)) (-4 *2 (-631 *8 *9 *10)) (-5 *1 (-632 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-631 *5 *6 *7)) (-4 *9 (-326 *8)) (-4 *10 (-326 *8))))) +((-3115 ((|#4| |#4|) 90 (|has| |#1| (-260)) ELT)) (-3114 (((-698) |#4|) 92 (|has| |#1| (-499)) ELT)) (-3113 (((-698) |#4|) 94 (|has| |#1| (-499)) ELT)) (-3112 (((-587 |#3|) |#4|) 101 (|has| |#1| (-499)) ELT)) (-2385 (((-2 (|:| -1977 |#1|) (|:| -2908 |#1|)) |#1| |#1|) 124 (|has| |#1| (-260)) ELT)) (-3333 ((|#1| |#4|) 52 T ELT)) (-2362 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-499)) ELT)) (-3596 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-314)) ELT)) (-2361 ((|#4| |#4|) 76 (|has| |#1| (-499)) ELT)) (-2359 ((|#4| |#4| |#1| (-488) (-488)) 60 T ELT)) (-2358 ((|#4| |#4| (-488) (-488)) 55 T ELT)) (-2360 ((|#4| |#4| |#1| (-488) (-488)) 65 T ELT)) (-3334 ((|#1| |#4|) 96 T ELT)) (-2526 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-499)) ELT))) +(((-633 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3334 (|#1| |#4|)) (-15 -3333 (|#1| |#4|)) (-15 -2358 (|#4| |#4| (-488) (-488))) (-15 -2359 (|#4| |#4| |#1| (-488) (-488))) (-15 -2360 (|#4| |#4| |#1| (-488) (-488))) (IF (|has| |#1| (-499)) (PROGN (-15 -3114 ((-698) |#4|)) (-15 -3113 ((-698) |#4|)) (-15 -3112 ((-587 |#3|) |#4|)) (-15 -2361 (|#4| |#4|)) (-15 -2362 ((-3 |#4| #1="failed") |#4|)) (-15 -2526 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-260)) (PROGN (-15 -3115 (|#4| |#4|)) (-15 -2385 ((-2 (|:| -1977 |#1|) (|:| -2908 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-314)) (-15 -3596 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-148) (-326 |#1|) (-326 |#1|) (-631 |#1| |#2| |#3|)) (T -633)) +((-3596 (*1 *2 *2) (|partial| -12 (-4 *3 (-314)) (-4 *3 (-148)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *1 (-633 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5)))) (-2385 (*1 *2 *3 *3) (-12 (-4 *3 (-260)) (-4 *3 (-148)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *2 (-2 (|:| -1977 *3) (|:| -2908 *3))) (-5 *1 (-633 *3 *4 *5 *6)) (-4 *6 (-631 *3 *4 *5)))) (-3115 (*1 *2 *2) (-12 (-4 *3 (-260)) (-4 *3 (-148)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *1 (-633 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5)))) (-2526 (*1 *2 *3) (-12 (-4 *4 (-499)) (-4 *4 (-148)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-633 *4 *5 *6 *3)) (-4 *3 (-631 *4 *5 *6)))) (-2362 (*1 *2 *2) (|partial| -12 (-4 *3 (-499)) (-4 *3 (-148)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *1 (-633 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5)))) (-2361 (*1 *2 *2) (-12 (-4 *3 (-499)) (-4 *3 (-148)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *1 (-633 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5)))) (-3112 (*1 *2 *3) (-12 (-4 *4 (-499)) (-4 *4 (-148)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) (-5 *2 (-587 *6)) (-5 *1 (-633 *4 *5 *6 *3)) (-4 *3 (-631 *4 *5 *6)))) (-3113 (*1 *2 *3) (-12 (-4 *4 (-499)) (-4 *4 (-148)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) (-5 *2 (-698)) (-5 *1 (-633 *4 *5 *6 *3)) (-4 *3 (-631 *4 *5 *6)))) (-3114 (*1 *2 *3) (-12 (-4 *4 (-499)) (-4 *4 (-148)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) (-5 *2 (-698)) (-5 *1 (-633 *4 *5 *6 *3)) (-4 *3 (-631 *4 *5 *6)))) (-2360 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-488)) (-4 *3 (-148)) (-4 *5 (-326 *3)) (-4 *6 (-326 *3)) (-5 *1 (-633 *3 *5 *6 *2)) (-4 *2 (-631 *3 *5 *6)))) (-2359 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-488)) (-4 *3 (-148)) (-4 *5 (-326 *3)) (-4 *6 (-326 *3)) (-5 *1 (-633 *3 *5 *6 *2)) (-4 *2 (-631 *3 *5 *6)))) (-2358 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-488)) (-4 *4 (-148)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) (-5 *1 (-633 *4 *5 *6 *2)) (-4 *2 (-631 *4 *5 *6)))) (-3333 (*1 *2 *3) (-12 (-4 *4 (-326 *2)) (-4 *5 (-326 *2)) (-4 *2 (-148)) (-5 *1 (-633 *2 *4 *5 *3)) (-4 *3 (-631 *2 *4 *5)))) (-3334 (*1 *2 *3) (-12 (-4 *4 (-326 *2)) (-4 *5 (-326 *2)) (-4 *2 (-148)) (-5 *1 (-633 *2 *4 *5 *3)) (-4 *3 (-631 *2 *4 *5))))) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3844 (($ (-698) (-698)) 63 T ELT)) (-2355 (($ $ $) NIL T ELT)) (-3420 (($ (-1183 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3126 (((-85) $) NIL T ELT)) (-2354 (($ $ (-488) (-488)) 21 T ELT)) (-2353 (($ $ (-488) (-488)) NIL T ELT)) (-2352 (($ $ (-488) (-488) (-488) (-488)) NIL T ELT)) (-2357 (($ $) NIL T ELT)) (-3128 (((-85) $) NIL T ELT)) (-2351 (($ $ (-488) (-488) $) NIL T ELT)) (-3794 ((|#1| $ (-488) (-488) |#1|) NIL T ELT) (($ $ (-587 (-488)) (-587 (-488)) $) NIL T ELT)) (-1261 (($ $ (-488) (-1183 |#1|)) NIL T ELT)) (-1260 (($ $ (-488) (-1183 |#1|)) NIL T ELT)) (-3339 (($ (-698) |#1|) 37 T ELT)) (-3730 (($) NIL T CONST)) (-3115 (($ $) 46 (|has| |#1| (-260)) ELT)) (-3117 (((-1183 |#1|) $ (-488)) NIL T ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-3114 (((-698) $) 48 (|has| |#1| (-499)) ELT)) (-1580 ((|#1| $ (-488) (-488) |#1|) 68 T ELT)) (-3118 ((|#1| $ (-488) (-488)) NIL T ELT)) (-3113 (((-698) $) 50 (|has| |#1| (-499)) ELT)) (-3112 (((-587 (-1183 |#1|)) $) 53 (|has| |#1| (-499)) ELT)) (-3120 (((-698) $) 31 T ELT)) (-3620 (($ (-698) (-698) |#1|) 27 T ELT)) (-3119 (((-698) $) 32 T ELT)) (-3333 ((|#1| $) 44 (|has| |#1| (-6 (-4003 #1="*"))) ELT)) (-3124 (((-488) $) 9 T ELT)) (-3122 (((-488) $) 10 T ELT)) (-2614 (((-587 |#1|) $) NIL T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3123 (((-488) $) 13 T ELT)) (-3121 (((-488) $) 64 T ELT)) (-3129 (($ (-587 (-587 |#1|))) NIL T ELT) (($ (-698) (-698) (-1 |#1| (-488) (-488))) NIL T ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3600 (((-587 (-587 |#1|)) $) 75 T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-3596 (((-3 $ #2="failed") $) 57 (|has| |#1| (-314)) ELT)) (-2356 (($ $ $) NIL T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-1734 (((-3 |#1| #2#) (-1 (-85) |#1|) $) NIL T ELT)) (-2204 (($ $ |#1|) NIL T ELT)) (-3472 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-499)) ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#1| $ (-488) (-488)) NIL T ELT) ((|#1| $ (-488) (-488) |#1|) NIL T ELT) (($ $ (-587 (-488)) (-587 (-488))) NIL T ELT)) (-3338 (($ (-587 |#1|)) NIL T ELT) (($ (-587 $)) NIL T ELT) (($ (-1183 |#1|)) 69 T ELT)) (-3127 (((-85) $) NIL T ELT)) (-3334 ((|#1| $) 42 (|has| |#1| (-6 (-4003 #1#))) ELT)) (-1735 (((-698) (-1 (-85) |#1|) $) NIL T ELT) (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) 79 (|has| |#1| (-557 (-477))) ELT)) (-3116 (((-1183 |#1|) $ (-488)) NIL T ELT)) (-3953 (($ (-1183 |#1|)) NIL T ELT) (((-776) $) NIL (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3125 (((-85) $) NIL T ELT)) (-3062 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-698)) 38 T ELT) (($ $ (-488)) 61 (|has| |#1| (-314)) ELT)) (* (($ $ $) 23 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-488) $) NIL T ELT) (((-1183 |#1|) $ (-1183 |#1|)) NIL T ELT) (((-1183 |#1|) (-1183 |#1|) $) NIL T ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-634 |#1|) (-13 (-631 |#1| (-1183 |#1|) (-1183 |#1|)) (-10 -8 (-15 -3338 ($ (-1183 |#1|))) (IF (|has| |#1| (-557 (-477))) (-6 (-557 (-477))) |%noBranch|) (IF (|has| |#1| (-314)) (-15 -3596 ((-3 $ "failed") $)) |%noBranch|))) (-965)) (T -634)) +((-3596 (*1 *1 *1) (|partial| -12 (-5 *1 (-634 *2)) (-4 *2 (-314)) (-4 *2 (-965)))) (-3338 (*1 *1 *2) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-965)) (-5 *1 (-634 *3))))) +((-2368 (((-634 |#1|) (-634 |#1|) (-634 |#1|) (-634 |#1|)) 37 T ELT)) (-2367 (((-634 |#1|) (-634 |#1|) (-634 |#1|) |#1|) 32 T ELT)) (-2369 (((-634 |#1|) (-634 |#1|) (-634 |#1|) (-634 |#1|) (-634 |#1|) (-698)) 43 T ELT)) (-2364 (((-634 |#1|) (-634 |#1|) (-634 |#1|) (-634 |#1|)) 25 T ELT)) (-2365 (((-634 |#1|) (-634 |#1|) (-634 |#1|) (-634 |#1|)) 29 T ELT) (((-634 |#1|) (-634 |#1|) (-634 |#1|)) 27 T ELT)) (-2366 (((-634 |#1|) (-634 |#1|) |#1| (-634 |#1|)) 31 T ELT)) (-2363 (((-634 |#1|) (-634 |#1|) (-634 |#1|)) 23 T ELT)) (** (((-634 |#1|) (-634 |#1|) (-698)) 46 T ELT))) +(((-635 |#1|) (-10 -7 (-15 -2363 ((-634 |#1|) (-634 |#1|) (-634 |#1|))) (-15 -2364 ((-634 |#1|) (-634 |#1|) (-634 |#1|) (-634 |#1|))) (-15 -2365 ((-634 |#1|) (-634 |#1|) (-634 |#1|))) (-15 -2365 ((-634 |#1|) (-634 |#1|) (-634 |#1|) (-634 |#1|))) (-15 -2366 ((-634 |#1|) (-634 |#1|) |#1| (-634 |#1|))) (-15 -2367 ((-634 |#1|) (-634 |#1|) (-634 |#1|) |#1|)) (-15 -2368 ((-634 |#1|) (-634 |#1|) (-634 |#1|) (-634 |#1|))) (-15 -2369 ((-634 |#1|) (-634 |#1|) (-634 |#1|) (-634 |#1|) (-634 |#1|) (-698))) (-15 ** ((-634 |#1|) (-634 |#1|) (-698)))) (-965)) (T -635)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-634 *4)) (-5 *3 (-698)) (-4 *4 (-965)) (-5 *1 (-635 *4)))) (-2369 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-634 *4)) (-5 *3 (-698)) (-4 *4 (-965)) (-5 *1 (-635 *4)))) (-2368 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-965)) (-5 *1 (-635 *3)))) (-2367 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-634 *3)) (-4 *3 (-965)) (-5 *1 (-635 *3)))) (-2366 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-965)) (-5 *1 (-635 *3)))) (-2365 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-965)) (-5 *1 (-635 *3)))) (-2365 (*1 *2 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-965)) (-5 *1 (-635 *3)))) (-2364 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-965)) (-5 *1 (-635 *3)))) (-2363 (*1 *2 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-965)) (-5 *1 (-635 *3))))) +((-3163 (((-3 |#1| "failed") $) 18 T ELT)) (-3162 ((|#1| $) NIL T ELT)) (-2370 (($) 7 T CONST)) (-2371 (($ |#1|) 8 T ELT)) (-3953 (($ |#1|) 16 T ELT) (((-776) $) 23 T ELT)) (-3572 (((-85) $ (|[\|\|]| |#1|)) 14 T ELT) (((-85) $ (|[\|\|]| -2370)) 11 T ELT)) (-3578 ((|#1| $) 15 T ELT))) +(((-636 |#1|) (-13 (-1179) (-954 |#1|) (-556 (-776)) (-10 -8 (-15 -2371 ($ |#1|)) (-15 -3572 ((-85) $ (|[\|\|]| |#1|))) (-15 -3572 ((-85) $ (|[\|\|]| -2370))) (-15 -3578 (|#1| $)) (-15 -2370 ($) -3959))) (-556 (-776))) (T -636)) +((-2371 (*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-556 (-776))))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-556 (-776))) (-5 *2 (-85)) (-5 *1 (-636 *4)))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2370)) (-5 *2 (-85)) (-5 *1 (-636 *4)) (-4 *4 (-556 (-776))))) (-3578 (*1 *2 *1) (-12 (-5 *1 (-636 *2)) (-4 *2 (-556 (-776))))) (-2370 (*1 *1) (-12 (-5 *1 (-636 *2)) (-4 *2 (-556 (-776)))))) +((-3747 (((-2 (|:| |num| (-634 |#1|)) (|:| |den| |#1|)) (-634 |#2|)) 20 T ELT)) (-3745 ((|#1| (-634 |#2|)) 9 T ELT)) (-3746 (((-634 |#1|) (-634 |#2|)) 18 T ELT))) +(((-637 |#1| |#2|) (-10 -7 (-15 -3745 (|#1| (-634 |#2|))) (-15 -3746 ((-634 |#1|) (-634 |#2|))) (-15 -3747 ((-2 (|:| |num| (-634 |#1|)) (|:| |den| |#1|)) (-634 |#2|)))) (-499) (-908 |#1|)) (T -637)) +((-3747 (*1 *2 *3) (-12 (-5 *3 (-634 *5)) (-4 *5 (-908 *4)) (-4 *4 (-499)) (-5 *2 (-2 (|:| |num| (-634 *4)) (|:| |den| *4))) (-5 *1 (-637 *4 *5)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-634 *5)) (-4 *5 (-908 *4)) (-4 *4 (-499)) (-5 *2 (-634 *4)) (-5 *1 (-637 *4 *5)))) (-3745 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-908 *2)) (-4 *2 (-499)) (-5 *1 (-637 *2 *4))))) +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1574 (($ (-1 (-85) |#1|) $) 42 (|has| $ (-320 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-320 |#1|)) ELT)) (-3730 (($) 6 T CONST)) (-2373 (($ $) 55 T ELT)) (-1357 (($ $) 51 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-3411 (($ |#1| $) 44 (|has| $ (-320 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 43 (|has| $ (-320 |#1|)) ELT)) (-3412 (($ |#1| $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 48 (|has| $ (-320 |#1|)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-1278 ((|#1| $) 35 T ELT)) (-3615 (($ |#1| $) 36 T ELT) (($ |#1| $ (-698)) 56 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-1279 ((|#1| $) 37 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-2372 (((-587 (-2 (|:| |entry| |#1|) (|:| -1735 (-698)))) $) 54 T ELT)) (-1470 (($) 46 T ELT) (($ (-587 |#1|)) 45 T ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 52 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 47 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1280 (($ (-587 |#1|)) 38 T ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-638 |#1|) (-113) (-1017)) (T -638)) +((-3615 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-698)) (-4 *1 (-638 *2)) (-4 *2 (-1017)))) (-2373 (*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1017)))) (-2372 (*1 *2 *1) (-12 (-4 *1 (-638 *3)) (-4 *3 (-1017)) (-5 *2 (-587 (-2 (|:| |entry| *3) (|:| -1735 (-698)))))))) +(-13 (-195 |t#1|) (-10 -8 (-15 -3615 ($ |t#1| $ (-698))) (-15 -2373 ($ $)) (-15 -2372 ((-587 (-2 (|:| |entry| |t#1|) (|:| -1735 (-698)))) $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-124 |#1|) . T) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-195 |#1|) . T) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-1017) |has| |#1| (-1017)) ((-1039 |#1|) . T) ((-1133) . T)) +((-2376 (((-587 |#1|) (-587 (-2 (|:| -3738 |#1|) (|:| -3955 (-488)))) (-488)) 66 T ELT)) (-2374 ((|#1| |#1| (-488)) 63 T ELT)) (-3150 ((|#1| |#1| |#1| (-488)) 46 T ELT)) (-3738 (((-587 |#1|) |#1| (-488)) 49 T ELT)) (-2377 ((|#1| |#1| (-488) |#1| (-488)) 40 T ELT)) (-2375 (((-587 (-2 (|:| -3738 |#1|) (|:| -3955 (-488)))) |#1| (-488)) 62 T ELT))) +(((-639 |#1|) (-10 -7 (-15 -3150 (|#1| |#1| |#1| (-488))) (-15 -2374 (|#1| |#1| (-488))) (-15 -3738 ((-587 |#1|) |#1| (-488))) (-15 -2375 ((-587 (-2 (|:| -3738 |#1|) (|:| -3955 (-488)))) |#1| (-488))) (-15 -2376 ((-587 |#1|) (-587 (-2 (|:| -3738 |#1|) (|:| -3955 (-488)))) (-488))) (-15 -2377 (|#1| |#1| (-488) |#1| (-488)))) (-1159 (-488))) (T -639)) +((-2377 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-639 *2)) (-4 *2 (-1159 *3)))) (-2376 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-2 (|:| -3738 *5) (|:| -3955 (-488))))) (-5 *4 (-488)) (-4 *5 (-1159 *4)) (-5 *2 (-587 *5)) (-5 *1 (-639 *5)))) (-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-488)) (-5 *2 (-587 (-2 (|:| -3738 *3) (|:| -3955 *4)))) (-5 *1 (-639 *3)) (-4 *3 (-1159 *4)))) (-3738 (*1 *2 *3 *4) (-12 (-5 *4 (-488)) (-5 *2 (-587 *3)) (-5 *1 (-639 *3)) (-4 *3 (-1159 *4)))) (-2374 (*1 *2 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-639 *2)) (-4 *2 (-1159 *3)))) (-3150 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-639 *2)) (-4 *2 (-1159 *3))))) +((-2381 (((-1 (-858 (-181)) (-181) (-181)) (-1 (-181) (-181) (-181)) (-1 (-181) (-181) (-181)) (-1 (-181) (-181) (-181)) (-1 (-181) (-181) (-181) (-181))) 17 T ELT)) (-2378 (((-1051 (-181)) (-1051 (-181)) (-1 (-858 (-181)) (-181) (-181)) (-1005 (-181)) (-1005 (-181)) (-587 (-223))) 53 T ELT) (((-1051 (-181)) (-1 (-858 (-181)) (-181) (-181)) (-1005 (-181)) (-1005 (-181)) (-587 (-223))) 55 T ELT) (((-1051 (-181)) (-1 (-181) (-181) (-181)) (-1 (-181) (-181) (-181)) (-1 (-181) (-181) (-181)) (-3 (-1 (-181) (-181) (-181) (-181)) #1="undefined") (-1005 (-181)) (-1005 (-181)) (-587 (-223))) 57 T ELT)) (-2380 (((-1051 (-181)) (-267 (-488)) (-267 (-488)) (-267 (-488)) (-1 (-181) (-181)) (-1005 (-181)) (-587 (-223))) NIL T ELT)) (-2379 (((-1051 (-181)) (-1 (-181) (-181) (-181)) (-3 (-1 (-181) (-181) (-181) (-181)) #1#) (-1005 (-181)) (-1005 (-181)) (-587 (-223))) 58 T ELT))) +(((-640) (-10 -7 (-15 -2378 ((-1051 (-181)) (-1 (-181) (-181) (-181)) (-1 (-181) (-181) (-181)) (-1 (-181) (-181) (-181)) (-3 (-1 (-181) (-181) (-181) (-181)) #1="undefined") (-1005 (-181)) (-1005 (-181)) (-587 (-223)))) (-15 -2378 ((-1051 (-181)) (-1 (-858 (-181)) (-181) (-181)) (-1005 (-181)) (-1005 (-181)) (-587 (-223)))) (-15 -2378 ((-1051 (-181)) (-1051 (-181)) (-1 (-858 (-181)) (-181) (-181)) (-1005 (-181)) (-1005 (-181)) (-587 (-223)))) (-15 -2379 ((-1051 (-181)) (-1 (-181) (-181) (-181)) (-3 (-1 (-181) (-181) (-181) (-181)) #1#) (-1005 (-181)) (-1005 (-181)) (-587 (-223)))) (-15 -2380 ((-1051 (-181)) (-267 (-488)) (-267 (-488)) (-267 (-488)) (-1 (-181) (-181)) (-1005 (-181)) (-587 (-223)))) (-15 -2381 ((-1 (-858 (-181)) (-181) (-181)) (-1 (-181) (-181) (-181)) (-1 (-181) (-181) (-181)) (-1 (-181) (-181) (-181)) (-1 (-181) (-181) (-181) (-181)))))) (T -640)) +((-2381 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-181) (-181) (-181))) (-5 *4 (-1 (-181) (-181) (-181) (-181))) (-5 *2 (-1 (-858 (-181)) (-181) (-181))) (-5 *1 (-640)))) (-2380 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-267 (-488))) (-5 *4 (-1 (-181) (-181))) (-5 *5 (-1005 (-181))) (-5 *6 (-587 (-223))) (-5 *2 (-1051 (-181))) (-5 *1 (-640)))) (-2379 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-181) (-181) (-181))) (-5 *4 (-3 (-1 (-181) (-181) (-181) (-181)) #1="undefined")) (-5 *5 (-1005 (-181))) (-5 *6 (-587 (-223))) (-5 *2 (-1051 (-181))) (-5 *1 (-640)))) (-2378 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1051 (-181))) (-5 *3 (-1 (-858 (-181)) (-181) (-181))) (-5 *4 (-1005 (-181))) (-5 *5 (-587 (-223))) (-5 *1 (-640)))) (-2378 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-858 (-181)) (-181) (-181))) (-5 *4 (-1005 (-181))) (-5 *5 (-587 (-223))) (-5 *2 (-1051 (-181))) (-5 *1 (-640)))) (-2378 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-181) (-181) (-181))) (-5 *4 (-3 (-1 (-181) (-181) (-181) (-181)) #1#)) (-5 *5 (-1005 (-181))) (-5 *6 (-587 (-223))) (-5 *2 (-1051 (-181))) (-5 *1 (-640))))) +((-3738 (((-350 (-1089 |#4|)) (-1089 |#4|)) 87 T ELT) (((-350 |#4|) |#4|) 270 T ELT))) +(((-641 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3738 ((-350 |#4|) |#4|)) (-15 -3738 ((-350 (-1089 |#4|)) (-1089 |#4|)))) (-760) (-721) (-301) (-865 |#3| |#2| |#1|)) (T -641)) +((-3738 (*1 *2 *3) (-12 (-4 *4 (-760)) (-4 *5 (-721)) (-4 *6 (-301)) (-4 *7 (-865 *6 *5 *4)) (-5 *2 (-350 (-1089 *7))) (-5 *1 (-641 *4 *5 *6 *7)) (-5 *3 (-1089 *7)))) (-3738 (*1 *2 *3) (-12 (-4 *4 (-760)) (-4 *5 (-721)) (-4 *6 (-301)) (-5 *2 (-350 *3)) (-5 *1 (-641 *4 *5 *6 *3)) (-4 *3 (-865 *6 *5 *4))))) +((-2384 (((-634 |#1|) (-634 |#1|) |#1| |#1|) 85 T ELT)) (-3115 (((-634 |#1|) (-634 |#1|) |#1|) 66 T ELT)) (-2383 (((-634 |#1|) (-634 |#1|) |#1|) 86 T ELT)) (-2382 (((-634 |#1|) (-634 |#1|)) 67 T ELT)) (-2385 (((-2 (|:| -1977 |#1|) (|:| -2908 |#1|)) |#1| |#1|) 84 T ELT))) +(((-642 |#1|) (-10 -7 (-15 -2382 ((-634 |#1|) (-634 |#1|))) (-15 -3115 ((-634 |#1|) (-634 |#1|) |#1|)) (-15 -2383 ((-634 |#1|) (-634 |#1|) |#1|)) (-15 -2384 ((-634 |#1|) (-634 |#1|) |#1| |#1|)) (-15 -2385 ((-2 (|:| -1977 |#1|) (|:| -2908 |#1|)) |#1| |#1|))) (-260)) (T -642)) +((-2385 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1977 *3) (|:| -2908 *3))) (-5 *1 (-642 *3)) (-4 *3 (-260)))) (-2384 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-634 *3)) (-4 *3 (-260)) (-5 *1 (-642 *3)))) (-2383 (*1 *2 *2 *3) (-12 (-5 *2 (-634 *3)) (-4 *3 (-260)) (-5 *1 (-642 *3)))) (-3115 (*1 *2 *2 *3) (-12 (-5 *2 (-634 *3)) (-4 *3 (-260)) (-5 *1 (-642 *3)))) (-2382 (*1 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-260)) (-5 *1 (-642 *3))))) +((-2391 (((-1 |#4| |#2| |#3|) |#1| (-1094) (-1094)) 19 T ELT)) (-2386 (((-1 |#4| |#2| |#3|) (-1094)) 12 T ELT))) +(((-643 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2386 ((-1 |#4| |#2| |#3|) (-1094))) (-15 -2391 ((-1 |#4| |#2| |#3|) |#1| (-1094) (-1094)))) (-557 (-477)) (-1133) (-1133) (-1133)) (T -643)) +((-2391 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1094)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-643 *3 *5 *6 *7)) (-4 *3 (-557 (-477))) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-643 *4 *5 *6 *7)) (-4 *4 (-557 (-477))) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133))))) +((-2387 (((-1 (-181) (-181) (-181)) |#1| (-1094) (-1094)) 43 T ELT) (((-1 (-181) (-181)) |#1| (-1094)) 48 T ELT))) +(((-644 |#1|) (-10 -7 (-15 -2387 ((-1 (-181) (-181)) |#1| (-1094))) (-15 -2387 ((-1 (-181) (-181) (-181)) |#1| (-1094) (-1094)))) (-557 (-477))) (T -644)) +((-2387 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1094)) (-5 *2 (-1 (-181) (-181) (-181))) (-5 *1 (-644 *3)) (-4 *3 (-557 (-477))))) (-2387 (*1 *2 *3 *4) (-12 (-5 *4 (-1094)) (-5 *2 (-1 (-181) (-181))) (-5 *1 (-644 *3)) (-4 *3 (-557 (-477)))))) +((-2388 (((-1094) |#1| (-1094) (-587 (-1094))) 10 T ELT) (((-1094) |#1| (-1094) (-1094) (-1094)) 13 T ELT) (((-1094) |#1| (-1094) (-1094)) 12 T ELT) (((-1094) |#1| (-1094)) 11 T ELT))) +(((-645 |#1|) (-10 -7 (-15 -2388 ((-1094) |#1| (-1094))) (-15 -2388 ((-1094) |#1| (-1094) (-1094))) (-15 -2388 ((-1094) |#1| (-1094) (-1094) (-1094))) (-15 -2388 ((-1094) |#1| (-1094) (-587 (-1094))))) (-557 (-477))) (T -645)) +((-2388 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-587 (-1094))) (-5 *2 (-1094)) (-5 *1 (-645 *3)) (-4 *3 (-557 (-477))))) (-2388 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-645 *3)) (-4 *3 (-557 (-477))))) (-2388 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-645 *3)) (-4 *3 (-557 (-477))))) (-2388 (*1 *2 *3 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-645 *3)) (-4 *3 (-557 (-477)))))) +((-2389 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) +(((-646 |#1| |#2|) (-10 -7 (-15 -2389 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1133) (-1133)) (T -646)) +((-2389 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-646 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133))))) +((-2390 (((-1 |#3| |#2|) (-1094)) 11 T ELT)) (-2391 (((-1 |#3| |#2|) |#1| (-1094)) 21 T ELT))) +(((-647 |#1| |#2| |#3|) (-10 -7 (-15 -2390 ((-1 |#3| |#2|) (-1094))) (-15 -2391 ((-1 |#3| |#2|) |#1| (-1094)))) (-557 (-477)) (-1133) (-1133)) (T -647)) +((-2391 (*1 *2 *3 *4) (-12 (-5 *4 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-647 *3 *5 *6)) (-4 *3 (-557 (-477))) (-4 *5 (-1133)) (-4 *6 (-1133)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-647 *4 *5 *6)) (-4 *4 (-557 (-477))) (-4 *5 (-1133)) (-4 *6 (-1133))))) +((-2394 (((-3 (-587 (-1089 |#4|)) #1="failed") (-1089 |#4|) (-587 |#2|) (-587 (-1089 |#4|)) (-587 |#3|) (-587 |#4|) (-587 (-587 (-2 (|:| -3084 (-698)) (|:| |pcoef| |#4|)))) (-587 (-698)) (-1183 (-587 (-1089 |#3|))) |#3|) 92 T ELT)) (-2393 (((-3 (-587 (-1089 |#4|)) #1#) (-1089 |#4|) (-587 |#2|) (-587 (-1089 |#3|)) (-587 |#3|) (-587 |#4|) (-587 (-698)) |#3|) 110 T ELT)) (-2392 (((-3 (-587 (-1089 |#4|)) #1#) (-1089 |#4|) (-587 |#2|) (-587 |#3|) (-587 (-698)) (-587 (-1089 |#4|)) (-1183 (-587 (-1089 |#3|))) |#3|) 48 T ELT))) +(((-648 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2392 ((-3 (-587 (-1089 |#4|)) #1="failed") (-1089 |#4|) (-587 |#2|) (-587 |#3|) (-587 (-698)) (-587 (-1089 |#4|)) (-1183 (-587 (-1089 |#3|))) |#3|)) (-15 -2393 ((-3 (-587 (-1089 |#4|)) #1#) (-1089 |#4|) (-587 |#2|) (-587 (-1089 |#3|)) (-587 |#3|) (-587 |#4|) (-587 (-698)) |#3|)) (-15 -2394 ((-3 (-587 (-1089 |#4|)) #1#) (-1089 |#4|) (-587 |#2|) (-587 (-1089 |#4|)) (-587 |#3|) (-587 |#4|) (-587 (-587 (-2 (|:| -3084 (-698)) (|:| |pcoef| |#4|)))) (-587 (-698)) (-1183 (-587 (-1089 |#3|))) |#3|))) (-721) (-760) (-260) (-865 |#3| |#1| |#2|)) (T -648)) +((-2394 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-587 (-1089 *13))) (-5 *3 (-1089 *13)) (-5 *4 (-587 *12)) (-5 *5 (-587 *10)) (-5 *6 (-587 *13)) (-5 *7 (-587 (-587 (-2 (|:| -3084 (-698)) (|:| |pcoef| *13))))) (-5 *8 (-587 (-698))) (-5 *9 (-1183 (-587 (-1089 *10)))) (-4 *12 (-760)) (-4 *10 (-260)) (-4 *13 (-865 *10 *11 *12)) (-4 *11 (-721)) (-5 *1 (-648 *11 *12 *10 *13)))) (-2393 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-587 *11)) (-5 *5 (-587 (-1089 *9))) (-5 *6 (-587 *9)) (-5 *7 (-587 *12)) (-5 *8 (-587 (-698))) (-4 *11 (-760)) (-4 *9 (-260)) (-4 *12 (-865 *9 *10 *11)) (-4 *10 (-721)) (-5 *2 (-587 (-1089 *12))) (-5 *1 (-648 *10 *11 *9 *12)) (-5 *3 (-1089 *12)))) (-2392 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-587 (-1089 *11))) (-5 *3 (-1089 *11)) (-5 *4 (-587 *10)) (-5 *5 (-587 *8)) (-5 *6 (-587 (-698))) (-5 *7 (-1183 (-587 (-1089 *8)))) (-4 *10 (-760)) (-4 *8 (-260)) (-4 *11 (-865 *8 *9 *10)) (-4 *9 (-721)) (-5 *1 (-648 *9 *10 *8 *11))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3965 (($ $) 56 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-2899 (($ |#1| (-698)) 54 T ELT)) (-2826 (((-698) $) 58 T ELT)) (-3180 ((|#1| $) 57 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3955 (((-698) $) 59 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#1|) 53 (|has| |#1| (-148)) ELT)) (-3683 ((|#1| $ (-698)) 55 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 61 T ELT) (($ |#1| $) 60 T ELT))) +(((-649 |#1|) (-113) (-965)) (T -649)) +((-3955 (*1 *2 *1) (-12 (-4 *1 (-649 *3)) (-4 *3 (-965)) (-5 *2 (-698)))) (-2826 (*1 *2 *1) (-12 (-4 *1 (-649 *3)) (-4 *3 (-965)) (-5 *2 (-698)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-965)))) (-3965 (*1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-965)))) (-3683 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-4 *1 (-649 *2)) (-4 *2 (-965)))) (-2899 (*1 *1 *2 *3) (-12 (-5 *3 (-698)) (-4 *1 (-649 *2)) (-4 *2 (-965))))) +(-13 (-965) (-82 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3955 ((-698) $)) (-15 -2826 ((-698) $)) (-15 -3180 (|t#1| $)) (-15 -3965 ($ $)) (-15 -3683 (|t#1| $ (-698))) (-15 -2899 ($ |t#1| (-698))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-148)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-559 (-488)) . T) ((-559 |#1|) |has| |#1| (-148)) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-586 |#1|) |has| |#1| (-148)) ((-658 |#1|) |has| |#1| (-148)) ((-667) . T) ((-967 |#1|) . T) ((-972 |#1|) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-3849 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) +(((-650 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3849 (|#6| (-1 |#4| |#1|) |#3|))) (-499) (-1159 |#1|) (-1159 (-352 |#2|)) (-499) (-1159 |#4|) (-1159 (-352 |#5|))) (T -650)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-499)) (-4 *7 (-499)) (-4 *6 (-1159 *5)) (-4 *2 (-1159 (-352 *8))) (-5 *1 (-650 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1159 (-352 *6))) (-4 *8 (-1159 *7))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2395 (((-1077) (-776)) 36 T ELT)) (-3623 (((-1189) (-1077)) 29 T ELT)) (-2397 (((-1077) (-776)) 26 T ELT)) (-2396 (((-1077) (-776)) 27 T ELT)) (-3953 (((-776) $) NIL T ELT) (((-1077) (-776)) 25 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-651) (-13 (-1017) (-10 -7 (-15 -3953 ((-1077) (-776))) (-15 -2397 ((-1077) (-776))) (-15 -2396 ((-1077) (-776))) (-15 -2395 ((-1077) (-776))) (-15 -3623 ((-1189) (-1077)))))) (T -651)) +((-3953 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1077)) (-5 *1 (-651)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1077)) (-5 *1 (-651)))) (-2396 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1077)) (-5 *1 (-651)))) (-2395 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1077)) (-5 *1 (-651)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-651))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2570 (($ $ $) NIL T ELT)) (-3848 (($ |#1| |#2|) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2620 ((|#2| $) NIL T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-2407 (((-3 $ #1#) $ $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT))) +(((-652 |#1| |#2| |#3| |#4| |#5|) (-13 (-314) (-10 -8 (-15 -2620 (|#2| $)) (-15 -3953 (|#1| $)) (-15 -3848 ($ |#1| |#2|)) (-15 -2407 ((-3 $ #1="failed") $ $)))) (-148) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -652)) +((-2620 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-652 *3 *2 *4 *5 *6)) (-4 *3 (-148)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #1#) *3 *3 *2)))) (-3953 (*1 *2 *1) (-12 (-4 *2 (-148)) (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #1#) *2 *2 *3)))) (-3848 (*1 *1 *2 *3) (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-148)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #1#) *2 *2 *3)))) (-2407 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-148)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #1#) *2 *2 *3))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 37 T ELT)) (-3773 (((-1183 |#1|) $ (-698)) NIL T ELT)) (-3087 (((-587 (-998)) $) NIL T ELT)) (-3771 (($ (-1089 |#1|)) NIL T ELT)) (-3089 (((-1089 $) $ (-998)) NIL T ELT) (((-1089 |#1|) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-2825 (((-698) $) NIL T ELT) (((-698) $ (-587 (-998))) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3761 (($ $ $) NIL (|has| |#1| (-499)) ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3781 (($ $) NIL (|has| |#1| (-395)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-395)) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-1612 (((-85) $ $) NIL (|has| |#1| (-314)) ELT)) (-3142 (((-698)) 55 (|has| |#1| (-322)) ELT)) (-3767 (($ $ (-698)) NIL T ELT)) (-3766 (($ $ (-698)) NIL T ELT)) (-2404 ((|#2| |#2|) 51 T ELT)) (-3757 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-395)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-998) #1#) $) NIL T ELT)) (-3162 ((|#1| $) NIL T ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-998) $) NIL T ELT)) (-3762 (($ $ $ (-998)) NIL (|has| |#1| (-148)) ELT) ((|#1| $ $) NIL (|has| |#1| (-148)) ELT)) (-2570 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3965 (($ $) 72 T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#1|) (-634 $)) NIL T ELT)) (-3848 (($ |#2|) 49 T ELT)) (-3473 (((-3 $ #1#) $) 98 T ELT)) (-3000 (($) 59 (|has| |#1| (-322)) ELT)) (-2569 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3765 (($ $ $) NIL T ELT)) (-3759 (($ $ $) NIL (|has| |#1| (-499)) ELT)) (-3758 (((-2 (|:| -3961 |#1|) (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-499)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL (|has| |#1| (-314)) ELT)) (-3509 (($ $) NIL (|has| |#1| (-395)) ELT) (($ $ (-998)) NIL (|has| |#1| (-395)) ELT)) (-2824 (((-587 $) $) NIL T ELT)) (-3729 (((-85) $) NIL (|has| |#1| (-825)) ELT)) (-2400 (((-873 $)) 89 T ELT)) (-1628 (($ $ |#1| (-698) $) NIL T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (-12 (|has| (-998) (-800 (-332))) (|has| |#1| (-800 (-332)))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (-12 (|has| (-998) (-800 (-488))) (|has| |#1| (-800 (-488)))) ELT)) (-3778 (((-698) $ $) NIL (|has| |#1| (-499)) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2425 (((-698) $) NIL T ELT)) (-3451 (((-636 $) $) NIL (|has| |#1| (-1070)) ELT)) (-3090 (($ (-1089 |#1|) (-998)) NIL T ELT) (($ (-1089 $) (-998)) NIL T ELT)) (-3783 (($ $ (-698)) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-2827 (((-587 $) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-698)) 86 T ELT) (($ $ (-998) (-698)) NIL T ELT) (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT)) (-3769 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $ (-998)) NIL T ELT) (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-2620 ((|#2|) 52 T ELT)) (-2826 (((-698) $) NIL T ELT) (((-698) $ (-998)) NIL T ELT) (((-587 (-698)) $ (-587 (-998))) NIL T ELT)) (-1629 (($ (-1 (-698) (-698)) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3772 (((-1089 |#1|) $) NIL T ELT)) (-3088 (((-3 (-998) #1#) $) NIL T ELT)) (-2015 (((-834) $) NIL (|has| |#1| (-322)) ELT)) (-3085 ((|#2| $) 48 T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) NIL T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) 35 T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-395)) ELT) (($ $ $) NIL (|has| |#1| (-395)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3768 (((-2 (|:| -1977 $) (|:| -2908 $)) $ (-698)) NIL T ELT)) (-2829 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2828 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2830 (((-3 (-2 (|:| |var| (-998)) (|:| -2406 (-698))) #1#) $) NIL T ELT)) (-3818 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3452 (($) NIL (|has| |#1| (-1070)) CONST)) (-2405 (($ (-834)) NIL (|has| |#1| (-322)) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1805 (((-85) $) NIL T ELT)) (-1804 ((|#1| $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#1| (-395)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-395)) ELT) (($ $ $) NIL (|has| |#1| (-395)) ELT)) (-2398 (($ $) 88 (|has| |#1| (-301)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#1| (-825)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3472 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-499)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-499)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-3774 (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ (-998) |#1|) NIL T ELT) (($ $ (-587 (-998)) (-587 |#1|)) NIL T ELT) (($ $ (-998) $) NIL T ELT) (($ $ (-587 (-998)) (-587 $)) NIL T ELT)) (-1611 (((-698) $) NIL (|has| |#1| (-314)) ELT)) (-3806 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-352 $) (-352 $) (-352 $)) NIL (|has| |#1| (-499)) ELT) ((|#1| (-352 $) |#1|) NIL (|has| |#1| (-314)) ELT) (((-352 $) $ (-352 $)) NIL (|has| |#1| (-499)) ELT)) (-3770 (((-3 $ #1#) $ (-698)) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 99 (|has| |#1| (-314)) ELT)) (-3763 (($ $ (-998)) NIL (|has| |#1| (-148)) ELT) ((|#1| $) NIL (|has| |#1| (-148)) ELT)) (-3764 (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT) (($ $ (-998) (-698)) NIL T ELT) (($ $ (-587 (-998))) NIL T ELT) (($ $ (-998)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1094)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-815 (-1094))) ELT)) (-3955 (((-698) $) 39 T ELT) (((-698) $ (-998)) NIL T ELT) (((-587 (-698)) $ (-587 (-998))) NIL T ELT)) (-3978 (((-804 (-332)) $) NIL (-12 (|has| (-998) (-557 (-804 (-332)))) (|has| |#1| (-557 (-804 (-332))))) ELT) (((-804 (-488)) $) NIL (-12 (|has| (-998) (-557 (-804 (-488)))) (|has| |#1| (-557 (-804 (-488))))) ELT) (((-477) $) NIL (-12 (|has| (-998) (-557 (-477))) (|has| |#1| (-557 (-477)))) ELT)) (-2823 ((|#1| $) NIL (|has| |#1| (-395)) ELT) (($ $ (-998)) NIL (|has| |#1| (-395)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-825))) ELT)) (-2399 (((-873 $)) 43 T ELT)) (-3760 (((-3 $ #1#) $ $) NIL (|has| |#1| (-499)) ELT) (((-3 (-352 $) #1#) (-352 $) $) NIL (|has| |#1| (-499)) ELT)) (-3953 (((-776) $) 69 T ELT) (($ (-488)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-998)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-352 (-488))) NIL (OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) ELT) (($ $) NIL (|has| |#1| (-499)) ELT)) (-3823 (((-587 |#1|) $) NIL T ELT)) (-3683 ((|#1| $ (-698)) 71 T ELT) (($ $ (-998) (-698)) NIL T ELT) (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-825))) (|has| |#1| (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1627 (($ $ $ (-698)) NIL (|has| |#1| (-148)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 26 T CONST)) (-2403 (((-1183 |#1|) $) 84 T ELT)) (-2402 (($ (-1183 |#1|)) 58 T ELT)) (-2672 (($) 9 T CONST)) (-2675 (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT) (($ $ (-998) (-698)) NIL T ELT) (($ $ (-587 (-998))) NIL T ELT) (($ $ (-998)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-815 (-1094))) ELT)) (-2401 (((-1183 |#1|) $) NIL T ELT)) (-3062 (((-85) $ $) 77 T ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 40 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 93 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT))) +(((-653 |#1| |#2|) (-13 (-1159 |#1|) (-559 |#2|) (-10 -8 (-15 -2404 (|#2| |#2|)) (-15 -2620 (|#2|)) (-15 -3848 ($ |#2|)) (-15 -3085 (|#2| $)) (-15 -2403 ((-1183 |#1|) $)) (-15 -2402 ($ (-1183 |#1|))) (-15 -2401 ((-1183 |#1|) $)) (-15 -2400 ((-873 $))) (-15 -2399 ((-873 $))) (IF (|has| |#1| (-301)) (-15 -2398 ($ $)) |%noBranch|) (IF (|has| |#1| (-322)) (-6 (-322)) |%noBranch|))) (-965) (-1159 |#1|)) (T -653)) +((-2404 (*1 *2 *2) (-12 (-4 *3 (-965)) (-5 *1 (-653 *3 *2)) (-4 *2 (-1159 *3)))) (-2620 (*1 *2) (-12 (-4 *2 (-1159 *3)) (-5 *1 (-653 *3 *2)) (-4 *3 (-965)))) (-3848 (*1 *1 *2) (-12 (-4 *3 (-965)) (-5 *1 (-653 *3 *2)) (-4 *2 (-1159 *3)))) (-3085 (*1 *2 *1) (-12 (-4 *2 (-1159 *3)) (-5 *1 (-653 *3 *2)) (-4 *3 (-965)))) (-2403 (*1 *2 *1) (-12 (-4 *3 (-965)) (-5 *2 (-1183 *3)) (-5 *1 (-653 *3 *4)) (-4 *4 (-1159 *3)))) (-2402 (*1 *1 *2) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-965)) (-5 *1 (-653 *3 *4)) (-4 *4 (-1159 *3)))) (-2401 (*1 *2 *1) (-12 (-4 *3 (-965)) (-5 *2 (-1183 *3)) (-5 *1 (-653 *3 *4)) (-4 *4 (-1159 *3)))) (-2400 (*1 *2) (-12 (-4 *3 (-965)) (-5 *2 (-873 (-653 *3 *4))) (-5 *1 (-653 *3 *4)) (-4 *4 (-1159 *3)))) (-2399 (*1 *2) (-12 (-4 *3 (-965)) (-5 *2 (-873 (-653 *3 *4))) (-5 *1 (-653 *3 *4)) (-4 *4 (-1159 *3)))) (-2398 (*1 *1 *1) (-12 (-4 *2 (-301)) (-4 *2 (-965)) (-5 *1 (-653 *2 *3)) (-4 *3 (-1159 *2))))) +((-2574 (((-85) $ $) NIL T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2405 ((|#1| $) 13 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2406 ((|#2| $) 12 T ELT)) (-3536 (($ |#1| |#2|) 16 T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-2 (|:| -2405 |#1|) (|:| -2406 |#2|))) 15 T ELT) (((-2 (|:| -2405 |#1|) (|:| -2406 |#2|)) $) 14 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 11 T ELT))) +(((-654 |#1| |#2| |#3|) (-13 (-760) (-433 (-2 (|:| -2405 |#1|) (|:| -2406 |#2|))) (-10 -8 (-15 -2406 (|#2| $)) (-15 -2405 (|#1| $)) (-15 -3536 ($ |#1| |#2|)))) (-760) (-1017) (-1 (-85) (-2 (|:| -2405 |#1|) (|:| -2406 |#2|)) (-2 (|:| -2405 |#1|) (|:| -2406 |#2|)))) (T -654)) +((-2406 (*1 *2 *1) (-12 (-4 *2 (-1017)) (-5 *1 (-654 *3 *2 *4)) (-4 *3 (-760)) (-14 *4 (-1 (-85) (-2 (|:| -2405 *3) (|:| -2406 *2)) (-2 (|:| -2405 *3) (|:| -2406 *2)))))) (-2405 (*1 *2 *1) (-12 (-4 *2 (-760)) (-5 *1 (-654 *2 *3 *4)) (-4 *3 (-1017)) (-14 *4 (-1 (-85) (-2 (|:| -2405 *2) (|:| -2406 *3)) (-2 (|:| -2405 *2) (|:| -2406 *3)))))) (-3536 (*1 *1 *2 *3) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-760)) (-4 *3 (-1017)) (-14 *4 (-1 (-85) (-2 (|:| -2405 *2) (|:| -2406 *3)) (-2 (|:| -2405 *2) (|:| -2406 *3))))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 66 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-86) #1#) $) 107 T ELT)) (-3162 ((|#1| $) NIL T ELT) (((-86) $) 39 T ELT)) (-3473 (((-3 $ #1#) $) 102 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2522 ((|#2| (-86) |#2|) 93 T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2521 (($ |#1| (-312 (-86))) 14 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2523 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2524 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3806 ((|#2| $ |#2|) 33 T ELT)) (-2525 ((|#1| |#1|) 112 (|has| |#1| (-148)) ELT)) (-3953 (((-776) $) 73 T ELT) (($ (-488)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-86)) 23 T ELT)) (-2708 (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-3132 (((-698)) 37 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2526 (($ $) 111 (|has| |#1| (-148)) ELT) (($ $ $) 115 (|has| |#1| (-148)) ELT)) (-2666 (($) 21 T CONST)) (-2672 (($) 9 T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 83 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ (-86) (-488)) NIL T ELT) (($ $ (-488)) 64 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-148)) ELT) (($ $ |#1|) 109 (|has| |#1| (-148)) ELT))) +(((-655 |#1| |#2|) (-13 (-965) (-954 |#1|) (-954 (-86)) (-243 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-148)) (PROGN (-6 (-38 |#1|)) (-15 -2526 ($ $)) (-15 -2526 ($ $ $)) (-15 -2525 (|#1| |#1|))) |%noBranch|) (-15 -2524 ($ $ (-1 |#2| |#2|))) (-15 -2523 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-86) (-488))) (-15 ** ($ $ (-488))) (-15 -2522 (|#2| (-86) |#2|)) (-15 -2521 ($ |#1| (-312 (-86)))))) (-965) (-594 |#1|)) (T -655)) +((-2526 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-965)) (-5 *1 (-655 *2 *3)) (-4 *3 (-594 *2)))) (-2526 (*1 *1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-965)) (-5 *1 (-655 *2 *3)) (-4 *3 (-594 *2)))) (-2525 (*1 *2 *2) (-12 (-4 *2 (-148)) (-4 *2 (-965)) (-5 *1 (-655 *2 *3)) (-4 *3 (-594 *2)))) (-2524 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-965)) (-5 *1 (-655 *3 *4)))) (-2523 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-965)) (-5 *1 (-655 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-488)) (-4 *4 (-965)) (-5 *1 (-655 *4 *5)) (-4 *5 (-594 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-4 *3 (-965)) (-5 *1 (-655 *3 *4)) (-4 *4 (-594 *3)))) (-2522 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-4 *4 (-965)) (-5 *1 (-655 *4 *2)) (-4 *2 (-594 *4)))) (-2521 (*1 *1 *2 *3) (-12 (-5 *3 (-312 (-86))) (-4 *2 (-965)) (-5 *1 (-655 *2 *4)) (-4 *4 (-594 *2))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 33 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3848 (($ |#1| |#2|) 25 T ELT)) (-3473 (((-3 $ #1#) $) 51 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) 35 T ELT)) (-2620 ((|#2| $) 12 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) 52 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2407 (((-3 $ #1#) $ $) 50 T ELT)) (-3953 (((-776) $) 24 T ELT) (($ (-488)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3132 (((-698)) 28 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 16 T CONST)) (-2672 (($) 30 T CONST)) (-3062 (((-85) $ $) 41 T ELT)) (-3843 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3845 (($ $ $) 43 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 21 T ELT) (($ $ $) 20 T ELT))) +(((-656 |#1| |#2| |#3| |#4| |#5|) (-13 (-965) (-10 -8 (-15 -2620 (|#2| $)) (-15 -3953 (|#1| $)) (-15 -3848 ($ |#1| |#2|)) (-15 -2407 ((-3 $ #1="failed") $ $)) (-15 -3473 ((-3 $ #1#) $)) (-15 -2490 ($ $)))) (-148) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -656)) +((-3473 (*1 *1 *1) (|partial| -12 (-5 *1 (-656 *2 *3 *4 *5 *6)) (-4 *2 (-148)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #1#) *2 *2 *3)))) (-2620 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-656 *3 *2 *4 *5 *6)) (-4 *3 (-148)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #1#) *3 *3 *2)))) (-3953 (*1 *2 *1) (-12 (-4 *2 (-148)) (-5 *1 (-656 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #1#) *2 *2 *3)))) (-3848 (*1 *1 *2 *3) (-12 (-5 *1 (-656 *2 *3 *4 *5 *6)) (-4 *2 (-148)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #1#) *2 *2 *3)))) (-2407 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-656 *2 *3 *4 *5 *6)) (-4 *2 (-148)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #1#) *2 *2 *3)))) (-2490 (*1 *1 *1) (-12 (-5 *1 (-656 *2 *3 *4 *5 *6)) (-4 *2 (-148)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #1#) *2 *2 *3))))) +((* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) +(((-657 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-488) |#1|)) (-15 * (|#1| (-698) |#1|)) (-15 * (|#1| (-834) |#1|))) (-658 |#2|) (-148)) (T -657)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-1218 (((-85) $ $) 20 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-658 |#1|) (-113) (-148)) (T -658)) +NIL +(-13 (-82 |t#1| |t#1|) (-586 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-594 |#1|) . T) ((-586 |#1|) . T) ((-967 |#1|) . T) ((-972 |#1|) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-2447 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3854 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3730 (($) NIL T CONST)) (-3473 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2408 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) 16 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3774 ((|#1| $ |#1|) 24 T ELT) (((-747 |#1|) $ (-747 |#1|)) 32 T ELT)) (-3015 (($ $ $) NIL T ELT)) (-2441 (($ $ $) NIL T ELT)) (-3953 (((-776) $) 39 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2672 (($) 9 T CONST)) (-3062 (((-85) $ $) 48 T ELT)) (-3956 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ $ $) 14 T ELT))) +(((-659 |#1|) (-13 (-416) (-10 -8 (-15 -2408 ($ |#1| |#1| |#1| |#1|)) (-15 -2447 ($ |#1|)) (-15 -3854 ($ |#1|)) (-15 -3473 ($)) (-15 -2447 ($ $ |#1|)) (-15 -3854 ($ $ |#1|)) (-15 -3473 ($ $)) (-15 -3774 (|#1| $ |#1|)) (-15 -3774 ((-747 |#1|) $ (-747 |#1|))))) (-314)) (T -659)) +((-2408 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-659 *2)) (-4 *2 (-314)))) (-2447 (*1 *1 *2) (-12 (-5 *1 (-659 *2)) (-4 *2 (-314)))) (-3854 (*1 *1 *2) (-12 (-5 *1 (-659 *2)) (-4 *2 (-314)))) (-3473 (*1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-314)))) (-2447 (*1 *1 *1 *2) (-12 (-5 *1 (-659 *2)) (-4 *2 (-314)))) (-3854 (*1 *1 *1 *2) (-12 (-5 *1 (-659 *2)) (-4 *2 (-314)))) (-3473 (*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-314)))) (-3774 (*1 *2 *1 *2) (-12 (-5 *1 (-659 *2)) (-4 *2 (-314)))) (-3774 (*1 *2 *1 *2) (-12 (-5 *2 (-747 *3)) (-4 *3 (-314)) (-5 *1 (-659 *3))))) +((-2412 (($ $ (-834)) 19 T ELT)) (-2411 (($ $ (-834)) 20 T ELT)) (** (($ $ (-834)) 10 T ELT))) +(((-660 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-834))) (-15 -2411 (|#1| |#1| (-834))) (-15 -2412 (|#1| |#1| (-834)))) (-661)) (T -660)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-2412 (($ $ (-834)) 19 T ELT)) (-2411 (($ $ (-834)) 18 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (** (($ $ (-834)) 17 T ELT)) (* (($ $ $) 20 T ELT))) (((-661) (-113)) (T -661)) -((-2669 (*1 *1) (-4 *1 (-661))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-661)) (-5 *2 (-85)))) (-2409 (*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-696)))) (-2408 (*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-696)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-696)))) (-3470 (*1 *1 *1) (|partial| -4 *1 (-661))) (-2407 (*1 *1 *1) (|partial| -4 *1 (-661))) (-2406 (*1 *1 *1) (|partial| -4 *1 (-661)))) -(-13 (-659) (-10 -8 (-15 -2669 ($) -3956) (-15 -2412 ((-85) $)) (-15 -2409 ($ $ (-696))) (-15 -2408 ($ $ (-696))) (-15 ** ($ $ (-696))) (-15 -3470 ((-3 $ "failed") $)) (-15 -2407 ((-3 $ "failed") $)) (-15 -2406 ((-3 $ "failed") $)))) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-659) . T) ((-1015) . T) ((-1131) . T)) -((-3139 (((-696)) 39 T ELT)) (-3160 (((-3 (-486) #1="failed") $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3159 (((-486) $) NIL T ELT) (((-350 (-486)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3845 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-350 |#3|)) 49 T ELT)) (-3470 (((-3 $ #1#) $) 69 T ELT)) (-2997 (($) 43 T ELT)) (-3135 ((|#2| $) 21 T ELT)) (-2411 (($) 18 T ELT)) (-3761 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-2410 (((-632 |#2|) (-1181 $) (-1 |#2| |#2|)) 64 T ELT)) (-3975 (((-1181 |#2|) $) NIL T ELT) (($ (-1181 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2452 ((|#3| $) 36 T ELT)) (-2014 (((-1181 $)) 33 T ELT))) -(((-662 |#1| |#2| |#3|) (-10 -7 (-15 -3761 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -2997 (|#1|)) (-15 -3139 ((-696))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2410 ((-632 |#2|) (-1181 |#1|) (-1 |#2| |#2|))) (-15 -3845 ((-3 |#1| #1="failed") (-350 |#3|))) (-15 -3975 (|#1| |#3|)) (-15 -3845 (|#1| |#3|)) (-15 -2411 (|#1|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3975 (|#3| |#1|)) (-15 -3975 (|#1| (-1181 |#2|))) (-15 -3975 ((-1181 |#2|) |#1|)) (-15 -2014 ((-1181 |#1|))) (-15 -2452 (|#3| |#1|)) (-15 -3135 (|#2| |#1|)) (-15 -3470 ((-3 |#1| #1#) |#1|))) (-663 |#2| |#3|) (-146) (-1157 |#2|)) (T -662)) -((-3139 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1157 *4)) (-5 *2 (-696)) (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-663 *4 *5))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 114 (|has| |#1| (-312)) ELT)) (-2065 (($ $) 115 (|has| |#1| (-312)) ELT)) (-2063 (((-85) $) 117 (|has| |#1| (-312)) ELT)) (-1787 (((-632 |#1|) (-1181 $)) 61 T ELT) (((-632 |#1|)) 77 T ELT)) (-3333 ((|#1| $) 67 T ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) 167 (|has| |#1| (-299)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 134 (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) 135 (|has| |#1| (-312)) ELT)) (-1609 (((-85) $ $) 125 (|has| |#1| (-312)) ELT)) (-3139 (((-696)) 108 (|has| |#1| (-320)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-486) #1="failed") $) 194 (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) 192 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3159 (((-486) $) 193 (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) 191 (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 190 T ELT)) (-1797 (($ (-1181 |#1|) (-1181 $)) 63 T ELT) (($ (-1181 |#1|)) 80 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2567 (($ $ $) 129 (|has| |#1| (-312)) ELT)) (-1786 (((-632 |#1|) $ (-1181 $)) 68 T ELT) (((-632 |#1|) $) 75 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 186 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 185 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 184 T ELT) (((-632 |#1|) (-632 $)) 183 T ELT)) (-3845 (($ |#2|) 178 T ELT) (((-3 $ "failed") (-350 |#2|)) 175 (|has| |#1| (-312)) ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3111 (((-832)) 69 T ELT)) (-2997 (($) 111 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) 128 (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 123 (|has| |#1| (-312)) ELT)) (-2836 (($) 169 (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1769 (($ $ (-696)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3726 (((-85) $) 136 (|has| |#1| (-312)) ELT)) (-3775 (((-832) $) 172 (|has| |#1| (-299)) ELT) (((-745 (-832)) $) 158 (|has| |#1| (-299)) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3135 ((|#1| $) 66 T ELT)) (-3448 (((-634 $) $) 162 (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-585 $) #2="failed") (-585 $) $) 132 (|has| |#1| (-312)) ELT)) (-2016 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-2012 (((-832) $) 110 (|has| |#1| (-320)) ELT)) (-3082 ((|#2| $) 176 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 188 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 187 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 182 T ELT) (((-632 |#1|) (-1181 $)) 181 T ELT)) (-1896 (($ (-585 $)) 121 (|has| |#1| (-312)) ELT) (($ $ $) 120 (|has| |#1| (-312)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3449 (($) 163 (|has| |#1| (-299)) CONST)) (-2402 (($ (-832)) 109 (|has| |#1| (-320)) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2411 (($) 180 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 122 (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) 119 (|has| |#1| (-312)) ELT) (($ $ $) 118 (|has| |#1| (-312)) ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) 166 (|has| |#1| (-299)) ELT)) (-3735 (((-348 $) $) 133 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 130 (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ "failed") $ $) 113 (|has| |#1| (-312)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 124 (|has| |#1| (-312)) ELT)) (-1608 (((-696) $) 126 (|has| |#1| (-312)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 127 (|has| |#1| (-312)) ELT)) (-3760 ((|#1| (-1181 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1770 (((-696) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-696) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3761 (($ $ (-696)) 156 (OR (-2565 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 154 (OR (-2565 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 150 (-2565 (|has| |#1| (-813 (-1092))) (|has| |#1| (-312))) ELT) (($ $ (-1092) (-696)) 149 (-2565 (|has| |#1| (-813 (-1092))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1092))) 148 (-2565 (|has| |#1| (-813 (-1092))) (|has| |#1| (-312))) ELT) (($ $ (-1092)) 146 (-2565 (|has| |#1| (-813 (-1092))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 145 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-696)) 144 (|has| |#1| (-312)) ELT)) (-2410 (((-632 |#1|) (-1181 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3188 ((|#2|) 179 T ELT)) (-1675 (($) 168 (|has| |#1| (-299)) ELT)) (-3227 (((-1181 |#1|) $ (-1181 $)) 65 T ELT) (((-632 |#1|) (-1181 $) (-1181 $)) 64 T ELT) (((-1181 |#1|) $) 82 T ELT) (((-632 |#1|) (-1181 $)) 81 T ELT)) (-3975 (((-1181 |#1|) $) 79 T ELT) (($ (-1181 |#1|)) 78 T ELT) ((|#2| $) 195 T ELT) (($ |#2|) 177 T ELT)) (-2706 (((-3 (-1181 $) "failed") (-632 $)) 165 (|has| |#1| (-299)) ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 52 T ELT) (($ $) 112 (|has| |#1| (-312)) ELT) (($ (-350 (-486))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-2705 (($ $) 164 (|has| |#1| (-299)) ELT) (((-634 $) $) 58 (|has| |#1| (-118)) ELT)) (-2452 ((|#2| $) 60 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2014 (((-1181 $)) 83 T ELT)) (-2064 (((-85) $ $) 116 (|has| |#1| (-312)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-696)) 157 (OR (-2565 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 155 (OR (-2565 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 153 (-2565 (|has| |#1| (-813 (-1092))) (|has| |#1| (-312))) ELT) (($ $ (-1092) (-696)) 152 (-2565 (|has| |#1| (-813 (-1092))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1092))) 151 (-2565 (|has| |#1| (-813 (-1092))) (|has| |#1| (-312))) ELT) (($ $ (-1092)) 147 (-2565 (|has| |#1| (-813 (-1092))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 143 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-696)) 142 (|has| |#1| (-312)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-350 (-486)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-350 (-486))) 139 (|has| |#1| (-312)) ELT))) -(((-663 |#1| |#2|) (-113) (-146) (-1157 |t#1|)) (T -663)) -((-2411 (*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-663 *2 *3)) (-4 *3 (-1157 *2)))) (-3188 (*1 *2) (-12 (-4 *1 (-663 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1157 *3)))) (-3845 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-663 *3 *2)) (-4 *2 (-1157 *3)))) (-3975 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-663 *3 *2)) (-4 *2 (-1157 *3)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-663 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1157 *3)))) (-3845 (*1 *1 *2) (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-312)) (-4 *3 (-146)) (-4 *1 (-663 *3 *4)))) (-2410 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-4 *1 (-663 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1157 *5)) (-5 *2 (-632 *5))))) -(-13 (-353 |t#1| |t#2|) (-146) (-555 |t#2|) (-355 |t#1|) (-329 |t#1|) (-10 -8 (-15 -2411 ($)) (-15 -3188 (|t#2|)) (-15 -3845 ($ |t#2|)) (-15 -3975 ($ |t#2|)) (-15 -3082 (|t#2| $)) (IF (|has| |t#1| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-312)) (-6 (-184 |t#1|)) (-15 -3845 ((-3 $ "failed") (-350 |t#2|))) (-15 -2410 ((-632 |t#1|) (-1181 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-299)) (-6 (-299)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-557 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-554 (-774)) . T) ((-146) . T) ((-555 |#2|) . T) ((-186 $) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-184 |#1|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-189) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-225 |#1|) |has| |#1| (-312)) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-246) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-345) |has| |#1| (-299)) ((-320) OR (|has| |#1| (-299)) (|has| |#1| (-320))) ((-299) |has| |#1| (-299)) ((-322 |#1| |#2|) . T) ((-353 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-393) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-497) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-13) . T) ((-590 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-592 (-486)) |has| |#1| (-582 (-486))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-584 |#1|) . T) ((-584 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-582 (-486)) |has| |#1| (-582 (-486))) ((-582 |#1|) . T) ((-656 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-656 |#1|) . T) ((-656 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-665) . T) ((-808 $ (-1092)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092))))) ((-811 (-1092)) -12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092)))) ((-813 (-1092)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1092))))) ((-834) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-965 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-965 |#1|) . T) ((-965 $) . T) ((-970 (-350 (-486))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-970 |#1|) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1068) |has| |#1| (-299)) ((-1131) . T) ((-1136) OR (|has| |#1| (-299)) (|has| |#1| (-312)))) -((-3727 (($) 11 T CONST)) (-3470 (((-3 $ "failed") $) 14 T ELT)) (-2412 (((-85) $) 10 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 20 T ELT))) -(((-664 |#1|) (-10 -7 (-15 -3470 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-696))) (-15 -2412 ((-85) |#1|)) (-15 -3727 (|#1|) -3956) (-15 ** (|#1| |#1| (-832)))) (-665)) (T -664)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 20 T ELT)) (-2412 (((-85) $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2669 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (** (($ $ (-832)) 17 T ELT) (($ $ (-696)) 21 T ELT)) (* (($ $ $) 18 T ELT))) -(((-665) (-113)) (T -665)) -((-2669 (*1 *1) (-4 *1 (-665))) (-3727 (*1 *1) (-4 *1 (-665))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-665)) (-5 *2 (-85)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-696)))) (-3470 (*1 *1 *1) (|partial| -4 *1 (-665)))) -(-13 (-1027) (-10 -8 (-15 -2669 ($) -3956) (-15 -3727 ($) -3956) (-15 -2412 ((-85) $)) (-15 ** ($ $ (-696))) (-15 -3470 ((-3 $ "failed") $)))) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1027) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-2414 ((|#1| $) 16 T ELT)) (-2413 (($ (-1 |#1| |#1| |#1|) |#1|) 11 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 ((|#1| $ |#1| |#1|) 14 T ELT)) (-3950 (((-774) $) NIL T ELT) (((-1024 |#1|) $) 17 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-666 |#1|) (-13 (-667 |#1|) (-1015) (-554 (-1024 |#1|)) (-10 -8 (-15 -2413 ($ (-1 |#1| |#1| |#1|) |#1|)))) (-72)) (T -666)) -((-2413 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-666 *3))))) -((-2414 ((|#1| $) 8 T ELT)) (-3803 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-667 |#1|) (-113) (-72)) (T -667)) -((-2414 (*1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-72))))) -(-13 (-1025 |t#1|) (-10 -8 (-15 -2414 (|t#1| $)) (-6 (|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (SEQ (-3059 (|f| |x| (-2414 |f|)) |x|) (|exit| 1 (-3059 (|f| (-2414 |f|) |x|) |x|)))))))) -(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1025 |#1|) . T) ((-1131) . T)) -((-2415 (((-2 (|:| -3092 (-348 |#2|)) (|:| |special| (-348 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3421 (((-2 (|:| -3092 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2416 ((|#2| (-350 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3438 (((-2 (|:| |poly| |#2|) (|:| -3092 (-350 |#2|)) (|:| |special| (-350 |#2|))) (-350 |#2|) (-1 |#2| |#2|)) 48 T ELT))) -(((-668 |#1| |#2|) (-10 -7 (-15 -3421 ((-2 (|:| -3092 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2415 ((-2 (|:| -3092 (-348 |#2|)) (|:| |special| (-348 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2416 (|#2| (-350 |#2|) (-1 |#2| |#2|))) (-15 -3438 ((-2 (|:| |poly| |#2|) (|:| -3092 (-350 |#2|)) (|:| |special| (-350 |#2|))) (-350 |#2|) (-1 |#2| |#2|)))) (-312) (-1157 |#1|)) (T -668)) -((-3438 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3092 (-350 *6)) (|:| |special| (-350 *6)))) (-5 *1 (-668 *5 *6)) (-5 *3 (-350 *6)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-350 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1157 *5)) (-5 *1 (-668 *5 *2)) (-4 *5 (-312)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3092 (-348 *3)) (|:| |special| (-348 *3)))) (-5 *1 (-668 *5 *3)))) (-3421 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3092 *3) (|:| |special| *3))) (-5 *1 (-668 *5 *3))))) -((-2417 ((|#7| (-585 |#5|) |#6|) NIL T ELT)) (-3846 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) -(((-669 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3846 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2417 (|#7| (-585 |#5|) |#6|))) (-758) (-719) (-719) (-963) (-963) (-863 |#4| |#2| |#1|) (-863 |#5| |#3| |#1|)) (T -669)) -((-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *9)) (-4 *9 (-963)) (-4 *5 (-758)) (-4 *6 (-719)) (-4 *8 (-963)) (-4 *2 (-863 *9 *7 *5)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-719)) (-4 *4 (-863 *8 *6 *5)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-963)) (-4 *9 (-963)) (-4 *5 (-758)) (-4 *6 (-719)) (-4 *2 (-863 *9 *7 *5)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-719)) (-4 *4 (-863 *8 *6 *5))))) -((-3846 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) -(((-670 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3846 (|#7| (-1 |#2| |#1|) |#6|))) (-758) (-758) (-719) (-719) (-963) (-863 |#5| |#3| |#1|) (-863 |#5| |#4| |#2|)) (T -670)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-758)) (-4 *6 (-758)) (-4 *7 (-719)) (-4 *9 (-963)) (-4 *2 (-863 *9 *8 *6)) (-5 *1 (-670 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-719)) (-4 *4 (-863 *9 *7 *5))))) -((-3735 (((-348 |#4|) |#4|) 42 T ELT))) -(((-671 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3735 ((-348 |#4|) |#4|))) (-719) (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ "failed") (-1092))))) (-258) (-863 (-859 |#3|) |#1| |#2|)) (T -671)) -((-3735 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ "failed") (-1092)))))) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-863 (-859 *6) *4 *5))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-775 |#1|)) $) NIL T ELT)) (-3086 (((-1087 $) $ (-775 |#1|)) NIL T ELT) (((-1087 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#2| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#2| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-775 |#1|))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#2| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#2| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-775 |#1|) $) NIL T ELT)) (-3759 (($ $ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#2| (-393)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#2| (-823)) ELT)) (-1625 (($ $ |#2| (-471 (-775 |#1|)) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-330))) (|has| |#2| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-486))) (|has| |#2| (-798 (-486)))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3087 (($ (-1087 |#2|) (-775 |#1|)) NIL T ELT) (($ (-1087 $) (-775 |#1|)) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#2| (-471 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-775 |#1|)) NIL T ELT)) (-2823 (((-471 (-775 |#1|)) $) NIL T ELT) (((-696) $ (-775 |#1|)) NIL T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) NIL T ELT)) (-1626 (($ (-1 (-471 (-775 |#1|)) (-471 (-775 |#1|))) $) NIL T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3085 (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) NIL (|has| |#2| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-775 |#1|)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#2| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#2| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) NIL (|has| |#2| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#2| (-823)) ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-775 |#1|) |#2|) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 |#2|)) NIL T ELT) (($ $ (-775 |#1|) $) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 $)) NIL T ELT)) (-3760 (($ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3761 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3952 (((-471 (-775 |#1|)) $) NIL T ELT) (((-696) $ (-775 |#1|)) NIL T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-330)))) (|has| |#2| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-486)))) (|has| |#2| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-775 |#1|) (-555 (-475))) (|has| |#2| (-555 (-475)))) ELT)) (-2820 ((|#2| $) NIL (|has| |#2| (-393)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-823))) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-775 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-497)) ELT) (($ (-350 (-486))) NIL (OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486))))) ELT)) (-3820 (((-585 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-471 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#2| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#2| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#2| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-672 |#1| |#2|) (-863 |#2| (-471 (-775 |#1|)) (-775 |#1|)) (-585 (-1092)) (-963)) (T -672)) -NIL -((-2418 (((-2 (|:| -2486 (-859 |#3|)) (|:| -2060 (-859 |#3|))) |#4|) 14 T ELT)) (-2989 ((|#4| |#4| |#2|) 33 T ELT)) (-2421 ((|#4| (-350 (-859 |#3|)) |#2|) 62 T ELT)) (-2420 ((|#4| (-1087 (-859 |#3|)) |#2|) 74 T ELT)) (-2419 ((|#4| (-1087 |#4|) |#2|) 49 T ELT)) (-2988 ((|#4| |#4| |#2|) 52 T ELT)) (-3735 (((-348 |#4|) |#4|) 40 T ELT))) -(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2418 ((-2 (|:| -2486 (-859 |#3|)) (|:| -2060 (-859 |#3|))) |#4|)) (-15 -2988 (|#4| |#4| |#2|)) (-15 -2419 (|#4| (-1087 |#4|) |#2|)) (-15 -2989 (|#4| |#4| |#2|)) (-15 -2420 (|#4| (-1087 (-859 |#3|)) |#2|)) (-15 -2421 (|#4| (-350 (-859 |#3|)) |#2|)) (-15 -3735 ((-348 |#4|) |#4|))) (-719) (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)))) (-497) (-863 (-350 (-859 |#3|)) |#1| |#2|)) (T -673)) -((-3735 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) (-4 *6 (-497)) (-5 *2 (-348 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-863 (-350 (-859 *6)) *4 *5)))) (-2421 (*1 *2 *3 *4) (-12 (-4 *6 (-497)) (-4 *2 (-863 *3 *5 *4)) (-5 *1 (-673 *5 *4 *6 *2)) (-5 *3 (-350 (-859 *6))) (-4 *5 (-719)) (-4 *4 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 (-859 *6))) (-4 *6 (-497)) (-4 *2 (-863 (-350 (-859 *6)) *5 *4)) (-5 *1 (-673 *5 *4 *6 *2)) (-4 *5 (-719)) (-4 *4 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))))) (-2989 (*1 *2 *2 *3) (-12 (-4 *4 (-719)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) (-4 *5 (-497)) (-5 *1 (-673 *4 *3 *5 *2)) (-4 *2 (-863 (-350 (-859 *5)) *4 *3)))) (-2419 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *2)) (-4 *2 (-863 (-350 (-859 *6)) *5 *4)) (-5 *1 (-673 *5 *4 *6 *2)) (-4 *5 (-719)) (-4 *4 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) (-4 *6 (-497)))) (-2988 (*1 *2 *2 *3) (-12 (-4 *4 (-719)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) (-4 *5 (-497)) (-5 *1 (-673 *4 *3 *5 *2)) (-4 *2 (-863 (-350 (-859 *5)) *4 *3)))) (-2418 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) (-4 *6 (-497)) (-5 *2 (-2 (|:| -2486 (-859 *6)) (|:| -2060 (-859 *6)))) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-863 (-350 (-859 *6)) *4 *5))))) -((-3735 (((-348 |#4|) |#4|) 54 T ELT))) -(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3735 ((-348 |#4|) |#4|))) (-719) (-758) (-13 (-258) (-120)) (-863 (-350 |#3|) |#1| |#2|)) (T -674)) -((-3735 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-863 (-350 *6) *4 *5))))) -((-3846 (((-676 |#2| |#3|) (-1 |#2| |#1|) (-676 |#1| |#3|)) 18 T ELT))) -(((-675 |#1| |#2| |#3|) (-10 -7 (-15 -3846 ((-676 |#2| |#3|) (-1 |#2| |#1|) (-676 |#1| |#3|)))) (-963) (-963) (-665)) (T -675)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-676 *5 *7)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *7 (-665)) (-5 *2 (-676 *6 *7)) (-5 *1 (-675 *5 *6 *7))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 36 T ELT)) (-3777 (((-585 (-2 (|:| -3958 |#1|) (|:| -3942 |#2|))) $) 37 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-696)) 22 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3159 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) 99 (|has| |#2| (-758)) ELT)) (-3470 (((-3 $ #1#) $) 83 T ELT)) (-2997 (($) 48 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) 70 T ELT)) (-2824 (((-585 $) $) 52 T ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| |#2|) 17 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2012 (((-832) $) 43 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-2897 ((|#2| $) 98 (|has| |#2| (-758)) ELT)) (-3177 ((|#1| $) 97 (|has| |#2| (-758)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) 35 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 96 T ELT) (($ (-486)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-585 (-2 (|:| -3958 |#1|) (|:| -3942 |#2|)))) 11 T ELT)) (-3820 (((-585 |#1|) $) 54 T ELT)) (-3680 ((|#1| $ |#2|) 114 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 12 T CONST)) (-2669 (($) 44 T CONST)) (-3059 (((-85) $ $) 104 T ELT)) (-3840 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 33 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-676 |#1| |#2|) (-13 (-963) (-952 |#2|) (-952 |#1|) (-381 |#1|) (-10 -8 (-15 -2896 ($ |#1| |#2|)) (-15 -3680 (|#1| $ |#2|)) (-15 -3950 ($ (-585 (-2 (|:| -3958 |#1|) (|:| -3942 |#2|))))) (-15 -3777 ((-585 (-2 (|:| -3958 |#1|) (|:| -3942 |#2|))) $)) (-15 -3941 ((-85) $)) (-15 -3820 ((-585 |#1|) $)) (-15 -2824 ((-585 $) $)) (-15 -2422 ((-696) $)) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-320)) (IF (|has| |#2| (-320)) (-6 (-320)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-758)) (PROGN (-15 -2897 (|#2| $)) (-15 -3177 (|#1| $)) (-15 -3962 ($ $))) |%noBranch|))) (-963) (-665)) (T -676)) -((-2896 (*1 *1 *2 *3) (-12 (-5 *1 (-676 *2 *3)) (-4 *2 (-963)) (-4 *3 (-665)))) (-3680 (*1 *2 *1 *3) (-12 (-4 *2 (-963)) (-5 *1 (-676 *2 *3)) (-4 *3 (-665)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -3958 *3) (|:| -3942 *4)))) (-4 *3 (-963)) (-4 *4 (-665)) (-5 *1 (-676 *3 *4)))) (-3777 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| -3958 *3) (|:| -3942 *4)))) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) (-3820 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) (-2824 (*1 *2 *1) (-12 (-5 *2 (-585 (-676 *3 *4))) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) (-2897 (*1 *2 *1) (-12 (-4 *2 (-665)) (-4 *2 (-758)) (-5 *1 (-676 *3 *2)) (-4 *3 (-963)))) (-3177 (*1 *2 *1) (-12 (-4 *2 (-963)) (-5 *1 (-676 *2 *3)) (-4 *3 (-758)) (-4 *3 (-665)))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-676 *2 *3)) (-4 *3 (-758)) (-4 *2 (-963)) (-4 *3 (-665))))) -((-2571 (((-85) $ $) NIL T ELT)) (-2423 (((-585 |#1|) $) 38 T ELT)) (-3237 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3239 (($ $ $) 99 T ELT)) (-3238 (((-85) $ $) 107 T ELT)) (-3242 (($ (-585 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 86 (|has| $ (-318 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2370 (($ $) 88 T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) 71 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-318 |#1|)) ELT) (($ |#1| $ (-486)) 78 T ELT) (($ (-1 (-85) |#1|) $ (-486)) 81 T ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT) (($ |#1| $ (-486)) 83 T ELT) (($ (-1 (-85) |#1|) $ (-486)) 84 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3244 (((-85) $ $) 106 T ELT)) (-2424 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-585 |#1|)) 23 T ELT)) (-2611 (((-585 |#1|) $) 32 T ELT)) (-3248 (((-85) |#1| $) 66 (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 91 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3241 (($ $ $) 97 T ELT)) (-1276 ((|#1| $) 63 T ELT)) (-3612 (($ |#1| $) 64 T ELT) (($ |#1| $ (-696)) 89 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1277 ((|#1| $) 62 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 57 T ELT)) (-3568 (($) 14 T ELT)) (-2369 (((-585 (-2 (|:| |entry| |#1|) (|:| -1732 (-696)))) $) 56 T ELT)) (-3240 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1467 (($) 16 T ELT) (($ (-585 |#1|)) 25 T ELT)) (-1732 (((-696) |#1| $) 69 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) 82 T ELT)) (-3975 (((-475) $) 36 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 22 T ELT)) (-3950 (((-774) $) 50 T ELT)) (-3243 (($ (-585 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1278 (($ (-585 |#1|)) 24 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) 103 T ELT)) (-3961 (((-696) $) 68 T ELT))) -(((-677 |#1|) (-13 (-678 |#1|) (-318 |#1|) (-1037 |#1|) (-10 -8 (-15 -2424 ($)) (-15 -2424 ($ |#1|)) (-15 -2424 ($ (-585 |#1|))) (-15 -2423 ((-585 |#1|) $)) (-15 -3409 ($ |#1| $ (-486))) (-15 -3409 ($ (-1 (-85) |#1|) $ (-486))) (-15 -3408 ($ |#1| $ (-486))) (-15 -3408 ($ (-1 (-85) |#1|) $ (-486))))) (-1015)) (T -677)) -((-2424 (*1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1015)))) (-2424 (*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1015)))) (-2424 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-677 *3)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1015)))) (-3409 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *1 (-677 *2)) (-4 *2 (-1015)))) (-3409 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-486)) (-4 *4 (-1015)) (-5 *1 (-677 *4)))) (-3408 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *1 (-677 *2)) (-4 *2 (-1015)))) (-3408 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-486)) (-4 *4 (-1015)) (-5 *1 (-677 *4))))) -((-2571 (((-85) $ $) 18 T ELT)) (-3237 (($ |#1| $) 71 T ELT) (($ $ |#1|) 70 T ELT) (($ $ $) 69 T ELT)) (-3239 (($ $ $) 67 T ELT)) (-3238 (((-85) $ $) 68 T ELT)) (-3242 (($ (-585 |#1|)) 63 T ELT) (($) 62 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 42 (|has| $ (-318 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2370 (($ $) 55 T ELT)) (-1355 (($ $) 51 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 44 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 43 (|has| $ (-318 |#1|)) ELT)) (-3409 (($ |#1| $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3244 (((-85) $ $) 59 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 T ELT)) (-3241 (($ $ $) 64 T ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT) (($ |#1| $ (-696)) 56 T ELT)) (-3246 (((-1035) $) 20 T ELT)) (-1277 ((|#1| $) 37 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-2369 (((-585 (-2 (|:| |entry| |#1|) (|:| -1732 (-696)))) $) 54 T ELT)) (-3240 (($ $ |#1|) 66 T ELT) (($ $ $) 65 T ELT)) (-1467 (($) 46 T ELT) (($ (-585 |#1|)) 45 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 52 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 47 T ELT)) (-3950 (((-774) $) 16 T ELT)) (-3243 (($ (-585 |#1|)) 61 T ELT) (($) 60 T ELT)) (-1267 (((-85) $ $) 19 T ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-3059 (((-85) $ $) 17 T ELT))) -(((-678 |#1|) (-113) (-1015)) (T -678)) -NIL -(-13 (-636 |t#1|) (-1013 |t#1|)) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-554 (-774)) . T) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-636 |#1|) . T) ((-1013 |#1|) . T) ((-1015) . T) ((-1037 |#1|) . T) ((-1131) . T)) -((-2425 (((-1187) (-1075)) 8 T ELT))) -(((-679) (-10 -7 (-15 -2425 ((-1187) (-1075))))) (T -679)) -((-2425 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-679))))) -((-2426 (((-585 |#1|) (-585 |#1|) (-585 |#1|)) 15 T ELT))) -(((-680 |#1|) (-10 -7 (-15 -2426 ((-585 |#1|) (-585 |#1|) (-585 |#1|)))) (-758)) (T -680)) -((-2426 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-680 *3))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 |#2|) $) 160 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 153 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 152 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 150 (|has| |#1| (-497)) ELT)) (-3495 (($ $) 109 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 92 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3040 (($ $) 91 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3493 (($ $) 108 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 93 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3497 (($ $) 107 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 94 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) 23 T CONST)) (-3962 (($ $) 144 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3817 (((-859 |#1|) $ (-696)) 122 T ELT) (((-859 |#1|) $ (-696) (-696)) 121 T ELT)) (-2895 (((-85) $) 161 T ELT)) (-3630 (($) 119 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-696) $ |#2|) 124 T ELT) (((-696) $ |#2| (-696)) 123 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 90 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3941 (((-85) $) 142 T ELT)) (-2896 (($ $ (-585 |#2|) (-585 (-471 |#2|))) 159 T ELT) (($ $ |#2| (-471 |#2|)) 158 T ELT) (($ |#1| (-471 |#2|)) 143 T ELT) (($ $ |#2| (-696)) 126 T ELT) (($ $ (-585 |#2|) (-585 (-696))) 125 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 138 T ELT)) (-3946 (($ $) 116 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) 140 T ELT)) (-3177 ((|#1| $) 139 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3815 (($ $ |#2|) 120 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3772 (($ $ (-696)) 127 T ELT)) (-3469 (((-3 $ "failed") $ $) 154 (|has| |#1| (-497)) ELT)) (-3947 (($ $) 117 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (($ $ |#2| $) 135 T ELT) (($ $ (-585 |#2|) (-585 $)) 134 T ELT) (($ $ (-585 (-249 $))) 133 T ELT) (($ $ (-249 $)) 132 T ELT) (($ $ $ $) 131 T ELT) (($ $ (-585 $) (-585 $)) 130 T ELT)) (-3761 (($ $ (-585 |#2|) (-585 (-696))) 52 T ELT) (($ $ |#2| (-696)) 51 T ELT) (($ $ (-585 |#2|)) 50 T ELT) (($ $ |#2|) 48 T ELT)) (-3952 (((-471 |#2|) $) 141 T ELT)) (-3498 (($ $) 106 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 95 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 105 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 96 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 104 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 97 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) 162 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 157 (|has| |#1| (-146)) ELT) (($ $) 155 (|has| |#1| (-497)) ELT) (($ (-350 (-486))) 147 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3680 ((|#1| $ (-471 |#2|)) 145 T ELT) (($ $ |#2| (-696)) 129 T ELT) (($ $ (-585 |#2|) (-585 (-696))) 128 T ELT)) (-2705 (((-634 $) $) 156 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3501 (($ $) 115 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 103 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) 151 (|has| |#1| (-497)) ELT)) (-3499 (($ $) 114 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 102 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 113 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 101 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3504 (($ $) 112 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 100 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 111 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 99 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 110 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 98 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-585 |#2|) (-585 (-696))) 55 T ELT) (($ $ |#2| (-696)) 54 T ELT) (($ $ (-585 |#2|)) 53 T ELT) (($ $ |#2|) 49 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 146 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ $) 118 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 89 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 149 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) 148 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 137 T ELT) (($ $ |#1|) 136 T ELT))) -(((-681 |#1| |#2|) (-113) (-963) (-758)) (T -681)) -((-3680 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *2)) (-4 *4 (-963)) (-4 *2 (-758)))) (-3680 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *5)) (-5 *3 (-585 (-696))) (-4 *1 (-681 *4 *5)) (-4 *4 (-963)) (-4 *5 (-758)))) (-3772 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-681 *3 *4)) (-4 *3 (-963)) (-4 *4 (-758)))) (-2896 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *2)) (-4 *4 (-963)) (-4 *2 (-758)))) (-2896 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *5)) (-5 *3 (-585 (-696))) (-4 *1 (-681 *4 *5)) (-4 *4 (-963)) (-4 *5 (-758)))) (-3775 (*1 *2 *1 *3) (-12 (-4 *1 (-681 *4 *3)) (-4 *4 (-963)) (-4 *3 (-758)) (-5 *2 (-696)))) (-3775 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-696)) (-4 *1 (-681 *4 *3)) (-4 *4 (-963)) (-4 *3 (-758)))) (-3817 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *5)) (-4 *4 (-963)) (-4 *5 (-758)) (-5 *2 (-859 *4)))) (-3817 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *5)) (-4 *4 (-963)) (-4 *5 (-758)) (-5 *2 (-859 *4)))) (-3815 (*1 *1 *1 *2) (-12 (-4 *1 (-681 *3 *2)) (-4 *3 (-963)) (-4 *2 (-758)) (-4 *3 (-38 (-350 (-486))))))) -(-13 (-811 |t#2|) (-888 |t#1| (-471 |t#2|) |t#2|) (-457 |t#2| $) (-260 $) (-10 -8 (-15 -3680 ($ $ |t#2| (-696))) (-15 -3680 ($ $ (-585 |t#2|) (-585 (-696)))) (-15 -3772 ($ $ (-696))) (-15 -2896 ($ $ |t#2| (-696))) (-15 -2896 ($ $ (-585 |t#2|) (-585 (-696)))) (-15 -3775 ((-696) $ |t#2|)) (-15 -3775 ((-696) $ |t#2| (-696))) (-15 -3817 ((-859 |t#1|) $ (-696))) (-15 -3817 ((-859 |t#1|) $ (-696) (-696))) (IF (|has| |t#1| (-38 (-350 (-486)))) (PROGN (-15 -3815 ($ $ |t#2|)) (-6 (-917)) (-6 (-1117))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-471 |#2|)) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-497)) ((-35) |has| |#1| (-38 (-350 (-486)))) ((-66) |has| |#1| (-38 (-350 (-486)))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-557 (-486)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) |has| |#1| (-497)) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-239) |has| |#1| (-38 (-350 (-486)))) ((-246) |has| |#1| (-497)) ((-260 $) . T) ((-381 |#1|) . T) ((-434) |has| |#1| (-38 (-350 (-486)))) ((-457 |#2| $) . T) ((-457 $ $) . T) ((-497) |has| |#1| (-497)) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-497)) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-497)) ((-665) . T) ((-808 $ |#2|) . T) ((-811 |#2|) . T) ((-813 |#2|) . T) ((-888 |#1| (-471 |#2|) |#2|) . T) ((-917) |has| |#1| (-38 (-350 (-486)))) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1117) |has| |#1| (-38 (-350 (-486)))) ((-1120) |has| |#1| (-38 (-350 (-486)))) ((-1131) . T)) -((-3735 (((-348 (-1087 |#4|)) (-1087 |#4|)) 30 T ELT) (((-348 |#4|) |#4|) 26 T ELT))) -(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3735 ((-348 |#4|) |#4|)) (-15 -3735 ((-348 (-1087 |#4|)) (-1087 |#4|)))) (-758) (-719) (-13 (-258) (-120)) (-863 |#3| |#2| |#1|)) (T -682)) -((-3735 (*1 *2 *3) (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-863 *6 *5 *4)) (-5 *2 (-348 (-1087 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-863 *6 *5 *4))))) -((-2429 (((-348 |#4|) |#4| |#2|) 142 T ELT)) (-2427 (((-348 |#4|) |#4|) NIL T ELT)) (-3974 (((-348 (-1087 |#4|)) (-1087 |#4|)) 129 T ELT) (((-348 |#4|) |#4|) 52 T ELT)) (-2431 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-585 (-2 (|:| -3735 (-1087 |#4|)) (|:| -2403 (-486)))))) (-1087 |#4|) (-585 |#2|) (-585 (-585 |#3|))) 81 T ELT)) (-2435 (((-1087 |#3|) (-1087 |#3|) (-486)) 169 T ELT)) (-2434 (((-585 (-696)) (-1087 |#4|) (-585 |#2|) (-696)) 75 T ELT)) (-3082 (((-3 (-585 (-1087 |#4|)) "failed") (-1087 |#4|) (-1087 |#3|) (-1087 |#3|) |#4| (-585 |#2|) (-585 (-696)) (-585 |#3|)) 79 T ELT)) (-2432 (((-2 (|:| |upol| (-1087 |#3|)) (|:| |Lval| (-585 |#3|)) (|:| |Lfact| (-585 (-2 (|:| -3735 (-1087 |#3|)) (|:| -2403 (-486))))) (|:| |ctpol| |#3|)) (-1087 |#4|) (-585 |#2|) (-585 (-585 |#3|))) 27 T ELT)) (-2430 (((-2 (|:| -2006 (-1087 |#4|)) (|:| |polval| (-1087 |#3|))) (-1087 |#4|) (-1087 |#3|) (-486)) 72 T ELT)) (-2428 (((-486) (-585 (-2 (|:| -3735 (-1087 |#3|)) (|:| -2403 (-486))))) 165 T ELT)) (-2433 ((|#4| (-486) (-348 |#4|)) 73 T ELT)) (-3360 (((-85) (-585 (-2 (|:| -3735 (-1087 |#3|)) (|:| -2403 (-486)))) (-585 (-2 (|:| -3735 (-1087 |#3|)) (|:| -2403 (-486))))) NIL T ELT))) -(((-683 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3974 ((-348 |#4|) |#4|)) (-15 -3974 ((-348 (-1087 |#4|)) (-1087 |#4|))) (-15 -2427 ((-348 |#4|) |#4|)) (-15 -2428 ((-486) (-585 (-2 (|:| -3735 (-1087 |#3|)) (|:| -2403 (-486)))))) (-15 -2429 ((-348 |#4|) |#4| |#2|)) (-15 -2430 ((-2 (|:| -2006 (-1087 |#4|)) (|:| |polval| (-1087 |#3|))) (-1087 |#4|) (-1087 |#3|) (-486))) (-15 -2431 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-585 (-2 (|:| -3735 (-1087 |#4|)) (|:| -2403 (-486)))))) (-1087 |#4|) (-585 |#2|) (-585 (-585 |#3|)))) (-15 -2432 ((-2 (|:| |upol| (-1087 |#3|)) (|:| |Lval| (-585 |#3|)) (|:| |Lfact| (-585 (-2 (|:| -3735 (-1087 |#3|)) (|:| -2403 (-486))))) (|:| |ctpol| |#3|)) (-1087 |#4|) (-585 |#2|) (-585 (-585 |#3|)))) (-15 -2433 (|#4| (-486) (-348 |#4|))) (-15 -3360 ((-85) (-585 (-2 (|:| -3735 (-1087 |#3|)) (|:| -2403 (-486)))) (-585 (-2 (|:| -3735 (-1087 |#3|)) (|:| -2403 (-486)))))) (-15 -3082 ((-3 (-585 (-1087 |#4|)) "failed") (-1087 |#4|) (-1087 |#3|) (-1087 |#3|) |#4| (-585 |#2|) (-585 (-696)) (-585 |#3|))) (-15 -2434 ((-585 (-696)) (-1087 |#4|) (-585 |#2|) (-696))) (-15 -2435 ((-1087 |#3|) (-1087 |#3|) (-486)))) (-719) (-758) (-258) (-863 |#3| |#1| |#2|)) (T -683)) -((-2435 (*1 *2 *2 *3) (-12 (-5 *2 (-1087 *6)) (-5 *3 (-486)) (-4 *6 (-258)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-683 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) (-2434 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1087 *9)) (-5 *4 (-585 *7)) (-4 *7 (-758)) (-4 *9 (-863 *8 *6 *7)) (-4 *6 (-719)) (-4 *8 (-258)) (-5 *2 (-585 (-696))) (-5 *1 (-683 *6 *7 *8 *9)) (-5 *5 (-696)))) (-3082 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1087 *11)) (-5 *6 (-585 *10)) (-5 *7 (-585 (-696))) (-5 *8 (-585 *11)) (-4 *10 (-758)) (-4 *11 (-258)) (-4 *9 (-719)) (-4 *5 (-863 *11 *9 *10)) (-5 *2 (-585 (-1087 *5))) (-5 *1 (-683 *9 *10 *11 *5)) (-5 *3 (-1087 *5)))) (-3360 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-2 (|:| -3735 (-1087 *6)) (|:| -2403 (-486))))) (-4 *6 (-258)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-683 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) (-2433 (*1 *2 *3 *4) (-12 (-5 *3 (-486)) (-5 *4 (-348 *2)) (-4 *2 (-863 *7 *5 *6)) (-5 *1 (-683 *5 *6 *7 *2)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-258)))) (-2432 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1087 *9)) (-5 *4 (-585 *7)) (-5 *5 (-585 (-585 *8))) (-4 *7 (-758)) (-4 *8 (-258)) (-4 *9 (-863 *8 *6 *7)) (-4 *6 (-719)) (-5 *2 (-2 (|:| |upol| (-1087 *8)) (|:| |Lval| (-585 *8)) (|:| |Lfact| (-585 (-2 (|:| -3735 (-1087 *8)) (|:| -2403 (-486))))) (|:| |ctpol| *8))) (-5 *1 (-683 *6 *7 *8 *9)))) (-2431 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-585 *7)) (-5 *5 (-585 (-585 *8))) (-4 *7 (-758)) (-4 *8 (-258)) (-4 *6 (-719)) (-4 *9 (-863 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-585 (-2 (|:| -3735 (-1087 *9)) (|:| -2403 (-486))))))) (-5 *1 (-683 *6 *7 *8 *9)) (-5 *3 (-1087 *9)))) (-2430 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-486)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-258)) (-4 *9 (-863 *8 *6 *7)) (-5 *2 (-2 (|:| -2006 (-1087 *9)) (|:| |polval| (-1087 *8)))) (-5 *1 (-683 *6 *7 *8 *9)) (-5 *3 (-1087 *9)) (-5 *4 (-1087 *8)))) (-2429 (*1 *2 *3 *4) (-12 (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-683 *5 *4 *6 *3)) (-4 *3 (-863 *6 *5 *4)))) (-2428 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3735 (-1087 *6)) (|:| -2403 (-486))))) (-4 *6 (-258)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-486)) (-5 *1 (-683 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) (-2427 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-863 *6 *4 *5)))) (-3974 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-348 (-1087 *7))) (-5 *1 (-683 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) (-3974 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-863 *6 *4 *5))))) -((-2436 (($ $ (-832)) 17 T ELT))) -(((-684 |#1| |#2|) (-10 -7 (-15 -2436 (|#1| |#1| (-832)))) (-685 |#2|) (-146)) (T -684)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2409 (($ $ (-832)) 37 T ELT)) (-2436 (($ $ (-832)) 44 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2408 (($ $ (-832)) 38 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2438 (($ $ $) 34 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2439 (($ $ $ $) 35 T ELT)) (-2437 (($ $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 39 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) -(((-685 |#1|) (-113) (-146)) (T -685)) -((-2436 (*1 *1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-685 *3)) (-4 *3 (-146))))) -(-13 (-687) (-656 |t#1|) (-10 -8 (-15 -2436 ($ $ (-832))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-659) . T) ((-687) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) -((-2438 (($ $ $) 10 T ELT)) (-2439 (($ $ $ $) 9 T ELT)) (-2437 (($ $ $) 12 T ELT))) -(((-686 |#1|) (-10 -7 (-15 -2437 (|#1| |#1| |#1|)) (-15 -2438 (|#1| |#1| |#1|)) (-15 -2439 (|#1| |#1| |#1| |#1|))) (-687)) (T -686)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2409 (($ $ (-832)) 37 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2408 (($ $ (-832)) 38 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2438 (($ $ $) 34 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2439 (($ $ $ $) 35 T ELT)) (-2437 (($ $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 39 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 36 T ELT))) -(((-687) (-113)) (T -687)) -((-2439 (*1 *1 *1 *1 *1) (-4 *1 (-687))) (-2438 (*1 *1 *1 *1) (-4 *1 (-687))) (-2437 (*1 *1 *1 *1) (-4 *1 (-687)))) -(-13 (-21) (-659) (-10 -8 (-15 -2439 ($ $ $ $)) (-15 -2438 ($ $ $)) (-15 -2437 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-659) . T) ((-1015) . T) ((-1131) . T)) -((-3950 (((-774) $) NIL T ELT) (($ (-486)) 10 T ELT))) -(((-688 |#1|) (-10 -7 (-15 -3950 (|#1| (-486))) (-15 -3950 ((-774) |#1|))) (-689)) (T -688)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2406 (((-3 $ #1="failed") $) 49 T ELT)) (-2409 (($ $ (-832)) 37 T ELT) (($ $ (-696)) 44 T ELT)) (-3470 (((-3 $ #1#) $) 47 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 43 T ELT)) (-2407 (((-3 $ #1#) $) 48 T ELT)) (-2408 (($ $ (-832)) 38 T ELT) (($ $ (-696)) 45 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2438 (($ $ $) 34 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 40 T ELT)) (-3129 (((-696)) 41 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2439 (($ $ $ $) 35 T ELT)) (-2437 (($ $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 42 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 39 T ELT) (($ $ (-696)) 46 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 36 T ELT))) +((* (*1 *1 *1 *1) (-4 *1 (-661))) (-2412 (*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-834)))) (-2411 (*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-834)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-834))))) +(-13 (-1017) (-10 -8 (-15 * ($ $ $)) (-15 -2412 ($ $ (-834))) (-15 -2411 ($ $ (-834))) (-15 ** ($ $ (-834))))) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-2412 (($ $ (-834)) NIL T ELT) (($ $ (-698)) 18 T ELT)) (-2415 (((-85) $) 10 T ELT)) (-2411 (($ $ (-834)) NIL T ELT) (($ $ (-698)) 19 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 16 T ELT))) +(((-662 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-698))) (-15 -2411 (|#1| |#1| (-698))) (-15 -2412 (|#1| |#1| (-698))) (-15 -2415 ((-85) |#1|)) (-15 ** (|#1| |#1| (-834))) (-15 -2411 (|#1| |#1| (-834))) (-15 -2412 (|#1| |#1| (-834)))) (-663)) (T -662)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-2409 (((-3 $ "failed") $) 22 T ELT)) (-2412 (($ $ (-834)) 19 T ELT) (($ $ (-698)) 27 T ELT)) (-3473 (((-3 $ "failed") $) 24 T ELT)) (-2415 (((-85) $) 28 T ELT)) (-2410 (((-3 $ "failed") $) 23 T ELT)) (-2411 (($ $ (-834)) 18 T ELT) (($ $ (-698)) 26 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2672 (($) 29 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (** (($ $ (-834)) 17 T ELT) (($ $ (-698)) 25 T ELT)) (* (($ $ $) 20 T ELT))) +(((-663) (-113)) (T -663)) +((-2672 (*1 *1) (-4 *1 (-663))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-663)) (-5 *2 (-85)))) (-2412 (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-698)))) (-2411 (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-698)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-698)))) (-3473 (*1 *1 *1) (|partial| -4 *1 (-663))) (-2410 (*1 *1 *1) (|partial| -4 *1 (-663))) (-2409 (*1 *1 *1) (|partial| -4 *1 (-663)))) +(-13 (-661) (-10 -8 (-15 -2672 ($) -3959) (-15 -2415 ((-85) $)) (-15 -2412 ($ $ (-698))) (-15 -2411 ($ $ (-698))) (-15 ** ($ $ (-698))) (-15 -3473 ((-3 $ "failed") $)) (-15 -2410 ((-3 $ "failed") $)) (-15 -2409 ((-3 $ "failed") $)))) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-661) . T) ((-1017) . T) ((-1133) . T)) +((-3142 (((-698)) 39 T ELT)) (-3163 (((-3 (-488) #1="failed") $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3162 (((-488) $) NIL T ELT) (((-352 (-488)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3848 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-352 |#3|)) 49 T ELT)) (-3473 (((-3 $ #1#) $) 69 T ELT)) (-3000 (($) 43 T ELT)) (-3138 ((|#2| $) 21 T ELT)) (-2414 (($) 18 T ELT)) (-3764 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-698)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094))) NIL T ELT) (($ $ (-1094)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $) NIL T ELT)) (-2413 (((-634 |#2|) (-1183 $) (-1 |#2| |#2|)) 64 T ELT)) (-3978 (((-1183 |#2|) $) NIL T ELT) (($ (-1183 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2455 ((|#3| $) 36 T ELT)) (-2017 (((-1183 $)) 33 T ELT))) +(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -3764 (|#1| |#1|)) (-15 -3764 (|#1| |#1| (-698))) (-15 -3764 (|#1| |#1| (-1094))) (-15 -3764 (|#1| |#1| (-587 (-1094)))) (-15 -3764 (|#1| |#1| (-1094) (-698))) (-15 -3764 (|#1| |#1| (-587 (-1094)) (-587 (-698)))) (-15 -3000 (|#1|)) (-15 -3142 ((-698))) (-15 -3764 (|#1| |#1| (-1 |#2| |#2|) (-698))) (-15 -3764 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2413 ((-634 |#2|) (-1183 |#1|) (-1 |#2| |#2|))) (-15 -3848 ((-3 |#1| #1="failed") (-352 |#3|))) (-15 -3978 (|#1| |#3|)) (-15 -3848 (|#1| |#3|)) (-15 -2414 (|#1|)) (-15 -3163 ((-3 |#2| #1#) |#1|)) (-15 -3162 (|#2| |#1|)) (-15 -3162 ((-352 (-488)) |#1|)) (-15 -3163 ((-3 (-352 (-488)) #1#) |#1|)) (-15 -3162 ((-488) |#1|)) (-15 -3163 ((-3 (-488) #1#) |#1|)) (-15 -3978 (|#3| |#1|)) (-15 -3978 (|#1| (-1183 |#2|))) (-15 -3978 ((-1183 |#2|) |#1|)) (-15 -2017 ((-1183 |#1|))) (-15 -2455 (|#3| |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -3473 ((-3 |#1| #1#) |#1|))) (-665 |#2| |#3|) (-148) (-1159 |#2|)) (T -664)) +((-3142 (*1 *2) (-12 (-4 *4 (-148)) (-4 *5 (-1159 *4)) (-5 *2 (-698)) (-5 *1 (-664 *3 *4 *5)) (-4 *3 (-665 *4 *5))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 114 (|has| |#1| (-314)) ELT)) (-2068 (($ $) 115 (|has| |#1| (-314)) ELT)) (-2066 (((-85) $) 117 (|has| |#1| (-314)) ELT)) (-1790 (((-634 |#1|) (-1183 $)) 61 T ELT) (((-634 |#1|)) 77 T ELT)) (-3336 ((|#1| $) 67 T ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) 167 (|has| |#1| (-301)) ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3781 (($ $) 134 (|has| |#1| (-314)) ELT)) (-3977 (((-350 $) $) 135 (|has| |#1| (-314)) ELT)) (-1612 (((-85) $ $) 125 (|has| |#1| (-314)) ELT)) (-3142 (((-698)) 108 (|has| |#1| (-322)) ELT)) (-3730 (($) 23 T CONST)) (-3163 (((-3 (-488) #1="failed") $) 194 (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) 192 (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3162 (((-488) $) 193 (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) 191 (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) 190 T ELT)) (-1800 (($ (-1183 |#1|) (-1183 $)) 63 T ELT) (($ (-1183 |#1|)) 80 T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-301)) ELT)) (-2570 (($ $ $) 129 (|has| |#1| (-314)) ELT)) (-1789 (((-634 |#1|) $ (-1183 $)) 68 T ELT) (((-634 |#1|) $) 75 T ELT)) (-2284 (((-634 (-488)) (-634 $)) 186 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) 185 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) 184 T ELT) (((-634 |#1|) (-634 $)) 183 T ELT)) (-3848 (($ |#2|) 178 T ELT) (((-3 $ "failed") (-352 |#2|)) 175 (|has| |#1| (-314)) ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3114 (((-834)) 69 T ELT)) (-3000 (($) 111 (|has| |#1| (-322)) ELT)) (-2569 (($ $ $) 128 (|has| |#1| (-314)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 123 (|has| |#1| (-314)) ELT)) (-2839 (($) 169 (|has| |#1| (-301)) ELT)) (-1684 (((-85) $) 170 (|has| |#1| (-301)) ELT)) (-1772 (($ $ (-698)) 161 (|has| |#1| (-301)) ELT) (($ $) 160 (|has| |#1| (-301)) ELT)) (-3729 (((-85) $) 136 (|has| |#1| (-314)) ELT)) (-3778 (((-834) $) 172 (|has| |#1| (-301)) ELT) (((-747 (-834)) $) 158 (|has| |#1| (-301)) ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3138 ((|#1| $) 66 T ELT)) (-3451 (((-636 $) $) 162 (|has| |#1| (-301)) ELT)) (-1609 (((-3 (-587 $) #2="failed") (-587 $) $) 132 (|has| |#1| (-314)) ELT)) (-2019 ((|#2| $) 59 (|has| |#1| (-314)) ELT)) (-2015 (((-834) $) 110 (|has| |#1| (-322)) ELT)) (-3085 ((|#2| $) 176 T ELT)) (-2285 (((-634 (-488)) (-1183 $)) 188 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) 187 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) 182 T ELT) (((-634 |#1|) (-1183 $)) 181 T ELT)) (-1899 (($ (-587 $)) 121 (|has| |#1| (-314)) ELT) (($ $ $) 120 (|has| |#1| (-314)) ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 137 (|has| |#1| (-314)) ELT)) (-3452 (($) 163 (|has| |#1| (-301)) CONST)) (-2405 (($ (-834)) 109 (|has| |#1| (-322)) ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2414 (($) 180 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 122 (|has| |#1| (-314)) ELT)) (-3150 (($ (-587 $)) 119 (|has| |#1| (-314)) ELT) (($ $ $) 118 (|has| |#1| (-314)) ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) 166 (|has| |#1| (-301)) ELT)) (-3738 (((-350 $) $) 133 (|has| |#1| (-314)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 130 (|has| |#1| (-314)) ELT)) (-3472 (((-3 $ "failed") $ $) 113 (|has| |#1| (-314)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 124 (|has| |#1| (-314)) ELT)) (-1611 (((-698) $) 126 (|has| |#1| (-314)) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 127 (|has| |#1| (-314)) ELT)) (-3763 ((|#1| (-1183 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1773 (((-698) $) 171 (|has| |#1| (-301)) ELT) (((-3 (-698) "failed") $ $) 159 (|has| |#1| (-301)) ELT)) (-3764 (($ $ (-698)) 156 (OR (-2568 (|has| |#1| (-191)) (|has| |#1| (-314))) (|has| |#1| (-301))) ELT) (($ $) 154 (OR (-2568 (|has| |#1| (-191)) (|has| |#1| (-314))) (|has| |#1| (-301))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 150 (-2568 (|has| |#1| (-815 (-1094))) (|has| |#1| (-314))) ELT) (($ $ (-1094) (-698)) 149 (-2568 (|has| |#1| (-815 (-1094))) (|has| |#1| (-314))) ELT) (($ $ (-587 (-1094))) 148 (-2568 (|has| |#1| (-815 (-1094))) (|has| |#1| (-314))) ELT) (($ $ (-1094)) 146 (-2568 (|has| |#1| (-815 (-1094))) (|has| |#1| (-314))) ELT) (($ $ (-1 |#1| |#1|)) 145 (|has| |#1| (-314)) ELT) (($ $ (-1 |#1| |#1|) (-698)) 144 (|has| |#1| (-314)) ELT)) (-2413 (((-634 |#1|) (-1183 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-314)) ELT)) (-3191 ((|#2|) 179 T ELT)) (-1678 (($) 168 (|has| |#1| (-301)) ELT)) (-3230 (((-1183 |#1|) $ (-1183 $)) 65 T ELT) (((-634 |#1|) (-1183 $) (-1183 $)) 64 T ELT) (((-1183 |#1|) $) 82 T ELT) (((-634 |#1|) (-1183 $)) 81 T ELT)) (-3978 (((-1183 |#1|) $) 79 T ELT) (($ (-1183 |#1|)) 78 T ELT) ((|#2| $) 195 T ELT) (($ |#2|) 177 T ELT)) (-2709 (((-3 (-1183 $) "failed") (-634 $)) 165 (|has| |#1| (-301)) ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#1|) 52 T ELT) (($ $) 112 (|has| |#1| (-314)) ELT) (($ (-352 (-488))) 107 (OR (|has| |#1| (-314)) (|has| |#1| (-954 (-352 (-488))))) ELT)) (-2708 (($ $) 164 (|has| |#1| (-301)) ELT) (((-636 $) $) 58 (|has| |#1| (-118)) ELT)) (-2455 ((|#2| $) 60 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2017 (((-1183 $)) 83 T ELT)) (-2067 (((-85) $ $) 116 (|has| |#1| (-314)) ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-698)) 157 (OR (-2568 (|has| |#1| (-191)) (|has| |#1| (-314))) (|has| |#1| (-301))) ELT) (($ $) 155 (OR (-2568 (|has| |#1| (-191)) (|has| |#1| (-314))) (|has| |#1| (-301))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 153 (-2568 (|has| |#1| (-815 (-1094))) (|has| |#1| (-314))) ELT) (($ $ (-1094) (-698)) 152 (-2568 (|has| |#1| (-815 (-1094))) (|has| |#1| (-314))) ELT) (($ $ (-587 (-1094))) 151 (-2568 (|has| |#1| (-815 (-1094))) (|has| |#1| (-314))) ELT) (($ $ (-1094)) 147 (-2568 (|has| |#1| (-815 (-1094))) (|has| |#1| (-314))) ELT) (($ $ (-1 |#1| |#1|)) 143 (|has| |#1| (-314)) ELT) (($ $ (-1 |#1| |#1|) (-698)) 142 (|has| |#1| (-314)) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ $) 141 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 138 (|has| |#1| (-314)) ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-352 (-488)) $) 140 (|has| |#1| (-314)) ELT) (($ $ (-352 (-488))) 139 (|has| |#1| (-314)) ELT))) +(((-665 |#1| |#2|) (-113) (-148) (-1159 |t#1|)) (T -665)) +((-2414 (*1 *1) (-12 (-4 *2 (-148)) (-4 *1 (-665 *2 *3)) (-4 *3 (-1159 *2)))) (-3191 (*1 *2) (-12 (-4 *1 (-665 *3 *2)) (-4 *3 (-148)) (-4 *2 (-1159 *3)))) (-3848 (*1 *1 *2) (-12 (-4 *3 (-148)) (-4 *1 (-665 *3 *2)) (-4 *2 (-1159 *3)))) (-3978 (*1 *1 *2) (-12 (-4 *3 (-148)) (-4 *1 (-665 *3 *2)) (-4 *2 (-1159 *3)))) (-3085 (*1 *2 *1) (-12 (-4 *1 (-665 *3 *2)) (-4 *3 (-148)) (-4 *2 (-1159 *3)))) (-3848 (*1 *1 *2) (|partial| -12 (-5 *2 (-352 *4)) (-4 *4 (-1159 *3)) (-4 *3 (-314)) (-4 *3 (-148)) (-4 *1 (-665 *3 *4)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *3 (-1183 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-314)) (-4 *1 (-665 *5 *6)) (-4 *5 (-148)) (-4 *6 (-1159 *5)) (-5 *2 (-634 *5))))) +(-13 (-355 |t#1| |t#2|) (-148) (-557 |t#2|) (-357 |t#1|) (-331 |t#1|) (-10 -8 (-15 -2414 ($)) (-15 -3191 (|t#2|)) (-15 -3848 ($ |t#2|)) (-15 -3978 ($ |t#2|)) (-15 -3085 (|t#2| $)) (IF (|has| |t#1| (-322)) (-6 (-322)) |%noBranch|) (IF (|has| |t#1| (-314)) (PROGN (-6 (-314)) (-6 (-186 |t#1|)) (-15 -3848 ((-3 $ "failed") (-352 |t#2|))) (-15 -2413 ((-634 |t#1|) (-1183 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-301)) (-6 (-301)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-352 (-488))) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-301)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) OR (|has| |#1| (-954 (-352 (-488)))) (|has| |#1| (-301)) (|has| |#1| (-314))) ((-559 (-488)) . T) ((-559 |#1|) . T) ((-559 $) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-556 (-776)) . T) ((-148) . T) ((-557 |#2|) . T) ((-188 $) OR (|has| |#1| (-301)) (-12 (|has| |#1| (-191)) (|has| |#1| (-314))) (-12 (|has| |#1| (-192)) (|has| |#1| (-314)))) ((-186 |#1|) |has| |#1| (-314)) ((-192) OR (|has| |#1| (-301)) (-12 (|has| |#1| (-192)) (|has| |#1| (-314)))) ((-191) OR (|has| |#1| (-301)) (-12 (|has| |#1| (-191)) (|has| |#1| (-314))) (-12 (|has| |#1| (-192)) (|has| |#1| (-314)))) ((-227 |#1|) |has| |#1| (-314)) ((-203) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-248) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-260) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-314) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-347) |has| |#1| (-301)) ((-322) OR (|has| |#1| (-301)) (|has| |#1| (-322))) ((-301) |has| |#1| (-301)) ((-324 |#1| |#2|) . T) ((-355 |#1| |#2|) . T) ((-331 |#1|) . T) ((-357 |#1|) . T) ((-395) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-499) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-13) . T) ((-592 (-352 (-488))) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 (-352 (-488))) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-594 (-488)) |has| |#1| (-584 (-488))) ((-594 |#1|) . T) ((-594 $) . T) ((-586 (-352 (-488))) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-586 |#1|) . T) ((-586 $) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-584 (-488)) |has| |#1| (-584 (-488))) ((-584 |#1|) . T) ((-658 (-352 (-488))) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-658 |#1|) . T) ((-658 $) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-667) . T) ((-810 $ (-1094)) OR (-12 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))) (-12 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094))))) ((-813 (-1094)) -12 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094)))) ((-815 (-1094)) OR (-12 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))) (-12 (|has| |#1| (-314)) (|has| |#1| (-813 (-1094))))) ((-836) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-954 (-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((-954 (-488)) |has| |#1| (-954 (-488))) ((-954 |#1|) . T) ((-967 (-352 (-488))) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-967 |#1|) . T) ((-967 $) . T) ((-972 (-352 (-488))) OR (|has| |#1| (-301)) (|has| |#1| (-314))) ((-972 |#1|) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1070) |has| |#1| (-301)) ((-1133) . T) ((-1138) OR (|has| |#1| (-301)) (|has| |#1| (-314)))) +((-3730 (($) 11 T CONST)) (-3473 (((-3 $ "failed") $) 14 T ELT)) (-2415 (((-85) $) 10 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 20 T ELT))) +(((-666 |#1|) (-10 -7 (-15 -3473 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-698))) (-15 -2415 ((-85) |#1|)) (-15 -3730 (|#1|) -3959) (-15 ** (|#1| |#1| (-834)))) (-667)) (T -666)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 20 T ELT)) (-2415 (((-85) $) 22 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2672 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (** (($ $ (-834)) 17 T ELT) (($ $ (-698)) 21 T ELT)) (* (($ $ $) 18 T ELT))) +(((-667) (-113)) (T -667)) +((-2672 (*1 *1) (-4 *1 (-667))) (-3730 (*1 *1) (-4 *1 (-667))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-667)) (-5 *2 (-85)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-667)) (-5 *2 (-698)))) (-3473 (*1 *1 *1) (|partial| -4 *1 (-667)))) +(-13 (-1029) (-10 -8 (-15 -2672 ($) -3959) (-15 -3730 ($) -3959) (-15 -2415 ((-85) $)) (-15 ** ($ $ (-698))) (-15 -3473 ((-3 $ "failed") $)))) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-1029) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-2417 ((|#1| $) 16 T ELT)) (-2416 (($ (-1 |#1| |#1| |#1|) |#1|) 11 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3806 ((|#1| $ |#1| |#1|) 14 T ELT)) (-3953 (((-776) $) NIL T ELT) (((-1026 |#1|) $) 17 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-668 |#1|) (-13 (-669 |#1|) (-1017) (-556 (-1026 |#1|)) (-10 -8 (-15 -2416 ($ (-1 |#1| |#1| |#1|) |#1|)))) (-72)) (T -668)) +((-2416 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-668 *3))))) +((-2417 ((|#1| $) 8 T ELT)) (-3806 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-669 |#1|) (-113) (-72)) (T -669)) +((-2417 (*1 *2 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-72))))) +(-13 (-1027 |t#1|) (-10 -8 (-15 -2417 (|t#1| $)) (-6 (|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (SEQ (-3062 (|f| |x| (-2417 |f|)) |x|) (|exit| 1 (-3062 (|f| (-2417 |f|) |x|) |x|)))))))) +(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1027 |#1|) . T) ((-1133) . T)) +((-2418 (((-2 (|:| -3095 (-350 |#2|)) (|:| |special| (-350 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3424 (((-2 (|:| -3095 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2419 ((|#2| (-352 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3441 (((-2 (|:| |poly| |#2|) (|:| -3095 (-352 |#2|)) (|:| |special| (-352 |#2|))) (-352 |#2|) (-1 |#2| |#2|)) 48 T ELT))) +(((-670 |#1| |#2|) (-10 -7 (-15 -3424 ((-2 (|:| -3095 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2418 ((-2 (|:| -3095 (-350 |#2|)) (|:| |special| (-350 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2419 (|#2| (-352 |#2|) (-1 |#2| |#2|))) (-15 -3441 ((-2 (|:| |poly| |#2|) (|:| -3095 (-352 |#2|)) (|:| |special| (-352 |#2|))) (-352 |#2|) (-1 |#2| |#2|)))) (-314) (-1159 |#1|)) (T -670)) +((-3441 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1159 *5)) (-4 *5 (-314)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3095 (-352 *6)) (|:| |special| (-352 *6)))) (-5 *1 (-670 *5 *6)) (-5 *3 (-352 *6)))) (-2419 (*1 *2 *3 *4) (-12 (-5 *3 (-352 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1159 *5)) (-5 *1 (-670 *5 *2)) (-4 *5 (-314)))) (-2418 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1159 *5)) (-4 *5 (-314)) (-5 *2 (-2 (|:| -3095 (-350 *3)) (|:| |special| (-350 *3)))) (-5 *1 (-670 *5 *3)))) (-3424 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1159 *5)) (-4 *5 (-314)) (-5 *2 (-2 (|:| -3095 *3) (|:| |special| *3))) (-5 *1 (-670 *5 *3))))) +((-2420 ((|#7| (-587 |#5|) |#6|) NIL T ELT)) (-3849 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) +(((-671 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3849 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2420 (|#7| (-587 |#5|) |#6|))) (-760) (-721) (-721) (-965) (-965) (-865 |#4| |#2| |#1|) (-865 |#5| |#3| |#1|)) (T -671)) +((-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *9)) (-4 *9 (-965)) (-4 *5 (-760)) (-4 *6 (-721)) (-4 *8 (-965)) (-4 *2 (-865 *9 *7 *5)) (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-721)) (-4 *4 (-865 *8 *6 *5)))) (-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-965)) (-4 *9 (-965)) (-4 *5 (-760)) (-4 *6 (-721)) (-4 *2 (-865 *9 *7 *5)) (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-721)) (-4 *4 (-865 *8 *6 *5))))) +((-3849 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) +(((-672 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3849 (|#7| (-1 |#2| |#1|) |#6|))) (-760) (-760) (-721) (-721) (-965) (-865 |#5| |#3| |#1|) (-865 |#5| |#4| |#2|)) (T -672)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-760)) (-4 *6 (-760)) (-4 *7 (-721)) (-4 *9 (-965)) (-4 *2 (-865 *9 *8 *6)) (-5 *1 (-672 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-721)) (-4 *4 (-865 *9 *7 *5))))) +((-3738 (((-350 |#4|) |#4|) 42 T ELT))) +(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3738 ((-350 |#4|) |#4|))) (-721) (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $)) (-15 -3837 ((-3 $ "failed") (-1094))))) (-260) (-865 (-861 |#3|) |#1| |#2|)) (T -673)) +((-3738 (*1 *2 *3) (-12 (-4 *4 (-721)) (-4 *5 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $)) (-15 -3837 ((-3 $ "failed") (-1094)))))) (-4 *6 (-260)) (-5 *2 (-350 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-865 (-861 *6) *4 *5))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3087 (((-587 (-777 |#1|)) $) NIL T ELT)) (-3089 (((-1089 $) $ (-777 |#1|)) NIL T ELT) (((-1089 |#2|) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#2| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#2| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#2| (-499)) ELT)) (-2825 (((-698) $) NIL T ELT) (((-698) $ (-587 (-777 |#1|))) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-3781 (($ $) NIL (|has| |#2| (-395)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#2| (-395)) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#2| (-954 (-352 (-488)))) ELT) (((-3 (-488) #1#) $) NIL (|has| |#2| (-954 (-488))) ELT) (((-3 (-777 |#1|) #1#) $) NIL T ELT)) (-3162 ((|#2| $) NIL T ELT) (((-352 (-488)) $) NIL (|has| |#2| (-954 (-352 (-488)))) ELT) (((-488) $) NIL (|has| |#2| (-954 (-488))) ELT) (((-777 |#1|) $) NIL T ELT)) (-3762 (($ $ $ (-777 |#1|)) NIL (|has| |#2| (-148)) ELT)) (-3965 (($ $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#2|) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3509 (($ $) NIL (|has| |#2| (-395)) ELT) (($ $ (-777 |#1|)) NIL (|has| |#2| (-395)) ELT)) (-2824 (((-587 $) $) NIL T ELT)) (-3729 (((-85) $) NIL (|has| |#2| (-825)) ELT)) (-1628 (($ $ |#2| (-473 (-777 |#1|)) $) NIL T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (-12 (|has| (-777 |#1|) (-800 (-332))) (|has| |#2| (-800 (-332)))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (-12 (|has| (-777 |#1|) (-800 (-488))) (|has| |#2| (-800 (-488)))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2425 (((-698) $) NIL T ELT)) (-3090 (($ (-1089 |#2|) (-777 |#1|)) NIL T ELT) (($ (-1089 $) (-777 |#1|)) NIL T ELT)) (-2827 (((-587 $) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#2| (-473 (-777 |#1|))) NIL T ELT) (($ $ (-777 |#1|) (-698)) NIL T ELT) (($ $ (-587 (-777 |#1|)) (-587 (-698))) NIL T ELT)) (-3769 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $ (-777 |#1|)) NIL T ELT)) (-2826 (((-473 (-777 |#1|)) $) NIL T ELT) (((-698) $ (-777 |#1|)) NIL T ELT) (((-587 (-698)) $ (-587 (-777 |#1|))) NIL T ELT)) (-1629 (($ (-1 (-473 (-777 |#1|)) (-473 (-777 |#1|))) $) NIL T ELT)) (-3849 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3088 (((-3 (-777 |#1|) #1#) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-1183 $) $) NIL T ELT) (((-634 |#2|) (-1183 $)) NIL T ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#2| $) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#2| (-395)) ELT) (($ $ $) NIL (|has| |#2| (-395)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2829 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2828 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2830 (((-3 (-2 (|:| |var| (-777 |#1|)) (|:| -2406 (-698))) #1#) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1805 (((-85) $) NIL T ELT)) (-1804 ((|#2| $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#2| (-395)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#2| (-395)) ELT) (($ $ $) NIL (|has| |#2| (-395)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#2| (-825)) ELT)) (-3472 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-499)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-499)) ELT)) (-3774 (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ (-777 |#1|) |#2|) NIL T ELT) (($ $ (-587 (-777 |#1|)) (-587 |#2|)) NIL T ELT) (($ $ (-777 |#1|) $) NIL T ELT) (($ $ (-587 (-777 |#1|)) (-587 $)) NIL T ELT)) (-3763 (($ $ (-777 |#1|)) NIL (|has| |#2| (-148)) ELT)) (-3764 (($ $ (-587 (-777 |#1|)) (-587 (-698))) NIL T ELT) (($ $ (-777 |#1|) (-698)) NIL T ELT) (($ $ (-587 (-777 |#1|))) NIL T ELT) (($ $ (-777 |#1|)) NIL T ELT)) (-3955 (((-473 (-777 |#1|)) $) NIL T ELT) (((-698) $ (-777 |#1|)) NIL T ELT) (((-587 (-698)) $ (-587 (-777 |#1|))) NIL T ELT)) (-3978 (((-804 (-332)) $) NIL (-12 (|has| (-777 |#1|) (-557 (-804 (-332)))) (|has| |#2| (-557 (-804 (-332))))) ELT) (((-804 (-488)) $) NIL (-12 (|has| (-777 |#1|) (-557 (-804 (-488)))) (|has| |#2| (-557 (-804 (-488))))) ELT) (((-477) $) NIL (-12 (|has| (-777 |#1|) (-557 (-477))) (|has| |#2| (-557 (-477)))) ELT)) (-2823 ((|#2| $) NIL (|has| |#2| (-395)) ELT) (($ $ (-777 |#1|)) NIL (|has| |#2| (-395)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-825))) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-777 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-499)) ELT) (($ (-352 (-488))) NIL (OR (|has| |#2| (-38 (-352 (-488)))) (|has| |#2| (-954 (-352 (-488))))) ELT)) (-3823 (((-587 |#2|) $) NIL T ELT)) (-3683 ((|#2| $ (-473 (-777 |#1|))) NIL T ELT) (($ $ (-777 |#1|) (-698)) NIL T ELT) (($ $ (-587 (-777 |#1|)) (-587 (-698))) NIL T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-825))) (|has| |#2| (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1627 (($ $ $ (-698)) NIL (|has| |#2| (-148)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL (|has| |#2| (-499)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $ (-587 (-777 |#1|)) (-587 (-698))) NIL T ELT) (($ $ (-777 |#1|) (-698)) NIL T ELT) (($ $ (-587 (-777 |#1|))) NIL T ELT) (($ $ (-777 |#1|)) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#2|) NIL (|has| |#2| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL (|has| |#2| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) NIL (|has| |#2| (-38 (-352 (-488)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-674 |#1| |#2|) (-865 |#2| (-473 (-777 |#1|)) (-777 |#1|)) (-587 (-1094)) (-965)) (T -674)) +NIL +((-2421 (((-2 (|:| -2489 (-861 |#3|)) (|:| -2063 (-861 |#3|))) |#4|) 14 T ELT)) (-2992 ((|#4| |#4| |#2|) 33 T ELT)) (-2424 ((|#4| (-352 (-861 |#3|)) |#2|) 62 T ELT)) (-2423 ((|#4| (-1089 (-861 |#3|)) |#2|) 74 T ELT)) (-2422 ((|#4| (-1089 |#4|) |#2|) 49 T ELT)) (-2991 ((|#4| |#4| |#2|) 52 T ELT)) (-3738 (((-350 |#4|) |#4|) 40 T ELT))) +(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2421 ((-2 (|:| -2489 (-861 |#3|)) (|:| -2063 (-861 |#3|))) |#4|)) (-15 -2991 (|#4| |#4| |#2|)) (-15 -2422 (|#4| (-1089 |#4|) |#2|)) (-15 -2992 (|#4| |#4| |#2|)) (-15 -2423 (|#4| (-1089 (-861 |#3|)) |#2|)) (-15 -2424 (|#4| (-352 (-861 |#3|)) |#2|)) (-15 -3738 ((-350 |#4|) |#4|))) (-721) (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $)))) (-499) (-865 (-352 (-861 |#3|)) |#1| |#2|)) (T -675)) +((-3738 (*1 *2 *3) (-12 (-4 *4 (-721)) (-4 *5 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $))))) (-4 *6 (-499)) (-5 *2 (-350 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-865 (-352 (-861 *6)) *4 *5)))) (-2424 (*1 *2 *3 *4) (-12 (-4 *6 (-499)) (-4 *2 (-865 *3 *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) (-5 *3 (-352 (-861 *6))) (-4 *5 (-721)) (-4 *4 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $))))))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1089 (-861 *6))) (-4 *6 (-499)) (-4 *2 (-865 (-352 (-861 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-721)) (-4 *4 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $))))))) (-2992 (*1 *2 *2 *3) (-12 (-4 *4 (-721)) (-4 *3 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $))))) (-4 *5 (-499)) (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-865 (-352 (-861 *5)) *4 *3)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1089 *2)) (-4 *2 (-865 (-352 (-861 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-721)) (-4 *4 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $))))) (-4 *6 (-499)))) (-2991 (*1 *2 *2 *3) (-12 (-4 *4 (-721)) (-4 *3 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $))))) (-4 *5 (-499)) (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-865 (-352 (-861 *5)) *4 *3)))) (-2421 (*1 *2 *3) (-12 (-4 *4 (-721)) (-4 *5 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $))))) (-4 *6 (-499)) (-5 *2 (-2 (|:| -2489 (-861 *6)) (|:| -2063 (-861 *6)))) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-865 (-352 (-861 *6)) *4 *5))))) +((-3738 (((-350 |#4|) |#4|) 54 T ELT))) +(((-676 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3738 ((-350 |#4|) |#4|))) (-721) (-760) (-13 (-260) (-120)) (-865 (-352 |#3|) |#1| |#2|)) (T -676)) +((-3738 (*1 *2 *3) (-12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-13 (-260) (-120))) (-5 *2 (-350 *3)) (-5 *1 (-676 *4 *5 *6 *3)) (-4 *3 (-865 (-352 *6) *4 *5))))) +((-3849 (((-678 |#2| |#3|) (-1 |#2| |#1|) (-678 |#1| |#3|)) 18 T ELT))) +(((-677 |#1| |#2| |#3|) (-10 -7 (-15 -3849 ((-678 |#2| |#3|) (-1 |#2| |#1|) (-678 |#1| |#3|)))) (-965) (-965) (-667)) (T -677)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-678 *5 *7)) (-4 *5 (-965)) (-4 *6 (-965)) (-4 *7 (-667)) (-5 *2 (-678 *6 *7)) (-5 *1 (-677 *5 *6 *7))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 36 T ELT)) (-3780 (((-587 (-2 (|:| -3961 |#1|) (|:| -3945 |#2|))) $) 37 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3142 (((-698)) 22 (-12 (|has| |#2| (-322)) (|has| |#1| (-322))) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3162 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3965 (($ $) 99 (|has| |#2| (-760)) ELT)) (-3473 (((-3 $ #1#) $) 83 T ELT)) (-3000 (($) 48 (-12 (|has| |#2| (-322)) (|has| |#1| (-322))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2425 (((-698) $) 70 T ELT)) (-2827 (((-587 $) $) 52 T ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| |#2|) 17 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2015 (((-834) $) 43 (-12 (|has| |#2| (-322)) (|has| |#1| (-322))) ELT)) (-2900 ((|#2| $) 98 (|has| |#2| (-760)) ELT)) (-3180 ((|#1| $) 97 (|has| |#2| (-760)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2405 (($ (-834)) 35 (-12 (|has| |#2| (-322)) (|has| |#1| (-322))) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 96 T ELT) (($ (-488)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-587 (-2 (|:| -3961 |#1|) (|:| -3945 |#2|)))) 11 T ELT)) (-3823 (((-587 |#1|) $) 54 T ELT)) (-3683 ((|#1| $ |#2|) 114 T ELT)) (-2708 (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 12 T CONST)) (-2672 (($) 44 T CONST)) (-3062 (((-85) $ $) 104 T ELT)) (-3843 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 33 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-148)) ELT) (($ $ |#1|) NIL (|has| |#1| (-148)) ELT))) +(((-678 |#1| |#2|) (-13 (-965) (-954 |#2|) (-954 |#1|) (-383 |#1|) (-10 -8 (-15 -2899 ($ |#1| |#2|)) (-15 -3683 (|#1| $ |#2|)) (-15 -3953 ($ (-587 (-2 (|:| -3961 |#1|) (|:| -3945 |#2|))))) (-15 -3780 ((-587 (-2 (|:| -3961 |#1|) (|:| -3945 |#2|))) $)) (-15 -3944 ((-85) $)) (-15 -3823 ((-587 |#1|) $)) (-15 -2827 ((-587 $) $)) (-15 -2425 ((-698) $)) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-148)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-322)) (IF (|has| |#2| (-322)) (-6 (-322)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-760)) (PROGN (-15 -2900 (|#2| $)) (-15 -3180 (|#1| $)) (-15 -3965 ($ $))) |%noBranch|))) (-965) (-667)) (T -678)) +((-2899 (*1 *1 *2 *3) (-12 (-5 *1 (-678 *2 *3)) (-4 *2 (-965)) (-4 *3 (-667)))) (-3683 (*1 *2 *1 *3) (-12 (-4 *2 (-965)) (-5 *1 (-678 *2 *3)) (-4 *3 (-667)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| -3961 *3) (|:| -3945 *4)))) (-4 *3 (-965)) (-4 *4 (-667)) (-5 *1 (-678 *3 *4)))) (-3780 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| -3961 *3) (|:| -3945 *4)))) (-5 *1 (-678 *3 *4)) (-4 *3 (-965)) (-4 *4 (-667)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-678 *3 *4)) (-4 *3 (-965)) (-4 *4 (-667)))) (-3823 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-678 *3 *4)) (-4 *3 (-965)) (-4 *4 (-667)))) (-2827 (*1 *2 *1) (-12 (-5 *2 (-587 (-678 *3 *4))) (-5 *1 (-678 *3 *4)) (-4 *3 (-965)) (-4 *4 (-667)))) (-2425 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-678 *3 *4)) (-4 *3 (-965)) (-4 *4 (-667)))) (-2900 (*1 *2 *1) (-12 (-4 *2 (-667)) (-4 *2 (-760)) (-5 *1 (-678 *3 *2)) (-4 *3 (-965)))) (-3180 (*1 *2 *1) (-12 (-4 *2 (-965)) (-5 *1 (-678 *2 *3)) (-4 *3 (-760)) (-4 *3 (-667)))) (-3965 (*1 *1 *1) (-12 (-5 *1 (-678 *2 *3)) (-4 *3 (-760)) (-4 *2 (-965)) (-4 *3 (-667))))) +((-2574 (((-85) $ $) NIL T ELT)) (-2426 (((-587 |#1|) $) 38 T ELT)) (-3240 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3242 (($ $ $) 99 T ELT)) (-3241 (((-85) $ $) 107 T ELT)) (-3245 (($ (-587 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1574 (($ (-1 (-85) |#1|) $) 86 (|has| $ (-320 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3730 (($) NIL T CONST)) (-2373 (($ $) 88 T ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-3411 (($ |#1| $) 71 (|has| $ (-320 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-320 |#1|)) ELT) (($ |#1| $ (-488)) 78 T ELT) (($ (-1 (-85) |#1|) $ (-488)) 81 T ELT)) (-3412 (($ |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT) (($ |#1| $ (-488)) 83 T ELT) (($ (-1 (-85) |#1|) $ (-488)) 84 T ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3247 (((-85) $ $) 106 T ELT)) (-2427 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-587 |#1|)) 23 T ELT)) (-2614 (((-587 |#1|) $) 32 T ELT)) (-3251 (((-85) |#1| $) 66 (|has| |#1| (-72)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 91 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3244 (($ $ $) 97 T ELT)) (-1278 ((|#1| $) 63 T ELT)) (-3615 (($ |#1| $) 64 T ELT) (($ |#1| $ (-698)) 89 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1279 ((|#1| $) 62 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) 57 T ELT)) (-3571 (($) 14 T ELT)) (-2372 (((-587 (-2 (|:| |entry| |#1|) (|:| -1735 (-698)))) $) 56 T ELT)) (-3243 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1470 (($) 16 T ELT) (($ (-587 |#1|)) 25 T ELT)) (-1735 (((-698) |#1| $) 69 (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) NIL T ELT)) (-3406 (($ $) 82 T ELT)) (-3978 (((-477) $) 36 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 22 T ELT)) (-3953 (((-776) $) 50 T ELT)) (-3246 (($ (-587 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-1280 (($ (-587 |#1|)) 24 T ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3062 (((-85) $ $) 103 T ELT)) (-3964 (((-698) $) 68 T ELT))) +(((-679 |#1|) (-13 (-680 |#1|) (-320 |#1|) (-1039 |#1|) (-10 -8 (-15 -2427 ($)) (-15 -2427 ($ |#1|)) (-15 -2427 ($ (-587 |#1|))) (-15 -2426 ((-587 |#1|) $)) (-15 -3412 ($ |#1| $ (-488))) (-15 -3412 ($ (-1 (-85) |#1|) $ (-488))) (-15 -3411 ($ |#1| $ (-488))) (-15 -3411 ($ (-1 (-85) |#1|) $ (-488))))) (-1017)) (T -679)) +((-2427 (*1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-1017)))) (-2427 (*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-1017)))) (-2427 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-5 *1 (-679 *3)))) (-2426 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-679 *3)) (-4 *3 (-1017)))) (-3412 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-488)) (-5 *1 (-679 *2)) (-4 *2 (-1017)))) (-3412 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-488)) (-4 *4 (-1017)) (-5 *1 (-679 *4)))) (-3411 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-488)) (-5 *1 (-679 *2)) (-4 *2 (-1017)))) (-3411 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-488)) (-4 *4 (-1017)) (-5 *1 (-679 *4))))) +((-2574 (((-85) $ $) 18 T ELT)) (-3240 (($ |#1| $) 71 T ELT) (($ $ |#1|) 70 T ELT) (($ $ $) 69 T ELT)) (-3242 (($ $ $) 67 T ELT)) (-3241 (((-85) $ $) 68 T ELT)) (-3245 (($ (-587 |#1|)) 63 T ELT) (($) 62 T ELT)) (-1574 (($ (-1 (-85) |#1|) $) 42 (|has| $ (-320 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-320 |#1|)) ELT)) (-3730 (($) 6 T CONST)) (-2373 (($ $) 55 T ELT)) (-1357 (($ $) 51 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-3411 (($ |#1| $) 44 (|has| $ (-320 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 43 (|has| $ (-320 |#1|)) ELT)) (-3412 (($ |#1| $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 48 (|has| $ (-320 |#1|)) ELT)) (-3247 (((-85) $ $) 59 T ELT)) (-3332 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3248 (((-1077) $) 21 T ELT)) (-3244 (($ $ $) 64 T ELT)) (-1278 ((|#1| $) 35 T ELT)) (-3615 (($ |#1| $) 36 T ELT) (($ |#1| $ (-698)) 56 T ELT)) (-3249 (((-1037) $) 20 T ELT)) (-1279 ((|#1| $) 37 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-2372 (((-587 (-2 (|:| |entry| |#1|) (|:| -1735 (-698)))) $) 54 T ELT)) (-3243 (($ $ |#1|) 66 T ELT) (($ $ $) 65 T ELT)) (-1470 (($) 46 T ELT) (($ (-587 |#1|)) 45 T ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 52 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 47 T ELT)) (-3953 (((-776) $) 16 T ELT)) (-3246 (($ (-587 |#1|)) 61 T ELT) (($) 60 T ELT)) (-1269 (((-85) $ $) 19 T ELT)) (-1280 (($ (-587 |#1|)) 38 T ELT)) (-3062 (((-85) $ $) 17 T ELT))) +(((-680 |#1|) (-113) (-1017)) (T -680)) +NIL +(-13 (-638 |t#1|) (-1015 |t#1|)) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-556 (-776)) . T) ((-124 |#1|) . T) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-195 |#1|) . T) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-638 |#1|) . T) ((-1015 |#1|) . T) ((-1017) . T) ((-1039 |#1|) . T) ((-1133) . T)) +((-2428 (((-1189) (-1077)) 8 T ELT))) +(((-681) (-10 -7 (-15 -2428 ((-1189) (-1077))))) (T -681)) +((-2428 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-681))))) +((-2429 (((-587 |#1|) (-587 |#1|) (-587 |#1|)) 15 T ELT))) +(((-682 |#1|) (-10 -7 (-15 -2429 ((-587 |#1|) (-587 |#1|) (-587 |#1|)))) (-760)) (T -682)) +((-2429 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-760)) (-5 *1 (-682 *3))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3087 (((-587 |#2|) $) 160 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 153 (|has| |#1| (-499)) ELT)) (-2068 (($ $) 152 (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) 150 (|has| |#1| (-499)) ELT)) (-3498 (($ $) 109 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3645 (($ $) 92 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3043 (($ $) 91 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3496 (($ $) 108 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3644 (($ $) 93 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3500 (($ $) 107 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3643 (($ $) 94 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3730 (($) 23 T CONST)) (-3965 (($ $) 144 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3820 (((-861 |#1|) $ (-698)) 122 T ELT) (((-861 |#1|) $ (-698) (-698)) 121 T ELT)) (-2898 (((-85) $) 161 T ELT)) (-3633 (($) 119 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3778 (((-698) $ |#2|) 124 T ELT) (((-698) $ |#2| (-698)) 123 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3017 (($ $ (-488)) 90 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3944 (((-85) $) 142 T ELT)) (-2899 (($ $ (-587 |#2|) (-587 (-473 |#2|))) 159 T ELT) (($ $ |#2| (-473 |#2|)) 158 T ELT) (($ |#1| (-473 |#2|)) 143 T ELT) (($ $ |#2| (-698)) 126 T ELT) (($ $ (-587 |#2|) (-587 (-698))) 125 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 138 T ELT)) (-3949 (($ $) 116 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2900 (($ $) 140 T ELT)) (-3180 ((|#1| $) 139 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3818 (($ $ |#2|) 120 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3775 (($ $ (-698)) 127 T ELT)) (-3472 (((-3 $ "failed") $ $) 154 (|has| |#1| (-499)) ELT)) (-3950 (($ $) 117 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3774 (($ $ |#2| $) 135 T ELT) (($ $ (-587 |#2|) (-587 $)) 134 T ELT) (($ $ (-587 (-251 $))) 133 T ELT) (($ $ (-251 $)) 132 T ELT) (($ $ $ $) 131 T ELT) (($ $ (-587 $) (-587 $)) 130 T ELT)) (-3764 (($ $ (-587 |#2|) (-587 (-698))) 52 T ELT) (($ $ |#2| (-698)) 51 T ELT) (($ $ (-587 |#2|)) 50 T ELT) (($ $ |#2|) 48 T ELT)) (-3955 (((-473 |#2|) $) 141 T ELT)) (-3501 (($ $) 106 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3642 (($ $) 95 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3499 (($ $) 105 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3641 (($ $) 96 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3497 (($ $) 104 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3640 (($ $) 97 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2897 (($ $) 162 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#1|) 157 (|has| |#1| (-148)) ELT) (($ $) 155 (|has| |#1| (-499)) ELT) (($ (-352 (-488))) 147 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3683 ((|#1| $ (-473 |#2|)) 145 T ELT) (($ $ |#2| (-698)) 129 T ELT) (($ $ (-587 |#2|) (-587 (-698))) 128 T ELT)) (-2708 (((-636 $) $) 156 (|has| |#1| (-118)) ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3504 (($ $) 115 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3492 (($ $) 103 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2067 (((-85) $ $) 151 (|has| |#1| (-499)) ELT)) (-3502 (($ $) 114 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3490 (($ $) 102 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3506 (($ $) 113 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3494 (($ $) 101 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-3507 (($ $) 112 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3495 (($ $) 100 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3505 (($ $) 111 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3493 (($ $) 99 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3503 (($ $) 110 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3491 (($ $) 98 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-587 |#2|) (-587 (-698))) 55 T ELT) (($ $ |#2| (-698)) 54 T ELT) (($ $ (-587 |#2|)) 53 T ELT) (($ $ |#2|) 49 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ |#1|) 146 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ $) 118 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 89 (|has| |#1| (-38 (-352 (-488)))) ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-352 (-488))) 149 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) 148 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ |#1| $) 137 T ELT) (($ $ |#1|) 136 T ELT))) +(((-683 |#1| |#2|) (-113) (-965) (-760)) (T -683)) +((-3683 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-698)) (-4 *1 (-683 *4 *2)) (-4 *4 (-965)) (-4 *2 (-760)))) (-3683 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *5)) (-5 *3 (-587 (-698))) (-4 *1 (-683 *4 *5)) (-4 *4 (-965)) (-4 *5 (-760)))) (-3775 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-683 *3 *4)) (-4 *3 (-965)) (-4 *4 (-760)))) (-2899 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-698)) (-4 *1 (-683 *4 *2)) (-4 *4 (-965)) (-4 *2 (-760)))) (-2899 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *5)) (-5 *3 (-587 (-698))) (-4 *1 (-683 *4 *5)) (-4 *4 (-965)) (-4 *5 (-760)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-683 *4 *3)) (-4 *4 (-965)) (-4 *3 (-760)) (-5 *2 (-698)))) (-3778 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-698)) (-4 *1 (-683 *4 *3)) (-4 *4 (-965)) (-4 *3 (-760)))) (-3820 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-4 *1 (-683 *4 *5)) (-4 *4 (-965)) (-4 *5 (-760)) (-5 *2 (-861 *4)))) (-3820 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-698)) (-4 *1 (-683 *4 *5)) (-4 *4 (-965)) (-4 *5 (-760)) (-5 *2 (-861 *4)))) (-3818 (*1 *1 *1 *2) (-12 (-4 *1 (-683 *3 *2)) (-4 *3 (-965)) (-4 *2 (-760)) (-4 *3 (-38 (-352 (-488))))))) +(-13 (-813 |t#2|) (-890 |t#1| (-473 |t#2|) |t#2|) (-459 |t#2| $) (-262 $) (-10 -8 (-15 -3683 ($ $ |t#2| (-698))) (-15 -3683 ($ $ (-587 |t#2|) (-587 (-698)))) (-15 -3775 ($ $ (-698))) (-15 -2899 ($ $ |t#2| (-698))) (-15 -2899 ($ $ (-587 |t#2|) (-587 (-698)))) (-15 -3778 ((-698) $ |t#2|)) (-15 -3778 ((-698) $ |t#2| (-698))) (-15 -3820 ((-861 |t#1|) $ (-698))) (-15 -3820 ((-861 |t#1|) $ (-698) (-698))) (IF (|has| |t#1| (-38 (-352 (-488)))) (PROGN (-15 -3818 ($ $ |t#2|)) (-6 (-919)) (-6 (-1119))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-473 |#2|)) . T) ((-25) . T) ((-38 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-38 |#1|) |has| |#1| (-148)) ((-38 $) |has| |#1| (-499)) ((-35) |has| |#1| (-38 (-352 (-488)))) ((-66) |has| |#1| (-38 (-352 (-488)))) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-559 (-488)) . T) ((-559 |#1|) |has| |#1| (-148)) ((-559 $) |has| |#1| (-499)) ((-556 (-776)) . T) ((-148) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-241) |has| |#1| (-38 (-352 (-488)))) ((-248) |has| |#1| (-499)) ((-262 $) . T) ((-383 |#1|) . T) ((-436) |has| |#1| (-38 (-352 (-488)))) ((-459 |#2| $) . T) ((-459 $ $) . T) ((-499) |has| |#1| (-499)) ((-13) . T) ((-592 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-594 |#1|) . T) ((-594 $) . T) ((-586 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-586 |#1|) |has| |#1| (-148)) ((-586 $) |has| |#1| (-499)) ((-658 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-658 |#1|) |has| |#1| (-148)) ((-658 $) |has| |#1| (-499)) ((-667) . T) ((-810 $ |#2|) . T) ((-813 |#2|) . T) ((-815 |#2|) . T) ((-890 |#1| (-473 |#2|) |#2|) . T) ((-919) |has| |#1| (-38 (-352 (-488)))) ((-967 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-972 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-972 |#1|) . T) ((-972 $) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1119) |has| |#1| (-38 (-352 (-488)))) ((-1122) |has| |#1| (-38 (-352 (-488)))) ((-1133) . T)) +((-3738 (((-350 (-1089 |#4|)) (-1089 |#4|)) 30 T ELT) (((-350 |#4|) |#4|) 26 T ELT))) +(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3738 ((-350 |#4|) |#4|)) (-15 -3738 ((-350 (-1089 |#4|)) (-1089 |#4|)))) (-760) (-721) (-13 (-260) (-120)) (-865 |#3| |#2| |#1|)) (T -684)) +((-3738 (*1 *2 *3) (-12 (-4 *4 (-760)) (-4 *5 (-721)) (-4 *6 (-13 (-260) (-120))) (-4 *7 (-865 *6 *5 *4)) (-5 *2 (-350 (-1089 *7))) (-5 *1 (-684 *4 *5 *6 *7)) (-5 *3 (-1089 *7)))) (-3738 (*1 *2 *3) (-12 (-4 *4 (-760)) (-4 *5 (-721)) (-4 *6 (-13 (-260) (-120))) (-5 *2 (-350 *3)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-865 *6 *5 *4))))) +((-2432 (((-350 |#4|) |#4| |#2|) 142 T ELT)) (-2430 (((-350 |#4|) |#4|) NIL T ELT)) (-3977 (((-350 (-1089 |#4|)) (-1089 |#4|)) 129 T ELT) (((-350 |#4|) |#4|) 52 T ELT)) (-2434 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-587 (-2 (|:| -3738 (-1089 |#4|)) (|:| -2406 (-488)))))) (-1089 |#4|) (-587 |#2|) (-587 (-587 |#3|))) 81 T ELT)) (-2438 (((-1089 |#3|) (-1089 |#3|) (-488)) 169 T ELT)) (-2437 (((-587 (-698)) (-1089 |#4|) (-587 |#2|) (-698)) 75 T ELT)) (-3085 (((-3 (-587 (-1089 |#4|)) "failed") (-1089 |#4|) (-1089 |#3|) (-1089 |#3|) |#4| (-587 |#2|) (-587 (-698)) (-587 |#3|)) 79 T ELT)) (-2435 (((-2 (|:| |upol| (-1089 |#3|)) (|:| |Lval| (-587 |#3|)) (|:| |Lfact| (-587 (-2 (|:| -3738 (-1089 |#3|)) (|:| -2406 (-488))))) (|:| |ctpol| |#3|)) (-1089 |#4|) (-587 |#2|) (-587 (-587 |#3|))) 27 T ELT)) (-2433 (((-2 (|:| -2009 (-1089 |#4|)) (|:| |polval| (-1089 |#3|))) (-1089 |#4|) (-1089 |#3|) (-488)) 72 T ELT)) (-2431 (((-488) (-587 (-2 (|:| -3738 (-1089 |#3|)) (|:| -2406 (-488))))) 165 T ELT)) (-2436 ((|#4| (-488) (-350 |#4|)) 73 T ELT)) (-3363 (((-85) (-587 (-2 (|:| -3738 (-1089 |#3|)) (|:| -2406 (-488)))) (-587 (-2 (|:| -3738 (-1089 |#3|)) (|:| -2406 (-488))))) NIL T ELT))) +(((-685 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3977 ((-350 |#4|) |#4|)) (-15 -3977 ((-350 (-1089 |#4|)) (-1089 |#4|))) (-15 -2430 ((-350 |#4|) |#4|)) (-15 -2431 ((-488) (-587 (-2 (|:| -3738 (-1089 |#3|)) (|:| -2406 (-488)))))) (-15 -2432 ((-350 |#4|) |#4| |#2|)) (-15 -2433 ((-2 (|:| -2009 (-1089 |#4|)) (|:| |polval| (-1089 |#3|))) (-1089 |#4|) (-1089 |#3|) (-488))) (-15 -2434 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-587 (-2 (|:| -3738 (-1089 |#4|)) (|:| -2406 (-488)))))) (-1089 |#4|) (-587 |#2|) (-587 (-587 |#3|)))) (-15 -2435 ((-2 (|:| |upol| (-1089 |#3|)) (|:| |Lval| (-587 |#3|)) (|:| |Lfact| (-587 (-2 (|:| -3738 (-1089 |#3|)) (|:| -2406 (-488))))) (|:| |ctpol| |#3|)) (-1089 |#4|) (-587 |#2|) (-587 (-587 |#3|)))) (-15 -2436 (|#4| (-488) (-350 |#4|))) (-15 -3363 ((-85) (-587 (-2 (|:| -3738 (-1089 |#3|)) (|:| -2406 (-488)))) (-587 (-2 (|:| -3738 (-1089 |#3|)) (|:| -2406 (-488)))))) (-15 -3085 ((-3 (-587 (-1089 |#4|)) "failed") (-1089 |#4|) (-1089 |#3|) (-1089 |#3|) |#4| (-587 |#2|) (-587 (-698)) (-587 |#3|))) (-15 -2437 ((-587 (-698)) (-1089 |#4|) (-587 |#2|) (-698))) (-15 -2438 ((-1089 |#3|) (-1089 |#3|) (-488)))) (-721) (-760) (-260) (-865 |#3| |#1| |#2|)) (T -685)) +((-2438 (*1 *2 *2 *3) (-12 (-5 *2 (-1089 *6)) (-5 *3 (-488)) (-4 *6 (-260)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-865 *6 *4 *5)))) (-2437 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1089 *9)) (-5 *4 (-587 *7)) (-4 *7 (-760)) (-4 *9 (-865 *8 *6 *7)) (-4 *6 (-721)) (-4 *8 (-260)) (-5 *2 (-587 (-698))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *5 (-698)))) (-3085 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1089 *11)) (-5 *6 (-587 *10)) (-5 *7 (-587 (-698))) (-5 *8 (-587 *11)) (-4 *10 (-760)) (-4 *11 (-260)) (-4 *9 (-721)) (-4 *5 (-865 *11 *9 *10)) (-5 *2 (-587 (-1089 *5))) (-5 *1 (-685 *9 *10 *11 *5)) (-5 *3 (-1089 *5)))) (-3363 (*1 *2 *3 *3) (-12 (-5 *3 (-587 (-2 (|:| -3738 (-1089 *6)) (|:| -2406 (-488))))) (-4 *6 (-260)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-865 *6 *4 *5)))) (-2436 (*1 *2 *3 *4) (-12 (-5 *3 (-488)) (-5 *4 (-350 *2)) (-4 *2 (-865 *7 *5 *6)) (-5 *1 (-685 *5 *6 *7 *2)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-260)))) (-2435 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1089 *9)) (-5 *4 (-587 *7)) (-5 *5 (-587 (-587 *8))) (-4 *7 (-760)) (-4 *8 (-260)) (-4 *9 (-865 *8 *6 *7)) (-4 *6 (-721)) (-5 *2 (-2 (|:| |upol| (-1089 *8)) (|:| |Lval| (-587 *8)) (|:| |Lfact| (-587 (-2 (|:| -3738 (-1089 *8)) (|:| -2406 (-488))))) (|:| |ctpol| *8))) (-5 *1 (-685 *6 *7 *8 *9)))) (-2434 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-587 *7)) (-5 *5 (-587 (-587 *8))) (-4 *7 (-760)) (-4 *8 (-260)) (-4 *6 (-721)) (-4 *9 (-865 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-587 (-2 (|:| -3738 (-1089 *9)) (|:| -2406 (-488))))))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1089 *9)))) (-2433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-488)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *8 (-260)) (-4 *9 (-865 *8 *6 *7)) (-5 *2 (-2 (|:| -2009 (-1089 *9)) (|:| |polval| (-1089 *8)))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1089 *9)) (-5 *4 (-1089 *8)))) (-2432 (*1 *2 *3 *4) (-12 (-4 *5 (-721)) (-4 *4 (-760)) (-4 *6 (-260)) (-5 *2 (-350 *3)) (-5 *1 (-685 *5 *4 *6 *3)) (-4 *3 (-865 *6 *5 *4)))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -3738 (-1089 *6)) (|:| -2406 (-488))))) (-4 *6 (-260)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-488)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-865 *6 *4 *5)))) (-2430 (*1 *2 *3) (-12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-260)) (-5 *2 (-350 *3)) (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-865 *6 *4 *5)))) (-3977 (*1 *2 *3) (-12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-260)) (-4 *7 (-865 *6 *4 *5)) (-5 *2 (-350 (-1089 *7))) (-5 *1 (-685 *4 *5 *6 *7)) (-5 *3 (-1089 *7)))) (-3977 (*1 *2 *3) (-12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-260)) (-5 *2 (-350 *3)) (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-865 *6 *4 *5))))) +((-2439 (($ $ (-834)) 17 T ELT))) +(((-686 |#1| |#2|) (-10 -7 (-15 -2439 (|#1| |#1| (-834)))) (-687 |#2|) (-148)) (T -686)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-2412 (($ $ (-834)) 37 T ELT)) (-2439 (($ $ (-834)) 44 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2411 (($ $ (-834)) 38 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2441 (($ $ $) 34 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2442 (($ $ $ $) 35 T ELT)) (-2440 (($ $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 39 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +(((-687 |#1|) (-113) (-148)) (T -687)) +((-2439 (*1 *1 *1 *2) (-12 (-5 *2 (-834)) (-4 *1 (-687 *3)) (-4 *3 (-148))))) +(-13 (-689) (-658 |t#1|) (-10 -8 (-15 -2439 ($ $ (-834))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-594 |#1|) . T) ((-586 |#1|) . T) ((-658 |#1|) . T) ((-661) . T) ((-689) . T) ((-967 |#1|) . T) ((-972 |#1|) . T) ((-1017) . T) ((-1133) . T)) +((-2441 (($ $ $) 10 T ELT)) (-2442 (($ $ $ $) 9 T ELT)) (-2440 (($ $ $) 12 T ELT))) +(((-688 |#1|) (-10 -7 (-15 -2440 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2442 (|#1| |#1| |#1| |#1|))) (-689)) (T -688)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-2412 (($ $ (-834)) 37 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2411 (($ $ (-834)) 38 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2441 (($ $ $) 34 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2442 (($ $ $ $) 35 T ELT)) (-2440 (($ $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 39 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 36 T ELT))) (((-689) (-113)) (T -689)) -((-3129 (*1 *2) (-12 (-4 *1 (-689)) (-5 *2 (-696)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-689))))) -(-13 (-687) (-661) (-10 -8 (-15 -3129 ((-696)) -3956) (-15 -3950 ($ (-486))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-659) . T) ((-661) . T) ((-687) . T) ((-1015) . T) ((-1131) . T)) -((-2441 (((-585 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-486)) (|:| |outvect| (-585 (-632 (-142 |#1|)))))) (-632 (-142 (-350 (-486)))) |#1|) 33 T ELT)) (-2440 (((-585 (-142 |#1|)) (-632 (-142 (-350 (-486)))) |#1|) 23 T ELT)) (-2452 (((-859 (-142 (-350 (-486)))) (-632 (-142 (-350 (-486)))) (-1092)) 20 T ELT) (((-859 (-142 (-350 (-486)))) (-632 (-142 (-350 (-486))))) 19 T ELT))) -(((-690 |#1|) (-10 -7 (-15 -2452 ((-859 (-142 (-350 (-486)))) (-632 (-142 (-350 (-486)))))) (-15 -2452 ((-859 (-142 (-350 (-486)))) (-632 (-142 (-350 (-486)))) (-1092))) (-15 -2440 ((-585 (-142 |#1|)) (-632 (-142 (-350 (-486)))) |#1|)) (-15 -2441 ((-585 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-486)) (|:| |outvect| (-585 (-632 (-142 |#1|)))))) (-632 (-142 (-350 (-486)))) |#1|))) (-13 (-312) (-757))) (T -690)) -((-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-142 (-350 (-486))))) (-5 *2 (-585 (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-486)) (|:| |outvect| (-585 (-632 (-142 *4))))))) (-5 *1 (-690 *4)) (-4 *4 (-13 (-312) (-757))))) (-2440 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-142 (-350 (-486))))) (-5 *2 (-585 (-142 *4))) (-5 *1 (-690 *4)) (-4 *4 (-13 (-312) (-757))))) (-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-142 (-350 (-486))))) (-5 *4 (-1092)) (-5 *2 (-859 (-142 (-350 (-486))))) (-5 *1 (-690 *5)) (-4 *5 (-13 (-312) (-757))))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-632 (-142 (-350 (-486))))) (-5 *2 (-859 (-142 (-350 (-486))))) (-5 *1 (-690 *4)) (-4 *4 (-13 (-312) (-757)))))) -((-2619 (((-148 (-486)) |#1|) 27 T ELT))) -(((-691 |#1|) (-10 -7 (-15 -2619 ((-148 (-486)) |#1|))) (-347)) (T -691)) -((-2619 (*1 *2 *3) (-12 (-5 *2 (-148 (-486))) (-5 *1 (-691 *3)) (-4 *3 (-347))))) -((-2545 ((|#1| |#1| |#1|) 28 T ELT)) (-2546 ((|#1| |#1| |#1|) 27 T ELT)) (-2535 ((|#1| |#1| |#1|) 38 T ELT)) (-2543 ((|#1| |#1| |#1|) 33 T ELT)) (-2544 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2551 (((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|) 26 T ELT))) -(((-692 |#1| |#2|) (-10 -7 (-15 -2551 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-15 -2546 (|#1| |#1| |#1|)) (-15 -2545 (|#1| |#1| |#1|)) (-15 -2544 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -2535 (|#1| |#1| |#1|))) (-647 |#2|) (-312)) (T -692)) -((-2535 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) (-2543 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) (-2544 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) (-2545 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) (-2546 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) (-2551 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-692 *3 *4)) (-4 *3 (-647 *4))))) -((-2558 (((-634 (-1140)) $ (-1140)) 27 T ELT)) (-2559 (((-634 (-490)) $ (-490)) 26 T ELT)) (-2557 (((-696) $ (-102)) 28 T ELT)) (-2560 (((-634 (-101)) $ (-101)) 25 T ELT)) (-2002 (((-634 (-1140)) $) 12 T ELT)) (-1998 (((-634 (-1138)) $) 8 T ELT)) (-2000 (((-634 (-1137)) $) 10 T ELT)) (-2003 (((-634 (-490)) $) 13 T ELT)) (-1999 (((-634 (-488)) $) 9 T ELT)) (-2001 (((-634 (-487)) $) 11 T ELT)) (-1997 (((-696) $ (-102)) 7 T ELT)) (-2004 (((-634 (-101)) $) 14 T ELT)) (-2442 (((-85) $) 32 T ELT)) (-2443 (((-634 $) |#1| (-867)) 33 T ELT)) (-1701 (($ $) 6 T ELT))) -(((-693 |#1|) (-113) (-1015)) (T -693)) -((-2443 (*1 *2 *3 *4) (-12 (-5 *4 (-867)) (-4 *3 (-1015)) (-5 *2 (-634 *1)) (-4 *1 (-693 *3)))) (-2442 (*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) -(-13 (-514) (-10 -8 (-15 -2443 ((-634 $) |t#1| (-867))) (-15 -2442 ((-85) $)))) -(((-147) . T) ((-467) . T) ((-514) . T) ((-772) . T)) -((-3923 (((-2 (|:| -2014 (-632 (-486))) (|:| |basisDen| (-486)) (|:| |basisInv| (-632 (-486)))) (-486)) 72 T ELT)) (-3922 (((-2 (|:| -2014 (-632 (-486))) (|:| |basisDen| (-486)) (|:| |basisInv| (-632 (-486))))) 70 T ELT)) (-3760 (((-486)) 86 T ELT))) -(((-694 |#1| |#2|) (-10 -7 (-15 -3760 ((-486))) (-15 -3922 ((-2 (|:| -2014 (-632 (-486))) (|:| |basisDen| (-486)) (|:| |basisInv| (-632 (-486)))))) (-15 -3923 ((-2 (|:| -2014 (-632 (-486))) (|:| |basisDen| (-486)) (|:| |basisInv| (-632 (-486)))) (-486)))) (-1157 (-486)) (-353 (-486) |#1|)) (T -694)) -((-3923 (*1 *2 *3) (-12 (-5 *3 (-486)) (-4 *4 (-1157 *3)) (-5 *2 (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-694 *4 *5)) (-4 *5 (-353 *3 *4)))) (-3922 (*1 *2) (-12 (-4 *3 (-1157 (-486))) (-5 *2 (-2 (|:| -2014 (-632 (-486))) (|:| |basisDen| (-486)) (|:| |basisInv| (-632 (-486))))) (-5 *1 (-694 *3 *4)) (-4 *4 (-353 (-486) *3)))) (-3760 (*1 *2) (-12 (-4 *3 (-1157 *2)) (-5 *2 (-486)) (-5 *1 (-694 *3 *4)) (-4 *4 (-353 *2 *3))))) -((-2511 (((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-859 |#1|))) 19 T ELT) (((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-859 |#1|)) (-585 (-1092))) 18 T ELT)) (-3576 (((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-859 |#1|))) 21 T ELT) (((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-859 |#1|)) (-585 (-1092))) 20 T ELT))) -(((-695 |#1|) (-10 -7 (-15 -2511 ((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-859 |#1|)) (-585 (-1092)))) (-15 -2511 ((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-859 |#1|)))) (-15 -3576 ((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-859 |#1|)) (-585 (-1092)))) (-15 -3576 ((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-859 |#1|))))) (-497)) (T -695)) -((-3576 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *4)))))) (-5 *1 (-695 *4)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-585 (-1092))) (-4 *5 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *5)))))) (-5 *1 (-695 *5)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *4)))))) (-5 *1 (-695 *4)))) (-2511 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-585 (-1092))) (-4 *5 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *5)))))) (-5 *1 (-695 *5))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2486 (($ $ $) 10 T ELT)) (-1314 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2444 (($ $ (-486)) 11 T ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3147 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 6 T CONST)) (-2669 (($) NIL T CONST)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-696) (-13 (-719) (-665) (-10 -8 (-15 -2566 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -3147 ($ $ $)) (-15 -2882 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-15 -3469 ((-3 $ "failed") $ $)) (-15 -2444 ($ $ (-486))) (-15 -2997 ($ $)) (-6 (-4000 "*"))))) (T -696)) -((-2566 (*1 *1 *1 *1) (-5 *1 (-696))) (-2567 (*1 *1 *1 *1) (-5 *1 (-696))) (-3147 (*1 *1 *1 *1) (-5 *1 (-696))) (-2882 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1974 (-696)) (|:| -2905 (-696)))) (-5 *1 (-696)))) (-3469 (*1 *1 *1 *1) (|partial| -5 *1 (-696))) (-2444 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-696)))) (-2997 (*1 *1 *1) (-5 *1 (-696)))) -((-486) (|%not| (|%ilt| |#1| 0))) -((-3576 (((-3 |#2| "failed") |#2| |#2| (-86) (-1092)) 37 T ELT))) -(((-697 |#1| |#2|) (-10 -7 (-15 -3576 ((-3 |#2| "failed") |#2| |#2| (-86) (-1092)))) (-13 (-258) (-952 (-486)) (-582 (-486)) (-120)) (-13 (-29 |#1|) (-1117) (-873))) (T -697)) -((-3576 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *1 (-697 *5 *2)) (-4 *2 (-13 (-29 *5) (-1117) (-873)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 7 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 9 T ELT))) -(((-698) (-1015)) (T -698)) -NIL -((-3950 (((-698) |#1|) 8 T ELT))) -(((-699 |#1|) (-10 -7 (-15 -3950 ((-698) |#1|))) (-1131)) (T -699)) -((-3950 (*1 *2 *3) (-12 (-5 *2 (-698)) (-5 *1 (-699 *3)) (-4 *3 (-1131))))) -((-3135 ((|#2| |#4|) 35 T ELT))) -(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3135 (|#2| |#4|))) (-393) (-1157 |#1|) (-663 |#1| |#2|) (-1157 |#3|)) (T -700)) -((-3135 (*1 *2 *3) (-12 (-4 *4 (-393)) (-4 *5 (-663 *4 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-700 *4 *2 *5 *3)) (-4 *3 (-1157 *5))))) -((-3470 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2447 (((-1187) (-1075) (-1075) |#4| |#5|) 33 T ELT)) (-2445 ((|#4| |#4| |#5|) 74 T ELT)) (-2446 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|) 79 T ELT)) (-2448 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 16 T ELT))) -(((-701 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3470 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2445 (|#4| |#4| |#5|)) (-15 -2446 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -2447 ((-1187) (-1075) (-1075) |#4| |#5|)) (-15 -2448 ((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|)) (T -701)) -((-2448 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-701 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-2447 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1075)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *4 (-979 *6 *7 *8)) (-5 *2 (-1187)) (-5 *1 (-701 *6 *7 *8 *4 *5)) (-4 *5 (-985 *6 *7 *8 *4)))) (-2446 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-701 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-2445 (*1 *2 *2 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *2 (-979 *4 *5 *6)) (-5 *1 (-701 *4 *5 *6 *2 *3)) (-4 *3 (-985 *4 *5 *6 *2)))) (-3470 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-701 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) -((-3160 (((-3 (-1087 (-1087 |#1|)) "failed") |#4|) 53 T ELT)) (-2449 (((-585 |#4|) |#4|) 22 T ELT)) (-3932 ((|#4| |#4|) 17 T ELT))) -(((-702 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2449 ((-585 |#4|) |#4|)) (-15 -3160 ((-3 (-1087 (-1087 |#1|)) "failed") |#4|)) (-15 -3932 (|#4| |#4|))) (-299) (-280 |#1|) (-1157 |#2|) (-1157 |#3|) (-832)) (T -702)) -((-3932 (*1 *2 *2) (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1157 *4)) (-5 *1 (-702 *3 *4 *5 *2 *6)) (-4 *2 (-1157 *5)) (-14 *6 (-832)))) (-3160 (*1 *2 *3) (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1157 *5)) (-5 *2 (-1087 (-1087 *4))) (-5 *1 (-702 *4 *5 *6 *3 *7)) (-4 *3 (-1157 *6)) (-14 *7 (-832)))) (-2449 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1157 *5)) (-5 *2 (-585 *3)) (-5 *1 (-702 *4 *5 *6 *3 *7)) (-4 *3 (-1157 *6)) (-14 *7 (-832))))) -((-2450 (((-2 (|:| |deter| (-585 (-1087 |#5|))) (|:| |dterm| (-585 (-585 (-2 (|:| -3081 (-696)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-585 |#1|)) (|:| |nlead| (-585 |#5|))) (-1087 |#5|) (-585 |#1|) (-585 |#5|)) 72 T ELT)) (-2451 (((-585 (-696)) |#1|) 20 T ELT))) -(((-703 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2450 ((-2 (|:| |deter| (-585 (-1087 |#5|))) (|:| |dterm| (-585 (-585 (-2 (|:| -3081 (-696)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-585 |#1|)) (|:| |nlead| (-585 |#5|))) (-1087 |#5|) (-585 |#1|) (-585 |#5|))) (-15 -2451 ((-585 (-696)) |#1|))) (-1157 |#4|) (-719) (-758) (-258) (-863 |#4| |#2| |#3|)) (T -703)) -((-2451 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-585 (-696))) (-5 *1 (-703 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *6)) (-4 *7 (-863 *6 *4 *5)))) (-2450 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1157 *9)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-258)) (-4 *10 (-863 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-585 (-1087 *10))) (|:| |dterm| (-585 (-585 (-2 (|:| -3081 (-696)) (|:| |pcoef| *10))))) (|:| |nfacts| (-585 *6)) (|:| |nlead| (-585 *10)))) (-5 *1 (-703 *6 *7 *8 *9 *10)) (-5 *3 (-1087 *10)) (-5 *4 (-585 *6)) (-5 *5 (-585 *10))))) -((-2454 (((-585 (-2 (|:| |outval| |#1|) (|:| |outmult| (-486)) (|:| |outvect| (-585 (-632 |#1|))))) (-632 (-350 (-486))) |#1|) 31 T ELT)) (-2453 (((-585 |#1|) (-632 (-350 (-486))) |#1|) 21 T ELT)) (-2452 (((-859 (-350 (-486))) (-632 (-350 (-486))) (-1092)) 18 T ELT) (((-859 (-350 (-486))) (-632 (-350 (-486)))) 17 T ELT))) -(((-704 |#1|) (-10 -7 (-15 -2452 ((-859 (-350 (-486))) (-632 (-350 (-486))))) (-15 -2452 ((-859 (-350 (-486))) (-632 (-350 (-486))) (-1092))) (-15 -2453 ((-585 |#1|) (-632 (-350 (-486))) |#1|)) (-15 -2454 ((-585 (-2 (|:| |outval| |#1|) (|:| |outmult| (-486)) (|:| |outvect| (-585 (-632 |#1|))))) (-632 (-350 (-486))) |#1|))) (-13 (-312) (-757))) (T -704)) -((-2454 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-350 (-486)))) (-5 *2 (-585 (-2 (|:| |outval| *4) (|:| |outmult| (-486)) (|:| |outvect| (-585 (-632 *4)))))) (-5 *1 (-704 *4)) (-4 *4 (-13 (-312) (-757))))) (-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-350 (-486)))) (-5 *2 (-585 *4)) (-5 *1 (-704 *4)) (-4 *4 (-13 (-312) (-757))))) (-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-350 (-486)))) (-5 *4 (-1092)) (-5 *2 (-859 (-350 (-486)))) (-5 *1 (-704 *5)) (-4 *5 (-13 (-312) (-757))))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-632 (-350 (-486)))) (-5 *2 (-859 (-350 (-486)))) (-5 *1 (-704 *4)) (-4 *4 (-13 (-312) (-757)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 36 T ELT)) (-3084 (((-585 |#2|) $) NIL T ELT)) (-3086 (((-1087 $) $ |#2|) NIL T ELT) (((-1087 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 |#2|)) NIL T ELT)) (-3800 (($ $) 30 T ELT)) (-3169 (((-85) $ $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $ $) 110 (|has| |#1| (-497)) ELT)) (-3151 (((-585 $) $ $) 123 (|has| |#1| (-497)) ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-859 (-350 (-486)))) NIL (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#2| (-555 (-1092)))) ELT) (((-3 $ #1#) (-859 (-486))) NIL (OR (-12 (|has| |#1| (-38 (-486))) (|has| |#2| (-555 (-1092))) (-2563 (|has| |#1| (-38 (-350 (-486)))))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#2| (-555 (-1092))))) ELT) (((-3 $ #1#) (-859 |#1|)) NIL (OR (-12 (|has| |#2| (-555 (-1092))) (-2563 (|has| |#1| (-38 (-350 (-486))))) (-2563 (|has| |#1| (-38 (-486))))) (-12 (|has| |#1| (-38 (-486))) (|has| |#2| (-555 (-1092))) (-2563 (|has| |#1| (-38 (-350 (-486))))) (-2563 (|has| |#1| (-485)))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#2| (-555 (-1092))) (-2563 (|has| |#1| (-906 (-486)))))) ELT) (((-3 (-1041 |#1| |#2|) #1#) $) 21 T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) ((|#2| $) NIL T ELT) (($ (-859 (-350 (-486)))) NIL (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#2| (-555 (-1092)))) ELT) (($ (-859 (-486))) NIL (OR (-12 (|has| |#1| (-38 (-486))) (|has| |#2| (-555 (-1092))) (-2563 (|has| |#1| (-38 (-350 (-486)))))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#2| (-555 (-1092))))) ELT) (($ (-859 |#1|)) NIL (OR (-12 (|has| |#2| (-555 (-1092))) (-2563 (|has| |#1| (-38 (-350 (-486))))) (-2563 (|has| |#1| (-38 (-486))))) (-12 (|has| |#1| (-38 (-486))) (|has| |#2| (-555 (-1092))) (-2563 (|has| |#1| (-38 (-350 (-486))))) (-2563 (|has| |#1| (-485)))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#2| (-555 (-1092))) (-2563 (|has| |#1| (-906 (-486)))))) ELT) (((-1041 |#1| |#2|) $) NIL T ELT)) (-3759 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT) (($ $ $) 121 (|has| |#1| (-497)) ELT)) (-3962 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3697 (((-85) $ $) NIL T ELT) (((-85) $ (-585 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3175 (((-85) $) NIL T ELT)) (-3755 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 81 T ELT)) (-3146 (($ $) 136 (|has| |#1| (-393)) ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT) (($ $ |#2|) NIL (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-3157 (($ $) NIL (|has| |#1| (-497)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-497)) ELT)) (-3168 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3167 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1625 (($ $ |#1| (-471 |#2|) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| |#1| (-798 (-330))) (|has| |#2| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| |#1| (-798 (-486))) (|has| |#2| (-798 (-486)))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 57 T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3698 (((-85) $ $) NIL T ELT) (((-85) $ (-585 $)) NIL T ELT)) (-3148 (($ $ $ $ $) 107 (|has| |#1| (-497)) ELT)) (-3183 ((|#2| $) 22 T ELT)) (-3087 (($ (-1087 |#1|) |#2|) NIL T ELT) (($ (-1087 $) |#2|) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-471 |#2|)) NIL T ELT) (($ $ |#2| (-696)) 38 T ELT) (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT)) (-3162 (($ $ $) 63 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#2|) NIL T ELT)) (-3176 (((-85) $) NIL T ELT)) (-2823 (((-471 |#2|) $) NIL T ELT) (((-696) $ |#2|) NIL T ELT) (((-585 (-696)) $ (-585 |#2|)) NIL T ELT)) (-3182 (((-696) $) 23 T ELT)) (-1626 (($ (-1 (-471 |#2|) (-471 |#2|)) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3085 (((-3 |#2| #1#) $) NIL T ELT)) (-3143 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3144 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3171 (((-585 $) $) NIL T ELT)) (-3174 (($ $) 39 T ELT)) (-3145 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3172 (((-585 $) $) 43 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-3173 (($ $) 41 T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3161 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3484 (-696))) $ $) 96 T ELT)) (-3163 (((-2 (|:| -3958 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $) 78 T ELT) (((-2 (|:| -3958 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $ |#2|) NIL T ELT)) (-3164 (((-2 (|:| -3958 $) (|:| |gap| (-696)) (|:| -2905 $)) $ $) NIL T ELT) (((-2 (|:| -3958 $) (|:| |gap| (-696)) (|:| -2905 $)) $ $ |#2|) NIL T ELT)) (-3166 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3165 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3193 (($ $ $) 125 (|has| |#1| (-497)) ELT)) (-3179 (((-585 $) $) 32 T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| |#2|) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3694 (((-85) $ $) NIL T ELT) (((-85) $ (-585 $)) NIL T ELT)) (-3689 (($ $ $) NIL T ELT)) (-3449 (($ $) 24 T ELT)) (-3702 (((-85) $ $) NIL T ELT)) (-3695 (((-85) $ $) NIL T ELT) (((-85) $ (-585 $)) NIL T ELT)) (-3690 (($ $ $) NIL T ELT)) (-3181 (($ $) 26 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3152 (((-2 (|:| -3147 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-497)) ELT)) (-3153 (((-2 (|:| -3147 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-497)) ELT)) (-1802 (((-85) $) 56 T ELT)) (-1801 ((|#1| $) 58 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-393)) ELT)) (-3147 ((|#1| |#1| $) 133 (|has| |#1| (-393)) ELT) (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-823)) ELT)) (-3154 (((-2 (|:| -3147 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-497)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-497)) ELT)) (-3155 (($ $ |#1|) 129 (|has| |#1| (-497)) ELT) (($ $ $) NIL (|has| |#1| (-497)) ELT)) (-3156 (($ $ |#1|) 128 (|has| |#1| (-497)) ELT) (($ $ $) NIL (|has| |#1| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-585 |#2|) (-585 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-585 |#2|) (-585 $)) NIL T ELT)) (-3760 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3952 (((-471 |#2|) $) NIL T ELT) (((-696) $ |#2|) 45 T ELT) (((-585 (-696)) $ (-585 |#2|)) NIL T ELT)) (-3180 (($ $) NIL T ELT)) (-3178 (($ $) 35 T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| |#1| (-555 (-802 (-330)))) (|has| |#2| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| |#1| (-555 (-802 (-486)))) (|has| |#2| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| |#1| (-555 (-475))) (|has| |#2| (-555 (-475)))) ELT) (($ (-859 (-350 (-486)))) NIL (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#2| (-555 (-1092)))) ELT) (($ (-859 (-486))) NIL (OR (-12 (|has| |#1| (-38 (-486))) (|has| |#2| (-555 (-1092))) (-2563 (|has| |#1| (-38 (-350 (-486)))))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#2| (-555 (-1092))))) ELT) (($ (-859 |#1|)) NIL (|has| |#2| (-555 (-1092))) ELT) (((-1075) $) NIL (-12 (|has| |#1| (-952 (-486))) (|has| |#2| (-555 (-1092)))) ELT) (((-859 |#1|) $) NIL (|has| |#2| (-555 (-1092))) ELT)) (-2820 ((|#1| $) 132 (|has| |#1| (-393)) ELT) (($ $ |#2|) NIL (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-859 |#1|) $) NIL (|has| |#2| (-555 (-1092))) ELT) (((-1041 |#1| |#2|) $) 18 T ELT) (($ (-1041 |#1| |#2|)) 19 T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-471 |#2|)) NIL T ELT) (($ $ |#2| (-696)) 47 T ELT) (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 13 T CONST)) (-3170 (((-3 (-85) #1#) $ $) NIL T ELT)) (-2669 (($) 37 T CONST)) (-3149 (($ $ $ $ (-696)) 105 (|has| |#1| (-497)) ELT)) (-3150 (($ $ $ (-696)) 104 (|has| |#1| (-497)) ELT)) (-2672 (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3842 (($ $ $) 85 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 70 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) -(((-705 |#1| |#2|) (-13 (-979 |#1| (-471 |#2|) |#2|) (-554 (-1041 |#1| |#2|)) (-952 (-1041 |#1| |#2|))) (-963) (-758)) (T -705)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 12 T ELT)) (-3770 (((-1181 |#1|) $ (-696)) NIL T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3768 (($ (-1087 |#1|)) NIL T ELT)) (-3086 (((-1087 $) $ (-996)) NIL T ELT) (((-1087 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-996))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2458 (((-585 $) $ $) 54 (|has| |#1| (-497)) ELT)) (-3758 (($ $ $) 50 (|has| |#1| (-497)) ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3764 (($ $ (-696)) NIL T ELT)) (-3763 (($ $ (-696)) NIL T ELT)) (-3754 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-393)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-996) #1#) $) NIL T ELT) (((-3 (-1087 |#1|) #1#) $) 10 T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-996) $) NIL T ELT) (((-1087 |#1|) $) NIL T ELT)) (-3759 (($ $ $ (-996)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 58 (|has| |#1| (-146)) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3762 (($ $ $) NIL T ELT)) (-3756 (($ $ $) 87 (|has| |#1| (-497)) ELT)) (-3755 (((-2 (|:| -3958 |#1|) (|:| -1974 $) (|:| -2905 $)) $ $) 86 (|has| |#1| (-497)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT) (($ $ (-996)) NIL (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| (-696) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-996) (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-996) (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-3775 (((-696) $ $) NIL (|has| |#1| (-497)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-1068)) ELT)) (-3087 (($ (-1087 |#1|) (-996)) NIL T ELT) (($ (-1087 $) (-996)) NIL T ELT)) (-3780 (($ $ (-696)) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-696)) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-3162 (($ $ $) 27 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-996)) NIL T ELT) (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2823 (((-696) $) NIL T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-1626 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3769 (((-1087 |#1|) $) NIL T ELT)) (-3085 (((-3 (-996) #1#) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3161 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3484 (-696))) $ $) 37 T ELT)) (-2460 (($ $ $) 41 T ELT)) (-2459 (($ $ $) 47 T ELT)) (-3163 (((-2 (|:| -3958 |#1|) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $) 46 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3193 (($ $ $) 56 (|has| |#1| (-497)) ELT)) (-3765 (((-2 (|:| -1974 $) (|:| -2905 $)) $ (-696)) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-996)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3815 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3449 (($) NIL (|has| |#1| (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-3152 (((-2 (|:| -3147 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-497)) ELT)) (-3153 (((-2 (|:| -3147 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-497)) ELT)) (-2455 (((-2 (|:| -3759 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-497)) ELT)) (-2456 (((-2 (|:| -3759 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-497)) ELT)) (-1802 (((-85) $) 13 T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3741 (($ $ (-696) |#1| $) 26 T ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-823)) ELT)) (-3154 (((-2 (|:| -3147 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-497)) ELT)) (-2457 (((-2 (|:| -3759 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-497)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-996) |#1|) NIL T ELT) (($ $ (-585 (-996)) (-585 |#1|)) NIL T ELT) (($ $ (-996) $) NIL T ELT) (($ $ (-585 (-996)) (-585 $)) NIL T ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-497)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-497)) ELT)) (-3767 (((-3 $ #1#) $ (-696)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-996)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-3952 (((-696) $) NIL T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-996) (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-996) (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-996) (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT) (($ $ (-996)) NIL (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3757 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-497)) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-996)) NIL T ELT) (((-1087 |#1|) $) 7 T ELT) (($ (-1087 |#1|)) 8 T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-696)) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 28 T CONST)) (-2669 (($) 32 T CONST)) (-2672 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) -(((-706 |#1|) (-13 (-1157 |#1|) (-554 (-1087 |#1|)) (-952 (-1087 |#1|)) (-10 -8 (-15 -3741 ($ $ (-696) |#1| $)) (-15 -3162 ($ $ $)) (-15 -3161 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3484 (-696))) $ $)) (-15 -2460 ($ $ $)) (-15 -3163 ((-2 (|:| -3958 |#1|) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $)) (-15 -2459 ($ $ $)) (IF (|has| |#1| (-497)) (PROGN (-15 -2458 ((-585 $) $ $)) (-15 -3193 ($ $ $)) (-15 -3154 ((-2 (|:| -3147 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3153 ((-2 (|:| -3147 $) (|:| |coef1| $)) $ $)) (-15 -3152 ((-2 (|:| -3147 $) (|:| |coef2| $)) $ $)) (-15 -2457 ((-2 (|:| -3759 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2456 ((-2 (|:| -3759 |#1|) (|:| |coef1| $)) $ $)) (-15 -2455 ((-2 (|:| -3759 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-963)) (T -706)) -((-3741 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-696)) (-5 *1 (-706 *3)) (-4 *3 (-963)))) (-3162 (*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-963)))) (-3161 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-706 *3)) (|:| |polden| *3) (|:| -3484 (-696)))) (-5 *1 (-706 *3)) (-4 *3 (-963)))) (-2460 (*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-963)))) (-3163 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3958 *3) (|:| |gap| (-696)) (|:| -1974 (-706 *3)) (|:| -2905 (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-963)))) (-2459 (*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-963)))) (-2458 (*1 *2 *1 *1) (-12 (-5 *2 (-585 (-706 *3))) (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963)))) (-3193 (*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-497)) (-4 *2 (-963)))) (-3154 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3147 (-706 *3)) (|:| |coef1| (-706 *3)) (|:| |coef2| (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963)))) (-3153 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3147 (-706 *3)) (|:| |coef1| (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963)))) (-3152 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3147 (-706 *3)) (|:| |coef2| (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963)))) (-2457 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3759 *3) (|:| |coef1| (-706 *3)) (|:| |coef2| (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963)))) (-2456 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3759 *3) (|:| |coef1| (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963)))) (-2455 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3759 *3) (|:| |coef2| (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963))))) -((-3846 (((-706 |#2|) (-1 |#2| |#1|) (-706 |#1|)) 13 T ELT))) -(((-707 |#1| |#2|) (-10 -7 (-15 -3846 ((-706 |#2|) (-1 |#2| |#1|) (-706 |#1|)))) (-963) (-963)) (T -707)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-706 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-5 *2 (-706 *6)) (-5 *1 (-707 *5 *6))))) -((-2462 ((|#1| (-696) |#1|) 33 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2804 ((|#1| (-696) |#1|) 23 T ELT)) (-2461 ((|#1| (-696) |#1|) 35 (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-708 |#1|) (-10 -7 (-15 -2804 (|#1| (-696) |#1|)) (IF (|has| |#1| (-38 (-350 (-486)))) (PROGN (-15 -2461 (|#1| (-696) |#1|)) (-15 -2462 (|#1| (-696) |#1|))) |%noBranch|)) (-146)) (T -708)) -((-2462 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-708 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-146)))) (-2461 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-708 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-146)))) (-2804 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-708 *2)) (-4 *2 (-146))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3684 (((-585 (-2 (|:| -3865 $) (|:| -1703 (-585 |#4|)))) (-585 |#4|)) 91 T ELT)) (-3685 (((-585 $) (-585 |#4|)) 92 T ELT) (((-585 $) (-585 |#4|) (-85)) 120 T ELT)) (-3084 (((-585 |#3|) $) 39 T ELT)) (-2911 (((-85) $) 32 T ELT)) (-2902 (((-85) $) 23 (|has| |#1| (-497)) ELT)) (-3696 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3691 ((|#4| |#4| $) 98 T ELT)) (-3778 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 135 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3713 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3727 (($) 59 T CONST)) (-2907 (((-85) $) 28 (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) 30 (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) 31 (|has| |#1| (-497)) ELT)) (-3692 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 24 (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) 25 (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ "failed") (-585 |#4|)) 42 T ELT)) (-3159 (($ (-585 |#4|)) 41 T ELT)) (-3802 (((-3 $ #1#) $) 88 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-1355 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3409 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-497)) ELT)) (-3697 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3686 ((|#4| |#4| $) 93 T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3699 (((-2 (|:| -3865 (-585 |#4|)) (|:| -1703 (-585 |#4|))) $) 111 T ELT)) (-3200 (((-85) |#4| $) 145 T ELT)) (-3198 (((-85) |#4| $) 142 T ELT)) (-3201 (((-85) |#4| $) 146 T ELT) (((-85) $) 143 T ELT)) (-3698 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3183 ((|#3| $) 40 T ELT)) (-2611 (((-585 |#4|) $) 48 T ELT)) (-3248 (((-85) |#4| $) 53 (|has| |#4| (-72)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3846 (($ (-1 |#4| |#4|) $) 60 T ELT)) (-2917 (((-585 |#3|) $) 38 T ELT)) (-2916 (((-85) |#3| $) 37 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3194 (((-3 |#4| (-585 $)) |#4| |#4| $) 137 T ELT)) (-3193 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 136 T ELT)) (-3801 (((-3 |#4| #1#) $) 89 T ELT)) (-3195 (((-585 $) |#4| $) 138 T ELT)) (-3197 (((-3 (-85) (-585 $)) |#4| $) 141 T ELT)) (-3196 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 140 T ELT) (((-85) |#4| $) 139 T ELT)) (-3241 (((-585 $) |#4| $) 134 T ELT) (((-585 $) (-585 |#4|) $) 133 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 132 T ELT) (((-585 $) |#4| (-585 $)) 131 T ELT)) (-3443 (($ |#4| $) 126 T ELT) (($ (-585 |#4|) $) 125 T ELT)) (-3700 (((-585 |#4|) $) 113 T ELT)) (-3694 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3702 (((-85) $ $) 116 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-497)) ELT)) (-3695 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3804 (((-3 |#4| #1#) $) 90 T ELT)) (-1731 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 51 T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3772 (($ $ |#4|) 83 T ELT) (((-585 $) |#4| $) 124 T ELT) (((-585 $) |#4| (-585 $)) 123 T ELT) (((-585 $) (-585 |#4|) $) 122 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 121 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 46 T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) 64 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) 55 T ELT)) (-3406 (((-85) $) 58 T ELT)) (-3568 (($) 57 T ELT)) (-3952 (((-696) $) 112 T ELT)) (-1732 (((-696) |#4| $) 52 (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) 47 T ELT)) (-3403 (($ $) 56 T ELT)) (-3975 (((-475) $) 70 (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) 65 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-2915 (($ $ |#3|) 36 T ELT)) (-3687 (($ $) 94 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3950 (((-774) $) 13 T ELT) (((-585 |#4|) $) 43 T ELT)) (-3681 (((-696) $) 82 (|has| |#3| (-320)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3693 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) 104 T ELT)) (-3192 (((-585 $) |#4| $) 130 T ELT) (((-585 $) |#4| (-585 $)) 129 T ELT) (((-585 $) (-585 |#4|) $) 128 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 127 T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3683 (((-585 |#3|) $) 87 T ELT)) (-3199 (((-85) |#4| $) 144 T ELT)) (-3937 (((-85) |#3| $) 86 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3961 (((-696) $) 44 T ELT))) -(((-709 |#1| |#2| |#3| |#4|) (-113) (-393) (-719) (-758) (-979 |t#1| |t#2| |t#3|)) (T -709)) -NIL -(-13 (-985 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-554 (-585 |#4|)) . T) ((-554 (-774)) . T) ((-124 |#4|) . T) ((-555 (-475)) |has| |#4| (-555 (-475))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-318 |#4|) . T) ((-381 |#4|) . T) ((-430 |#4|) . T) ((-457 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-13) . T) ((-891 |#1| |#2| |#3| |#4|) . T) ((-985 |#1| |#2| |#3| |#4|) . T) ((-1015) . T) ((-1037 |#4|) . T) ((-1126 |#1| |#2| |#3| |#4|) . T) ((-1131) . T)) -((-2465 (((-3 (-330) #1="failed") (-265 |#1|) (-832)) 60 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-3 (-330) #1#) (-265 |#1|)) 52 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-3 (-330) #1#) (-350 (-859 |#1|)) (-832)) 39 (|has| |#1| (-497)) ELT) (((-3 (-330) #1#) (-350 (-859 |#1|))) 35 (|has| |#1| (-497)) ELT) (((-3 (-330) #1#) (-859 |#1|) (-832)) 30 (|has| |#1| (-963)) ELT) (((-3 (-330) #1#) (-859 |#1|)) 24 (|has| |#1| (-963)) ELT)) (-2463 (((-330) (-265 |#1|) (-832)) 92 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-330) (-265 |#1|)) 87 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-330) (-350 (-859 |#1|)) (-832)) 84 (|has| |#1| (-497)) ELT) (((-330) (-350 (-859 |#1|))) 81 (|has| |#1| (-497)) ELT) (((-330) (-859 |#1|) (-832)) 80 (|has| |#1| (-963)) ELT) (((-330) (-859 |#1|)) 77 (|has| |#1| (-963)) ELT) (((-330) |#1| (-832)) 73 T ELT) (((-330) |#1|) 22 T ELT)) (-2466 (((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)) (-832)) 68 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-3 (-142 (-330)) #1#) (-265 (-142 |#1|))) 58 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-3 (-142 (-330)) #1#) (-265 |#1|) (-832)) 61 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-3 (-142 (-330)) #1#) (-265 |#1|)) 59 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-3 (-142 (-330)) #1#) (-350 (-859 (-142 |#1|))) (-832)) 44 (|has| |#1| (-497)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-859 (-142 |#1|)))) 43 (|has| |#1| (-497)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-859 |#1|)) (-832)) 38 (|has| |#1| (-497)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-859 |#1|))) 37 (|has| |#1| (-497)) ELT) (((-3 (-142 (-330)) #1#) (-859 |#1|) (-832)) 28 (|has| |#1| (-963)) ELT) (((-3 (-142 (-330)) #1#) (-859 |#1|)) 26 (|has| |#1| (-963)) ELT) (((-3 (-142 (-330)) #1#) (-859 (-142 |#1|)) (-832)) 18 (|has| |#1| (-146)) ELT) (((-3 (-142 (-330)) #1#) (-859 (-142 |#1|))) 15 (|has| |#1| (-146)) ELT)) (-2464 (((-142 (-330)) (-265 (-142 |#1|)) (-832)) 95 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-142 (-330)) (-265 (-142 |#1|))) 94 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-142 (-330)) (-265 |#1|) (-832)) 93 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-142 (-330)) (-265 |#1|)) 91 (-12 (|has| |#1| (-497)) (|has| |#1| (-758))) ELT) (((-142 (-330)) (-350 (-859 (-142 |#1|))) (-832)) 86 (|has| |#1| (-497)) ELT) (((-142 (-330)) (-350 (-859 (-142 |#1|)))) 85 (|has| |#1| (-497)) ELT) (((-142 (-330)) (-350 (-859 |#1|)) (-832)) 83 (|has| |#1| (-497)) ELT) (((-142 (-330)) (-350 (-859 |#1|))) 82 (|has| |#1| (-497)) ELT) (((-142 (-330)) (-859 |#1|) (-832)) 79 (|has| |#1| (-963)) ELT) (((-142 (-330)) (-859 |#1|)) 78 (|has| |#1| (-963)) ELT) (((-142 (-330)) (-859 (-142 |#1|)) (-832)) 75 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-859 (-142 |#1|))) 74 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-142 |#1|) (-832)) 17 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-142 |#1|)) 13 (|has| |#1| (-146)) ELT) (((-142 (-330)) |#1| (-832)) 27 T ELT) (((-142 (-330)) |#1|) 25 T ELT))) -(((-710 |#1|) (-10 -7 (-15 -2463 ((-330) |#1|)) (-15 -2463 ((-330) |#1| (-832))) (-15 -2464 ((-142 (-330)) |#1|)) (-15 -2464 ((-142 (-330)) |#1| (-832))) (IF (|has| |#1| (-146)) (PROGN (-15 -2464 ((-142 (-330)) (-142 |#1|))) (-15 -2464 ((-142 (-330)) (-142 |#1|) (-832))) (-15 -2464 ((-142 (-330)) (-859 (-142 |#1|)))) (-15 -2464 ((-142 (-330)) (-859 (-142 |#1|)) (-832)))) |%noBranch|) (IF (|has| |#1| (-963)) (PROGN (-15 -2463 ((-330) (-859 |#1|))) (-15 -2463 ((-330) (-859 |#1|) (-832))) (-15 -2464 ((-142 (-330)) (-859 |#1|))) (-15 -2464 ((-142 (-330)) (-859 |#1|) (-832)))) |%noBranch|) (IF (|has| |#1| (-497)) (PROGN (-15 -2463 ((-330) (-350 (-859 |#1|)))) (-15 -2463 ((-330) (-350 (-859 |#1|)) (-832))) (-15 -2464 ((-142 (-330)) (-350 (-859 |#1|)))) (-15 -2464 ((-142 (-330)) (-350 (-859 |#1|)) (-832))) (-15 -2464 ((-142 (-330)) (-350 (-859 (-142 |#1|))))) (-15 -2464 ((-142 (-330)) (-350 (-859 (-142 |#1|))) (-832))) (IF (|has| |#1| (-758)) (PROGN (-15 -2463 ((-330) (-265 |#1|))) (-15 -2463 ((-330) (-265 |#1|) (-832))) (-15 -2464 ((-142 (-330)) (-265 |#1|))) (-15 -2464 ((-142 (-330)) (-265 |#1|) (-832))) (-15 -2464 ((-142 (-330)) (-265 (-142 |#1|)))) (-15 -2464 ((-142 (-330)) (-265 (-142 |#1|)) (-832)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-15 -2466 ((-3 (-142 (-330)) #1="failed") (-859 (-142 |#1|)))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-859 (-142 |#1|)) (-832)))) |%noBranch|) (IF (|has| |#1| (-963)) (PROGN (-15 -2465 ((-3 (-330) #1#) (-859 |#1|))) (-15 -2465 ((-3 (-330) #1#) (-859 |#1|) (-832))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-859 |#1|))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-859 |#1|) (-832)))) |%noBranch|) (IF (|has| |#1| (-497)) (PROGN (-15 -2465 ((-3 (-330) #1#) (-350 (-859 |#1|)))) (-15 -2465 ((-3 (-330) #1#) (-350 (-859 |#1|)) (-832))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-350 (-859 |#1|)))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-350 (-859 |#1|)) (-832))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-350 (-859 (-142 |#1|))))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-350 (-859 (-142 |#1|))) (-832))) (IF (|has| |#1| (-758)) (PROGN (-15 -2465 ((-3 (-330) #1#) (-265 |#1|))) (-15 -2465 ((-3 (-330) #1#) (-265 |#1|) (-832))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-265 |#1|))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-265 |#1|) (-832))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)))) (-15 -2466 ((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)) (-832)))) |%noBranch|)) |%noBranch|)) (-555 (-330))) (T -710)) -((-2466 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2466 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-497)) (-4 *4 (-758)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2466 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2466 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-497)) (-4 *4 (-758)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-497)) (-4 *4 (-758)) (-4 *4 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *4)))) (-2466 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-859 (-142 *5)))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2466 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-859 (-142 *4)))) (-4 *4 (-497)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2466 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2466 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-4 *4 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *4)))) (-2466 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2466 (*1 *2 *3) (|partial| -12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *4)))) (-2466 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-859 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-146)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2466 (*1 *2 *3) (|partial| -12 (-5 *3 (-859 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-497)) (-4 *4 (-758)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-497)) (-4 *4 (-758)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-497)) (-4 *4 (-758)) (-4 *4 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 (-142 *5)))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-350 (-859 (-142 *4)))) (-4 *4 (-497)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-4 *4 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-859 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-146)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-859 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-142 *5)) (-5 *4 (-832)) (-4 *5 (-146)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-5 *2 (-142 (-330))) (-5 *1 (-710 *3)) (-4 *3 (-555 (-330))))) (-2464 (*1 *2 *3) (-12 (-5 *2 (-142 (-330))) (-5 *1 (-710 *3)) (-4 *3 (-555 (-330))))) (-2463 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-5 *2 (-330)) (-5 *1 (-710 *3)) (-4 *3 (-555 *2)))) (-2463 (*1 *2 *3) (-12 (-5 *2 (-330)) (-5 *1 (-710 *3)) (-4 *3 (-555 *2))))) -((-2470 (((-832) (-1075)) 90 T ELT)) (-2472 (((-3 (-330) "failed") (-1075)) 36 T ELT)) (-2471 (((-330) (-1075)) 34 T ELT)) (-2468 (((-832) (-1075)) 64 T ELT)) (-2469 (((-1075) (-832)) 74 T ELT)) (-2467 (((-1075) (-832)) 63 T ELT))) -(((-711) (-10 -7 (-15 -2467 ((-1075) (-832))) (-15 -2468 ((-832) (-1075))) (-15 -2469 ((-1075) (-832))) (-15 -2470 ((-832) (-1075))) (-15 -2471 ((-330) (-1075))) (-15 -2472 ((-3 (-330) "failed") (-1075))))) (T -711)) -((-2472 (*1 *2 *3) (|partial| -12 (-5 *3 (-1075)) (-5 *2 (-330)) (-5 *1 (-711)))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-330)) (-5 *1 (-711)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-832)) (-5 *1 (-711)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1075)) (-5 *1 (-711)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-832)) (-5 *1 (-711)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1075)) (-5 *1 (-711))))) -((-2475 (((-1187) (-1181 (-330)) (-486) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330))) (-330) (-1181 (-330)) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330))) 54 T ELT) (((-1187) (-1181 (-330)) (-486) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330))) (-330) (-1181 (-330)) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330))) 51 T ELT)) (-2476 (((-1187) (-1181 (-330)) (-486) (-330) (-330) (-486) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330))) 61 T ELT)) (-2474 (((-1187) (-1181 (-330)) (-486) (-330) (-330) (-330) (-330) (-486) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330))) 49 T ELT)) (-2473 (((-1187) (-1181 (-330)) (-486) (-330) (-330) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330))) 63 T ELT) (((-1187) (-1181 (-330)) (-486) (-330) (-330) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330))) 62 T ELT))) -(((-712) (-10 -7 (-15 -2473 ((-1187) (-1181 (-330)) (-486) (-330) (-330) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330)))) (-15 -2473 ((-1187) (-1181 (-330)) (-486) (-330) (-330) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)))) (-15 -2474 ((-1187) (-1181 (-330)) (-486) (-330) (-330) (-330) (-330) (-486) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330)))) (-15 -2475 ((-1187) (-1181 (-330)) (-486) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330))) (-330) (-1181 (-330)) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330)))) (-15 -2475 ((-1187) (-1181 (-330)) (-486) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330))) (-330) (-1181 (-330)) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)) (-1181 (-330)))) (-15 -2476 ((-1187) (-1181 (-330)) (-486) (-330) (-330) (-486) (-1 (-1187) (-1181 (-330)) (-1181 (-330)) (-330)))))) (T -712)) -((-2476 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-486)) (-5 *6 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712)))) (-2475 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-486)) (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330)))) (-5 *7 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712)))) (-2475 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-486)) (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330)))) (-5 *7 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712)))) (-2474 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-486)) (-5 *6 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712)))) (-2473 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-486)) (-5 *6 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712)))) (-2473 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-486)) (-5 *6 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712))))) -((-2485 (((-2 (|:| -3405 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486)) 65 T ELT)) (-2482 (((-2 (|:| -3405 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486)) 40 T ELT)) (-2484 (((-2 (|:| -3405 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486)) 64 T ELT)) (-2481 (((-2 (|:| -3405 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486)) 38 T ELT)) (-2483 (((-2 (|:| -3405 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486)) 63 T ELT)) (-2480 (((-2 (|:| -3405 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486)) 24 T ELT)) (-2479 (((-2 (|:| -3405 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486) (-486)) 41 T ELT)) (-2478 (((-2 (|:| -3405 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486) (-486)) 39 T ELT)) (-2477 (((-2 (|:| -3405 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486) (-486)) 37 T ELT))) -(((-713) (-10 -7 (-15 -2477 ((-2 (|:| -3405 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486) (-486))) (-15 -2478 ((-2 (|:| -3405 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486) (-486))) (-15 -2479 ((-2 (|:| -3405 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486) (-486))) (-15 -2480 ((-2 (|:| -3405 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486))) (-15 -2481 ((-2 (|:| -3405 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486))) (-15 -2482 ((-2 (|:| -3405 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486))) (-15 -2483 ((-2 (|:| -3405 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486))) (-15 -2484 ((-2 (|:| -3405 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486))) (-15 -2485 ((-2 (|:| -3405 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-486)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-486) (-486))))) (T -713)) -((-2485 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-486)))) (-2484 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-486)))) (-2483 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-486)))) (-2482 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-486)))) (-2481 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-486)))) (-2480 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-486)))) (-2479 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-486)))) (-2478 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-486)))) (-2477 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-486)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-486))))) -((-3708 (((-1127 |#1|) |#1| (-179) (-486)) 69 T ELT))) -(((-714 |#1|) (-10 -7 (-15 -3708 ((-1127 |#1|) |#1| (-179) (-486)))) (-889)) (T -714)) -((-3708 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-179)) (-5 *5 (-486)) (-5 *2 (-1127 *3)) (-5 *1 (-714 *3)) (-4 *3 (-889))))) -((-3626 (((-486) $) 17 T ELT)) (-3190 (((-85) $) 10 T ELT)) (-3386 (($ $) 19 T ELT))) -(((-715 |#1|) (-10 -7 (-15 -3386 (|#1| |#1|)) (-15 -3626 ((-486) |#1|)) (-15 -3190 ((-85) |#1|))) (-716)) (T -715)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 31 T ELT)) (-1314 (((-3 $ "failed") $ $) 35 T ELT)) (-3626 (((-486) $) 38 T ELT)) (-3727 (($) 30 T CONST)) (-3189 (((-85) $) 28 T ELT)) (-1216 (((-85) $ $) 33 T ELT)) (-3190 (((-85) $) 39 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3386 (($ $) 37 T ELT)) (-2663 (($) 29 T CONST)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (-3840 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3842 (($ $ $) 25 T ELT)) (* (($ (-832) $) 26 T ELT) (($ (-696) $) 32 T ELT) (($ (-486) $) 40 T ELT))) -(((-716) (-113)) (T -716)) -((-3190 (*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-85)))) (-3626 (*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-486)))) (-3386 (*1 *1 *1) (-4 *1 (-716)))) -(-13 (-723) (-21) (-10 -8 (-15 -3190 ((-85) $)) (-15 -3626 ((-486) $)) (-15 -3386 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1131) . T)) -((-3189 (((-85) $) 10 T ELT))) -(((-717 |#1|) (-10 -7 (-15 -3189 ((-85) |#1|))) (-718)) (T -717)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 31 T ELT)) (-3727 (($) 30 T CONST)) (-3189 (((-85) $) 28 T ELT)) (-1216 (((-85) $ $) 33 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 29 T CONST)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (-3842 (($ $ $) 25 T ELT)) (* (($ (-832) $) 26 T ELT) (($ (-696) $) 32 T ELT))) +((-2442 (*1 *1 *1 *1 *1) (-4 *1 (-689))) (-2441 (*1 *1 *1 *1) (-4 *1 (-689))) (-2440 (*1 *1 *1 *1) (-4 *1 (-689)))) +(-13 (-21) (-661) (-10 -8 (-15 -2442 ($ $ $ $)) (-15 -2441 ($ $ $)) (-15 -2440 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-661) . T) ((-1017) . T) ((-1133) . T)) +((-3953 (((-776) $) NIL T ELT) (($ (-488)) 10 T ELT))) +(((-690 |#1|) (-10 -7 (-15 -3953 (|#1| (-488))) (-15 -3953 ((-776) |#1|))) (-691)) (T -690)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-2409 (((-3 $ #1="failed") $) 49 T ELT)) (-2412 (($ $ (-834)) 37 T ELT) (($ $ (-698)) 44 T ELT)) (-3473 (((-3 $ #1#) $) 47 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 43 T ELT)) (-2410 (((-3 $ #1#) $) 48 T ELT)) (-2411 (($ $ (-834)) 38 T ELT) (($ $ (-698)) 45 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2441 (($ $ $) 34 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 40 T ELT)) (-3132 (((-698)) 41 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2442 (($ $ $ $) 35 T ELT)) (-2440 (($ $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 42 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 39 T ELT) (($ $ (-698)) 46 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 36 T ELT))) +(((-691) (-113)) (T -691)) +((-3132 (*1 *2) (-12 (-4 *1 (-691)) (-5 *2 (-698)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-691))))) +(-13 (-689) (-663) (-10 -8 (-15 -3132 ((-698)) -3959) (-15 -3953 ($ (-488))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-661) . T) ((-663) . T) ((-689) . T) ((-1017) . T) ((-1133) . T)) +((-2444 (((-587 (-2 (|:| |outval| (-144 |#1|)) (|:| |outmult| (-488)) (|:| |outvect| (-587 (-634 (-144 |#1|)))))) (-634 (-144 (-352 (-488)))) |#1|) 33 T ELT)) (-2443 (((-587 (-144 |#1|)) (-634 (-144 (-352 (-488)))) |#1|) 23 T ELT)) (-2455 (((-861 (-144 (-352 (-488)))) (-634 (-144 (-352 (-488)))) (-1094)) 20 T ELT) (((-861 (-144 (-352 (-488)))) (-634 (-144 (-352 (-488))))) 19 T ELT))) +(((-692 |#1|) (-10 -7 (-15 -2455 ((-861 (-144 (-352 (-488)))) (-634 (-144 (-352 (-488)))))) (-15 -2455 ((-861 (-144 (-352 (-488)))) (-634 (-144 (-352 (-488)))) (-1094))) (-15 -2443 ((-587 (-144 |#1|)) (-634 (-144 (-352 (-488)))) |#1|)) (-15 -2444 ((-587 (-2 (|:| |outval| (-144 |#1|)) (|:| |outmult| (-488)) (|:| |outvect| (-587 (-634 (-144 |#1|)))))) (-634 (-144 (-352 (-488)))) |#1|))) (-13 (-314) (-759))) (T -692)) +((-2444 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-144 (-352 (-488))))) (-5 *2 (-587 (-2 (|:| |outval| (-144 *4)) (|:| |outmult| (-488)) (|:| |outvect| (-587 (-634 (-144 *4))))))) (-5 *1 (-692 *4)) (-4 *4 (-13 (-314) (-759))))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-144 (-352 (-488))))) (-5 *2 (-587 (-144 *4))) (-5 *1 (-692 *4)) (-4 *4 (-13 (-314) (-759))))) (-2455 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-144 (-352 (-488))))) (-5 *4 (-1094)) (-5 *2 (-861 (-144 (-352 (-488))))) (-5 *1 (-692 *5)) (-4 *5 (-13 (-314) (-759))))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-634 (-144 (-352 (-488))))) (-5 *2 (-861 (-144 (-352 (-488))))) (-5 *1 (-692 *4)) (-4 *4 (-13 (-314) (-759)))))) +((-2622 (((-150 (-488)) |#1|) 27 T ELT))) +(((-693 |#1|) (-10 -7 (-15 -2622 ((-150 (-488)) |#1|))) (-349)) (T -693)) +((-2622 (*1 *2 *3) (-12 (-5 *2 (-150 (-488))) (-5 *1 (-693 *3)) (-4 *3 (-349))))) +((-2548 ((|#1| |#1| |#1|) 28 T ELT)) (-2549 ((|#1| |#1| |#1|) 27 T ELT)) (-2538 ((|#1| |#1| |#1|) 38 T ELT)) (-2546 ((|#1| |#1| |#1|) 33 T ELT)) (-2547 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2554 (((-2 (|:| -1977 |#1|) (|:| -2908 |#1|)) |#1| |#1|) 26 T ELT))) +(((-694 |#1| |#2|) (-10 -7 (-15 -2554 ((-2 (|:| -1977 |#1|) (|:| -2908 |#1|)) |#1| |#1|)) (-15 -2549 (|#1| |#1| |#1|)) (-15 -2548 (|#1| |#1| |#1|)) (-15 -2547 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2546 (|#1| |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|))) (-649 |#2|) (-314)) (T -694)) +((-2538 (*1 *2 *2 *2) (-12 (-4 *3 (-314)) (-5 *1 (-694 *2 *3)) (-4 *2 (-649 *3)))) (-2546 (*1 *2 *2 *2) (-12 (-4 *3 (-314)) (-5 *1 (-694 *2 *3)) (-4 *2 (-649 *3)))) (-2547 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-314)) (-5 *1 (-694 *2 *3)) (-4 *2 (-649 *3)))) (-2548 (*1 *2 *2 *2) (-12 (-4 *3 (-314)) (-5 *1 (-694 *2 *3)) (-4 *2 (-649 *3)))) (-2549 (*1 *2 *2 *2) (-12 (-4 *3 (-314)) (-5 *1 (-694 *2 *3)) (-4 *2 (-649 *3)))) (-2554 (*1 *2 *3 *3) (-12 (-4 *4 (-314)) (-5 *2 (-2 (|:| -1977 *3) (|:| -2908 *3))) (-5 *1 (-694 *3 *4)) (-4 *3 (-649 *4))))) +((-2561 (((-636 (-1142)) $ (-1142)) 27 T ELT)) (-2562 (((-636 (-492)) $ (-492)) 26 T ELT)) (-2560 (((-698) $ (-102)) 28 T ELT)) (-2563 (((-636 (-101)) $ (-101)) 25 T ELT)) (-2005 (((-636 (-1142)) $) 12 T ELT)) (-2001 (((-636 (-1140)) $) 8 T ELT)) (-2003 (((-636 (-1139)) $) 10 T ELT)) (-2006 (((-636 (-492)) $) 13 T ELT)) (-2002 (((-636 (-490)) $) 9 T ELT)) (-2004 (((-636 (-489)) $) 11 T ELT)) (-2000 (((-698) $ (-102)) 7 T ELT)) (-2007 (((-636 (-101)) $) 14 T ELT)) (-2445 (((-85) $) 32 T ELT)) (-2446 (((-636 $) |#1| (-869)) 33 T ELT)) (-1704 (($ $) 6 T ELT))) +(((-695 |#1|) (-113) (-1017)) (T -695)) +((-2446 (*1 *2 *3 *4) (-12 (-5 *4 (-869)) (-4 *3 (-1017)) (-5 *2 (-636 *1)) (-4 *1 (-695 *3)))) (-2445 (*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1017)) (-5 *2 (-85))))) +(-13 (-516) (-10 -8 (-15 -2446 ((-636 $) |t#1| (-869))) (-15 -2445 ((-85) $)))) +(((-149) . T) ((-469) . T) ((-516) . T) ((-774) . T)) +((-3926 (((-2 (|:| -2017 (-634 (-488))) (|:| |basisDen| (-488)) (|:| |basisInv| (-634 (-488)))) (-488)) 72 T ELT)) (-3925 (((-2 (|:| -2017 (-634 (-488))) (|:| |basisDen| (-488)) (|:| |basisInv| (-634 (-488))))) 70 T ELT)) (-3763 (((-488)) 86 T ELT))) +(((-696 |#1| |#2|) (-10 -7 (-15 -3763 ((-488))) (-15 -3925 ((-2 (|:| -2017 (-634 (-488))) (|:| |basisDen| (-488)) (|:| |basisInv| (-634 (-488)))))) (-15 -3926 ((-2 (|:| -2017 (-634 (-488))) (|:| |basisDen| (-488)) (|:| |basisInv| (-634 (-488)))) (-488)))) (-1159 (-488)) (-355 (-488) |#1|)) (T -696)) +((-3926 (*1 *2 *3) (-12 (-5 *3 (-488)) (-4 *4 (-1159 *3)) (-5 *2 (-2 (|:| -2017 (-634 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-634 *3)))) (-5 *1 (-696 *4 *5)) (-4 *5 (-355 *3 *4)))) (-3925 (*1 *2) (-12 (-4 *3 (-1159 (-488))) (-5 *2 (-2 (|:| -2017 (-634 (-488))) (|:| |basisDen| (-488)) (|:| |basisInv| (-634 (-488))))) (-5 *1 (-696 *3 *4)) (-4 *4 (-355 (-488) *3)))) (-3763 (*1 *2) (-12 (-4 *3 (-1159 *2)) (-5 *2 (-488)) (-5 *1 (-696 *3 *4)) (-4 *4 (-355 *2 *3))))) +((-2514 (((-587 (-587 (-251 (-352 (-861 |#1|))))) (-587 (-861 |#1|))) 19 T ELT) (((-587 (-587 (-251 (-352 (-861 |#1|))))) (-587 (-861 |#1|)) (-587 (-1094))) 18 T ELT)) (-3579 (((-587 (-587 (-251 (-352 (-861 |#1|))))) (-587 (-861 |#1|))) 21 T ELT) (((-587 (-587 (-251 (-352 (-861 |#1|))))) (-587 (-861 |#1|)) (-587 (-1094))) 20 T ELT))) +(((-697 |#1|) (-10 -7 (-15 -2514 ((-587 (-587 (-251 (-352 (-861 |#1|))))) (-587 (-861 |#1|)) (-587 (-1094)))) (-15 -2514 ((-587 (-587 (-251 (-352 (-861 |#1|))))) (-587 (-861 |#1|)))) (-15 -3579 ((-587 (-587 (-251 (-352 (-861 |#1|))))) (-587 (-861 |#1|)) (-587 (-1094)))) (-15 -3579 ((-587 (-587 (-251 (-352 (-861 |#1|))))) (-587 (-861 |#1|))))) (-499)) (T -697)) +((-3579 (*1 *2 *3) (-12 (-5 *3 (-587 (-861 *4))) (-4 *4 (-499)) (-5 *2 (-587 (-587 (-251 (-352 (-861 *4)))))) (-5 *1 (-697 *4)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-587 (-1094))) (-4 *5 (-499)) (-5 *2 (-587 (-587 (-251 (-352 (-861 *5)))))) (-5 *1 (-697 *5)))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-587 (-861 *4))) (-4 *4 (-499)) (-5 *2 (-587 (-587 (-251 (-352 (-861 *4)))))) (-5 *1 (-697 *4)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-587 (-1094))) (-4 *5 (-499)) (-5 *2 (-587 (-587 (-251 (-352 (-861 *5)))))) (-5 *1 (-697 *5))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2489 (($ $ $) 10 T ELT)) (-1316 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2447 (($ $ (-488)) 11 T ELT)) (-3730 (($) NIL T CONST)) (-2570 (($ $ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3000 (($ $) NIL T ELT)) (-2569 (($ $ $) NIL T ELT)) (-3192 (((-85) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3150 (($ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) 6 T CONST)) (-2672 (($) NIL T CONST)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-698)) NIL T ELT) (($ $ (-834)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-698) (-13 (-721) (-667) (-10 -8 (-15 -2569 ($ $ $)) (-15 -2570 ($ $ $)) (-15 -3150 ($ $ $)) (-15 -2885 ((-2 (|:| -1977 $) (|:| -2908 $)) $ $)) (-15 -3472 ((-3 $ "failed") $ $)) (-15 -2447 ($ $ (-488))) (-15 -3000 ($ $)) (-6 (-4003 "*"))))) (T -698)) +((-2569 (*1 *1 *1 *1) (-5 *1 (-698))) (-2570 (*1 *1 *1 *1) (-5 *1 (-698))) (-3150 (*1 *1 *1 *1) (-5 *1 (-698))) (-2885 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1977 (-698)) (|:| -2908 (-698)))) (-5 *1 (-698)))) (-3472 (*1 *1 *1 *1) (|partial| -5 *1 (-698))) (-2447 (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-698)))) (-3000 (*1 *1 *1) (-5 *1 (-698)))) +((-488) (|%not| (|%ilt| |#1| 0))) +((-3579 (((-3 |#2| "failed") |#2| |#2| (-86) (-1094)) 37 T ELT))) +(((-699 |#1| |#2|) (-10 -7 (-15 -3579 ((-3 |#2| "failed") |#2| |#2| (-86) (-1094)))) (-13 (-260) (-954 (-488)) (-584 (-488)) (-120)) (-13 (-29 |#1|) (-1119) (-875))) (T -699)) +((-3579 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-5 *1 (-699 *5 *2)) (-4 *2 (-13 (-29 *5) (-1119) (-875)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 7 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 9 T ELT))) +(((-700) (-1017)) (T -700)) +NIL +((-3953 (((-700) |#1|) 8 T ELT))) +(((-701 |#1|) (-10 -7 (-15 -3953 ((-700) |#1|))) (-1133)) (T -701)) +((-3953 (*1 *2 *3) (-12 (-5 *2 (-700)) (-5 *1 (-701 *3)) (-4 *3 (-1133))))) +((-3138 ((|#2| |#4|) 35 T ELT))) +(((-702 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3138 (|#2| |#4|))) (-395) (-1159 |#1|) (-665 |#1| |#2|) (-1159 |#3|)) (T -702)) +((-3138 (*1 *2 *3) (-12 (-4 *4 (-395)) (-4 *5 (-665 *4 *2)) (-4 *2 (-1159 *4)) (-5 *1 (-702 *4 *2 *5 *3)) (-4 *3 (-1159 *5))))) +((-3473 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2450 (((-1189) (-1077) (-1077) |#4| |#5|) 33 T ELT)) (-2448 ((|#4| |#4| |#5|) 74 T ELT)) (-2449 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) |#4| |#5|) 79 T ELT)) (-2451 (((-587 (-2 (|:| |val| (-85)) (|:| -1604 |#5|))) |#4| |#5|) 16 T ELT))) +(((-703 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3473 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2448 (|#4| |#4| |#5|)) (-15 -2449 ((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) |#4| |#5|)) (-15 -2450 ((-1189) (-1077) (-1077) |#4| |#5|)) (-15 -2451 ((-587 (-2 (|:| |val| (-85)) (|:| -1604 |#5|))) |#4| |#5|))) (-395) (-721) (-760) (-981 |#1| |#2| |#3|) (-987 |#1| |#2| |#3| |#4|)) (T -703)) +((-2451 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-85)) (|:| -1604 *4)))) (-5 *1 (-703 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-2450 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1077)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) (-4 *4 (-981 *6 *7 *8)) (-5 *2 (-1189)) (-5 *1 (-703 *6 *7 *8 *4 *5)) (-4 *5 (-987 *6 *7 *8 *4)))) (-2449 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) (-5 *1 (-703 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-2448 (*1 *2 *2 *3) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *2 (-981 *4 *5 *6)) (-5 *1 (-703 *4 *5 *6 *2 *3)) (-4 *3 (-987 *4 *5 *6 *2)))) (-3473 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-703 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +((-3163 (((-3 (-1089 (-1089 |#1|)) "failed") |#4|) 53 T ELT)) (-2452 (((-587 |#4|) |#4|) 22 T ELT)) (-3935 ((|#4| |#4|) 17 T ELT))) +(((-704 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2452 ((-587 |#4|) |#4|)) (-15 -3163 ((-3 (-1089 (-1089 |#1|)) "failed") |#4|)) (-15 -3935 (|#4| |#4|))) (-301) (-282 |#1|) (-1159 |#2|) (-1159 |#3|) (-834)) (T -704)) +((-3935 (*1 *2 *2) (-12 (-4 *3 (-301)) (-4 *4 (-282 *3)) (-4 *5 (-1159 *4)) (-5 *1 (-704 *3 *4 *5 *2 *6)) (-4 *2 (-1159 *5)) (-14 *6 (-834)))) (-3163 (*1 *2 *3) (|partial| -12 (-4 *4 (-301)) (-4 *5 (-282 *4)) (-4 *6 (-1159 *5)) (-5 *2 (-1089 (-1089 *4))) (-5 *1 (-704 *4 *5 *6 *3 *7)) (-4 *3 (-1159 *6)) (-14 *7 (-834)))) (-2452 (*1 *2 *3) (-12 (-4 *4 (-301)) (-4 *5 (-282 *4)) (-4 *6 (-1159 *5)) (-5 *2 (-587 *3)) (-5 *1 (-704 *4 *5 *6 *3 *7)) (-4 *3 (-1159 *6)) (-14 *7 (-834))))) +((-2453 (((-2 (|:| |deter| (-587 (-1089 |#5|))) (|:| |dterm| (-587 (-587 (-2 (|:| -3084 (-698)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-587 |#1|)) (|:| |nlead| (-587 |#5|))) (-1089 |#5|) (-587 |#1|) (-587 |#5|)) 72 T ELT)) (-2454 (((-587 (-698)) |#1|) 20 T ELT))) +(((-705 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2453 ((-2 (|:| |deter| (-587 (-1089 |#5|))) (|:| |dterm| (-587 (-587 (-2 (|:| -3084 (-698)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-587 |#1|)) (|:| |nlead| (-587 |#5|))) (-1089 |#5|) (-587 |#1|) (-587 |#5|))) (-15 -2454 ((-587 (-698)) |#1|))) (-1159 |#4|) (-721) (-760) (-260) (-865 |#4| |#2| |#3|)) (T -705)) +((-2454 (*1 *2 *3) (-12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-260)) (-5 *2 (-587 (-698))) (-5 *1 (-705 *3 *4 *5 *6 *7)) (-4 *3 (-1159 *6)) (-4 *7 (-865 *6 *4 *5)))) (-2453 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1159 *9)) (-4 *7 (-721)) (-4 *8 (-760)) (-4 *9 (-260)) (-4 *10 (-865 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-587 (-1089 *10))) (|:| |dterm| (-587 (-587 (-2 (|:| -3084 (-698)) (|:| |pcoef| *10))))) (|:| |nfacts| (-587 *6)) (|:| |nlead| (-587 *10)))) (-5 *1 (-705 *6 *7 *8 *9 *10)) (-5 *3 (-1089 *10)) (-5 *4 (-587 *6)) (-5 *5 (-587 *10))))) +((-2457 (((-587 (-2 (|:| |outval| |#1|) (|:| |outmult| (-488)) (|:| |outvect| (-587 (-634 |#1|))))) (-634 (-352 (-488))) |#1|) 31 T ELT)) (-2456 (((-587 |#1|) (-634 (-352 (-488))) |#1|) 21 T ELT)) (-2455 (((-861 (-352 (-488))) (-634 (-352 (-488))) (-1094)) 18 T ELT) (((-861 (-352 (-488))) (-634 (-352 (-488)))) 17 T ELT))) +(((-706 |#1|) (-10 -7 (-15 -2455 ((-861 (-352 (-488))) (-634 (-352 (-488))))) (-15 -2455 ((-861 (-352 (-488))) (-634 (-352 (-488))) (-1094))) (-15 -2456 ((-587 |#1|) (-634 (-352 (-488))) |#1|)) (-15 -2457 ((-587 (-2 (|:| |outval| |#1|) (|:| |outmult| (-488)) (|:| |outvect| (-587 (-634 |#1|))))) (-634 (-352 (-488))) |#1|))) (-13 (-314) (-759))) (T -706)) +((-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-352 (-488)))) (-5 *2 (-587 (-2 (|:| |outval| *4) (|:| |outmult| (-488)) (|:| |outvect| (-587 (-634 *4)))))) (-5 *1 (-706 *4)) (-4 *4 (-13 (-314) (-759))))) (-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-352 (-488)))) (-5 *2 (-587 *4)) (-5 *1 (-706 *4)) (-4 *4 (-13 (-314) (-759))))) (-2455 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-352 (-488)))) (-5 *4 (-1094)) (-5 *2 (-861 (-352 (-488)))) (-5 *1 (-706 *5)) (-4 *5 (-13 (-314) (-759))))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-634 (-352 (-488)))) (-5 *2 (-861 (-352 (-488)))) (-5 *1 (-706 *4)) (-4 *4 (-13 (-314) (-759)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 36 T ELT)) (-3087 (((-587 |#2|) $) NIL T ELT)) (-3089 (((-1089 $) $ |#2|) NIL T ELT) (((-1089 |#1|) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-2825 (((-698) $) NIL T ELT) (((-698) $ (-587 |#2|)) NIL T ELT)) (-3803 (($ $) 30 T ELT)) (-3172 (((-85) $ $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3761 (($ $ $) 110 (|has| |#1| (-499)) ELT)) (-3154 (((-587 $) $ $) 123 (|has| |#1| (-499)) ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3781 (($ $) NIL (|has| |#1| (-395)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-395)) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-861 (-352 (-488)))) NIL (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#2| (-557 (-1094)))) ELT) (((-3 $ #1#) (-861 (-488))) NIL (OR (-12 (|has| |#1| (-38 (-488))) (|has| |#2| (-557 (-1094))) (-2566 (|has| |#1| (-38 (-352 (-488)))))) (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#2| (-557 (-1094))))) ELT) (((-3 $ #1#) (-861 |#1|)) NIL (OR (-12 (|has| |#2| (-557 (-1094))) (-2566 (|has| |#1| (-38 (-352 (-488))))) (-2566 (|has| |#1| (-38 (-488))))) (-12 (|has| |#1| (-38 (-488))) (|has| |#2| (-557 (-1094))) (-2566 (|has| |#1| (-38 (-352 (-488))))) (-2566 (|has| |#1| (-487)))) (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#2| (-557 (-1094))) (-2566 (|has| |#1| (-908 (-488)))))) ELT) (((-3 (-1043 |#1| |#2|) #1#) $) 21 T ELT)) (-3162 ((|#1| $) NIL T ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) ((|#2| $) NIL T ELT) (($ (-861 (-352 (-488)))) NIL (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#2| (-557 (-1094)))) ELT) (($ (-861 (-488))) NIL (OR (-12 (|has| |#1| (-38 (-488))) (|has| |#2| (-557 (-1094))) (-2566 (|has| |#1| (-38 (-352 (-488)))))) (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#2| (-557 (-1094))))) ELT) (($ (-861 |#1|)) NIL (OR (-12 (|has| |#2| (-557 (-1094))) (-2566 (|has| |#1| (-38 (-352 (-488))))) (-2566 (|has| |#1| (-38 (-488))))) (-12 (|has| |#1| (-38 (-488))) (|has| |#2| (-557 (-1094))) (-2566 (|has| |#1| (-38 (-352 (-488))))) (-2566 (|has| |#1| (-487)))) (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#2| (-557 (-1094))) (-2566 (|has| |#1| (-908 (-488)))))) ELT) (((-1043 |#1| |#2|) $) NIL T ELT)) (-3762 (($ $ $ |#2|) NIL (|has| |#1| (-148)) ELT) (($ $ $) 121 (|has| |#1| (-499)) ELT)) (-3965 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#1|) (-634 $)) NIL T ELT)) (-3700 (((-85) $ $) NIL T ELT) (((-85) $ (-587 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3178 (((-85) $) NIL T ELT)) (-3758 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 81 T ELT)) (-3149 (($ $) 136 (|has| |#1| (-395)) ELT)) (-3509 (($ $) NIL (|has| |#1| (-395)) ELT) (($ $ |#2|) NIL (|has| |#1| (-395)) ELT)) (-2824 (((-587 $) $) NIL T ELT)) (-3729 (((-85) $) NIL (|has| |#1| (-825)) ELT)) (-3160 (($ $) NIL (|has| |#1| (-499)) ELT)) (-3161 (($ $) NIL (|has| |#1| (-499)) ELT)) (-3171 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3170 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1628 (($ $ |#1| (-473 |#2|) $) NIL T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (-12 (|has| |#1| (-800 (-332))) (|has| |#2| (-800 (-332)))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (-12 (|has| |#1| (-800 (-488))) (|has| |#2| (-800 (-488)))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) 57 T ELT)) (-2425 (((-698) $) NIL T ELT)) (-3701 (((-85) $ $) NIL T ELT) (((-85) $ (-587 $)) NIL T ELT)) (-3151 (($ $ $ $ $) 107 (|has| |#1| (-499)) ELT)) (-3186 ((|#2| $) 22 T ELT)) (-3090 (($ (-1089 |#1|) |#2|) NIL T ELT) (($ (-1089 $) |#2|) NIL T ELT)) (-2827 (((-587 $) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-473 |#2|)) NIL T ELT) (($ $ |#2| (-698)) 38 T ELT) (($ $ (-587 |#2|) (-587 (-698))) NIL T ELT)) (-3165 (($ $ $) 63 T ELT)) (-3769 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $ |#2|) NIL T ELT)) (-3179 (((-85) $) NIL T ELT)) (-2826 (((-473 |#2|) $) NIL T ELT) (((-698) $ |#2|) NIL T ELT) (((-587 (-698)) $ (-587 |#2|)) NIL T ELT)) (-3185 (((-698) $) 23 T ELT)) (-1629 (($ (-1 (-473 |#2|) (-473 |#2|)) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3088 (((-3 |#2| #1#) $) NIL T ELT)) (-3146 (($ $) NIL (|has| |#1| (-395)) ELT)) (-3147 (($ $) NIL (|has| |#1| (-395)) ELT)) (-3174 (((-587 $) $) NIL T ELT)) (-3177 (($ $) 39 T ELT)) (-3148 (($ $) NIL (|has| |#1| (-395)) ELT)) (-3175 (((-587 $) $) 43 T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) NIL T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-3176 (($ $) 41 T ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-395)) ELT) (($ $ $) NIL (|has| |#1| (-395)) ELT)) (-3164 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3487 (-698))) $ $) 96 T ELT)) (-3166 (((-2 (|:| -3961 $) (|:| |gap| (-698)) (|:| -1977 $) (|:| -2908 $)) $ $) 78 T ELT) (((-2 (|:| -3961 $) (|:| |gap| (-698)) (|:| -1977 $) (|:| -2908 $)) $ $ |#2|) NIL T ELT)) (-3167 (((-2 (|:| -3961 $) (|:| |gap| (-698)) (|:| -2908 $)) $ $) NIL T ELT) (((-2 (|:| -3961 $) (|:| |gap| (-698)) (|:| -2908 $)) $ $ |#2|) NIL T ELT)) (-3169 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3168 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3196 (($ $ $) 125 (|has| |#1| (-499)) ELT)) (-3182 (((-587 $) $) 32 T ELT)) (-2829 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2828 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2830 (((-3 (-2 (|:| |var| |#2|) (|:| -2406 (-698))) #1#) $) NIL T ELT)) (-3697 (((-85) $ $) NIL T ELT) (((-85) $ (-587 $)) NIL T ELT)) (-3692 (($ $ $) NIL T ELT)) (-3452 (($ $) 24 T ELT)) (-3705 (((-85) $ $) NIL T ELT)) (-3698 (((-85) $ $) NIL T ELT) (((-85) $ (-587 $)) NIL T ELT)) (-3693 (($ $ $) NIL T ELT)) (-3184 (($ $) 26 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3155 (((-2 (|:| -3150 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-499)) ELT)) (-3156 (((-2 (|:| -3150 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-499)) ELT)) (-1805 (((-85) $) 56 T ELT)) (-1804 ((|#1| $) 58 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#1| (-395)) ELT)) (-3150 ((|#1| |#1| $) 133 (|has| |#1| (-395)) ELT) (($ (-587 $)) NIL (|has| |#1| (-395)) ELT) (($ $ $) NIL (|has| |#1| (-395)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#1| (-825)) ELT)) (-3157 (((-2 (|:| -3150 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-499)) ELT)) (-3472 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-499)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-499)) ELT)) (-3158 (($ $ |#1|) 129 (|has| |#1| (-499)) ELT) (($ $ $) NIL (|has| |#1| (-499)) ELT)) (-3159 (($ $ |#1|) 128 (|has| |#1| (-499)) ELT) (($ $ $) NIL (|has| |#1| (-499)) ELT)) (-3774 (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-587 |#2|) (-587 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-587 |#2|) (-587 $)) NIL T ELT)) (-3763 (($ $ |#2|) NIL (|has| |#1| (-148)) ELT)) (-3764 (($ $ (-587 |#2|) (-587 (-698))) NIL T ELT) (($ $ |#2| (-698)) NIL T ELT) (($ $ (-587 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3955 (((-473 |#2|) $) NIL T ELT) (((-698) $ |#2|) 45 T ELT) (((-587 (-698)) $ (-587 |#2|)) NIL T ELT)) (-3183 (($ $) NIL T ELT)) (-3181 (($ $) 35 T ELT)) (-3978 (((-804 (-332)) $) NIL (-12 (|has| |#1| (-557 (-804 (-332)))) (|has| |#2| (-557 (-804 (-332))))) ELT) (((-804 (-488)) $) NIL (-12 (|has| |#1| (-557 (-804 (-488)))) (|has| |#2| (-557 (-804 (-488))))) ELT) (((-477) $) NIL (-12 (|has| |#1| (-557 (-477))) (|has| |#2| (-557 (-477)))) ELT) (($ (-861 (-352 (-488)))) NIL (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#2| (-557 (-1094)))) ELT) (($ (-861 (-488))) NIL (OR (-12 (|has| |#1| (-38 (-488))) (|has| |#2| (-557 (-1094))) (-2566 (|has| |#1| (-38 (-352 (-488)))))) (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#2| (-557 (-1094))))) ELT) (($ (-861 |#1|)) NIL (|has| |#2| (-557 (-1094))) ELT) (((-1077) $) NIL (-12 (|has| |#1| (-954 (-488))) (|has| |#2| (-557 (-1094)))) ELT) (((-861 |#1|) $) NIL (|has| |#2| (-557 (-1094))) ELT)) (-2823 ((|#1| $) 132 (|has| |#1| (-395)) ELT) (($ $ |#2|) NIL (|has| |#1| (-395)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-825))) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-861 |#1|) $) NIL (|has| |#2| (-557 (-1094))) ELT) (((-1043 |#1| |#2|) $) 18 T ELT) (($ (-1043 |#1| |#2|)) 19 T ELT) (($ (-352 (-488))) NIL (OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) ELT) (($ $) NIL (|has| |#1| (-499)) ELT)) (-3823 (((-587 |#1|) $) NIL T ELT)) (-3683 ((|#1| $ (-473 |#2|)) NIL T ELT) (($ $ |#2| (-698)) 47 T ELT) (($ $ (-587 |#2|) (-587 (-698))) NIL T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-825))) (|has| |#1| (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1627 (($ $ $ (-698)) NIL (|has| |#1| (-148)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 13 T CONST)) (-3173 (((-3 (-85) #1#) $ $) NIL T ELT)) (-2672 (($) 37 T CONST)) (-3152 (($ $ $ $ (-698)) 105 (|has| |#1| (-499)) ELT)) (-3153 (($ $ $ (-698)) 104 (|has| |#1| (-499)) ELT)) (-2675 (($ $ (-587 |#2|) (-587 (-698))) NIL T ELT) (($ $ |#2| (-698)) NIL T ELT) (($ $ (-587 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3845 (($ $ $) 85 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 70 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) +(((-707 |#1| |#2|) (-13 (-981 |#1| (-473 |#2|) |#2|) (-556 (-1043 |#1| |#2|)) (-954 (-1043 |#1| |#2|))) (-965) (-760)) (T -707)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 12 T ELT)) (-3773 (((-1183 |#1|) $ (-698)) NIL T ELT)) (-3087 (((-587 (-998)) $) NIL T ELT)) (-3771 (($ (-1089 |#1|)) NIL T ELT)) (-3089 (((-1089 $) $ (-998)) NIL T ELT) (((-1089 |#1|) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-2825 (((-698) $) NIL T ELT) (((-698) $ (-587 (-998))) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2461 (((-587 $) $ $) 54 (|has| |#1| (-499)) ELT)) (-3761 (($ $ $) 50 (|has| |#1| (-499)) ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3781 (($ $) NIL (|has| |#1| (-395)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-395)) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-1612 (((-85) $ $) NIL (|has| |#1| (-314)) ELT)) (-3767 (($ $ (-698)) NIL T ELT)) (-3766 (($ $ (-698)) NIL T ELT)) (-3757 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-395)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-998) #1#) $) NIL T ELT) (((-3 (-1089 |#1|) #1#) $) 10 T ELT)) (-3162 ((|#1| $) NIL T ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-998) $) NIL T ELT) (((-1089 |#1|) $) NIL T ELT)) (-3762 (($ $ $ (-998)) NIL (|has| |#1| (-148)) ELT) ((|#1| $ $) 58 (|has| |#1| (-148)) ELT)) (-2570 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3965 (($ $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#1|) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-2569 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3765 (($ $ $) NIL T ELT)) (-3759 (($ $ $) 87 (|has| |#1| (-499)) ELT)) (-3758 (((-2 (|:| -3961 |#1|) (|:| -1977 $) (|:| -2908 $)) $ $) 86 (|has| |#1| (-499)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL (|has| |#1| (-314)) ELT)) (-3509 (($ $) NIL (|has| |#1| (-395)) ELT) (($ $ (-998)) NIL (|has| |#1| (-395)) ELT)) (-2824 (((-587 $) $) NIL T ELT)) (-3729 (((-85) $) NIL (|has| |#1| (-825)) ELT)) (-1628 (($ $ |#1| (-698) $) NIL T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (-12 (|has| (-998) (-800 (-332))) (|has| |#1| (-800 (-332)))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (-12 (|has| (-998) (-800 (-488))) (|has| |#1| (-800 (-488)))) ELT)) (-3778 (((-698) $ $) NIL (|has| |#1| (-499)) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2425 (((-698) $) NIL T ELT)) (-3451 (((-636 $) $) NIL (|has| |#1| (-1070)) ELT)) (-3090 (($ (-1089 |#1|) (-998)) NIL T ELT) (($ (-1089 $) (-998)) NIL T ELT)) (-3783 (($ $ (-698)) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-2827 (((-587 $) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-698)) NIL T ELT) (($ $ (-998) (-698)) NIL T ELT) (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT)) (-3165 (($ $ $) 27 T ELT)) (-3769 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $ (-998)) NIL T ELT) (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-2826 (((-698) $) NIL T ELT) (((-698) $ (-998)) NIL T ELT) (((-587 (-698)) $ (-587 (-998))) NIL T ELT)) (-1629 (($ (-1 (-698) (-698)) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3772 (((-1089 |#1|) $) NIL T ELT)) (-3088 (((-3 (-998) #1#) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) NIL T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-395)) ELT) (($ $ $) NIL (|has| |#1| (-395)) ELT)) (-3164 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3487 (-698))) $ $) 37 T ELT)) (-2463 (($ $ $) 41 T ELT)) (-2462 (($ $ $) 47 T ELT)) (-3166 (((-2 (|:| -3961 |#1|) (|:| |gap| (-698)) (|:| -1977 $) (|:| -2908 $)) $ $) 46 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3196 (($ $ $) 56 (|has| |#1| (-499)) ELT)) (-3768 (((-2 (|:| -1977 $) (|:| -2908 $)) $ (-698)) NIL T ELT)) (-2829 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2828 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2830 (((-3 (-2 (|:| |var| (-998)) (|:| -2406 (-698))) #1#) $) NIL T ELT)) (-3818 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3452 (($) NIL (|has| |#1| (-1070)) CONST)) (-3249 (((-1037) $) NIL T ELT)) (-3155 (((-2 (|:| -3150 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-499)) ELT)) (-3156 (((-2 (|:| -3150 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-499)) ELT)) (-2458 (((-2 (|:| -3762 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-499)) ELT)) (-2459 (((-2 (|:| -3762 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-499)) ELT)) (-1805 (((-85) $) 13 T ELT)) (-1804 ((|#1| $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#1| (-395)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-395)) ELT) (($ $ $) NIL (|has| |#1| (-395)) ELT)) (-3744 (($ $ (-698) |#1| $) 26 T ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#1| (-825)) ELT)) (-3157 (((-2 (|:| -3150 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-499)) ELT)) (-2460 (((-2 (|:| -3762 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-499)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3472 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-499)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-499)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-3774 (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ (-998) |#1|) NIL T ELT) (($ $ (-587 (-998)) (-587 |#1|)) NIL T ELT) (($ $ (-998) $) NIL T ELT) (($ $ (-587 (-998)) (-587 $)) NIL T ELT)) (-1611 (((-698) $) NIL (|has| |#1| (-314)) ELT)) (-3806 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-352 $) (-352 $) (-352 $)) NIL (|has| |#1| (-499)) ELT) ((|#1| (-352 $) |#1|) NIL (|has| |#1| (-314)) ELT) (((-352 $) $ (-352 $)) NIL (|has| |#1| (-499)) ELT)) (-3770 (((-3 $ #1#) $ (-698)) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3763 (($ $ (-998)) NIL (|has| |#1| (-148)) ELT) ((|#1| $) NIL (|has| |#1| (-148)) ELT)) (-3764 (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT) (($ $ (-998) (-698)) NIL T ELT) (($ $ (-587 (-998))) NIL T ELT) (($ $ (-998)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1094)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-815 (-1094))) ELT)) (-3955 (((-698) $) NIL T ELT) (((-698) $ (-998)) NIL T ELT) (((-587 (-698)) $ (-587 (-998))) NIL T ELT)) (-3978 (((-804 (-332)) $) NIL (-12 (|has| (-998) (-557 (-804 (-332)))) (|has| |#1| (-557 (-804 (-332))))) ELT) (((-804 (-488)) $) NIL (-12 (|has| (-998) (-557 (-804 (-488)))) (|has| |#1| (-557 (-804 (-488))))) ELT) (((-477) $) NIL (-12 (|has| (-998) (-557 (-477))) (|has| |#1| (-557 (-477)))) ELT)) (-2823 ((|#1| $) NIL (|has| |#1| (-395)) ELT) (($ $ (-998)) NIL (|has| |#1| (-395)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-825))) ELT)) (-3760 (((-3 $ #1#) $ $) NIL (|has| |#1| (-499)) ELT) (((-3 (-352 $) #1#) (-352 $) $) NIL (|has| |#1| (-499)) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-998)) NIL T ELT) (((-1089 |#1|) $) 7 T ELT) (($ (-1089 |#1|)) 8 T ELT) (($ (-352 (-488))) NIL (OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) ELT) (($ $) NIL (|has| |#1| (-499)) ELT)) (-3823 (((-587 |#1|) $) NIL T ELT)) (-3683 ((|#1| $ (-698)) NIL T ELT) (($ $ (-998) (-698)) NIL T ELT) (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-825))) (|has| |#1| (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1627 (($ $ $ (-698)) NIL (|has| |#1| (-148)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 28 T CONST)) (-2672 (($) 32 T CONST)) (-2675 (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT) (($ $ (-998) (-698)) NIL T ELT) (($ $ (-587 (-998))) NIL T ELT) (($ $ (-998)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-815 (-1094))) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) +(((-708 |#1|) (-13 (-1159 |#1|) (-556 (-1089 |#1|)) (-954 (-1089 |#1|)) (-10 -8 (-15 -3744 ($ $ (-698) |#1| $)) (-15 -3165 ($ $ $)) (-15 -3164 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3487 (-698))) $ $)) (-15 -2463 ($ $ $)) (-15 -3166 ((-2 (|:| -3961 |#1|) (|:| |gap| (-698)) (|:| -1977 $) (|:| -2908 $)) $ $)) (-15 -2462 ($ $ $)) (IF (|has| |#1| (-499)) (PROGN (-15 -2461 ((-587 $) $ $)) (-15 -3196 ($ $ $)) (-15 -3157 ((-2 (|:| -3150 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3156 ((-2 (|:| -3150 $) (|:| |coef1| $)) $ $)) (-15 -3155 ((-2 (|:| -3150 $) (|:| |coef2| $)) $ $)) (-15 -2460 ((-2 (|:| -3762 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2459 ((-2 (|:| -3762 |#1|) (|:| |coef1| $)) $ $)) (-15 -2458 ((-2 (|:| -3762 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-965)) (T -708)) +((-3744 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-698)) (-5 *1 (-708 *3)) (-4 *3 (-965)))) (-3165 (*1 *1 *1 *1) (-12 (-5 *1 (-708 *2)) (-4 *2 (-965)))) (-3164 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-708 *3)) (|:| |polden| *3) (|:| -3487 (-698)))) (-5 *1 (-708 *3)) (-4 *3 (-965)))) (-2463 (*1 *1 *1 *1) (-12 (-5 *1 (-708 *2)) (-4 *2 (-965)))) (-3166 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3961 *3) (|:| |gap| (-698)) (|:| -1977 (-708 *3)) (|:| -2908 (-708 *3)))) (-5 *1 (-708 *3)) (-4 *3 (-965)))) (-2462 (*1 *1 *1 *1) (-12 (-5 *1 (-708 *2)) (-4 *2 (-965)))) (-2461 (*1 *2 *1 *1) (-12 (-5 *2 (-587 (-708 *3))) (-5 *1 (-708 *3)) (-4 *3 (-499)) (-4 *3 (-965)))) (-3196 (*1 *1 *1 *1) (-12 (-5 *1 (-708 *2)) (-4 *2 (-499)) (-4 *2 (-965)))) (-3157 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3150 (-708 *3)) (|:| |coef1| (-708 *3)) (|:| |coef2| (-708 *3)))) (-5 *1 (-708 *3)) (-4 *3 (-499)) (-4 *3 (-965)))) (-3156 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3150 (-708 *3)) (|:| |coef1| (-708 *3)))) (-5 *1 (-708 *3)) (-4 *3 (-499)) (-4 *3 (-965)))) (-3155 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3150 (-708 *3)) (|:| |coef2| (-708 *3)))) (-5 *1 (-708 *3)) (-4 *3 (-499)) (-4 *3 (-965)))) (-2460 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3762 *3) (|:| |coef1| (-708 *3)) (|:| |coef2| (-708 *3)))) (-5 *1 (-708 *3)) (-4 *3 (-499)) (-4 *3 (-965)))) (-2459 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3762 *3) (|:| |coef1| (-708 *3)))) (-5 *1 (-708 *3)) (-4 *3 (-499)) (-4 *3 (-965)))) (-2458 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3762 *3) (|:| |coef2| (-708 *3)))) (-5 *1 (-708 *3)) (-4 *3 (-499)) (-4 *3 (-965))))) +((-3849 (((-708 |#2|) (-1 |#2| |#1|) (-708 |#1|)) 13 T ELT))) +(((-709 |#1| |#2|) (-10 -7 (-15 -3849 ((-708 |#2|) (-1 |#2| |#1|) (-708 |#1|)))) (-965) (-965)) (T -709)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-708 *5)) (-4 *5 (-965)) (-4 *6 (-965)) (-5 *2 (-708 *6)) (-5 *1 (-709 *5 *6))))) +((-2465 ((|#1| (-698) |#1|) 33 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2807 ((|#1| (-698) |#1|) 23 T ELT)) (-2464 ((|#1| (-698) |#1|) 35 (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-710 |#1|) (-10 -7 (-15 -2807 (|#1| (-698) |#1|)) (IF (|has| |#1| (-38 (-352 (-488)))) (PROGN (-15 -2464 (|#1| (-698) |#1|)) (-15 -2465 (|#1| (-698) |#1|))) |%noBranch|)) (-148)) (T -710)) +((-2465 (*1 *2 *3 *2) (-12 (-5 *3 (-698)) (-5 *1 (-710 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-148)))) (-2464 (*1 *2 *3 *2) (-12 (-5 *3 (-698)) (-5 *1 (-710 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-148)))) (-2807 (*1 *2 *3 *2) (-12 (-5 *3 (-698)) (-5 *1 (-710 *2)) (-4 *2 (-148))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3687 (((-587 (-2 (|:| -3868 $) (|:| -1706 (-587 |#4|)))) (-587 |#4|)) 91 T ELT)) (-3688 (((-587 $) (-587 |#4|)) 92 T ELT) (((-587 $) (-587 |#4|) (-85)) 120 T ELT)) (-3087 (((-587 |#3|) $) 39 T ELT)) (-2914 (((-85) $) 32 T ELT)) (-2905 (((-85) $) 23 (|has| |#1| (-499)) ELT)) (-3699 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3694 ((|#4| |#4| $) 98 T ELT)) (-3781 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 $))) |#4| $) 135 T ELT)) (-2915 (((-2 (|:| |under| $) (|:| -3136 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3716 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-320 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3730 (($) 59 T CONST)) (-2910 (((-85) $) 28 (|has| |#1| (-499)) ELT)) (-2912 (((-85) $ $) 30 (|has| |#1| (-499)) ELT)) (-2911 (((-85) $ $) 29 (|has| |#1| (-499)) ELT)) (-2913 (((-85) $) 31 (|has| |#1| (-499)) ELT)) (-3695 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2906 (((-587 |#4|) (-587 |#4|) $) 24 (|has| |#1| (-499)) ELT)) (-2907 (((-587 |#4|) (-587 |#4|) $) 25 (|has| |#1| (-499)) ELT)) (-3163 (((-3 $ "failed") (-587 |#4|)) 42 T ELT)) (-3162 (($ (-587 |#4|)) 41 T ELT)) (-3805 (((-3 $ #1#) $) 88 T ELT)) (-3691 ((|#4| |#4| $) 95 T ELT)) (-1357 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-320 |#4|))) ELT)) (-3412 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-320 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-320 |#4|)) ELT)) (-2908 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-499)) ELT)) (-3700 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3689 ((|#4| |#4| $) 93 T ELT)) (-3848 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3702 (((-2 (|:| -3868 (-587 |#4|)) (|:| -1706 (-587 |#4|))) $) 111 T ELT)) (-3203 (((-85) |#4| $) 145 T ELT)) (-3201 (((-85) |#4| $) 142 T ELT)) (-3204 (((-85) |#4| $) 146 T ELT) (((-85) $) 143 T ELT)) (-3701 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3186 ((|#3| $) 40 T ELT)) (-2614 (((-587 |#4|) $) 48 T ELT)) (-3251 (((-85) |#4| $) 53 (|has| |#4| (-72)) ELT)) (-3332 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3849 (($ (-1 |#4| |#4|) $) 60 T ELT)) (-2920 (((-587 |#3|) $) 38 T ELT)) (-2919 (((-85) |#3| $) 37 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3197 (((-3 |#4| (-587 $)) |#4| |#4| $) 137 T ELT)) (-3196 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 $))) |#4| |#4| $) 136 T ELT)) (-3804 (((-3 |#4| #1#) $) 89 T ELT)) (-3198 (((-587 $) |#4| $) 138 T ELT)) (-3200 (((-3 (-85) (-587 $)) |#4| $) 141 T ELT)) (-3199 (((-587 (-2 (|:| |val| (-85)) (|:| -1604 $))) |#4| $) 140 T ELT) (((-85) |#4| $) 139 T ELT)) (-3244 (((-587 $) |#4| $) 134 T ELT) (((-587 $) (-587 |#4|) $) 133 T ELT) (((-587 $) (-587 |#4|) (-587 $)) 132 T ELT) (((-587 $) |#4| (-587 $)) 131 T ELT)) (-3446 (($ |#4| $) 126 T ELT) (($ (-587 |#4|) $) 125 T ELT)) (-3703 (((-587 |#4|) $) 113 T ELT)) (-3697 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3692 ((|#4| |#4| $) 96 T ELT)) (-3705 (((-85) $ $) 116 T ELT)) (-2909 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-499)) ELT)) (-3698 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3693 ((|#4| |#4| $) 97 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3807 (((-3 |#4| #1#) $) 90 T ELT)) (-1734 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 51 T ELT)) (-3685 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3775 (($ $ |#4|) 83 T ELT) (((-587 $) |#4| $) 124 T ELT) (((-587 $) |#4| (-587 $)) 123 T ELT) (((-587 $) (-587 |#4|) $) 122 T ELT) (((-587 $) (-587 |#4|) (-587 $)) 121 T ELT)) (-1736 (((-85) (-1 (-85) |#4|) $) 46 T ELT)) (-3774 (($ $ (-587 |#4|) (-587 |#4|)) 64 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ |#4| |#4|) 63 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-251 |#4|)) 62 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-587 (-251 |#4|))) 61 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT)) (-1226 (((-85) $ $) 55 T ELT)) (-3409 (((-85) $) 58 T ELT)) (-3571 (($) 57 T ELT)) (-3955 (((-698) $) 112 T ELT)) (-1735 (((-698) |#4| $) 52 (|has| |#4| (-72)) ELT) (((-698) (-1 (-85) |#4|) $) 47 T ELT)) (-3406 (($ $) 56 T ELT)) (-3978 (((-477) $) 70 (|has| |#4| (-557 (-477))) ELT)) (-3536 (($ (-587 |#4|)) 65 T ELT)) (-2916 (($ $ |#3|) 34 T ELT)) (-2918 (($ $ |#3|) 36 T ELT)) (-3690 (($ $) 94 T ELT)) (-2917 (($ $ |#3|) 35 T ELT)) (-3953 (((-776) $) 13 T ELT) (((-587 |#4|) $) 43 T ELT)) (-3684 (((-698) $) 82 (|has| |#3| (-322)) ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3704 (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#4|))) #1#) (-587 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#4|))) #1#) (-587 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3696 (((-85) $ (-1 (-85) |#4| (-587 |#4|))) 104 T ELT)) (-3195 (((-587 $) |#4| $) 130 T ELT) (((-587 $) |#4| (-587 $)) 129 T ELT) (((-587 $) (-587 |#4|) $) 128 T ELT) (((-587 $) (-587 |#4|) (-587 $)) 127 T ELT)) (-1737 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3686 (((-587 |#3|) $) 87 T ELT)) (-3202 (((-85) |#4| $) 144 T ELT)) (-3940 (((-85) |#3| $) 86 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3964 (((-698) $) 44 T ELT))) +(((-711 |#1| |#2| |#3| |#4|) (-113) (-395) (-721) (-760) (-981 |t#1| |t#2| |t#3|)) (T -711)) +NIL +(-13 (-987 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-556 (-587 |#4|)) . T) ((-556 (-776)) . T) ((-124 |#4|) . T) ((-557 (-477)) |has| |#4| (-557 (-477))) ((-262 |#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ((-320 |#4|) . T) ((-383 |#4|) . T) ((-432 |#4|) . T) ((-459 |#4| |#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ((-13) . T) ((-893 |#1| |#2| |#3| |#4|) . T) ((-987 |#1| |#2| |#3| |#4|) . T) ((-1017) . T) ((-1039 |#4|) . T) ((-1128 |#1| |#2| |#3| |#4|) . T) ((-1133) . T)) +((-2468 (((-3 (-332) #1="failed") (-267 |#1|) (-834)) 60 (-12 (|has| |#1| (-499)) (|has| |#1| (-760))) ELT) (((-3 (-332) #1#) (-267 |#1|)) 52 (-12 (|has| |#1| (-499)) (|has| |#1| (-760))) ELT) (((-3 (-332) #1#) (-352 (-861 |#1|)) (-834)) 39 (|has| |#1| (-499)) ELT) (((-3 (-332) #1#) (-352 (-861 |#1|))) 35 (|has| |#1| (-499)) ELT) (((-3 (-332) #1#) (-861 |#1|) (-834)) 30 (|has| |#1| (-965)) ELT) (((-3 (-332) #1#) (-861 |#1|)) 24 (|has| |#1| (-965)) ELT)) (-2466 (((-332) (-267 |#1|) (-834)) 92 (-12 (|has| |#1| (-499)) (|has| |#1| (-760))) ELT) (((-332) (-267 |#1|)) 87 (-12 (|has| |#1| (-499)) (|has| |#1| (-760))) ELT) (((-332) (-352 (-861 |#1|)) (-834)) 84 (|has| |#1| (-499)) ELT) (((-332) (-352 (-861 |#1|))) 81 (|has| |#1| (-499)) ELT) (((-332) (-861 |#1|) (-834)) 80 (|has| |#1| (-965)) ELT) (((-332) (-861 |#1|)) 77 (|has| |#1| (-965)) ELT) (((-332) |#1| (-834)) 73 T ELT) (((-332) |#1|) 22 T ELT)) (-2469 (((-3 (-144 (-332)) #1#) (-267 (-144 |#1|)) (-834)) 68 (-12 (|has| |#1| (-499)) (|has| |#1| (-760))) ELT) (((-3 (-144 (-332)) #1#) (-267 (-144 |#1|))) 58 (-12 (|has| |#1| (-499)) (|has| |#1| (-760))) ELT) (((-3 (-144 (-332)) #1#) (-267 |#1|) (-834)) 61 (-12 (|has| |#1| (-499)) (|has| |#1| (-760))) ELT) (((-3 (-144 (-332)) #1#) (-267 |#1|)) 59 (-12 (|has| |#1| (-499)) (|has| |#1| (-760))) ELT) (((-3 (-144 (-332)) #1#) (-352 (-861 (-144 |#1|))) (-834)) 44 (|has| |#1| (-499)) ELT) (((-3 (-144 (-332)) #1#) (-352 (-861 (-144 |#1|)))) 43 (|has| |#1| (-499)) ELT) (((-3 (-144 (-332)) #1#) (-352 (-861 |#1|)) (-834)) 38 (|has| |#1| (-499)) ELT) (((-3 (-144 (-332)) #1#) (-352 (-861 |#1|))) 37 (|has| |#1| (-499)) ELT) (((-3 (-144 (-332)) #1#) (-861 |#1|) (-834)) 28 (|has| |#1| (-965)) ELT) (((-3 (-144 (-332)) #1#) (-861 |#1|)) 26 (|has| |#1| (-965)) ELT) (((-3 (-144 (-332)) #1#) (-861 (-144 |#1|)) (-834)) 18 (|has| |#1| (-148)) ELT) (((-3 (-144 (-332)) #1#) (-861 (-144 |#1|))) 15 (|has| |#1| (-148)) ELT)) (-2467 (((-144 (-332)) (-267 (-144 |#1|)) (-834)) 95 (-12 (|has| |#1| (-499)) (|has| |#1| (-760))) ELT) (((-144 (-332)) (-267 (-144 |#1|))) 94 (-12 (|has| |#1| (-499)) (|has| |#1| (-760))) ELT) (((-144 (-332)) (-267 |#1|) (-834)) 93 (-12 (|has| |#1| (-499)) (|has| |#1| (-760))) ELT) (((-144 (-332)) (-267 |#1|)) 91 (-12 (|has| |#1| (-499)) (|has| |#1| (-760))) ELT) (((-144 (-332)) (-352 (-861 (-144 |#1|))) (-834)) 86 (|has| |#1| (-499)) ELT) (((-144 (-332)) (-352 (-861 (-144 |#1|)))) 85 (|has| |#1| (-499)) ELT) (((-144 (-332)) (-352 (-861 |#1|)) (-834)) 83 (|has| |#1| (-499)) ELT) (((-144 (-332)) (-352 (-861 |#1|))) 82 (|has| |#1| (-499)) ELT) (((-144 (-332)) (-861 |#1|) (-834)) 79 (|has| |#1| (-965)) ELT) (((-144 (-332)) (-861 |#1|)) 78 (|has| |#1| (-965)) ELT) (((-144 (-332)) (-861 (-144 |#1|)) (-834)) 75 (|has| |#1| (-148)) ELT) (((-144 (-332)) (-861 (-144 |#1|))) 74 (|has| |#1| (-148)) ELT) (((-144 (-332)) (-144 |#1|) (-834)) 17 (|has| |#1| (-148)) ELT) (((-144 (-332)) (-144 |#1|)) 13 (|has| |#1| (-148)) ELT) (((-144 (-332)) |#1| (-834)) 27 T ELT) (((-144 (-332)) |#1|) 25 T ELT))) +(((-712 |#1|) (-10 -7 (-15 -2466 ((-332) |#1|)) (-15 -2466 ((-332) |#1| (-834))) (-15 -2467 ((-144 (-332)) |#1|)) (-15 -2467 ((-144 (-332)) |#1| (-834))) (IF (|has| |#1| (-148)) (PROGN (-15 -2467 ((-144 (-332)) (-144 |#1|))) (-15 -2467 ((-144 (-332)) (-144 |#1|) (-834))) (-15 -2467 ((-144 (-332)) (-861 (-144 |#1|)))) (-15 -2467 ((-144 (-332)) (-861 (-144 |#1|)) (-834)))) |%noBranch|) (IF (|has| |#1| (-965)) (PROGN (-15 -2466 ((-332) (-861 |#1|))) (-15 -2466 ((-332) (-861 |#1|) (-834))) (-15 -2467 ((-144 (-332)) (-861 |#1|))) (-15 -2467 ((-144 (-332)) (-861 |#1|) (-834)))) |%noBranch|) (IF (|has| |#1| (-499)) (PROGN (-15 -2466 ((-332) (-352 (-861 |#1|)))) (-15 -2466 ((-332) (-352 (-861 |#1|)) (-834))) (-15 -2467 ((-144 (-332)) (-352 (-861 |#1|)))) (-15 -2467 ((-144 (-332)) (-352 (-861 |#1|)) (-834))) (-15 -2467 ((-144 (-332)) (-352 (-861 (-144 |#1|))))) (-15 -2467 ((-144 (-332)) (-352 (-861 (-144 |#1|))) (-834))) (IF (|has| |#1| (-760)) (PROGN (-15 -2466 ((-332) (-267 |#1|))) (-15 -2466 ((-332) (-267 |#1|) (-834))) (-15 -2467 ((-144 (-332)) (-267 |#1|))) (-15 -2467 ((-144 (-332)) (-267 |#1|) (-834))) (-15 -2467 ((-144 (-332)) (-267 (-144 |#1|)))) (-15 -2467 ((-144 (-332)) (-267 (-144 |#1|)) (-834)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-148)) (PROGN (-15 -2469 ((-3 (-144 (-332)) #1="failed") (-861 (-144 |#1|)))) (-15 -2469 ((-3 (-144 (-332)) #1#) (-861 (-144 |#1|)) (-834)))) |%noBranch|) (IF (|has| |#1| (-965)) (PROGN (-15 -2468 ((-3 (-332) #1#) (-861 |#1|))) (-15 -2468 ((-3 (-332) #1#) (-861 |#1|) (-834))) (-15 -2469 ((-3 (-144 (-332)) #1#) (-861 |#1|))) (-15 -2469 ((-3 (-144 (-332)) #1#) (-861 |#1|) (-834)))) |%noBranch|) (IF (|has| |#1| (-499)) (PROGN (-15 -2468 ((-3 (-332) #1#) (-352 (-861 |#1|)))) (-15 -2468 ((-3 (-332) #1#) (-352 (-861 |#1|)) (-834))) (-15 -2469 ((-3 (-144 (-332)) #1#) (-352 (-861 |#1|)))) (-15 -2469 ((-3 (-144 (-332)) #1#) (-352 (-861 |#1|)) (-834))) (-15 -2469 ((-3 (-144 (-332)) #1#) (-352 (-861 (-144 |#1|))))) (-15 -2469 ((-3 (-144 (-332)) #1#) (-352 (-861 (-144 |#1|))) (-834))) (IF (|has| |#1| (-760)) (PROGN (-15 -2468 ((-3 (-332) #1#) (-267 |#1|))) (-15 -2468 ((-3 (-332) #1#) (-267 |#1|) (-834))) (-15 -2469 ((-3 (-144 (-332)) #1#) (-267 |#1|))) (-15 -2469 ((-3 (-144 (-332)) #1#) (-267 |#1|) (-834))) (-15 -2469 ((-3 (-144 (-332)) #1#) (-267 (-144 |#1|)))) (-15 -2469 ((-3 (-144 (-332)) #1#) (-267 (-144 |#1|)) (-834)))) |%noBranch|)) |%noBranch|)) (-557 (-332))) (T -712)) +((-2469 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-267 (-144 *5))) (-5 *4 (-834)) (-4 *5 (-499)) (-4 *5 (-760)) (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) (-2469 (*1 *2 *3) (|partial| -12 (-5 *3 (-267 (-144 *4))) (-4 *4 (-499)) (-4 *4 (-760)) (-4 *4 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) (-2469 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-267 *5)) (-5 *4 (-834)) (-4 *5 (-499)) (-4 *5 (-760)) (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) (-2469 (*1 *2 *3) (|partial| -12 (-5 *3 (-267 *4)) (-4 *4 (-499)) (-4 *4 (-760)) (-4 *4 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) (-2468 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-267 *5)) (-5 *4 (-834)) (-4 *5 (-499)) (-4 *5 (-760)) (-4 *5 (-557 *2)) (-5 *2 (-332)) (-5 *1 (-712 *5)))) (-2468 (*1 *2 *3) (|partial| -12 (-5 *3 (-267 *4)) (-4 *4 (-499)) (-4 *4 (-760)) (-4 *4 (-557 *2)) (-5 *2 (-332)) (-5 *1 (-712 *4)))) (-2469 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-352 (-861 (-144 *5)))) (-5 *4 (-834)) (-4 *5 (-499)) (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) (-2469 (*1 *2 *3) (|partial| -12 (-5 *3 (-352 (-861 (-144 *4)))) (-4 *4 (-499)) (-4 *4 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) (-2469 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-834)) (-4 *5 (-499)) (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) (-2469 (*1 *2 *3) (|partial| -12 (-5 *3 (-352 (-861 *4))) (-4 *4 (-499)) (-4 *4 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) (-2468 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-834)) (-4 *5 (-499)) (-4 *5 (-557 *2)) (-5 *2 (-332)) (-5 *1 (-712 *5)))) (-2468 (*1 *2 *3) (|partial| -12 (-5 *3 (-352 (-861 *4))) (-4 *4 (-499)) (-4 *4 (-557 *2)) (-5 *2 (-332)) (-5 *1 (-712 *4)))) (-2469 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-861 *5)) (-5 *4 (-834)) (-4 *5 (-965)) (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) (-2469 (*1 *2 *3) (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-965)) (-4 *4 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) (-2468 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-861 *5)) (-5 *4 (-834)) (-4 *5 (-965)) (-4 *5 (-557 *2)) (-5 *2 (-332)) (-5 *1 (-712 *5)))) (-2468 (*1 *2 *3) (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-965)) (-4 *4 (-557 *2)) (-5 *2 (-332)) (-5 *1 (-712 *4)))) (-2469 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-861 (-144 *5))) (-5 *4 (-834)) (-4 *5 (-148)) (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) (-2469 (*1 *2 *3) (|partial| -12 (-5 *3 (-861 (-144 *4))) (-4 *4 (-148)) (-4 *4 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) (-2467 (*1 *2 *3 *4) (-12 (-5 *3 (-267 (-144 *5))) (-5 *4 (-834)) (-4 *5 (-499)) (-4 *5 (-760)) (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-267 (-144 *4))) (-4 *4 (-499)) (-4 *4 (-760)) (-4 *4 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) (-2467 (*1 *2 *3 *4) (-12 (-5 *3 (-267 *5)) (-5 *4 (-834)) (-4 *5 (-499)) (-4 *5 (-760)) (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-267 *4)) (-4 *4 (-499)) (-4 *4 (-760)) (-4 *4 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) (-2466 (*1 *2 *3 *4) (-12 (-5 *3 (-267 *5)) (-5 *4 (-834)) (-4 *5 (-499)) (-4 *5 (-760)) (-4 *5 (-557 *2)) (-5 *2 (-332)) (-5 *1 (-712 *5)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-267 *4)) (-4 *4 (-499)) (-4 *4 (-760)) (-4 *4 (-557 *2)) (-5 *2 (-332)) (-5 *1 (-712 *4)))) (-2467 (*1 *2 *3 *4) (-12 (-5 *3 (-352 (-861 (-144 *5)))) (-5 *4 (-834)) (-4 *5 (-499)) (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-352 (-861 (-144 *4)))) (-4 *4 (-499)) (-4 *4 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) (-2467 (*1 *2 *3 *4) (-12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-834)) (-4 *5 (-499)) (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-352 (-861 *4))) (-4 *4 (-499)) (-4 *4 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) (-2466 (*1 *2 *3 *4) (-12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-834)) (-4 *5 (-499)) (-4 *5 (-557 *2)) (-5 *2 (-332)) (-5 *1 (-712 *5)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-352 (-861 *4))) (-4 *4 (-499)) (-4 *4 (-557 *2)) (-5 *2 (-332)) (-5 *1 (-712 *4)))) (-2467 (*1 *2 *3 *4) (-12 (-5 *3 (-861 *5)) (-5 *4 (-834)) (-4 *5 (-965)) (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-861 *4)) (-4 *4 (-965)) (-4 *4 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) (-2466 (*1 *2 *3 *4) (-12 (-5 *3 (-861 *5)) (-5 *4 (-834)) (-4 *5 (-965)) (-4 *5 (-557 *2)) (-5 *2 (-332)) (-5 *1 (-712 *5)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-861 *4)) (-4 *4 (-965)) (-4 *4 (-557 *2)) (-5 *2 (-332)) (-5 *1 (-712 *4)))) (-2467 (*1 *2 *3 *4) (-12 (-5 *3 (-861 (-144 *5))) (-5 *4 (-834)) (-4 *5 (-148)) (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-861 (-144 *4))) (-4 *4 (-148)) (-4 *4 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) (-2467 (*1 *2 *3 *4) (-12 (-5 *3 (-144 *5)) (-5 *4 (-834)) (-4 *5 (-148)) (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-144 *4)) (-4 *4 (-148)) (-4 *4 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) (-2467 (*1 *2 *3 *4) (-12 (-5 *4 (-834)) (-5 *2 (-144 (-332))) (-5 *1 (-712 *3)) (-4 *3 (-557 (-332))))) (-2467 (*1 *2 *3) (-12 (-5 *2 (-144 (-332))) (-5 *1 (-712 *3)) (-4 *3 (-557 (-332))))) (-2466 (*1 *2 *3 *4) (-12 (-5 *4 (-834)) (-5 *2 (-332)) (-5 *1 (-712 *3)) (-4 *3 (-557 *2)))) (-2466 (*1 *2 *3) (-12 (-5 *2 (-332)) (-5 *1 (-712 *3)) (-4 *3 (-557 *2))))) +((-2473 (((-834) (-1077)) 90 T ELT)) (-2475 (((-3 (-332) "failed") (-1077)) 36 T ELT)) (-2474 (((-332) (-1077)) 34 T ELT)) (-2471 (((-834) (-1077)) 64 T ELT)) (-2472 (((-1077) (-834)) 74 T ELT)) (-2470 (((-1077) (-834)) 63 T ELT))) +(((-713) (-10 -7 (-15 -2470 ((-1077) (-834))) (-15 -2471 ((-834) (-1077))) (-15 -2472 ((-1077) (-834))) (-15 -2473 ((-834) (-1077))) (-15 -2474 ((-332) (-1077))) (-15 -2475 ((-3 (-332) "failed") (-1077))))) (T -713)) +((-2475 (*1 *2 *3) (|partial| -12 (-5 *3 (-1077)) (-5 *2 (-332)) (-5 *1 (-713)))) (-2474 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-332)) (-5 *1 (-713)))) (-2473 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-834)) (-5 *1 (-713)))) (-2472 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1077)) (-5 *1 (-713)))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-834)) (-5 *1 (-713)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1077)) (-5 *1 (-713))))) +((-2478 (((-1189) (-1183 (-332)) (-488) (-332) (-2 (|:| |tryValue| (-332)) (|:| |did| (-332)) (|:| -1479 (-332))) (-332) (-1183 (-332)) (-1 (-1189) (-1183 (-332)) (-1183 (-332)) (-332)) (-1183 (-332)) (-1183 (-332)) (-1183 (-332)) (-1183 (-332)) (-1183 (-332)) (-1183 (-332)) (-1183 (-332))) 54 T ELT) (((-1189) (-1183 (-332)) (-488) (-332) (-2 (|:| |tryValue| (-332)) (|:| |did| (-332)) (|:| -1479 (-332))) (-332) (-1183 (-332)) (-1 (-1189) (-1183 (-332)) (-1183 (-332)) (-332))) 51 T ELT)) (-2479 (((-1189) (-1183 (-332)) (-488) (-332) (-332) (-488) (-1 (-1189) (-1183 (-332)) (-1183 (-332)) (-332))) 61 T ELT)) (-2477 (((-1189) (-1183 (-332)) (-488) (-332) (-332) (-332) (-332) (-488) (-1 (-1189) (-1183 (-332)) (-1183 (-332)) (-332))) 49 T ELT)) (-2476 (((-1189) (-1183 (-332)) (-488) (-332) (-332) (-1 (-1189) (-1183 (-332)) (-1183 (-332)) (-332)) (-1183 (-332)) (-1183 (-332)) (-1183 (-332)) (-1183 (-332))) 63 T ELT) (((-1189) (-1183 (-332)) (-488) (-332) (-332) (-1 (-1189) (-1183 (-332)) (-1183 (-332)) (-332))) 62 T ELT))) +(((-714) (-10 -7 (-15 -2476 ((-1189) (-1183 (-332)) (-488) (-332) (-332) (-1 (-1189) (-1183 (-332)) (-1183 (-332)) (-332)))) (-15 -2476 ((-1189) (-1183 (-332)) (-488) (-332) (-332) (-1 (-1189) (-1183 (-332)) (-1183 (-332)) (-332)) (-1183 (-332)) (-1183 (-332)) (-1183 (-332)) (-1183 (-332)))) (-15 -2477 ((-1189) (-1183 (-332)) (-488) (-332) (-332) (-332) (-332) (-488) (-1 (-1189) (-1183 (-332)) (-1183 (-332)) (-332)))) (-15 -2478 ((-1189) (-1183 (-332)) (-488) (-332) (-2 (|:| |tryValue| (-332)) (|:| |did| (-332)) (|:| -1479 (-332))) (-332) (-1183 (-332)) (-1 (-1189) (-1183 (-332)) (-1183 (-332)) (-332)))) (-15 -2478 ((-1189) (-1183 (-332)) (-488) (-332) (-2 (|:| |tryValue| (-332)) (|:| |did| (-332)) (|:| -1479 (-332))) (-332) (-1183 (-332)) (-1 (-1189) (-1183 (-332)) (-1183 (-332)) (-332)) (-1183 (-332)) (-1183 (-332)) (-1183 (-332)) (-1183 (-332)) (-1183 (-332)) (-1183 (-332)) (-1183 (-332)))) (-15 -2479 ((-1189) (-1183 (-332)) (-488) (-332) (-332) (-488) (-1 (-1189) (-1183 (-332)) (-1183 (-332)) (-332)))))) (T -714)) +((-2479 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-488)) (-5 *6 (-1 (-1189) (-1183 *5) (-1183 *5) (-332))) (-5 *3 (-1183 (-332))) (-5 *5 (-332)) (-5 *2 (-1189)) (-5 *1 (-714)))) (-2478 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-488)) (-5 *6 (-2 (|:| |tryValue| (-332)) (|:| |did| (-332)) (|:| -1479 (-332)))) (-5 *7 (-1 (-1189) (-1183 *5) (-1183 *5) (-332))) (-5 *3 (-1183 (-332))) (-5 *5 (-332)) (-5 *2 (-1189)) (-5 *1 (-714)))) (-2478 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-488)) (-5 *6 (-2 (|:| |tryValue| (-332)) (|:| |did| (-332)) (|:| -1479 (-332)))) (-5 *7 (-1 (-1189) (-1183 *5) (-1183 *5) (-332))) (-5 *3 (-1183 (-332))) (-5 *5 (-332)) (-5 *2 (-1189)) (-5 *1 (-714)))) (-2477 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-488)) (-5 *6 (-1 (-1189) (-1183 *5) (-1183 *5) (-332))) (-5 *3 (-1183 (-332))) (-5 *5 (-332)) (-5 *2 (-1189)) (-5 *1 (-714)))) (-2476 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-488)) (-5 *6 (-1 (-1189) (-1183 *5) (-1183 *5) (-332))) (-5 *3 (-1183 (-332))) (-5 *5 (-332)) (-5 *2 (-1189)) (-5 *1 (-714)))) (-2476 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-488)) (-5 *6 (-1 (-1189) (-1183 *5) (-1183 *5) (-332))) (-5 *3 (-1183 (-332))) (-5 *5 (-332)) (-5 *2 (-1189)) (-5 *1 (-714))))) +((-2488 (((-2 (|:| -3408 (-332)) (|:| -1600 (-332)) (|:| |totalpts| (-488)) (|:| |success| (-85))) (-1 (-332) (-332)) (-332) (-332) (-332) (-332) (-488) (-488)) 65 T ELT)) (-2485 (((-2 (|:| -3408 (-332)) (|:| -1600 (-332)) (|:| |totalpts| (-488)) (|:| |success| (-85))) (-1 (-332) (-332)) (-332) (-332) (-332) (-332) (-488) (-488)) 40 T ELT)) (-2487 (((-2 (|:| -3408 (-332)) (|:| -1600 (-332)) (|:| |totalpts| (-488)) (|:| |success| (-85))) (-1 (-332) (-332)) (-332) (-332) (-332) (-332) (-488) (-488)) 64 T ELT)) (-2484 (((-2 (|:| -3408 (-332)) (|:| -1600 (-332)) (|:| |totalpts| (-488)) (|:| |success| (-85))) (-1 (-332) (-332)) (-332) (-332) (-332) (-332) (-488) (-488)) 38 T ELT)) (-2486 (((-2 (|:| -3408 (-332)) (|:| -1600 (-332)) (|:| |totalpts| (-488)) (|:| |success| (-85))) (-1 (-332) (-332)) (-332) (-332) (-332) (-332) (-488) (-488)) 63 T ELT)) (-2483 (((-2 (|:| -3408 (-332)) (|:| -1600 (-332)) (|:| |totalpts| (-488)) (|:| |success| (-85))) (-1 (-332) (-332)) (-332) (-332) (-332) (-332) (-488) (-488)) 24 T ELT)) (-2482 (((-2 (|:| -3408 (-332)) (|:| -1600 (-332)) (|:| |totalpts| (-488)) (|:| |success| (-85))) (-1 (-332) (-332)) (-332) (-332) (-332) (-332) (-488) (-488) (-488)) 41 T ELT)) (-2481 (((-2 (|:| -3408 (-332)) (|:| -1600 (-332)) (|:| |totalpts| (-488)) (|:| |success| (-85))) (-1 (-332) (-332)) (-332) (-332) (-332) (-332) (-488) (-488) (-488)) 39 T ELT)) (-2480 (((-2 (|:| -3408 (-332)) (|:| -1600 (-332)) (|:| |totalpts| (-488)) (|:| |success| (-85))) (-1 (-332) (-332)) (-332) (-332) (-332) (-332) (-488) (-488) (-488)) 37 T ELT))) +(((-715) (-10 -7 (-15 -2480 ((-2 (|:| -3408 (-332)) (|:| -1600 (-332)) (|:| |totalpts| (-488)) (|:| |success| (-85))) (-1 (-332) (-332)) (-332) (-332) (-332) (-332) (-488) (-488) (-488))) (-15 -2481 ((-2 (|:| -3408 (-332)) (|:| -1600 (-332)) (|:| |totalpts| (-488)) (|:| |success| (-85))) (-1 (-332) (-332)) (-332) (-332) (-332) (-332) (-488) (-488) (-488))) (-15 -2482 ((-2 (|:| -3408 (-332)) (|:| -1600 (-332)) (|:| |totalpts| (-488)) (|:| |success| (-85))) (-1 (-332) (-332)) (-332) (-332) (-332) (-332) (-488) (-488) (-488))) (-15 -2483 ((-2 (|:| -3408 (-332)) (|:| -1600 (-332)) (|:| |totalpts| (-488)) (|:| |success| (-85))) (-1 (-332) (-332)) (-332) (-332) (-332) (-332) (-488) (-488))) (-15 -2484 ((-2 (|:| -3408 (-332)) (|:| -1600 (-332)) (|:| |totalpts| (-488)) (|:| |success| (-85))) (-1 (-332) (-332)) (-332) (-332) (-332) (-332) (-488) (-488))) (-15 -2485 ((-2 (|:| -3408 (-332)) (|:| -1600 (-332)) (|:| |totalpts| (-488)) (|:| |success| (-85))) (-1 (-332) (-332)) (-332) (-332) (-332) (-332) (-488) (-488))) (-15 -2486 ((-2 (|:| -3408 (-332)) (|:| -1600 (-332)) (|:| |totalpts| (-488)) (|:| |success| (-85))) (-1 (-332) (-332)) (-332) (-332) (-332) (-332) (-488) (-488))) (-15 -2487 ((-2 (|:| -3408 (-332)) (|:| -1600 (-332)) (|:| |totalpts| (-488)) (|:| |success| (-85))) (-1 (-332) (-332)) (-332) (-332) (-332) (-332) (-488) (-488))) (-15 -2488 ((-2 (|:| -3408 (-332)) (|:| -1600 (-332)) (|:| |totalpts| (-488)) (|:| |success| (-85))) (-1 (-332) (-332)) (-332) (-332) (-332) (-332) (-488) (-488))))) (T -715)) +((-2488 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-332) (-332))) (-5 *4 (-332)) (-5 *2 (-2 (|:| -3408 *4) (|:| -1600 *4) (|:| |totalpts| (-488)) (|:| |success| (-85)))) (-5 *1 (-715)) (-5 *5 (-488)))) (-2487 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-332) (-332))) (-5 *4 (-332)) (-5 *2 (-2 (|:| -3408 *4) (|:| -1600 *4) (|:| |totalpts| (-488)) (|:| |success| (-85)))) (-5 *1 (-715)) (-5 *5 (-488)))) (-2486 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-332) (-332))) (-5 *4 (-332)) (-5 *2 (-2 (|:| -3408 *4) (|:| -1600 *4) (|:| |totalpts| (-488)) (|:| |success| (-85)))) (-5 *1 (-715)) (-5 *5 (-488)))) (-2485 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-332) (-332))) (-5 *4 (-332)) (-5 *2 (-2 (|:| -3408 *4) (|:| -1600 *4) (|:| |totalpts| (-488)) (|:| |success| (-85)))) (-5 *1 (-715)) (-5 *5 (-488)))) (-2484 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-332) (-332))) (-5 *4 (-332)) (-5 *2 (-2 (|:| -3408 *4) (|:| -1600 *4) (|:| |totalpts| (-488)) (|:| |success| (-85)))) (-5 *1 (-715)) (-5 *5 (-488)))) (-2483 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-332) (-332))) (-5 *4 (-332)) (-5 *2 (-2 (|:| -3408 *4) (|:| -1600 *4) (|:| |totalpts| (-488)) (|:| |success| (-85)))) (-5 *1 (-715)) (-5 *5 (-488)))) (-2482 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-332) (-332))) (-5 *4 (-332)) (-5 *2 (-2 (|:| -3408 *4) (|:| -1600 *4) (|:| |totalpts| (-488)) (|:| |success| (-85)))) (-5 *1 (-715)) (-5 *5 (-488)))) (-2481 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-332) (-332))) (-5 *4 (-332)) (-5 *2 (-2 (|:| -3408 *4) (|:| -1600 *4) (|:| |totalpts| (-488)) (|:| |success| (-85)))) (-5 *1 (-715)) (-5 *5 (-488)))) (-2480 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-332) (-332))) (-5 *4 (-332)) (-5 *2 (-2 (|:| -3408 *4) (|:| -1600 *4) (|:| |totalpts| (-488)) (|:| |success| (-85)))) (-5 *1 (-715)) (-5 *5 (-488))))) +((-3711 (((-1129 |#1|) |#1| (-181) (-488)) 69 T ELT))) +(((-716 |#1|) (-10 -7 (-15 -3711 ((-1129 |#1|) |#1| (-181) (-488)))) (-891)) (T -716)) +((-3711 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-181)) (-5 *5 (-488)) (-5 *2 (-1129 *3)) (-5 *1 (-716 *3)) (-4 *3 (-891))))) +((-3629 (((-488) $) 17 T ELT)) (-3193 (((-85) $) 10 T ELT)) (-3389 (($ $) 19 T ELT))) +(((-717 |#1|) (-10 -7 (-15 -3389 (|#1| |#1|)) (-15 -3629 ((-488) |#1|)) (-15 -3193 ((-85) |#1|))) (-718)) (T -717)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 31 T ELT)) (-1316 (((-3 $ "failed") $ $) 35 T ELT)) (-3629 (((-488) $) 38 T ELT)) (-3730 (($) 30 T CONST)) (-3192 (((-85) $) 28 T ELT)) (-1218 (((-85) $ $) 33 T ELT)) (-3193 (((-85) $) 39 T ELT)) (-2537 (($ $ $) 23 T ELT)) (-2863 (($ $ $) 22 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3389 (($ $) 37 T ELT)) (-2666 (($) 29 T CONST)) (-2572 (((-85) $ $) 21 T ELT)) (-2573 (((-85) $ $) 19 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 20 T ELT)) (-2691 (((-85) $ $) 18 T ELT)) (-3843 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3845 (($ $ $) 25 T ELT)) (* (($ (-834) $) 26 T ELT) (($ (-698) $) 32 T ELT) (($ (-488) $) 40 T ELT))) (((-718) (-113)) (T -718)) -((-3189 (*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-85))))) -(-13 (-720) (-23) (-10 -8 (-15 -3189 ((-85) $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-720) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 31 T ELT)) (-2486 (($ $ $) 36 T ELT)) (-1314 (((-3 $ "failed") $ $) 35 T ELT)) (-3727 (($) 30 T CONST)) (-3189 (((-85) $) 28 T ELT)) (-1216 (((-85) $ $) 33 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 29 T CONST)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (-3842 (($ $ $) 25 T ELT)) (* (($ (-832) $) 26 T ELT) (($ (-696) $) 32 T ELT))) -(((-719) (-113)) (T -719)) -((-2486 (*1 *1 *1 *1) (-4 *1 (-719)))) -(-13 (-723) (-10 -8 (-15 -2486 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) 7 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (-3842 (($ $ $) 25 T ELT)) (* (($ (-832) $) 26 T ELT))) -(((-720) (-113)) (T -720)) +((-3193 (*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-85)))) (-3629 (*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-488)))) (-3389 (*1 *1 *1) (-4 *1 (-718)))) +(-13 (-725) (-21) (-10 -8 (-15 -3193 ((-85) $)) (-15 -3629 ((-488) $)) (-15 -3389 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-720) . T) ((-722) . T) ((-725) . T) ((-760) . T) ((-763) . T) ((-1017) . T) ((-1133) . T)) +((-3192 (((-85) $) 10 T ELT))) +(((-719 |#1|) (-10 -7 (-15 -3192 ((-85) |#1|))) (-720)) (T -719)) NIL -(-13 (-758) (-25)) -(((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1131) . T)) -((-3191 (((-85) $) 42 T ELT)) (-3160 (((-3 (-486) #1="failed") $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3159 (((-486) $) NIL T ELT) (((-350 (-486)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) 78 T ELT)) (-3026 (((-85) $) 72 T ELT)) (-3025 (((-350 (-486)) $) 76 T ELT)) (-3135 ((|#2| $) 26 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2487 (($ $) 58 T ELT)) (-3975 (((-475) $) 67 T ELT)) (-3012 (($ $) 21 T ELT)) (-3950 (((-774) $) 53 T ELT) (($ (-486)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-350 (-486))) NIL T ELT)) (-3129 (((-696)) 10 T CONST)) (-3386 ((|#2| $) 71 T ELT)) (-3059 (((-85) $ $) 30 T ELT)) (-2688 (((-85) $ $) 69 T ELT)) (-3840 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 31 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) -(((-721 |#1| |#2|) (-10 -7 (-15 -2688 ((-85) |#1| |#1|)) (-15 -3975 ((-475) |#1|)) (-15 -2487 (|#1| |#1|)) (-15 -3027 ((-3 (-350 (-486)) #1="failed") |#1|)) (-15 -3025 ((-350 (-486)) |#1|)) (-15 -3026 ((-85) |#1|)) (-15 -3386 (|#2| |#1|)) (-15 -3135 (|#2| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -3846 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3950 (|#1| (-350 (-486)))) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3950 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3129 ((-696)) -3956) (-15 -3950 (|#1| (-486))) (-15 * (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 -3191 ((-85) |#1|)) (-15 * (|#1| (-832) |#1|)) (-15 -3842 (|#1| |#1| |#1|)) (-15 -3950 ((-774) |#1|)) (-15 -3059 ((-85) |#1| |#1|))) (-722 |#2|) (-146)) (T -721)) -((-3129 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-696)) (-5 *1 (-721 *3 *4)) (-4 *3 (-722 *4))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3139 (((-696)) 67 (|has| |#1| (-320)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-486) #1="failed") $) 109 (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) 106 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 103 T ELT)) (-3159 (((-486) $) 108 (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) 105 (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 104 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3646 ((|#1| $) 93 T ELT)) (-3027 (((-3 (-350 (-486)) "failed") $) 80 (|has| |#1| (-485)) ELT)) (-3026 (((-85) $) 82 (|has| |#1| (-485)) ELT)) (-3025 (((-350 (-486)) $) 81 (|has| |#1| (-485)) ELT)) (-2997 (($) 70 (|has| |#1| (-320)) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2492 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 84 T ELT)) (-3135 ((|#1| $) 85 T ELT)) (-2534 (($ $ $) 71 (|has| |#1| (-758)) ELT)) (-2860 (($ $ $) 72 (|has| |#1| (-758)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 95 T ELT)) (-2012 (((-832) $) 69 (|has| |#1| (-320)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 79 (|has| |#1| (-312)) ELT)) (-2402 (($ (-832)) 68 (|has| |#1| (-320)) ELT)) (-2489 ((|#1| $) 90 T ELT)) (-2490 ((|#1| $) 91 T ELT)) (-2491 ((|#1| $) 92 T ELT)) (-3009 ((|#1| $) 86 T ELT)) (-3010 ((|#1| $) 87 T ELT)) (-3011 ((|#1| $) 88 T ELT)) (-2488 ((|#1| $) 89 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) 101 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 100 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) 98 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) 97 (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) |#1|) 96 (|has| |#1| (-457 (-1092) |#1|)) ELT)) (-3803 (($ $ |#1|) 102 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3975 (((-475) $) 77 (|has| |#1| (-555 (-475))) ELT)) (-3012 (($ $) 94 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-486))) 107 (|has| |#1| (-952 (-350 (-486)))) ELT)) (-2705 (((-634 $) $) 78 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3386 ((|#1| $) 83 (|has| |#1| (-975)) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2569 (((-85) $ $) 73 (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) 75 (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 74 (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 76 (|has| |#1| (-758)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) -(((-722 |#1|) (-113) (-146)) (T -722)) -((-3012 (*1 *1 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-2491 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-2490 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-2489 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-2492 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-3386 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)) (-4 *2 (-975)))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-722 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-85)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-722 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-350 (-486))))) (-3027 (*1 *2 *1) (|partial| -12 (-4 *1 (-722 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-350 (-486))))) (-2487 (*1 *1 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) -(-13 (-38 |t#1|) (-355 |t#1|) (-288 |t#1|) (-10 -8 (-15 -3012 ($ $)) (-15 -3646 (|t#1| $)) (-15 -2491 (|t#1| $)) (-15 -2490 (|t#1| $)) (-15 -2489 (|t#1| $)) (-15 -2488 (|t#1| $)) (-15 -3011 (|t#1| $)) (-15 -3010 (|t#1| $)) (-15 -3009 (|t#1| $)) (-15 -3135 (|t#1| $)) (-15 -2492 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#1| (-758)) (-6 (-758)) |%noBranch|) (IF (|has| |t#1| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-975)) (-15 -3386 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-485)) (PROGN (-15 -3026 ((-85) $)) (-15 -3025 ((-350 (-486)) $)) (-15 -3027 ((-3 (-350 (-486)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -2487 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-320) |has| |#1| (-320)) ((-288 |#1|) . T) ((-355 |#1|) . T) ((-381 |#1|) . T) ((-457 (-1092) |#1|) |has| |#1| (-457 (-1092) |#1|)) ((-457 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-665) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 31 T ELT)) (-1314 (((-3 $ "failed") $ $) 35 T ELT)) (-3727 (($) 30 T CONST)) (-3189 (((-85) $) 28 T ELT)) (-1216 (((-85) $ $) 33 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 29 T CONST)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (-3842 (($ $ $) 25 T ELT)) (* (($ (-832) $) 26 T ELT) (($ (-696) $) 32 T ELT))) -(((-723) (-113)) (T -723)) -NIL -(-13 (-718) (-104)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-718) . T) ((-720) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-696)) NIL (|has| |#1| (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-911 |#1|) #1#) $) 35 T ELT) (((-3 (-486) #1#) $) NIL (OR (|has| (-911 |#1|) (-952 (-486))) (|has| |#1| (-952 (-486)))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (OR (|has| (-911 |#1|) (-952 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-3159 ((|#1| $) NIL T ELT) (((-911 |#1|) $) 33 T ELT) (((-486) $) NIL (OR (|has| (-911 |#1|) (-952 (-486))) (|has| |#1| (-952 (-486)))) ELT) (((-350 (-486)) $) NIL (OR (|has| (-911 |#1|) (-952 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3646 ((|#1| $) 16 T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-485)) ELT)) (-3026 (((-85) $) NIL (|has| |#1| (-485)) ELT)) (-3025 (((-350 (-486)) $) NIL (|has| |#1| (-485)) ELT)) (-2997 (($) NIL (|has| |#1| (-320)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2492 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-911 |#1|) (-911 |#1|)) 29 T ELT)) (-3135 ((|#1| $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-320)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2402 (($ (-832)) NIL (|has| |#1| (-320)) ELT)) (-2489 ((|#1| $) 22 T ELT)) (-2490 ((|#1| $) 20 T ELT)) (-2491 ((|#1| $) 18 T ELT)) (-3009 ((|#1| $) 26 T ELT)) (-3010 ((|#1| $) 25 T ELT)) (-3011 ((|#1| $) 24 T ELT)) (-2488 ((|#1| $) 23 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) NIL (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) |#1|) NIL (|has| |#1| (-457 (-1092) |#1|)) ELT)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3012 (($ $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-911 |#1|)) 30 T ELT) (($ (-350 (-486))) NIL (OR (|has| (-911 |#1|) (-952 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 ((|#1| $) NIL (|has| |#1| (-975)) ELT)) (-2663 (($) 8 T CONST)) (-2669 (($) 12 T CONST)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-724 |#1|) (-13 (-722 |#1|) (-355 (-911 |#1|)) (-10 -8 (-15 -2492 ($ (-911 |#1|) (-911 |#1|))))) (-146)) (T -724)) -((-2492 (*1 *1 *2 *2) (-12 (-5 *2 (-911 *3)) (-4 *3 (-146)) (-5 *1 (-724 *3))))) -((-3846 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) -(((-725 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3846 (|#3| (-1 |#4| |#2|) |#1|))) (-722 |#2|) (-146) (-722 |#4|) (-146)) (T -725)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-722 *6)) (-5 *1 (-725 *4 *5 *2 *6)) (-4 *4 (-722 *5))))) -((-2493 (((-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) |#3| |#2| (-1092)) 19 T ELT))) -(((-726 |#1| |#2| |#3|) (-10 -7 (-15 -2493 ((-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) |#3| |#2| (-1092)))) (-13 (-258) (-952 (-486)) (-582 (-486)) (-120)) (-13 (-29 |#1|) (-1117) (-873)) (-602 |#2|)) (T -726)) -((-2493 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1092)) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-4 *4 (-13 (-29 *6) (-1117) (-873))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2014 (-585 *4)))) (-5 *1 (-726 *6 *4 *3)) (-4 *3 (-602 *4))))) -((-3576 (((-3 |#2| #1="failed") |#2| (-86) (-249 |#2|) (-585 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-585 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) |#2| #1#) |#2| (-86) (-1092)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1092)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -2014 (-585 (-1181 |#2|)))) #1#) (-585 |#2|) (-585 (-86)) (-1092)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -2014 (-585 (-1181 |#2|)))) #1#) (-585 (-249 |#2|)) (-585 (-86)) (-1092)) 26 T ELT) (((-3 (-585 (-1181 |#2|)) #1#) (-632 |#2|) (-1092)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -2014 (-585 (-1181 |#2|)))) #1#) (-632 |#2|) (-1181 |#2|) (-1092)) 35 T ELT))) -(((-727 |#1| |#2|) (-10 -7 (-15 -3576 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -2014 (-585 (-1181 |#2|)))) #1="failed") (-632 |#2|) (-1181 |#2|) (-1092))) (-15 -3576 ((-3 (-585 (-1181 |#2|)) #1#) (-632 |#2|) (-1092))) (-15 -3576 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -2014 (-585 (-1181 |#2|)))) #1#) (-585 (-249 |#2|)) (-585 (-86)) (-1092))) (-15 -3576 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -2014 (-585 (-1181 |#2|)))) #1#) (-585 |#2|) (-585 (-86)) (-1092))) (-15 -3576 ((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1092))) (-15 -3576 ((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) |#2| #1#) |#2| (-86) (-1092))) (-15 -3576 ((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-585 |#2|))) (-15 -3576 ((-3 |#2| #1#) |#2| (-86) (-249 |#2|) (-585 |#2|)))) (-13 (-258) (-952 (-486)) (-582 (-486)) (-120)) (-13 (-29 |#1|) (-1117) (-873))) (T -727)) -((-3576 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-585 *2)) (-4 *2 (-13 (-29 *6) (-1117) (-873))) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *1 (-727 *6 *2)))) (-3576 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-585 *2)) (-4 *2 (-13 (-29 *6) (-1117) (-873))) (-5 *1 (-727 *6 *2)) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))))) (-3576 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-86)) (-5 *5 (-1092)) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2014 (-585 *3))) *3 #1="failed")) (-5 *1 (-727 *6 *3)) (-4 *3 (-13 (-29 *6) (-1117) (-873))))) (-3576 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1092)) (-4 *7 (-13 (-29 *6) (-1117) (-873))) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2014 (-585 *7))) *7 #1#)) (-5 *1 (-727 *6 *7)))) (-3576 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-585 *7)) (-5 *4 (-585 (-86))) (-5 *5 (-1092)) (-4 *7 (-13 (-29 *6) (-1117) (-873))) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -2014 (-585 (-1181 *7))))) (-5 *1 (-727 *6 *7)))) (-3576 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-585 (-249 *7))) (-5 *4 (-585 (-86))) (-5 *5 (-1092)) (-4 *7 (-13 (-29 *6) (-1117) (-873))) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -2014 (-585 (-1181 *7))))) (-5 *1 (-727 *6 *7)))) (-3576 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-632 *6)) (-5 *4 (-1092)) (-4 *6 (-13 (-29 *5) (-1117) (-873))) (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-585 (-1181 *6))) (-5 *1 (-727 *5 *6)))) (-3576 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-632 *7)) (-5 *5 (-1092)) (-4 *7 (-13 (-29 *6) (-1117) (-873))) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -2014 (-585 (-1181 *7))))) (-5 *1 (-727 *6 *7)) (-5 *4 (-1181 *7))))) -((-3473 ((|#2| |#2| (-1092)) 17 T ELT)) (-2494 ((|#2| |#2| (-1092)) 56 T ELT)) (-2495 (((-1 |#2| |#2|) (-1092)) 11 T ELT))) -(((-728 |#1| |#2|) (-10 -7 (-15 -3473 (|#2| |#2| (-1092))) (-15 -2494 (|#2| |#2| (-1092))) (-15 -2495 ((-1 |#2| |#2|) (-1092)))) (-13 (-258) (-952 (-486)) (-582 (-486)) (-120)) (-13 (-29 |#1|) (-1117) (-873))) (T -728)) -((-2495 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-1 *5 *5)) (-5 *1 (-728 *4 *5)) (-4 *5 (-13 (-29 *4) (-1117) (-873))))) (-2494 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *1 (-728 *4 *2)) (-4 *2 (-13 (-29 *4) (-1117) (-873))))) (-3473 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *1 (-728 *4 *2)) (-4 *2 (-13 (-29 *4) (-1117) (-873)))))) -((-2496 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2014 (-585 |#4|))) (-599 |#4|) |#4|) 33 T ELT))) -(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2496 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2014 (-585 |#4|))) (-599 |#4|) |#4|))) (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486)))) (-1157 |#1|) (-1157 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -729)) -((-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *4)) (-4 *4 (-291 *5 *6 *7)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-585 *4)))) (-5 *1 (-729 *5 *6 *7 *4))))) -((-3744 (((-2 (|:| -3269 |#3|) (|:| |rh| (-585 (-350 |#2|)))) |#4| (-585 (-350 |#2|))) 53 T ELT)) (-2498 (((-585 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#4| |#2|) 62 T ELT) (((-585 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#4|) 61 T ELT) (((-585 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#3| |#2|) 20 T ELT) (((-585 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#3|) 21 T ELT)) (-2499 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2497 ((|#2| |#3| (-585 (-350 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-350 |#2|)) 105 T ELT))) -(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2497 ((-3 |#2| "failed") |#3| (-350 |#2|))) (-15 -2497 (|#2| |#3| (-585 (-350 |#2|)))) (-15 -2498 ((-585 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#3|)) (-15 -2498 ((-585 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#3| |#2|)) (-15 -2499 (|#2| |#3| |#1|)) (-15 -2498 ((-585 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#4|)) (-15 -2498 ((-585 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#4| |#2|)) (-15 -2499 (|#2| |#4| |#1|)) (-15 -3744 ((-2 (|:| -3269 |#3|) (|:| |rh| (-585 (-350 |#2|)))) |#4| (-585 (-350 |#2|))))) (-13 (-312) (-120) (-952 (-350 (-486)))) (-1157 |#1|) (-602 |#2|) (-602 (-350 |#2|))) (T -730)) -((-3744 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) (-5 *2 (-2 (|:| -3269 *7) (|:| |rh| (-585 (-350 *6))))) (-5 *1 (-730 *5 *6 *7 *3)) (-5 *4 (-585 (-350 *6))) (-4 *7 (-602 *6)) (-4 *3 (-602 (-350 *6))))) (-2499 (*1 *2 *3 *4) (-12 (-4 *2 (-1157 *4)) (-5 *1 (-730 *4 *2 *5 *3)) (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *5 (-602 *2)) (-4 *3 (-602 (-350 *2))))) (-2498 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *4 (-1157 *5)) (-5 *2 (-585 (-2 (|:| -3776 *4) (|:| -3229 *4)))) (-5 *1 (-730 *5 *4 *6 *3)) (-4 *6 (-602 *4)) (-4 *3 (-602 (-350 *4))))) (-2498 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) (-5 *2 (-585 (-2 (|:| -3776 *5) (|:| -3229 *5)))) (-5 *1 (-730 *4 *5 *6 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 (-350 *5))))) (-2499 (*1 *2 *3 *4) (-12 (-4 *2 (-1157 *4)) (-5 *1 (-730 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *3 (-602 *2)) (-4 *5 (-602 (-350 *2))))) (-2498 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *4 (-1157 *5)) (-5 *2 (-585 (-2 (|:| -3776 *4) (|:| -3229 *4)))) (-5 *1 (-730 *5 *4 *3 *6)) (-4 *3 (-602 *4)) (-4 *6 (-602 (-350 *4))))) (-2498 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) (-5 *2 (-585 (-2 (|:| -3776 *5) (|:| -3229 *5)))) (-5 *1 (-730 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-602 (-350 *5))))) (-2497 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-350 *2))) (-4 *2 (-1157 *5)) (-5 *1 (-730 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *3 (-602 *2)) (-4 *6 (-602 (-350 *2))))) (-2497 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-350 *2)) (-4 *2 (-1157 *5)) (-5 *1 (-730 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *3 (-602 *2)) (-4 *6 (-602 *4))))) -((-2507 (((-585 (-2 (|:| |frac| (-350 |#2|)) (|:| -3269 |#3|))) |#3| (-1 (-585 |#2|) |#2| (-1087 |#2|)) (-1 (-348 |#2|) |#2|)) 156 T ELT)) (-2508 (((-585 (-2 (|:| |poly| |#2|) (|:| -3269 |#3|))) |#3| (-1 (-585 |#1|) |#2|)) 52 T ELT)) (-2501 (((-585 (-2 (|:| |deg| (-696)) (|:| -3269 |#2|))) |#3|) 123 T ELT)) (-2500 ((|#2| |#3|) 42 T ELT)) (-2502 (((-585 (-2 (|:| -3956 |#1|) (|:| -3269 |#3|))) |#3| (-1 (-585 |#1|) |#2|)) 100 T ELT)) (-2503 ((|#3| |#3| (-350 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) -(((-731 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2500 (|#2| |#3|)) (-15 -2501 ((-585 (-2 (|:| |deg| (-696)) (|:| -3269 |#2|))) |#3|)) (-15 -2502 ((-585 (-2 (|:| -3956 |#1|) (|:| -3269 |#3|))) |#3| (-1 (-585 |#1|) |#2|))) (-15 -2508 ((-585 (-2 (|:| |poly| |#2|) (|:| -3269 |#3|))) |#3| (-1 (-585 |#1|) |#2|))) (-15 -2507 ((-585 (-2 (|:| |frac| (-350 |#2|)) (|:| -3269 |#3|))) |#3| (-1 (-585 |#2|) |#2| (-1087 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2503 (|#3| |#3| |#2|)) (-15 -2503 (|#3| |#3| (-350 |#2|)))) (-13 (-312) (-120) (-952 (-350 (-486)))) (-1157 |#1|) (-602 |#2|) (-602 (-350 |#2|))) (T -731)) -((-2503 (*1 *2 *2 *3) (-12 (-5 *3 (-350 *5)) (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) (-5 *1 (-731 *4 *5 *2 *6)) (-4 *2 (-602 *5)) (-4 *6 (-602 *3)))) (-2503 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *3 (-1157 *4)) (-5 *1 (-731 *4 *3 *2 *5)) (-4 *2 (-602 *3)) (-4 *5 (-602 (-350 *3))))) (-2507 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-585 *7) *7 (-1087 *7))) (-5 *5 (-1 (-348 *7) *7)) (-4 *7 (-1157 *6)) (-4 *6 (-13 (-312) (-120) (-952 (-350 (-486))))) (-5 *2 (-585 (-2 (|:| |frac| (-350 *7)) (|:| -3269 *3)))) (-5 *1 (-731 *6 *7 *3 *8)) (-4 *3 (-602 *7)) (-4 *8 (-602 (-350 *7))))) (-2508 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) (-5 *2 (-585 (-2 (|:| |poly| *6) (|:| -3269 *3)))) (-5 *1 (-731 *5 *6 *3 *7)) (-4 *3 (-602 *6)) (-4 *7 (-602 (-350 *6))))) (-2502 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) (-5 *2 (-585 (-2 (|:| -3956 *5) (|:| -3269 *3)))) (-5 *1 (-731 *5 *6 *3 *7)) (-4 *3 (-602 *6)) (-4 *7 (-602 (-350 *6))))) (-2501 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) (-5 *2 (-585 (-2 (|:| |deg| (-696)) (|:| -3269 *5)))) (-5 *1 (-731 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-602 (-350 *5))))) (-2500 (*1 *2 *3) (-12 (-4 *2 (-1157 *4)) (-5 *1 (-731 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *3 (-602 *2)) (-4 *5 (-602 (-350 *2)))))) -((-2504 (((-2 (|:| -2014 (-585 (-350 |#2|))) (|:| |mat| (-632 |#1|))) (-600 |#2| (-350 |#2|)) (-585 (-350 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-350 |#2|) #1="failed")) (|:| -2014 (-585 (-350 |#2|)))) (-600 |#2| (-350 |#2|)) (-350 |#2|)) 145 T ELT) (((-2 (|:| -2014 (-585 (-350 |#2|))) (|:| |mat| (-632 |#1|))) (-599 (-350 |#2|)) (-585 (-350 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-350 |#2|) #1#)) (|:| -2014 (-585 (-350 |#2|)))) (-599 (-350 |#2|)) (-350 |#2|)) 138 T ELT)) (-2505 ((|#2| (-600 |#2| (-350 |#2|))) 86 T ELT) ((|#2| (-599 (-350 |#2|))) 89 T ELT))) -(((-732 |#1| |#2|) (-10 -7 (-15 -2504 ((-2 (|:| |particular| (-3 (-350 |#2|) #1="failed")) (|:| -2014 (-585 (-350 |#2|)))) (-599 (-350 |#2|)) (-350 |#2|))) (-15 -2504 ((-2 (|:| -2014 (-585 (-350 |#2|))) (|:| |mat| (-632 |#1|))) (-599 (-350 |#2|)) (-585 (-350 |#2|)))) (-15 -2504 ((-2 (|:| |particular| (-3 (-350 |#2|) #1#)) (|:| -2014 (-585 (-350 |#2|)))) (-600 |#2| (-350 |#2|)) (-350 |#2|))) (-15 -2504 ((-2 (|:| -2014 (-585 (-350 |#2|))) (|:| |mat| (-632 |#1|))) (-600 |#2| (-350 |#2|)) (-585 (-350 |#2|)))) (-15 -2505 (|#2| (-599 (-350 |#2|)))) (-15 -2505 (|#2| (-600 |#2| (-350 |#2|))))) (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486)))) (-1157 |#1|)) (T -732)) -((-2505 (*1 *2 *3) (-12 (-5 *3 (-600 *2 (-350 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-732 *4 *2)) (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-599 (-350 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-732 *4 *2)) (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-350 *6))) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-2 (|:| -2014 (-585 (-350 *6))) (|:| |mat| (-632 *5)))) (-5 *1 (-732 *5 *6)) (-5 *4 (-585 (-350 *6))))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-585 *4)))) (-5 *1 (-732 *5 *6)))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-350 *6))) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-2 (|:| -2014 (-585 (-350 *6))) (|:| |mat| (-632 *5)))) (-5 *1 (-732 *5 *6)) (-5 *4 (-585 (-350 *6))))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-585 *4)))) (-5 *1 (-732 *5 *6))))) -((-2506 (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#1|))) |#5| |#4|) 49 T ELT))) -(((-733 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2506 ((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#1|))) |#5| |#4|))) (-312) (-602 |#1|) (-1157 |#1|) (-663 |#1| |#3|) (-602 |#4|)) (T -733)) -((-2506 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *7 (-1157 *5)) (-4 *4 (-663 *5 *7)) (-5 *2 (-2 (|:| |mat| (-632 *6)) (|:| |vec| (-1181 *5)))) (-5 *1 (-733 *5 *6 *7 *4 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 *4))))) -((-2507 (((-585 (-2 (|:| |frac| (-350 |#2|)) (|:| -3269 (-600 |#2| (-350 |#2|))))) (-600 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 47 T ELT)) (-2509 (((-585 (-350 |#2|)) (-600 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-585 (-350 |#2|)) (-600 |#2| (-350 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-585 (-350 |#2|)) (-599 (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-585 (-350 |#2|)) (-599 (-350 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-585 (-350 |#2|)) (-600 |#2| (-350 |#2|)) (-1 (-585 |#1|) |#2|) (-1 (-348 |#2|) |#2|)) 38 T ELT) (((-585 (-350 |#2|)) (-600 |#2| (-350 |#2|)) (-1 (-585 |#1|) |#2|)) 39 T ELT) (((-585 (-350 |#2|)) (-599 (-350 |#2|)) (-1 (-585 |#1|) |#2|) (-1 (-348 |#2|) |#2|)) 36 T ELT) (((-585 (-350 |#2|)) (-599 (-350 |#2|)) (-1 (-585 |#1|) |#2|)) 37 T ELT)) (-2508 (((-585 (-2 (|:| |poly| |#2|) (|:| -3269 (-600 |#2| (-350 |#2|))))) (-600 |#2| (-350 |#2|)) (-1 (-585 |#1|) |#2|)) 96 T ELT))) -(((-734 |#1| |#2|) (-10 -7 (-15 -2509 ((-585 (-350 |#2|)) (-599 (-350 |#2|)) (-1 (-585 |#1|) |#2|))) (-15 -2509 ((-585 (-350 |#2|)) (-599 (-350 |#2|)) (-1 (-585 |#1|) |#2|) (-1 (-348 |#2|) |#2|))) (-15 -2509 ((-585 (-350 |#2|)) (-600 |#2| (-350 |#2|)) (-1 (-585 |#1|) |#2|))) (-15 -2509 ((-585 (-350 |#2|)) (-600 |#2| (-350 |#2|)) (-1 (-585 |#1|) |#2|) (-1 (-348 |#2|) |#2|))) (-15 -2507 ((-585 (-2 (|:| |frac| (-350 |#2|)) (|:| -3269 (-600 |#2| (-350 |#2|))))) (-600 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2508 ((-585 (-2 (|:| |poly| |#2|) (|:| -3269 (-600 |#2| (-350 |#2|))))) (-600 |#2| (-350 |#2|)) (-1 (-585 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2509 ((-585 (-350 |#2|)) (-599 (-350 |#2|)))) (-15 -2509 ((-585 (-350 |#2|)) (-599 (-350 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2509 ((-585 (-350 |#2|)) (-600 |#2| (-350 |#2|)))) (-15 -2509 ((-585 (-350 |#2|)) (-600 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)))) |%noBranch|)) (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486)))) (-1157 |#1|)) (T -734)) -((-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-585 (-350 *6))) (-5 *1 (-734 *5 *6)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-600 *5 (-350 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-585 (-350 *5))) (-5 *1 (-734 *4 *5)))) (-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-585 (-350 *6))) (-5 *1 (-734 *5 *6)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-599 (-350 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-585 (-350 *5))) (-5 *1 (-734 *4 *5)))) (-2508 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) (-5 *2 (-585 (-2 (|:| |poly| *6) (|:| -3269 (-600 *6 (-350 *6)))))) (-5 *1 (-734 *5 *6)) (-5 *3 (-600 *6 (-350 *6))))) (-2507 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-5 *2 (-585 (-2 (|:| |frac| (-350 *6)) (|:| -3269 (-600 *6 (-350 *6)))))) (-5 *1 (-734 *5 *6)) (-5 *3 (-600 *6 (-350 *6))))) (-2509 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-600 *7 (-350 *7))) (-5 *4 (-1 (-585 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) (-4 *6 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-4 *7 (-1157 *6)) (-5 *2 (-585 (-350 *7))) (-5 *1 (-734 *6 *7)))) (-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-350 *6))) (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) (-5 *2 (-585 (-350 *6))) (-5 *1 (-734 *5 *6)))) (-2509 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-350 *7))) (-5 *4 (-1 (-585 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) (-4 *6 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-4 *7 (-1157 *6)) (-5 *2 (-585 (-350 *7))) (-5 *1 (-734 *6 *7)))) (-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-350 *6))) (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) (-5 *2 (-585 (-350 *6))) (-5 *1 (-734 *5 *6))))) -((-2510 (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#1|))) (-632 |#2|) (-1181 |#1|)) 110 T ELT) (((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-585 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1181 |#1|)) (|:| -3269 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1181 |#1|)) 15 T ELT)) (-2511 (((-2 (|:| |particular| (-3 (-1181 |#1|) #1="failed")) (|:| -2014 (-585 (-1181 |#1|)))) (-632 |#2|) (-1181 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2014 (-585 |#1|))) |#2| |#1|)) 116 T ELT)) (-3576 (((-3 (-2 (|:| |particular| (-1181 |#1|)) (|:| -2014 (-632 |#1|))) #1#) (-632 |#1|) (-1181 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2014 (-585 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) -(((-735 |#1| |#2|) (-10 -7 (-15 -2510 ((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-585 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1181 |#1|)) (|:| -3269 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1181 |#1|))) (-15 -2510 ((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#1|))) (-632 |#2|) (-1181 |#1|))) (-15 -3576 ((-3 (-2 (|:| |particular| (-1181 |#1|)) (|:| -2014 (-632 |#1|))) #1="failed") (-632 |#1|) (-1181 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2014 (-585 |#1|))) #1#) |#2| |#1|))) (-15 -2511 ((-2 (|:| |particular| (-3 (-1181 |#1|) #1#)) (|:| -2014 (-585 (-1181 |#1|)))) (-632 |#2|) (-1181 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2014 (-585 |#1|))) |#2| |#1|)))) (-312) (-602 |#1|)) (T -735)) -((-2511 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 #1="failed")) (|:| -2014 (-585 *6))) *7 *6)) (-4 *6 (-312)) (-4 *7 (-602 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 *6) #1#)) (|:| -2014 (-585 (-1181 *6))))) (-5 *1 (-735 *6 *7)) (-5 *4 (-1181 *6)))) (-3576 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2014 (-585 *6))) #1#) *7 *6)) (-4 *6 (-312)) (-4 *7 (-602 *6)) (-5 *2 (-2 (|:| |particular| (-1181 *6)) (|:| -2014 (-632 *6)))) (-5 *1 (-735 *6 *7)) (-5 *3 (-632 *6)) (-5 *4 (-1181 *6)))) (-2510 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-602 *5)) (-5 *2 (-2 (|:| |mat| (-632 *6)) (|:| |vec| (-1181 *5)))) (-5 *1 (-735 *5 *6)) (-5 *3 (-632 *6)) (-5 *4 (-1181 *5)))) (-2510 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| A (-632 *5)) (|:| |eqs| (-585 (-2 (|:| C (-632 *5)) (|:| |g| (-1181 *5)) (|:| -3269 *6) (|:| |rh| *5)))))) (-5 *1 (-735 *5 *6)) (-5 *3 (-632 *5)) (-5 *4 (-1181 *5)) (-4 *6 (-602 *5))))) -((-2512 (((-632 |#1|) (-585 |#1|) (-696)) 14 T ELT) (((-632 |#1|) (-585 |#1|)) 15 T ELT)) (-2513 (((-3 (-1181 |#1|) #1="failed") |#2| |#1| (-585 |#1|)) 39 T ELT)) (-3343 (((-3 |#1| #1#) |#2| |#1| (-585 |#1|) (-1 |#1| |#1|)) 46 T ELT))) -(((-736 |#1| |#2|) (-10 -7 (-15 -2512 ((-632 |#1|) (-585 |#1|))) (-15 -2512 ((-632 |#1|) (-585 |#1|) (-696))) (-15 -2513 ((-3 (-1181 |#1|) #1="failed") |#2| |#1| (-585 |#1|))) (-15 -3343 ((-3 |#1| #1#) |#2| |#1| (-585 |#1|) (-1 |#1| |#1|)))) (-312) (-602 |#1|)) (T -736)) -((-3343 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-585 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) (-5 *1 (-736 *2 *3)) (-4 *3 (-602 *2)))) (-2513 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-585 *4)) (-4 *4 (-312)) (-5 *2 (-1181 *4)) (-5 *1 (-736 *4 *3)) (-4 *3 (-602 *4)))) (-2512 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-696)) (-4 *5 (-312)) (-5 *2 (-632 *5)) (-5 *1 (-736 *5 *6)) (-4 *6 (-602 *5)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-312)) (-5 *2 (-632 *4)) (-5 *1 (-736 *4 *5)) (-4 *5 (-602 *4))))) -((-2571 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3191 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3710 (($ (-832)) NIL (|has| |#2| (-963)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#2|)) ELT)) (-2486 (($ $ $) NIL (|has| |#2| (-719)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3139 (((-696)) NIL (|has| |#2| (-320)) ELT)) (-3791 ((|#2| $ (-486) |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (-12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1015)) ELT)) (-3159 (((-486) $) NIL (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) ELT) (((-350 (-486)) $) NIL (-12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) ((|#2| $) NIL (|has| |#2| (-1015)) ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL (|has| |#2| (-963)) ELT) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-963)) ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| |#2| (-963)) ELT)) (-2997 (($) NIL (|has| |#2| (-320)) ELT)) (-1577 ((|#2| $ (-486) |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ (-486)) NIL T ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-719)) ELT)) (-1216 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2412 (((-85) $) NIL (|has| |#2| (-963)) ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-2611 (((-585 |#2|) $) NIL T ELT)) (-3248 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#2| (-320)) ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| |#2| (-582 (-486))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL (|has| |#2| (-963)) ELT) (((-632 |#2|) (-1181 $)) NIL (|has| |#2| (-963)) ELT)) (-3245 (((-1075) $) NIL (|has| |#2| (-1015)) ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-2402 (($ (-832)) NIL (|has| |#2| (-320)) ELT)) (-3246 (((-1035) $) NIL (|has| |#2| (-1015)) ELT)) (-3804 ((|#2| $) NIL (|has| (-486) (-758)) ELT)) (-1731 (((-3 |#2| #1#) (-1 (-85) |#2|) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ (-486) |#2|) NIL T ELT) ((|#2| $ (-486)) NIL T ELT)) (-3839 ((|#2| $ $) NIL (|has| |#2| (-963)) ELT)) (-1469 (($ (-1181 |#2|)) NIL T ELT)) (-3915 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3761 (($ $ (-696)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#2| (-963)) ELT)) (-1732 (((-696) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-696) (-1 (-85) |#2|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-1181 |#2|) $) NIL T ELT) (($ (-486)) NIL (OR (-12 (|has| |#2| (-952 (-486))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ELT) (($ (-350 (-486))) NIL (-12 (|has| |#2| (-952 (-350 (-486)))) (|has| |#2| (-1015))) ELT) (($ |#2|) NIL (|has| |#2| (-1015)) ELT) (((-774) $) NIL (|has| |#2| (-554 (-774))) ELT)) (-3129 (((-696)) NIL (|has| |#2| (-963)) CONST)) (-1267 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3128 (((-85) $ $) NIL (|has| |#2| (-963)) ELT)) (-2663 (($) NIL (|has| |#2| (-23)) CONST)) (-2669 (($) NIL (|has| |#2| (-963)) CONST)) (-2672 (($ $ (-696)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#2| (-813 (-1092))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#2| (-963)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2688 (((-85) $ $) 11 (|has| |#2| (-758)) ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3842 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-696)) NIL (|has| |#2| (-963)) ELT) (($ $ (-832)) NIL (|has| |#2| (-963)) ELT)) (* (($ $ $) NIL (|has| |#2| (-963)) ELT) (($ $ |#2|) NIL (|has| |#2| (-665)) ELT) (($ |#2| $) NIL (|has| |#2| (-665)) ELT) (($ (-486) $) NIL (|has| |#2| (-21)) ELT) (($ (-696) $) NIL (|has| |#2| (-23)) ELT) (($ (-832) $) NIL (|has| |#2| (-25)) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-737 |#1| |#2| |#3|) (-196 |#1| |#2|) (-696) (-719) (-1 (-85) (-1181 |#2|) (-1181 |#2|))) (T -737)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1489 (((-585 (-696)) $) NIL T ELT) (((-585 (-696)) $ (-1092)) NIL T ELT)) (-1523 (((-696) $) NIL T ELT) (((-696) $ (-1092)) NIL T ELT)) (-3084 (((-585 (-740 (-1092))) $) NIL T ELT)) (-3086 (((-1087 $) $ (-740 (-1092))) NIL T ELT) (((-1087 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-740 (-1092)))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-1485 (($ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-740 (-1092)) #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL T ELT) (((-3 (-1041 |#1| (-1092)) #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-740 (-1092)) $) NIL T ELT) (((-1092) $) NIL T ELT) (((-1041 |#1| (-1092)) $) NIL T ELT)) (-3759 (($ $ $ (-740 (-1092))) NIL (|has| |#1| (-146)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT) (($ $ (-740 (-1092))) NIL (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| (-471 (-740 (-1092))) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-740 (-1092)) (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-740 (-1092)) (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-3775 (((-696) $ (-1092)) NIL T ELT) (((-696) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3087 (($ (-1087 |#1|) (-740 (-1092))) NIL T ELT) (($ (-1087 $) (-740 (-1092))) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-471 (-740 (-1092)))) NIL T ELT) (($ $ (-740 (-1092)) (-696)) NIL T ELT) (($ $ (-585 (-740 (-1092))) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-740 (-1092))) NIL T ELT)) (-2823 (((-471 (-740 (-1092))) $) NIL T ELT) (((-696) $ (-740 (-1092))) NIL T ELT) (((-585 (-696)) $ (-585 (-740 (-1092)))) NIL T ELT)) (-1626 (($ (-1 (-471 (-740 (-1092))) (-471 (-740 (-1092)))) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1524 (((-1 $ (-696)) (-1092)) NIL T ELT) (((-1 $ (-696)) $) NIL (|has| |#1| (-190)) ELT)) (-3085 (((-3 (-740 (-1092)) #1#) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1487 (((-740 (-1092)) $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1488 (((-85) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-740 (-1092))) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-1486 (($ $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-823)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-740 (-1092)) |#1|) NIL T ELT) (($ $ (-585 (-740 (-1092))) (-585 |#1|)) NIL T ELT) (($ $ (-740 (-1092)) $) NIL T ELT) (($ $ (-585 (-740 (-1092))) (-585 $)) NIL T ELT) (($ $ (-1092) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-585 (-1092)) (-585 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1092) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3760 (($ $ (-740 (-1092))) NIL (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 (-740 (-1092))) (-585 (-696))) NIL T ELT) (($ $ (-740 (-1092)) (-696)) NIL T ELT) (($ $ (-585 (-740 (-1092)))) NIL T ELT) (($ $ (-740 (-1092))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-1490 (((-585 (-1092)) $) NIL T ELT)) (-3952 (((-471 (-740 (-1092))) $) NIL T ELT) (((-696) $ (-740 (-1092))) NIL T ELT) (((-585 (-696)) $ (-585 (-740 (-1092)))) NIL T ELT) (((-696) $ (-1092)) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-740 (-1092)) (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-740 (-1092)) (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-740 (-1092)) (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT) (($ $ (-740 (-1092))) NIL (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-740 (-1092))) NIL T ELT) (($ (-1092)) NIL T ELT) (($ (-1041 |#1| (-1092))) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-471 (-740 (-1092)))) NIL T ELT) (($ $ (-740 (-1092)) (-696)) NIL T ELT) (($ $ (-585 (-740 (-1092))) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-585 (-740 (-1092))) (-585 (-696))) NIL T ELT) (($ $ (-740 (-1092)) (-696)) NIL T ELT) (($ $ (-585 (-740 (-1092)))) NIL T ELT) (($ $ (-740 (-1092))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-738 |#1|) (-13 (-213 |#1| (-1092) (-740 (-1092)) (-471 (-740 (-1092)))) (-952 (-1041 |#1| (-1092)))) (-963)) (T -738)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#2| (-312)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-312)) ELT)) (-2063 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#2| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#2| (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#2| (-312)) ELT)) (-3726 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#2| (-312)) ELT)) (-1896 (($ (-585 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 20 (|has| |#2| (-312)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#2| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#2| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#2| (-312)) ELT)) (-1608 (((-696) $) NIL (|has| |#2| (-312)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3761 (($ $) 13 T ELT) (($ $ (-696)) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-350 (-486))) NIL (|has| |#2| (-312)) ELT) (($ $) NIL (|has| |#2| (-312)) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ $) 15 (|has| |#2| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT) (($ $ (-486)) 18 (|has| |#2| (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-350 (-486)) $) NIL (|has| |#2| (-312)) ELT) (($ $ (-350 (-486))) NIL (|has| |#2| (-312)) ELT))) -(((-739 |#1| |#2| |#3|) (-13 (-82 $ $) (-190) (-431 |#2|) (-10 -7 (IF (|has| |#2| (-312)) (-6 (-312)) |%noBranch|))) (-1015) (-811 |#1|) |#1|) (T -739)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-1523 (((-696) $) NIL T ELT)) (-3834 ((|#1| $) 10 T ELT)) (-3160 (((-3 |#1| "failed") $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3775 (((-696) $) 11 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-1524 (($ |#1| (-696)) 9 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3761 (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2672 (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT))) -(((-740 |#1|) (-228 |#1|) (-758)) (T -740)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3938 (((-585 |#1|) $) 39 T ELT)) (-3139 (((-696) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3943 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3802 (($ $) 43 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1755 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2301 ((|#1| $ (-486)) NIL T ELT)) (-2302 (((-696) $ (-486)) NIL T ELT)) (-3940 (($ $) 55 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-2292 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2293 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-3944 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2514 (((-85) $ $) 52 T ELT)) (-3836 (((-696) $) 35 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1756 (($ $ $) NIL T ELT)) (-1757 (($ $ $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 ((|#1| $) 42 T ELT)) (-1784 (((-585 (-2 (|:| |gen| |#1|) (|:| -3947 (-696)))) $) NIL T ELT)) (-2882 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2568 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2669 (($) 7 T CONST)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 54 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ |#1| (-696)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-741 |#1|) (-13 (-336 |#1|) (-756) (-10 -8 (-15 -3804 (|#1| $)) (-15 -3802 ($ $)) (-15 -3940 ($ $)) (-15 -2514 ((-85) $ $)) (-15 -3944 ((-3 $ #1="failed") $ |#1|)) (-15 -3943 ((-3 $ #1#) $ |#1|)) (-15 -2568 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3836 ((-696) $)) (-15 -3938 ((-585 |#1|) $)))) (-758)) (T -741)) -((-3804 (*1 *2 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) (-3802 (*1 *1 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) (-3940 (*1 *1 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) (-2514 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-741 *3)) (-4 *3 (-758)))) (-3944 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) (-3943 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) (-2568 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-741 *3)) (|:| |rm| (-741 *3)))) (-5 *1 (-741 *3)) (-4 *3 (-758)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-741 *3)) (-4 *3 (-758)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-741 *3)) (-4 *3 (-758))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3626 (((-486) $) 69 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3189 (((-85) $) 67 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3190 (((-85) $) 68 T ELT)) (-2534 (($ $ $) 61 T ELT)) (-2860 (($ $ $) 62 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3386 (($ $) 70 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2569 (((-85) $ $) 63 T ELT)) (-2570 (((-85) $ $) 65 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 64 T ELT)) (-2688 (((-85) $ $) 66 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-742) (-113)) (T -742)) -NIL -(-13 (-497) (-757)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-497) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-716) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-757) . T) ((-758) . T) ((-761) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2515 ((|#1| $) 10 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2516 (($ |#1|) 9 T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2896 (($ |#2| (-696)) NIL T ELT)) (-2823 (((-696) $) NIL T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3761 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-696)) NIL (|has| |#1| (-190)) ELT)) (-3952 (((-696) $) NIL T ELT)) (-3950 (((-774) $) 17 T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-146)) ELT)) (-3680 ((|#2| $ (-696)) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-696)) NIL (|has| |#1| (-190)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-743 |#1| |#2|) (-13 (-647 |#2|) (-10 -8 (IF (|has| |#1| (-190)) (-6 (-190)) |%noBranch|) (-15 -2516 ($ |#1|)) (-15 -2515 (|#1| $)))) (-647 |#2|) (-963)) (T -743)) -((-2516 (*1 *1 *2) (-12 (-4 *3 (-963)) (-5 *1 (-743 *2 *3)) (-4 *2 (-647 *3)))) (-2515 (*1 *2 *1) (-12 (-4 *2 (-647 *3)) (-5 *1 (-743 *2 *3)) (-4 *3 (-963))))) -((-2571 (((-85) $ $) 18 T ELT)) (-3237 (($ |#1| $) 71 T ELT) (($ $ |#1|) 70 T ELT) (($ $ $) 69 T ELT)) (-3239 (($ $ $) 67 T ELT)) (-3238 (((-85) $ $) 68 T ELT)) (-3242 (($ (-585 |#1|)) 63 T ELT) (($) 62 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 42 (|has| $ (-318 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2370 (($ $) 55 T ELT)) (-1355 (($ $) 51 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 44 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 43 (|has| $ (-318 |#1|)) ELT)) (-3409 (($ |#1| $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) 80 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 75 (|has| |#1| (-72)) ELT)) (-3244 (((-85) $ $) 59 T ELT)) (-2534 ((|#1| $) 74 T ELT)) (-2859 (($ $ $) 88 T ELT)) (-3521 (($ $ $) 87 T ELT)) (-2611 (((-585 |#1|) $) 81 T ELT)) (-3248 (((-85) |#1| $) 76 (|has| |#1| (-72)) ELT)) (-2860 ((|#1| $) 86 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 T ELT)) (-3241 (($ $ $) 64 T ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT) (($ |#1| $ (-696)) 56 T ELT)) (-3246 (((-1035) $) 20 T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 78 T ELT)) (-1277 ((|#1| $) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 83 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-2369 (((-585 (-2 (|:| |entry| |#1|) (|:| -1732 (-696)))) $) 54 T ELT)) (-3240 (($ $ |#1|) 66 T ELT) (($ $ $) 65 T ELT)) (-1467 (($) 46 T ELT) (($ (-585 |#1|)) 45 T ELT)) (-1732 (((-696) (-1 (-85) |#1|) $) 82 T ELT) (((-696) |#1| $) 77 (|has| |#1| (-72)) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 52 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 47 T ELT)) (-3950 (((-774) $) 16 T ELT)) (-3243 (($ (-585 |#1|)) 61 T ELT) (($) 60 T ELT)) (-1267 (((-85) $ $) 19 T ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 84 T ELT)) (-3059 (((-85) $ $) 17 T ELT)) (-3961 (((-696) $) 85 T ELT))) -(((-744 |#1|) (-113) (-758)) (T -744)) -((-2534 (*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-758))))) -(-13 (-678 |t#1|) (-883 |t#1|) (-10 -8 (-15 -2534 (|t#1| $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-554 (-774)) . T) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-636 |#1|) . T) ((-678 |#1|) . T) ((-883 |#1|) . T) ((-1013 |#1|) . T) ((-1015) . T) ((-1037 |#1|) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3626 (((-486) $) NIL (|has| |#1| (-757)) ELT)) (-3727 (($) NIL (|has| |#1| (-21)) CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 9 T ELT)) (-3470 (((-3 $ #1#) $) 42 (|has| |#1| (-757)) ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) 51 (|has| |#1| (-485)) ELT)) (-3026 (((-85) $) 46 (|has| |#1| (-485)) ELT)) (-3025 (((-350 (-486)) $) 48 (|has| |#1| (-485)) ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1216 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2412 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-3190 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2517 (($) 13 T ELT)) (-2527 (((-85) $) 12 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2528 (((-85) $) 11 T ELT)) (-3950 (((-774) $) 18 T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (($ |#1|) 8 T ELT) (($ (-486)) NIL (OR (|has| |#1| (-757)) (|has| |#1| (-952 (-486)))) ELT)) (-3129 (((-696)) 36 (|has| |#1| (-757)) CONST)) (-1267 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3386 (($ $) NIL (|has| |#1| (-757)) ELT)) (-2663 (($) 23 (|has| |#1| (-21)) CONST)) (-2669 (($) 33 (|has| |#1| (-757)) CONST)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-85) $ $) 21 T ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-85) $ $) 45 (|has| |#1| (-757)) ELT)) (-3840 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3842 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-832)) NIL (|has| |#1| (-757)) ELT) (($ $ (-696)) NIL (|has| |#1| (-757)) ELT)) (* (($ $ $) 39 (|has| |#1| (-757)) ELT) (($ (-486) $) 27 (|has| |#1| (-21)) ELT) (($ (-696) $) NIL (|has| |#1| (-21)) ELT) (($ (-832) $) NIL (|has| |#1| (-21)) ELT))) -(((-745 |#1|) (-13 (-1015) (-355 |#1|) (-10 -8 (-15 -2517 ($)) (-15 -2528 ((-85) $)) (-15 -2527 ((-85) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-15 -3026 ((-85) $)) (-15 -3025 ((-350 (-486)) $)) (-15 -3027 ((-3 (-350 (-486)) "failed") $))) |%noBranch|))) (-1015)) (T -745)) -((-2517 (*1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1015)))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-745 *3)) (-4 *3 (-1015)))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-745 *3)) (-4 *3 (-1015)))) (-3026 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-745 *3)) (-4 *3 (-485)) (-4 *3 (-1015)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-745 *3)) (-4 *3 (-485)) (-4 *3 (-1015)))) (-3027 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-486))) (-5 *1 (-745 *3)) (-4 *3 (-485)) (-4 *3 (-1015))))) -((-3846 (((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|) (-745 |#2|)) 12 T ELT) (((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|)) 13 T ELT))) -(((-746 |#1| |#2|) (-10 -7 (-15 -3846 ((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|))) (-15 -3846 ((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|) (-745 |#2|)))) (-1015) (-1015)) (T -746)) -((-3846 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-745 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *1 (-746 *5 *6)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-745 *6)) (-5 *1 (-746 *5 *6))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-86) #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-86) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2519 ((|#1| (-86) |#1|) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2518 (($ |#1| (-310 (-86))) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2520 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2521 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3803 ((|#1| $ |#1|) NIL T ELT)) (-2522 ((|#1| |#1|) NIL (|has| |#1| (-146)) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-86)) NIL T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2523 (($ $) NIL (|has| |#1| (-146)) ELT) (($ $ $) NIL (|has| |#1| (-146)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ (-86) (-486)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-747 |#1|) (-13 (-963) (-952 |#1|) (-952 (-86)) (-241 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2523 ($ $)) (-15 -2523 ($ $ $)) (-15 -2522 (|#1| |#1|))) |%noBranch|) (-15 -2521 ($ $ (-1 |#1| |#1|))) (-15 -2520 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-86) (-486))) (-15 ** ($ $ (-486))) (-15 -2519 (|#1| (-86) |#1|)) (-15 -2518 ($ |#1| (-310 (-86)))))) (-963)) (T -747)) -((-2523 (*1 *1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-146)) (-4 *2 (-963)))) (-2523 (*1 *1 *1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-146)) (-4 *2 (-963)))) (-2522 (*1 *2 *2) (-12 (-5 *1 (-747 *2)) (-4 *2 (-146)) (-4 *2 (-963)))) (-2521 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-747 *3)))) (-2520 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-747 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-486)) (-5 *1 (-747 *4)) (-4 *4 (-963)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-747 *3)) (-4 *3 (-963)))) (-2519 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-747 *2)) (-4 *2 (-963)))) (-2518 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-747 *2)) (-4 *2 (-963))))) -((-2636 (((-85) $ |#2|) 14 T ELT)) (-3950 (((-774) $) 11 T ELT))) -(((-748 |#1| |#2|) (-10 -7 (-15 -2636 ((-85) |#1| |#2|)) (-15 -3950 ((-774) |#1|))) (-749 |#2|) (-1015)) (T -748)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3545 ((|#1| $) 19 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2636 (((-85) $ |#1|) 17 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2524 (((-55) $) 18 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) -(((-749 |#1|) (-113) (-1015)) (T -749)) -((-3545 (*1 *2 *1) (-12 (-4 *1 (-749 *2)) (-4 *2 (-1015)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-749 *3)) (-4 *3 (-1015)) (-5 *2 (-55)))) (-2636 (*1 *2 *1 *3) (-12 (-4 *1 (-749 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) -(-13 (-1015) (-10 -8 (-15 -3545 (|t#1| $)) (-15 -2524 ((-55) $)) (-15 -2636 ((-85) $ |t#1|)))) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-2525 (((-167 (-443)) (-1075)) 9 T ELT))) -(((-750) (-10 -7 (-15 -2525 ((-167 (-443)) (-1075))))) (T -750)) -((-2525 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-167 (-443))) (-5 *1 (-750))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3322 (((-1030) $) 10 T ELT)) (-3545 (((-448) $) 9 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2636 (((-85) $ (-448)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3533 (($ (-448) (-1030)) 8 T ELT)) (-3950 (((-774) $) 25 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2524 (((-55) $) 20 T ELT)) (-3059 (((-85) $ $) 12 T ELT))) -(((-751) (-13 (-749 (-448)) (-10 -8 (-15 -3322 ((-1030) $)) (-15 -3533 ($ (-448) (-1030)))))) (T -751)) -((-3322 (*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-751)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1030)) (-5 *1 (-751))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-2526 (((-1035) $) 31 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3626 (((-486) $) NIL (|has| |#1| (-757)) ELT)) (-3727 (($) NIL (|has| |#1| (-21)) CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 9 T ELT)) (-3470 (((-3 $ #1#) $) 57 (|has| |#1| (-757)) ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) 65 (|has| |#1| (-485)) ELT)) (-3026 (((-85) $) 60 (|has| |#1| (-485)) ELT)) (-3025 (((-350 (-486)) $) 63 (|has| |#1| (-485)) ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-2530 (($) 14 T ELT)) (-1216 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2412 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-3190 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-2529 (($) 16 T ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2527 (((-85) $) 12 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2528 (((-85) $) 11 T ELT)) (-3950 (((-774) $) 24 T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (($ |#1|) 8 T ELT) (($ (-486)) NIL (OR (|has| |#1| (-757)) (|has| |#1| (-952 (-486)))) ELT)) (-3129 (((-696)) 50 (|has| |#1| (-757)) CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3386 (($ $) NIL (|has| |#1| (-757)) ELT)) (-2663 (($) 37 (|has| |#1| (-21)) CONST)) (-2669 (($) 47 (|has| |#1| (-757)) CONST)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-85) $ $) 35 T ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-85) $ $) 59 (|has| |#1| (-757)) ELT)) (-3840 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3842 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-832)) NIL (|has| |#1| (-757)) ELT) (($ $ (-696)) NIL (|has| |#1| (-757)) ELT)) (* (($ $ $) 54 (|has| |#1| (-757)) ELT) (($ (-486) $) 41 (|has| |#1| (-21)) ELT) (($ (-696) $) NIL (|has| |#1| (-21)) ELT) (($ (-832) $) NIL (|has| |#1| (-21)) ELT))) -(((-752 |#1|) (-13 (-1015) (-355 |#1|) (-10 -8 (-15 -2530 ($)) (-15 -2529 ($)) (-15 -2528 ((-85) $)) (-15 -2527 ((-85) $)) (-15 -2526 ((-1035) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-15 -3026 ((-85) $)) (-15 -3025 ((-350 (-486)) $)) (-15 -3027 ((-3 (-350 (-486)) "failed") $))) |%noBranch|))) (-1015)) (T -752)) -((-2530 (*1 *1) (-12 (-5 *1 (-752 *2)) (-4 *2 (-1015)))) (-2529 (*1 *1) (-12 (-5 *1 (-752 *2)) (-4 *2 (-1015)))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-752 *3)) (-4 *3 (-1015)))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-752 *3)) (-4 *3 (-1015)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-752 *3)) (-4 *3 (-1015)))) (-3026 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-752 *3)) (-4 *3 (-485)) (-4 *3 (-1015)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-752 *3)) (-4 *3 (-485)) (-4 *3 (-1015)))) (-3027 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-486))) (-5 *1 (-752 *3)) (-4 *3 (-485)) (-4 *3 (-1015))))) -((-3846 (((-752 |#2|) (-1 |#2| |#1|) (-752 |#1|) (-752 |#2|) (-752 |#2|)) 13 T ELT) (((-752 |#2|) (-1 |#2| |#1|) (-752 |#1|)) 14 T ELT))) -(((-753 |#1| |#2|) (-10 -7 (-15 -3846 ((-752 |#2|) (-1 |#2| |#1|) (-752 |#1|))) (-15 -3846 ((-752 |#2|) (-1 |#2| |#1|) (-752 |#1|) (-752 |#2|) (-752 |#2|)))) (-1015) (-1015)) (T -753)) -((-3846 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-752 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-752 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *1 (-753 *5 *6)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-752 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-752 *6)) (-5 *1 (-753 *5 *6))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3139 (((-696)) 27 T ELT)) (-2997 (($) 30 T ELT)) (-2534 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2860 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2012 (((-832) $) 29 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2402 (($ (-832)) 28 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT))) -(((-754) (-113)) (T -754)) -((-2534 (*1 *1) (-4 *1 (-754))) (-2860 (*1 *1) (-4 *1 (-754)))) -(-13 (-758) (-320) (-10 -8 (-15 -2534 ($) -3956) (-15 -2860 ($) -3956))) -(((-72) . T) ((-554 (-774)) . T) ((-320) . T) ((-13) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1131) . T)) -((-2532 (((-85) (-1181 |#2|) (-1181 |#2|)) 19 T ELT)) (-2533 (((-85) (-1181 |#2|) (-1181 |#2|)) 20 T ELT)) (-2531 (((-85) (-1181 |#2|) (-1181 |#2|)) 16 T ELT))) -(((-755 |#1| |#2|) (-10 -7 (-15 -2531 ((-85) (-1181 |#2|) (-1181 |#2|))) (-15 -2532 ((-85) (-1181 |#2|) (-1181 |#2|))) (-15 -2533 ((-85) (-1181 |#2|) (-1181 |#2|)))) (-696) (-718)) (T -755)) -((-2533 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-755 *4 *5)) (-14 *4 (-696)))) (-2532 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-755 *4 *5)) (-14 *4 (-696)))) (-2531 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-755 *4 *5)) (-14 *4 (-696))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3727 (($) 29 T CONST)) (-3470 (((-3 $ "failed") $) 32 T ELT)) (-2412 (((-85) $) 30 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2669 (($) 28 T CONST)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (** (($ $ (-832)) 26 T ELT) (($ $ (-696)) 31 T ELT)) (* (($ $ $) 25 T ELT))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 31 T ELT)) (-3730 (($) 30 T CONST)) (-3192 (((-85) $) 28 T ELT)) (-1218 (((-85) $ $) 33 T ELT)) (-2537 (($ $ $) 23 T ELT)) (-2863 (($ $ $) 22 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 29 T CONST)) (-2572 (((-85) $ $) 21 T ELT)) (-2573 (((-85) $ $) 19 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 20 T ELT)) (-2691 (((-85) $ $) 18 T ELT)) (-3845 (($ $ $) 25 T ELT)) (* (($ (-834) $) 26 T ELT) (($ (-698) $) 32 T ELT))) +(((-720) (-113)) (T -720)) +((-3192 (*1 *2 *1) (-12 (-4 *1 (-720)) (-5 *2 (-85))))) +(-13 (-722) (-23) (-10 -8 (-15 -3192 ((-85) $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-722) . T) ((-760) . T) ((-763) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 31 T ELT)) (-2489 (($ $ $) 36 T ELT)) (-1316 (((-3 $ "failed") $ $) 35 T ELT)) (-3730 (($) 30 T CONST)) (-3192 (((-85) $) 28 T ELT)) (-1218 (((-85) $ $) 33 T ELT)) (-2537 (($ $ $) 23 T ELT)) (-2863 (($ $ $) 22 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 29 T CONST)) (-2572 (((-85) $ $) 21 T ELT)) (-2573 (((-85) $ $) 19 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 20 T ELT)) (-2691 (((-85) $ $) 18 T ELT)) (-3845 (($ $ $) 25 T ELT)) (* (($ (-834) $) 26 T ELT) (($ (-698) $) 32 T ELT))) +(((-721) (-113)) (T -721)) +((-2489 (*1 *1 *1 *1) (-4 *1 (-721)))) +(-13 (-725) (-10 -8 (-15 -2489 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-720) . T) ((-722) . T) ((-725) . T) ((-760) . T) ((-763) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) 7 T ELT)) (-2537 (($ $ $) 23 T ELT)) (-2863 (($ $ $) 22 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2572 (((-85) $ $) 21 T ELT)) (-2573 (((-85) $ $) 19 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 20 T ELT)) (-2691 (((-85) $ $) 18 T ELT)) (-3845 (($ $ $) 25 T ELT)) (* (($ (-834) $) 26 T ELT))) +(((-722) (-113)) (T -722)) +NIL +(-13 (-760) (-25)) +(((-25) . T) ((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-760) . T) ((-763) . T) ((-1017) . T) ((-1133) . T)) +((-3194 (((-85) $) 42 T ELT)) (-3163 (((-3 (-488) #1="failed") $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3162 (((-488) $) NIL T ELT) (((-352 (-488)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3030 (((-3 (-352 (-488)) #1#) $) 78 T ELT)) (-3029 (((-85) $) 72 T ELT)) (-3028 (((-352 (-488)) $) 76 T ELT)) (-3138 ((|#2| $) 26 T ELT)) (-3849 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2490 (($ $) 58 T ELT)) (-3978 (((-477) $) 67 T ELT)) (-3015 (($ $) 21 T ELT)) (-3953 (((-776) $) 53 T ELT) (($ (-488)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-352 (-488))) NIL T ELT)) (-3132 (((-698)) 10 T CONST)) (-3389 ((|#2| $) 71 T ELT)) (-3062 (((-85) $ $) 30 T ELT)) (-2691 (((-85) $ $) 69 T ELT)) (-3843 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 31 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) +(((-723 |#1| |#2|) (-10 -7 (-15 -2691 ((-85) |#1| |#1|)) (-15 -3978 ((-477) |#1|)) (-15 -2490 (|#1| |#1|)) (-15 -3030 ((-3 (-352 (-488)) #1="failed") |#1|)) (-15 -3028 ((-352 (-488)) |#1|)) (-15 -3029 ((-85) |#1|)) (-15 -3389 (|#2| |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -3015 (|#1| |#1|)) (-15 -3849 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3163 ((-3 |#2| #1#) |#1|)) (-15 -3162 (|#2| |#1|)) (-15 -3162 ((-352 (-488)) |#1|)) (-15 -3163 ((-3 (-352 (-488)) #1#) |#1|)) (-15 -3953 (|#1| (-352 (-488)))) (-15 -3162 ((-488) |#1|)) (-15 -3163 ((-3 (-488) #1#) |#1|)) (-15 -3953 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3132 ((-698)) -3959) (-15 -3953 (|#1| (-488))) (-15 * (|#1| |#1| |#1|)) (-15 -3843 (|#1| |#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 * (|#1| (-488) |#1|)) (-15 * (|#1| (-698) |#1|)) (-15 -3194 ((-85) |#1|)) (-15 * (|#1| (-834) |#1|)) (-15 -3845 (|#1| |#1| |#1|)) (-15 -3953 ((-776) |#1|)) (-15 -3062 ((-85) |#1| |#1|))) (-724 |#2|) (-148)) (T -723)) +((-3132 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-698)) (-5 *1 (-723 *3 *4)) (-4 *3 (-724 *4))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3142 (((-698)) 67 (|has| |#1| (-322)) ELT)) (-3730 (($) 23 T CONST)) (-3163 (((-3 (-488) #1="failed") $) 109 (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) 106 (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #1#) $) 103 T ELT)) (-3162 (((-488) $) 108 (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) 105 (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) 104 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3649 ((|#1| $) 93 T ELT)) (-3030 (((-3 (-352 (-488)) "failed") $) 80 (|has| |#1| (-487)) ELT)) (-3029 (((-85) $) 82 (|has| |#1| (-487)) ELT)) (-3028 (((-352 (-488)) $) 81 (|has| |#1| (-487)) ELT)) (-3000 (($) 70 (|has| |#1| (-322)) ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-2495 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 84 T ELT)) (-3138 ((|#1| $) 85 T ELT)) (-2537 (($ $ $) 71 (|has| |#1| (-760)) ELT)) (-2863 (($ $ $) 72 (|has| |#1| (-760)) ELT)) (-3849 (($ (-1 |#1| |#1|) $) 95 T ELT)) (-2015 (((-834) $) 69 (|has| |#1| (-322)) ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 79 (|has| |#1| (-314)) ELT)) (-2405 (($ (-834)) 68 (|has| |#1| (-322)) ELT)) (-2492 ((|#1| $) 90 T ELT)) (-2493 ((|#1| $) 91 T ELT)) (-2494 ((|#1| $) 92 T ELT)) (-3012 ((|#1| $) 86 T ELT)) (-3013 ((|#1| $) 87 T ELT)) (-3014 ((|#1| $) 88 T ELT)) (-2491 ((|#1| $) 89 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3774 (($ $ (-587 |#1|) (-587 |#1|)) 101 (|has| |#1| (-262 |#1|)) ELT) (($ $ |#1| |#1|) 100 (|has| |#1| (-262 |#1|)) ELT) (($ $ (-251 |#1|)) 99 (|has| |#1| (-262 |#1|)) ELT) (($ $ (-587 (-251 |#1|))) 98 (|has| |#1| (-262 |#1|)) ELT) (($ $ (-587 (-1094)) (-587 |#1|)) 97 (|has| |#1| (-459 (-1094) |#1|)) ELT) (($ $ (-1094) |#1|) 96 (|has| |#1| (-459 (-1094) |#1|)) ELT)) (-3806 (($ $ |#1|) 102 (|has| |#1| (-243 |#1| |#1|)) ELT)) (-3978 (((-477) $) 77 (|has| |#1| (-557 (-477))) ELT)) (-3015 (($ $) 94 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-352 (-488))) 107 (|has| |#1| (-954 (-352 (-488)))) ELT)) (-2708 (((-636 $) $) 78 (|has| |#1| (-118)) ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-3389 ((|#1| $) 83 (|has| |#1| (-977)) ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2572 (((-85) $ $) 73 (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) 75 (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 74 (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) 76 (|has| |#1| (-760)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) +(((-724 |#1|) (-113) (-148)) (T -724)) +((-3015 (*1 *1 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)))) (-2494 (*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)))) (-2493 (*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)))) (-2492 (*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)))) (-2491 (*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)))) (-3014 (*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)))) (-3013 (*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)))) (-3012 (*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)))) (-2495 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)))) (-3389 (*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)) (-4 *2 (-977)))) (-3029 (*1 *2 *1) (-12 (-4 *1 (-724 *3)) (-4 *3 (-148)) (-4 *3 (-487)) (-5 *2 (-85)))) (-3028 (*1 *2 *1) (-12 (-4 *1 (-724 *3)) (-4 *3 (-148)) (-4 *3 (-487)) (-5 *2 (-352 (-488))))) (-3030 (*1 *2 *1) (|partial| -12 (-4 *1 (-724 *3)) (-4 *3 (-148)) (-4 *3 (-487)) (-5 *2 (-352 (-488))))) (-2490 (*1 *1 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)) (-4 *2 (-314))))) +(-13 (-38 |t#1|) (-357 |t#1|) (-290 |t#1|) (-10 -8 (-15 -3015 ($ $)) (-15 -3649 (|t#1| $)) (-15 -2494 (|t#1| $)) (-15 -2493 (|t#1| $)) (-15 -2492 (|t#1| $)) (-15 -2491 (|t#1| $)) (-15 -3014 (|t#1| $)) (-15 -3013 (|t#1| $)) (-15 -3012 (|t#1| $)) (-15 -3138 (|t#1| $)) (-15 -2495 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-322)) (-6 (-322)) |%noBranch|) (IF (|has| |t#1| (-760)) (-6 (-760)) |%noBranch|) (IF (|has| |t#1| (-557 (-477))) (-6 (-557 (-477))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-977)) (-15 -3389 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-487)) (PROGN (-15 -3029 ((-85) $)) (-15 -3028 ((-352 (-488)) $)) (-15 -3030 ((-3 (-352 (-488)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-314)) (-15 -2490 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((-559 (-488)) . T) ((-559 |#1|) . T) ((-556 (-776)) . T) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-243 |#1| $) |has| |#1| (-243 |#1| |#1|)) ((-262 |#1|) |has| |#1| (-262 |#1|)) ((-322) |has| |#1| (-322)) ((-290 |#1|) . T) ((-357 |#1|) . T) ((-383 |#1|) . T) ((-459 (-1094) |#1|) |has| |#1| (-459 (-1094) |#1|)) ((-459 |#1| |#1|) |has| |#1| (-262 |#1|)) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-586 |#1|) . T) ((-658 |#1|) . T) ((-667) . T) ((-760) |has| |#1| (-760)) ((-763) |has| |#1| (-760)) ((-954 (-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((-954 (-488)) |has| |#1| (-954 (-488))) ((-954 |#1|) . T) ((-967 |#1|) . T) ((-972 |#1|) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 31 T ELT)) (-1316 (((-3 $ "failed") $ $) 35 T ELT)) (-3730 (($) 30 T CONST)) (-3192 (((-85) $) 28 T ELT)) (-1218 (((-85) $ $) 33 T ELT)) (-2537 (($ $ $) 23 T ELT)) (-2863 (($ $ $) 22 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 29 T CONST)) (-2572 (((-85) $ $) 21 T ELT)) (-2573 (((-85) $ $) 19 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 20 T ELT)) (-2691 (((-85) $ $) 18 T ELT)) (-3845 (($ $ $) 25 T ELT)) (* (($ (-834) $) 26 T ELT) (($ (-698) $) 32 T ELT))) +(((-725) (-113)) (T -725)) +NIL +(-13 (-720) (-104)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-720) . T) ((-722) . T) ((-760) . T) ((-763) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3142 (((-698)) NIL (|has| |#1| (-322)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-913 |#1|) #1#) $) 35 T ELT) (((-3 (-488) #1#) $) NIL (OR (|has| (-913 |#1|) (-954 (-488))) (|has| |#1| (-954 (-488)))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (OR (|has| (-913 |#1|) (-954 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) ELT)) (-3162 ((|#1| $) NIL T ELT) (((-913 |#1|) $) 33 T ELT) (((-488) $) NIL (OR (|has| (-913 |#1|) (-954 (-488))) (|has| |#1| (-954 (-488)))) ELT) (((-352 (-488)) $) NIL (OR (|has| (-913 |#1|) (-954 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3649 ((|#1| $) 16 T ELT)) (-3030 (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-487)) ELT)) (-3029 (((-85) $) NIL (|has| |#1| (-487)) ELT)) (-3028 (((-352 (-488)) $) NIL (|has| |#1| (-487)) ELT)) (-3000 (($) NIL (|has| |#1| (-322)) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2495 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-913 |#1|) (-913 |#1|)) 29 T ELT)) (-3138 ((|#1| $) NIL T ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2015 (((-834) $) NIL (|has| |#1| (-322)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL (|has| |#1| (-314)) ELT)) (-2405 (($ (-834)) NIL (|has| |#1| (-322)) ELT)) (-2492 ((|#1| $) 22 T ELT)) (-2493 ((|#1| $) 20 T ELT)) (-2494 ((|#1| $) 18 T ELT)) (-3012 ((|#1| $) 26 T ELT)) (-3013 ((|#1| $) 25 T ELT)) (-3014 ((|#1| $) 24 T ELT)) (-2491 ((|#1| $) 23 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3774 (($ $ (-587 |#1|) (-587 |#1|)) NIL (|has| |#1| (-262 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-262 |#1|)) ELT) (($ $ (-251 |#1|)) NIL (|has| |#1| (-262 |#1|)) ELT) (($ $ (-587 (-251 |#1|))) NIL (|has| |#1| (-262 |#1|)) ELT) (($ $ (-587 (-1094)) (-587 |#1|)) NIL (|has| |#1| (-459 (-1094) |#1|)) ELT) (($ $ (-1094) |#1|) NIL (|has| |#1| (-459 (-1094) |#1|)) ELT)) (-3806 (($ $ |#1|) NIL (|has| |#1| (-243 |#1| |#1|)) ELT)) (-3978 (((-477) $) NIL (|has| |#1| (-557 (-477))) ELT)) (-3015 (($ $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-913 |#1|)) 30 T ELT) (($ (-352 (-488))) NIL (OR (|has| (-913 |#1|) (-954 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) ELT)) (-2708 (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3389 ((|#1| $) NIL (|has| |#1| (-977)) ELT)) (-2666 (($) 8 T CONST)) (-2672 (($) 12 T CONST)) (-2572 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-726 |#1|) (-13 (-724 |#1|) (-357 (-913 |#1|)) (-10 -8 (-15 -2495 ($ (-913 |#1|) (-913 |#1|))))) (-148)) (T -726)) +((-2495 (*1 *1 *2 *2) (-12 (-5 *2 (-913 *3)) (-4 *3 (-148)) (-5 *1 (-726 *3))))) +((-3849 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) +(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3849 (|#3| (-1 |#4| |#2|) |#1|))) (-724 |#2|) (-148) (-724 |#4|) (-148)) (T -727)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-148)) (-4 *6 (-148)) (-4 *2 (-724 *6)) (-5 *1 (-727 *4 *5 *2 *6)) (-4 *4 (-724 *5))))) +((-2496 (((-2 (|:| |particular| |#2|) (|:| -2017 (-587 |#2|))) |#3| |#2| (-1094)) 19 T ELT))) +(((-728 |#1| |#2| |#3|) (-10 -7 (-15 -2496 ((-2 (|:| |particular| |#2|) (|:| -2017 (-587 |#2|))) |#3| |#2| (-1094)))) (-13 (-260) (-954 (-488)) (-584 (-488)) (-120)) (-13 (-29 |#1|) (-1119) (-875)) (-604 |#2|)) (T -728)) +((-2496 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1094)) (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-4 *4 (-13 (-29 *6) (-1119) (-875))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2017 (-587 *4)))) (-5 *1 (-728 *6 *4 *3)) (-4 *3 (-604 *4))))) +((-3579 (((-3 |#2| #1="failed") |#2| (-86) (-251 |#2|) (-587 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-251 |#2|) (-86) (-251 |#2|) (-587 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2017 (-587 |#2|))) |#2| #1#) |#2| (-86) (-1094)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2017 (-587 |#2|))) |#2| #1#) (-251 |#2|) (-86) (-1094)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1183 |#2|)) (|:| -2017 (-587 (-1183 |#2|)))) #1#) (-587 |#2|) (-587 (-86)) (-1094)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1183 |#2|)) (|:| -2017 (-587 (-1183 |#2|)))) #1#) (-587 (-251 |#2|)) (-587 (-86)) (-1094)) 26 T ELT) (((-3 (-587 (-1183 |#2|)) #1#) (-634 |#2|) (-1094)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1183 |#2|)) (|:| -2017 (-587 (-1183 |#2|)))) #1#) (-634 |#2|) (-1183 |#2|) (-1094)) 35 T ELT))) +(((-729 |#1| |#2|) (-10 -7 (-15 -3579 ((-3 (-2 (|:| |particular| (-1183 |#2|)) (|:| -2017 (-587 (-1183 |#2|)))) #1="failed") (-634 |#2|) (-1183 |#2|) (-1094))) (-15 -3579 ((-3 (-587 (-1183 |#2|)) #1#) (-634 |#2|) (-1094))) (-15 -3579 ((-3 (-2 (|:| |particular| (-1183 |#2|)) (|:| -2017 (-587 (-1183 |#2|)))) #1#) (-587 (-251 |#2|)) (-587 (-86)) (-1094))) (-15 -3579 ((-3 (-2 (|:| |particular| (-1183 |#2|)) (|:| -2017 (-587 (-1183 |#2|)))) #1#) (-587 |#2|) (-587 (-86)) (-1094))) (-15 -3579 ((-3 (-2 (|:| |particular| |#2|) (|:| -2017 (-587 |#2|))) |#2| #1#) (-251 |#2|) (-86) (-1094))) (-15 -3579 ((-3 (-2 (|:| |particular| |#2|) (|:| -2017 (-587 |#2|))) |#2| #1#) |#2| (-86) (-1094))) (-15 -3579 ((-3 |#2| #1#) (-251 |#2|) (-86) (-251 |#2|) (-587 |#2|))) (-15 -3579 ((-3 |#2| #1#) |#2| (-86) (-251 |#2|) (-587 |#2|)))) (-13 (-260) (-954 (-488)) (-584 (-488)) (-120)) (-13 (-29 |#1|) (-1119) (-875))) (T -729)) +((-3579 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-251 *2)) (-5 *5 (-587 *2)) (-4 *2 (-13 (-29 *6) (-1119) (-875))) (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-5 *1 (-729 *6 *2)))) (-3579 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-251 *2)) (-5 *4 (-86)) (-5 *5 (-587 *2)) (-4 *2 (-13 (-29 *6) (-1119) (-875))) (-5 *1 (-729 *6 *2)) (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-86)) (-5 *5 (-1094)) (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2017 (-587 *3))) *3 #1="failed")) (-5 *1 (-729 *6 *3)) (-4 *3 (-13 (-29 *6) (-1119) (-875))))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-251 *7)) (-5 *4 (-86)) (-5 *5 (-1094)) (-4 *7 (-13 (-29 *6) (-1119) (-875))) (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2017 (-587 *7))) *7 #1#)) (-5 *1 (-729 *6 *7)))) (-3579 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-587 *7)) (-5 *4 (-587 (-86))) (-5 *5 (-1094)) (-4 *7 (-13 (-29 *6) (-1119) (-875))) (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-5 *2 (-2 (|:| |particular| (-1183 *7)) (|:| -2017 (-587 (-1183 *7))))) (-5 *1 (-729 *6 *7)))) (-3579 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-587 (-251 *7))) (-5 *4 (-587 (-86))) (-5 *5 (-1094)) (-4 *7 (-13 (-29 *6) (-1119) (-875))) (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-5 *2 (-2 (|:| |particular| (-1183 *7)) (|:| -2017 (-587 (-1183 *7))))) (-5 *1 (-729 *6 *7)))) (-3579 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-634 *6)) (-5 *4 (-1094)) (-4 *6 (-13 (-29 *5) (-1119) (-875))) (-4 *5 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-5 *2 (-587 (-1183 *6))) (-5 *1 (-729 *5 *6)))) (-3579 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-634 *7)) (-5 *5 (-1094)) (-4 *7 (-13 (-29 *6) (-1119) (-875))) (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-5 *2 (-2 (|:| |particular| (-1183 *7)) (|:| -2017 (-587 (-1183 *7))))) (-5 *1 (-729 *6 *7)) (-5 *4 (-1183 *7))))) +((-3476 ((|#2| |#2| (-1094)) 17 T ELT)) (-2497 ((|#2| |#2| (-1094)) 56 T ELT)) (-2498 (((-1 |#2| |#2|) (-1094)) 11 T ELT))) +(((-730 |#1| |#2|) (-10 -7 (-15 -3476 (|#2| |#2| (-1094))) (-15 -2497 (|#2| |#2| (-1094))) (-15 -2498 ((-1 |#2| |#2|) (-1094)))) (-13 (-260) (-954 (-488)) (-584 (-488)) (-120)) (-13 (-29 |#1|) (-1119) (-875))) (T -730)) +((-2498 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-5 *2 (-1 *5 *5)) (-5 *1 (-730 *4 *5)) (-4 *5 (-13 (-29 *4) (-1119) (-875))))) (-2497 (*1 *2 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-5 *1 (-730 *4 *2)) (-4 *2 (-13 (-29 *4) (-1119) (-875))))) (-3476 (*1 *2 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-5 *1 (-730 *4 *2)) (-4 *2 (-13 (-29 *4) (-1119) (-875)))))) +((-2499 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2017 (-587 |#4|))) (-601 |#4|) |#4|) 33 T ELT))) +(((-731 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2499 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2017 (-587 |#4|))) (-601 |#4|) |#4|))) (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488)))) (-1159 |#1|) (-1159 (-352 |#2|)) (-293 |#1| |#2| |#3|)) (T -731)) +((-2499 (*1 *2 *3 *4) (-12 (-5 *3 (-601 *4)) (-4 *4 (-293 *5 *6 *7)) (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) (-4 *6 (-1159 *5)) (-4 *7 (-1159 (-352 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2017 (-587 *4)))) (-5 *1 (-731 *5 *6 *7 *4))))) +((-3747 (((-2 (|:| -3272 |#3|) (|:| |rh| (-587 (-352 |#2|)))) |#4| (-587 (-352 |#2|))) 53 T ELT)) (-2501 (((-587 (-2 (|:| -3779 |#2|) (|:| -3232 |#2|))) |#4| |#2|) 62 T ELT) (((-587 (-2 (|:| -3779 |#2|) (|:| -3232 |#2|))) |#4|) 61 T ELT) (((-587 (-2 (|:| -3779 |#2|) (|:| -3232 |#2|))) |#3| |#2|) 20 T ELT) (((-587 (-2 (|:| -3779 |#2|) (|:| -3232 |#2|))) |#3|) 21 T ELT)) (-2502 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2500 ((|#2| |#3| (-587 (-352 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-352 |#2|)) 105 T ELT))) +(((-732 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2500 ((-3 |#2| "failed") |#3| (-352 |#2|))) (-15 -2500 (|#2| |#3| (-587 (-352 |#2|)))) (-15 -2501 ((-587 (-2 (|:| -3779 |#2|) (|:| -3232 |#2|))) |#3|)) (-15 -2501 ((-587 (-2 (|:| -3779 |#2|) (|:| -3232 |#2|))) |#3| |#2|)) (-15 -2502 (|#2| |#3| |#1|)) (-15 -2501 ((-587 (-2 (|:| -3779 |#2|) (|:| -3232 |#2|))) |#4|)) (-15 -2501 ((-587 (-2 (|:| -3779 |#2|) (|:| -3232 |#2|))) |#4| |#2|)) (-15 -2502 (|#2| |#4| |#1|)) (-15 -3747 ((-2 (|:| -3272 |#3|) (|:| |rh| (-587 (-352 |#2|)))) |#4| (-587 (-352 |#2|))))) (-13 (-314) (-120) (-954 (-352 (-488)))) (-1159 |#1|) (-604 |#2|) (-604 (-352 |#2|))) (T -732)) +((-3747 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *6 (-1159 *5)) (-5 *2 (-2 (|:| -3272 *7) (|:| |rh| (-587 (-352 *6))))) (-5 *1 (-732 *5 *6 *7 *3)) (-5 *4 (-587 (-352 *6))) (-4 *7 (-604 *6)) (-4 *3 (-604 (-352 *6))))) (-2502 (*1 *2 *3 *4) (-12 (-4 *2 (-1159 *4)) (-5 *1 (-732 *4 *2 *5 *3)) (-4 *4 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *5 (-604 *2)) (-4 *3 (-604 (-352 *2))))) (-2501 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *4 (-1159 *5)) (-5 *2 (-587 (-2 (|:| -3779 *4) (|:| -3232 *4)))) (-5 *1 (-732 *5 *4 *6 *3)) (-4 *6 (-604 *4)) (-4 *3 (-604 (-352 *4))))) (-2501 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *5 (-1159 *4)) (-5 *2 (-587 (-2 (|:| -3779 *5) (|:| -3232 *5)))) (-5 *1 (-732 *4 *5 *6 *3)) (-4 *6 (-604 *5)) (-4 *3 (-604 (-352 *5))))) (-2502 (*1 *2 *3 *4) (-12 (-4 *2 (-1159 *4)) (-5 *1 (-732 *4 *2 *3 *5)) (-4 *4 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *3 (-604 *2)) (-4 *5 (-604 (-352 *2))))) (-2501 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *4 (-1159 *5)) (-5 *2 (-587 (-2 (|:| -3779 *4) (|:| -3232 *4)))) (-5 *1 (-732 *5 *4 *3 *6)) (-4 *3 (-604 *4)) (-4 *6 (-604 (-352 *4))))) (-2501 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *5 (-1159 *4)) (-5 *2 (-587 (-2 (|:| -3779 *5) (|:| -3232 *5)))) (-5 *1 (-732 *4 *5 *3 *6)) (-4 *3 (-604 *5)) (-4 *6 (-604 (-352 *5))))) (-2500 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-352 *2))) (-4 *2 (-1159 *5)) (-5 *1 (-732 *5 *2 *3 *6)) (-4 *5 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *3 (-604 *2)) (-4 *6 (-604 (-352 *2))))) (-2500 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-352 *2)) (-4 *2 (-1159 *5)) (-5 *1 (-732 *5 *2 *3 *6)) (-4 *5 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *3 (-604 *2)) (-4 *6 (-604 *4))))) +((-2510 (((-587 (-2 (|:| |frac| (-352 |#2|)) (|:| -3272 |#3|))) |#3| (-1 (-587 |#2|) |#2| (-1089 |#2|)) (-1 (-350 |#2|) |#2|)) 156 T ELT)) (-2511 (((-587 (-2 (|:| |poly| |#2|) (|:| -3272 |#3|))) |#3| (-1 (-587 |#1|) |#2|)) 52 T ELT)) (-2504 (((-587 (-2 (|:| |deg| (-698)) (|:| -3272 |#2|))) |#3|) 123 T ELT)) (-2503 ((|#2| |#3|) 42 T ELT)) (-2505 (((-587 (-2 (|:| -3959 |#1|) (|:| -3272 |#3|))) |#3| (-1 (-587 |#1|) |#2|)) 100 T ELT)) (-2506 ((|#3| |#3| (-352 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) +(((-733 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2503 (|#2| |#3|)) (-15 -2504 ((-587 (-2 (|:| |deg| (-698)) (|:| -3272 |#2|))) |#3|)) (-15 -2505 ((-587 (-2 (|:| -3959 |#1|) (|:| -3272 |#3|))) |#3| (-1 (-587 |#1|) |#2|))) (-15 -2511 ((-587 (-2 (|:| |poly| |#2|) (|:| -3272 |#3|))) |#3| (-1 (-587 |#1|) |#2|))) (-15 -2510 ((-587 (-2 (|:| |frac| (-352 |#2|)) (|:| -3272 |#3|))) |#3| (-1 (-587 |#2|) |#2| (-1089 |#2|)) (-1 (-350 |#2|) |#2|))) (-15 -2506 (|#3| |#3| |#2|)) (-15 -2506 (|#3| |#3| (-352 |#2|)))) (-13 (-314) (-120) (-954 (-352 (-488)))) (-1159 |#1|) (-604 |#2|) (-604 (-352 |#2|))) (T -733)) +((-2506 (*1 *2 *2 *3) (-12 (-5 *3 (-352 *5)) (-4 *4 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *5 (-1159 *4)) (-5 *1 (-733 *4 *5 *2 *6)) (-4 *2 (-604 *5)) (-4 *6 (-604 *3)))) (-2506 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *3 (-1159 *4)) (-5 *1 (-733 *4 *3 *2 *5)) (-4 *2 (-604 *3)) (-4 *5 (-604 (-352 *3))))) (-2510 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-587 *7) *7 (-1089 *7))) (-5 *5 (-1 (-350 *7) *7)) (-4 *7 (-1159 *6)) (-4 *6 (-13 (-314) (-120) (-954 (-352 (-488))))) (-5 *2 (-587 (-2 (|:| |frac| (-352 *7)) (|:| -3272 *3)))) (-5 *1 (-733 *6 *7 *3 *8)) (-4 *3 (-604 *7)) (-4 *8 (-604 (-352 *7))))) (-2511 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-587 *5) *6)) (-4 *5 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *6 (-1159 *5)) (-5 *2 (-587 (-2 (|:| |poly| *6) (|:| -3272 *3)))) (-5 *1 (-733 *5 *6 *3 *7)) (-4 *3 (-604 *6)) (-4 *7 (-604 (-352 *6))))) (-2505 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-587 *5) *6)) (-4 *5 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *6 (-1159 *5)) (-5 *2 (-587 (-2 (|:| -3959 *5) (|:| -3272 *3)))) (-5 *1 (-733 *5 *6 *3 *7)) (-4 *3 (-604 *6)) (-4 *7 (-604 (-352 *6))))) (-2504 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *5 (-1159 *4)) (-5 *2 (-587 (-2 (|:| |deg| (-698)) (|:| -3272 *5)))) (-5 *1 (-733 *4 *5 *3 *6)) (-4 *3 (-604 *5)) (-4 *6 (-604 (-352 *5))))) (-2503 (*1 *2 *3) (-12 (-4 *2 (-1159 *4)) (-5 *1 (-733 *4 *2 *3 *5)) (-4 *4 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *3 (-604 *2)) (-4 *5 (-604 (-352 *2)))))) +((-2507 (((-2 (|:| -2017 (-587 (-352 |#2|))) (|:| |mat| (-634 |#1|))) (-602 |#2| (-352 |#2|)) (-587 (-352 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-352 |#2|) #1="failed")) (|:| -2017 (-587 (-352 |#2|)))) (-602 |#2| (-352 |#2|)) (-352 |#2|)) 145 T ELT) (((-2 (|:| -2017 (-587 (-352 |#2|))) (|:| |mat| (-634 |#1|))) (-601 (-352 |#2|)) (-587 (-352 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-352 |#2|) #1#)) (|:| -2017 (-587 (-352 |#2|)))) (-601 (-352 |#2|)) (-352 |#2|)) 138 T ELT)) (-2508 ((|#2| (-602 |#2| (-352 |#2|))) 86 T ELT) ((|#2| (-601 (-352 |#2|))) 89 T ELT))) +(((-734 |#1| |#2|) (-10 -7 (-15 -2507 ((-2 (|:| |particular| (-3 (-352 |#2|) #1="failed")) (|:| -2017 (-587 (-352 |#2|)))) (-601 (-352 |#2|)) (-352 |#2|))) (-15 -2507 ((-2 (|:| -2017 (-587 (-352 |#2|))) (|:| |mat| (-634 |#1|))) (-601 (-352 |#2|)) (-587 (-352 |#2|)))) (-15 -2507 ((-2 (|:| |particular| (-3 (-352 |#2|) #1#)) (|:| -2017 (-587 (-352 |#2|)))) (-602 |#2| (-352 |#2|)) (-352 |#2|))) (-15 -2507 ((-2 (|:| -2017 (-587 (-352 |#2|))) (|:| |mat| (-634 |#1|))) (-602 |#2| (-352 |#2|)) (-587 (-352 |#2|)))) (-15 -2508 (|#2| (-601 (-352 |#2|)))) (-15 -2508 (|#2| (-602 |#2| (-352 |#2|))))) (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488)))) (-1159 |#1|)) (T -734)) +((-2508 (*1 *2 *3) (-12 (-5 *3 (-602 *2 (-352 *2))) (-4 *2 (-1159 *4)) (-5 *1 (-734 *4 *2)) (-4 *4 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-601 (-352 *2))) (-4 *2 (-1159 *4)) (-5 *1 (-734 *4 *2)) (-4 *4 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-602 *6 (-352 *6))) (-4 *6 (-1159 *5)) (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) (-5 *2 (-2 (|:| -2017 (-587 (-352 *6))) (|:| |mat| (-634 *5)))) (-5 *1 (-734 *5 *6)) (-5 *4 (-587 (-352 *6))))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-602 *6 (-352 *6))) (-5 *4 (-352 *6)) (-4 *6 (-1159 *5)) (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2017 (-587 *4)))) (-5 *1 (-734 *5 *6)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-601 (-352 *6))) (-4 *6 (-1159 *5)) (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) (-5 *2 (-2 (|:| -2017 (-587 (-352 *6))) (|:| |mat| (-634 *5)))) (-5 *1 (-734 *5 *6)) (-5 *4 (-587 (-352 *6))))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-601 (-352 *6))) (-5 *4 (-352 *6)) (-4 *6 (-1159 *5)) (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2017 (-587 *4)))) (-5 *1 (-734 *5 *6))))) +((-2509 (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#1|))) |#5| |#4|) 49 T ELT))) +(((-735 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2509 ((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#1|))) |#5| |#4|))) (-314) (-604 |#1|) (-1159 |#1|) (-665 |#1| |#3|) (-604 |#4|)) (T -735)) +((-2509 (*1 *2 *3 *4) (-12 (-4 *5 (-314)) (-4 *7 (-1159 *5)) (-4 *4 (-665 *5 *7)) (-5 *2 (-2 (|:| |mat| (-634 *6)) (|:| |vec| (-1183 *5)))) (-5 *1 (-735 *5 *6 *7 *4 *3)) (-4 *6 (-604 *5)) (-4 *3 (-604 *4))))) +((-2510 (((-587 (-2 (|:| |frac| (-352 |#2|)) (|:| -3272 (-602 |#2| (-352 |#2|))))) (-602 |#2| (-352 |#2|)) (-1 (-350 |#2|) |#2|)) 47 T ELT)) (-2512 (((-587 (-352 |#2|)) (-602 |#2| (-352 |#2|)) (-1 (-350 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-587 (-352 |#2|)) (-602 |#2| (-352 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-587 (-352 |#2|)) (-601 (-352 |#2|)) (-1 (-350 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-587 (-352 |#2|)) (-601 (-352 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-587 (-352 |#2|)) (-602 |#2| (-352 |#2|)) (-1 (-587 |#1|) |#2|) (-1 (-350 |#2|) |#2|)) 38 T ELT) (((-587 (-352 |#2|)) (-602 |#2| (-352 |#2|)) (-1 (-587 |#1|) |#2|)) 39 T ELT) (((-587 (-352 |#2|)) (-601 (-352 |#2|)) (-1 (-587 |#1|) |#2|) (-1 (-350 |#2|) |#2|)) 36 T ELT) (((-587 (-352 |#2|)) (-601 (-352 |#2|)) (-1 (-587 |#1|) |#2|)) 37 T ELT)) (-2511 (((-587 (-2 (|:| |poly| |#2|) (|:| -3272 (-602 |#2| (-352 |#2|))))) (-602 |#2| (-352 |#2|)) (-1 (-587 |#1|) |#2|)) 96 T ELT))) +(((-736 |#1| |#2|) (-10 -7 (-15 -2512 ((-587 (-352 |#2|)) (-601 (-352 |#2|)) (-1 (-587 |#1|) |#2|))) (-15 -2512 ((-587 (-352 |#2|)) (-601 (-352 |#2|)) (-1 (-587 |#1|) |#2|) (-1 (-350 |#2|) |#2|))) (-15 -2512 ((-587 (-352 |#2|)) (-602 |#2| (-352 |#2|)) (-1 (-587 |#1|) |#2|))) (-15 -2512 ((-587 (-352 |#2|)) (-602 |#2| (-352 |#2|)) (-1 (-587 |#1|) |#2|) (-1 (-350 |#2|) |#2|))) (-15 -2510 ((-587 (-2 (|:| |frac| (-352 |#2|)) (|:| -3272 (-602 |#2| (-352 |#2|))))) (-602 |#2| (-352 |#2|)) (-1 (-350 |#2|) |#2|))) (-15 -2511 ((-587 (-2 (|:| |poly| |#2|) (|:| -3272 (-602 |#2| (-352 |#2|))))) (-602 |#2| (-352 |#2|)) (-1 (-587 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2512 ((-587 (-352 |#2|)) (-601 (-352 |#2|)))) (-15 -2512 ((-587 (-352 |#2|)) (-601 (-352 |#2|)) (-1 (-350 |#2|) |#2|))) (-15 -2512 ((-587 (-352 |#2|)) (-602 |#2| (-352 |#2|)))) (-15 -2512 ((-587 (-352 |#2|)) (-602 |#2| (-352 |#2|)) (-1 (-350 |#2|) |#2|)))) |%noBranch|)) (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488)))) (-1159 |#1|)) (T -736)) +((-2512 (*1 *2 *3 *4) (-12 (-5 *3 (-602 *6 (-352 *6))) (-5 *4 (-1 (-350 *6) *6)) (-4 *6 (-1159 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) (-5 *2 (-587 (-352 *6))) (-5 *1 (-736 *5 *6)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-602 *5 (-352 *5))) (-4 *5 (-1159 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) (-5 *2 (-587 (-352 *5))) (-5 *1 (-736 *4 *5)))) (-2512 (*1 *2 *3 *4) (-12 (-5 *3 (-601 (-352 *6))) (-5 *4 (-1 (-350 *6) *6)) (-4 *6 (-1159 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) (-5 *2 (-587 (-352 *6))) (-5 *1 (-736 *5 *6)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-601 (-352 *5))) (-4 *5 (-1159 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) (-5 *2 (-587 (-352 *5))) (-5 *1 (-736 *4 *5)))) (-2511 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-587 *5) *6)) (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) (-4 *6 (-1159 *5)) (-5 *2 (-587 (-2 (|:| |poly| *6) (|:| -3272 (-602 *6 (-352 *6)))))) (-5 *1 (-736 *5 *6)) (-5 *3 (-602 *6 (-352 *6))))) (-2510 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-350 *6) *6)) (-4 *6 (-1159 *5)) (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) (-5 *2 (-587 (-2 (|:| |frac| (-352 *6)) (|:| -3272 (-602 *6 (-352 *6)))))) (-5 *1 (-736 *5 *6)) (-5 *3 (-602 *6 (-352 *6))))) (-2512 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-602 *7 (-352 *7))) (-5 *4 (-1 (-587 *6) *7)) (-5 *5 (-1 (-350 *7) *7)) (-4 *6 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) (-4 *7 (-1159 *6)) (-5 *2 (-587 (-352 *7))) (-5 *1 (-736 *6 *7)))) (-2512 (*1 *2 *3 *4) (-12 (-5 *3 (-602 *6 (-352 *6))) (-5 *4 (-1 (-587 *5) *6)) (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) (-4 *6 (-1159 *5)) (-5 *2 (-587 (-352 *6))) (-5 *1 (-736 *5 *6)))) (-2512 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-601 (-352 *7))) (-5 *4 (-1 (-587 *6) *7)) (-5 *5 (-1 (-350 *7) *7)) (-4 *6 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) (-4 *7 (-1159 *6)) (-5 *2 (-587 (-352 *7))) (-5 *1 (-736 *6 *7)))) (-2512 (*1 *2 *3 *4) (-12 (-5 *3 (-601 (-352 *6))) (-5 *4 (-1 (-587 *5) *6)) (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) (-4 *6 (-1159 *5)) (-5 *2 (-587 (-352 *6))) (-5 *1 (-736 *5 *6))))) +((-2513 (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#1|))) (-634 |#2|) (-1183 |#1|)) 110 T ELT) (((-2 (|:| A (-634 |#1|)) (|:| |eqs| (-587 (-2 (|:| C (-634 |#1|)) (|:| |g| (-1183 |#1|)) (|:| -3272 |#2|) (|:| |rh| |#1|))))) (-634 |#1|) (-1183 |#1|)) 15 T ELT)) (-2514 (((-2 (|:| |particular| (-3 (-1183 |#1|) #1="failed")) (|:| -2017 (-587 (-1183 |#1|)))) (-634 |#2|) (-1183 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2017 (-587 |#1|))) |#2| |#1|)) 116 T ELT)) (-3579 (((-3 (-2 (|:| |particular| (-1183 |#1|)) (|:| -2017 (-634 |#1|))) #1#) (-634 |#1|) (-1183 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2017 (-587 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) +(((-737 |#1| |#2|) (-10 -7 (-15 -2513 ((-2 (|:| A (-634 |#1|)) (|:| |eqs| (-587 (-2 (|:| C (-634 |#1|)) (|:| |g| (-1183 |#1|)) (|:| -3272 |#2|) (|:| |rh| |#1|))))) (-634 |#1|) (-1183 |#1|))) (-15 -2513 ((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#1|))) (-634 |#2|) (-1183 |#1|))) (-15 -3579 ((-3 (-2 (|:| |particular| (-1183 |#1|)) (|:| -2017 (-634 |#1|))) #1="failed") (-634 |#1|) (-1183 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2017 (-587 |#1|))) #1#) |#2| |#1|))) (-15 -2514 ((-2 (|:| |particular| (-3 (-1183 |#1|) #1#)) (|:| -2017 (-587 (-1183 |#1|)))) (-634 |#2|) (-1183 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2017 (-587 |#1|))) |#2| |#1|)))) (-314) (-604 |#1|)) (T -737)) +((-2514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 #1="failed")) (|:| -2017 (-587 *6))) *7 *6)) (-4 *6 (-314)) (-4 *7 (-604 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1183 *6) #1#)) (|:| -2017 (-587 (-1183 *6))))) (-5 *1 (-737 *6 *7)) (-5 *4 (-1183 *6)))) (-3579 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2017 (-587 *6))) #1#) *7 *6)) (-4 *6 (-314)) (-4 *7 (-604 *6)) (-5 *2 (-2 (|:| |particular| (-1183 *6)) (|:| -2017 (-634 *6)))) (-5 *1 (-737 *6 *7)) (-5 *3 (-634 *6)) (-5 *4 (-1183 *6)))) (-2513 (*1 *2 *3 *4) (-12 (-4 *5 (-314)) (-4 *6 (-604 *5)) (-5 *2 (-2 (|:| |mat| (-634 *6)) (|:| |vec| (-1183 *5)))) (-5 *1 (-737 *5 *6)) (-5 *3 (-634 *6)) (-5 *4 (-1183 *5)))) (-2513 (*1 *2 *3 *4) (-12 (-4 *5 (-314)) (-5 *2 (-2 (|:| A (-634 *5)) (|:| |eqs| (-587 (-2 (|:| C (-634 *5)) (|:| |g| (-1183 *5)) (|:| -3272 *6) (|:| |rh| *5)))))) (-5 *1 (-737 *5 *6)) (-5 *3 (-634 *5)) (-5 *4 (-1183 *5)) (-4 *6 (-604 *5))))) +((-2515 (((-634 |#1|) (-587 |#1|) (-698)) 14 T ELT) (((-634 |#1|) (-587 |#1|)) 15 T ELT)) (-2516 (((-3 (-1183 |#1|) #1="failed") |#2| |#1| (-587 |#1|)) 39 T ELT)) (-3346 (((-3 |#1| #1#) |#2| |#1| (-587 |#1|) (-1 |#1| |#1|)) 46 T ELT))) +(((-738 |#1| |#2|) (-10 -7 (-15 -2515 ((-634 |#1|) (-587 |#1|))) (-15 -2515 ((-634 |#1|) (-587 |#1|) (-698))) (-15 -2516 ((-3 (-1183 |#1|) #1="failed") |#2| |#1| (-587 |#1|))) (-15 -3346 ((-3 |#1| #1#) |#2| |#1| (-587 |#1|) (-1 |#1| |#1|)))) (-314) (-604 |#1|)) (T -738)) +((-3346 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-587 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-314)) (-5 *1 (-738 *2 *3)) (-4 *3 (-604 *2)))) (-2516 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-587 *4)) (-4 *4 (-314)) (-5 *2 (-1183 *4)) (-5 *1 (-738 *4 *3)) (-4 *3 (-604 *4)))) (-2515 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *5)) (-5 *4 (-698)) (-4 *5 (-314)) (-5 *2 (-634 *5)) (-5 *1 (-738 *5 *6)) (-4 *6 (-604 *5)))) (-2515 (*1 *2 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-314)) (-5 *2 (-634 *4)) (-5 *1 (-738 *4 *5)) (-4 *5 (-604 *4))))) +((-2574 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3194 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3713 (($ (-834)) NIL (|has| |#2| (-965)) ELT)) (-2203 (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 |#2|)) ELT)) (-2489 (($ $ $) NIL (|has| |#2| (-721)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3142 (((-698)) NIL (|has| |#2| (-322)) ELT)) (-3794 ((|#2| $ (-488) |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL (-12 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (-12 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1017)) ELT)) (-3162 (((-488) $) NIL (-12 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017))) ELT) (((-352 (-488)) $) NIL (-12 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017))) ELT) ((|#2| $) NIL (|has| |#2| (-1017)) ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (-12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (-12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 $) (-1183 $)) NIL (|has| |#2| (-965)) ELT) (((-634 |#2|) (-634 $)) NIL (|has| |#2| (-965)) ELT)) (-3848 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL (|has| |#2| (-965)) ELT)) (-3000 (($) NIL (|has| |#2| (-322)) ELT)) (-1580 ((|#2| $ (-488) |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-3118 ((|#2| $ (-488)) NIL T ELT)) (-3192 (((-85) $) NIL (|has| |#2| (-721)) ELT)) (-1218 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2415 (((-85) $) NIL (|has| |#2| (-965)) ELT)) (-2205 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL (|has| |#2| (-760)) ELT)) (-2614 (((-587 |#2|) $) NIL T ELT)) (-3251 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2206 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#2| (-760)) ELT)) (-3849 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2015 (((-834) $) NIL (|has| |#2| (-322)) ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (-12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (-12 (|has| |#2| (-584 (-488))) (|has| |#2| (-965))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-1183 $) $) NIL (|has| |#2| (-965)) ELT) (((-634 |#2|) (-1183 $)) NIL (|has| |#2| (-965)) ELT)) (-3248 (((-1077) $) NIL (|has| |#2| (-1017)) ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) NIL T ELT)) (-2405 (($ (-834)) NIL (|has| |#2| (-322)) ELT)) (-3249 (((-1037) $) NIL (|has| |#2| (-1017)) ELT)) (-3807 ((|#2| $) NIL (|has| (-488) (-760)) ELT)) (-1734 (((-3 |#2| #1#) (-1 (-85) |#2|) $) NIL T ELT)) (-2204 (($ $ |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-1736 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#2|))) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-251 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#2| $) NIL (-12 (|has| $ (-320 |#2|)) (|has| |#2| (-72))) ELT)) (-2210 (((-587 |#2|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#2| $ (-488) |#2|) NIL T ELT) ((|#2| $ (-488)) NIL T ELT)) (-3842 ((|#2| $ $) NIL (|has| |#2| (-965)) ELT)) (-1472 (($ (-1183 |#2|)) NIL T ELT)) (-3918 (((-107)) NIL (|has| |#2| (-314)) ELT)) (-3764 (($ $ (-698)) NIL (-12 (|has| |#2| (-191)) (|has| |#2| (-965))) ELT) (($ $) NIL (-12 (|has| |#2| (-191)) (|has| |#2| (-965))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1094)) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-965)) ELT) (($ $ (-1 |#2| |#2|) (-698)) NIL (|has| |#2| (-965)) ELT)) (-1735 (((-698) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-698) (-1 (-85) |#2|) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3953 (((-1183 |#2|) $) NIL T ELT) (($ (-488)) NIL (OR (-12 (|has| |#2| (-954 (-488))) (|has| |#2| (-1017))) (|has| |#2| (-965))) ELT) (($ (-352 (-488))) NIL (-12 (|has| |#2| (-954 (-352 (-488)))) (|has| |#2| (-1017))) ELT) (($ |#2|) NIL (|has| |#2| (-1017)) ELT) (((-776) $) NIL (|has| |#2| (-556 (-776))) ELT)) (-3132 (((-698)) NIL (|has| |#2| (-965)) CONST)) (-1269 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3131 (((-85) $ $) NIL (|has| |#2| (-965)) ELT)) (-2666 (($) NIL (|has| |#2| (-23)) CONST)) (-2672 (($) NIL (|has| |#2| (-965)) CONST)) (-2675 (($ $ (-698)) NIL (-12 (|has| |#2| (-191)) (|has| |#2| (-965))) ELT) (($ $) NIL (-12 (|has| |#2| (-191)) (|has| |#2| (-965))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1094)) NIL (-12 (|has| |#2| (-815 (-1094))) (|has| |#2| (-965))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-965)) ELT) (($ $ (-1 |#2| |#2|) (-698)) NIL (|has| |#2| (-965)) ELT)) (-2572 (((-85) $ $) NIL (|has| |#2| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#2| (-760)) ELT)) (-3062 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2690 (((-85) $ $) NIL (|has| |#2| (-760)) ELT)) (-2691 (((-85) $ $) 11 (|has| |#2| (-760)) ELT)) (-3956 (($ $ |#2|) NIL (|has| |#2| (-314)) ELT)) (-3843 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3845 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-698)) NIL (|has| |#2| (-965)) ELT) (($ $ (-834)) NIL (|has| |#2| (-965)) ELT)) (* (($ $ $) NIL (|has| |#2| (-965)) ELT) (($ $ |#2|) NIL (|has| |#2| (-667)) ELT) (($ |#2| $) NIL (|has| |#2| (-667)) ELT) (($ (-488) $) NIL (|has| |#2| (-21)) ELT) (($ (-698) $) NIL (|has| |#2| (-23)) ELT) (($ (-834) $) NIL (|has| |#2| (-25)) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-739 |#1| |#2| |#3|) (-198 |#1| |#2|) (-698) (-721) (-1 (-85) (-1183 |#2|) (-1183 |#2|))) (T -739)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1492 (((-587 (-698)) $) NIL T ELT) (((-587 (-698)) $ (-1094)) NIL T ELT)) (-1526 (((-698) $) NIL T ELT) (((-698) $ (-1094)) NIL T ELT)) (-3087 (((-587 (-742 (-1094))) $) NIL T ELT)) (-3089 (((-1089 $) $ (-742 (-1094))) NIL T ELT) (((-1089 |#1|) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-2825 (((-698) $) NIL T ELT) (((-698) $ (-587 (-742 (-1094)))) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3781 (($ $) NIL (|has| |#1| (-395)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-395)) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-1488 (($ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-742 (-1094)) #1#) $) NIL T ELT) (((-3 (-1094) #1#) $) NIL T ELT) (((-3 (-1043 |#1| (-1094)) #1#) $) NIL T ELT)) (-3162 ((|#1| $) NIL T ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-742 (-1094)) $) NIL T ELT) (((-1094) $) NIL T ELT) (((-1043 |#1| (-1094)) $) NIL T ELT)) (-3762 (($ $ $ (-742 (-1094))) NIL (|has| |#1| (-148)) ELT)) (-3965 (($ $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#1|) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3509 (($ $) NIL (|has| |#1| (-395)) ELT) (($ $ (-742 (-1094))) NIL (|has| |#1| (-395)) ELT)) (-2824 (((-587 $) $) NIL T ELT)) (-3729 (((-85) $) NIL (|has| |#1| (-825)) ELT)) (-1628 (($ $ |#1| (-473 (-742 (-1094))) $) NIL T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (-12 (|has| (-742 (-1094)) (-800 (-332))) (|has| |#1| (-800 (-332)))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (-12 (|has| (-742 (-1094)) (-800 (-488))) (|has| |#1| (-800 (-488)))) ELT)) (-3778 (((-698) $ (-1094)) NIL T ELT) (((-698) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2425 (((-698) $) NIL T ELT)) (-3090 (($ (-1089 |#1|) (-742 (-1094))) NIL T ELT) (($ (-1089 $) (-742 (-1094))) NIL T ELT)) (-2827 (((-587 $) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-473 (-742 (-1094)))) NIL T ELT) (($ $ (-742 (-1094)) (-698)) NIL T ELT) (($ $ (-587 (-742 (-1094))) (-587 (-698))) NIL T ELT)) (-3769 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $ (-742 (-1094))) NIL T ELT)) (-2826 (((-473 (-742 (-1094))) $) NIL T ELT) (((-698) $ (-742 (-1094))) NIL T ELT) (((-587 (-698)) $ (-587 (-742 (-1094)))) NIL T ELT)) (-1629 (($ (-1 (-473 (-742 (-1094))) (-473 (-742 (-1094)))) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1527 (((-1 $ (-698)) (-1094)) NIL T ELT) (((-1 $ (-698)) $) NIL (|has| |#1| (-192)) ELT)) (-3088 (((-3 (-742 (-1094)) #1#) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) NIL T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-1490 (((-742 (-1094)) $) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-395)) ELT) (($ $ $) NIL (|has| |#1| (-395)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1491 (((-85) $) NIL T ELT)) (-2829 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2828 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2830 (((-3 (-2 (|:| |var| (-742 (-1094))) (|:| -2406 (-698))) #1#) $) NIL T ELT)) (-1489 (($ $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1805 (((-85) $) NIL T ELT)) (-1804 ((|#1| $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#1| (-395)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-395)) ELT) (($ $ $) NIL (|has| |#1| (-395)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#1| (-825)) ELT)) (-3472 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-499)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-499)) ELT)) (-3774 (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ (-742 (-1094)) |#1|) NIL T ELT) (($ $ (-587 (-742 (-1094))) (-587 |#1|)) NIL T ELT) (($ $ (-742 (-1094)) $) NIL T ELT) (($ $ (-587 (-742 (-1094))) (-587 $)) NIL T ELT) (($ $ (-1094) $) NIL (|has| |#1| (-192)) ELT) (($ $ (-587 (-1094)) (-587 $)) NIL (|has| |#1| (-192)) ELT) (($ $ (-1094) |#1|) NIL (|has| |#1| (-192)) ELT) (($ $ (-587 (-1094)) (-587 |#1|)) NIL (|has| |#1| (-192)) ELT)) (-3763 (($ $ (-742 (-1094))) NIL (|has| |#1| (-148)) ELT)) (-3764 (($ $ (-587 (-742 (-1094))) (-587 (-698))) NIL T ELT) (($ $ (-742 (-1094)) (-698)) NIL T ELT) (($ $ (-587 (-742 (-1094)))) NIL T ELT) (($ $ (-742 (-1094))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $) NIL (|has| |#1| (-191)) ELT) (($ $ (-698)) NIL (|has| |#1| (-191)) ELT)) (-1493 (((-587 (-1094)) $) NIL T ELT)) (-3955 (((-473 (-742 (-1094))) $) NIL T ELT) (((-698) $ (-742 (-1094))) NIL T ELT) (((-587 (-698)) $ (-587 (-742 (-1094)))) NIL T ELT) (((-698) $ (-1094)) NIL T ELT)) (-3978 (((-804 (-332)) $) NIL (-12 (|has| (-742 (-1094)) (-557 (-804 (-332)))) (|has| |#1| (-557 (-804 (-332))))) ELT) (((-804 (-488)) $) NIL (-12 (|has| (-742 (-1094)) (-557 (-804 (-488)))) (|has| |#1| (-557 (-804 (-488))))) ELT) (((-477) $) NIL (-12 (|has| (-742 (-1094)) (-557 (-477))) (|has| |#1| (-557 (-477)))) ELT)) (-2823 ((|#1| $) NIL (|has| |#1| (-395)) ELT) (($ $ (-742 (-1094))) NIL (|has| |#1| (-395)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-825))) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-742 (-1094))) NIL T ELT) (($ (-1094)) NIL T ELT) (($ (-1043 |#1| (-1094))) NIL T ELT) (($ (-352 (-488))) NIL (OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) ELT) (($ $) NIL (|has| |#1| (-499)) ELT)) (-3823 (((-587 |#1|) $) NIL T ELT)) (-3683 ((|#1| $ (-473 (-742 (-1094)))) NIL T ELT) (($ $ (-742 (-1094)) (-698)) NIL T ELT) (($ $ (-587 (-742 (-1094))) (-587 (-698))) NIL T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-825))) (|has| |#1| (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1627 (($ $ $ (-698)) NIL (|has| |#1| (-148)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $ (-587 (-742 (-1094))) (-587 (-698))) NIL T ELT) (($ $ (-742 (-1094)) (-698)) NIL T ELT) (($ $ (-587 (-742 (-1094)))) NIL T ELT) (($ $ (-742 (-1094))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $) NIL (|has| |#1| (-191)) ELT) (($ $ (-698)) NIL (|has| |#1| (-191)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-740 |#1|) (-13 (-215 |#1| (-1094) (-742 (-1094)) (-473 (-742 (-1094)))) (-954 (-1043 |#1| (-1094)))) (-965)) (T -740)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#2| (-314)) ELT)) (-2068 (($ $) NIL (|has| |#2| (-314)) ELT)) (-2066 (((-85) $) NIL (|has| |#2| (-314)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL (|has| |#2| (-314)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#2| (-314)) ELT)) (-1612 (((-85) $ $) NIL (|has| |#2| (-314)) ELT)) (-3730 (($) NIL T CONST)) (-2570 (($ $ $) NIL (|has| |#2| (-314)) ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-2569 (($ $ $) NIL (|has| |#2| (-314)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL (|has| |#2| (-314)) ELT)) (-3729 (((-85) $) NIL (|has| |#2| (-314)) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL (|has| |#2| (-314)) ELT)) (-1899 (($ (-587 $)) NIL (|has| |#2| (-314)) ELT) (($ $ $) NIL (|has| |#2| (-314)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) 20 (|has| |#2| (-314)) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#2| (-314)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#2| (-314)) ELT) (($ $ $) NIL (|has| |#2| (-314)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#2| (-314)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#2| (-314)) ELT)) (-3472 (((-3 $ #1#) $ $) NIL (|has| |#2| (-314)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL (|has| |#2| (-314)) ELT)) (-1611 (((-698) $) NIL (|has| |#2| (-314)) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#2| (-314)) ELT)) (-3764 (($ $) 13 T ELT) (($ $ (-698)) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-352 (-488))) NIL (|has| |#2| (-314)) ELT) (($ $) NIL (|has| |#2| (-314)) ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL (|has| |#2| (-314)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ $) 15 (|has| |#2| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-698)) NIL T ELT) (($ $ (-834)) NIL T ELT) (($ $ (-488)) 18 (|has| |#2| (-314)) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-352 (-488)) $) NIL (|has| |#2| (-314)) ELT) (($ $ (-352 (-488))) NIL (|has| |#2| (-314)) ELT))) +(((-741 |#1| |#2| |#3|) (-13 (-82 $ $) (-192) (-433 |#2|) (-10 -7 (IF (|has| |#2| (-314)) (-6 (-314)) |%noBranch|))) (-1017) (-813 |#1|) |#1|) (T -741)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-1526 (((-698) $) NIL T ELT)) (-3837 ((|#1| $) 10 T ELT)) (-3163 (((-3 |#1| "failed") $) NIL T ELT)) (-3162 ((|#1| $) NIL T ELT)) (-3778 (((-698) $) 11 T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-1527 (($ |#1| (-698)) 9 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3764 (($ $ (-698)) NIL T ELT) (($ $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2675 (($ $ (-698)) NIL T ELT) (($ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) NIL T ELT))) +(((-742 |#1|) (-230 |#1|) (-760)) (T -742)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3941 (((-587 |#1|) $) 39 T ELT)) (-3142 (((-698) $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3946 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3163 (((-3 |#1| #1#) $) NIL T ELT)) (-3162 ((|#1| $) NIL T ELT)) (-3805 (($ $) 43 T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-1758 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2304 ((|#1| $ (-488)) NIL T ELT)) (-2305 (((-698) $ (-488)) NIL T ELT)) (-3943 (($ $) 55 T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-2295 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2296 (($ (-1 (-698) (-698)) $) NIL T ELT)) (-3947 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2517 (((-85) $ $) 52 T ELT)) (-3839 (((-698) $) 35 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1759 (($ $ $) NIL T ELT)) (-1760 (($ $ $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3807 ((|#1| $) 42 T ELT)) (-1787 (((-587 (-2 (|:| |gen| |#1|) (|:| -3950 (-698)))) $) NIL T ELT)) (-2885 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2571 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2672 (($) 7 T CONST)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 54 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ |#1| (-698)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-743 |#1|) (-13 (-338 |#1|) (-758) (-10 -8 (-15 -3807 (|#1| $)) (-15 -3805 ($ $)) (-15 -3943 ($ $)) (-15 -2517 ((-85) $ $)) (-15 -3947 ((-3 $ #1="failed") $ |#1|)) (-15 -3946 ((-3 $ #1#) $ |#1|)) (-15 -2571 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3839 ((-698) $)) (-15 -3941 ((-587 |#1|) $)))) (-760)) (T -743)) +((-3807 (*1 *2 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-760)))) (-3805 (*1 *1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-760)))) (-3943 (*1 *1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-760)))) (-2517 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-760)))) (-3947 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-743 *2)) (-4 *2 (-760)))) (-3946 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-743 *2)) (-4 *2 (-760)))) (-2571 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-743 *3)) (|:| |rm| (-743 *3)))) (-5 *1 (-743 *3)) (-4 *3 (-760)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-743 *3)) (-4 *3 (-760)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-743 *3)) (-4 *3 (-760))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3629 (((-488) $) 69 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3192 (((-85) $) 67 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3193 (((-85) $) 68 T ELT)) (-2537 (($ $ $) 61 T ELT)) (-2863 (($ $ $) 62 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-3389 (($ $) 70 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2572 (((-85) $ $) 63 T ELT)) (-2573 (((-85) $ $) 65 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 64 T ELT)) (-2691 (((-85) $ $) 66 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-744) (-113)) (T -744)) +NIL +(-13 (-499) (-759)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-559 (-488)) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-248) . T) ((-499) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 $) . T) ((-586 $) . T) ((-658 $) . T) ((-667) . T) ((-718) . T) ((-720) . T) ((-722) . T) ((-725) . T) ((-759) . T) ((-760) . T) ((-763) . T) ((-967 $) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3965 (($ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-2518 ((|#1| $) 10 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2519 (($ |#1|) 9 T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2899 (($ |#2| (-698)) NIL T ELT)) (-2826 (((-698) $) NIL T ELT)) (-3180 ((|#2| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3764 (($ $) NIL (|has| |#1| (-192)) ELT) (($ $ (-698)) NIL (|has| |#1| (-192)) ELT)) (-3955 (((-698) $) NIL T ELT)) (-3953 (((-776) $) 17 T ELT) (($ (-488)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-148)) ELT)) (-3683 ((|#2| $ (-698)) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $) NIL (|has| |#1| (-192)) ELT) (($ $ (-698)) NIL (|has| |#1| (-192)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-745 |#1| |#2|) (-13 (-649 |#2|) (-10 -8 (IF (|has| |#1| (-192)) (-6 (-192)) |%noBranch|) (-15 -2519 ($ |#1|)) (-15 -2518 (|#1| $)))) (-649 |#2|) (-965)) (T -745)) +((-2519 (*1 *1 *2) (-12 (-4 *3 (-965)) (-5 *1 (-745 *2 *3)) (-4 *2 (-649 *3)))) (-2518 (*1 *2 *1) (-12 (-4 *2 (-649 *3)) (-5 *1 (-745 *2 *3)) (-4 *3 (-965))))) +((-2574 (((-85) $ $) 18 T ELT)) (-3240 (($ |#1| $) 71 T ELT) (($ $ |#1|) 70 T ELT) (($ $ $) 69 T ELT)) (-3242 (($ $ $) 67 T ELT)) (-3241 (((-85) $ $) 68 T ELT)) (-3245 (($ (-587 |#1|)) 63 T ELT) (($) 62 T ELT)) (-1574 (($ (-1 (-85) |#1|) $) 42 (|has| $ (-320 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-320 |#1|)) ELT)) (-3730 (($) 6 T CONST)) (-2373 (($ $) 55 T ELT)) (-1357 (($ $) 51 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-3411 (($ |#1| $) 44 (|has| $ (-320 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 43 (|has| $ (-320 |#1|)) ELT)) (-3412 (($ |#1| $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 48 (|has| $ (-320 |#1|)) ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $) 80 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 75 (|has| |#1| (-72)) ELT)) (-3247 (((-85) $ $) 59 T ELT)) (-2537 ((|#1| $) 74 T ELT)) (-2862 (($ $ $) 88 T ELT)) (-3524 (($ $ $) 87 T ELT)) (-2614 (((-587 |#1|) $) 81 T ELT)) (-3251 (((-85) |#1| $) 76 (|has| |#1| (-72)) ELT)) (-2863 ((|#1| $) 86 T ELT)) (-3332 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3248 (((-1077) $) 21 T ELT)) (-3244 (($ $ $) 64 T ELT)) (-1278 ((|#1| $) 35 T ELT)) (-3615 (($ |#1| $) 36 T ELT) (($ |#1| $ (-698)) 56 T ELT)) (-3249 (((-1037) $) 20 T ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 78 T ELT)) (-1279 ((|#1| $) 37 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) 83 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-2372 (((-587 (-2 (|:| |entry| |#1|) (|:| -1735 (-698)))) $) 54 T ELT)) (-3243 (($ $ |#1|) 66 T ELT) (($ $ $) 65 T ELT)) (-1470 (($) 46 T ELT) (($ (-587 |#1|)) 45 T ELT)) (-1735 (((-698) (-1 (-85) |#1|) $) 82 T ELT) (((-698) |#1| $) 77 (|has| |#1| (-72)) ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 52 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 47 T ELT)) (-3953 (((-776) $) 16 T ELT)) (-3246 (($ (-587 |#1|)) 61 T ELT) (($) 60 T ELT)) (-1269 (((-85) $ $) 19 T ELT)) (-1280 (($ (-587 |#1|)) 38 T ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) 84 T ELT)) (-3062 (((-85) $ $) 17 T ELT)) (-3964 (((-698) $) 85 T ELT))) +(((-746 |#1|) (-113) (-760)) (T -746)) +((-2537 (*1 *2 *1) (-12 (-4 *1 (-746 *2)) (-4 *2 (-760))))) +(-13 (-680 |t#1|) (-885 |t#1|) (-10 -8 (-15 -2537 (|t#1| $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-556 (-776)) . T) ((-124 |#1|) . T) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-195 |#1|) . T) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-320 |#1|) . T) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-638 |#1|) . T) ((-680 |#1|) . T) ((-885 |#1|) . T) ((-1015 |#1|) . T) ((-1017) . T) ((-1039 |#1|) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3629 (((-488) $) NIL (|has| |#1| (-759)) ELT)) (-3730 (($) NIL (|has| |#1| (-21)) CONST)) (-3163 (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3162 (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) 9 T ELT)) (-3473 (((-3 $ #1#) $) 42 (|has| |#1| (-759)) ELT)) (-3030 (((-3 (-352 (-488)) #1#) $) 51 (|has| |#1| (-487)) ELT)) (-3029 (((-85) $) 46 (|has| |#1| (-487)) ELT)) (-3028 (((-352 (-488)) $) 48 (|has| |#1| (-487)) ELT)) (-3192 (((-85) $) NIL (|has| |#1| (-759)) ELT)) (-1218 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2415 (((-85) $) NIL (|has| |#1| (-759)) ELT)) (-3193 (((-85) $) NIL (|has| |#1| (-759)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-759)) ELT)) (-2863 (($ $ $) NIL (|has| |#1| (-759)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2520 (($) 13 T ELT)) (-2530 (((-85) $) 12 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2531 (((-85) $) 11 T ELT)) (-3953 (((-776) $) 18 T ELT) (($ (-352 (-488))) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (($ |#1|) 8 T ELT) (($ (-488)) NIL (OR (|has| |#1| (-759)) (|has| |#1| (-954 (-488)))) ELT)) (-3132 (((-698)) 36 (|has| |#1| (-759)) CONST)) (-1269 (((-85) $ $) 53 T ELT)) (-3131 (((-85) $ $) NIL (|has| |#1| (-759)) ELT)) (-3389 (($ $) NIL (|has| |#1| (-759)) ELT)) (-2666 (($) 23 (|has| |#1| (-21)) CONST)) (-2672 (($) 33 (|has| |#1| (-759)) CONST)) (-2572 (((-85) $ $) NIL (|has| |#1| (-759)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#1| (-759)) ELT)) (-3062 (((-85) $ $) 21 T ELT)) (-2690 (((-85) $ $) NIL (|has| |#1| (-759)) ELT)) (-2691 (((-85) $ $) 45 (|has| |#1| (-759)) ELT)) (-3843 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3845 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-834)) NIL (|has| |#1| (-759)) ELT) (($ $ (-698)) NIL (|has| |#1| (-759)) ELT)) (* (($ $ $) 39 (|has| |#1| (-759)) ELT) (($ (-488) $) 27 (|has| |#1| (-21)) ELT) (($ (-698) $) NIL (|has| |#1| (-21)) ELT) (($ (-834) $) NIL (|has| |#1| (-21)) ELT))) +(((-747 |#1|) (-13 (-1017) (-357 |#1|) (-10 -8 (-15 -2520 ($)) (-15 -2531 ((-85) $)) (-15 -2530 ((-85) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-759)) (-6 (-759)) |%noBranch|) (IF (|has| |#1| (-487)) (PROGN (-15 -3029 ((-85) $)) (-15 -3028 ((-352 (-488)) $)) (-15 -3030 ((-3 (-352 (-488)) "failed") $))) |%noBranch|))) (-1017)) (T -747)) +((-2520 (*1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1017)))) (-2531 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-747 *3)) (-4 *3 (-1017)))) (-2530 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-747 *3)) (-4 *3 (-1017)))) (-3029 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-747 *3)) (-4 *3 (-487)) (-4 *3 (-1017)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-747 *3)) (-4 *3 (-487)) (-4 *3 (-1017)))) (-3030 (*1 *2 *1) (|partial| -12 (-5 *2 (-352 (-488))) (-5 *1 (-747 *3)) (-4 *3 (-487)) (-4 *3 (-1017))))) +((-3849 (((-747 |#2|) (-1 |#2| |#1|) (-747 |#1|) (-747 |#2|)) 12 T ELT) (((-747 |#2|) (-1 |#2| |#1|) (-747 |#1|)) 13 T ELT))) +(((-748 |#1| |#2|) (-10 -7 (-15 -3849 ((-747 |#2|) (-1 |#2| |#1|) (-747 |#1|))) (-15 -3849 ((-747 |#2|) (-1 |#2| |#1|) (-747 |#1|) (-747 |#2|)))) (-1017) (-1017)) (T -748)) +((-3849 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-747 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-5 *1 (-748 *5 *6)))) (-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-5 *2 (-747 *6)) (-5 *1 (-748 *5 *6))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-86) #1#) $) NIL T ELT)) (-3162 ((|#1| $) NIL T ELT) (((-86) $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2522 ((|#1| (-86) |#1|) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2521 (($ |#1| (-312 (-86))) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2523 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2524 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3806 ((|#1| $ |#1|) NIL T ELT)) (-2525 ((|#1| |#1|) NIL (|has| |#1| (-148)) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-86)) NIL T ELT)) (-2708 (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2526 (($ $) NIL (|has| |#1| (-148)) ELT) (($ $ $) NIL (|has| |#1| (-148)) ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ (-86) (-488)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-148)) ELT) (($ $ |#1|) NIL (|has| |#1| (-148)) ELT))) +(((-749 |#1|) (-13 (-965) (-954 |#1|) (-954 (-86)) (-243 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-148)) (PROGN (-6 (-38 |#1|)) (-15 -2526 ($ $)) (-15 -2526 ($ $ $)) (-15 -2525 (|#1| |#1|))) |%noBranch|) (-15 -2524 ($ $ (-1 |#1| |#1|))) (-15 -2523 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-86) (-488))) (-15 ** ($ $ (-488))) (-15 -2522 (|#1| (-86) |#1|)) (-15 -2521 ($ |#1| (-312 (-86)))))) (-965)) (T -749)) +((-2526 (*1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-148)) (-4 *2 (-965)))) (-2526 (*1 *1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-148)) (-4 *2 (-965)))) (-2525 (*1 *2 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-148)) (-4 *2 (-965)))) (-2524 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-965)) (-5 *1 (-749 *3)))) (-2523 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-965)) (-5 *1 (-749 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-488)) (-5 *1 (-749 *4)) (-4 *4 (-965)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-749 *3)) (-4 *3 (-965)))) (-2522 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-749 *2)) (-4 *2 (-965)))) (-2521 (*1 *1 *2 *3) (-12 (-5 *3 (-312 (-86))) (-5 *1 (-749 *2)) (-4 *2 (-965))))) +((-2639 (((-85) $ |#2|) 14 T ELT)) (-3953 (((-776) $) 11 T ELT))) +(((-750 |#1| |#2|) (-10 -7 (-15 -2639 ((-85) |#1| |#2|)) (-15 -3953 ((-776) |#1|))) (-751 |#2|) (-1017)) (T -750)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3548 ((|#1| $) 19 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2639 (((-85) $ |#1|) 17 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2527 (((-55) $) 18 T ELT)) (-3062 (((-85) $ $) 8 T ELT))) +(((-751 |#1|) (-113) (-1017)) (T -751)) +((-3548 (*1 *2 *1) (-12 (-4 *1 (-751 *2)) (-4 *2 (-1017)))) (-2527 (*1 *2 *1) (-12 (-4 *1 (-751 *3)) (-4 *3 (-1017)) (-5 *2 (-55)))) (-2639 (*1 *2 *1 *3) (-12 (-4 *1 (-751 *3)) (-4 *3 (-1017)) (-5 *2 (-85))))) +(-13 (-1017) (-10 -8 (-15 -3548 (|t#1| $)) (-15 -2527 ((-55) $)) (-15 -2639 ((-85) $ |t#1|)))) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-2528 (((-169 (-445)) (-1077)) 9 T ELT))) +(((-752) (-10 -7 (-15 -2528 ((-169 (-445)) (-1077))))) (T -752)) +((-2528 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-169 (-445))) (-5 *1 (-752))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3325 (((-1032) $) 10 T ELT)) (-3548 (((-450) $) 9 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2639 (((-85) $ (-450)) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3536 (($ (-450) (-1032)) 8 T ELT)) (-3953 (((-776) $) 25 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2527 (((-55) $) 20 T ELT)) (-3062 (((-85) $ $) 12 T ELT))) +(((-753) (-13 (-751 (-450)) (-10 -8 (-15 -3325 ((-1032) $)) (-15 -3536 ($ (-450) (-1032)))))) (T -753)) +((-3325 (*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-753)))) (-3536 (*1 *1 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-1032)) (-5 *1 (-753))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-2529 (((-1037) $) 31 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3629 (((-488) $) NIL (|has| |#1| (-759)) ELT)) (-3730 (($) NIL (|has| |#1| (-21)) CONST)) (-3163 (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3162 (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) 9 T ELT)) (-3473 (((-3 $ #1#) $) 57 (|has| |#1| (-759)) ELT)) (-3030 (((-3 (-352 (-488)) #1#) $) 65 (|has| |#1| (-487)) ELT)) (-3029 (((-85) $) 60 (|has| |#1| (-487)) ELT)) (-3028 (((-352 (-488)) $) 63 (|has| |#1| (-487)) ELT)) (-3192 (((-85) $) NIL (|has| |#1| (-759)) ELT)) (-2533 (($) 14 T ELT)) (-1218 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2415 (((-85) $) NIL (|has| |#1| (-759)) ELT)) (-3193 (((-85) $) NIL (|has| |#1| (-759)) ELT)) (-2532 (($) 16 T ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-759)) ELT)) (-2863 (($ $ $) NIL (|has| |#1| (-759)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2530 (((-85) $) 12 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2531 (((-85) $) 11 T ELT)) (-3953 (((-776) $) 24 T ELT) (($ (-352 (-488))) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (($ |#1|) 8 T ELT) (($ (-488)) NIL (OR (|has| |#1| (-759)) (|has| |#1| (-954 (-488)))) ELT)) (-3132 (((-698)) 50 (|has| |#1| (-759)) CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL (|has| |#1| (-759)) ELT)) (-3389 (($ $) NIL (|has| |#1| (-759)) ELT)) (-2666 (($) 37 (|has| |#1| (-21)) CONST)) (-2672 (($) 47 (|has| |#1| (-759)) CONST)) (-2572 (((-85) $ $) NIL (|has| |#1| (-759)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#1| (-759)) ELT)) (-3062 (((-85) $ $) 35 T ELT)) (-2690 (((-85) $ $) NIL (|has| |#1| (-759)) ELT)) (-2691 (((-85) $ $) 59 (|has| |#1| (-759)) ELT)) (-3843 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3845 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-834)) NIL (|has| |#1| (-759)) ELT) (($ $ (-698)) NIL (|has| |#1| (-759)) ELT)) (* (($ $ $) 54 (|has| |#1| (-759)) ELT) (($ (-488) $) 41 (|has| |#1| (-21)) ELT) (($ (-698) $) NIL (|has| |#1| (-21)) ELT) (($ (-834) $) NIL (|has| |#1| (-21)) ELT))) +(((-754 |#1|) (-13 (-1017) (-357 |#1|) (-10 -8 (-15 -2533 ($)) (-15 -2532 ($)) (-15 -2531 ((-85) $)) (-15 -2530 ((-85) $)) (-15 -2529 ((-1037) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-759)) (-6 (-759)) |%noBranch|) (IF (|has| |#1| (-487)) (PROGN (-15 -3029 ((-85) $)) (-15 -3028 ((-352 (-488)) $)) (-15 -3030 ((-3 (-352 (-488)) "failed") $))) |%noBranch|))) (-1017)) (T -754)) +((-2533 (*1 *1) (-12 (-5 *1 (-754 *2)) (-4 *2 (-1017)))) (-2532 (*1 *1) (-12 (-5 *1 (-754 *2)) (-4 *2 (-1017)))) (-2531 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-754 *3)) (-4 *3 (-1017)))) (-2530 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-754 *3)) (-4 *3 (-1017)))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-1037)) (-5 *1 (-754 *3)) (-4 *3 (-1017)))) (-3029 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-754 *3)) (-4 *3 (-487)) (-4 *3 (-1017)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-754 *3)) (-4 *3 (-487)) (-4 *3 (-1017)))) (-3030 (*1 *2 *1) (|partial| -12 (-5 *2 (-352 (-488))) (-5 *1 (-754 *3)) (-4 *3 (-487)) (-4 *3 (-1017))))) +((-3849 (((-754 |#2|) (-1 |#2| |#1|) (-754 |#1|) (-754 |#2|) (-754 |#2|)) 13 T ELT) (((-754 |#2|) (-1 |#2| |#1|) (-754 |#1|)) 14 T ELT))) +(((-755 |#1| |#2|) (-10 -7 (-15 -3849 ((-754 |#2|) (-1 |#2| |#1|) (-754 |#1|))) (-15 -3849 ((-754 |#2|) (-1 |#2| |#1|) (-754 |#1|) (-754 |#2|) (-754 |#2|)))) (-1017) (-1017)) (T -755)) +((-3849 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-754 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-754 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-5 *1 (-755 *5 *6)))) (-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-754 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-5 *2 (-754 *6)) (-5 *1 (-755 *5 *6))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3142 (((-698)) 27 T ELT)) (-3000 (($) 30 T ELT)) (-2537 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2863 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2015 (((-834) $) 29 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2405 (($ (-834)) 28 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2572 (((-85) $ $) 21 T ELT)) (-2573 (((-85) $ $) 19 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 20 T ELT)) (-2691 (((-85) $ $) 18 T ELT))) (((-756) (-113)) (T -756)) -NIL -(-13 (-768) (-665)) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-665) . T) ((-768) . T) ((-758) . T) ((-761) . T) ((-1027) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 31 T ELT)) (-1314 (((-3 $ "failed") $ $) 35 T ELT)) (-3626 (((-486) $) 38 T ELT)) (-3727 (($) 30 T CONST)) (-3470 (((-3 $ "failed") $) 55 T ELT)) (-3189 (((-85) $) 28 T ELT)) (-1216 (((-85) $ $) 33 T ELT)) (-2412 (((-85) $) 53 T ELT)) (-3190 (((-85) $) 39 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 56 T ELT)) (-3129 (((-696)) 57 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 51 T ELT)) (-3386 (($ $) 37 T ELT)) (-2663 (($) 29 T CONST)) (-2669 (($) 52 T CONST)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (-3840 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3842 (($ $ $) 25 T ELT)) (** (($ $ (-696)) 54 T ELT) (($ $ (-832)) 49 T ELT)) (* (($ (-832) $) 26 T ELT) (($ (-696) $) 32 T ELT) (($ (-486) $) 40 T ELT) (($ $ $) 50 T ELT))) -(((-757) (-113)) (T -757)) -NIL -(-13 (-716) (-120) (-665)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-120) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-716) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-758) . T) ((-761) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) 7 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT))) +((-2537 (*1 *1) (-4 *1 (-756))) (-2863 (*1 *1) (-4 *1 (-756)))) +(-13 (-760) (-322) (-10 -8 (-15 -2537 ($) -3959) (-15 -2863 ($) -3959))) +(((-72) . T) ((-556 (-776)) . T) ((-322) . T) ((-13) . T) ((-760) . T) ((-763) . T) ((-1017) . T) ((-1133) . T)) +((-2535 (((-85) (-1183 |#2|) (-1183 |#2|)) 19 T ELT)) (-2536 (((-85) (-1183 |#2|) (-1183 |#2|)) 20 T ELT)) (-2534 (((-85) (-1183 |#2|) (-1183 |#2|)) 16 T ELT))) +(((-757 |#1| |#2|) (-10 -7 (-15 -2534 ((-85) (-1183 |#2|) (-1183 |#2|))) (-15 -2535 ((-85) (-1183 |#2|) (-1183 |#2|))) (-15 -2536 ((-85) (-1183 |#2|) (-1183 |#2|)))) (-698) (-720)) (T -757)) +((-2536 (*1 *2 *3 *3) (-12 (-5 *3 (-1183 *5)) (-4 *5 (-720)) (-5 *2 (-85)) (-5 *1 (-757 *4 *5)) (-14 *4 (-698)))) (-2535 (*1 *2 *3 *3) (-12 (-5 *3 (-1183 *5)) (-4 *5 (-720)) (-5 *2 (-85)) (-5 *1 (-757 *4 *5)) (-14 *4 (-698)))) (-2534 (*1 *2 *3 *3) (-12 (-5 *3 (-1183 *5)) (-4 *5 (-720)) (-5 *2 (-85)) (-5 *1 (-757 *4 *5)) (-14 *4 (-698))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3730 (($) 29 T CONST)) (-3473 (((-3 $ "failed") $) 32 T ELT)) (-2415 (((-85) $) 30 T ELT)) (-2537 (($ $ $) 23 T ELT)) (-2863 (($ $ $) 22 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2672 (($) 28 T CONST)) (-2572 (((-85) $ $) 21 T ELT)) (-2573 (((-85) $ $) 19 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 20 T ELT)) (-2691 (((-85) $ $) 18 T ELT)) (** (($ $ (-834)) 26 T ELT) (($ $ (-698)) 31 T ELT)) (* (($ $ $) 25 T ELT))) (((-758) (-113)) (T -758)) NIL -(-13 (-1015) (-761)) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-761) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3950 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-774) $) 15 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 12 T ELT))) -(((-759 |#1| |#2|) (-13 (-761) (-431 |#1|) (-10 -7 (IF (|has| |#1| (-554 (-774))) (-6 (-554 (-774))) |%noBranch|))) (-1131) (-1 (-85) |#1| |#1|)) (T -759)) -NIL -((-2534 (($ $ $) 16 T ELT)) (-2860 (($ $ $) 15 T ELT)) (-1267 (((-85) $ $) 17 T ELT)) (-2569 (((-85) $ $) 12 T ELT)) (-2570 (((-85) $ $) 9 T ELT)) (-3059 (((-85) $ $) 14 T ELT)) (-2687 (((-85) $ $) 11 T ELT))) -(((-760 |#1|) (-10 -7 (-15 -2534 (|#1| |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -2569 ((-85) |#1| |#1|)) (-15 -2687 ((-85) |#1| |#1|)) (-15 -2570 ((-85) |#1| |#1|)) (-15 -1267 ((-85) |#1| |#1|)) (-15 -3059 ((-85) |#1| |#1|))) (-761)) (T -760)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-2534 (($ $ $) 10 T ELT)) (-2860 (($ $ $) 11 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2569 (((-85) $ $) 12 T ELT)) (-2570 (((-85) $ $) 14 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 13 T ELT)) (-2688 (((-85) $ $) 15 T ELT))) -(((-761) (-113)) (T -761)) -((-2688 (*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) (-2570 (*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) (-2687 (*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) (-2569 (*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) (-2860 (*1 *1 *1 *1) (-4 *1 (-761))) (-2534 (*1 *1 *1 *1) (-4 *1 (-761)))) -(-13 (-72) (-10 -8 (-15 -2688 ((-85) $ $)) (-15 -2570 ((-85) $ $)) (-15 -2687 ((-85) $ $)) (-15 -2569 ((-85) $ $)) (-15 -2860 ($ $ $)) (-15 -2534 ($ $ $)))) -(((-72) . T) ((-13) . T) ((-1131) . T)) -((-2539 (($ $ $) 49 T ELT)) (-2540 (($ $ $) 48 T ELT)) (-2541 (($ $ $) 46 T ELT)) (-2537 (($ $ $) 55 T ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 50 T ELT)) (-2538 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3160 (((-3 (-486) #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3506 (($ $) 39 T ELT)) (-2545 (($ $ $) 43 T ELT)) (-2546 (($ $ $) 42 T ELT)) (-2535 (($ $ $) 51 T ELT)) (-2543 (($ $ $) 57 T ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 45 T ELT)) (-2544 (((-3 $ #1#) $ $) 52 T ELT)) (-3469 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2820 ((|#2| $) 36 T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3820 (((-585 |#2|) $) 21 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) -(((-762 |#1| |#2|) (-10 -7 (-15 -2535 (|#1| |#1| |#1|)) (-15 -2536 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2411 |#1|)) |#1| |#1|)) (-15 -2537 (|#1| |#1| |#1|)) (-15 -2538 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2539 (|#1| |#1| |#1|)) (-15 -2540 (|#1| |#1| |#1|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -2542 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2411 |#1|)) |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -2544 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2545 (|#1| |#1| |#1|)) (-15 -2546 (|#1| |#1| |#1|)) (-15 -3506 (|#1| |#1|)) (-15 -2820 (|#2| |#1|)) (-15 -3469 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3820 ((-585 |#2|) |#1|)) (-15 -3950 (|#1| |#2|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3950 (|#1| (-350 (-486)))) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3950 (|#1| (-486))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|)) (-15 -3950 ((-774) |#1|))) (-763 |#2|) (-963)) (T -762)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2539 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2538 (((-3 $ "failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3160 (((-3 (-486) #1="failed") $) 88 (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) 85 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 82 T ELT)) (-3159 (((-486) $) 87 (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) 84 (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 83 T ELT)) (-3962 (($ $) 77 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3506 (($ $) 68 (|has| |#1| (-393)) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2896 (($ |#1| (-696)) 75 T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 70 (|has| |#1| (-497)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 71 (|has| |#1| (-497)) ELT)) (-2823 (((-696) $) 79 T ELT)) (-2545 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2546 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2544 (((-3 $ "failed") $ $) 64 (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3177 ((|#1| $) 78 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3469 (((-3 $ "failed") $ |#1|) 72 (|has| |#1| (-497)) ELT)) (-3952 (((-696) $) 80 T ELT)) (-2820 ((|#1| $) 69 (|has| |#1| (-393)) ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 (-486))) 86 (|has| |#1| (-952 (-350 (-486)))) ELT) (($ |#1|) 81 T ELT)) (-3820 (((-585 |#1|) $) 74 T ELT)) (-3680 ((|#1| $ (-696)) 76 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2548 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT))) -(((-763 |#1|) (-113) (-963)) (T -763)) -((-3952 (*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)))) (-3680 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-763 *2)) (-4 *2 (-963)))) (-2896 (*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-763 *2)) (-4 *2 (-963)))) (-3820 (*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-963)) (-5 *2 (-585 *3)))) (-2548 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)))) (-3469 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-497)))) (-2549 (*1 *2 *1 *1) (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-763 *3)))) (-2550 (*1 *2 *1 *1) (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-763 *3)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-393)))) (-3506 (*1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-393)))) (-2551 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-763 *3)))) (-2546 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2545 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2544 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2543 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2542 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-963)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) (-4 *1 (-763 *3)))) (-2541 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2552 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-763 *3)))) (-2540 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2539 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2538 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2537 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2536 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-963)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) (-4 *1 (-763 *3)))) (-2535 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) -(-13 (-963) (-82 |t#1| |t#1|) (-355 |t#1|) (-10 -8 (-15 -3952 ((-696) $)) (-15 -2823 ((-696) $)) (-15 -3177 (|t#1| $)) (-15 -3962 ($ $)) (-15 -3680 (|t#1| $ (-696))) (-15 -2896 ($ |t#1| (-696))) (-15 -3820 ((-585 |t#1|) $)) (-15 -2548 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-497)) (PROGN (-15 -3469 ((-3 $ "failed") $ |t#1|)) (-15 -2549 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-15 -2550 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-393)) (PROGN (-15 -2820 (|t#1| $)) (-15 -3506 ($ $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -2551 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-15 -2546 ($ $ $)) (-15 -2545 ($ $ $)) (-15 -2544 ((-3 $ "failed") $ $)) (-15 -2543 ($ $ $)) (-15 -2542 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $)) (-15 -2541 ($ $ $)) (-15 -2552 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-15 -2540 ($ $ $)) (-15 -2539 ($ $ $)) (-15 -2538 ((-3 $ "failed") $ $)) (-15 -2537 ($ $ $)) (-15 -2536 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $)) (-15 -2535 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-557 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-355 |#1|) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-665) . T) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-2547 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2552 (((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-497)) ELT)) (-2549 (((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-497)) ELT)) (-2551 (((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-312)) ELT)) (-2548 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT))) -(((-764 |#1| |#2|) (-10 -7 (-15 -2547 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2548 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-497)) (PROGN (-15 -2549 ((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2550 ((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -2551 ((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2552 ((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-963) (-763 |#1|)) (T -764)) -((-2552 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-963)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-764 *5 *3)) (-4 *3 (-763 *5)))) (-2551 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-963)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-764 *5 *3)) (-4 *3 (-763 *5)))) (-2550 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-497)) (-4 *5 (-963)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-764 *5 *3)) (-4 *3 (-763 *5)))) (-2549 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-497)) (-4 *5 (-963)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-764 *5 *3)) (-4 *3 (-763 *5)))) (-2548 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-963)) (-5 *1 (-764 *2 *3)) (-4 *3 (-763 *2)))) (-2547 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-963)) (-5 *1 (-764 *5 *2)) (-4 *2 (-763 *5))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 34 (|has| |#1| (-312)) ELT)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3536 (((-774) $ (-774)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-696)) NIL T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 30 (|has| |#1| (-497)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 28 (|has| |#1| (-497)) ELT)) (-2823 (((-696) $) NIL T ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2546 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 32 (|has| |#1| (-312)) ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT)) (-3952 (((-696) $) NIL T ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (($ |#1|) NIL T ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-696)) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2548 ((|#1| $ |#1| |#1|) 15 T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) 23 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) 19 T ELT) (($ $ (-696)) 24 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-765 |#1| |#2| |#3|) (-13 (-763 |#1|) (-10 -8 (-15 -3536 ((-774) $ (-774))))) (-963) (-69 |#1|) (-1 |#1| |#1|)) (T -765)) -((-3536 (*1 *2 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-765 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2539 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2538 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) ((|#2| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#2| (-393)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2896 (($ |#2| (-696)) 17 T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-497)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-497)) ELT)) (-2823 (((-696) $) NIL T ELT)) (-2545 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2546 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2544 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3177 ((|#2| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-497)) ELT)) (-3952 (((-696) $) NIL T ELT)) (-2820 ((|#2| $) NIL (|has| |#2| (-393)) ELT)) (-3950 (((-774) $) 24 T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (($ |#2|) NIL T ELT) (($ (-1178 |#1|)) 19 T ELT)) (-3820 (((-585 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-696)) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2548 ((|#2| $ |#2| |#2|) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) 13 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-766 |#1| |#2| |#3| |#4|) (-13 (-763 |#2|) (-557 (-1178 |#1|))) (-1092) (-963) (-69 |#2|) (-1 |#2| |#2|)) (T -766)) -NIL -((-2555 ((|#1| (-696) |#1|) 45 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2554 ((|#1| (-696) (-696) |#1|) 36 T ELT) ((|#1| (-696) |#1|) 24 T ELT)) (-2553 ((|#1| (-696) |#1|) 40 T ELT)) (-2803 ((|#1| (-696) |#1|) 38 T ELT)) (-2802 ((|#1| (-696) |#1|) 37 T ELT))) -(((-767 |#1|) (-10 -7 (-15 -2802 (|#1| (-696) |#1|)) (-15 -2803 (|#1| (-696) |#1|)) (-15 -2553 (|#1| (-696) |#1|)) (-15 -2554 (|#1| (-696) |#1|)) (-15 -2554 (|#1| (-696) (-696) |#1|)) (IF (|has| |#1| (-38 (-350 (-486)))) (-15 -2555 (|#1| (-696) |#1|)) |%noBranch|)) (-146)) (T -767)) -((-2555 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-146)))) (-2554 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) (-2554 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) (-2553 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) (-2803 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) (-2802 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146))))) -((-2571 (((-85) $ $) 7 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2569 (((-85) $ $) 21 T ELT)) (-2570 (((-85) $ $) 19 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-2688 (((-85) $ $) 18 T ELT)) (** (($ $ (-832)) 26 T ELT)) (* (($ $ $) 25 T ELT))) -(((-768) (-113)) (T -768)) -NIL -(-13 (-758) (-1027)) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-758) . T) ((-761) . T) ((-1027) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3405 (((-486) $) 14 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 20 T ELT) (($ (-486)) 13 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 10 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 12 T ELT))) -(((-769) (-13 (-758) (-10 -8 (-15 -3950 ($ (-486))) (-15 -3405 ((-486) $))))) (T -769)) -((-3950 (*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-769)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-769))))) -((-2556 (((-1187) (-585 (-51))) 23 T ELT)) (-3463 (((-1187) (-1075) (-774)) 13 T ELT) (((-1187) (-774)) 8 T ELT) (((-1187) (-1075)) 10 T ELT))) -(((-770) (-10 -7 (-15 -3463 ((-1187) (-1075))) (-15 -3463 ((-1187) (-774))) (-15 -3463 ((-1187) (-1075) (-774))) (-15 -2556 ((-1187) (-585 (-51)))))) (T -770)) -((-2556 (*1 *2 *3) (-12 (-5 *3 (-585 (-51))) (-5 *2 (-1187)) (-5 *1 (-770)))) (-3463 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-774)) (-5 *2 (-1187)) (-5 *1 (-770)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-770)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-770))))) -((-2558 (((-634 (-1140)) $ (-1140)) 15 T ELT)) (-2559 (((-634 (-490)) $ (-490)) 12 T ELT)) (-2557 (((-696) $ (-102)) 30 T ELT))) -(((-771 |#1|) (-10 -7 (-15 -2557 ((-696) |#1| (-102))) (-15 -2558 ((-634 (-1140)) |#1| (-1140))) (-15 -2559 ((-634 (-490)) |#1| (-490)))) (-772)) (T -771)) -NIL -((-2558 (((-634 (-1140)) $ (-1140)) 8 T ELT)) (-2559 (((-634 (-490)) $ (-490)) 9 T ELT)) (-2557 (((-696) $ (-102)) 7 T ELT)) (-2560 (((-634 (-101)) $ (-101)) 10 T ELT)) (-1701 (($ $) 6 T ELT))) -(((-772) (-113)) (T -772)) -((-2560 (*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *2 (-634 (-101))) (-5 *3 (-101)))) (-2559 (*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *2 (-634 (-490))) (-5 *3 (-490)))) (-2558 (*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *2 (-634 (-1140))) (-5 *3 (-1140)))) (-2557 (*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *3 (-102)) (-5 *2 (-696))))) -(-13 (-147) (-10 -8 (-15 -2560 ((-634 (-101)) $ (-101))) (-15 -2559 ((-634 (-490)) $ (-490))) (-15 -2558 ((-634 (-1140)) $ (-1140))) (-15 -2557 ((-696) $ (-102))))) -(((-147) . T)) -((-2558 (((-634 (-1140)) $ (-1140)) NIL T ELT)) (-2559 (((-634 (-490)) $ (-490)) NIL T ELT)) (-2557 (((-696) $ (-102)) NIL T ELT)) (-2560 (((-634 (-101)) $ (-101)) 22 T ELT)) (-2562 (($ (-338)) 12 T ELT) (($ (-1075)) 14 T ELT)) (-2561 (((-85) $) 19 T ELT)) (-3950 (((-774) $) 26 T ELT)) (-1701 (($ $) 23 T ELT))) -(((-773) (-13 (-772) (-554 (-774)) (-10 -8 (-15 -2562 ($ (-338))) (-15 -2562 ($ (-1075))) (-15 -2561 ((-85) $))))) (T -773)) -((-2562 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-773)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-773)))) (-2561 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-773))))) -((-2571 (((-85) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2592 (($ $ $) 125 T ELT)) (-2607 (((-486) $) 31 T ELT) (((-486)) 36 T ELT)) (-2602 (($ (-486)) 53 T ELT)) (-2599 (($ $ $) 54 T ELT) (($ (-585 $)) 84 T ELT)) (-2583 (($ $ (-585 $)) 82 T ELT)) (-2604 (((-486) $) 34 T ELT)) (-2586 (($ $ $) 73 T ELT)) (-3535 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2605 (((-486) $) 33 T ELT)) (-2587 (($ $ $) 72 T ELT)) (-3538 (($ $) 114 T ELT)) (-2590 (($ $ $) 129 T ELT)) (-2573 (($ (-585 $)) 61 T ELT)) (-3543 (($ $ (-585 $)) 79 T ELT)) (-2601 (($ (-486) (-486)) 55 T ELT)) (-2614 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3140 (($ $ (-486)) 43 T ELT) (($ $) 46 T ELT)) (-2567 (($ $ $) 97 T ELT)) (-2588 (($ $ $) 132 T ELT)) (-2582 (($ $) 115 T ELT)) (-2566 (($ $ $) 98 T ELT)) (-2578 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2840 (((-1187) $) 10 T ELT)) (-2581 (($ $) 118 T ELT) (($ $ (-696)) 122 T ELT)) (-2584 (($ $ $) 75 T ELT)) (-2585 (($ $ $) 74 T ELT)) (-2598 (($ $ (-585 $)) 110 T ELT)) (-2596 (($ $ $) 113 T ELT)) (-2575 (($ (-585 $)) 59 T ELT)) (-2576 (($ $) 70 T ELT) (($ (-585 $)) 71 T ELT)) (-2579 (($ $ $) 123 T ELT)) (-2580 (($ $) 116 T ELT)) (-2591 (($ $ $) 128 T ELT)) (-3536 (($ (-486)) 21 T ELT) (($ (-1092)) 23 T ELT) (($ (-1075)) 30 T ELT) (($ (-179)) 25 T ELT)) (-2564 (($ $ $) 101 T ELT)) (-2563 (($ $) 102 T ELT)) (-2609 (((-1187) (-1075)) 15 T ELT)) (-2610 (($ (-1075)) 14 T ELT)) (-3126 (($ (-585 (-585 $))) 58 T ELT)) (-3141 (($ $ (-486)) 42 T ELT) (($ $) 45 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2594 (($ $ $) 131 T ELT)) (-3473 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2595 (((-85) $) 108 T ELT)) (-2597 (($ $ (-585 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2603 (($ (-486)) 39 T ELT)) (-2606 (((-486) $) 32 T ELT) (((-486)) 35 T ELT)) (-2600 (($ $ $) 40 T ELT) (($ (-585 $)) 83 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3469 (($ $ $) 99 T ELT)) (-3568 (($) 13 T ELT)) (-3803 (($ $ (-585 $)) 109 T ELT)) (-2608 (((-1075) (-1075)) 8 T ELT)) (-3839 (($ $) 117 T ELT) (($ $ (-696)) 121 T ELT)) (-2568 (($ $ $) 96 T ELT)) (-3761 (($ $ (-696)) 139 T ELT)) (-2574 (($ (-585 $)) 60 T ELT)) (-3950 (((-774) $) 19 T ELT)) (-3776 (($ $ (-486)) 41 T ELT) (($ $) 44 T ELT)) (-2577 (($ $) 68 T ELT) (($ (-585 $)) 69 T ELT)) (-3243 (($ $) 66 T ELT) (($ (-585 $)) 67 T ELT)) (-2593 (($ $) 124 T ELT)) (-2572 (($ (-585 $)) 65 T ELT)) (-3104 (($ $ $) 105 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2589 (($ $ $) 130 T ELT)) (-2565 (($ $ $) 100 T ELT)) (-3740 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2569 (($ $ $) 89 T ELT)) (-2570 (($ $ $) 87 T ELT)) (-3059 (((-85) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2687 (($ $ $) 88 T ELT)) (-2688 (($ $ $) 86 T ELT)) (-3953 (($ $ $) 94 T ELT)) (-3840 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3842 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) -(((-774) (-13 (-1015) (-10 -8 (-15 -2840 ((-1187) $)) (-15 -2610 ($ (-1075))) (-15 -2609 ((-1187) (-1075))) (-15 -3536 ($ (-486))) (-15 -3536 ($ (-1092))) (-15 -3536 ($ (-1075))) (-15 -3536 ($ (-179))) (-15 -3568 ($)) (-15 -2608 ((-1075) (-1075))) (-15 -2607 ((-486) $)) (-15 -2606 ((-486) $)) (-15 -2607 ((-486))) (-15 -2606 ((-486))) (-15 -2605 ((-486) $)) (-15 -2604 ((-486) $)) (-15 -2603 ($ (-486))) (-15 -2602 ($ (-486))) (-15 -2601 ($ (-486) (-486))) (-15 -3141 ($ $ (-486))) (-15 -3140 ($ $ (-486))) (-15 -3776 ($ $ (-486))) (-15 -3141 ($ $)) (-15 -3140 ($ $)) (-15 -3776 ($ $)) (-15 -2600 ($ $ $)) (-15 -2599 ($ $ $)) (-15 -2600 ($ (-585 $))) (-15 -2599 ($ (-585 $))) (-15 -2598 ($ $ (-585 $))) (-15 -2597 ($ $ (-585 $))) (-15 -2597 ($ $ $ $)) (-15 -2596 ($ $ $)) (-15 -2595 ((-85) $)) (-15 -3803 ($ $ (-585 $))) (-15 -3538 ($ $)) (-15 -2594 ($ $ $)) (-15 -2593 ($ $)) (-15 -3126 ($ (-585 (-585 $)))) (-15 -2592 ($ $ $)) (-15 -2614 ($ $)) (-15 -2614 ($ $ $)) (-15 -2591 ($ $ $)) (-15 -2590 ($ $ $)) (-15 -2589 ($ $ $)) (-15 -2588 ($ $ $)) (-15 -3761 ($ $ (-696))) (-15 -3104 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -2586 ($ $ $)) (-15 -2585 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -3543 ($ $ (-585 $))) (-15 -2583 ($ $ (-585 $))) (-15 -2582 ($ $)) (-15 -3839 ($ $)) (-15 -3839 ($ $ (-696))) (-15 -2581 ($ $)) (-15 -2581 ($ $ (-696))) (-15 -2580 ($ $)) (-15 -2579 ($ $ $)) (-15 -3535 ($ $)) (-15 -3535 ($ $ $)) (-15 -3535 ($ $ $ $)) (-15 -2578 ($ $)) (-15 -2578 ($ $ $)) (-15 -2578 ($ $ $ $)) (-15 -3473 ($ $)) (-15 -3473 ($ $ $)) (-15 -3473 ($ $ $ $)) (-15 -3243 ($ $)) (-15 -3243 ($ (-585 $))) (-15 -2577 ($ $)) (-15 -2577 ($ (-585 $))) (-15 -2576 ($ $)) (-15 -2576 ($ (-585 $))) (-15 -2575 ($ (-585 $))) (-15 -2574 ($ (-585 $))) (-15 -2573 ($ (-585 $))) (-15 -2572 ($ (-585 $))) (-15 -3059 ($ $ $)) (-15 -2571 ($ $ $)) (-15 -2688 ($ $ $)) (-15 -2570 ($ $ $)) (-15 -2687 ($ $ $)) (-15 -2569 ($ $ $)) (-15 -3842 ($ $ $)) (-15 -3840 ($ $ $)) (-15 -3840 ($ $)) (-15 * ($ $ $)) (-15 -3953 ($ $ $)) (-15 ** ($ $ $)) (-15 -2568 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -3469 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -2563 ($ $)) (-15 -3740 ($ $ $)) (-15 -3740 ($ $))))) (T -774)) -((-2840 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-774)))) (-2610 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-774)))) (-2609 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-774)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-774)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-774)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-774)))) (-3568 (*1 *1) (-5 *1 (-774))) (-2608 (*1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-774)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-2607 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-2606 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-2603 (*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-2602 (*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-2601 (*1 *1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-3141 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-3140 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-3776 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) (-3141 (*1 *1 *1) (-5 *1 (-774))) (-3140 (*1 *1 *1) (-5 *1 (-774))) (-3776 (*1 *1 *1) (-5 *1 (-774))) (-2600 (*1 *1 *1 *1) (-5 *1 (-774))) (-2599 (*1 *1 *1 *1) (-5 *1 (-774))) (-2600 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2599 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2598 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2597 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2597 (*1 *1 *1 *1 *1) (-5 *1 (-774))) (-2596 (*1 *1 *1 *1) (-5 *1 (-774))) (-2595 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-774)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-3538 (*1 *1 *1) (-5 *1 (-774))) (-2594 (*1 *1 *1 *1) (-5 *1 (-774))) (-2593 (*1 *1 *1) (-5 *1 (-774))) (-3126 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-774)))) (-5 *1 (-774)))) (-2592 (*1 *1 *1 *1) (-5 *1 (-774))) (-2614 (*1 *1 *1) (-5 *1 (-774))) (-2614 (*1 *1 *1 *1) (-5 *1 (-774))) (-2591 (*1 *1 *1 *1) (-5 *1 (-774))) (-2590 (*1 *1 *1 *1) (-5 *1 (-774))) (-2589 (*1 *1 *1 *1) (-5 *1 (-774))) (-2588 (*1 *1 *1 *1) (-5 *1 (-774))) (-3761 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-774)))) (-3104 (*1 *1 *1 *1) (-5 *1 (-774))) (-2587 (*1 *1 *1 *1) (-5 *1 (-774))) (-2586 (*1 *1 *1 *1) (-5 *1 (-774))) (-2585 (*1 *1 *1 *1) (-5 *1 (-774))) (-2584 (*1 *1 *1 *1) (-5 *1 (-774))) (-3543 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2583 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2582 (*1 *1 *1) (-5 *1 (-774))) (-3839 (*1 *1 *1) (-5 *1 (-774))) (-3839 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-774)))) (-2581 (*1 *1 *1) (-5 *1 (-774))) (-2581 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-774)))) (-2580 (*1 *1 *1) (-5 *1 (-774))) (-2579 (*1 *1 *1 *1) (-5 *1 (-774))) (-3535 (*1 *1 *1) (-5 *1 (-774))) (-3535 (*1 *1 *1 *1) (-5 *1 (-774))) (-3535 (*1 *1 *1 *1 *1) (-5 *1 (-774))) (-2578 (*1 *1 *1) (-5 *1 (-774))) (-2578 (*1 *1 *1 *1) (-5 *1 (-774))) (-2578 (*1 *1 *1 *1 *1) (-5 *1 (-774))) (-3473 (*1 *1 *1) (-5 *1 (-774))) (-3473 (*1 *1 *1 *1) (-5 *1 (-774))) (-3473 (*1 *1 *1 *1 *1) (-5 *1 (-774))) (-3243 (*1 *1 *1) (-5 *1 (-774))) (-3243 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2577 (*1 *1 *1) (-5 *1 (-774))) (-2577 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2576 (*1 *1 *1) (-5 *1 (-774))) (-2576 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-3059 (*1 *1 *1 *1) (-5 *1 (-774))) (-2571 (*1 *1 *1 *1) (-5 *1 (-774))) (-2688 (*1 *1 *1 *1) (-5 *1 (-774))) (-2570 (*1 *1 *1 *1) (-5 *1 (-774))) (-2687 (*1 *1 *1 *1) (-5 *1 (-774))) (-2569 (*1 *1 *1 *1) (-5 *1 (-774))) (-3842 (*1 *1 *1 *1) (-5 *1 (-774))) (-3840 (*1 *1 *1 *1) (-5 *1 (-774))) (-3840 (*1 *1 *1) (-5 *1 (-774))) (* (*1 *1 *1 *1) (-5 *1 (-774))) (-3953 (*1 *1 *1 *1) (-5 *1 (-774))) (** (*1 *1 *1 *1) (-5 *1 (-774))) (-2568 (*1 *1 *1 *1) (-5 *1 (-774))) (-2567 (*1 *1 *1 *1) (-5 *1 (-774))) (-2566 (*1 *1 *1 *1) (-5 *1 (-774))) (-3469 (*1 *1 *1 *1) (-5 *1 (-774))) (-2565 (*1 *1 *1 *1) (-5 *1 (-774))) (-2564 (*1 *1 *1 *1) (-5 *1 (-774))) (-2563 (*1 *1 *1) (-5 *1 (-774))) (-3740 (*1 *1 *1 *1) (-5 *1 (-774))) (-3740 (*1 *1 *1) (-5 *1 (-774)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3834 (((-3 $ "failed") (-1092)) 36 T ELT)) (-3139 (((-696)) 32 T ELT)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) 29 T ELT)) (-3245 (((-1075) $) 43 T ELT)) (-2402 (($ (-832)) 28 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3975 (((-1092) $) 13 T ELT) (((-475) $) 19 T ELT) (((-802 (-330)) $) 26 T ELT) (((-802 (-486)) $) 22 T ELT)) (-3950 (((-774) $) 16 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 40 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 38 T ELT))) -(((-775 |#1|) (-13 (-754) (-555 (-1092)) (-555 (-475)) (-555 (-802 (-330))) (-555 (-802 (-486))) (-10 -8 (-15 -3834 ((-3 $ "failed") (-1092))))) (-585 (-1092))) (T -775)) -((-3834 (*1 *1 *2) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-775 *3)) (-14 *3 (-585 *2))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3545 (((-448) $) 12 T ELT)) (-2611 (((-585 (-382)) $) 14 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 22 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 17 T ELT))) -(((-776) (-13 (-1015) (-10 -8 (-15 -3545 ((-448) $)) (-15 -2611 ((-585 (-382)) $))))) (T -776)) -((-3545 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-776)))) (-2611 (*1 *2 *1) (-12 (-5 *2 (-585 (-382))) (-5 *1 (-776))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-859 |#1|)) NIL T ELT) (((-859 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3129 (((-696)) NIL T CONST)) (-3927 (((-1187) (-696)) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-777 |#1| |#2| |#3| |#4|) (-13 (-963) (-431 (-859 |#1|)) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3953 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3927 ((-1187) (-696))))) (-963) (-585 (-1092)) (-585 (-696)) (-696)) (T -777)) -((-3953 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-777 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-963)) (-14 *3 (-585 (-1092))) (-14 *4 (-585 (-696))) (-14 *5 (-696)))) (-3927 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-777 *4 *5 *6 *7)) (-4 *4 (-963)) (-14 *5 (-585 (-1092))) (-14 *6 (-585 *3)) (-14 *7 *3)))) -((-2612 (((-3 (-148 |#3|) #1="failed") (-696) (-696) |#2| |#2|) 38 T ELT)) (-2613 (((-3 (-350 |#3|) #1#) (-696) (-696) |#2| |#2|) 29 T ELT))) -(((-778 |#1| |#2| |#3|) (-10 -7 (-15 -2613 ((-3 (-350 |#3|) #1="failed") (-696) (-696) |#2| |#2|)) (-15 -2612 ((-3 (-148 |#3|) #1#) (-696) (-696) |#2| |#2|))) (-312) (-1174 |#1|) (-1157 |#1|)) (T -778)) -((-2612 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-696)) (-4 *5 (-312)) (-5 *2 (-148 *6)) (-5 *1 (-778 *5 *4 *6)) (-4 *4 (-1174 *5)) (-4 *6 (-1157 *5)))) (-2613 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-696)) (-4 *5 (-312)) (-5 *2 (-350 *6)) (-5 *1 (-778 *5 *4 *6)) (-4 *4 (-1174 *5)) (-4 *6 (-1157 *5))))) -((-2613 (((-3 (-350 (-1150 |#2| |#1|)) #1="failed") (-696) (-696) (-1171 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-350 (-1150 |#2| |#1|)) #1#) (-696) (-696) (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) 28 T ELT))) -(((-779 |#1| |#2| |#3|) (-10 -7 (-15 -2613 ((-3 (-350 (-1150 |#2| |#1|)) #1="failed") (-696) (-696) (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|))) (-15 -2613 ((-3 (-350 (-1150 |#2| |#1|)) #1#) (-696) (-696) (-1171 |#1| |#2| |#3|)))) (-312) (-1092) |#1|) (T -779)) -((-2613 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-696)) (-5 *4 (-1171 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1092)) (-14 *7 *5) (-5 *2 (-350 (-1150 *6 *5))) (-5 *1 (-779 *5 *6 *7)))) (-2613 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-696)) (-5 *4 (-1171 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1092)) (-14 *7 *5) (-5 *2 (-350 (-1150 *6 *5))) (-5 *1 (-779 *5 *6 *7))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $ (-486)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2614 (($ (-1087 (-486)) (-486)) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2615 (($ $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3775 (((-696) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2617 (((-486)) NIL T ELT)) (-2616 (((-486) $) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3772 (($ $ (-486)) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2618 (((-1071 (-486)) $) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3773 (((-486) $ (-486)) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-780 |#1|) (-781 |#1|) (-486)) (T -780)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3040 (($ $ (-486)) 78 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-2614 (($ (-1087 (-486)) (-486)) 77 T ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2615 (($ $) 80 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3775 (((-696) $) 85 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-2617 (((-486)) 82 T ELT)) (-2616 (((-486) $) 81 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3772 (($ $ (-486)) 84 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-2618 (((-1071 (-486)) $) 86 T ELT)) (-2894 (($ $) 83 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3773 (((-486) $ (-486)) 79 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-781 |#1|) (-113) (-486)) (T -781)) -((-2618 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-5 *2 (-1071 (-486))))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-5 *2 (-696)))) (-3772 (*1 *1 *1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486)))) (-2894 (*1 *1 *1) (-4 *1 (-781 *2))) (-2617 (*1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486)))) (-2615 (*1 *1 *1) (-4 *1 (-781 *2))) (-3773 (*1 *2 *1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486)))) (-3040 (*1 *1 *1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486)))) (-2614 (*1 *1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *3 (-486)) (-4 *1 (-781 *4))))) -(-13 (-258) (-120) (-10 -8 (-15 -2618 ((-1071 (-486)) $)) (-15 -3775 ((-696) $)) (-15 -3772 ($ $ (-486))) (-15 -2894 ($ $)) (-15 -2617 ((-486))) (-15 -2616 ((-486) $)) (-15 -2615 ($ $)) (-15 -3773 ((-486) $ (-486))) (-15 -3040 ($ $ (-486))) (-15 -2614 ($ (-1087 (-486)) (-486))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-258) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 (((-780 |#1|) $) NIL (|has| (-780 |#1|) (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-780 |#1|) (-823)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| (-780 |#1|) (-823)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| (-780 |#1|) (-742)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-780 |#1|) #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL (|has| (-780 |#1|) (-952 (-1092))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| (-780 |#1|) (-952 (-486))) ELT) (((-3 (-486) #1#) $) NIL (|has| (-780 |#1|) (-952 (-486))) ELT)) (-3159 (((-780 |#1|) $) NIL T ELT) (((-1092) $) NIL (|has| (-780 |#1|) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL (|has| (-780 |#1|) (-952 (-486))) ELT) (((-486) $) NIL (|has| (-780 |#1|) (-952 (-486))) ELT)) (-3733 (($ $) NIL T ELT) (($ (-486) $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| (-780 |#1|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| (-780 |#1|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-780 |#1|))) (|:| |vec| (-1181 (-780 |#1|)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-780 |#1|)) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-780 |#1|) (-485)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| (-780 |#1|) (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| (-780 |#1|) (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| (-780 |#1|) (-798 (-330))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-780 |#1|) $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| (-780 |#1|) (-1068)) ELT)) (-3190 (((-85) $) NIL (|has| (-780 |#1|) (-742)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-780 |#1|) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-780 |#1|) (-758)) ELT)) (-3846 (($ (-1 (-780 |#1|) (-780 |#1|)) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| (-780 |#1|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| (-780 |#1|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-780 |#1|))) (|:| |vec| (-1181 (-780 |#1|)))) (-1181 $) $) NIL T ELT) (((-632 (-780 |#1|)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-780 |#1|) (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-780 |#1|) (-258)) ELT)) (-3133 (((-780 |#1|) $) NIL (|has| (-780 |#1|) (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-780 |#1|) (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-780 |#1|) (-823)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3771 (($ $ (-585 (-780 |#1|)) (-585 (-780 |#1|))) NIL (|has| (-780 |#1|) (-260 (-780 |#1|))) ELT) (($ $ (-780 |#1|) (-780 |#1|)) NIL (|has| (-780 |#1|) (-260 (-780 |#1|))) ELT) (($ $ (-249 (-780 |#1|))) NIL (|has| (-780 |#1|) (-260 (-780 |#1|))) ELT) (($ $ (-585 (-249 (-780 |#1|)))) NIL (|has| (-780 |#1|) (-260 (-780 |#1|))) ELT) (($ $ (-585 (-1092)) (-585 (-780 |#1|))) NIL (|has| (-780 |#1|) (-457 (-1092) (-780 |#1|))) ELT) (($ $ (-1092) (-780 |#1|)) NIL (|has| (-780 |#1|) (-457 (-1092) (-780 |#1|))) ELT)) (-1608 (((-696) $) NIL T ELT)) (-3803 (($ $ (-780 |#1|)) NIL (|has| (-780 |#1|) (-241 (-780 |#1|) (-780 |#1|))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-780 |#1|) (-780 |#1|))) NIL T ELT) (($ $ (-1 (-780 |#1|) (-780 |#1|)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-780 |#1|) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-780 |#1|) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-780 |#1|) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-780 |#1|) (-813 (-1092))) ELT) (($ $) NIL (|has| (-780 |#1|) (-189)) ELT) (($ $ (-696)) NIL (|has| (-780 |#1|) (-189)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-780 |#1|) $) NIL T ELT)) (-3975 (((-802 (-486)) $) NIL (|has| (-780 |#1|) (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| (-780 |#1|) (-555 (-802 (-330)))) ELT) (((-475) $) NIL (|has| (-780 |#1|) (-555 (-475))) ELT) (((-330) $) NIL (|has| (-780 |#1|) (-935)) ELT) (((-179) $) NIL (|has| (-780 |#1|) (-935)) ELT)) (-2619 (((-148 (-350 (-486))) $) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-780 |#1|) (-823))) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-780 |#1|)) NIL T ELT) (($ (-1092)) NIL (|has| (-780 |#1|) (-952 (-1092))) ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-780 |#1|) (-823))) (|has| (-780 |#1|) (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-3134 (((-780 |#1|) $) NIL (|has| (-780 |#1|) (-485)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3773 (((-350 (-486)) $ (-486)) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-780 |#1|) (-742)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-780 |#1|) (-780 |#1|))) NIL T ELT) (($ $ (-1 (-780 |#1|) (-780 |#1|)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-780 |#1|) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-780 |#1|) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-780 |#1|) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-780 |#1|) (-813 (-1092))) ELT) (($ $) NIL (|has| (-780 |#1|) (-189)) ELT) (($ $ (-696)) NIL (|has| (-780 |#1|) (-189)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-780 |#1|) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-780 |#1|) (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| (-780 |#1|) (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| (-780 |#1|) (-758)) ELT)) (-3953 (($ $ $) NIL T ELT) (($ (-780 |#1|) (-780 |#1|)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ (-780 |#1|) $) NIL T ELT) (($ $ (-780 |#1|)) NIL T ELT))) -(((-782 |#1|) (-13 (-906 (-780 |#1|)) (-10 -8 (-15 -3773 ((-350 (-486)) $ (-486))) (-15 -2619 ((-148 (-350 (-486))) $)) (-15 -3733 ($ $)) (-15 -3733 ($ (-486) $)))) (-486)) (T -782)) -((-3773 (*1 *2 *1 *3) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-782 *4)) (-14 *4 *3) (-5 *3 (-486)))) (-2619 (*1 *2 *1) (-12 (-5 *2 (-148 (-350 (-486)))) (-5 *1 (-782 *3)) (-14 *3 (-486)))) (-3733 (*1 *1 *1) (-12 (-5 *1 (-782 *2)) (-14 *2 (-486)))) (-3733 (*1 *1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-782 *3)) (-14 *3 *2)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 ((|#2| $) NIL (|has| |#2| (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| |#2| (-742)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL (|has| |#2| (-952 (-1092))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT)) (-3159 ((|#2| $) NIL T ELT) (((-1092) $) NIL (|has| |#2| (-952 (-1092))) ELT) (((-350 (-486)) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-486) $) NIL (|has| |#2| (-952 (-486))) ELT)) (-3733 (($ $) 35 T ELT) (($ (-486) $) 38 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) 64 T ELT)) (-2997 (($) NIL (|has| |#2| (-485)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| |#2| (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| |#2| (-798 (-330))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 ((|#2| $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| |#2| (-1068)) ELT)) (-3190 (((-85) $) NIL (|has| |#2| (-742)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 60 T ELT)) (-3449 (($) NIL (|has| |#2| (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3133 ((|#2| $) NIL (|has| |#2| (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3771 (($ $ (-585 |#2|) (-585 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-249 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-585 (-249 |#2|))) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-585 (-1092)) (-585 |#2|)) NIL (|has| |#2| (-457 (-1092) |#2|)) ELT) (($ $ (-1092) |#2|) NIL (|has| |#2| (-457 (-1092) |#2|)) ELT)) (-1608 (((-696) $) NIL T ELT)) (-3803 (($ $ |#2|) NIL (|has| |#2| (-241 |#2| |#2|)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 ((|#2| $) NIL T ELT)) (-3975 (((-802 (-486)) $) NIL (|has| |#2| (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| |#2| (-555 (-802 (-330)))) ELT) (((-475) $) NIL (|has| |#2| (-555 (-475))) ELT) (((-330) $) NIL (|has| |#2| (-935)) ELT) (((-179) $) NIL (|has| |#2| (-935)) ELT)) (-2619 (((-148 (-350 (-486))) $) 78 T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-823))) ELT)) (-3950 (((-774) $) 105 T ELT) (($ (-486)) 20 T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1092)) NIL (|has| |#2| (-952 (-1092))) ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#2| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-3134 ((|#2| $) NIL (|has| |#2| (-485)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3773 (((-350 (-486)) $ (-486)) 71 T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| |#2| (-742)) ELT)) (-2663 (($) 15 T CONST)) (-2669 (($) 17 T CONST)) (-2672 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-3059 (((-85) $ $) 46 T ELT)) (-2687 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-3953 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3840 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3842 (($ $ $) 48 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) 61 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) -(((-783 |#1| |#2|) (-13 (-906 |#2|) (-10 -8 (-15 -3773 ((-350 (-486)) $ (-486))) (-15 -2619 ((-148 (-350 (-486))) $)) (-15 -3733 ($ $)) (-15 -3733 ($ (-486) $)))) (-486) (-781 |#1|)) (T -783)) -((-3773 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-350 (-486))) (-5 *1 (-783 *4 *5)) (-5 *3 (-486)) (-4 *5 (-781 *4)))) (-2619 (*1 *2 *1) (-12 (-14 *3 (-486)) (-5 *2 (-148 (-350 (-486)))) (-5 *1 (-783 *3 *4)) (-4 *4 (-781 *3)))) (-3733 (*1 *1 *1) (-12 (-14 *2 (-486)) (-5 *1 (-783 *2 *3)) (-4 *3 (-781 *2)))) (-3733 (*1 *1 *2 *1) (-12 (-5 *2 (-486)) (-14 *3 *2) (-5 *1 (-783 *3 *4)) (-4 *4 (-781 *3))))) -((-2571 (((-85) $ $) NIL (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-3799 ((|#2| $) 12 T ELT)) (-2620 (($ |#1| |#2|) 9 T ELT)) (-3245 (((-1075) $) NIL (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-3246 (((-1035) $) NIL (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-3804 ((|#1| $) 11 T ELT)) (-3533 (($ |#1| |#2|) 10 T ELT)) (-3950 (((-774) $) 18 (OR (-12 (|has| |#1| (-554 (-774))) (|has| |#2| (-554 (-774)))) (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015)))) ELT)) (-1267 (((-85) $ $) NIL (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-3059 (((-85) $ $) 23 (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT))) -(((-784 |#1| |#2|) (-13 (-1131) (-10 -8 (IF (|has| |#1| (-554 (-774))) (IF (|has| |#2| (-554 (-774))) (-6 (-554 (-774))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1015)) (IF (|has| |#2| (-1015)) (-6 (-1015)) |%noBranch|) |%noBranch|) (-15 -2620 ($ |#1| |#2|)) (-15 -3533 ($ |#1| |#2|)) (-15 -3804 (|#1| $)) (-15 -3799 (|#2| $)))) (-1131) (-1131)) (T -784)) -((-2620 (*1 *1 *2 *3) (-12 (-5 *1 (-784 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *1 (-784 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-3804 (*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-784 *2 *3)) (-4 *3 (-1131)))) (-3799 (*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-784 *3 *2)) (-4 *3 (-1131))))) -((-2571 (((-85) $ $) NIL T ELT)) (-2960 (((-486) $) 16 T ELT)) (-2622 (($ (-130)) 13 T ELT)) (-2621 (($ (-130)) 14 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2959 (((-130) $) 15 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2624 (($ (-130)) 11 T ELT)) (-2625 (($ (-130)) 10 T ELT)) (-3950 (((-774) $) 24 T ELT) (($ (-130)) 17 T ELT)) (-2623 (($ (-130)) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-785) (-13 (-1015) (-557 (-130)) (-10 -8 (-15 -2625 ($ (-130))) (-15 -2624 ($ (-130))) (-15 -2623 ($ (-130))) (-15 -2622 ($ (-130))) (-15 -2621 ($ (-130))) (-15 -2959 ((-130) $)) (-15 -2960 ((-486) $))))) (T -785)) -((-2625 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) (-2624 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) (-2623 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) (-2622 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) (-2621 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) (-2960 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-785))))) -((-3950 (((-265 (-486)) (-350 (-859 (-48)))) 23 T ELT) (((-265 (-486)) (-859 (-48))) 18 T ELT))) -(((-786) (-10 -7 (-15 -3950 ((-265 (-486)) (-859 (-48)))) (-15 -3950 ((-265 (-486)) (-350 (-859 (-48))))))) (T -786)) -((-3950 (*1 *2 *3) (-12 (-5 *3 (-350 (-859 (-48)))) (-5 *2 (-265 (-486))) (-5 *1 (-786)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-859 (-48))) (-5 *2 (-265 (-486))) (-5 *1 (-786))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 18 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3569 (((-85) $ (|[\|\|]| (-448))) 9 T ELT) (((-85) $ (|[\|\|]| (-1075))) 13 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3575 (((-448) $) 10 T ELT) (((-1075) $) 14 T ELT)) (-3059 (((-85) $ $) 15 T ELT))) -(((-787) (-13 (-997) (-1177) (-10 -8 (-15 -3569 ((-85) $ (|[\|\|]| (-448)))) (-15 -3575 ((-448) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-1075)))) (-15 -3575 ((-1075) $))))) (T -787)) -((-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-448))) (-5 *2 (-85)) (-5 *1 (-787)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-787)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-85)) (-5 *1 (-787)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-787))))) -((-3846 (((-789 |#2|) (-1 |#2| |#1|) (-789 |#1|)) 15 T ELT))) -(((-788 |#1| |#2|) (-10 -7 (-15 -3846 ((-789 |#2|) (-1 |#2| |#1|) (-789 |#1|)))) (-1131) (-1131)) (T -788)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-789 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-789 *6)) (-5 *1 (-788 *5 *6))))) -((-3374 (($ |#1| |#1|) 8 T ELT)) (-2628 ((|#1| $ (-696)) 15 T ELT))) -(((-789 |#1|) (-10 -8 (-15 -3374 ($ |#1| |#1|)) (-15 -2628 (|#1| $ (-696)))) (-1131)) (T -789)) -((-2628 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-789 *2)) (-4 *2 (-1131)))) (-3374 (*1 *1 *2 *2) (-12 (-5 *1 (-789 *2)) (-4 *2 (-1131))))) -((-3846 (((-791 |#2|) (-1 |#2| |#1|) (-791 |#1|)) 15 T ELT))) -(((-790 |#1| |#2|) (-10 -7 (-15 -3846 ((-791 |#2|) (-1 |#2| |#1|) (-791 |#1|)))) (-1131) (-1131)) (T -790)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-791 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-791 *6)) (-5 *1 (-790 *5 *6))))) -((-3374 (($ |#1| |#1| |#1|) 8 T ELT)) (-2628 ((|#1| $ (-696)) 15 T ELT))) -(((-791 |#1|) (-10 -8 (-15 -3374 ($ |#1| |#1| |#1|)) (-15 -2628 (|#1| $ (-696)))) (-1131)) (T -791)) -((-2628 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-791 *2)) (-4 *2 (-1131)))) (-3374 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1131))))) -((-2626 (((-585 (-1097)) (-1075)) 9 T ELT))) -(((-792) (-10 -7 (-15 -2626 ((-585 (-1097)) (-1075))))) (T -792)) -((-2626 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-585 (-1097))) (-5 *1 (-792))))) -((-3846 (((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)) 15 T ELT))) -(((-793 |#1| |#2|) (-10 -7 (-15 -3846 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) (-1131) (-1131)) (T -793)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6))))) -((-2627 (($ |#1| |#1| |#1|) 8 T ELT)) (-2628 ((|#1| $ (-696)) 15 T ELT))) -(((-794 |#1|) (-10 -8 (-15 -2627 ($ |#1| |#1| |#1|)) (-15 -2628 (|#1| $ (-696)))) (-1131)) (T -794)) -((-2628 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-794 *2)) (-4 *2 (-1131)))) (-2627 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1131))))) -((-2631 (((-1071 (-585 (-486))) (-585 (-486)) (-1071 (-585 (-486)))) 41 T ELT)) (-2630 (((-1071 (-585 (-486))) (-585 (-486)) (-585 (-486))) 31 T ELT)) (-2632 (((-1071 (-585 (-486))) (-585 (-486))) 53 T ELT) (((-1071 (-585 (-486))) (-585 (-486)) (-585 (-486))) 50 T ELT)) (-2633 (((-1071 (-585 (-486))) (-486)) 55 T ELT)) (-2629 (((-1071 (-585 (-832))) (-1071 (-585 (-832)))) 22 T ELT)) (-3012 (((-585 (-832)) (-585 (-832))) 18 T ELT))) -(((-795) (-10 -7 (-15 -3012 ((-585 (-832)) (-585 (-832)))) (-15 -2629 ((-1071 (-585 (-832))) (-1071 (-585 (-832))))) (-15 -2630 ((-1071 (-585 (-486))) (-585 (-486)) (-585 (-486)))) (-15 -2631 ((-1071 (-585 (-486))) (-585 (-486)) (-1071 (-585 (-486))))) (-15 -2632 ((-1071 (-585 (-486))) (-585 (-486)) (-585 (-486)))) (-15 -2632 ((-1071 (-585 (-486))) (-585 (-486)))) (-15 -2633 ((-1071 (-585 (-486))) (-486))))) (T -795)) -((-2633 (*1 *2 *3) (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *1 (-795)) (-5 *3 (-486)))) (-2632 (*1 *2 *3) (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *1 (-795)) (-5 *3 (-585 (-486))))) (-2632 (*1 *2 *3 *3) (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *1 (-795)) (-5 *3 (-585 (-486))))) (-2631 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *3 (-585 (-486))) (-5 *1 (-795)))) (-2630 (*1 *2 *3 *3) (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *1 (-795)) (-5 *3 (-585 (-486))))) (-2629 (*1 *2 *2) (-12 (-5 *2 (-1071 (-585 (-832)))) (-5 *1 (-795)))) (-3012 (*1 *2 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-795))))) -((-3975 (((-802 (-330)) $) 9 (|has| |#1| (-555 (-802 (-330)))) ELT) (((-802 (-486)) $) 8 (|has| |#1| (-555 (-802 (-486)))) ELT))) -(((-796 |#1|) (-113) (-1131)) (T -796)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-555 (-802 (-486)))) (-6 (-555 (-802 (-486)))) |%noBranch|) (IF (|has| |t#1| (-555 (-802 (-330)))) (-6 (-555 (-802 (-330)))) |%noBranch|))) -(((-555 (-802 (-330))) |has| |#1| (-555 (-802 (-330)))) ((-555 (-802 (-486))) |has| |#1| (-555 (-802 (-486))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3617 (($) 14 T ELT)) (-2635 (($ (-800 |#1| |#2|) (-800 |#1| |#3|)) 28 T ELT)) (-2634 (((-800 |#1| |#3|) $) 16 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2643 (((-85) $) 22 T ELT)) (-2642 (($) 19 T ELT)) (-3950 (((-774) $) 31 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2853 (((-800 |#1| |#2|) $) 15 T ELT)) (-3059 (((-85) $ $) 26 T ELT))) -(((-797 |#1| |#2| |#3|) (-13 (-1015) (-10 -8 (-15 -2643 ((-85) $)) (-15 -2642 ($)) (-15 -3617 ($)) (-15 -2635 ($ (-800 |#1| |#2|) (-800 |#1| |#3|))) (-15 -2853 ((-800 |#1| |#2|) $)) (-15 -2634 ((-800 |#1| |#3|) $)))) (-1015) (-1015) (-610 |#2|)) (T -797)) -((-2643 (*1 *2 *1) (-12 (-4 *4 (-1015)) (-5 *2 (-85)) (-5 *1 (-797 *3 *4 *5)) (-4 *3 (-1015)) (-4 *5 (-610 *4)))) (-2642 (*1 *1) (-12 (-4 *3 (-1015)) (-5 *1 (-797 *2 *3 *4)) (-4 *2 (-1015)) (-4 *4 (-610 *3)))) (-3617 (*1 *1) (-12 (-4 *3 (-1015)) (-5 *1 (-797 *2 *3 *4)) (-4 *2 (-1015)) (-4 *4 (-610 *3)))) (-2635 (*1 *1 *2 *3) (-12 (-5 *2 (-800 *4 *5)) (-5 *3 (-800 *4 *6)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-610 *5)) (-5 *1 (-797 *4 *5 *6)))) (-2853 (*1 *2 *1) (-12 (-4 *4 (-1015)) (-5 *2 (-800 *3 *4)) (-5 *1 (-797 *3 *4 *5)) (-4 *3 (-1015)) (-4 *5 (-610 *4)))) (-2634 (*1 *2 *1) (-12 (-4 *4 (-1015)) (-5 *2 (-800 *3 *5)) (-5 *1 (-797 *3 *4 *5)) (-4 *3 (-1015)) (-4 *5 (-610 *4))))) -((-2571 (((-85) $ $) 7 T ELT)) (-2799 (((-800 |#1| $) $ (-802 |#1|) (-800 |#1| $)) 17 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) -(((-798 |#1|) (-113) (-1015)) (T -798)) -((-2799 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-800 *4 *1)) (-5 *3 (-802 *4)) (-4 *1 (-798 *4)) (-4 *4 (-1015))))) -(-13 (-1015) (-10 -8 (-15 -2799 ((-800 |t#1| $) $ (-802 |t#1|) (-800 |t#1| $))))) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-2636 (((-85) (-585 |#2|) |#3|) 23 T ELT) (((-85) |#2| |#3|) 18 T ELT)) (-2637 (((-800 |#1| |#2|) |#2| |#3|) 45 (-12 (-2563 (|has| |#2| (-952 (-1092)))) (-2563 (|has| |#2| (-963)))) ELT) (((-585 (-249 (-859 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-963)) (-2563 (|has| |#2| (-952 (-1092))))) ELT) (((-585 (-249 |#2|)) |#2| |#3|) 36 (|has| |#2| (-952 (-1092))) ELT) (((-797 |#1| |#2| (-585 |#2|)) (-585 |#2|) |#3|) 21 T ELT))) -(((-799 |#1| |#2| |#3|) (-10 -7 (-15 -2636 ((-85) |#2| |#3|)) (-15 -2636 ((-85) (-585 |#2|) |#3|)) (-15 -2637 ((-797 |#1| |#2| (-585 |#2|)) (-585 |#2|) |#3|)) (IF (|has| |#2| (-952 (-1092))) (-15 -2637 ((-585 (-249 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-963)) (-15 -2637 ((-585 (-249 (-859 |#2|))) |#2| |#3|)) (-15 -2637 ((-800 |#1| |#2|) |#2| |#3|))))) (-1015) (-798 |#1|) (-555 (-802 |#1|))) (T -799)) -((-2637 (*1 *2 *3 *4) (-12 (-4 *5 (-1015)) (-5 *2 (-800 *5 *3)) (-5 *1 (-799 *5 *3 *4)) (-2563 (-4 *3 (-952 (-1092)))) (-2563 (-4 *3 (-963))) (-4 *3 (-798 *5)) (-4 *4 (-555 (-802 *5))))) (-2637 (*1 *2 *3 *4) (-12 (-4 *5 (-1015)) (-5 *2 (-585 (-249 (-859 *3)))) (-5 *1 (-799 *5 *3 *4)) (-4 *3 (-963)) (-2563 (-4 *3 (-952 (-1092)))) (-4 *3 (-798 *5)) (-4 *4 (-555 (-802 *5))))) (-2637 (*1 *2 *3 *4) (-12 (-4 *5 (-1015)) (-5 *2 (-585 (-249 *3))) (-5 *1 (-799 *5 *3 *4)) (-4 *3 (-952 (-1092))) (-4 *3 (-798 *5)) (-4 *4 (-555 (-802 *5))))) (-2637 (*1 *2 *3 *4) (-12 (-4 *5 (-1015)) (-4 *6 (-798 *5)) (-5 *2 (-797 *5 *6 (-585 *6))) (-5 *1 (-799 *5 *6 *4)) (-5 *3 (-585 *6)) (-4 *4 (-555 (-802 *5))))) (-2636 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-4 *6 (-798 *5)) (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-799 *5 *6 *4)) (-4 *4 (-555 (-802 *5))))) (-2636 (*1 *2 *3 *4) (-12 (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-799 *5 *3 *4)) (-4 *3 (-798 *5)) (-4 *4 (-555 (-802 *5)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3237 (($ $ $) 40 T ELT)) (-2664 (((-3 (-85) #1="failed") $ (-802 |#1|)) 37 T ELT)) (-3617 (($) 12 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2639 (($ (-802 |#1|) |#2| $) 20 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2641 (((-3 |#2| #1#) (-802 |#1|) $) 51 T ELT)) (-2643 (((-85) $) 15 T ELT)) (-2642 (($) 13 T ELT)) (-3260 (((-585 (-2 (|:| -3864 (-1092)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3533 (($ (-585 (-2 (|:| -3864 (-1092)) (|:| |entry| |#2|)))) 23 T ELT)) (-3950 (((-774) $) 45 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2638 (($ (-802 |#1|) |#2| $ |#2|) 49 T ELT)) (-2640 (($ (-802 |#1|) |#2| $) 48 T ELT)) (-3059 (((-85) $ $) 42 T ELT))) -(((-800 |#1| |#2|) (-13 (-1015) (-10 -8 (-15 -2643 ((-85) $)) (-15 -2642 ($)) (-15 -3617 ($)) (-15 -3237 ($ $ $)) (-15 -2641 ((-3 |#2| #1="failed") (-802 |#1|) $)) (-15 -2640 ($ (-802 |#1|) |#2| $)) (-15 -2639 ($ (-802 |#1|) |#2| $)) (-15 -2638 ($ (-802 |#1|) |#2| $ |#2|)) (-15 -3260 ((-585 (-2 (|:| -3864 (-1092)) (|:| |entry| |#2|))) $)) (-15 -3533 ($ (-585 (-2 (|:| -3864 (-1092)) (|:| |entry| |#2|))))) (-15 -2664 ((-3 (-85) #1#) $ (-802 |#1|))))) (-1015) (-1015)) (T -800)) -((-2643 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-2642 (*1 *1) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-3617 (*1 *1) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-3237 (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-2641 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-4 *2 (-1015)) (-5 *1 (-800 *4 *2)))) (-2640 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1015)))) (-2639 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1015)))) (-2638 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1015)))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| -3864 (-1092)) (|:| |entry| *4)))) (-5 *1 (-800 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -3864 (-1092)) (|:| |entry| *4)))) (-4 *4 (-1015)) (-5 *1 (-800 *3 *4)) (-4 *3 (-1015)))) (-2664 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-5 *2 (-85)) (-5 *1 (-800 *4 *5)) (-4 *5 (-1015))))) -((-3846 (((-800 |#1| |#3|) (-1 |#3| |#2|) (-800 |#1| |#2|)) 22 T ELT))) -(((-801 |#1| |#2| |#3|) (-10 -7 (-15 -3846 ((-800 |#1| |#3|) (-1 |#3| |#2|) (-800 |#1| |#2|)))) (-1015) (-1015) (-1015)) (T -801)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-800 *5 *6)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-800 *5 *7)) (-5 *1 (-801 *5 *6 *7))))) -((-2571 (((-85) $ $) NIL T ELT)) (-2651 (($ $ (-585 (-51))) 74 T ELT)) (-3084 (((-585 $) $) 139 T ELT)) (-2648 (((-2 (|:| |var| (-585 (-1092))) (|:| |pred| (-51))) $) 30 T ELT)) (-3263 (((-85) $) 35 T ELT)) (-2649 (($ $ (-585 (-1092)) (-51)) 31 T ELT)) (-2652 (($ $ (-585 (-51))) 73 T ELT)) (-3160 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1092) #1#) $) 167 T ELT)) (-3159 ((|#1| $) 68 T ELT) (((-1092) $) NIL T ELT)) (-2646 (($ $) 126 T ELT)) (-2658 (((-85) $) 55 T ELT)) (-2653 (((-585 (-51)) $) 50 T ELT)) (-2650 (($ (-1092) (-85) (-85) (-85)) 75 T ELT)) (-2644 (((-3 (-585 $) #1#) (-585 $)) 82 T ELT)) (-2655 (((-85) $) 58 T ELT)) (-2656 (((-85) $) 57 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) 41 T ELT)) (-2661 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2828 (((-3 (-2 (|:| |val| $) (|:| -2403 $)) #1#) $) 97 T ELT)) (-2825 (((-3 (-585 $) #1#) $) 40 T ELT)) (-2662 (((-3 (-585 $) #1#) $ (-86)) 124 T ELT) (((-3 (-2 (|:| -2516 (-86)) (|:| |arg| (-585 $))) #1#) $) 107 T ELT)) (-2660 (((-3 (-585 $) #1#) $) 42 T ELT)) (-2827 (((-3 (-2 (|:| |val| $) (|:| -2403 (-696))) #1#) $) 45 T ELT)) (-2659 (((-85) $) 34 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2647 (((-85) $) 28 T ELT)) (-2654 (((-85) $) 52 T ELT)) (-2645 (((-585 (-51)) $) 130 T ELT)) (-2657 (((-85) $) 56 T ELT)) (-3803 (($ (-86) (-585 $)) 104 T ELT)) (-3325 (((-696) $) 33 T ELT)) (-3403 (($ $) 72 T ELT)) (-3975 (($ (-585 $)) 69 T ELT)) (-3957 (((-85) $) 32 T ELT)) (-3950 (((-774) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1092)) 76 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2665 (($ $ (-51)) 129 T ELT)) (-2663 (($) 103 T CONST)) (-2669 (($) 83 T CONST)) (-3059 (((-85) $ $) 93 T ELT)) (-3953 (($ $ $) 117 T ELT)) (-3842 (($ $ $) 121 T ELT)) (** (($ $ (-696)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) -(((-802 |#1|) (-13 (-1015) (-952 |#1|) (-952 (-1092)) (-10 -8 (-15 -2663 ($) -3956) (-15 -2669 ($) -3956) (-15 -2825 ((-3 (-585 $) #1="failed") $)) (-15 -2826 ((-3 (-585 $) #1#) $)) (-15 -2662 ((-3 (-585 $) #1#) $ (-86))) (-15 -2662 ((-3 (-2 (|:| -2516 (-86)) (|:| |arg| (-585 $))) #1#) $)) (-15 -2827 ((-3 (-2 (|:| |val| $) (|:| -2403 (-696))) #1#) $)) (-15 -2661 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2660 ((-3 (-585 $) #1#) $)) (-15 -2828 ((-3 (-2 (|:| |val| $) (|:| -2403 $)) #1#) $)) (-15 -3803 ($ (-86) (-585 $))) (-15 -3842 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-696))) (-15 ** ($ $ $)) (-15 -3953 ($ $ $)) (-15 -3325 ((-696) $)) (-15 -3975 ($ (-585 $))) (-15 -3403 ($ $)) (-15 -2659 ((-85) $)) (-15 -2658 ((-85) $)) (-15 -3263 ((-85) $)) (-15 -3957 ((-85) $)) (-15 -2657 ((-85) $)) (-15 -2656 ((-85) $)) (-15 -2655 ((-85) $)) (-15 -2654 ((-85) $)) (-15 -2653 ((-585 (-51)) $)) (-15 -2652 ($ $ (-585 (-51)))) (-15 -2651 ($ $ (-585 (-51)))) (-15 -2650 ($ (-1092) (-85) (-85) (-85))) (-15 -2649 ($ $ (-585 (-1092)) (-51))) (-15 -2648 ((-2 (|:| |var| (-585 (-1092))) (|:| |pred| (-51))) $)) (-15 -2647 ((-85) $)) (-15 -2646 ($ $)) (-15 -2665 ($ $ (-51))) (-15 -2645 ((-585 (-51)) $)) (-15 -3084 ((-585 $) $)) (-15 -2644 ((-3 (-585 $) #1#) (-585 $))))) (-1015)) (T -802)) -((-2663 (*1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (-2669 (*1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (-2825 (*1 *2 *1) (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2826 (*1 *2 *1) (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2662 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-585 (-802 *4))) (-5 *1 (-802 *4)) (-4 *4 (-1015)))) (-2662 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2516 (-86)) (|:| |arg| (-585 (-802 *3))))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2827 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-802 *3)) (|:| -2403 (-696)))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2661 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-802 *3)) (|:| |den| (-802 *3)))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2660 (*1 *2 *1) (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2828 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-802 *3)) (|:| -2403 (-802 *3)))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-3803 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-585 (-802 *4))) (-5 *1 (-802 *4)) (-4 *4 (-1015)))) (-3842 (*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (-3953 (*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (-3325 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-3403 (*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (-2659 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-3263 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2652 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2651 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2650 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-85)) (-5 *1 (-802 *4)) (-4 *4 (-1015)))) (-2649 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-51)) (-5 *1 (-802 *4)) (-4 *4 (-1015)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-585 (-1092))) (|:| |pred| (-51)))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2646 (*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (-2665 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-3084 (*1 *2 *1) (-12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2644 (*1 *2 *2) (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) -((-3212 (((-802 |#1|) (-802 |#1|) (-585 (-1092)) (-1 (-85) (-585 |#2|))) 32 T ELT) (((-802 |#1|) (-802 |#1|) (-585 (-1 (-85) |#2|))) 46 T ELT) (((-802 |#1|) (-802 |#1|) (-1 (-85) |#2|)) 35 T ELT)) (-2664 (((-85) (-585 |#2|) (-802 |#1|)) 42 T ELT) (((-85) |#2| (-802 |#1|)) 36 T ELT)) (-3534 (((-1 (-85) |#2|) (-802 |#1|)) 16 T ELT)) (-2666 (((-585 |#2|) (-802 |#1|)) 24 T ELT)) (-2665 (((-802 |#1|) (-802 |#1|) |#2|) 20 T ELT))) -(((-803 |#1| |#2|) (-10 -7 (-15 -3212 ((-802 |#1|) (-802 |#1|) (-1 (-85) |#2|))) (-15 -3212 ((-802 |#1|) (-802 |#1|) (-585 (-1 (-85) |#2|)))) (-15 -3212 ((-802 |#1|) (-802 |#1|) (-585 (-1092)) (-1 (-85) (-585 |#2|)))) (-15 -3534 ((-1 (-85) |#2|) (-802 |#1|))) (-15 -2664 ((-85) |#2| (-802 |#1|))) (-15 -2664 ((-85) (-585 |#2|) (-802 |#1|))) (-15 -2665 ((-802 |#1|) (-802 |#1|) |#2|)) (-15 -2666 ((-585 |#2|) (-802 |#1|)))) (-1015) (-1131)) (T -803)) -((-2666 (*1 *2 *3) (-12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-5 *2 (-585 *5)) (-5 *1 (-803 *4 *5)) (-4 *5 (-1131)))) (-2665 (*1 *2 *2 *3) (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-803 *4 *3)) (-4 *3 (-1131)))) (-2664 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *6 (-1131)) (-5 *2 (-85)) (-5 *1 (-803 *5 *6)))) (-2664 (*1 *2 *3 *4) (-12 (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-803 *5 *3)) (-4 *3 (-1131)))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-803 *4 *5)) (-4 *5 (-1131)))) (-3212 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-802 *5)) (-5 *3 (-585 (-1092))) (-5 *4 (-1 (-85) (-585 *6))) (-4 *5 (-1015)) (-4 *6 (-1131)) (-5 *1 (-803 *5 *6)))) (-3212 (*1 *2 *2 *3) (-12 (-5 *2 (-802 *4)) (-5 *3 (-585 (-1 (-85) *5))) (-4 *4 (-1015)) (-4 *5 (-1131)) (-5 *1 (-803 *4 *5)))) (-3212 (*1 *2 *2 *3) (-12 (-5 *2 (-802 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1015)) (-4 *5 (-1131)) (-5 *1 (-803 *4 *5))))) -((-3846 (((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)) 19 T ELT))) -(((-804 |#1| |#2|) (-10 -7 (-15 -3846 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)))) (-1015) (-1015)) (T -804)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-802 *6)) (-5 *1 (-804 *5 *6))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3938 (((-585 |#1|) $) 20 T ELT)) (-2667 (((-85) $) 49 T ELT)) (-3160 (((-3 (-616 |#1|) "failed") $) 55 T ELT)) (-3159 (((-616 |#1|) $) 53 T ELT)) (-3802 (($ $) 24 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3836 (((-696) $) 60 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 (((-616 |#1|) $) 22 T ELT)) (-3950 (((-774) $) 47 T ELT) (($ (-616 |#1|)) 27 T ELT) (((-741 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2669 (($) 11 T CONST)) (-2668 (((-585 (-616 |#1|)) $) 28 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 14 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 66 T ELT))) -(((-805 |#1|) (-13 (-758) (-952 (-616 |#1|)) (-10 -8 (-15 -2669 ($) -3956) (-15 -3950 ((-741 |#1|) $)) (-15 -3950 ($ |#1|)) (-15 -3804 ((-616 |#1|) $)) (-15 -3836 ((-696) $)) (-15 -2668 ((-585 (-616 |#1|)) $)) (-15 -3802 ($ $)) (-15 -2667 ((-85) $)) (-15 -3938 ((-585 |#1|) $)))) (-758)) (T -805)) -((-2669 (*1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-758)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-741 *3)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) (-3950 (*1 *1 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-758)))) (-3804 (*1 *2 *1) (-12 (-5 *2 (-616 *3)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-585 (-616 *3))) (-5 *1 (-805 *3)) (-4 *3 (-758)))) (-3802 (*1 *1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-758)))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-805 *3)) (-4 *3 (-758))))) -((-3477 ((|#1| |#1| |#1|) 19 T ELT))) -(((-806 |#1| |#2|) (-10 -7 (-15 -3477 (|#1| |#1| |#1|))) (-1157 |#2|) (-963)) (T -806)) -((-3477 (*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-806 *2 *3)) (-4 *2 (-1157 *3))))) -((-2672 ((|#2| $ |#3|) 10 T ELT))) -(((-807 |#1| |#2| |#3|) (-10 -7 (-15 -2672 (|#2| |#1| |#3|))) (-808 |#2| |#3|) (-1131) (-1131)) (T -807)) -NIL -((-3761 ((|#1| $ |#2|) 7 T ELT)) (-2672 ((|#1| $ |#2|) 6 T ELT))) -(((-808 |#1| |#2|) (-113) (-1131) (-1131)) (T -808)) -((-3761 (*1 *2 *1 *3) (-12 (-4 *1 (-808 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1131)))) (-2672 (*1 *2 *1 *3) (-12 (-4 *1 (-808 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1131))))) -(-13 (-1131) (-10 -8 (-15 -3761 (|t#1| $ |t#2|)) (-15 -2672 (|t#1| $ |t#2|)))) -(((-13) . T) ((-1131) . T)) -((-2671 ((|#1| |#1| (-696)) 26 T ELT)) (-2670 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3438 (((-3 (-2 (|:| -3141 |#1|) (|:| -3140 |#1|)) #1#) |#1| (-696) (-696)) 29 T ELT) (((-585 |#1|) |#1|) 38 T ELT))) -(((-809 |#1| |#2|) (-10 -7 (-15 -3438 ((-585 |#1|) |#1|)) (-15 -3438 ((-3 (-2 (|:| -3141 |#1|) (|:| -3140 |#1|)) #1="failed") |#1| (-696) (-696))) (-15 -2670 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2671 (|#1| |#1| (-696)))) (-1157 |#2|) (-312)) (T -809)) -((-2671 (*1 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-312)) (-5 *1 (-809 *2 *4)) (-4 *2 (-1157 *4)))) (-2670 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-809 *2 *3)) (-4 *2 (-1157 *3)))) (-3438 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-696)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3141 *3) (|:| -3140 *3))) (-5 *1 (-809 *3 *5)) (-4 *3 (-1157 *5)))) (-3438 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-585 *3)) (-5 *1 (-809 *3 *4)) (-4 *3 (-1157 *4))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3761 (($ $ (-585 |#2|) (-585 (-696))) 45 T ELT) (($ $ |#2| (-696)) 44 T ELT) (($ $ (-585 |#2|)) 43 T ELT) (($ $ |#2|) 41 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-2672 (($ $ (-585 |#2|) (-585 (-696))) 48 T ELT) (($ $ |#2| (-696)) 47 T ELT) (($ $ (-585 |#2|)) 46 T ELT) (($ $ |#2|) 42 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-810 |#1| |#2|) (-113) (-963) (-72)) (T -810)) -NIL -(-13 (-82 |t#1| |t#1|) (-813 |t#2|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-656 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-808 $ |#2|) . T) ((-813 |#2|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3761 (($ $ (-585 |#1|) (-585 (-696))) 52 T ELT) (($ $ |#1| (-696)) 51 T ELT) (($ $ (-585 |#1|)) 50 T ELT) (($ $ |#1|) 48 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-585 |#1|) (-585 (-696))) 55 T ELT) (($ $ |#1| (-696)) 54 T ELT) (($ $ (-585 |#1|)) 53 T ELT) (($ $ |#1|) 49 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-811 |#1|) (-113) (-72)) (T -811)) -NIL -(-13 (-963) (-813 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-808 $ |#1|) . T) ((-813 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-3761 (($ $ |#2|) NIL T ELT) (($ $ (-585 |#2|)) 10 T ELT) (($ $ |#2| (-696)) 12 T ELT) (($ $ (-585 |#2|) (-585 (-696))) 15 T ELT)) (-2672 (($ $ |#2|) 16 T ELT) (($ $ (-585 |#2|)) 18 T ELT) (($ $ |#2| (-696)) 19 T ELT) (($ $ (-585 |#2|) (-585 (-696))) 21 T ELT))) -(((-812 |#1| |#2|) (-10 -7 (-15 -2672 (|#1| |#1| (-585 |#2|) (-585 (-696)))) (-15 -2672 (|#1| |#1| |#2| (-696))) (-15 -2672 (|#1| |#1| (-585 |#2|))) (-15 -3761 (|#1| |#1| (-585 |#2|) (-585 (-696)))) (-15 -3761 (|#1| |#1| |#2| (-696))) (-15 -3761 (|#1| |#1| (-585 |#2|))) (-15 -2672 (|#1| |#1| |#2|)) (-15 -3761 (|#1| |#1| |#2|))) (-813 |#2|) (-72)) (T -812)) -NIL -((-3761 (($ $ |#1|) 7 T ELT) (($ $ (-585 |#1|)) 15 T ELT) (($ $ |#1| (-696)) 14 T ELT) (($ $ (-585 |#1|) (-585 (-696))) 13 T ELT)) (-2672 (($ $ |#1|) 6 T ELT) (($ $ (-585 |#1|)) 12 T ELT) (($ $ |#1| (-696)) 11 T ELT) (($ $ (-585 |#1|) (-585 (-696))) 10 T ELT))) +(-13 (-770) (-667)) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-667) . T) ((-770) . T) ((-760) . T) ((-763) . T) ((-1029) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 31 T ELT)) (-1316 (((-3 $ "failed") $ $) 35 T ELT)) (-3629 (((-488) $) 38 T ELT)) (-3730 (($) 30 T CONST)) (-3473 (((-3 $ "failed") $) 55 T ELT)) (-3192 (((-85) $) 28 T ELT)) (-1218 (((-85) $ $) 33 T ELT)) (-2415 (((-85) $) 53 T ELT)) (-3193 (((-85) $) 39 T ELT)) (-2537 (($ $ $) 23 T ELT)) (-2863 (($ $ $) 22 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 56 T ELT)) (-3132 (((-698)) 57 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 51 T ELT)) (-3389 (($ $) 37 T ELT)) (-2666 (($) 29 T CONST)) (-2672 (($) 52 T CONST)) (-2572 (((-85) $ $) 21 T ELT)) (-2573 (((-85) $ $) 19 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 20 T ELT)) (-2691 (((-85) $ $) 18 T ELT)) (-3843 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3845 (($ $ $) 25 T ELT)) (** (($ $ (-698)) 54 T ELT) (($ $ (-834)) 49 T ELT)) (* (($ (-834) $) 26 T ELT) (($ (-698) $) 32 T ELT) (($ (-488) $) 40 T ELT) (($ $ $) 50 T ELT))) +(((-759) (-113)) (T -759)) +NIL +(-13 (-718) (-120) (-667)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-120) . T) ((-559 (-488)) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 $) . T) ((-667) . T) ((-718) . T) ((-720) . T) ((-722) . T) ((-725) . T) ((-760) . T) ((-763) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) 7 T ELT)) (-2537 (($ $ $) 23 T ELT)) (-2863 (($ $ $) 22 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2572 (((-85) $ $) 21 T ELT)) (-2573 (((-85) $ $) 19 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 20 T ELT)) (-2691 (((-85) $ $) 18 T ELT))) +(((-760) (-113)) (T -760)) +NIL +(-13 (-1017) (-763)) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-763) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-3953 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-776) $) 15 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 12 T ELT))) +(((-761 |#1| |#2|) (-13 (-763) (-433 |#1|) (-10 -7 (IF (|has| |#1| (-556 (-776))) (-6 (-556 (-776))) |%noBranch|))) (-1133) (-1 (-85) |#1| |#1|)) (T -761)) +NIL +((-2537 (($ $ $) 16 T ELT)) (-2863 (($ $ $) 15 T ELT)) (-1269 (((-85) $ $) 17 T ELT)) (-2572 (((-85) $ $) 12 T ELT)) (-2573 (((-85) $ $) 9 T ELT)) (-3062 (((-85) $ $) 14 T ELT)) (-2690 (((-85) $ $) 11 T ELT))) +(((-762 |#1|) (-10 -7 (-15 -2537 (|#1| |#1| |#1|)) (-15 -2863 (|#1| |#1| |#1|)) (-15 -2572 ((-85) |#1| |#1|)) (-15 -2690 ((-85) |#1| |#1|)) (-15 -2573 ((-85) |#1| |#1|)) (-15 -1269 ((-85) |#1| |#1|)) (-15 -3062 ((-85) |#1| |#1|))) (-763)) (T -762)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-2537 (($ $ $) 10 T ELT)) (-2863 (($ $ $) 11 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2572 (((-85) $ $) 12 T ELT)) (-2573 (((-85) $ $) 14 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 13 T ELT)) (-2691 (((-85) $ $) 15 T ELT))) +(((-763) (-113)) (T -763)) +((-2691 (*1 *2 *1 *1) (-12 (-4 *1 (-763)) (-5 *2 (-85)))) (-2573 (*1 *2 *1 *1) (-12 (-4 *1 (-763)) (-5 *2 (-85)))) (-2690 (*1 *2 *1 *1) (-12 (-4 *1 (-763)) (-5 *2 (-85)))) (-2572 (*1 *2 *1 *1) (-12 (-4 *1 (-763)) (-5 *2 (-85)))) (-2863 (*1 *1 *1 *1) (-4 *1 (-763))) (-2537 (*1 *1 *1 *1) (-4 *1 (-763)))) +(-13 (-72) (-10 -8 (-15 -2691 ((-85) $ $)) (-15 -2573 ((-85) $ $)) (-15 -2690 ((-85) $ $)) (-15 -2572 ((-85) $ $)) (-15 -2863 ($ $ $)) (-15 -2537 ($ $ $)))) +(((-72) . T) ((-13) . T) ((-1133) . T)) +((-2542 (($ $ $) 49 T ELT)) (-2543 (($ $ $) 48 T ELT)) (-2544 (($ $ $) 46 T ELT)) (-2540 (($ $ $) 55 T ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 50 T ELT)) (-2541 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3163 (((-3 (-488) #1#) $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3509 (($ $) 39 T ELT)) (-2548 (($ $ $) 43 T ELT)) (-2549 (($ $ $) 42 T ELT)) (-2538 (($ $ $) 51 T ELT)) (-2546 (($ $ $) 57 T ELT)) (-2545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 45 T ELT)) (-2547 (((-3 $ #1#) $ $) 52 T ELT)) (-3472 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2823 ((|#2| $) 36 T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3823 (((-587 |#2|) $) 21 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) +(((-764 |#1| |#2|) (-10 -7 (-15 -2538 (|#1| |#1| |#1|)) (-15 -2539 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2414 |#1|)) |#1| |#1|)) (-15 -2540 (|#1| |#1| |#1|)) (-15 -2541 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -2545 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2414 |#1|)) |#1| |#1|)) (-15 -2546 (|#1| |#1| |#1|)) (-15 -2547 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2548 (|#1| |#1| |#1|)) (-15 -2549 (|#1| |#1| |#1|)) (-15 -3509 (|#1| |#1|)) (-15 -2823 (|#2| |#1|)) (-15 -3472 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3823 ((-587 |#2|) |#1|)) (-15 -3953 (|#1| |#2|)) (-15 -3163 ((-3 |#2| #1#) |#1|)) (-15 -3163 ((-3 (-352 (-488)) #1#) |#1|)) (-15 -3953 (|#1| (-352 (-488)))) (-15 -3163 ((-3 (-488) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3953 (|#1| (-488))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-488) |#1|)) (-15 * (|#1| (-698) |#1|)) (-15 * (|#1| (-834) |#1|)) (-15 -3953 ((-776) |#1|))) (-765 |#2|) (-965)) (T -764)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-2542 (($ $ $) 58 (|has| |#1| (-314)) ELT)) (-2543 (($ $ $) 59 (|has| |#1| (-314)) ELT)) (-2544 (($ $ $) 61 (|has| |#1| (-314)) ELT)) (-2540 (($ $ $) 56 (|has| |#1| (-314)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 55 (|has| |#1| (-314)) ELT)) (-2541 (((-3 $ "failed") $ $) 57 (|has| |#1| (-314)) ELT)) (-2555 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 60 (|has| |#1| (-314)) ELT)) (-3163 (((-3 (-488) #1="failed") $) 88 (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) 85 (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #1#) $) 82 T ELT)) (-3162 (((-488) $) 87 (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) 84 (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) 83 T ELT)) (-3965 (($ $) 77 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3509 (($ $) 68 (|has| |#1| (-395)) ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-2899 (($ |#1| (-698)) 75 T ELT)) (-2553 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 70 (|has| |#1| (-499)) ELT)) (-2552 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 71 (|has| |#1| (-499)) ELT)) (-2826 (((-698) $) 79 T ELT)) (-2548 (($ $ $) 65 (|has| |#1| (-314)) ELT)) (-2549 (($ $ $) 66 (|has| |#1| (-314)) ELT)) (-2538 (($ $ $) 54 (|has| |#1| (-314)) ELT)) (-2546 (($ $ $) 63 (|has| |#1| (-314)) ELT)) (-2545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 62 (|has| |#1| (-314)) ELT)) (-2547 (((-3 $ "failed") $ $) 64 (|has| |#1| (-314)) ELT)) (-2554 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 67 (|has| |#1| (-314)) ELT)) (-3180 ((|#1| $) 78 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3472 (((-3 $ "failed") $ |#1|) 72 (|has| |#1| (-499)) ELT)) (-3955 (((-698) $) 80 T ELT)) (-2823 ((|#1| $) 69 (|has| |#1| (-395)) ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ (-352 (-488))) 86 (|has| |#1| (-954 (-352 (-488)))) ELT) (($ |#1|) 81 T ELT)) (-3823 (((-587 |#1|) $) 74 T ELT)) (-3683 ((|#1| $ (-698)) 76 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2551 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT))) +(((-765 |#1|) (-113) (-965)) (T -765)) +((-3955 (*1 *2 *1) (-12 (-4 *1 (-765 *3)) (-4 *3 (-965)) (-5 *2 (-698)))) (-2826 (*1 *2 *1) (-12 (-4 *1 (-765 *3)) (-4 *3 (-965)) (-5 *2 (-698)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)))) (-3965 (*1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)))) (-3683 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-4 *1 (-765 *2)) (-4 *2 (-965)))) (-2899 (*1 *1 *2 *3) (-12 (-5 *3 (-698)) (-4 *1 (-765 *2)) (-4 *2 (-965)))) (-3823 (*1 *2 *1) (-12 (-4 *1 (-765 *3)) (-4 *3 (-965)) (-5 *2 (-587 *3)))) (-2551 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)))) (-3472 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-499)))) (-2552 (*1 *2 *1 *1) (-12 (-4 *3 (-499)) (-4 *3 (-965)) (-5 *2 (-2 (|:| -1977 *1) (|:| -2908 *1))) (-4 *1 (-765 *3)))) (-2553 (*1 *2 *1 *1) (-12 (-4 *3 (-499)) (-4 *3 (-965)) (-5 *2 (-2 (|:| -1977 *1) (|:| -2908 *1))) (-4 *1 (-765 *3)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-395)))) (-3509 (*1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-395)))) (-2554 (*1 *2 *1 *1) (-12 (-4 *3 (-314)) (-4 *3 (-965)) (-5 *2 (-2 (|:| -1977 *1) (|:| -2908 *1))) (-4 *1 (-765 *3)))) (-2549 (*1 *1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314)))) (-2548 (*1 *1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314)))) (-2547 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314)))) (-2546 (*1 *1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314)))) (-2545 (*1 *2 *1 *1) (-12 (-4 *3 (-314)) (-4 *3 (-965)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2414 *1))) (-4 *1 (-765 *3)))) (-2544 (*1 *1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314)))) (-2555 (*1 *2 *1 *1) (-12 (-4 *3 (-314)) (-4 *3 (-965)) (-5 *2 (-2 (|:| -1977 *1) (|:| -2908 *1))) (-4 *1 (-765 *3)))) (-2543 (*1 *1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314)))) (-2542 (*1 *1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314)))) (-2541 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314)))) (-2540 (*1 *1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314)))) (-2539 (*1 *2 *1 *1) (-12 (-4 *3 (-314)) (-4 *3 (-965)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2414 *1))) (-4 *1 (-765 *3)))) (-2538 (*1 *1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314))))) +(-13 (-965) (-82 |t#1| |t#1|) (-357 |t#1|) (-10 -8 (-15 -3955 ((-698) $)) (-15 -2826 ((-698) $)) (-15 -3180 (|t#1| $)) (-15 -3965 ($ $)) (-15 -3683 (|t#1| $ (-698))) (-15 -2899 ($ |t#1| (-698))) (-15 -3823 ((-587 |t#1|) $)) (-15 -2551 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-148)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-499)) (PROGN (-15 -3472 ((-3 $ "failed") $ |t#1|)) (-15 -2552 ((-2 (|:| -1977 $) (|:| -2908 $)) $ $)) (-15 -2553 ((-2 (|:| -1977 $) (|:| -2908 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-395)) (PROGN (-15 -2823 (|t#1| $)) (-15 -3509 ($ $))) |%noBranch|) (IF (|has| |t#1| (-314)) (PROGN (-15 -2554 ((-2 (|:| -1977 $) (|:| -2908 $)) $ $)) (-15 -2549 ($ $ $)) (-15 -2548 ($ $ $)) (-15 -2547 ((-3 $ "failed") $ $)) (-15 -2546 ($ $ $)) (-15 -2545 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $)) (-15 -2544 ($ $ $)) (-15 -2555 ((-2 (|:| -1977 $) (|:| -2908 $)) $ $)) (-15 -2543 ($ $ $)) (-15 -2542 ($ $ $)) (-15 -2541 ((-3 $ "failed") $ $)) (-15 -2540 ($ $ $)) (-15 -2539 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $)) (-15 -2538 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-148)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-559 (-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((-559 (-488)) . T) ((-559 |#1|) . T) ((-556 (-776)) . T) ((-357 |#1|) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-586 |#1|) |has| |#1| (-148)) ((-658 |#1|) |has| |#1| (-148)) ((-667) . T) ((-954 (-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((-954 (-488)) |has| |#1| (-954 (-488))) ((-954 |#1|) . T) ((-967 |#1|) . T) ((-972 |#1|) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-2550 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2555 (((-2 (|:| -1977 |#2|) (|:| -2908 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-314)) ELT)) (-2553 (((-2 (|:| -1977 |#2|) (|:| -2908 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-499)) ELT)) (-2552 (((-2 (|:| -1977 |#2|) (|:| -2908 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-499)) ELT)) (-2554 (((-2 (|:| -1977 |#2|) (|:| -2908 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-314)) ELT)) (-2551 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT))) +(((-766 |#1| |#2|) (-10 -7 (-15 -2550 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2551 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-499)) (PROGN (-15 -2552 ((-2 (|:| -1977 |#2|) (|:| -2908 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2553 ((-2 (|:| -1977 |#2|) (|:| -2908 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-314)) (PROGN (-15 -2554 ((-2 (|:| -1977 |#2|) (|:| -2908 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2555 ((-2 (|:| -1977 |#2|) (|:| -2908 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-965) (-765 |#1|)) (T -766)) +((-2555 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-314)) (-4 *5 (-965)) (-5 *2 (-2 (|:| -1977 *3) (|:| -2908 *3))) (-5 *1 (-766 *5 *3)) (-4 *3 (-765 *5)))) (-2554 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-314)) (-4 *5 (-965)) (-5 *2 (-2 (|:| -1977 *3) (|:| -2908 *3))) (-5 *1 (-766 *5 *3)) (-4 *3 (-765 *5)))) (-2553 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-499)) (-4 *5 (-965)) (-5 *2 (-2 (|:| -1977 *3) (|:| -2908 *3))) (-5 *1 (-766 *5 *3)) (-4 *3 (-765 *5)))) (-2552 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-499)) (-4 *5 (-965)) (-5 *2 (-2 (|:| -1977 *3) (|:| -2908 *3))) (-5 *1 (-766 *5 *3)) (-4 *3 (-765 *5)))) (-2551 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-965)) (-5 *1 (-766 *2 *3)) (-4 *3 (-765 *2)))) (-2550 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-965)) (-5 *1 (-766 *5 *2)) (-4 *2 (-765 *5))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2542 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#1| (-314)) ELT)) (-2555 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 34 (|has| |#1| (-314)) ELT)) (-3163 (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3162 (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) NIL T ELT)) (-3965 (($ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3509 (($ $) NIL (|has| |#1| (-395)) ELT)) (-3539 (((-776) $ (-776)) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-698)) NIL T ELT)) (-2553 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 30 (|has| |#1| (-499)) ELT)) (-2552 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 28 (|has| |#1| (-499)) ELT)) (-2826 (((-698) $) NIL T ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2546 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-2547 (((-3 $ #1#) $ $) NIL (|has| |#1| (-314)) ELT)) (-2554 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 32 (|has| |#1| (-314)) ELT)) (-3180 ((|#1| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3472 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-499)) ELT)) (-3955 (((-698) $) NIL T ELT)) (-2823 ((|#1| $) NIL (|has| |#1| (-395)) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ (-352 (-488))) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (($ |#1|) NIL T ELT)) (-3823 (((-587 |#1|) $) NIL T ELT)) (-3683 ((|#1| $ (-698)) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2551 ((|#1| $ |#1| |#1|) 15 T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) 23 T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) 19 T ELT) (($ $ (-698)) 24 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-767 |#1| |#2| |#3|) (-13 (-765 |#1|) (-10 -8 (-15 -3539 ((-776) $ (-776))))) (-965) (-69 |#1|) (-1 |#1| |#1|)) (T -767)) +((-3539 (*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-767 *3 *4 *5)) (-4 *3 (-965)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2542 (($ $ $) NIL (|has| |#2| (-314)) ELT)) (-2543 (($ $ $) NIL (|has| |#2| (-314)) ELT)) (-2544 (($ $ $) NIL (|has| |#2| (-314)) ELT)) (-2540 (($ $ $) NIL (|has| |#2| (-314)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#2| (-314)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#2| (-314)) ELT)) (-2555 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#2| (-314)) ELT)) (-3163 (((-3 (-488) #1#) $) NIL (|has| |#2| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#2| (-954 (-352 (-488)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3162 (((-488) $) NIL (|has| |#2| (-954 (-488))) ELT) (((-352 (-488)) $) NIL (|has| |#2| (-954 (-352 (-488)))) ELT) ((|#2| $) NIL T ELT)) (-3965 (($ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3509 (($ $) NIL (|has| |#2| (-395)) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2899 (($ |#2| (-698)) 17 T ELT)) (-2553 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#2| (-499)) ELT)) (-2552 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#2| (-499)) ELT)) (-2826 (((-698) $) NIL T ELT)) (-2548 (($ $ $) NIL (|has| |#2| (-314)) ELT)) (-2549 (($ $ $) NIL (|has| |#2| (-314)) ELT)) (-2538 (($ $ $) NIL (|has| |#2| (-314)) ELT)) (-2546 (($ $ $) NIL (|has| |#2| (-314)) ELT)) (-2545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#2| (-314)) ELT)) (-2547 (((-3 $ #1#) $ $) NIL (|has| |#2| (-314)) ELT)) (-2554 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#2| (-314)) ELT)) (-3180 ((|#2| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3472 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-499)) ELT)) (-3955 (((-698) $) NIL T ELT)) (-2823 ((|#2| $) NIL (|has| |#2| (-395)) ELT)) (-3953 (((-776) $) 24 T ELT) (($ (-488)) NIL T ELT) (($ (-352 (-488))) NIL (|has| |#2| (-954 (-352 (-488)))) ELT) (($ |#2|) NIL T ELT) (($ (-1180 |#1|)) 19 T ELT)) (-3823 (((-587 |#2|) $) NIL T ELT)) (-3683 ((|#2| $ (-698)) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2551 ((|#2| $ |#2| |#2|) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) 13 T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-768 |#1| |#2| |#3| |#4|) (-13 (-765 |#2|) (-559 (-1180 |#1|))) (-1094) (-965) (-69 |#2|) (-1 |#2| |#2|)) (T -768)) +NIL +((-2558 ((|#1| (-698) |#1|) 45 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2557 ((|#1| (-698) (-698) |#1|) 36 T ELT) ((|#1| (-698) |#1|) 24 T ELT)) (-2556 ((|#1| (-698) |#1|) 40 T ELT)) (-2806 ((|#1| (-698) |#1|) 38 T ELT)) (-2805 ((|#1| (-698) |#1|) 37 T ELT))) +(((-769 |#1|) (-10 -7 (-15 -2805 (|#1| (-698) |#1|)) (-15 -2806 (|#1| (-698) |#1|)) (-15 -2556 (|#1| (-698) |#1|)) (-15 -2557 (|#1| (-698) |#1|)) (-15 -2557 (|#1| (-698) (-698) |#1|)) (IF (|has| |#1| (-38 (-352 (-488)))) (-15 -2558 (|#1| (-698) |#1|)) |%noBranch|)) (-148)) (T -769)) +((-2558 (*1 *2 *3 *2) (-12 (-5 *3 (-698)) (-5 *1 (-769 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-148)))) (-2557 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-698)) (-5 *1 (-769 *2)) (-4 *2 (-148)))) (-2557 (*1 *2 *3 *2) (-12 (-5 *3 (-698)) (-5 *1 (-769 *2)) (-4 *2 (-148)))) (-2556 (*1 *2 *3 *2) (-12 (-5 *3 (-698)) (-5 *1 (-769 *2)) (-4 *2 (-148)))) (-2806 (*1 *2 *3 *2) (-12 (-5 *3 (-698)) (-5 *1 (-769 *2)) (-4 *2 (-148)))) (-2805 (*1 *2 *3 *2) (-12 (-5 *3 (-698)) (-5 *1 (-769 *2)) (-4 *2 (-148))))) +((-2574 (((-85) $ $) 7 T ELT)) (-2537 (($ $ $) 23 T ELT)) (-2863 (($ $ $) 22 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2572 (((-85) $ $) 21 T ELT)) (-2573 (((-85) $ $) 19 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 20 T ELT)) (-2691 (((-85) $ $) 18 T ELT)) (** (($ $ (-834)) 26 T ELT)) (* (($ $ $) 25 T ELT))) +(((-770) (-113)) (T -770)) +NIL +(-13 (-760) (-1029)) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-760) . T) ((-763) . T) ((-1029) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3408 (((-488) $) 14 T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 20 T ELT) (($ (-488)) 13 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 10 T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 12 T ELT))) +(((-771) (-13 (-760) (-10 -8 (-15 -3953 ($ (-488))) (-15 -3408 ((-488) $))))) (T -771)) +((-3953 (*1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-771)))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-771))))) +((-2559 (((-1189) (-587 (-51))) 23 T ELT)) (-3466 (((-1189) (-1077) (-776)) 13 T ELT) (((-1189) (-776)) 8 T ELT) (((-1189) (-1077)) 10 T ELT))) +(((-772) (-10 -7 (-15 -3466 ((-1189) (-1077))) (-15 -3466 ((-1189) (-776))) (-15 -3466 ((-1189) (-1077) (-776))) (-15 -2559 ((-1189) (-587 (-51)))))) (T -772)) +((-2559 (*1 *2 *3) (-12 (-5 *3 (-587 (-51))) (-5 *2 (-1189)) (-5 *1 (-772)))) (-3466 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-776)) (-5 *2 (-1189)) (-5 *1 (-772)))) (-3466 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1189)) (-5 *1 (-772)))) (-3466 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-772))))) +((-2561 (((-636 (-1142)) $ (-1142)) 15 T ELT)) (-2562 (((-636 (-492)) $ (-492)) 12 T ELT)) (-2560 (((-698) $ (-102)) 30 T ELT))) +(((-773 |#1|) (-10 -7 (-15 -2560 ((-698) |#1| (-102))) (-15 -2561 ((-636 (-1142)) |#1| (-1142))) (-15 -2562 ((-636 (-492)) |#1| (-492)))) (-774)) (T -773)) +NIL +((-2561 (((-636 (-1142)) $ (-1142)) 8 T ELT)) (-2562 (((-636 (-492)) $ (-492)) 9 T ELT)) (-2560 (((-698) $ (-102)) 7 T ELT)) (-2563 (((-636 (-101)) $ (-101)) 10 T ELT)) (-1704 (($ $) 6 T ELT))) +(((-774) (-113)) (T -774)) +((-2563 (*1 *2 *1 *3) (-12 (-4 *1 (-774)) (-5 *2 (-636 (-101))) (-5 *3 (-101)))) (-2562 (*1 *2 *1 *3) (-12 (-4 *1 (-774)) (-5 *2 (-636 (-492))) (-5 *3 (-492)))) (-2561 (*1 *2 *1 *3) (-12 (-4 *1 (-774)) (-5 *2 (-636 (-1142))) (-5 *3 (-1142)))) (-2560 (*1 *2 *1 *3) (-12 (-4 *1 (-774)) (-5 *3 (-102)) (-5 *2 (-698))))) +(-13 (-149) (-10 -8 (-15 -2563 ((-636 (-101)) $ (-101))) (-15 -2562 ((-636 (-492)) $ (-492))) (-15 -2561 ((-636 (-1142)) $ (-1142))) (-15 -2560 ((-698) $ (-102))))) +(((-149) . T)) +((-2561 (((-636 (-1142)) $ (-1142)) NIL T ELT)) (-2562 (((-636 (-492)) $ (-492)) NIL T ELT)) (-2560 (((-698) $ (-102)) NIL T ELT)) (-2563 (((-636 (-101)) $ (-101)) 22 T ELT)) (-2565 (($ (-340)) 12 T ELT) (($ (-1077)) 14 T ELT)) (-2564 (((-85) $) 19 T ELT)) (-3953 (((-776) $) 26 T ELT)) (-1704 (($ $) 23 T ELT))) +(((-775) (-13 (-774) (-556 (-776)) (-10 -8 (-15 -2565 ($ (-340))) (-15 -2565 ($ (-1077))) (-15 -2564 ((-85) $))))) (T -775)) +((-2565 (*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-775)))) (-2565 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-775)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-775))))) +((-2574 (((-85) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2595 (($ $ $) 125 T ELT)) (-2610 (((-488) $) 31 T ELT) (((-488)) 36 T ELT)) (-2605 (($ (-488)) 53 T ELT)) (-2602 (($ $ $) 54 T ELT) (($ (-587 $)) 84 T ELT)) (-2586 (($ $ (-587 $)) 82 T ELT)) (-2607 (((-488) $) 34 T ELT)) (-2589 (($ $ $) 73 T ELT)) (-3538 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2608 (((-488) $) 33 T ELT)) (-2590 (($ $ $) 72 T ELT)) (-3541 (($ $) 114 T ELT)) (-2593 (($ $ $) 129 T ELT)) (-2576 (($ (-587 $)) 61 T ELT)) (-3546 (($ $ (-587 $)) 79 T ELT)) (-2604 (($ (-488) (-488)) 55 T ELT)) (-2617 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3143 (($ $ (-488)) 43 T ELT) (($ $) 46 T ELT)) (-2570 (($ $ $) 97 T ELT)) (-2591 (($ $ $) 132 T ELT)) (-2585 (($ $) 115 T ELT)) (-2569 (($ $ $) 98 T ELT)) (-2581 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2843 (((-1189) $) 10 T ELT)) (-2584 (($ $) 118 T ELT) (($ $ (-698)) 122 T ELT)) (-2587 (($ $ $) 75 T ELT)) (-2588 (($ $ $) 74 T ELT)) (-2601 (($ $ (-587 $)) 110 T ELT)) (-2599 (($ $ $) 113 T ELT)) (-2578 (($ (-587 $)) 59 T ELT)) (-2579 (($ $) 70 T ELT) (($ (-587 $)) 71 T ELT)) (-2582 (($ $ $) 123 T ELT)) (-2583 (($ $) 116 T ELT)) (-2594 (($ $ $) 128 T ELT)) (-3539 (($ (-488)) 21 T ELT) (($ (-1094)) 23 T ELT) (($ (-1077)) 30 T ELT) (($ (-181)) 25 T ELT)) (-2567 (($ $ $) 101 T ELT)) (-2566 (($ $) 102 T ELT)) (-2612 (((-1189) (-1077)) 15 T ELT)) (-2613 (($ (-1077)) 14 T ELT)) (-3129 (($ (-587 (-587 $))) 58 T ELT)) (-3144 (($ $ (-488)) 42 T ELT) (($ $) 45 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2597 (($ $ $) 131 T ELT)) (-3476 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2598 (((-85) $) 108 T ELT)) (-2600 (($ $ (-587 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2606 (($ (-488)) 39 T ELT)) (-2609 (((-488) $) 32 T ELT) (((-488)) 35 T ELT)) (-2603 (($ $ $) 40 T ELT) (($ (-587 $)) 83 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3472 (($ $ $) 99 T ELT)) (-3571 (($) 13 T ELT)) (-3806 (($ $ (-587 $)) 109 T ELT)) (-2611 (((-1077) (-1077)) 8 T ELT)) (-3842 (($ $) 117 T ELT) (($ $ (-698)) 121 T ELT)) (-2571 (($ $ $) 96 T ELT)) (-3764 (($ $ (-698)) 139 T ELT)) (-2577 (($ (-587 $)) 60 T ELT)) (-3953 (((-776) $) 19 T ELT)) (-3779 (($ $ (-488)) 41 T ELT) (($ $) 44 T ELT)) (-2580 (($ $) 68 T ELT) (($ (-587 $)) 69 T ELT)) (-3246 (($ $) 66 T ELT) (($ (-587 $)) 67 T ELT)) (-2596 (($ $) 124 T ELT)) (-2575 (($ (-587 $)) 65 T ELT)) (-3107 (($ $ $) 105 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2592 (($ $ $) 130 T ELT)) (-2568 (($ $ $) 100 T ELT)) (-3743 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2572 (($ $ $) 89 T ELT)) (-2573 (($ $ $) 87 T ELT)) (-3062 (((-85) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2690 (($ $ $) 88 T ELT)) (-2691 (($ $ $) 86 T ELT)) (-3956 (($ $ $) 94 T ELT)) (-3843 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3845 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) +(((-776) (-13 (-1017) (-10 -8 (-15 -2843 ((-1189) $)) (-15 -2613 ($ (-1077))) (-15 -2612 ((-1189) (-1077))) (-15 -3539 ($ (-488))) (-15 -3539 ($ (-1094))) (-15 -3539 ($ (-1077))) (-15 -3539 ($ (-181))) (-15 -3571 ($)) (-15 -2611 ((-1077) (-1077))) (-15 -2610 ((-488) $)) (-15 -2609 ((-488) $)) (-15 -2610 ((-488))) (-15 -2609 ((-488))) (-15 -2608 ((-488) $)) (-15 -2607 ((-488) $)) (-15 -2606 ($ (-488))) (-15 -2605 ($ (-488))) (-15 -2604 ($ (-488) (-488))) (-15 -3144 ($ $ (-488))) (-15 -3143 ($ $ (-488))) (-15 -3779 ($ $ (-488))) (-15 -3144 ($ $)) (-15 -3143 ($ $)) (-15 -3779 ($ $)) (-15 -2603 ($ $ $)) (-15 -2602 ($ $ $)) (-15 -2603 ($ (-587 $))) (-15 -2602 ($ (-587 $))) (-15 -2601 ($ $ (-587 $))) (-15 -2600 ($ $ (-587 $))) (-15 -2600 ($ $ $ $)) (-15 -2599 ($ $ $)) (-15 -2598 ((-85) $)) (-15 -3806 ($ $ (-587 $))) (-15 -3541 ($ $)) (-15 -2597 ($ $ $)) (-15 -2596 ($ $)) (-15 -3129 ($ (-587 (-587 $)))) (-15 -2595 ($ $ $)) (-15 -2617 ($ $)) (-15 -2617 ($ $ $)) (-15 -2594 ($ $ $)) (-15 -2593 ($ $ $)) (-15 -2592 ($ $ $)) (-15 -2591 ($ $ $)) (-15 -3764 ($ $ (-698))) (-15 -3107 ($ $ $)) (-15 -2590 ($ $ $)) (-15 -2589 ($ $ $)) (-15 -2588 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -3546 ($ $ (-587 $))) (-15 -2586 ($ $ (-587 $))) (-15 -2585 ($ $)) (-15 -3842 ($ $)) (-15 -3842 ($ $ (-698))) (-15 -2584 ($ $)) (-15 -2584 ($ $ (-698))) (-15 -2583 ($ $)) (-15 -2582 ($ $ $)) (-15 -3538 ($ $)) (-15 -3538 ($ $ $)) (-15 -3538 ($ $ $ $)) (-15 -2581 ($ $)) (-15 -2581 ($ $ $)) (-15 -2581 ($ $ $ $)) (-15 -3476 ($ $)) (-15 -3476 ($ $ $)) (-15 -3476 ($ $ $ $)) (-15 -3246 ($ $)) (-15 -3246 ($ (-587 $))) (-15 -2580 ($ $)) (-15 -2580 ($ (-587 $))) (-15 -2579 ($ $)) (-15 -2579 ($ (-587 $))) (-15 -2578 ($ (-587 $))) (-15 -2577 ($ (-587 $))) (-15 -2576 ($ (-587 $))) (-15 -2575 ($ (-587 $))) (-15 -3062 ($ $ $)) (-15 -2574 ($ $ $)) (-15 -2691 ($ $ $)) (-15 -2573 ($ $ $)) (-15 -2690 ($ $ $)) (-15 -2572 ($ $ $)) (-15 -3845 ($ $ $)) (-15 -3843 ($ $ $)) (-15 -3843 ($ $)) (-15 * ($ $ $)) (-15 -3956 ($ $ $)) (-15 ** ($ $ $)) (-15 -2571 ($ $ $)) (-15 -2570 ($ $ $)) (-15 -2569 ($ $ $)) (-15 -3472 ($ $ $)) (-15 -2568 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -2566 ($ $)) (-15 -3743 ($ $ $)) (-15 -3743 ($ $))))) (T -776)) +((-2843 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-776)))) (-2613 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-776)))) (-2612 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-776)))) (-3539 (*1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-776)))) (-3539 (*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-776)))) (-3539 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-776)))) (-3539 (*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-776)))) (-3571 (*1 *1) (-5 *1 (-776))) (-2611 (*1 *2 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-776)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-776)))) (-2609 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-776)))) (-2610 (*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-776)))) (-2609 (*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-776)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-776)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-776)))) (-2606 (*1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-776)))) (-2605 (*1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-776)))) (-2604 (*1 *1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-776)))) (-3144 (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-776)))) (-3143 (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-776)))) (-3779 (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-776)))) (-3144 (*1 *1 *1) (-5 *1 (-776))) (-3143 (*1 *1 *1) (-5 *1 (-776))) (-3779 (*1 *1 *1) (-5 *1 (-776))) (-2603 (*1 *1 *1 *1) (-5 *1 (-776))) (-2602 (*1 *1 *1 *1) (-5 *1 (-776))) (-2603 (*1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) (-2602 (*1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) (-2601 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) (-2600 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) (-2600 (*1 *1 *1 *1 *1) (-5 *1 (-776))) (-2599 (*1 *1 *1 *1) (-5 *1 (-776))) (-2598 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-776)))) (-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) (-3541 (*1 *1 *1) (-5 *1 (-776))) (-2597 (*1 *1 *1 *1) (-5 *1 (-776))) (-2596 (*1 *1 *1) (-5 *1 (-776))) (-3129 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-776)))) (-5 *1 (-776)))) (-2595 (*1 *1 *1 *1) (-5 *1 (-776))) (-2617 (*1 *1 *1) (-5 *1 (-776))) (-2617 (*1 *1 *1 *1) (-5 *1 (-776))) (-2594 (*1 *1 *1 *1) (-5 *1 (-776))) (-2593 (*1 *1 *1 *1) (-5 *1 (-776))) (-2592 (*1 *1 *1 *1) (-5 *1 (-776))) (-2591 (*1 *1 *1 *1) (-5 *1 (-776))) (-3764 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-776)))) (-3107 (*1 *1 *1 *1) (-5 *1 (-776))) (-2590 (*1 *1 *1 *1) (-5 *1 (-776))) (-2589 (*1 *1 *1 *1) (-5 *1 (-776))) (-2588 (*1 *1 *1 *1) (-5 *1 (-776))) (-2587 (*1 *1 *1 *1) (-5 *1 (-776))) (-3546 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) (-2586 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) (-2585 (*1 *1 *1) (-5 *1 (-776))) (-3842 (*1 *1 *1) (-5 *1 (-776))) (-3842 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-776)))) (-2584 (*1 *1 *1) (-5 *1 (-776))) (-2584 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-776)))) (-2583 (*1 *1 *1) (-5 *1 (-776))) (-2582 (*1 *1 *1 *1) (-5 *1 (-776))) (-3538 (*1 *1 *1) (-5 *1 (-776))) (-3538 (*1 *1 *1 *1) (-5 *1 (-776))) (-3538 (*1 *1 *1 *1 *1) (-5 *1 (-776))) (-2581 (*1 *1 *1) (-5 *1 (-776))) (-2581 (*1 *1 *1 *1) (-5 *1 (-776))) (-2581 (*1 *1 *1 *1 *1) (-5 *1 (-776))) (-3476 (*1 *1 *1) (-5 *1 (-776))) (-3476 (*1 *1 *1 *1) (-5 *1 (-776))) (-3476 (*1 *1 *1 *1 *1) (-5 *1 (-776))) (-3246 (*1 *1 *1) (-5 *1 (-776))) (-3246 (*1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) (-2580 (*1 *1 *1) (-5 *1 (-776))) (-2580 (*1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) (-2579 (*1 *1 *1) (-5 *1 (-776))) (-2579 (*1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) (-2578 (*1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) (-2577 (*1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) (-2576 (*1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) (-3062 (*1 *1 *1 *1) (-5 *1 (-776))) (-2574 (*1 *1 *1 *1) (-5 *1 (-776))) (-2691 (*1 *1 *1 *1) (-5 *1 (-776))) (-2573 (*1 *1 *1 *1) (-5 *1 (-776))) (-2690 (*1 *1 *1 *1) (-5 *1 (-776))) (-2572 (*1 *1 *1 *1) (-5 *1 (-776))) (-3845 (*1 *1 *1 *1) (-5 *1 (-776))) (-3843 (*1 *1 *1 *1) (-5 *1 (-776))) (-3843 (*1 *1 *1) (-5 *1 (-776))) (* (*1 *1 *1 *1) (-5 *1 (-776))) (-3956 (*1 *1 *1 *1) (-5 *1 (-776))) (** (*1 *1 *1 *1) (-5 *1 (-776))) (-2571 (*1 *1 *1 *1) (-5 *1 (-776))) (-2570 (*1 *1 *1 *1) (-5 *1 (-776))) (-2569 (*1 *1 *1 *1) (-5 *1 (-776))) (-3472 (*1 *1 *1 *1) (-5 *1 (-776))) (-2568 (*1 *1 *1 *1) (-5 *1 (-776))) (-2567 (*1 *1 *1 *1) (-5 *1 (-776))) (-2566 (*1 *1 *1) (-5 *1 (-776))) (-3743 (*1 *1 *1 *1) (-5 *1 (-776))) (-3743 (*1 *1 *1) (-5 *1 (-776)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3837 (((-3 $ "failed") (-1094)) 36 T ELT)) (-3142 (((-698)) 32 T ELT)) (-3000 (($) NIL T ELT)) (-2537 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2863 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2015 (((-834) $) 29 T ELT)) (-3248 (((-1077) $) 43 T ELT)) (-2405 (($ (-834)) 28 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3978 (((-1094) $) 13 T ELT) (((-477) $) 19 T ELT) (((-804 (-332)) $) 26 T ELT) (((-804 (-488)) $) 22 T ELT)) (-3953 (((-776) $) 16 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 40 T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 38 T ELT))) +(((-777 |#1|) (-13 (-756) (-557 (-1094)) (-557 (-477)) (-557 (-804 (-332))) (-557 (-804 (-488))) (-10 -8 (-15 -3837 ((-3 $ "failed") (-1094))))) (-587 (-1094))) (T -777)) +((-3837 (*1 *1 *2) (|partial| -12 (-5 *2 (-1094)) (-5 *1 (-777 *3)) (-14 *3 (-587 *2))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3548 (((-450) $) 12 T ELT)) (-2614 (((-587 (-384)) $) 14 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 22 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 17 T ELT))) +(((-778) (-13 (-1017) (-10 -8 (-15 -3548 ((-450) $)) (-15 -2614 ((-587 (-384)) $))))) (T -778)) +((-3548 (*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-778)))) (-2614 (*1 *2 *1) (-12 (-5 *2 (-587 (-384))) (-5 *1 (-778))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ (-861 |#1|)) NIL T ELT) (((-861 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-148)) ELT)) (-3132 (((-698)) NIL T CONST)) (-3930 (((-1189) (-698)) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (((-3 $ #1#) $ $) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-148)) ELT) (($ $ |#1|) NIL (|has| |#1| (-148)) ELT))) +(((-779 |#1| |#2| |#3| |#4|) (-13 (-965) (-433 (-861 |#1|)) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-314)) (-15 -3956 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3930 ((-1189) (-698))))) (-965) (-587 (-1094)) (-587 (-698)) (-698)) (T -779)) +((-3956 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-779 *2 *3 *4 *5)) (-4 *2 (-314)) (-4 *2 (-965)) (-14 *3 (-587 (-1094))) (-14 *4 (-587 (-698))) (-14 *5 (-698)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1189)) (-5 *1 (-779 *4 *5 *6 *7)) (-4 *4 (-965)) (-14 *5 (-587 (-1094))) (-14 *6 (-587 *3)) (-14 *7 *3)))) +((-2615 (((-3 (-150 |#3|) #1="failed") (-698) (-698) |#2| |#2|) 38 T ELT)) (-2616 (((-3 (-352 |#3|) #1#) (-698) (-698) |#2| |#2|) 29 T ELT))) +(((-780 |#1| |#2| |#3|) (-10 -7 (-15 -2616 ((-3 (-352 |#3|) #1="failed") (-698) (-698) |#2| |#2|)) (-15 -2615 ((-3 (-150 |#3|) #1#) (-698) (-698) |#2| |#2|))) (-314) (-1176 |#1|) (-1159 |#1|)) (T -780)) +((-2615 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-698)) (-4 *5 (-314)) (-5 *2 (-150 *6)) (-5 *1 (-780 *5 *4 *6)) (-4 *4 (-1176 *5)) (-4 *6 (-1159 *5)))) (-2616 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-698)) (-4 *5 (-314)) (-5 *2 (-352 *6)) (-5 *1 (-780 *5 *4 *6)) (-4 *4 (-1176 *5)) (-4 *6 (-1159 *5))))) +((-2616 (((-3 (-352 (-1152 |#2| |#1|)) #1="failed") (-698) (-698) (-1173 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-352 (-1152 |#2| |#1|)) #1#) (-698) (-698) (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) 28 T ELT))) +(((-781 |#1| |#2| |#3|) (-10 -7 (-15 -2616 ((-3 (-352 (-1152 |#2| |#1|)) #1="failed") (-698) (-698) (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) (-15 -2616 ((-3 (-352 (-1152 |#2| |#1|)) #1#) (-698) (-698) (-1173 |#1| |#2| |#3|)))) (-314) (-1094) |#1|) (T -781)) +((-2616 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-698)) (-5 *4 (-1173 *5 *6 *7)) (-4 *5 (-314)) (-14 *6 (-1094)) (-14 *7 *5) (-5 *2 (-352 (-1152 *6 *5))) (-5 *1 (-781 *5 *6 *7)))) (-2616 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-698)) (-5 *4 (-1173 *5 *6 *7)) (-4 *5 (-314)) (-14 *6 (-1094)) (-14 *7 *5) (-5 *2 (-352 (-1152 *6 *5))) (-5 *1 (-781 *5 *6 *7))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3043 (($ $ (-488)) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2617 (($ (-1089 (-488)) (-488)) NIL T ELT)) (-2570 (($ $ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-2618 (($ $) NIL T ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3778 (((-698) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2620 (((-488)) NIL T ELT)) (-2619 (((-488) $) NIL T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3775 (($ $ (-488)) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-2621 (((-1073 (-488)) $) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3776 (((-488) $ (-488)) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-782 |#1|) (-783 |#1|) (-488)) (T -782)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3043 (($ $ (-488)) 78 T ELT)) (-1612 (((-85) $ $) 75 T ELT)) (-3730 (($) 23 T CONST)) (-2617 (($ (-1089 (-488)) (-488)) 77 T ELT)) (-2570 (($ $ $) 71 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-2618 (($ $) 80 T ELT)) (-2569 (($ $ $) 72 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 66 T ELT)) (-3778 (((-698) $) 85 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-1609 (((-3 (-587 $) #1="failed") (-587 $) $) 68 T ELT)) (-2620 (((-488)) 82 T ELT)) (-2619 (((-488) $) 81 T ELT)) (-1899 (($ $ $) 60 T ELT) (($ (-587 $)) 59 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 58 T ELT)) (-3150 (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3775 (($ $ (-488)) 84 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 65 T ELT)) (-1611 (((-698) $) 74 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 73 T ELT)) (-2621 (((-1073 (-488)) $) 86 T ELT)) (-2897 (($ $) 83 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-3776 (((-488) $ (-488)) 79 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-783 |#1|) (-113) (-488)) (T -783)) +((-2621 (*1 *2 *1) (-12 (-4 *1 (-783 *3)) (-5 *2 (-1073 (-488))))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-783 *3)) (-5 *2 (-698)))) (-3775 (*1 *1 *1 *2) (-12 (-4 *1 (-783 *3)) (-5 *2 (-488)))) (-2897 (*1 *1 *1) (-4 *1 (-783 *2))) (-2620 (*1 *2) (-12 (-4 *1 (-783 *3)) (-5 *2 (-488)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-783 *3)) (-5 *2 (-488)))) (-2618 (*1 *1 *1) (-4 *1 (-783 *2))) (-3776 (*1 *2 *1 *2) (-12 (-4 *1 (-783 *3)) (-5 *2 (-488)))) (-3043 (*1 *1 *1 *2) (-12 (-4 *1 (-783 *3)) (-5 *2 (-488)))) (-2617 (*1 *1 *2 *3) (-12 (-5 *2 (-1089 (-488))) (-5 *3 (-488)) (-4 *1 (-783 *4))))) +(-13 (-260) (-120) (-10 -8 (-15 -2621 ((-1073 (-488)) $)) (-15 -3778 ((-698) $)) (-15 -3775 ($ $ (-488))) (-15 -2897 ($ $)) (-15 -2620 ((-488))) (-15 -2619 ((-488) $)) (-15 -2618 ($ $)) (-15 -3776 ((-488) $ (-488))) (-15 -3043 ($ $ (-488))) (-15 -2617 ($ (-1089 (-488)) (-488))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-559 (-488)) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-248) . T) ((-260) . T) ((-395) . T) ((-499) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 $) . T) ((-586 $) . T) ((-658 $) . T) ((-667) . T) ((-836) . T) ((-967 $) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3135 (((-782 |#1|) $) NIL (|has| (-782 |#1|) (-260)) ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-782 |#1|) (-825)) ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| (-782 |#1|) (-825)) ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3629 (((-488) $) NIL (|has| (-782 |#1|) (-744)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-782 |#1|) #1#) $) NIL T ELT) (((-3 (-1094) #1#) $) NIL (|has| (-782 |#1|) (-954 (-1094))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| (-782 |#1|) (-954 (-488))) ELT) (((-3 (-488) #1#) $) NIL (|has| (-782 |#1|) (-954 (-488))) ELT)) (-3162 (((-782 |#1|) $) NIL T ELT) (((-1094) $) NIL (|has| (-782 |#1|) (-954 (-1094))) ELT) (((-352 (-488)) $) NIL (|has| (-782 |#1|) (-954 (-488))) ELT) (((-488) $) NIL (|has| (-782 |#1|) (-954 (-488))) ELT)) (-3736 (($ $) NIL T ELT) (($ (-488) $) NIL T ELT)) (-2570 (($ $ $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| (-782 |#1|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| (-782 |#1|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-782 |#1|))) (|:| |vec| (-1183 (-782 |#1|)))) (-634 $) (-1183 $)) NIL T ELT) (((-634 (-782 |#1|)) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3000 (($) NIL (|has| (-782 |#1|) (-487)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-3192 (((-85) $) NIL (|has| (-782 |#1|) (-744)) ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (|has| (-782 |#1|) (-800 (-488))) ELT) (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (|has| (-782 |#1|) (-800 (-332))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3002 (($ $) NIL T ELT)) (-3004 (((-782 |#1|) $) NIL T ELT)) (-3451 (((-636 $) $) NIL (|has| (-782 |#1|) (-1070)) ELT)) (-3193 (((-85) $) NIL (|has| (-782 |#1|) (-744)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2537 (($ $ $) NIL (|has| (-782 |#1|) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| (-782 |#1|) (-760)) ELT)) (-3849 (($ (-1 (-782 |#1|) (-782 |#1|)) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| (-782 |#1|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| (-782 |#1|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-782 |#1|))) (|:| |vec| (-1183 (-782 |#1|)))) (-1183 $) $) NIL T ELT) (((-634 (-782 |#1|)) (-1183 $)) NIL T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3452 (($) NIL (|has| (-782 |#1|) (-1070)) CONST)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3134 (($ $) NIL (|has| (-782 |#1|) (-260)) ELT)) (-3136 (((-782 |#1|) $) NIL (|has| (-782 |#1|) (-487)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-782 |#1|) (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-782 |#1|) (-825)) ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-3774 (($ $ (-587 (-782 |#1|)) (-587 (-782 |#1|))) NIL (|has| (-782 |#1|) (-262 (-782 |#1|))) ELT) (($ $ (-782 |#1|) (-782 |#1|)) NIL (|has| (-782 |#1|) (-262 (-782 |#1|))) ELT) (($ $ (-251 (-782 |#1|))) NIL (|has| (-782 |#1|) (-262 (-782 |#1|))) ELT) (($ $ (-587 (-251 (-782 |#1|)))) NIL (|has| (-782 |#1|) (-262 (-782 |#1|))) ELT) (($ $ (-587 (-1094)) (-587 (-782 |#1|))) NIL (|has| (-782 |#1|) (-459 (-1094) (-782 |#1|))) ELT) (($ $ (-1094) (-782 |#1|)) NIL (|has| (-782 |#1|) (-459 (-1094) (-782 |#1|))) ELT)) (-1611 (((-698) $) NIL T ELT)) (-3806 (($ $ (-782 |#1|)) NIL (|has| (-782 |#1|) (-243 (-782 |#1|) (-782 |#1|))) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-3764 (($ $ (-1 (-782 |#1|) (-782 |#1|))) NIL T ELT) (($ $ (-1 (-782 |#1|) (-782 |#1|)) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| (-782 |#1|) (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| (-782 |#1|) (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| (-782 |#1|) (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| (-782 |#1|) (-815 (-1094))) ELT) (($ $) NIL (|has| (-782 |#1|) (-191)) ELT) (($ $ (-698)) NIL (|has| (-782 |#1|) (-191)) ELT)) (-3001 (($ $) NIL T ELT)) (-3003 (((-782 |#1|) $) NIL T ELT)) (-3978 (((-804 (-488)) $) NIL (|has| (-782 |#1|) (-557 (-804 (-488)))) ELT) (((-804 (-332)) $) NIL (|has| (-782 |#1|) (-557 (-804 (-332)))) ELT) (((-477) $) NIL (|has| (-782 |#1|) (-557 (-477))) ELT) (((-332) $) NIL (|has| (-782 |#1|) (-937)) ELT) (((-181) $) NIL (|has| (-782 |#1|) (-937)) ELT)) (-2622 (((-150 (-352 (-488))) $) NIL T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| (-782 |#1|) (-825))) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ (-782 |#1|)) NIL T ELT) (($ (-1094)) NIL (|has| (-782 |#1|) (-954 (-1094))) ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-782 |#1|) (-825))) (|has| (-782 |#1|) (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-3137 (((-782 |#1|) $) NIL (|has| (-782 |#1|) (-487)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3776 (((-352 (-488)) $ (-488)) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3389 (($ $) NIL (|has| (-782 |#1|) (-744)) ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $ (-1 (-782 |#1|) (-782 |#1|))) NIL T ELT) (($ $ (-1 (-782 |#1|) (-782 |#1|)) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| (-782 |#1|) (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| (-782 |#1|) (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| (-782 |#1|) (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| (-782 |#1|) (-815 (-1094))) ELT) (($ $) NIL (|has| (-782 |#1|) (-191)) ELT) (($ $ (-698)) NIL (|has| (-782 |#1|) (-191)) ELT)) (-2572 (((-85) $ $) NIL (|has| (-782 |#1|) (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| (-782 |#1|) (-760)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL (|has| (-782 |#1|) (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| (-782 |#1|) (-760)) ELT)) (-3956 (($ $ $) NIL T ELT) (($ (-782 |#1|) (-782 |#1|)) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ (-782 |#1|) $) NIL T ELT) (($ $ (-782 |#1|)) NIL T ELT))) +(((-784 |#1|) (-13 (-908 (-782 |#1|)) (-10 -8 (-15 -3776 ((-352 (-488)) $ (-488))) (-15 -2622 ((-150 (-352 (-488))) $)) (-15 -3736 ($ $)) (-15 -3736 ($ (-488) $)))) (-488)) (T -784)) +((-3776 (*1 *2 *1 *3) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-784 *4)) (-14 *4 *3) (-5 *3 (-488)))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-150 (-352 (-488)))) (-5 *1 (-784 *3)) (-14 *3 (-488)))) (-3736 (*1 *1 *1) (-12 (-5 *1 (-784 *2)) (-14 *2 (-488)))) (-3736 (*1 *1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-784 *3)) (-14 *3 *2)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3135 ((|#2| $) NIL (|has| |#2| (-260)) ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3629 (((-488) $) NIL (|has| |#2| (-744)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1094) #1#) $) NIL (|has| |#2| (-954 (-1094))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#2| (-954 (-488))) ELT) (((-3 (-488) #1#) $) NIL (|has| |#2| (-954 (-488))) ELT)) (-3162 ((|#2| $) NIL T ELT) (((-1094) $) NIL (|has| |#2| (-954 (-1094))) ELT) (((-352 (-488)) $) NIL (|has| |#2| (-954 (-488))) ELT) (((-488) $) NIL (|has| |#2| (-954 (-488))) ELT)) (-3736 (($ $) 35 T ELT) (($ (-488) $) 38 T ELT)) (-2570 (($ $ $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#2|) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) 64 T ELT)) (-3000 (($) NIL (|has| |#2| (-487)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-3192 (((-85) $) NIL (|has| |#2| (-744)) ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (|has| |#2| (-800 (-488))) ELT) (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (|has| |#2| (-800 (-332))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3002 (($ $) NIL T ELT)) (-3004 ((|#2| $) NIL T ELT)) (-3451 (((-636 $) $) NIL (|has| |#2| (-1070)) ELT)) (-3193 (((-85) $) NIL (|has| |#2| (-744)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2537 (($ $ $) NIL (|has| |#2| (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#2| (-760)) ELT)) (-3849 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-1183 $) $) NIL T ELT) (((-634 |#2|) (-1183 $)) NIL T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) 60 T ELT)) (-3452 (($) NIL (|has| |#2| (-1070)) CONST)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3134 (($ $) NIL (|has| |#2| (-260)) ELT)) (-3136 ((|#2| $) NIL (|has| |#2| (-487)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-3774 (($ $ (-587 |#2|) (-587 |#2|)) NIL (|has| |#2| (-262 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-262 |#2|)) ELT) (($ $ (-251 |#2|)) NIL (|has| |#2| (-262 |#2|)) ELT) (($ $ (-587 (-251 |#2|))) NIL (|has| |#2| (-262 |#2|)) ELT) (($ $ (-587 (-1094)) (-587 |#2|)) NIL (|has| |#2| (-459 (-1094) |#2|)) ELT) (($ $ (-1094) |#2|) NIL (|has| |#2| (-459 (-1094) |#2|)) ELT)) (-1611 (((-698) $) NIL T ELT)) (-3806 (($ $ |#2|) NIL (|has| |#2| (-243 |#2| |#2|)) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-3764 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $) NIL (|has| |#2| (-191)) ELT) (($ $ (-698)) NIL (|has| |#2| (-191)) ELT)) (-3001 (($ $) NIL T ELT)) (-3003 ((|#2| $) NIL T ELT)) (-3978 (((-804 (-488)) $) NIL (|has| |#2| (-557 (-804 (-488)))) ELT) (((-804 (-332)) $) NIL (|has| |#2| (-557 (-804 (-332)))) ELT) (((-477) $) NIL (|has| |#2| (-557 (-477))) ELT) (((-332) $) NIL (|has| |#2| (-937)) ELT) (((-181) $) NIL (|has| |#2| (-937)) ELT)) (-2622 (((-150 (-352 (-488))) $) 78 T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-825))) ELT)) (-3953 (((-776) $) 105 T ELT) (($ (-488)) 20 T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1094)) NIL (|has| |#2| (-954 (-1094))) ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-825))) (|has| |#2| (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-3137 ((|#2| $) NIL (|has| |#2| (-487)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3776 (((-352 (-488)) $ (-488)) 71 T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3389 (($ $) NIL (|has| |#2| (-744)) ELT)) (-2666 (($) 15 T CONST)) (-2672 (($) 17 T CONST)) (-2675 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $) NIL (|has| |#2| (-191)) ELT) (($ $ (-698)) NIL (|has| |#2| (-191)) ELT)) (-2572 (((-85) $ $) NIL (|has| |#2| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#2| (-760)) ELT)) (-3062 (((-85) $ $) 46 T ELT)) (-2690 (((-85) $ $) NIL (|has| |#2| (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| |#2| (-760)) ELT)) (-3956 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3843 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3845 (($ $ $) 48 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) 61 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) +(((-785 |#1| |#2|) (-13 (-908 |#2|) (-10 -8 (-15 -3776 ((-352 (-488)) $ (-488))) (-15 -2622 ((-150 (-352 (-488))) $)) (-15 -3736 ($ $)) (-15 -3736 ($ (-488) $)))) (-488) (-783 |#1|)) (T -785)) +((-3776 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-352 (-488))) (-5 *1 (-785 *4 *5)) (-5 *3 (-488)) (-4 *5 (-783 *4)))) (-2622 (*1 *2 *1) (-12 (-14 *3 (-488)) (-5 *2 (-150 (-352 (-488)))) (-5 *1 (-785 *3 *4)) (-4 *4 (-783 *3)))) (-3736 (*1 *1 *1) (-12 (-14 *2 (-488)) (-5 *1 (-785 *2 *3)) (-4 *3 (-783 *2)))) (-3736 (*1 *1 *2 *1) (-12 (-5 *2 (-488)) (-14 *3 *2) (-5 *1 (-785 *3 *4)) (-4 *4 (-783 *3))))) +((-2574 (((-85) $ $) NIL (-12 (|has| |#1| (-1017)) (|has| |#2| (-1017))) ELT)) (-3802 ((|#2| $) 12 T ELT)) (-2623 (($ |#1| |#2|) 9 T ELT)) (-3248 (((-1077) $) NIL (-12 (|has| |#1| (-1017)) (|has| |#2| (-1017))) ELT)) (-3249 (((-1037) $) NIL (-12 (|has| |#1| (-1017)) (|has| |#2| (-1017))) ELT)) (-3807 ((|#1| $) 11 T ELT)) (-3536 (($ |#1| |#2|) 10 T ELT)) (-3953 (((-776) $) 18 (OR (-12 (|has| |#1| (-556 (-776))) (|has| |#2| (-556 (-776)))) (-12 (|has| |#1| (-1017)) (|has| |#2| (-1017)))) ELT)) (-1269 (((-85) $ $) NIL (-12 (|has| |#1| (-1017)) (|has| |#2| (-1017))) ELT)) (-3062 (((-85) $ $) 23 (-12 (|has| |#1| (-1017)) (|has| |#2| (-1017))) ELT))) +(((-786 |#1| |#2|) (-13 (-1133) (-10 -8 (IF (|has| |#1| (-556 (-776))) (IF (|has| |#2| (-556 (-776))) (-6 (-556 (-776))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1017)) (IF (|has| |#2| (-1017)) (-6 (-1017)) |%noBranch|) |%noBranch|) (-15 -2623 ($ |#1| |#2|)) (-15 -3536 ($ |#1| |#2|)) (-15 -3807 (|#1| $)) (-15 -3802 (|#2| $)))) (-1133) (-1133)) (T -786)) +((-2623 (*1 *1 *2 *3) (-12 (-5 *1 (-786 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133)))) (-3536 (*1 *1 *2 *3) (-12 (-5 *1 (-786 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133)))) (-3807 (*1 *2 *1) (-12 (-4 *2 (-1133)) (-5 *1 (-786 *2 *3)) (-4 *3 (-1133)))) (-3802 (*1 *2 *1) (-12 (-4 *2 (-1133)) (-5 *1 (-786 *3 *2)) (-4 *3 (-1133))))) +((-2574 (((-85) $ $) NIL T ELT)) (-2963 (((-488) $) 16 T ELT)) (-2625 (($ (-130)) 13 T ELT)) (-2624 (($ (-130)) 14 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2962 (((-130) $) 15 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2627 (($ (-130)) 11 T ELT)) (-2628 (($ (-130)) 10 T ELT)) (-3953 (((-776) $) 24 T ELT) (($ (-130)) 17 T ELT)) (-2626 (($ (-130)) 12 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-787) (-13 (-1017) (-559 (-130)) (-10 -8 (-15 -2628 ($ (-130))) (-15 -2627 ($ (-130))) (-15 -2626 ($ (-130))) (-15 -2625 ($ (-130))) (-15 -2624 ($ (-130))) (-15 -2962 ((-130) $)) (-15 -2963 ((-488) $))))) (T -787)) +((-2628 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-787)))) (-2627 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-787)))) (-2626 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-787)))) (-2625 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-787)))) (-2624 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-787)))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-787)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-787))))) +((-3953 (((-267 (-488)) (-352 (-861 (-48)))) 23 T ELT) (((-267 (-488)) (-861 (-48))) 18 T ELT))) +(((-788) (-10 -7 (-15 -3953 ((-267 (-488)) (-861 (-48)))) (-15 -3953 ((-267 (-488)) (-352 (-861 (-48))))))) (T -788)) +((-3953 (*1 *2 *3) (-12 (-5 *3 (-352 (-861 (-48)))) (-5 *2 (-267 (-488))) (-5 *1 (-788)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-861 (-48))) (-5 *2 (-267 (-488))) (-5 *1 (-788))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 18 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-3572 (((-85) $ (|[\|\|]| (-450))) 9 T ELT) (((-85) $ (|[\|\|]| (-1077))) 13 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3578 (((-450) $) 10 T ELT) (((-1077) $) 14 T ELT)) (-3062 (((-85) $ $) 15 T ELT))) +(((-789) (-13 (-999) (-1179) (-10 -8 (-15 -3572 ((-85) $ (|[\|\|]| (-450)))) (-15 -3578 ((-450) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-1077)))) (-15 -3578 ((-1077) $))))) (T -789)) +((-3572 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-450))) (-5 *2 (-85)) (-5 *1 (-789)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-789)))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-85)) (-5 *1 (-789)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-789))))) +((-3849 (((-791 |#2|) (-1 |#2| |#1|) (-791 |#1|)) 15 T ELT))) +(((-790 |#1| |#2|) (-10 -7 (-15 -3849 ((-791 |#2|) (-1 |#2| |#1|) (-791 |#1|)))) (-1133) (-1133)) (T -790)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-791 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-791 *6)) (-5 *1 (-790 *5 *6))))) +((-3377 (($ |#1| |#1|) 8 T ELT)) (-2631 ((|#1| $ (-698)) 15 T ELT))) +(((-791 |#1|) (-10 -8 (-15 -3377 ($ |#1| |#1|)) (-15 -2631 (|#1| $ (-698)))) (-1133)) (T -791)) +((-2631 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-5 *1 (-791 *2)) (-4 *2 (-1133)))) (-3377 (*1 *1 *2 *2) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1133))))) +((-3849 (((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)) 15 T ELT))) +(((-792 |#1| |#2|) (-10 -7 (-15 -3849 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)))) (-1133) (-1133)) (T -792)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6))))) +((-3377 (($ |#1| |#1| |#1|) 8 T ELT)) (-2631 ((|#1| $ (-698)) 15 T ELT))) +(((-793 |#1|) (-10 -8 (-15 -3377 ($ |#1| |#1| |#1|)) (-15 -2631 (|#1| $ (-698)))) (-1133)) (T -793)) +((-2631 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-5 *1 (-793 *2)) (-4 *2 (-1133)))) (-3377 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1133))))) +((-2629 (((-587 (-1099)) (-1077)) 9 T ELT))) +(((-794) (-10 -7 (-15 -2629 ((-587 (-1099)) (-1077))))) (T -794)) +((-2629 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-587 (-1099))) (-5 *1 (-794))))) +((-3849 (((-796 |#2|) (-1 |#2| |#1|) (-796 |#1|)) 15 T ELT))) +(((-795 |#1| |#2|) (-10 -7 (-15 -3849 ((-796 |#2|) (-1 |#2| |#1|) (-796 |#1|)))) (-1133) (-1133)) (T -795)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-796 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-796 *6)) (-5 *1 (-795 *5 *6))))) +((-2630 (($ |#1| |#1| |#1|) 8 T ELT)) (-2631 ((|#1| $ (-698)) 15 T ELT))) +(((-796 |#1|) (-10 -8 (-15 -2630 ($ |#1| |#1| |#1|)) (-15 -2631 (|#1| $ (-698)))) (-1133)) (T -796)) +((-2631 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-5 *1 (-796 *2)) (-4 *2 (-1133)))) (-2630 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-796 *2)) (-4 *2 (-1133))))) +((-2634 (((-1073 (-587 (-488))) (-587 (-488)) (-1073 (-587 (-488)))) 41 T ELT)) (-2633 (((-1073 (-587 (-488))) (-587 (-488)) (-587 (-488))) 31 T ELT)) (-2635 (((-1073 (-587 (-488))) (-587 (-488))) 53 T ELT) (((-1073 (-587 (-488))) (-587 (-488)) (-587 (-488))) 50 T ELT)) (-2636 (((-1073 (-587 (-488))) (-488)) 55 T ELT)) (-2632 (((-1073 (-587 (-834))) (-1073 (-587 (-834)))) 22 T ELT)) (-3015 (((-587 (-834)) (-587 (-834))) 18 T ELT))) +(((-797) (-10 -7 (-15 -3015 ((-587 (-834)) (-587 (-834)))) (-15 -2632 ((-1073 (-587 (-834))) (-1073 (-587 (-834))))) (-15 -2633 ((-1073 (-587 (-488))) (-587 (-488)) (-587 (-488)))) (-15 -2634 ((-1073 (-587 (-488))) (-587 (-488)) (-1073 (-587 (-488))))) (-15 -2635 ((-1073 (-587 (-488))) (-587 (-488)) (-587 (-488)))) (-15 -2635 ((-1073 (-587 (-488))) (-587 (-488)))) (-15 -2636 ((-1073 (-587 (-488))) (-488))))) (T -797)) +((-2636 (*1 *2 *3) (-12 (-5 *2 (-1073 (-587 (-488)))) (-5 *1 (-797)) (-5 *3 (-488)))) (-2635 (*1 *2 *3) (-12 (-5 *2 (-1073 (-587 (-488)))) (-5 *1 (-797)) (-5 *3 (-587 (-488))))) (-2635 (*1 *2 *3 *3) (-12 (-5 *2 (-1073 (-587 (-488)))) (-5 *1 (-797)) (-5 *3 (-587 (-488))))) (-2634 (*1 *2 *3 *2) (-12 (-5 *2 (-1073 (-587 (-488)))) (-5 *3 (-587 (-488))) (-5 *1 (-797)))) (-2633 (*1 *2 *3 *3) (-12 (-5 *2 (-1073 (-587 (-488)))) (-5 *1 (-797)) (-5 *3 (-587 (-488))))) (-2632 (*1 *2 *2) (-12 (-5 *2 (-1073 (-587 (-834)))) (-5 *1 (-797)))) (-3015 (*1 *2 *2) (-12 (-5 *2 (-587 (-834))) (-5 *1 (-797))))) +((-3978 (((-804 (-332)) $) 9 (|has| |#1| (-557 (-804 (-332)))) ELT) (((-804 (-488)) $) 8 (|has| |#1| (-557 (-804 (-488)))) ELT))) +(((-798 |#1|) (-113) (-1133)) (T -798)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-557 (-804 (-488)))) (-6 (-557 (-804 (-488)))) |%noBranch|) (IF (|has| |t#1| (-557 (-804 (-332)))) (-6 (-557 (-804 (-332)))) |%noBranch|))) +(((-557 (-804 (-332))) |has| |#1| (-557 (-804 (-332)))) ((-557 (-804 (-488))) |has| |#1| (-557 (-804 (-488))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3620 (($) 14 T ELT)) (-2638 (($ (-802 |#1| |#2|) (-802 |#1| |#3|)) 28 T ELT)) (-2637 (((-802 |#1| |#3|) $) 16 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2646 (((-85) $) 22 T ELT)) (-2645 (($) 19 T ELT)) (-3953 (((-776) $) 31 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2856 (((-802 |#1| |#2|) $) 15 T ELT)) (-3062 (((-85) $ $) 26 T ELT))) +(((-799 |#1| |#2| |#3|) (-13 (-1017) (-10 -8 (-15 -2646 ((-85) $)) (-15 -2645 ($)) (-15 -3620 ($)) (-15 -2638 ($ (-802 |#1| |#2|) (-802 |#1| |#3|))) (-15 -2856 ((-802 |#1| |#2|) $)) (-15 -2637 ((-802 |#1| |#3|) $)))) (-1017) (-1017) (-612 |#2|)) (T -799)) +((-2646 (*1 *2 *1) (-12 (-4 *4 (-1017)) (-5 *2 (-85)) (-5 *1 (-799 *3 *4 *5)) (-4 *3 (-1017)) (-4 *5 (-612 *4)))) (-2645 (*1 *1) (-12 (-4 *3 (-1017)) (-5 *1 (-799 *2 *3 *4)) (-4 *2 (-1017)) (-4 *4 (-612 *3)))) (-3620 (*1 *1) (-12 (-4 *3 (-1017)) (-5 *1 (-799 *2 *3 *4)) (-4 *2 (-1017)) (-4 *4 (-612 *3)))) (-2638 (*1 *1 *2 *3) (-12 (-5 *2 (-802 *4 *5)) (-5 *3 (-802 *4 *6)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-612 *5)) (-5 *1 (-799 *4 *5 *6)))) (-2856 (*1 *2 *1) (-12 (-4 *4 (-1017)) (-5 *2 (-802 *3 *4)) (-5 *1 (-799 *3 *4 *5)) (-4 *3 (-1017)) (-4 *5 (-612 *4)))) (-2637 (*1 *2 *1) (-12 (-4 *4 (-1017)) (-5 *2 (-802 *3 *5)) (-5 *1 (-799 *3 *4 *5)) (-4 *3 (-1017)) (-4 *5 (-612 *4))))) +((-2574 (((-85) $ $) 7 T ELT)) (-2802 (((-802 |#1| $) $ (-804 |#1|) (-802 |#1| $)) 17 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT))) +(((-800 |#1|) (-113) (-1017)) (T -800)) +((-2802 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-802 *4 *1)) (-5 *3 (-804 *4)) (-4 *1 (-800 *4)) (-4 *4 (-1017))))) +(-13 (-1017) (-10 -8 (-15 -2802 ((-802 |t#1| $) $ (-804 |t#1|) (-802 |t#1| $))))) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-2639 (((-85) (-587 |#2|) |#3|) 23 T ELT) (((-85) |#2| |#3|) 18 T ELT)) (-2640 (((-802 |#1| |#2|) |#2| |#3|) 45 (-12 (-2566 (|has| |#2| (-954 (-1094)))) (-2566 (|has| |#2| (-965)))) ELT) (((-587 (-251 (-861 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-965)) (-2566 (|has| |#2| (-954 (-1094))))) ELT) (((-587 (-251 |#2|)) |#2| |#3|) 36 (|has| |#2| (-954 (-1094))) ELT) (((-799 |#1| |#2| (-587 |#2|)) (-587 |#2|) |#3|) 21 T ELT))) +(((-801 |#1| |#2| |#3|) (-10 -7 (-15 -2639 ((-85) |#2| |#3|)) (-15 -2639 ((-85) (-587 |#2|) |#3|)) (-15 -2640 ((-799 |#1| |#2| (-587 |#2|)) (-587 |#2|) |#3|)) (IF (|has| |#2| (-954 (-1094))) (-15 -2640 ((-587 (-251 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-965)) (-15 -2640 ((-587 (-251 (-861 |#2|))) |#2| |#3|)) (-15 -2640 ((-802 |#1| |#2|) |#2| |#3|))))) (-1017) (-800 |#1|) (-557 (-804 |#1|))) (T -801)) +((-2640 (*1 *2 *3 *4) (-12 (-4 *5 (-1017)) (-5 *2 (-802 *5 *3)) (-5 *1 (-801 *5 *3 *4)) (-2566 (-4 *3 (-954 (-1094)))) (-2566 (-4 *3 (-965))) (-4 *3 (-800 *5)) (-4 *4 (-557 (-804 *5))))) (-2640 (*1 *2 *3 *4) (-12 (-4 *5 (-1017)) (-5 *2 (-587 (-251 (-861 *3)))) (-5 *1 (-801 *5 *3 *4)) (-4 *3 (-965)) (-2566 (-4 *3 (-954 (-1094)))) (-4 *3 (-800 *5)) (-4 *4 (-557 (-804 *5))))) (-2640 (*1 *2 *3 *4) (-12 (-4 *5 (-1017)) (-5 *2 (-587 (-251 *3))) (-5 *1 (-801 *5 *3 *4)) (-4 *3 (-954 (-1094))) (-4 *3 (-800 *5)) (-4 *4 (-557 (-804 *5))))) (-2640 (*1 *2 *3 *4) (-12 (-4 *5 (-1017)) (-4 *6 (-800 *5)) (-5 *2 (-799 *5 *6 (-587 *6))) (-5 *1 (-801 *5 *6 *4)) (-5 *3 (-587 *6)) (-4 *4 (-557 (-804 *5))))) (-2639 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *6)) (-4 *6 (-800 *5)) (-4 *5 (-1017)) (-5 *2 (-85)) (-5 *1 (-801 *5 *6 *4)) (-4 *4 (-557 (-804 *5))))) (-2639 (*1 *2 *3 *4) (-12 (-4 *5 (-1017)) (-5 *2 (-85)) (-5 *1 (-801 *5 *3 *4)) (-4 *3 (-800 *5)) (-4 *4 (-557 (-804 *5)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3240 (($ $ $) 40 T ELT)) (-2667 (((-3 (-85) #1="failed") $ (-804 |#1|)) 37 T ELT)) (-3620 (($) 12 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2642 (($ (-804 |#1|) |#2| $) 20 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2644 (((-3 |#2| #1#) (-804 |#1|) $) 51 T ELT)) (-2646 (((-85) $) 15 T ELT)) (-2645 (($) 13 T ELT)) (-3263 (((-587 (-2 (|:| -3867 (-1094)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3536 (($ (-587 (-2 (|:| -3867 (-1094)) (|:| |entry| |#2|)))) 23 T ELT)) (-3953 (((-776) $) 45 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2641 (($ (-804 |#1|) |#2| $ |#2|) 49 T ELT)) (-2643 (($ (-804 |#1|) |#2| $) 48 T ELT)) (-3062 (((-85) $ $) 42 T ELT))) +(((-802 |#1| |#2|) (-13 (-1017) (-10 -8 (-15 -2646 ((-85) $)) (-15 -2645 ($)) (-15 -3620 ($)) (-15 -3240 ($ $ $)) (-15 -2644 ((-3 |#2| #1="failed") (-804 |#1|) $)) (-15 -2643 ($ (-804 |#1|) |#2| $)) (-15 -2642 ($ (-804 |#1|) |#2| $)) (-15 -2641 ($ (-804 |#1|) |#2| $ |#2|)) (-15 -3263 ((-587 (-2 (|:| -3867 (-1094)) (|:| |entry| |#2|))) $)) (-15 -3536 ($ (-587 (-2 (|:| -3867 (-1094)) (|:| |entry| |#2|))))) (-15 -2667 ((-3 (-85) #1#) $ (-804 |#1|))))) (-1017) (-1017)) (T -802)) +((-2646 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017)))) (-2645 (*1 *1) (-12 (-5 *1 (-802 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1017)))) (-3620 (*1 *1) (-12 (-5 *1 (-802 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1017)))) (-3240 (*1 *1 *1 *1) (-12 (-5 *1 (-802 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1017)))) (-2644 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-804 *4)) (-4 *4 (-1017)) (-4 *2 (-1017)) (-5 *1 (-802 *4 *2)))) (-2643 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-804 *4)) (-4 *4 (-1017)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1017)))) (-2642 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-804 *4)) (-4 *4 (-1017)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1017)))) (-2641 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-804 *4)) (-4 *4 (-1017)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1017)))) (-3263 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| -3867 (-1094)) (|:| |entry| *4)))) (-5 *1 (-802 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| -3867 (-1094)) (|:| |entry| *4)))) (-4 *4 (-1017)) (-5 *1 (-802 *3 *4)) (-4 *3 (-1017)))) (-2667 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-804 *4)) (-4 *4 (-1017)) (-5 *2 (-85)) (-5 *1 (-802 *4 *5)) (-4 *5 (-1017))))) +((-3849 (((-802 |#1| |#3|) (-1 |#3| |#2|) (-802 |#1| |#2|)) 22 T ELT))) +(((-803 |#1| |#2| |#3|) (-10 -7 (-15 -3849 ((-802 |#1| |#3|) (-1 |#3| |#2|) (-802 |#1| |#2|)))) (-1017) (-1017) (-1017)) (T -803)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-802 *5 *6)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-802 *5 *7)) (-5 *1 (-803 *5 *6 *7))))) +((-2574 (((-85) $ $) NIL T ELT)) (-2654 (($ $ (-587 (-51))) 74 T ELT)) (-3087 (((-587 $) $) 139 T ELT)) (-2651 (((-2 (|:| |var| (-587 (-1094))) (|:| |pred| (-51))) $) 30 T ELT)) (-3266 (((-85) $) 35 T ELT)) (-2652 (($ $ (-587 (-1094)) (-51)) 31 T ELT)) (-2655 (($ $ (-587 (-51))) 73 T ELT)) (-3163 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1094) #1#) $) 167 T ELT)) (-3162 ((|#1| $) 68 T ELT) (((-1094) $) NIL T ELT)) (-2649 (($ $) 126 T ELT)) (-2661 (((-85) $) 55 T ELT)) (-2656 (((-587 (-51)) $) 50 T ELT)) (-2653 (($ (-1094) (-85) (-85) (-85)) 75 T ELT)) (-2647 (((-3 (-587 $) #1#) (-587 $)) 82 T ELT)) (-2658 (((-85) $) 58 T ELT)) (-2659 (((-85) $) 57 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2829 (((-3 (-587 $) #1#) $) 41 T ELT)) (-2664 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2831 (((-3 (-2 (|:| |val| $) (|:| -2406 $)) #1#) $) 97 T ELT)) (-2828 (((-3 (-587 $) #1#) $) 40 T ELT)) (-2665 (((-3 (-587 $) #1#) $ (-86)) 124 T ELT) (((-3 (-2 (|:| -2519 (-86)) (|:| |arg| (-587 $))) #1#) $) 107 T ELT)) (-2663 (((-3 (-587 $) #1#) $) 42 T ELT)) (-2830 (((-3 (-2 (|:| |val| $) (|:| -2406 (-698))) #1#) $) 45 T ELT)) (-2662 (((-85) $) 34 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2650 (((-85) $) 28 T ELT)) (-2657 (((-85) $) 52 T ELT)) (-2648 (((-587 (-51)) $) 130 T ELT)) (-2660 (((-85) $) 56 T ELT)) (-3806 (($ (-86) (-587 $)) 104 T ELT)) (-3328 (((-698) $) 33 T ELT)) (-3406 (($ $) 72 T ELT)) (-3978 (($ (-587 $)) 69 T ELT)) (-3960 (((-85) $) 32 T ELT)) (-3953 (((-776) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1094)) 76 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2668 (($ $ (-51)) 129 T ELT)) (-2666 (($) 103 T CONST)) (-2672 (($) 83 T CONST)) (-3062 (((-85) $ $) 93 T ELT)) (-3956 (($ $ $) 117 T ELT)) (-3845 (($ $ $) 121 T ELT)) (** (($ $ (-698)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) +(((-804 |#1|) (-13 (-1017) (-954 |#1|) (-954 (-1094)) (-10 -8 (-15 -2666 ($) -3959) (-15 -2672 ($) -3959) (-15 -2828 ((-3 (-587 $) #1="failed") $)) (-15 -2829 ((-3 (-587 $) #1#) $)) (-15 -2665 ((-3 (-587 $) #1#) $ (-86))) (-15 -2665 ((-3 (-2 (|:| -2519 (-86)) (|:| |arg| (-587 $))) #1#) $)) (-15 -2830 ((-3 (-2 (|:| |val| $) (|:| -2406 (-698))) #1#) $)) (-15 -2664 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2663 ((-3 (-587 $) #1#) $)) (-15 -2831 ((-3 (-2 (|:| |val| $) (|:| -2406 $)) #1#) $)) (-15 -3806 ($ (-86) (-587 $))) (-15 -3845 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-698))) (-15 ** ($ $ $)) (-15 -3956 ($ $ $)) (-15 -3328 ((-698) $)) (-15 -3978 ($ (-587 $))) (-15 -3406 ($ $)) (-15 -2662 ((-85) $)) (-15 -2661 ((-85) $)) (-15 -3266 ((-85) $)) (-15 -3960 ((-85) $)) (-15 -2660 ((-85) $)) (-15 -2659 ((-85) $)) (-15 -2658 ((-85) $)) (-15 -2657 ((-85) $)) (-15 -2656 ((-587 (-51)) $)) (-15 -2655 ($ $ (-587 (-51)))) (-15 -2654 ($ $ (-587 (-51)))) (-15 -2653 ($ (-1094) (-85) (-85) (-85))) (-15 -2652 ($ $ (-587 (-1094)) (-51))) (-15 -2651 ((-2 (|:| |var| (-587 (-1094))) (|:| |pred| (-51))) $)) (-15 -2650 ((-85) $)) (-15 -2649 ($ $)) (-15 -2668 ($ $ (-51))) (-15 -2648 ((-587 (-51)) $)) (-15 -3087 ((-587 $) $)) (-15 -2647 ((-3 (-587 $) #1#) (-587 $))))) (-1017)) (T -804)) +((-2666 (*1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1017)))) (-2672 (*1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1017)))) (-2828 (*1 *2 *1) (|partial| -12 (-5 *2 (-587 (-804 *3))) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-2829 (*1 *2 *1) (|partial| -12 (-5 *2 (-587 (-804 *3))) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-2665 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-587 (-804 *4))) (-5 *1 (-804 *4)) (-4 *4 (-1017)))) (-2665 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2519 (-86)) (|:| |arg| (-587 (-804 *3))))) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-2830 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-804 *3)) (|:| -2406 (-698)))) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-2664 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-804 *3)) (|:| |den| (-804 *3)))) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-2663 (*1 *2 *1) (|partial| -12 (-5 *2 (-587 (-804 *3))) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-2831 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-804 *3)) (|:| -2406 (-804 *3)))) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-3806 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-587 (-804 *4))) (-5 *1 (-804 *4)) (-4 *4 (-1017)))) (-3845 (*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1017)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1017)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1017)))) (-3956 (*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1017)))) (-3328 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-3978 (*1 *1 *2) (-12 (-5 *2 (-587 (-804 *3))) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-3406 (*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1017)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-2661 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-3266 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-2659 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-587 (-51))) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-2655 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-51))) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-2654 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-51))) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-2653 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-85)) (-5 *1 (-804 *4)) (-4 *4 (-1017)))) (-2652 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-1094))) (-5 *3 (-51)) (-5 *1 (-804 *4)) (-4 *4 (-1017)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-587 (-1094))) (|:| |pred| (-51)))) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-2649 (*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1017)))) (-2668 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-587 (-51))) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-587 (-804 *3))) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) (-2647 (*1 *2 *2) (|partial| -12 (-5 *2 (-587 (-804 *3))) (-5 *1 (-804 *3)) (-4 *3 (-1017))))) +((-3215 (((-804 |#1|) (-804 |#1|) (-587 (-1094)) (-1 (-85) (-587 |#2|))) 32 T ELT) (((-804 |#1|) (-804 |#1|) (-587 (-1 (-85) |#2|))) 46 T ELT) (((-804 |#1|) (-804 |#1|) (-1 (-85) |#2|)) 35 T ELT)) (-2667 (((-85) (-587 |#2|) (-804 |#1|)) 42 T ELT) (((-85) |#2| (-804 |#1|)) 36 T ELT)) (-3537 (((-1 (-85) |#2|) (-804 |#1|)) 16 T ELT)) (-2669 (((-587 |#2|) (-804 |#1|)) 24 T ELT)) (-2668 (((-804 |#1|) (-804 |#1|) |#2|) 20 T ELT))) +(((-805 |#1| |#2|) (-10 -7 (-15 -3215 ((-804 |#1|) (-804 |#1|) (-1 (-85) |#2|))) (-15 -3215 ((-804 |#1|) (-804 |#1|) (-587 (-1 (-85) |#2|)))) (-15 -3215 ((-804 |#1|) (-804 |#1|) (-587 (-1094)) (-1 (-85) (-587 |#2|)))) (-15 -3537 ((-1 (-85) |#2|) (-804 |#1|))) (-15 -2667 ((-85) |#2| (-804 |#1|))) (-15 -2667 ((-85) (-587 |#2|) (-804 |#1|))) (-15 -2668 ((-804 |#1|) (-804 |#1|) |#2|)) (-15 -2669 ((-587 |#2|) (-804 |#1|)))) (-1017) (-1133)) (T -805)) +((-2669 (*1 *2 *3) (-12 (-5 *3 (-804 *4)) (-4 *4 (-1017)) (-5 *2 (-587 *5)) (-5 *1 (-805 *4 *5)) (-4 *5 (-1133)))) (-2668 (*1 *2 *2 *3) (-12 (-5 *2 (-804 *4)) (-4 *4 (-1017)) (-5 *1 (-805 *4 *3)) (-4 *3 (-1133)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *6)) (-5 *4 (-804 *5)) (-4 *5 (-1017)) (-4 *6 (-1133)) (-5 *2 (-85)) (-5 *1 (-805 *5 *6)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *4 (-804 *5)) (-4 *5 (-1017)) (-5 *2 (-85)) (-5 *1 (-805 *5 *3)) (-4 *3 (-1133)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-804 *4)) (-4 *4 (-1017)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-805 *4 *5)) (-4 *5 (-1133)))) (-3215 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-804 *5)) (-5 *3 (-587 (-1094))) (-5 *4 (-1 (-85) (-587 *6))) (-4 *5 (-1017)) (-4 *6 (-1133)) (-5 *1 (-805 *5 *6)))) (-3215 (*1 *2 *2 *3) (-12 (-5 *2 (-804 *4)) (-5 *3 (-587 (-1 (-85) *5))) (-4 *4 (-1017)) (-4 *5 (-1133)) (-5 *1 (-805 *4 *5)))) (-3215 (*1 *2 *2 *3) (-12 (-5 *2 (-804 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1017)) (-4 *5 (-1133)) (-5 *1 (-805 *4 *5))))) +((-3849 (((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|)) 19 T ELT))) +(((-806 |#1| |#2|) (-10 -7 (-15 -3849 ((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|)))) (-1017) (-1017)) (T -806)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-804 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-5 *2 (-804 *6)) (-5 *1 (-806 *5 *6))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3941 (((-587 |#1|) $) 20 T ELT)) (-2670 (((-85) $) 49 T ELT)) (-3163 (((-3 (-618 |#1|) "failed") $) 55 T ELT)) (-3162 (((-618 |#1|) $) 53 T ELT)) (-3805 (($ $) 24 T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-3839 (((-698) $) 60 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3807 (((-618 |#1|) $) 22 T ELT)) (-3953 (((-776) $) 47 T ELT) (($ (-618 |#1|)) 27 T ELT) (((-743 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2672 (($) 11 T CONST)) (-2671 (((-587 (-618 |#1|)) $) 28 T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 14 T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 66 T ELT))) +(((-807 |#1|) (-13 (-760) (-954 (-618 |#1|)) (-10 -8 (-15 -2672 ($) -3959) (-15 -3953 ((-743 |#1|) $)) (-15 -3953 ($ |#1|)) (-15 -3807 ((-618 |#1|) $)) (-15 -3839 ((-698) $)) (-15 -2671 ((-587 (-618 |#1|)) $)) (-15 -3805 ($ $)) (-15 -2670 ((-85) $)) (-15 -3941 ((-587 |#1|) $)))) (-760)) (T -807)) +((-2672 (*1 *1) (-12 (-5 *1 (-807 *2)) (-4 *2 (-760)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-743 *3)) (-5 *1 (-807 *3)) (-4 *3 (-760)))) (-3953 (*1 *1 *2) (-12 (-5 *1 (-807 *2)) (-4 *2 (-760)))) (-3807 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-807 *3)) (-4 *3 (-760)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-807 *3)) (-4 *3 (-760)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-587 (-618 *3))) (-5 *1 (-807 *3)) (-4 *3 (-760)))) (-3805 (*1 *1 *1) (-12 (-5 *1 (-807 *2)) (-4 *2 (-760)))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-807 *3)) (-4 *3 (-760)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-807 *3)) (-4 *3 (-760))))) +((-3480 ((|#1| |#1| |#1|) 19 T ELT))) +(((-808 |#1| |#2|) (-10 -7 (-15 -3480 (|#1| |#1| |#1|))) (-1159 |#2|) (-965)) (T -808)) +((-3480 (*1 *2 *2 *2) (-12 (-4 *3 (-965)) (-5 *1 (-808 *2 *3)) (-4 *2 (-1159 *3))))) +((-2675 ((|#2| $ |#3|) 10 T ELT))) +(((-809 |#1| |#2| |#3|) (-10 -7 (-15 -2675 (|#2| |#1| |#3|))) (-810 |#2| |#3|) (-1133) (-1133)) (T -809)) +NIL +((-3764 ((|#1| $ |#2|) 7 T ELT)) (-2675 ((|#1| $ |#2|) 6 T ELT))) +(((-810 |#1| |#2|) (-113) (-1133) (-1133)) (T -810)) +((-3764 (*1 *2 *1 *3) (-12 (-4 *1 (-810 *2 *3)) (-4 *3 (-1133)) (-4 *2 (-1133)))) (-2675 (*1 *2 *1 *3) (-12 (-4 *1 (-810 *2 *3)) (-4 *3 (-1133)) (-4 *2 (-1133))))) +(-13 (-1133) (-10 -8 (-15 -3764 (|t#1| $ |t#2|)) (-15 -2675 (|t#1| $ |t#2|)))) +(((-13) . T) ((-1133) . T)) +((-2674 ((|#1| |#1| (-698)) 26 T ELT)) (-2673 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3441 (((-3 (-2 (|:| -3144 |#1|) (|:| -3143 |#1|)) #1#) |#1| (-698) (-698)) 29 T ELT) (((-587 |#1|) |#1|) 38 T ELT))) +(((-811 |#1| |#2|) (-10 -7 (-15 -3441 ((-587 |#1|) |#1|)) (-15 -3441 ((-3 (-2 (|:| -3144 |#1|) (|:| -3143 |#1|)) #1="failed") |#1| (-698) (-698))) (-15 -2673 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2674 (|#1| |#1| (-698)))) (-1159 |#2|) (-314)) (T -811)) +((-2674 (*1 *2 *2 *3) (-12 (-5 *3 (-698)) (-4 *4 (-314)) (-5 *1 (-811 *2 *4)) (-4 *2 (-1159 *4)))) (-2673 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-314)) (-5 *1 (-811 *2 *3)) (-4 *2 (-1159 *3)))) (-3441 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-698)) (-4 *5 (-314)) (-5 *2 (-2 (|:| -3144 *3) (|:| -3143 *3))) (-5 *1 (-811 *3 *5)) (-4 *3 (-1159 *5)))) (-3441 (*1 *2 *3) (-12 (-4 *4 (-314)) (-5 *2 (-587 *3)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1159 *4))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-1218 (((-85) $ $) 20 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3764 (($ $ (-587 |#2|) (-587 (-698))) 45 T ELT) (($ $ |#2| (-698)) 44 T ELT) (($ $ (-587 |#2|)) 43 T ELT) (($ $ |#2|) 41 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-2675 (($ $ (-587 |#2|) (-587 (-698))) 48 T ELT) (($ $ |#2| (-698)) 47 T ELT) (($ $ (-587 |#2|)) 46 T ELT) (($ $ |#2|) 42 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-812 |#1| |#2|) (-113) (-965) (-72)) (T -812)) +NIL +(-13 (-82 |t#1| |t#1|) (-815 |t#2|) (-10 -7 (IF (|has| |t#1| (-148)) (-6 (-658 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-594 |#1|) . T) ((-586 |#1|) |has| |#1| (-148)) ((-658 |#1|) |has| |#1| (-148)) ((-810 $ |#2|) . T) ((-815 |#2|) . T) ((-967 |#1|) . T) ((-972 |#1|) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3764 (($ $ (-587 |#1|) (-587 (-698))) 52 T ELT) (($ $ |#1| (-698)) 51 T ELT) (($ $ (-587 |#1|)) 50 T ELT) (($ $ |#1|) 48 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-587 |#1|) (-587 (-698))) 55 T ELT) (($ $ |#1| (-698)) 54 T ELT) (($ $ (-587 |#1|)) 53 T ELT) (($ $ |#1|) 49 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-813 |#1|) (-113) (-72)) (T -813)) -((-3761 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-813 *3)) (-4 *3 (-72)))) (-3761 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-813 *2)) (-4 *2 (-72)))) (-3761 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 (-696))) (-4 *1 (-813 *4)) (-4 *4 (-72)))) (-2672 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-813 *3)) (-4 *3 (-72)))) (-2672 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-813 *2)) (-4 *2 (-72)))) (-2672 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 (-696))) (-4 *1 (-813 *4)) (-4 *4 (-72))))) -(-13 (-808 $ |t#1|) (-10 -8 (-15 -3761 ($ $ (-585 |t#1|))) (-15 -3761 ($ $ |t#1| (-696))) (-15 -3761 ($ $ (-585 |t#1|) (-585 (-696)))) (-15 -2672 ($ $ (-585 |t#1|))) (-15 -2672 ($ $ |t#1| (-696))) (-15 -2672 ($ $ (-585 |t#1|) (-585 (-696)))))) -(((-13) . T) ((-808 $ |#1|) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 26 T ELT)) (-3028 ((|#1| $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1295 (($ $ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-1296 (($ $ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-3140 (($ $) 25 T ELT)) (-2673 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-3034 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3141 (($ $) 23 T ELT)) (-3033 (((-585 |#1|) $) NIL T ELT)) (-3530 (((-85) $) 20 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3032 (((-486) $ $) NIL T ELT)) (-3636 (((-85) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-1118 |#1|) $) 9 T ELT) (((-774) $) 29 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) NIL T ELT)) (-3031 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 21 (|has| |#1| (-72)) ELT))) -(((-814 |#1|) (-13 (-92 |#1|) (-554 (-1118 |#1|)) (-10 -8 (-15 -2673 ($ |#1|)) (-15 -2673 ($ $ $)))) (-1015)) (T -814)) -((-2673 (*1 *1 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1015)))) (-2673 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1015))))) -((-2571 (((-85) $ $) NIL T ELT)) (-2689 (((-1011 |#1|) $) 61 T ELT)) (-2912 (((-585 $) (-585 $)) 104 T ELT)) (-3626 (((-486) $) 84 T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT)) (-3775 (((-696) $) 81 T ELT)) (-2693 (((-1011 |#1|) $ |#1|) 71 T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2676 (((-85) $) 89 T ELT)) (-2678 (((-696) $) 85 T ELT)) (-2534 (($ $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-758))) ELT)) (-2860 (($ $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-758))) ELT)) (-2682 (((-2 (|:| |preimage| (-585 |#1|)) (|:| |image| (-585 |#1|))) $) 56 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 131 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2675 (((-1011 |#1|) $) 136 (|has| |#1| (-320)) ELT)) (-2677 (((-85) $) 82 T ELT)) (-3803 ((|#1| $ |#1|) 69 T ELT)) (-3952 (((-696) $) 63 T ELT)) (-2684 (($ (-585 (-585 |#1|))) 119 T ELT)) (-2679 (((-886) $) 75 T ELT)) (-2685 (($ (-585 |#1|)) 32 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-2681 (($ (-585 (-585 |#1|))) 58 T ELT)) (-2680 (($ (-585 (-585 |#1|))) 124 T ELT)) (-2674 (($ (-585 |#1|)) 133 T ELT)) (-3950 (((-774) $) 118 T ELT) (($ (-585 (-585 |#1|))) 92 T ELT) (($ (-585 |#1|)) 93 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2669 (($) 24 T CONST)) (-2569 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-758))) ELT)) (-2570 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-758))) ELT)) (-3059 (((-85) $ $) 67 T ELT)) (-2687 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-758))) ELT)) (-2688 (((-85) $ $) 91 T ELT)) (-3953 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ $ $) 33 T ELT))) -(((-815 |#1|) (-13 (-817 |#1|) (-10 -8 (-15 -2682 ((-2 (|:| |preimage| (-585 |#1|)) (|:| |image| (-585 |#1|))) $)) (-15 -2681 ($ (-585 (-585 |#1|)))) (-15 -3950 ($ (-585 (-585 |#1|)))) (-15 -3950 ($ (-585 |#1|))) (-15 -2680 ($ (-585 (-585 |#1|)))) (-15 -3952 ((-696) $)) (-15 -2679 ((-886) $)) (-15 -3775 ((-696) $)) (-15 -2678 ((-696) $)) (-15 -3626 ((-486) $)) (-15 -2677 ((-85) $)) (-15 -2676 ((-85) $)) (-15 -2912 ((-585 $) (-585 $))) (IF (|has| |#1| (-320)) (-15 -2675 ((-1011 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-485)) (-15 -2674 ($ (-585 |#1|))) (IF (|has| |#1| (-320)) (-15 -2674 ($ (-585 |#1|))) |%noBranch|)))) (-1015)) (T -815)) -((-2682 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-585 *3)) (|:| |image| (-585 *3)))) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2681 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-815 *3)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-815 *3)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-815 *3)))) (-2680 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-815 *3)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2678 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2912 (*1 *2 *2) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-1011 *3)) (-5 *1 (-815 *3)) (-4 *3 (-320)) (-4 *3 (-1015)))) (-2674 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-815 *3))))) -((-2683 ((|#2| (-1058 |#1| |#2|)) 48 T ELT))) -(((-816 |#1| |#2|) (-10 -7 (-15 -2683 (|#2| (-1058 |#1| |#2|)))) (-832) (-13 (-963) (-10 -7 (-6 (-4000 "*"))))) (T -816)) -((-2683 (*1 *2 *3) (-12 (-5 *3 (-1058 *4 *2)) (-14 *4 (-832)) (-4 *2 (-13 (-963) (-10 -7 (-6 (-4000 "*"))))) (-5 *1 (-816 *4 *2))))) -((-2571 (((-85) $ $) 7 T ELT)) (-2689 (((-1011 |#1|) $) 42 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 20 T ELT)) (-2693 (((-1011 |#1|) $ |#1|) 41 T ELT)) (-2412 (((-85) $) 22 T ELT)) (-2534 (($ $ $) 35 (OR (|has| |#1| (-758)) (|has| |#1| (-320))) ELT)) (-2860 (($ $ $) 36 (OR (|has| |#1| (-758)) (|has| |#1| (-320))) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 30 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3803 ((|#1| $ |#1|) 45 T ELT)) (-2684 (($ (-585 (-585 |#1|))) 43 T ELT)) (-2685 (($ (-585 |#1|)) 44 T ELT)) (-3012 (($ $ $) 27 T ELT)) (-2438 (($ $ $) 26 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2669 (($) 24 T CONST)) (-2569 (((-85) $ $) 37 (OR (|has| |#1| (-758)) (|has| |#1| (-320))) ELT)) (-2570 (((-85) $ $) 39 (OR (|has| |#1| (-758)) (|has| |#1| (-320))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 38 (OR (|has| |#1| (-758)) (|has| |#1| (-320))) ELT)) (-2688 (((-85) $ $) 40 T ELT)) (-3953 (($ $ $) 29 T ELT)) (** (($ $ (-832)) 17 T ELT) (($ $ (-696)) 21 T ELT) (($ $ (-486)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-817 |#1|) (-113) (-1015)) (T -817)) -((-2685 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-817 *3)))) (-2684 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-4 *1 (-817 *3)))) (-2689 (*1 *2 *1) (-12 (-4 *1 (-817 *3)) (-4 *3 (-1015)) (-5 *2 (-1011 *3)))) (-2693 (*1 *2 *1 *3) (-12 (-4 *1 (-817 *3)) (-4 *3 (-1015)) (-5 *2 (-1011 *3)))) (-2688 (*1 *2 *1 *1) (-12 (-4 *1 (-817 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) -(-13 (-414) (-241 |t#1| |t#1|) (-10 -8 (-15 -2685 ($ (-585 |t#1|))) (-15 -2684 ($ (-585 (-585 |t#1|)))) (-15 -2689 ((-1011 |t#1|) $)) (-15 -2693 ((-1011 |t#1|) $ |t#1|)) (-15 -2688 ((-85) $ $)) (IF (|has| |t#1| (-758)) (-6 (-758)) |%noBranch|) (IF (|has| |t#1| (-320)) (-6 (-758)) |%noBranch|))) -(((-72) . T) ((-554 (-774)) . T) ((-241 |#1| |#1|) . T) ((-414) . T) ((-13) . T) ((-665) . T) ((-758) OR (|has| |#1| (-758)) (|has| |#1| (-320))) ((-761) OR (|has| |#1| (-758)) (|has| |#1| (-320))) ((-1027) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-2695 (((-585 (-585 (-696))) $) 163 T ELT)) (-2691 (((-585 (-696)) (-815 |#1|) $) 191 T ELT)) (-2690 (((-585 (-696)) (-815 |#1|) $) 192 T ELT)) (-2689 (((-1011 |#1|) $) 155 T ELT)) (-2696 (((-585 (-815 |#1|)) $) 152 T ELT)) (-2997 (((-815 |#1|) $ (-486)) 157 T ELT) (((-815 |#1|) $) 158 T ELT)) (-2694 (($ (-585 (-815 |#1|))) 165 T ELT)) (-3775 (((-696) $) 159 T ELT)) (-2692 (((-1011 (-1011 |#1|)) $) 189 T ELT)) (-2693 (((-1011 |#1|) $ |#1|) 180 T ELT) (((-1011 (-1011 |#1|)) $ (-1011 |#1|)) 201 T ELT) (((-1011 (-585 |#1|)) $ (-585 |#1|)) 204 T ELT)) (-3248 (((-85) (-815 |#1|) $) 140 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2686 (((-1187) $) 145 T ELT) (((-1187) $ (-486) (-486)) 205 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2698 (((-585 (-815 |#1|)) $) 146 T ELT)) (-3803 (((-815 |#1|) $ (-696)) 153 T ELT)) (-3952 (((-696) $) 160 T ELT)) (-3950 (((-774) $) 177 T ELT) (((-585 (-815 |#1|)) $) 28 T ELT) (($ (-585 (-815 |#1|))) 164 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2697 (((-585 |#1|) $) 162 T ELT)) (-3059 (((-85) $ $) 198 T ELT)) (-2687 (((-85) $ $) 195 T ELT)) (-2688 (((-85) $ $) 194 T ELT))) -(((-818 |#1|) (-13 (-1015) (-10 -8 (-15 -3950 ((-585 (-815 |#1|)) $)) (-15 -2698 ((-585 (-815 |#1|)) $)) (-15 -3803 ((-815 |#1|) $ (-696))) (-15 -2997 ((-815 |#1|) $ (-486))) (-15 -2997 ((-815 |#1|) $)) (-15 -3775 ((-696) $)) (-15 -3952 ((-696) $)) (-15 -2697 ((-585 |#1|) $)) (-15 -2696 ((-585 (-815 |#1|)) $)) (-15 -2695 ((-585 (-585 (-696))) $)) (-15 -3950 ($ (-585 (-815 |#1|)))) (-15 -2694 ($ (-585 (-815 |#1|)))) (-15 -2693 ((-1011 |#1|) $ |#1|)) (-15 -2692 ((-1011 (-1011 |#1|)) $)) (-15 -2693 ((-1011 (-1011 |#1|)) $ (-1011 |#1|))) (-15 -2693 ((-1011 (-585 |#1|)) $ (-585 |#1|))) (-15 -3248 ((-85) (-815 |#1|) $)) (-15 -2691 ((-585 (-696)) (-815 |#1|) $)) (-15 -2690 ((-585 (-696)) (-815 |#1|) $)) (-15 -2689 ((-1011 |#1|) $)) (-15 -2688 ((-85) $ $)) (-15 -2687 ((-85) $ $)) (-15 -2686 ((-1187) $)) (-15 -2686 ((-1187) $ (-486) (-486))))) (-1015)) (T -818)) -((-3950 (*1 *2 *1) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-3803 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-815 *4)) (-5 *1 (-818 *4)) (-4 *4 (-1015)))) (-2997 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *2 (-815 *4)) (-5 *1 (-818 *4)) (-4 *4 (-1015)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-696)))) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-585 (-815 *3))) (-4 *3 (-1015)) (-5 *1 (-818 *3)))) (-2694 (*1 *1 *2) (-12 (-5 *2 (-585 (-815 *3))) (-4 *3 (-1015)) (-5 *1 (-818 *3)))) (-2693 (*1 *2 *1 *3) (-12 (-5 *2 (-1011 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-1011 (-1011 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2693 (*1 *2 *1 *3) (-12 (-4 *4 (-1015)) (-5 *2 (-1011 (-1011 *4))) (-5 *1 (-818 *4)) (-5 *3 (-1011 *4)))) (-2693 (*1 *2 *1 *3) (-12 (-4 *4 (-1015)) (-5 *2 (-1011 (-585 *4))) (-5 *1 (-818 *4)) (-5 *3 (-585 *4)))) (-3248 (*1 *2 *3 *1) (-12 (-5 *3 (-815 *4)) (-4 *4 (-1015)) (-5 *2 (-85)) (-5 *1 (-818 *4)))) (-2691 (*1 *2 *3 *1) (-12 (-5 *3 (-815 *4)) (-4 *4 (-1015)) (-5 *2 (-585 (-696))) (-5 *1 (-818 *4)))) (-2690 (*1 *2 *3 *1) (-12 (-5 *3 (-815 *4)) (-4 *4 (-1015)) (-5 *2 (-585 (-696))) (-5 *1 (-818 *4)))) (-2689 (*1 *2 *1) (-12 (-5 *2 (-1011 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2688 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2687 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2686 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-818 *4)) (-4 *4 (-1015))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3933 (((-696)) NIL T ELT)) (-3333 (($ $ (-832)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 $ #1#) $) NIL T ELT)) (-3159 (($ $) NIL T ELT)) (-1797 (($ (-1181 $)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2836 (($) NIL T ELT)) (-1681 (((-85) $) NIL T ELT)) (-1769 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3775 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| $ (-320)) ELT)) (-2013 (((-85) $) NIL (|has| $ (-320)) ELT)) (-3135 (($ $ (-832)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-3448 (((-634 $) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1087 $) $ (-832)) NIL (|has| $ (-320)) ELT) (((-1087 $) $) NIL T ELT)) (-2012 (((-832) $) NIL T ELT)) (-1628 (((-1087 $) $) NIL (|has| $ (-320)) ELT)) (-1627 (((-3 (-1087 $) #1#) $ $) NIL (|has| $ (-320)) ELT) (((-1087 $) $) NIL (|has| $ (-320)) ELT)) (-1629 (($ $ (-1087 $)) NIL (|has| $ (-320)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL T CONST)) (-2402 (($ (-832)) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($) NIL (|has| $ (-320)) ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-3934 (((-832)) NIL T ELT) (((-745 (-832))) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-3 (-696) #1#) $ $) NIL T ELT) (((-696) $) NIL T ELT)) (-3915 (((-107)) NIL T ELT)) (-3761 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3952 (((-832) $) NIL T ELT) (((-745 (-832)) $) NIL T ELT)) (-3188 (((-1087 $)) NIL T ELT)) (-1675 (($) NIL T ELT)) (-1630 (($) NIL (|has| $ (-320)) ELT)) (-3227 (((-632 $) (-1181 $)) NIL T ELT) (((-1181 $) $) NIL T ELT)) (-3975 (((-486) $) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT)) (-2705 (((-634 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $) (-832)) NIL T ELT) (((-1181 $)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3932 (($ $ (-696)) NIL (|has| $ (-320)) ELT) (($ $) NIL (|has| $ (-320)) ELT)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT))) -(((-819 |#1|) (-13 (-299) (-280 $) (-555 (-486))) (-832)) (T -819)) -NIL -((-2700 (((-3 (-585 (-1087 |#4|)) #1="failed") (-585 (-1087 |#4|)) (-1087 |#4|)) 164 T ELT)) (-2703 ((|#1|) 101 T ELT)) (-2702 (((-348 (-1087 |#4|)) (-1087 |#4|)) 173 T ELT)) (-2704 (((-348 (-1087 |#4|)) (-585 |#3|) (-1087 |#4|)) 83 T ELT)) (-2701 (((-348 (-1087 |#4|)) (-1087 |#4|)) 183 T ELT)) (-2699 (((-3 (-585 (-1087 |#4|)) #1#) (-585 (-1087 |#4|)) (-1087 |#4|) |#3|) 117 T ELT))) -(((-820 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2700 ((-3 (-585 (-1087 |#4|)) #1="failed") (-585 (-1087 |#4|)) (-1087 |#4|))) (-15 -2701 ((-348 (-1087 |#4|)) (-1087 |#4|))) (-15 -2702 ((-348 (-1087 |#4|)) (-1087 |#4|))) (-15 -2703 (|#1|)) (-15 -2699 ((-3 (-585 (-1087 |#4|)) #1#) (-585 (-1087 |#4|)) (-1087 |#4|) |#3|)) (-15 -2704 ((-348 (-1087 |#4|)) (-585 |#3|) (-1087 |#4|)))) (-823) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -820)) -((-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *7)) (-4 *7 (-758)) (-4 *5 (-823)) (-4 *6 (-719)) (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-348 (-1087 *8))) (-5 *1 (-820 *5 *6 *7 *8)) (-5 *4 (-1087 *8)))) (-2699 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-585 (-1087 *7))) (-5 *3 (-1087 *7)) (-4 *7 (-863 *5 *6 *4)) (-4 *5 (-823)) (-4 *6 (-719)) (-4 *4 (-758)) (-5 *1 (-820 *5 *6 *4 *7)))) (-2703 (*1 *2) (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-823)) (-5 *1 (-820 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (-2702 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-348 (-1087 *7))) (-5 *1 (-820 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) (-2701 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-348 (-1087 *7))) (-5 *1 (-820 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) (-2700 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1087 *7))) (-5 *3 (-1087 *7)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-823)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-820 *4 *5 *6 *7))))) -((-2700 (((-3 (-585 (-1087 |#2|)) "failed") (-585 (-1087 |#2|)) (-1087 |#2|)) 39 T ELT)) (-2703 ((|#1|) 71 T ELT)) (-2702 (((-348 (-1087 |#2|)) (-1087 |#2|)) 125 T ELT)) (-2704 (((-348 (-1087 |#2|)) (-1087 |#2|)) 109 T ELT)) (-2701 (((-348 (-1087 |#2|)) (-1087 |#2|)) 136 T ELT))) -(((-821 |#1| |#2|) (-10 -7 (-15 -2700 ((-3 (-585 (-1087 |#2|)) "failed") (-585 (-1087 |#2|)) (-1087 |#2|))) (-15 -2701 ((-348 (-1087 |#2|)) (-1087 |#2|))) (-15 -2702 ((-348 (-1087 |#2|)) (-1087 |#2|))) (-15 -2703 (|#1|)) (-15 -2704 ((-348 (-1087 |#2|)) (-1087 |#2|)))) (-823) (-1157 |#1|)) (T -821)) -((-2704 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-1157 *4)) (-5 *2 (-348 (-1087 *5))) (-5 *1 (-821 *4 *5)) (-5 *3 (-1087 *5)))) (-2703 (*1 *2) (-12 (-4 *2 (-823)) (-5 *1 (-821 *2 *3)) (-4 *3 (-1157 *2)))) (-2702 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-1157 *4)) (-5 *2 (-348 (-1087 *5))) (-5 *1 (-821 *4 *5)) (-5 *3 (-1087 *5)))) (-2701 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-1157 *4)) (-5 *2 (-348 (-1087 *5))) (-5 *1 (-821 *4 *5)) (-5 *3 (-1087 *5)))) (-2700 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1087 *5))) (-5 *3 (-1087 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-823)) (-5 *1 (-821 *4 *5))))) -((-2707 (((-3 (-585 (-1087 $)) "failed") (-585 (-1087 $)) (-1087 $)) 46 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 18 T ELT)) (-2705 (((-634 $) $) 40 T ELT))) -(((-822 |#1|) (-10 -7 (-15 -2705 ((-634 |#1|) |#1|)) (-15 -2707 ((-3 (-585 (-1087 |#1|)) "failed") (-585 (-1087 |#1|)) (-1087 |#1|))) (-15 -2711 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|)))) (-823)) (T -822)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 75 T ELT)) (-3778 (($ $) 66 T ELT)) (-3974 (((-348 $) $) 67 T ELT)) (-2707 (((-3 (-585 (-1087 $)) "failed") (-585 (-1087 $)) (-1087 $)) 72 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3726 (((-85) $) 68 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 73 T ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 74 T ELT)) (-3735 (((-348 $) $) 65 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2706 (((-3 (-1181 $) "failed") (-632 $)) 71 (|has| $ (-118)) ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT)) (-2705 (((-634 $) $) 70 (|has| $ (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-823) (-113)) (T -823)) -((-2711 (*1 *2 *2 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-823)))) (-2710 (*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *2 (-348 (-1087 *1))) (-5 *3 (-1087 *1)))) (-2709 (*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *2 (-348 (-1087 *1))) (-5 *3 (-1087 *1)))) (-2708 (*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *2 (-348 (-1087 *1))) (-5 *3 (-1087 *1)))) (-2707 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1087 *1))) (-5 *3 (-1087 *1)) (-4 *1 (-823)))) (-2706 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-118)) (-4 *1 (-823)) (-5 *2 (-1181 *1)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-634 *1)) (-4 *1 (-118)) (-4 *1 (-823))))) -(-13 (-1136) (-10 -8 (-15 -2710 ((-348 (-1087 $)) (-1087 $))) (-15 -2709 ((-348 (-1087 $)) (-1087 $))) (-15 -2708 ((-348 (-1087 $)) (-1087 $))) (-15 -2711 ((-1087 $) (-1087 $) (-1087 $))) (-15 -2707 ((-3 (-585 (-1087 $)) "failed") (-585 (-1087 $)) (-1087 $))) (IF (|has| $ (-118)) (PROGN (-15 -2706 ((-3 (-1181 $) "failed") (-632 $))) (-15 -2705 ((-634 $) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) . T)) -((-2713 (((-3 (-2 (|:| -3775 (-696)) (|:| -2385 |#5|)) #1="failed") (-283 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2712 (((-85) (-283 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3775 (((-3 (-696) #1#) (-283 |#2| |#3| |#4| |#5|)) 15 T ELT))) -(((-824 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3775 ((-3 (-696) #1="failed") (-283 |#2| |#3| |#4| |#5|))) (-15 -2712 ((-85) (-283 |#2| |#3| |#4| |#5|))) (-15 -2713 ((-3 (-2 (|:| -3775 (-696)) (|:| -2385 |#5|)) #1#) (-283 |#2| |#3| |#4| |#5|)))) (-13 (-497) (-952 (-486))) (-364 |#1|) (-1157 |#2|) (-1157 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -824)) -((-2713 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-2 (|:| -3775 (-696)) (|:| -2385 *8))) (-5 *1 (-824 *4 *5 *6 *7 *8)))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-85)) (-5 *1 (-824 *4 *5 *6 *7 *8)))) (-3775 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-696)) (-5 *1 (-824 *4 *5 *6 *7 *8))))) -((-2713 (((-3 (-2 (|:| -3775 (-696)) (|:| -2385 |#3|)) #1="failed") (-283 (-350 (-486)) |#1| |#2| |#3|)) 64 T ELT)) (-2712 (((-85) (-283 (-350 (-486)) |#1| |#2| |#3|)) 16 T ELT)) (-3775 (((-3 (-696) #1#) (-283 (-350 (-486)) |#1| |#2| |#3|)) 14 T ELT))) -(((-825 |#1| |#2| |#3|) (-10 -7 (-15 -3775 ((-3 (-696) #1="failed") (-283 (-350 (-486)) |#1| |#2| |#3|))) (-15 -2712 ((-85) (-283 (-350 (-486)) |#1| |#2| |#3|))) (-15 -2713 ((-3 (-2 (|:| -3775 (-696)) (|:| -2385 |#3|)) #1#) (-283 (-350 (-486)) |#1| |#2| |#3|)))) (-1157 (-350 (-486))) (-1157 (-350 |#1|)) (-291 (-350 (-486)) |#1| |#2|)) (T -825)) -((-2713 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-350 (-486)) *4 *5 *6)) (-4 *4 (-1157 (-350 (-486)))) (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 (-350 (-486)) *4 *5)) (-5 *2 (-2 (|:| -3775 (-696)) (|:| -2385 *6))) (-5 *1 (-825 *4 *5 *6)))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-283 (-350 (-486)) *4 *5 *6)) (-4 *4 (-1157 (-350 (-486)))) (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 (-350 (-486)) *4 *5)) (-5 *2 (-85)) (-5 *1 (-825 *4 *5 *6)))) (-3775 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-350 (-486)) *4 *5 *6)) (-4 *4 (-1157 (-350 (-486)))) (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 (-350 (-486)) *4 *5)) (-5 *2 (-696)) (-5 *1 (-825 *4 *5 *6))))) -((-2718 ((|#2| |#2|) 26 T ELT)) (-2716 (((-486) (-585 (-2 (|:| |den| (-486)) (|:| |gcdnum| (-486))))) 15 T ELT)) (-2714 (((-832) (-486)) 38 T ELT)) (-2717 (((-486) |#2|) 45 T ELT)) (-2715 (((-486) |#2|) 21 T ELT) (((-2 (|:| |den| (-486)) (|:| |gcdnum| (-486))) |#1|) 20 T ELT))) -(((-826 |#1| |#2|) (-10 -7 (-15 -2714 ((-832) (-486))) (-15 -2715 ((-2 (|:| |den| (-486)) (|:| |gcdnum| (-486))) |#1|)) (-15 -2715 ((-486) |#2|)) (-15 -2716 ((-486) (-585 (-2 (|:| |den| (-486)) (|:| |gcdnum| (-486)))))) (-15 -2717 ((-486) |#2|)) (-15 -2718 (|#2| |#2|))) (-1157 (-350 (-486))) (-1157 (-350 |#1|))) (T -826)) -((-2718 (*1 *2 *2) (-12 (-4 *3 (-1157 (-350 (-486)))) (-5 *1 (-826 *3 *2)) (-4 *2 (-1157 (-350 *3))))) (-2717 (*1 *2 *3) (-12 (-4 *4 (-1157 (-350 *2))) (-5 *2 (-486)) (-5 *1 (-826 *4 *3)) (-4 *3 (-1157 (-350 *4))))) (-2716 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| |den| (-486)) (|:| |gcdnum| (-486))))) (-4 *4 (-1157 (-350 *2))) (-5 *2 (-486)) (-5 *1 (-826 *4 *5)) (-4 *5 (-1157 (-350 *4))))) (-2715 (*1 *2 *3) (-12 (-4 *4 (-1157 (-350 *2))) (-5 *2 (-486)) (-5 *1 (-826 *4 *3)) (-4 *3 (-1157 (-350 *4))))) (-2715 (*1 *2 *3) (-12 (-4 *3 (-1157 (-350 (-486)))) (-5 *2 (-2 (|:| |den| (-486)) (|:| |gcdnum| (-486)))) (-5 *1 (-826 *3 *4)) (-4 *4 (-1157 (-350 *3))))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-486)) (-4 *4 (-1157 (-350 *3))) (-5 *2 (-832)) (-5 *1 (-826 *4 *5)) (-4 *5 (-1157 (-350 *4)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 ((|#1| $) 99 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 93 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-2726 (($ |#1| (-348 |#1|)) 91 T ELT)) (-2720 (((-1087 |#1|) |#1| |#1|) 52 T ELT)) (-2719 (($ $) 60 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2721 (((-486) $) 96 T ELT)) (-2722 (($ $ (-486)) 98 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-2723 ((|#1| $) 95 T ELT)) (-2724 (((-348 |#1|) $) 94 T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) 92 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2725 (($ $) 49 T ELT)) (-3950 (((-774) $) 123 T ELT) (($ (-486)) 72 T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#1|) 40 T ELT) (((-350 |#1|) $) 77 T ELT) (($ (-350 (-348 |#1|))) 85 T ELT)) (-3129 (((-696)) 70 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 12 T CONST)) (-3059 (((-85) $ $) 86 T ELT)) (-3953 (($ $ $) NIL T ELT)) (-3840 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 48 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) -(((-827 |#1|) (-13 (-312) (-38 |#1|) (-10 -8 (-15 -3950 ((-350 |#1|) $)) (-15 -3950 ($ (-350 (-348 |#1|)))) (-15 -2725 ($ $)) (-15 -2724 ((-348 |#1|) $)) (-15 -2723 (|#1| $)) (-15 -2722 ($ $ (-486))) (-15 -2721 ((-486) $)) (-15 -2720 ((-1087 |#1|) |#1| |#1|)) (-15 -2719 ($ $)) (-15 -2726 ($ |#1| (-348 |#1|))) (-15 -3132 (|#1| $)))) (-258)) (T -827)) -((-3950 (*1 *2 *1) (-12 (-5 *2 (-350 *3)) (-5 *1 (-827 *3)) (-4 *3 (-258)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-350 (-348 *3))) (-4 *3 (-258)) (-5 *1 (-827 *3)))) (-2725 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-827 *3)) (-4 *3 (-258)))) (-2723 (*1 *2 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258)))) (-2722 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-827 *3)) (-4 *3 (-258)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-827 *3)) (-4 *3 (-258)))) (-2720 (*1 *2 *3 *3) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-827 *3)) (-4 *3 (-258)))) (-2719 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258)))) (-2726 (*1 *1 *2 *3) (-12 (-5 *3 (-348 *2)) (-4 *2 (-258)) (-5 *1 (-827 *2)))) (-3132 (*1 *2 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258))))) -((-2726 (((-51) (-859 |#1|) (-348 (-859 |#1|)) (-1092)) 17 T ELT) (((-51) (-350 (-859 |#1|)) (-1092)) 18 T ELT))) -(((-828 |#1|) (-10 -7 (-15 -2726 ((-51) (-350 (-859 |#1|)) (-1092))) (-15 -2726 ((-51) (-859 |#1|) (-348 (-859 |#1|)) (-1092)))) (-13 (-258) (-120))) (T -828)) -((-2726 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-348 (-859 *6))) (-5 *5 (-1092)) (-5 *3 (-859 *6)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-828 *6)))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-828 *5))))) -((-2727 ((|#4| (-585 |#4|)) 148 T ELT) (((-1087 |#4|) (-1087 |#4|) (-1087 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3147 (((-1087 |#4|) (-585 (-1087 |#4|))) 141 T ELT) (((-1087 |#4|) (-1087 |#4|) (-1087 |#4|)) 61 T ELT) ((|#4| (-585 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) -(((-829 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3147 (|#4| |#4| |#4|)) (-15 -3147 (|#4| (-585 |#4|))) (-15 -3147 ((-1087 |#4|) (-1087 |#4|) (-1087 |#4|))) (-15 -3147 ((-1087 |#4|) (-585 (-1087 |#4|)))) (-15 -2727 (|#4| |#4| |#4|)) (-15 -2727 ((-1087 |#4|) (-1087 |#4|) (-1087 |#4|))) (-15 -2727 (|#4| (-585 |#4|)))) (-719) (-758) (-258) (-863 |#3| |#1| |#2|)) (T -829)) -((-2727 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *6 *4 *5)) (-5 *1 (-829 *4 *5 *6 *2)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)))) (-2727 (*1 *2 *2 *2) (-12 (-5 *2 (-1087 *6)) (-4 *6 (-863 *5 *3 *4)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *6)))) (-2727 (*1 *2 *2 *2) (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *2)) (-4 *2 (-863 *5 *3 *4)))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-585 (-1087 *7))) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-1087 *7)) (-5 *1 (-829 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) (-3147 (*1 *2 *2 *2) (-12 (-5 *2 (-1087 *6)) (-4 *6 (-863 *5 *3 *4)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *6)))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *6 *4 *5)) (-5 *1 (-829 *4 *5 *6 *2)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)))) (-3147 (*1 *2 *2 *2) (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *2)) (-4 *2 (-863 *5 *3 *4))))) -((-2740 (((-818 (-486)) (-886)) 38 T ELT) (((-818 (-486)) (-585 (-486))) 34 T ELT)) (-2728 (((-818 (-486)) (-585 (-486))) 66 T ELT) (((-818 (-486)) (-832)) 67 T ELT)) (-2739 (((-818 (-486))) 39 T ELT)) (-2737 (((-818 (-486))) 53 T ELT) (((-818 (-486)) (-585 (-486))) 52 T ELT)) (-2736 (((-818 (-486))) 51 T ELT) (((-818 (-486)) (-585 (-486))) 50 T ELT)) (-2735 (((-818 (-486))) 49 T ELT) (((-818 (-486)) (-585 (-486))) 48 T ELT)) (-2734 (((-818 (-486))) 47 T ELT) (((-818 (-486)) (-585 (-486))) 46 T ELT)) (-2733 (((-818 (-486))) 45 T ELT) (((-818 (-486)) (-585 (-486))) 44 T ELT)) (-2738 (((-818 (-486))) 55 T ELT) (((-818 (-486)) (-585 (-486))) 54 T ELT)) (-2732 (((-818 (-486)) (-585 (-486))) 71 T ELT) (((-818 (-486)) (-832)) 73 T ELT)) (-2731 (((-818 (-486)) (-585 (-486))) 68 T ELT) (((-818 (-486)) (-832)) 69 T ELT)) (-2729 (((-818 (-486)) (-585 (-486))) 64 T ELT) (((-818 (-486)) (-832)) 65 T ELT)) (-2730 (((-818 (-486)) (-585 (-832))) 57 T ELT))) -(((-830) (-10 -7 (-15 -2728 ((-818 (-486)) (-832))) (-15 -2728 ((-818 (-486)) (-585 (-486)))) (-15 -2729 ((-818 (-486)) (-832))) (-15 -2729 ((-818 (-486)) (-585 (-486)))) (-15 -2730 ((-818 (-486)) (-585 (-832)))) (-15 -2731 ((-818 (-486)) (-832))) (-15 -2731 ((-818 (-486)) (-585 (-486)))) (-15 -2732 ((-818 (-486)) (-832))) (-15 -2732 ((-818 (-486)) (-585 (-486)))) (-15 -2733 ((-818 (-486)) (-585 (-486)))) (-15 -2733 ((-818 (-486)))) (-15 -2734 ((-818 (-486)) (-585 (-486)))) (-15 -2734 ((-818 (-486)))) (-15 -2735 ((-818 (-486)) (-585 (-486)))) (-15 -2735 ((-818 (-486)))) (-15 -2736 ((-818 (-486)) (-585 (-486)))) (-15 -2736 ((-818 (-486)))) (-15 -2737 ((-818 (-486)) (-585 (-486)))) (-15 -2737 ((-818 (-486)))) (-15 -2738 ((-818 (-486)) (-585 (-486)))) (-15 -2738 ((-818 (-486)))) (-15 -2739 ((-818 (-486)))) (-15 -2740 ((-818 (-486)) (-585 (-486)))) (-15 -2740 ((-818 (-486)) (-886))))) (T -830)) -((-2740 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2740 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2739 (*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2738 (*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2737 (*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2736 (*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2735 (*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2734 (*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2733 (*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-486))) (-5 *1 (-830))))) -((-2742 (((-585 (-859 |#1|)) (-585 (-859 |#1|)) (-585 (-1092))) 14 T ELT)) (-2741 (((-585 (-859 |#1|)) (-585 (-859 |#1|)) (-585 (-1092))) 13 T ELT))) -(((-831 |#1|) (-10 -7 (-15 -2741 ((-585 (-859 |#1|)) (-585 (-859 |#1|)) (-585 (-1092)))) (-15 -2742 ((-585 (-859 |#1|)) (-585 (-859 |#1|)) (-585 (-1092))))) (-393)) (T -831)) -((-2742 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-859 *4))) (-5 *3 (-585 (-1092))) (-4 *4 (-393)) (-5 *1 (-831 *4)))) (-2741 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-859 *4))) (-5 *3 (-585 (-1092))) (-4 *4 (-393)) (-5 *1 (-831 *4))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3147 (($ $ $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2669 (($) NIL T CONST)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-832) (-13 (-720) (-665) (-10 -8 (-15 -3147 ($ $ $)) (-6 (-4000 "*"))))) (T -832)) -((-3147 (*1 *1 *1 *1) (-5 *1 (-832)))) -((-696) (|%ilt| 0 |#1|)) -((-3950 (((-265 |#1|) (-418)) 16 T ELT))) -(((-833 |#1|) (-10 -7 (-15 -3950 ((-265 |#1|) (-418)))) (-497)) (T -833)) -((-3950 (*1 *2 *3) (-12 (-5 *3 (-418)) (-5 *2 (-265 *4)) (-5 *1 (-833 *4)) (-4 *4 (-497))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-834) (-113)) (T -834)) -((-2744 (*1 *2 *3) (-12 (-4 *1 (-834)) (-5 *2 (-2 (|:| -3958 (-585 *1)) (|:| -2411 *1))) (-5 *3 (-585 *1)))) (-2743 (*1 *2 *3 *1) (-12 (-4 *1 (-834)) (-5 *2 (-634 (-585 *1))) (-5 *3 (-585 *1))))) -(-13 (-393) (-10 -8 (-15 -2744 ((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $))) (-15 -2743 ((-634 (-585 $)) (-585 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-3108 (((-1087 |#2|) (-585 |#2|) (-585 |#2|)) 17 T ELT) (((-1150 |#1| |#2|) (-1150 |#1| |#2|) (-585 |#2|) (-585 |#2|)) 13 T ELT))) -(((-835 |#1| |#2|) (-10 -7 (-15 -3108 ((-1150 |#1| |#2|) (-1150 |#1| |#2|) (-585 |#2|) (-585 |#2|))) (-15 -3108 ((-1087 |#2|) (-585 |#2|) (-585 |#2|)))) (-1092) (-312)) (T -835)) -((-3108 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-312)) (-5 *2 (-1087 *5)) (-5 *1 (-835 *4 *5)) (-14 *4 (-1092)))) (-3108 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1150 *4 *5)) (-5 *3 (-585 *5)) (-14 *4 (-1092)) (-4 *5 (-312)) (-5 *1 (-835 *4 *5))))) -((-2745 ((|#2| (-585 |#1|) (-585 |#1|)) 28 T ELT))) -(((-836 |#1| |#2|) (-10 -7 (-15 -2745 (|#2| (-585 |#1|) (-585 |#1|)))) (-312) (-1157 |#1|)) (T -836)) -((-2745 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-312)) (-4 *2 (-1157 *4)) (-5 *1 (-836 *4 *2))))) -((-2747 (((-486) (-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-1075)) 175 T ELT)) (-2766 ((|#4| |#4|) 194 T ELT)) (-2751 (((-585 (-350 (-859 |#1|))) (-585 (-1092))) 146 T ELT)) (-2765 (((-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))) (-632 |#4|) (-585 (-350 (-859 |#1|))) (-585 (-585 |#4|)) (-696) (-696) (-486)) 88 T ELT)) (-2755 (((-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))) (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))) (-585 |#4|)) 69 T ELT)) (-2764 (((-632 |#4|) (-632 |#4|) (-585 |#4|)) 65 T ELT)) (-2748 (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-1075)) 187 T ELT)) (-2746 (((-486) (-632 |#4|) (-832) (-1075)) 167 T ELT) (((-486) (-632 |#4|) (-585 (-1092)) (-832) (-1075)) 166 T ELT) (((-486) (-632 |#4|) (-585 |#4|) (-832) (-1075)) 165 T ELT) (((-486) (-632 |#4|) (-1075)) 154 T ELT) (((-486) (-632 |#4|) (-585 (-1092)) (-1075)) 153 T ELT) (((-486) (-632 |#4|) (-585 |#4|) (-1075)) 152 T ELT) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-832)) 151 T ELT) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-585 (-1092)) (-832)) 150 T ELT) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-585 |#4|) (-832)) 149 T ELT) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|)) 148 T ELT) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-585 (-1092))) 147 T ELT) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-585 |#4|)) 143 T ELT)) (-2752 ((|#4| (-859 |#1|)) 80 T ELT)) (-2762 (((-85) (-585 |#4|) (-585 (-585 |#4|))) 191 T ELT)) (-2761 (((-585 (-585 (-486))) (-486) (-486)) 161 T ELT)) (-2760 (((-585 (-585 |#4|)) (-585 (-585 |#4|))) 106 T ELT)) (-2759 (((-696) (-585 (-2 (|:| -3111 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (|:| |fgb| (-585 |#4|))))) 100 T ELT)) (-2758 (((-696) (-585 (-2 (|:| -3111 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (|:| |fgb| (-585 |#4|))))) 99 T ELT)) (-2767 (((-85) (-585 (-859 |#1|))) 19 T ELT) (((-85) (-585 |#4|)) 15 T ELT)) (-2753 (((-2 (|:| |sysok| (-85)) (|:| |z0| (-585 |#4|)) (|:| |n0| (-585 |#4|))) (-585 |#4|) (-585 |#4|)) 84 T ELT)) (-2757 (((-585 |#4|) |#4|) 57 T ELT)) (-2750 (((-585 (-350 (-859 |#1|))) (-585 |#4|)) 142 T ELT) (((-632 (-350 (-859 |#1|))) (-632 |#4|)) 66 T ELT) (((-350 (-859 |#1|)) |#4|) 139 T ELT)) (-2749 (((-2 (|:| |rgl| (-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))))))) (|:| |rgsz| (-486))) (-632 |#4|) (-585 (-350 (-859 |#1|))) (-696) (-1075) (-486)) 112 T ELT)) (-2754 (((-585 (-2 (|:| -3111 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (|:| |fgb| (-585 |#4|)))) (-632 |#4|) (-696)) 98 T ELT)) (-2763 (((-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486))))) (-632 |#4|) (-696)) 121 T ELT)) (-2756 (((-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))) (-2 (|:| |mat| (-632 (-350 (-859 |#1|)))) (|:| |vec| (-585 (-350 (-859 |#1|)))) (|:| -3111 (-696)) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486))))) 56 T ELT))) -(((-837 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2746 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-585 |#4|))) (-15 -2746 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-585 (-1092)))) (-15 -2746 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|))) (-15 -2746 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-585 |#4|) (-832))) (-15 -2746 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-585 (-1092)) (-832))) (-15 -2746 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-632 |#4|) (-832))) (-15 -2746 ((-486) (-632 |#4|) (-585 |#4|) (-1075))) (-15 -2746 ((-486) (-632 |#4|) (-585 (-1092)) (-1075))) (-15 -2746 ((-486) (-632 |#4|) (-1075))) (-15 -2746 ((-486) (-632 |#4|) (-585 |#4|) (-832) (-1075))) (-15 -2746 ((-486) (-632 |#4|) (-585 (-1092)) (-832) (-1075))) (-15 -2746 ((-486) (-632 |#4|) (-832) (-1075))) (-15 -2747 ((-486) (-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-1075))) (-15 -2748 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|))))))))) (-1075))) (-15 -2749 ((-2 (|:| |rgl| (-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))))))) (|:| |rgsz| (-486))) (-632 |#4|) (-585 (-350 (-859 |#1|))) (-696) (-1075) (-486))) (-15 -2750 ((-350 (-859 |#1|)) |#4|)) (-15 -2750 ((-632 (-350 (-859 |#1|))) (-632 |#4|))) (-15 -2750 ((-585 (-350 (-859 |#1|))) (-585 |#4|))) (-15 -2751 ((-585 (-350 (-859 |#1|))) (-585 (-1092)))) (-15 -2752 (|#4| (-859 |#1|))) (-15 -2753 ((-2 (|:| |sysok| (-85)) (|:| |z0| (-585 |#4|)) (|:| |n0| (-585 |#4|))) (-585 |#4|) (-585 |#4|))) (-15 -2754 ((-585 (-2 (|:| -3111 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (|:| |fgb| (-585 |#4|)))) (-632 |#4|) (-696))) (-15 -2755 ((-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))) (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))) (-585 |#4|))) (-15 -2756 ((-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))) (-2 (|:| |mat| (-632 (-350 (-859 |#1|)))) (|:| |vec| (-585 (-350 (-859 |#1|)))) (|:| -3111 (-696)) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (-15 -2757 ((-585 |#4|) |#4|)) (-15 -2758 ((-696) (-585 (-2 (|:| -3111 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (|:| |fgb| (-585 |#4|)))))) (-15 -2759 ((-696) (-585 (-2 (|:| -3111 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (|:| |fgb| (-585 |#4|)))))) (-15 -2760 ((-585 (-585 |#4|)) (-585 (-585 |#4|)))) (-15 -2761 ((-585 (-585 (-486))) (-486) (-486))) (-15 -2762 ((-85) (-585 |#4|) (-585 (-585 |#4|)))) (-15 -2763 ((-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486))))) (-632 |#4|) (-696))) (-15 -2764 ((-632 |#4|) (-632 |#4|) (-585 |#4|))) (-15 -2765 ((-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 |#1|)))) (|:| -2014 (-585 (-1181 (-350 (-859 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))) (-632 |#4|) (-585 (-350 (-859 |#1|))) (-585 (-585 |#4|)) (-696) (-696) (-486))) (-15 -2766 (|#4| |#4|)) (-15 -2767 ((-85) (-585 |#4|))) (-15 -2767 ((-85) (-585 (-859 |#1|))))) (-13 (-258) (-120)) (-13 (-758) (-555 (-1092))) (-719) (-863 |#1| |#3| |#2|)) (T -837)) -((-2767 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-85)) (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5)))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-85)) (-5 *1 (-837 *4 *5 *6 *7)))) (-2766 (*1 *2 *2) (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-758) (-555 (-1092)))) (-4 *5 (-719)) (-5 *1 (-837 *3 *4 *5 *2)) (-4 *2 (-863 *3 *5 *4)))) (-2765 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486))))) (-5 *4 (-632 *12)) (-5 *5 (-585 (-350 (-859 *9)))) (-5 *6 (-585 (-585 *12))) (-5 *7 (-696)) (-5 *8 (-486)) (-4 *9 (-13 (-258) (-120))) (-4 *12 (-863 *9 *11 *10)) (-4 *10 (-13 (-758) (-555 (-1092)))) (-4 *11 (-719)) (-5 *2 (-2 (|:| |eqzro| (-585 *12)) (|:| |neqzro| (-585 *12)) (|:| |wcond| (-585 (-859 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *9)))) (|:| -2014 (-585 (-1181 (-350 (-859 *9))))))))) (-5 *1 (-837 *9 *10 *11 *12)))) (-2764 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *7)) (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *1 (-837 *4 *5 *6 *7)))) (-2763 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-696)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) (-5 *2 (-585 (-2 (|:| |det| *8) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (-5 *1 (-837 *5 *6 *7 *8)))) (-2762 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-585 *8))) (-5 *3 (-585 *8)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) (-5 *2 (-85)) (-5 *1 (-837 *5 *6 *7 *8)))) (-2761 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-585 (-585 (-486)))) (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-486)) (-4 *7 (-863 *4 *6 *5)))) (-2760 (*1 *2 *2) (-12 (-5 *2 (-585 (-585 *6))) (-4 *6 (-863 *3 *5 *4)) (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-758) (-555 (-1092)))) (-4 *5 (-719)) (-5 *1 (-837 *3 *4 *5 *6)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3111 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| *7) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (|:| |fgb| (-585 *7))))) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-696)) (-5 *1 (-837 *4 *5 *6 *7)))) (-2758 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3111 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| *7) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (|:| |fgb| (-585 *7))))) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-696)) (-5 *1 (-837 *4 *5 *6 *7)))) (-2757 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-585 *3)) (-5 *1 (-837 *4 *5 *6 *3)) (-4 *3 (-863 *4 *6 *5)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-632 (-350 (-859 *4)))) (|:| |vec| (-585 (-350 (-859 *4)))) (|:| -3111 (-696)) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486))))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-2 (|:| |partsol| (-1181 (-350 (-859 *4)))) (|:| -2014 (-585 (-1181 (-350 (-859 *4))))))) (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5)))) (-2755 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1181 (-350 (-859 *4)))) (|:| -2014 (-585 (-1181 (-350 (-859 *4))))))) (-5 *3 (-585 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-863 *4 *6 *5)) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *1 (-837 *4 *5 *6 *7)))) (-2754 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) (-5 *2 (-585 (-2 (|:| -3111 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| *8) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486)))))) (|:| |fgb| (-585 *8))))) (-5 *1 (-837 *5 *6 *7 *8)) (-5 *4 (-696)))) (-2753 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-4 *7 (-863 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-585 *7)) (|:| |n0| (-585 *7)))) (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-2752 (*1 *2 *3) (-12 (-5 *3 (-859 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-863 *4 *6 *5)) (-5 *1 (-837 *4 *5 *6 *2)) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-585 (-1092))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-585 (-350 (-859 *4)))) (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5)))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-585 (-350 (-859 *4)))) (-5 *1 (-837 *4 *5 *6 *7)))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-632 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-632 (-350 (-859 *4)))) (-5 *1 (-837 *4 *5 *6 *7)))) (-2750 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-350 (-859 *4))) (-5 *1 (-837 *4 *5 *6 *3)) (-4 *3 (-863 *4 *6 *5)))) (-2749 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-632 *11)) (-5 *4 (-585 (-350 (-859 *8)))) (-5 *5 (-696)) (-5 *6 (-1075)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-863 *8 *10 *9)) (-4 *9 (-13 (-758) (-555 (-1092)))) (-4 *10 (-719)) (-5 *2 (-2 (|:| |rgl| (-585 (-2 (|:| |eqzro| (-585 *11)) (|:| |neqzro| (-585 *11)) (|:| |wcond| (-585 (-859 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *8)))) (|:| -2014 (-585 (-1181 (-350 (-859 *8)))))))))) (|:| |rgsz| (-486)))) (-5 *1 (-837 *8 *9 *10 *11)) (-5 *7 (-486)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *7)) (|:| |neqzro| (-585 *7)) (|:| |wcond| (-585 (-859 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *4)))) (|:| -2014 (-585 (-1181 (-350 (-859 *4)))))))))) (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *5)))) (|:| -2014 (-585 (-1181 (-350 (-859 *5)))))))))) (-5 *4 (-1075)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-863 *5 *7 *6)) (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) (-5 *2 (-486)) (-5 *1 (-837 *5 *6 *7 *8)))) (-2746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-832)) (-5 *5 (-1075)) (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1092)))) (-4 *8 (-719)) (-5 *2 (-486)) (-5 *1 (-837 *6 *7 *8 *9)))) (-2746 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-632 *10)) (-5 *4 (-585 (-1092))) (-5 *5 (-832)) (-5 *6 (-1075)) (-4 *10 (-863 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-758) (-555 (-1092)))) (-4 *9 (-719)) (-5 *2 (-486)) (-5 *1 (-837 *7 *8 *9 *10)))) (-2746 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-632 *10)) (-5 *4 (-585 *10)) (-5 *5 (-832)) (-5 *6 (-1075)) (-4 *10 (-863 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-758) (-555 (-1092)))) (-4 *9 (-719)) (-5 *2 (-486)) (-5 *1 (-837 *7 *8 *9 *10)))) (-2746 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-1075)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) (-5 *2 (-486)) (-5 *1 (-837 *5 *6 *7 *8)))) (-2746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-585 (-1092))) (-5 *5 (-1075)) (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1092)))) (-4 *8 (-719)) (-5 *2 (-486)) (-5 *1 (-837 *6 *7 *8 *9)))) (-2746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-585 *9)) (-5 *5 (-1075)) (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1092)))) (-4 *8 (-719)) (-5 *2 (-486)) (-5 *1 (-837 *6 *7 *8 *9)))) (-2746 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-832)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *5)))) (|:| -2014 (-585 (-1181 (-350 (-859 *5)))))))))) (-5 *1 (-837 *5 *6 *7 *8)))) (-2746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-585 (-1092))) (-5 *5 (-832)) (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1092)))) (-4 *8 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *9)) (|:| |neqzro| (-585 *9)) (|:| |wcond| (-585 (-859 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *6)))) (|:| -2014 (-585 (-1181 (-350 (-859 *6)))))))))) (-5 *1 (-837 *6 *7 *8 *9)))) (-2746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *5 (-832)) (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1092)))) (-4 *8 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *9)) (|:| |neqzro| (-585 *9)) (|:| |wcond| (-585 (-859 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *6)))) (|:| -2014 (-585 (-1181 (-350 (-859 *6)))))))))) (-5 *1 (-837 *6 *7 *8 *9)) (-5 *4 (-585 *9)))) (-2746 (*1 *2 *3) (-12 (-5 *3 (-632 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *7)) (|:| |neqzro| (-585 *7)) (|:| |wcond| (-585 (-859 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *4)))) (|:| -2014 (-585 (-1181 (-350 (-859 *4)))))))))) (-5 *1 (-837 *4 *5 *6 *7)))) (-2746 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-585 (-1092))) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *5)))) (|:| -2014 (-585 (-1181 (-350 (-859 *5)))))))))) (-5 *1 (-837 *5 *6 *7 *8)))) (-2746 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-350 (-859 *5)))) (|:| -2014 (-585 (-1181 (-350 (-859 *5)))))))))) (-5 *1 (-837 *5 *6 *7 *8)) (-5 *4 (-585 *8))))) -((-3878 (($ $ (-1003 (-179))) 125 T ELT) (($ $ (-1003 (-179)) (-1003 (-179))) 126 T ELT)) (-2899 (((-1003 (-179)) $) 73 T ELT)) (-2900 (((-1003 (-179)) $) 72 T ELT)) (-2791 (((-1003 (-179)) $) 74 T ELT)) (-2772 (((-486) (-486)) 66 T ELT)) (-2776 (((-486) (-486)) 61 T ELT)) (-2774 (((-486) (-486)) 64 T ELT)) (-2770 (((-85) (-85)) 68 T ELT)) (-2773 (((-486)) 65 T ELT)) (-3137 (($ $ (-1003 (-179))) 129 T ELT) (($ $) 130 T ELT)) (-2793 (($ (-1 (-856 (-179)) (-179)) (-1003 (-179))) 148 T ELT) (($ (-1 (-856 (-179)) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179))) 149 T ELT)) (-2779 (($ (-1 (-179) (-179)) (-1003 (-179))) 156 T ELT) (($ (-1 (-179) (-179))) 160 T ELT)) (-2792 (($ (-1 (-179) (-179)) (-1003 (-179))) 144 T ELT) (($ (-1 (-179) (-179)) (-1003 (-179)) (-1003 (-179))) 145 T ELT) (($ (-585 (-1 (-179) (-179))) (-1003 (-179))) 153 T ELT) (($ (-585 (-1 (-179) (-179))) (-1003 (-179)) (-1003 (-179))) 154 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179))) 146 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179))) 147 T ELT) (($ $ (-1003 (-179))) 131 T ELT)) (-2778 (((-85) $) 69 T ELT)) (-2769 (((-486)) 70 T ELT)) (-2777 (((-486)) 59 T ELT)) (-2775 (((-486)) 62 T ELT)) (-2901 (((-585 (-585 (-856 (-179)))) $) 35 T ELT)) (-2768 (((-85) (-85)) 71 T ELT)) (-3950 (((-774) $) 174 T ELT)) (-2771 (((-85)) 67 T ELT))) -(((-838) (-13 (-868) (-10 -8 (-15 -2792 ($ (-1 (-179) (-179)) (-1003 (-179)))) (-15 -2792 ($ (-1 (-179) (-179)) (-1003 (-179)) (-1003 (-179)))) (-15 -2792 ($ (-585 (-1 (-179) (-179))) (-1003 (-179)))) (-15 -2792 ($ (-585 (-1 (-179) (-179))) (-1003 (-179)) (-1003 (-179)))) (-15 -2792 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179)))) (-15 -2792 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)))) (-15 -2793 ($ (-1 (-856 (-179)) (-179)) (-1003 (-179)))) (-15 -2793 ($ (-1 (-856 (-179)) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)))) (-15 -2779 ($ (-1 (-179) (-179)) (-1003 (-179)))) (-15 -2779 ($ (-1 (-179) (-179)))) (-15 -2792 ($ $ (-1003 (-179)))) (-15 -2778 ((-85) $)) (-15 -3878 ($ $ (-1003 (-179)))) (-15 -3878 ($ $ (-1003 (-179)) (-1003 (-179)))) (-15 -3137 ($ $ (-1003 (-179)))) (-15 -3137 ($ $)) (-15 -2791 ((-1003 (-179)) $)) (-15 -2777 ((-486))) (-15 -2776 ((-486) (-486))) (-15 -2775 ((-486))) (-15 -2774 ((-486) (-486))) (-15 -2773 ((-486))) (-15 -2772 ((-486) (-486))) (-15 -2771 ((-85))) (-15 -2770 ((-85) (-85))) (-15 -2769 ((-486))) (-15 -2768 ((-85) (-85)))))) (T -838)) -((-2792 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2792 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2792 (*1 *1 *2 *3) (-12 (-5 *2 (-585 (-1 (-179) (-179)))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2792 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-585 (-1 (-179) (-179)))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2792 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2792 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2793 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2793 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2779 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2779 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-838)))) (-2792 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) (-3878 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) (-3137 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) (-3137 (*1 *1 *1) (-5 *1 (-838))) (-2791 (*1 *2 *1) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) (-2777 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838)))) (-2776 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838)))) (-2775 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838)))) (-2774 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838)))) (-2773 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838)))) (-2771 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-2769 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838)))) (-2768 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) -((-2779 (((-838) |#1| (-1092)) 17 T ELT) (((-838) |#1| (-1092) (-1003 (-179))) 21 T ELT)) (-2792 (((-838) |#1| |#1| (-1092) (-1003 (-179))) 19 T ELT) (((-838) |#1| (-1092) (-1003 (-179))) 15 T ELT))) -(((-839 |#1|) (-10 -7 (-15 -2792 ((-838) |#1| (-1092) (-1003 (-179)))) (-15 -2792 ((-838) |#1| |#1| (-1092) (-1003 (-179)))) (-15 -2779 ((-838) |#1| (-1092) (-1003 (-179)))) (-15 -2779 ((-838) |#1| (-1092)))) (-555 (-475))) (T -839)) -((-2779 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-838)) (-5 *1 (-839 *3)) (-4 *3 (-555 (-475))))) (-2779 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-1003 (-179))) (-5 *2 (-838)) (-5 *1 (-839 *3)) (-4 *3 (-555 (-475))))) (-2792 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-1003 (-179))) (-5 *2 (-838)) (-5 *1 (-839 *3)) (-4 *3 (-555 (-475))))) (-2792 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-1003 (-179))) (-5 *2 (-838)) (-5 *1 (-839 *3)) (-4 *3 (-555 (-475)))))) -((-3878 (($ $ (-1003 (-179)) (-1003 (-179)) (-1003 (-179))) 123 T ELT)) (-2898 (((-1003 (-179)) $) 64 T ELT)) (-2899 (((-1003 (-179)) $) 63 T ELT)) (-2900 (((-1003 (-179)) $) 62 T ELT)) (-2790 (((-585 (-585 (-179))) $) 69 T ELT)) (-2791 (((-1003 (-179)) $) 65 T ELT)) (-2784 (((-486) (-486)) 57 T ELT)) (-2788 (((-486) (-486)) 52 T ELT)) (-2786 (((-486) (-486)) 55 T ELT)) (-2782 (((-85) (-85)) 59 T ELT)) (-2785 (((-486)) 56 T ELT)) (-3137 (($ $ (-1003 (-179))) 126 T ELT) (($ $) 127 T ELT)) (-2793 (($ (-1 (-856 (-179)) (-179)) (-1003 (-179))) 133 T ELT) (($ (-1 (-856 (-179)) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179))) 134 T ELT)) (-2792 (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179))) 140 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179))) 141 T ELT) (($ $ (-1003 (-179))) 129 T ELT)) (-2781 (((-486)) 60 T ELT)) (-2789 (((-486)) 50 T ELT)) (-2787 (((-486)) 53 T ELT)) (-2901 (((-585 (-585 (-856 (-179)))) $) 157 T ELT)) (-2780 (((-85) (-85)) 61 T ELT)) (-3950 (((-774) $) 155 T ELT)) (-2783 (((-85)) 58 T ELT))) -(((-840) (-13 (-889) (-10 -8 (-15 -2793 ($ (-1 (-856 (-179)) (-179)) (-1003 (-179)))) (-15 -2793 ($ (-1 (-856 (-179)) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)))) (-15 -2792 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179)))) (-15 -2792 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)))) (-15 -2792 ($ $ (-1003 (-179)))) (-15 -3878 ($ $ (-1003 (-179)) (-1003 (-179)) (-1003 (-179)))) (-15 -3137 ($ $ (-1003 (-179)))) (-15 -3137 ($ $)) (-15 -2791 ((-1003 (-179)) $)) (-15 -2790 ((-585 (-585 (-179))) $)) (-15 -2789 ((-486))) (-15 -2788 ((-486) (-486))) (-15 -2787 ((-486))) (-15 -2786 ((-486) (-486))) (-15 -2785 ((-486))) (-15 -2784 ((-486) (-486))) (-15 -2783 ((-85))) (-15 -2782 ((-85) (-85))) (-15 -2781 ((-486))) (-15 -2780 ((-85) (-85)))))) (T -840)) -((-2793 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-840)))) (-2793 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-840)))) (-2792 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-840)))) (-2792 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-840)))) (-2792 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) (-3878 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) (-3137 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) (-3137 (*1 *1 *1) (-5 *1 (-840))) (-2791 (*1 *2 *1) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-179)))) (-5 *1 (-840)))) (-2789 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840)))) (-2788 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840)))) (-2787 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840)))) (-2786 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840)))) (-2785 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840)))) (-2783 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840)))) (-2782 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840)))) (-2781 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840))))) -((-2794 (((-585 (-1003 (-179))) (-585 (-585 (-856 (-179))))) 34 T ELT))) -(((-841) (-10 -7 (-15 -2794 ((-585 (-1003 (-179))) (-585 (-585 (-856 (-179)))))))) (T -841)) -((-2794 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *2 (-585 (-1003 (-179)))) (-5 *1 (-841))))) -((-2796 (((-265 (-486)) (-1092)) 16 T ELT)) (-2797 (((-265 (-486)) (-1092)) 14 T ELT)) (-3956 (((-265 (-486)) (-1092)) 12 T ELT)) (-2795 (((-265 (-486)) (-1092) (-448)) 19 T ELT))) -(((-842) (-10 -7 (-15 -2795 ((-265 (-486)) (-1092) (-448))) (-15 -3956 ((-265 (-486)) (-1092))) (-15 -2796 ((-265 (-486)) (-1092))) (-15 -2797 ((-265 (-486)) (-1092))))) (T -842)) -((-2797 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-265 (-486))) (-5 *1 (-842)))) (-2796 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-265 (-486))) (-5 *1 (-842)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-265 (-486))) (-5 *1 (-842)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-448)) (-5 *2 (-265 (-486))) (-5 *1 (-842))))) -((-2796 ((|#2| |#2|) 28 T ELT)) (-2797 ((|#2| |#2|) 29 T ELT)) (-3956 ((|#2| |#2|) 27 T ELT)) (-2795 ((|#2| |#2| (-448)) 26 T ELT))) -(((-843 |#1| |#2|) (-10 -7 (-15 -2795 (|#2| |#2| (-448))) (-15 -3956 (|#2| |#2|)) (-15 -2796 (|#2| |#2|)) (-15 -2797 (|#2| |#2|))) (-1015) (-364 |#1|)) (T -843)) -((-2797 (*1 *2 *2) (-12 (-4 *3 (-1015)) (-5 *1 (-843 *3 *2)) (-4 *2 (-364 *3)))) (-2796 (*1 *2 *2) (-12 (-4 *3 (-1015)) (-5 *1 (-843 *3 *2)) (-4 *2 (-364 *3)))) (-3956 (*1 *2 *2) (-12 (-4 *3 (-1015)) (-5 *1 (-843 *3 *2)) (-4 *2 (-364 *3)))) (-2795 (*1 *2 *2 *3) (-12 (-5 *3 (-448)) (-4 *4 (-1015)) (-5 *1 (-843 *4 *2)) (-4 *2 (-364 *4))))) -((-2799 (((-800 |#1| |#3|) |#2| (-802 |#1|) (-800 |#1| |#3|)) 25 T ELT)) (-2798 (((-1 (-85) |#2|) (-1 (-85) |#3|)) 13 T ELT))) -(((-844 |#1| |#2| |#3|) (-10 -7 (-15 -2798 ((-1 (-85) |#2|) (-1 (-85) |#3|))) (-15 -2799 ((-800 |#1| |#3|) |#2| (-802 |#1|) (-800 |#1| |#3|)))) (-1015) (-798 |#1|) (-13 (-1015) (-952 |#2|))) (T -844)) -((-2799 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 *6)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *6 (-13 (-1015) (-952 *3))) (-4 *3 (-798 *5)) (-5 *1 (-844 *5 *3 *6)))) (-2798 (*1 *2 *3) (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1015) (-952 *5))) (-4 *5 (-798 *4)) (-4 *4 (-1015)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-844 *4 *5 *6))))) -((-2799 (((-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|)) 30 T ELT))) -(((-845 |#1| |#2| |#3|) (-10 -7 (-15 -2799 ((-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|)))) (-1015) (-13 (-497) (-798 |#1|)) (-13 (-364 |#2|) (-555 (-802 |#1|)) (-798 |#1|) (-952 (-552 $)))) (T -845)) -((-2799 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 *3)) (-4 *5 (-1015)) (-4 *3 (-13 (-364 *6) (-555 *4) (-798 *5) (-952 (-552 $)))) (-5 *4 (-802 *5)) (-4 *6 (-13 (-497) (-798 *5))) (-5 *1 (-845 *5 *6 *3))))) -((-2799 (((-800 (-486) |#1|) |#1| (-802 (-486)) (-800 (-486) |#1|)) 13 T ELT))) -(((-846 |#1|) (-10 -7 (-15 -2799 ((-800 (-486) |#1|) |#1| (-802 (-486)) (-800 (-486) |#1|)))) (-485)) (T -846)) -((-2799 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 (-486) *3)) (-5 *4 (-802 (-486))) (-4 *3 (-485)) (-5 *1 (-846 *3))))) -((-2799 (((-800 |#1| |#2|) (-552 |#2|) (-802 |#1|) (-800 |#1| |#2|)) 57 T ELT))) -(((-847 |#1| |#2|) (-10 -7 (-15 -2799 ((-800 |#1| |#2|) (-552 |#2|) (-802 |#1|) (-800 |#1| |#2|)))) (-1015) (-13 (-1015) (-952 (-552 $)) (-555 (-802 |#1|)) (-798 |#1|))) (T -847)) -((-2799 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 *6)) (-5 *3 (-552 *6)) (-4 *5 (-1015)) (-4 *6 (-13 (-1015) (-952 (-552 $)) (-555 *4) (-798 *5))) (-5 *4 (-802 *5)) (-5 *1 (-847 *5 *6))))) -((-2799 (((-797 |#1| |#2| |#3|) |#3| (-802 |#1|) (-797 |#1| |#2| |#3|)) 17 T ELT))) -(((-848 |#1| |#2| |#3|) (-10 -7 (-15 -2799 ((-797 |#1| |#2| |#3|) |#3| (-802 |#1|) (-797 |#1| |#2| |#3|)))) (-1015) (-798 |#1|) (-610 |#2|)) (T -848)) -((-2799 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-797 *5 *6 *3)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *6 (-798 *5)) (-4 *3 (-610 *6)) (-5 *1 (-848 *5 *6 *3))))) -((-2799 (((-800 |#1| |#5|) |#5| (-802 |#1|) (-800 |#1| |#5|)) 17 (|has| |#3| (-798 |#1|)) ELT) (((-800 |#1| |#5|) |#5| (-802 |#1|) (-800 |#1| |#5|) (-1 (-800 |#1| |#5|) |#3| (-802 |#1|) (-800 |#1| |#5|))) 16 T ELT))) -(((-849 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2799 ((-800 |#1| |#5|) |#5| (-802 |#1|) (-800 |#1| |#5|) (-1 (-800 |#1| |#5|) |#3| (-802 |#1|) (-800 |#1| |#5|)))) (IF (|has| |#3| (-798 |#1|)) (-15 -2799 ((-800 |#1| |#5|) |#5| (-802 |#1|) (-800 |#1| |#5|))) |%noBranch|)) (-1015) (-719) (-758) (-13 (-963) (-798 |#1|)) (-13 (-863 |#4| |#2| |#3|) (-555 (-802 |#1|)))) (T -849)) -((-2799 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 *3)) (-4 *5 (-1015)) (-4 *3 (-13 (-863 *8 *6 *7) (-555 *4))) (-5 *4 (-802 *5)) (-4 *7 (-798 *5)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-13 (-963) (-798 *5))) (-5 *1 (-849 *5 *6 *7 *8 *3)))) (-2799 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-800 *6 *3) *8 (-802 *6) (-800 *6 *3))) (-4 *8 (-758)) (-5 *2 (-800 *6 *3)) (-5 *4 (-802 *6)) (-4 *6 (-1015)) (-4 *3 (-13 (-863 *9 *7 *8) (-555 *4))) (-4 *7 (-719)) (-4 *9 (-13 (-963) (-798 *6))) (-5 *1 (-849 *6 *7 *8 *9 *3))))) -((-3212 (((-265 (-486)) (-1092) (-585 (-1 (-85) |#1|))) 18 T ELT) (((-265 (-486)) (-1092) (-1 (-85) |#1|)) 15 T ELT))) -(((-850 |#1|) (-10 -7 (-15 -3212 ((-265 (-486)) (-1092) (-1 (-85) |#1|))) (-15 -3212 ((-265 (-486)) (-1092) (-585 (-1 (-85) |#1|))))) (-1131)) (T -850)) -((-3212 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-585 (-1 (-85) *5))) (-4 *5 (-1131)) (-5 *2 (-265 (-486))) (-5 *1 (-850 *5)))) (-3212 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1131)) (-5 *2 (-265 (-486))) (-5 *1 (-850 *5))))) -((-3212 ((|#2| |#2| (-585 (-1 (-85) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-85) |#3|)) 13 T ELT))) -(((-851 |#1| |#2| |#3|) (-10 -7 (-15 -3212 (|#2| |#2| (-1 (-85) |#3|))) (-15 -3212 (|#2| |#2| (-585 (-1 (-85) |#3|))))) (-1015) (-364 |#1|) (-1131)) (T -851)) -((-3212 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-1 (-85) *5))) (-4 *5 (-1131)) (-4 *4 (-1015)) (-5 *1 (-851 *4 *2 *5)) (-4 *2 (-364 *4)))) (-3212 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1131)) (-4 *4 (-1015)) (-5 *1 (-851 *4 *2 *5)) (-4 *2 (-364 *4))))) -((-2799 (((-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|)) 25 T ELT))) -(((-852 |#1| |#2| |#3|) (-10 -7 (-15 -2799 ((-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|)))) (-1015) (-13 (-497) (-798 |#1|) (-555 (-802 |#1|))) (-906 |#2|)) (T -852)) -((-2799 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 *3)) (-4 *5 (-1015)) (-4 *3 (-906 *6)) (-4 *6 (-13 (-497) (-798 *5) (-555 *4))) (-5 *4 (-802 *5)) (-5 *1 (-852 *5 *6 *3))))) -((-2799 (((-800 |#1| (-1092)) (-1092) (-802 |#1|) (-800 |#1| (-1092))) 18 T ELT))) -(((-853 |#1|) (-10 -7 (-15 -2799 ((-800 |#1| (-1092)) (-1092) (-802 |#1|) (-800 |#1| (-1092))))) (-1015)) (T -853)) -((-2799 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 (-1092))) (-5 *3 (-1092)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-5 *1 (-853 *5))))) -((-2800 (((-800 |#1| |#3|) (-585 |#3|) (-585 (-802 |#1|)) (-800 |#1| |#3|) (-1 (-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|))) 34 T ELT)) (-2799 (((-800 |#1| |#3|) (-585 |#3|) (-585 (-802 |#1|)) (-1 |#3| (-585 |#3|)) (-800 |#1| |#3|) (-1 (-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|))) 33 T ELT))) -(((-854 |#1| |#2| |#3|) (-10 -7 (-15 -2799 ((-800 |#1| |#3|) (-585 |#3|) (-585 (-802 |#1|)) (-1 |#3| (-585 |#3|)) (-800 |#1| |#3|) (-1 (-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|)))) (-15 -2800 ((-800 |#1| |#3|) (-585 |#3|) (-585 (-802 |#1|)) (-800 |#1| |#3|) (-1 (-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|))))) (-1015) (-963) (-13 (-963) (-555 (-802 |#1|)) (-952 |#2|))) (T -854)) -((-2800 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-802 *6))) (-5 *5 (-1 (-800 *6 *8) *8 (-802 *6) (-800 *6 *8))) (-4 *6 (-1015)) (-4 *8 (-13 (-963) (-555 (-802 *6)) (-952 *7))) (-5 *2 (-800 *6 *8)) (-4 *7 (-963)) (-5 *1 (-854 *6 *7 *8)))) (-2799 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-585 (-802 *7))) (-5 *5 (-1 *9 (-585 *9))) (-5 *6 (-1 (-800 *7 *9) *9 (-802 *7) (-800 *7 *9))) (-4 *7 (-1015)) (-4 *9 (-13 (-963) (-555 (-802 *7)) (-952 *8))) (-5 *2 (-800 *7 *9)) (-5 *3 (-585 *9)) (-4 *8 (-963)) (-5 *1 (-854 *7 *8 *9))))) -((-2808 (((-1087 (-350 (-486))) (-486)) 80 T ELT)) (-2807 (((-1087 (-486)) (-486)) 83 T ELT)) (-3337 (((-1087 (-486)) (-486)) 77 T ELT)) (-2806 (((-486) (-1087 (-486))) 73 T ELT)) (-2805 (((-1087 (-350 (-486))) (-486)) 66 T ELT)) (-2804 (((-1087 (-486)) (-486)) 49 T ELT)) (-2803 (((-1087 (-486)) (-486)) 85 T ELT)) (-2802 (((-1087 (-486)) (-486)) 84 T ELT)) (-2801 (((-1087 (-350 (-486))) (-486)) 68 T ELT))) -(((-855) (-10 -7 (-15 -2801 ((-1087 (-350 (-486))) (-486))) (-15 -2802 ((-1087 (-486)) (-486))) (-15 -2803 ((-1087 (-486)) (-486))) (-15 -2804 ((-1087 (-486)) (-486))) (-15 -2805 ((-1087 (-350 (-486))) (-486))) (-15 -2806 ((-486) (-1087 (-486)))) (-15 -3337 ((-1087 (-486)) (-486))) (-15 -2807 ((-1087 (-486)) (-486))) (-15 -2808 ((-1087 (-350 (-486))) (-486))))) (T -855)) -((-2808 (*1 *2 *3) (-12 (-5 *2 (-1087 (-350 (-486)))) (-5 *1 (-855)) (-5 *3 (-486)))) (-2807 (*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486)))) (-3337 (*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-1087 (-486))) (-5 *2 (-486)) (-5 *1 (-855)))) (-2805 (*1 *2 *3) (-12 (-5 *2 (-1087 (-350 (-486)))) (-5 *1 (-855)) (-5 *3 (-486)))) (-2804 (*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486)))) (-2803 (*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486)))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1087 (-350 (-486)))) (-5 *1 (-855)) (-5 *3 (-486))))) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3841 (($ (-696)) NIL (|has| |#1| (-23)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1037 |#1|)) (|has| |#1| (-758))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-3791 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) NIL T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) NIL T ELT) (((-486) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) NIL (|has| |#1| (-72)) ELT)) (-3709 (($ (-585 |#1|)) 9 T ELT)) (-3838 (((-632 |#1|) $ $) NIL (|has| |#1| (-963)) ELT)) (-3617 (($ (-696) |#1|) NIL T ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3835 ((|#1| $) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-963))) ELT)) (-3836 ((|#1| $) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-963))) ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) NIL (|has| (-486) (-758)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3772 (($ $ (-585 |#1|)) 25 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-486) |#1|) NIL T ELT) ((|#1| $ (-486)) 18 T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-3839 ((|#1| $ $) NIL (|has| |#1| (-963)) ELT)) (-3915 (((-832) $) 13 T ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-3837 (($ $ $) 23 T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT) (($ (-585 |#1|)) 14 T ELT)) (-3533 (($ (-585 |#1|)) NIL T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-585 $)) NIL T ELT)) (-3950 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3840 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3842 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-486) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-665)) ELT) (($ $ |#1|) NIL (|has| |#1| (-665)) ELT)) (-3961 (((-696) $) 11 T ELT))) -(((-856 |#1|) (-895 |#1|) (-963)) (T -856)) -NIL -((-2811 (((-422 |#1| |#2|) (-859 |#2|)) 22 T ELT)) (-2814 (((-206 |#1| |#2|) (-859 |#2|)) 35 T ELT)) (-2812 (((-859 |#2|) (-422 |#1| |#2|)) 27 T ELT)) (-2810 (((-206 |#1| |#2|) (-422 |#1| |#2|)) 57 T ELT)) (-2813 (((-859 |#2|) (-206 |#1| |#2|)) 32 T ELT)) (-2809 (((-422 |#1| |#2|) (-206 |#1| |#2|)) 48 T ELT))) -(((-857 |#1| |#2|) (-10 -7 (-15 -2809 ((-422 |#1| |#2|) (-206 |#1| |#2|))) (-15 -2810 ((-206 |#1| |#2|) (-422 |#1| |#2|))) (-15 -2811 ((-422 |#1| |#2|) (-859 |#2|))) (-15 -2812 ((-859 |#2|) (-422 |#1| |#2|))) (-15 -2813 ((-859 |#2|) (-206 |#1| |#2|))) (-15 -2814 ((-206 |#1| |#2|) (-859 |#2|)))) (-585 (-1092)) (-963)) (T -857)) -((-2814 (*1 *2 *3) (-12 (-5 *3 (-859 *5)) (-4 *5 (-963)) (-5 *2 (-206 *4 *5)) (-5 *1 (-857 *4 *5)) (-14 *4 (-585 (-1092))))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-963)) (-5 *2 (-859 *5)) (-5 *1 (-857 *4 *5)))) (-2812 (*1 *2 *3) (-12 (-5 *3 (-422 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-963)) (-5 *2 (-859 *5)) (-5 *1 (-857 *4 *5)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-859 *5)) (-4 *5 (-963)) (-5 *2 (-422 *4 *5)) (-5 *1 (-857 *4 *5)) (-14 *4 (-585 (-1092))))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-422 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-963)) (-5 *2 (-206 *4 *5)) (-5 *1 (-857 *4 *5)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-963)) (-5 *2 (-422 *4 *5)) (-5 *1 (-857 *4 *5))))) -((-2815 (((-585 |#2|) |#2| |#2|) 10 T ELT)) (-2818 (((-696) (-585 |#1|)) 47 (|has| |#1| (-757)) ELT)) (-2816 (((-585 |#2|) |#2|) 11 T ELT)) (-2819 (((-696) (-585 |#1|) (-486) (-486)) 45 (|has| |#1| (-757)) ELT)) (-2817 ((|#1| |#2|) 37 (|has| |#1| (-757)) ELT))) -(((-858 |#1| |#2|) (-10 -7 (-15 -2815 ((-585 |#2|) |#2| |#2|)) (-15 -2816 ((-585 |#2|) |#2|)) (IF (|has| |#1| (-757)) (PROGN (-15 -2817 (|#1| |#2|)) (-15 -2818 ((-696) (-585 |#1|))) (-15 -2819 ((-696) (-585 |#1|) (-486) (-486)))) |%noBranch|)) (-312) (-1157 |#1|)) (T -858)) -((-2819 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-486)) (-4 *5 (-757)) (-4 *5 (-312)) (-5 *2 (-696)) (-5 *1 (-858 *5 *6)) (-4 *6 (-1157 *5)))) (-2818 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-757)) (-4 *4 (-312)) (-5 *2 (-696)) (-5 *1 (-858 *4 *5)) (-4 *5 (-1157 *4)))) (-2817 (*1 *2 *3) (-12 (-4 *2 (-312)) (-4 *2 (-757)) (-5 *1 (-858 *2 *3)) (-4 *3 (-1157 *2)))) (-2816 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-585 *3)) (-5 *1 (-858 *4 *3)) (-4 *3 (-1157 *4)))) (-2815 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-585 *3)) (-5 *1 (-858 *4 *3)) (-4 *3 (-1157 *4))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-1092)) $) 16 T ELT)) (-3086 (((-1087 $) $ (-1092)) 21 T ELT) (((-1087 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-1092))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-1092) #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-1092) $) NIL T ELT)) (-3759 (($ $ $ (-1092)) NIL (|has| |#1| (-146)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT) (($ $ (-1092)) NIL (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| (-471 (-1092)) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-1092) (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-1092) (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3087 (($ (-1087 |#1|) (-1092)) NIL T ELT) (($ (-1087 $) (-1092)) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-471 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-1092)) NIL T ELT)) (-2823 (((-471 (-1092)) $) NIL T ELT) (((-696) $ (-1092)) NIL T ELT) (((-585 (-696)) $ (-585 (-1092))) NIL T ELT)) (-1626 (($ (-1 (-471 (-1092)) (-471 (-1092))) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3085 (((-3 (-1092) #1#) $) 19 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-1092)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3815 (($ $ (-1092)) 29 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-823)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-1092) |#1|) NIL T ELT) (($ $ (-585 (-1092)) (-585 |#1|)) NIL T ELT) (($ $ (-1092) $) NIL T ELT) (($ $ (-585 (-1092)) (-585 $)) NIL T ELT)) (-3760 (($ $ (-1092)) NIL (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) NIL T ELT)) (-3952 (((-471 (-1092)) $) NIL T ELT) (((-696) $ (-1092)) NIL T ELT) (((-585 (-696)) $ (-585 (-1092))) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-1092) (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-1092) (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-1092) (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT) (($ $ (-1092)) NIL (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3950 (((-774) $) 25 T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1092)) 27 T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-471 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-859 |#1|) (-13 (-863 |#1| (-471 (-1092)) (-1092)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-486)))) (-15 -3815 ($ $ (-1092))) |%noBranch|))) (-963)) (T -859)) -((-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-859 *3)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963))))) -((-3846 (((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|)) 19 T ELT))) -(((-860 |#1| |#2|) (-10 -7 (-15 -3846 ((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|)))) (-963) (-963)) (T -860)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-859 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-5 *2 (-859 *6)) (-5 *1 (-860 *5 *6))))) -((-3086 (((-1150 |#1| (-859 |#2|)) (-859 |#2|) (-1178 |#1|)) 18 T ELT))) -(((-861 |#1| |#2|) (-10 -7 (-15 -3086 ((-1150 |#1| (-859 |#2|)) (-859 |#2|) (-1178 |#1|)))) (-1092) (-963)) (T -861)) -((-3086 (*1 *2 *3 *4) (-12 (-5 *4 (-1178 *5)) (-14 *5 (-1092)) (-4 *6 (-963)) (-5 *2 (-1150 *5 (-859 *6))) (-5 *1 (-861 *5 *6)) (-5 *3 (-859 *6))))) -((-2822 (((-696) $) 88 T ELT) (((-696) $ (-585 |#4|)) 93 T ELT)) (-3778 (($ $) 214 T ELT)) (-3974 (((-348 $) $) 206 T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1="failed") (-585 (-1087 $)) (-1087 $)) 141 T ELT)) (-3160 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 (-486) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-350 (-486)) $) NIL T ELT) (((-486) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3759 (($ $ $ |#4|) 95 T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) 131 T ELT) (((-632 |#2|) (-632 $)) 121 T ELT)) (-3506 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2821 (((-585 $) $) 77 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 240 T ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 233 T ELT)) (-2824 (((-585 $) $) 34 T ELT)) (-2896 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-696)) NIL T ELT) (($ $ (-585 |#4|) (-585 (-696))) 71 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#4|) 203 T ELT)) (-2826 (((-3 (-585 $) #1#) $) 52 T ELT)) (-2825 (((-3 (-585 $) #1#) $) 39 T ELT)) (-2827 (((-3 (-2 (|:| |var| |#4|) (|:| -2403 (-696))) #1#) $) 57 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 134 T ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 147 T ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 145 T ELT)) (-3735 (((-348 $) $) 165 T ELT)) (-3771 (($ $ (-585 (-249 $))) 24 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-585 |#4|) (-585 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-585 |#4|) (-585 $)) NIL T ELT)) (-3760 (($ $ |#4|) 97 T ELT)) (-3975 (((-802 (-330)) $) 254 T ELT) (((-802 (-486)) $) 247 T ELT) (((-475) $) 262 T ELT)) (-2820 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) 185 T ELT)) (-3680 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-696)) 62 T ELT) (($ $ (-585 |#4|) (-585 (-696))) 69 T ELT)) (-2705 (((-634 $) $) 195 T ELT)) (-1267 (((-85) $ $) 227 T ELT))) -(((-862 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2711 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|))) (-15 -3974 ((-348 |#1|) |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -2705 ((-634 |#1|) |#1|)) (-15 -3975 ((-475) |#1|)) (-15 -3975 ((-802 (-486)) |#1|)) (-15 -3975 ((-802 (-330)) |#1|)) (-15 -2799 ((-800 (-486) |#1|) |#1| (-802 (-486)) (-800 (-486) |#1|))) (-15 -2799 ((-800 (-330) |#1|) |#1| (-802 (-330)) (-800 (-330) |#1|))) (-15 -3735 ((-348 |#1|) |#1|)) (-15 -2709 ((-348 (-1087 |#1|)) (-1087 |#1|))) (-15 -2708 ((-348 (-1087 |#1|)) (-1087 |#1|))) (-15 -2707 ((-3 (-585 (-1087 |#1|)) #1="failed") (-585 (-1087 |#1|)) (-1087 |#1|))) (-15 -2706 ((-3 (-1181 |#1|) #1#) (-632 |#1|))) (-15 -3506 (|#1| |#1| |#4|)) (-15 -2820 (|#1| |#1| |#4|)) (-15 -3760 (|#1| |#1| |#4|)) (-15 -3759 (|#1| |#1| |#1| |#4|)) (-15 -2821 ((-585 |#1|) |#1|)) (-15 -2822 ((-696) |#1| (-585 |#4|))) (-15 -2822 ((-696) |#1|)) (-15 -2827 ((-3 (-2 (|:| |var| |#4|) (|:| -2403 (-696))) #1#) |#1|)) (-15 -2826 ((-3 (-585 |#1|) #1#) |#1|)) (-15 -2825 ((-3 (-585 |#1|) #1#) |#1|)) (-15 -2896 (|#1| |#1| (-585 |#4|) (-585 (-696)))) (-15 -2896 (|#1| |#1| |#4| (-696))) (-15 -3766 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1| |#4|)) (-15 -2824 ((-585 |#1|) |#1|)) (-15 -3680 (|#1| |#1| (-585 |#4|) (-585 (-696)))) (-15 -3680 (|#1| |#1| |#4| (-696))) (-15 -2281 ((-632 |#2|) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-632 (-486)) (-632 |#1|))) (-15 -3160 ((-3 |#4| #1#) |#1|)) (-15 -3159 (|#4| |#1|)) (-15 -3771 (|#1| |#1| (-585 |#4|) (-585 |#1|))) (-15 -3771 (|#1| |#1| |#4| |#1|)) (-15 -3771 (|#1| |#1| (-585 |#4|) (-585 |#2|))) (-15 -3771 (|#1| |#1| |#4| |#2|)) (-15 -3771 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -3771 (|#1| |#1| |#1| |#1|)) (-15 -3771 (|#1| |#1| (-249 |#1|))) (-15 -3771 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -2896 (|#1| |#2| |#3|)) (-15 -3680 (|#2| |#1| |#3|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -2820 (|#2| |#1|)) (-15 -3506 (|#1| |#1|)) (-15 -1267 ((-85) |#1| |#1|))) (-863 |#2| |#3| |#4|) (-963) (-719) (-758)) (T -862)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 |#3|) $) 124 T ELT)) (-3086 (((-1087 $) $ |#3|) 139 T ELT) (((-1087 |#1|) $) 138 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 101 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 102 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 104 (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) 126 T ELT) (((-696) $ (-585 |#3|)) 125 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 114 (|has| |#1| (-823)) ELT)) (-3778 (($ $) 112 (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) 111 (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1="failed") (-585 (-1087 $)) (-1087 $)) 117 (|has| |#1| (-823)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| #2="failed") $) 182 T ELT) (((-3 (-350 (-486)) #2#) $) 179 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #2#) $) 177 (|has| |#1| (-952 (-486))) ELT) (((-3 |#3| #2#) $) 154 T ELT)) (-3159 ((|#1| $) 181 T ELT) (((-350 (-486)) $) 180 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) 178 (|has| |#1| (-952 (-486))) ELT) ((|#3| $) 155 T ELT)) (-3759 (($ $ $ |#3|) 122 (|has| |#1| (-146)) ELT)) (-3962 (($ $) 172 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 150 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 149 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 148 T ELT) (((-632 |#1|) (-632 $)) 147 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3506 (($ $) 194 (|has| |#1| (-393)) ELT) (($ $ |#3|) 119 (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) 123 T ELT)) (-3726 (((-85) $) 110 (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| |#2| $) 190 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 98 (-12 (|has| |#3| (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 97 (-12 (|has| |#3| (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2422 (((-696) $) 187 T ELT)) (-3087 (($ (-1087 |#1|) |#3|) 131 T ELT) (($ (-1087 $) |#3|) 130 T ELT)) (-2824 (((-585 $) $) 140 T ELT)) (-3941 (((-85) $) 170 T ELT)) (-2896 (($ |#1| |#2|) 171 T ELT) (($ $ |#3| (-696)) 133 T ELT) (($ $ (-585 |#3|) (-585 (-696))) 132 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#3|) 134 T ELT)) (-2823 ((|#2| $) 188 T ELT) (((-696) $ |#3|) 136 T ELT) (((-585 (-696)) $ (-585 |#3|)) 135 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) 189 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3085 (((-3 |#3| "failed") $) 137 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 152 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 151 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 146 T ELT) (((-632 |#1|) (-1181 $)) 145 T ELT)) (-2897 (($ $) 168 T ELT)) (-3177 ((|#1| $) 167 T ELT)) (-1896 (($ (-585 $)) 108 (|has| |#1| (-393)) ELT) (($ $ $) 107 (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2826 (((-3 (-585 $) "failed") $) 128 T ELT)) (-2825 (((-3 (-585 $) "failed") $) 129 T ELT)) (-2827 (((-3 (-2 (|:| |var| |#3|) (|:| -2403 (-696))) "failed") $) 127 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1802 (((-85) $) 184 T ELT)) (-1801 ((|#1| $) 185 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 109 (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) 106 (|has| |#1| (-393)) ELT) (($ $ $) 105 (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 116 (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 115 (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) 113 (|has| |#1| (-823)) ELT)) (-3469 (((-3 $ "failed") $ |#1|) 192 (|has| |#1| (-497)) ELT) (((-3 $ "failed") $ $) 100 (|has| |#1| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) 163 T ELT) (($ $ (-249 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-585 $) (-585 $)) 160 T ELT) (($ $ |#3| |#1|) 159 T ELT) (($ $ (-585 |#3|) (-585 |#1|)) 158 T ELT) (($ $ |#3| $) 157 T ELT) (($ $ (-585 |#3|) (-585 $)) 156 T ELT)) (-3760 (($ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 |#3|) (-585 (-696))) 52 T ELT) (($ $ |#3| (-696)) 51 T ELT) (($ $ (-585 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3952 ((|#2| $) 169 T ELT) (((-696) $ |#3|) 144 T ELT) (((-585 (-696)) $ (-585 |#3|)) 143 T ELT)) (-3975 (((-802 (-330)) $) 96 (-12 (|has| |#3| (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) 95 (-12 (|has| |#3| (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) 94 (-12 (|has| |#3| (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT)) (-2820 ((|#1| $) 193 (|has| |#1| (-393)) ELT) (($ $ |#3|) 120 (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) 118 (-2565 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 183 T ELT) (($ |#3|) 153 T ELT) (($ $) 99 (|has| |#1| (-497)) ELT) (($ (-350 (-486))) 92 (OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ELT)) (-3820 (((-585 |#1|) $) 186 T ELT)) (-3680 ((|#1| $ |#2|) 173 T ELT) (($ $ |#3| (-696)) 142 T ELT) (($ $ (-585 |#3|) (-585 (-696))) 141 T ELT)) (-2705 (((-634 $) $) 93 (OR (-2565 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) 40 T CONST)) (-1624 (($ $ $ (-696)) 191 (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 103 (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-585 |#3|) (-585 (-696))) 55 T ELT) (($ $ |#3| (-696)) 54 T ELT) (($ $ (-585 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 174 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 176 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) 175 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 165 T ELT) (($ $ |#1|) 164 T ELT))) -(((-863 |#1| |#2| |#3|) (-113) (-963) (-719) (-758)) (T -863)) -((-3506 (*1 *1 *1) (-12 (-4 *1 (-863 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-393)))) (-3952 (*1 *2 *1 *3) (-12 (-4 *1 (-863 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-696)))) (-3952 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 (-696))))) (-3680 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-863 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *2 (-758)))) (-3680 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 (-696))) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)))) (-2824 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-863 *3 *4 *5)))) (-3086 (*1 *2 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-1087 *1)) (-4 *1 (-863 *4 *5 *3)))) (-3086 (*1 *2 *1) (-12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-1087 *3)))) (-3085 (*1 *2 *1) (|partial| -12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-2823 (*1 *2 *1 *3) (-12 (-4 *1 (-863 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-696)))) (-2823 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 (-696))))) (-3766 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-863 *4 *5 *3)))) (-2896 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-863 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *2 (-758)))) (-2896 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 (-696))) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)))) (-3087 (*1 *1 *2 *3) (-12 (-5 *2 (-1087 *4)) (-4 *4 (-963)) (-4 *1 (-863 *4 *5 *3)) (-4 *5 (-719)) (-4 *3 (-758)))) (-3087 (*1 *1 *2 *3) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-863 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)))) (-2825 (*1 *2 *1) (|partial| -12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-863 *3 *4 *5)))) (-2826 (*1 *2 *1) (|partial| -12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-863 *3 *4 *5)))) (-2827 (*1 *2 *1) (|partial| -12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| |var| *5) (|:| -2403 (-696)))))) (-2822 (*1 *2 *1) (-12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-696)))) (-2822 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-696)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *5)))) (-2821 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-863 *3 *4 *5)))) (-3759 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *3 (-146)))) (-3760 (*1 *1 *1 *2) (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *3 (-146)))) (-2820 (*1 *1 *1 *2) (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *3 (-393)))) (-3506 (*1 *1 *1 *2) (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *3 (-393)))) (-3778 (*1 *1 *1) (-12 (-4 *1 (-863 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-393)))) (-3974 (*1 *2 *1) (-12 (-4 *3 (-393)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-348 *1)) (-4 *1 (-863 *3 *4 *5))))) -(-13 (-811 |t#3|) (-277 |t#1| |t#2|) (-260 $) (-457 |t#3| |t#1|) (-457 |t#3| $) (-952 |t#3|) (-329 |t#1|) (-10 -8 (-15 -3952 ((-696) $ |t#3|)) (-15 -3952 ((-585 (-696)) $ (-585 |t#3|))) (-15 -3680 ($ $ |t#3| (-696))) (-15 -3680 ($ $ (-585 |t#3|) (-585 (-696)))) (-15 -2824 ((-585 $) $)) (-15 -3086 ((-1087 $) $ |t#3|)) (-15 -3086 ((-1087 |t#1|) $)) (-15 -3085 ((-3 |t#3| "failed") $)) (-15 -2823 ((-696) $ |t#3|)) (-15 -2823 ((-585 (-696)) $ (-585 |t#3|))) (-15 -3766 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |t#3|)) (-15 -2896 ($ $ |t#3| (-696))) (-15 -2896 ($ $ (-585 |t#3|) (-585 (-696)))) (-15 -3087 ($ (-1087 |t#1|) |t#3|)) (-15 -3087 ($ (-1087 $) |t#3|)) (-15 -2825 ((-3 (-585 $) "failed") $)) (-15 -2826 ((-3 (-585 $) "failed") $)) (-15 -2827 ((-3 (-2 (|:| |var| |t#3|) (|:| -2403 (-696))) "failed") $)) (-15 -2822 ((-696) $)) (-15 -2822 ((-696) $ (-585 |t#3|))) (-15 -3084 ((-585 |t#3|) $)) (-15 -2821 ((-585 $) $)) (IF (|has| |t#1| (-555 (-475))) (IF (|has| |t#3| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-555 (-802 (-486)))) (IF (|has| |t#3| (-555 (-802 (-486)))) (-6 (-555 (-802 (-486)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-555 (-802 (-330)))) (IF (|has| |t#3| (-555 (-802 (-330)))) (-6 (-555 (-802 (-330)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-798 (-486))) (IF (|has| |t#3| (-798 (-486))) (-6 (-798 (-486))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-798 (-330))) (IF (|has| |t#3| (-798 (-330))) (-6 (-798 (-330))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3759 ($ $ $ |t#3|)) (-15 -3760 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-393)) (PROGN (-6 (-393)) (-15 -2820 ($ $ |t#3|)) (-15 -3506 ($ $)) (-15 -3506 ($ $ |t#3|)) (-15 -3974 ((-348 $) $)) (-15 -3778 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3996)) (-6 -3996) |%noBranch|) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-557 |#3|) . T) ((-557 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-555 (-475)) -12 (|has| |#1| (-555 (-475))) (|has| |#3| (-555 (-475)))) ((-555 (-802 (-330))) -12 (|has| |#1| (-555 (-802 (-330)))) (|has| |#3| (-555 (-802 (-330))))) ((-555 (-802 (-486))) -12 (|has| |#1| (-555 (-802 (-486)))) (|has| |#3| (-555 (-802 (-486))))) ((-246) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-381 |#1|) . T) ((-393) OR (|has| |#1| (-823)) (|has| |#1| (-393))) ((-457 |#3| |#1|) . T) ((-457 |#3| $) . T) ((-457 $ $) . T) ((-497) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 (-486)) |has| |#1| (-582 (-486))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-582 (-486)) |has| |#1| (-582 (-486))) ((-582 |#1|) . T) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-665) . T) ((-808 $ |#3|) . T) ((-811 |#3|) . T) ((-813 |#3|) . T) ((-798 (-330)) -12 (|has| |#1| (-798 (-330))) (|has| |#3| (-798 (-330)))) ((-798 (-486)) -12 (|has| |#1| (-798 (-486))) (|has| |#3| (-798 (-486)))) ((-823) |has| |#1| (-823)) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-952 |#3|) . T) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) |has| |#1| (-823))) -((-3084 (((-585 |#2|) |#5|) 40 T ELT)) (-3086 (((-1087 |#5|) |#5| |#2| (-1087 |#5|)) 23 T ELT) (((-350 (-1087 |#5|)) |#5| |#2|) 16 T ELT)) (-3087 ((|#5| (-350 (-1087 |#5|)) |#2|) 30 T ELT)) (-3085 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2826 (((-3 (-585 |#5|) #1#) |#5|) 64 T ELT)) (-2828 (((-3 (-2 (|:| |val| |#5|) (|:| -2403 (-486))) #1#) |#5|) 53 T ELT)) (-2825 (((-3 (-585 |#5|) #1#) |#5|) 66 T ELT)) (-2827 (((-3 (-2 (|:| |var| |#2|) (|:| -2403 (-486))) #1#) |#5|) 56 T ELT))) -(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3084 ((-585 |#2|) |#5|)) (-15 -3085 ((-3 |#2| #1="failed") |#5|)) (-15 -3086 ((-350 (-1087 |#5|)) |#5| |#2|)) (-15 -3087 (|#5| (-350 (-1087 |#5|)) |#2|)) (-15 -3086 ((-1087 |#5|) |#5| |#2| (-1087 |#5|))) (-15 -2825 ((-3 (-585 |#5|) #1#) |#5|)) (-15 -2826 ((-3 (-585 |#5|) #1#) |#5|)) (-15 -2827 ((-3 (-2 (|:| |var| |#2|) (|:| -2403 (-486))) #1#) |#5|)) (-15 -2828 ((-3 (-2 (|:| |val| |#5|) (|:| -2403 (-486))) #1#) |#5|))) (-719) (-758) (-963) (-863 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3950 ($ |#4|)) (-15 -3001 (|#4| $)) (-15 -3000 (|#4| $))))) (T -864)) -((-2828 (*1 *2 *3) (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2403 (-486)))) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))))) (-2827 (*1 *2 *3) (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2403 (-486)))) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))))) (-2826 (*1 *2 *3) (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-585 *3)) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))))) (-2825 (*1 *2 *3) (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-585 *3)) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))))) (-3086 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))) (-4 *7 (-863 *6 *5 *4)) (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-963)) (-5 *1 (-864 *5 *4 *6 *7 *3)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-1087 *2))) (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-963)) (-4 *2 (-13 (-312) (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))) (-5 *1 (-864 *5 *4 *6 *7 *2)) (-4 *7 (-863 *6 *5 *4)))) (-3086 (*1 *2 *3 *4) (-12 (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *5 *4)) (-5 *2 (-350 (-1087 *3))) (-5 *1 (-864 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))))) (-3085 (*1 *2 *3) (|partial| -12 (-4 *4 (-719)) (-4 *5 (-963)) (-4 *6 (-863 *5 *4 *2)) (-4 *2 (-758)) (-5 *1 (-864 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3950 ($ *6)) (-15 -3001 (*6 $)) (-15 -3000 (*6 $))))))) (-3084 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-585 *5)) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $)))))))) -((-3846 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) -(((-865 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3846 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-719) (-758) (-963) (-863 |#3| |#1| |#2|) (-13 (-1015) (-10 -8 (-15 -3842 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-696)))))) (T -865)) -((-3846 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-758)) (-4 *8 (-963)) (-4 *6 (-719)) (-4 *2 (-13 (-1015) (-10 -8 (-15 -3842 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-696)))))) (-5 *1 (-865 *6 *7 *8 *5 *2)) (-4 *5 (-863 *8 *6 *7))))) -((-2829 (((-2 (|:| -2403 (-696)) (|:| -3958 |#5|) (|:| |radicand| |#5|)) |#3| (-696)) 48 T ELT)) (-2830 (((-2 (|:| -2403 (-696)) (|:| -3958 |#5|) (|:| |radicand| |#5|)) (-350 (-486)) (-696)) 43 T ELT)) (-2832 (((-2 (|:| -2403 (-696)) (|:| -3958 |#4|) (|:| |radicand| (-585 |#4|))) |#4| (-696)) 64 T ELT)) (-2831 (((-2 (|:| -2403 (-696)) (|:| -3958 |#5|) (|:| |radicand| |#5|)) |#5| (-696)) 73 (|has| |#3| (-393)) ELT))) -(((-866 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2829 ((-2 (|:| -2403 (-696)) (|:| -3958 |#5|) (|:| |radicand| |#5|)) |#3| (-696))) (-15 -2830 ((-2 (|:| -2403 (-696)) (|:| -3958 |#5|) (|:| |radicand| |#5|)) (-350 (-486)) (-696))) (IF (|has| |#3| (-393)) (-15 -2831 ((-2 (|:| -2403 (-696)) (|:| -3958 |#5|) (|:| |radicand| |#5|)) |#5| (-696))) |%noBranch|) (-15 -2832 ((-2 (|:| -2403 (-696)) (|:| -3958 |#4|) (|:| |radicand| (-585 |#4|))) |#4| (-696)))) (-719) (-758) (-497) (-863 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3950 ($ |#4|)) (-15 -3001 (|#4| $)) (-15 -3000 (|#4| $))))) (T -866)) -((-2832 (*1 *2 *3 *4) (-12 (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-497)) (-4 *3 (-863 *7 *5 *6)) (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3958 *3) (|:| |radicand| (-585 *3)))) (-5 *1 (-866 *5 *6 *7 *3 *8)) (-5 *4 (-696)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3950 ($ *3)) (-15 -3001 (*3 $)) (-15 -3000 (*3 $))))))) (-2831 (*1 *2 *3 *4) (-12 (-4 *7 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-497)) (-4 *8 (-863 *7 *5 *6)) (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3958 *3) (|:| |radicand| *3))) (-5 *1 (-866 *5 *6 *7 *8 *3)) (-5 *4 (-696)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3950 ($ *8)) (-15 -3001 (*8 $)) (-15 -3000 (*8 $))))))) (-2830 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-486))) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-497)) (-4 *8 (-863 *7 *5 *6)) (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3958 *9) (|:| |radicand| *9))) (-5 *1 (-866 *5 *6 *7 *8 *9)) (-5 *4 (-696)) (-4 *9 (-13 (-312) (-10 -8 (-15 -3950 ($ *8)) (-15 -3001 (*8 $)) (-15 -3000 (*8 $))))))) (-2829 (*1 *2 *3 *4) (-12 (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-497)) (-4 *7 (-863 *3 *5 *6)) (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3958 *8) (|:| |radicand| *8))) (-5 *1 (-866 *5 *6 *3 *7 *8)) (-5 *4 (-696)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $)))))))) -((-2571 (((-85) $ $) NIL T ELT)) (-2833 (($ (-1035)) 8 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 15 T ELT) (((-1035) $) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 11 T ELT))) -(((-867) (-13 (-1015) (-554 (-1035)) (-10 -8 (-15 -2833 ($ (-1035)))))) (T -867)) -((-2833 (*1 *1 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-867))))) -((-2899 (((-1003 (-179)) $) 8 T ELT)) (-2900 (((-1003 (-179)) $) 9 T ELT)) (-2901 (((-585 (-585 (-856 (-179)))) $) 10 T ELT)) (-3950 (((-774) $) 6 T ELT))) -(((-868) (-113)) (T -868)) -((-2901 (*1 *2 *1) (-12 (-4 *1 (-868)) (-5 *2 (-585 (-585 (-856 (-179))))))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-868)) (-5 *2 (-1003 (-179))))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-868)) (-5 *2 (-1003 (-179)))))) -(-13 (-554 (-774)) (-10 -8 (-15 -2901 ((-585 (-585 (-856 (-179)))) $)) (-15 -2900 ((-1003 (-179)) $)) (-15 -2899 ((-1003 (-179)) $)))) -(((-554 (-774)) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 80 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 81 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) 32 T ELT)) (-3470 (((-3 $ #1#) $) 43 T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT)) (-1625 (($ $ |#1| |#2| $) 64 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) 18 T ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| |#2|) NIL T ELT)) (-2823 ((|#2| $) 25 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2897 (($ $) 29 T ELT)) (-3177 ((|#1| $) 27 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) 52 T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-3741 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-104)) (|has| |#1| (-497))) ELT)) (-3469 (((-3 $ #1#) $ $) 92 (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-497)) ELT)) (-3952 ((|#2| $) 23 T ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) 47 T ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ |#1|) 42 T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ |#2|) 38 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 15 T CONST)) (-1624 (($ $ $ (-696)) 76 (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) 86 (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 28 T CONST)) (-2669 (($) 12 T CONST)) (-3059 (((-85) $ $) 85 T ELT)) (-3953 (($ $ |#1|) 93 (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) 71 T ELT) (($ $ (-696)) 69 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-869 |#1| |#2|) (-13 (-277 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-497)) (IF (|has| |#2| (-104)) (-15 -3741 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3996)) (-6 -3996) |%noBranch|))) (-963) (-718)) (T -869)) -((-3741 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-869 *3 *2)) (-4 *2 (-104)) (-4 *3 (-497)) (-4 *3 (-963)) (-4 *2 (-718))))) -((-2834 (((-3 (-632 |#1|) "failed") |#2| (-832)) 18 T ELT))) -(((-870 |#1| |#2|) (-10 -7 (-15 -2834 ((-3 (-632 |#1|) "failed") |#2| (-832)))) (-497) (-602 |#1|)) (T -870)) -((-2834 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-832)) (-4 *5 (-497)) (-5 *2 (-632 *5)) (-5 *1 (-870 *5 *3)) (-4 *3 (-602 *5))))) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1037 |#1|)) (|has| |#1| (-758))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-3791 ((|#1| $ (-486) |#1|) 18 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-486) |#1|) 17 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 15 T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) NIL T ELT) (((-486) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) NIL (|has| |#1| (-72)) ELT)) (-3617 (($ (-696) |#1|) 14 T ELT)) (-2202 (((-486) $) 10 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) 23 T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) 22 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) NIL (|has| (-486) (-758)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) 19 (|has| $ (-1037 |#1|)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) 11 T ELT)) (-3803 ((|#1| $ (-486) |#1|) NIL T ELT) ((|#1| $ (-486)) 16 T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) 20 T ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 13 T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3950 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3961 (((-696) $) 8 T ELT))) -(((-871 |#1|) (-19 |#1|) (-1131)) (T -871)) -NIL -((-3844 (((-871 |#2|) (-1 |#2| |#1| |#2|) (-871 |#1|) |#2|) 16 T ELT)) (-3845 ((|#2| (-1 |#2| |#1| |#2|) (-871 |#1|) |#2|) 18 T ELT)) (-3846 (((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|)) 13 T ELT))) -(((-872 |#1| |#2|) (-10 -7 (-15 -3844 ((-871 |#2|) (-1 |#2| |#1| |#2|) (-871 |#1|) |#2|)) (-15 -3845 (|#2| (-1 |#2| |#1| |#2|) (-871 |#1|) |#2|)) (-15 -3846 ((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|)))) (-1131) (-1131)) (T -872)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-871 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-871 *6)) (-5 *1 (-872 *5 *6)))) (-3845 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-871 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-872 *5 *2)))) (-3844 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-871 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-5 *2 (-871 *5)) (-5 *1 (-872 *6 *5))))) -((-2835 (($ $ (-1006 $)) 7 T ELT) (($ $ (-1092)) 6 T ELT))) -(((-873) (-113)) (T -873)) -((-2835 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-873)))) (-2835 (*1 *1 *1 *2) (-12 (-4 *1 (-873)) (-5 *2 (-1092))))) -(-13 (-10 -8 (-15 -2835 ($ $ (-1092))) (-15 -2835 ($ $ (-1006 $))))) -((-2836 (((-2 (|:| -3958 (-585 (-486))) (|:| |poly| (-585 (-1087 |#1|))) (|:| |prim| (-1087 |#1|))) (-585 (-859 |#1|)) (-585 (-1092)) (-1092)) 26 T ELT) (((-2 (|:| -3958 (-585 (-486))) (|:| |poly| (-585 (-1087 |#1|))) (|:| |prim| (-1087 |#1|))) (-585 (-859 |#1|)) (-585 (-1092))) 27 T ELT) (((-2 (|:| |coef1| (-486)) (|:| |coef2| (-486)) (|:| |prim| (-1087 |#1|))) (-859 |#1|) (-1092) (-859 |#1|) (-1092)) 49 T ELT))) -(((-874 |#1|) (-10 -7 (-15 -2836 ((-2 (|:| |coef1| (-486)) (|:| |coef2| (-486)) (|:| |prim| (-1087 |#1|))) (-859 |#1|) (-1092) (-859 |#1|) (-1092))) (-15 -2836 ((-2 (|:| -3958 (-585 (-486))) (|:| |poly| (-585 (-1087 |#1|))) (|:| |prim| (-1087 |#1|))) (-585 (-859 |#1|)) (-585 (-1092)))) (-15 -2836 ((-2 (|:| -3958 (-585 (-486))) (|:| |poly| (-585 (-1087 |#1|))) (|:| |prim| (-1087 |#1|))) (-585 (-859 |#1|)) (-585 (-1092)) (-1092)))) (-13 (-312) (-120))) (T -874)) -((-2836 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-859 *6))) (-5 *4 (-585 (-1092))) (-5 *5 (-1092)) (-4 *6 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3958 (-585 (-486))) (|:| |poly| (-585 (-1087 *6))) (|:| |prim| (-1087 *6)))) (-5 *1 (-874 *6)))) (-2836 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-585 (-1092))) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3958 (-585 (-486))) (|:| |poly| (-585 (-1087 *5))) (|:| |prim| (-1087 *5)))) (-5 *1 (-874 *5)))) (-2836 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-859 *5)) (-5 *4 (-1092)) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| |coef1| (-486)) (|:| |coef2| (-486)) (|:| |prim| (-1087 *5)))) (-5 *1 (-874 *5))))) -((-2839 (((-585 |#1|) |#1| |#1|) 47 T ELT)) (-3726 (((-85) |#1|) 44 T ELT)) (-2838 ((|#1| |#1|) 80 T ELT)) (-2837 ((|#1| |#1|) 79 T ELT))) -(((-875 |#1|) (-10 -7 (-15 -3726 ((-85) |#1|)) (-15 -2837 (|#1| |#1|)) (-15 -2838 (|#1| |#1|)) (-15 -2839 ((-585 |#1|) |#1| |#1|))) (-485)) (T -875)) -((-2839 (*1 *2 *3 *3) (-12 (-5 *2 (-585 *3)) (-5 *1 (-875 *3)) (-4 *3 (-485)))) (-2838 (*1 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-485)))) (-2837 (*1 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-485)))) (-3726 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-875 *3)) (-4 *3 (-485))))) -((-2840 (((-1187) (-774)) 9 T ELT))) -(((-876) (-10 -7 (-15 -2840 ((-1187) (-774))))) (T -876)) -((-2840 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-876))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) ELT)) (-2486 (($ $ $) 65 (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) ELT)) (-1314 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) ELT)) (-3139 (((-696)) 36 (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-2841 ((|#2| $) 22 T ELT)) (-2842 ((|#1| $) 21 T ELT)) (-3727 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) CONST)) (-3470 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) ELT)) (-2997 (($) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3189 (((-85) $) NIL (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) ELT)) (-1216 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) ELT)) (-2412 (((-85) $) NIL (OR (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) ELT)) (-2534 (($ $ $) NIL (OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) ELT)) (-2860 (($ $ $) NIL (OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) ELT)) (-2843 (($ |#1| |#2|) 20 T ELT)) (-2012 (((-832) $) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 39 (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) ELT)) (-2402 (($ (-832)) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3012 (($ $ $) NIL (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) ELT)) (-2438 (($ $ $) NIL (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) ELT)) (-3950 (((-774) $) 14 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) CONST)) (-2669 (($) 25 (OR (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) CONST)) (-2569 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) ELT)) (-2570 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) ELT)) (-3059 (((-85) $ $) 19 T ELT)) (-2687 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) ELT)) (-2688 (((-85) $ $) 69 (OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) ELT)) (-3953 (($ $ $) NIL (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) ELT)) (-3840 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3842 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) ELT)) (** (($ $ (-486)) NIL (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) ELT) (($ $ (-696)) 32 (OR (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) ELT) (($ $ (-832)) NIL (OR (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) ELT)) (* (($ (-486) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-696) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) ELT) (($ (-832) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-414)) (|has| |#2| (-414))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) ELT))) -(((-877 |#1| |#2|) (-13 (-1015) (-10 -8 (IF (|has| |#1| (-320)) (IF (|has| |#2| (-320)) (-6 (-320)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-665)) (IF (|has| |#2| (-665)) (-6 (-665)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-104)) (IF (|has| |#2| (-104)) (-6 (-104)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-414)) (IF (|has| |#2| (-414)) (-6 (-414)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-719)) (IF (|has| |#2| (-719)) (-6 (-719)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-758)) (IF (|has| |#2| (-758)) (-6 (-758)) |%noBranch|) |%noBranch|) (-15 -2843 ($ |#1| |#2|)) (-15 -2842 (|#1| $)) (-15 -2841 (|#2| $)))) (-1015) (-1015)) (T -877)) -((-2843 (*1 *1 *2 *3) (-12 (-5 *1 (-877 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-2842 (*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-877 *2 *3)) (-4 *3 (-1015)))) (-2841 (*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-877 *3 *2)) (-4 *3 (-1015))))) -((-3405 (((-1017) $) 13 T ELT)) (-2844 (($ (-448) (-1017)) 15 T ELT)) (-3545 (((-448) $) 11 T ELT)) (-3950 (((-774) $) 25 T ELT))) -(((-878) (-13 (-554 (-774)) (-10 -8 (-15 -3545 ((-448) $)) (-15 -3405 ((-1017) $)) (-15 -2844 ($ (-448) (-1017)))))) (T -878)) -((-3545 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-878)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-878)))) (-2844 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1017)) (-5 *1 (-878))))) -((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) 29 T ELT)) (-2858 (($) 17 T CONST)) (-2564 (($ $ $) NIL T ELT)) (-2563 (($ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2849 (((-634 (-784 $ $)) $) 62 T ELT)) (-2851 (((-634 $) $) 52 T ELT)) (-2848 (((-634 (-784 $ $)) $) 63 T ELT)) (-2847 (((-634 (-784 $ $)) $) 64 T ELT)) (-2852 (((-634 |#1|) $) 43 T ELT)) (-2850 (((-634 (-784 $ $)) $) 61 T ELT)) (-2856 (($ $ $) 38 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2857 (($) 16 T CONST)) (-2855 (($ $ $) 39 T ELT)) (-2845 (($ $ $) 36 T ELT)) (-2846 (($ $ $) 34 T ELT)) (-3950 (((-774) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2313 (($ $ $) 37 T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) 35 T ELT))) -(((-879 |#1|) (-13 (-882) (-557 |#1|) (-10 -8 (-15 -2852 ((-634 |#1|) $)) (-15 -2851 ((-634 $) $)) (-15 -2850 ((-634 (-784 $ $)) $)) (-15 -2849 ((-634 (-784 $ $)) $)) (-15 -2848 ((-634 (-784 $ $)) $)) (-15 -2847 ((-634 (-784 $ $)) $)) (-15 -2846 ($ $ $)) (-15 -2845 ($ $ $)))) (-1015)) (T -879)) -((-2852 (*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1015)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-634 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1015)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) (-4 *3 (-1015)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) (-4 *3 (-1015)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) (-4 *3 (-1015)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) (-4 *3 (-1015)))) (-2846 (*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1015)))) (-2845 (*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1015))))) -((-3652 (((-879 |#1|) (-879 |#1|)) 46 T ELT)) (-2854 (((-879 |#1|) (-879 |#1|)) 22 T ELT)) (-2853 (((-1011 |#1|) (-879 |#1|)) 41 T ELT))) -(((-880 |#1|) (-13 (-1131) (-10 -7 (-15 -2854 ((-879 |#1|) (-879 |#1|))) (-15 -2853 ((-1011 |#1|) (-879 |#1|))) (-15 -3652 ((-879 |#1|) (-879 |#1|))))) (-1015)) (T -880)) -((-2854 (*1 *2 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1015)) (-5 *1 (-880 *3)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-879 *4)) (-4 *4 (-1015)) (-5 *2 (-1011 *4)) (-5 *1 (-880 *4)))) (-3652 (*1 *2 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1015)) (-5 *1 (-880 *3))))) -((-3846 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 29 T ELT))) -(((-881 |#1| |#2|) (-13 (-1131) (-10 -7 (-15 -3846 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|))))) (-1015) (-1015)) (T -881)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-879 *6)) (-5 *1 (-881 *5 *6))))) -((-2571 (((-85) $ $) 19 T ELT)) (-2315 (($ $) 8 T ELT)) (-2858 (($) 17 T CONST)) (-2564 (($ $ $) 9 T ELT)) (-2563 (($ $) 11 T ELT)) (-3245 (((-1075) $) 23 T ELT)) (-2856 (($ $ $) 15 T ELT)) (-3246 (((-1035) $) 22 T ELT)) (-2857 (($) 16 T CONST)) (-2855 (($ $ $) 14 T ELT)) (-3950 (((-774) $) 21 T ELT)) (-1267 (((-85) $ $) 20 T ELT)) (-2565 (($ $ $) 10 T ELT)) (-2313 (($ $ $) 6 T ELT)) (-3059 (((-85) $ $) 18 T ELT)) (-2314 (($ $ $) 7 T ELT))) -(((-882) (-113)) (T -882)) -((-2858 (*1 *1) (-4 *1 (-882))) (-2857 (*1 *1) (-4 *1 (-882))) (-2856 (*1 *1 *1 *1) (-4 *1 (-882))) (-2855 (*1 *1 *1 *1) (-4 *1 (-882)))) -(-13 (-84) (-1015) (-10 -8 (-15 -2858 ($) -3956) (-15 -2857 ($) -3956) (-15 -2856 ($ $ $)) (-15 -2855 ($ $ $)))) -(((-72) . T) ((-84) . T) ((-554 (-774)) . T) ((-13) . T) ((-606) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3727 (($) 6 T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 54 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 49 T ELT)) (-2859 (($ $ $) 41 T ELT)) (-3521 (($ $ $) 42 T ELT)) (-2611 (((-585 |#1|) $) 48 T ELT)) (-3248 (((-85) |#1| $) 53 (|has| |#1| (-72)) ELT)) (-2860 ((|#1| $) 43 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 51 T ELT)) (-1277 ((|#1| $) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 46 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-1732 (((-696) |#1| $) 52 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 47 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 45 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) 44 T ELT))) -(((-883 |#1|) (-113) (-758)) (T -883)) -((-2860 (*1 *2 *1) (-12 (-4 *1 (-883 *2)) (-4 *2 (-758)))) (-3521 (*1 *1 *1 *1) (-12 (-4 *1 (-883 *2)) (-4 *2 (-758)))) (-2859 (*1 *1 *1 *1) (-12 (-4 *1 (-883 *2)) (-4 *2 (-758))))) -(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -2860 (|t#1| $)) (-15 -3521 ($ $ $)) (-15 -2859 ($ $ $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) -((-2872 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3147 |#2|)) |#2| |#2|) 105 T ELT)) (-3758 ((|#2| |#2| |#2|) 103 T ELT)) (-2873 (((-2 (|:| |coef2| |#2|) (|:| -3147 |#2|)) |#2| |#2|) 107 T ELT)) (-2874 (((-2 (|:| |coef1| |#2|) (|:| -3147 |#2|)) |#2| |#2|) 109 T ELT)) (-2881 (((-2 (|:| |coef2| |#2|) (|:| -2879 |#1|)) |#2| |#2|) 132 (|has| |#1| (-393)) ELT)) (-2888 (((-2 (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|) 56 T ELT)) (-2862 (((-2 (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|) 80 T ELT)) (-2863 (((-2 (|:| |coef1| |#2|) (|:| -3759 |#1|)) |#2| |#2|) 82 T ELT)) (-2871 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2866 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696)) 89 T ELT)) (-2876 (((-2 (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2|) 121 T ELT)) (-2869 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696)) 92 T ELT)) (-2878 (((-585 (-696)) |#2| |#2|) 102 T ELT)) (-2886 ((|#1| |#2| |#2|) 50 T ELT)) (-2880 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2879 |#1|)) |#2| |#2|) 130 (|has| |#1| (-393)) ELT)) (-2879 ((|#1| |#2| |#2|) 128 (|has| |#1| (-393)) ELT)) (-2887 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|) 54 T ELT)) (-2861 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|) 79 T ELT)) (-3759 ((|#1| |#2| |#2|) 76 T ELT)) (-3755 (((-2 (|:| -3958 |#1|) (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2|) 41 T ELT)) (-2885 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2870 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3193 ((|#2| |#2| |#2|) 93 T ELT)) (-2865 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696)) 87 T ELT)) (-2864 ((|#2| |#2| |#2| (-696)) 85 T ELT)) (-3147 ((|#2| |#2| |#2|) 136 (|has| |#1| (-393)) ELT)) (-3469 (((-1181 |#2|) (-1181 |#2|) |#1|) 22 T ELT)) (-2882 (((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2|) 46 T ELT)) (-2875 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2|) 119 T ELT)) (-3760 ((|#1| |#2|) 116 T ELT)) (-2868 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696)) 91 T ELT)) (-2867 ((|#2| |#2| |#2| (-696)) 90 T ELT)) (-2877 (((-585 |#2|) |#2| |#2|) 99 T ELT)) (-2884 ((|#2| |#2| |#1| |#1| (-696)) 62 T ELT)) (-2883 ((|#1| |#1| |#1| (-696)) 61 T ELT)) (* (((-1181 |#2|) |#1| (-1181 |#2|)) 17 T ELT))) -(((-884 |#1| |#2|) (-10 -7 (-15 -3759 (|#1| |#2| |#2|)) (-15 -2861 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|)) (-15 -2862 ((-2 (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|)) (-15 -2863 ((-2 (|:| |coef1| |#2|) (|:| -3759 |#1|)) |#2| |#2|)) (-15 -2864 (|#2| |#2| |#2| (-696))) (-15 -2865 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696))) (-15 -2866 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696))) (-15 -2867 (|#2| |#2| |#2| (-696))) (-15 -2868 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696))) (-15 -2869 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696))) (-15 -3193 (|#2| |#2| |#2|)) (-15 -2870 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2871 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3758 (|#2| |#2| |#2|)) (-15 -2872 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3147 |#2|)) |#2| |#2|)) (-15 -2873 ((-2 (|:| |coef2| |#2|) (|:| -3147 |#2|)) |#2| |#2|)) (-15 -2874 ((-2 (|:| |coef1| |#2|) (|:| -3147 |#2|)) |#2| |#2|)) (-15 -3760 (|#1| |#2|)) (-15 -2875 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2|)) (-15 -2876 ((-2 (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2|)) (-15 -2877 ((-585 |#2|) |#2| |#2|)) (-15 -2878 ((-585 (-696)) |#2| |#2|)) (IF (|has| |#1| (-393)) (PROGN (-15 -2879 (|#1| |#2| |#2|)) (-15 -2880 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2879 |#1|)) |#2| |#2|)) (-15 -2881 ((-2 (|:| |coef2| |#2|) (|:| -2879 |#1|)) |#2| |#2|)) (-15 -3147 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1181 |#2|) |#1| (-1181 |#2|))) (-15 -3469 ((-1181 |#2|) (-1181 |#2|) |#1|)) (-15 -3755 ((-2 (|:| -3958 |#1|) (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2|)) (-15 -2882 ((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2|)) (-15 -2883 (|#1| |#1| |#1| (-696))) (-15 -2884 (|#2| |#2| |#1| |#1| (-696))) (-15 -2885 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2886 (|#1| |#2| |#2|)) (-15 -2887 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|)) (-15 -2888 ((-2 (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|))) (-497) (-1157 |#1|)) (T -884)) -((-2888 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3759 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2887 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3759 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2886 (*1 *2 *3 *3) (-12 (-4 *2 (-497)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1157 *2)))) (-2885 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3)))) (-2884 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-696)) (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3)))) (-2883 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *2 (-497)) (-5 *1 (-884 *2 *4)) (-4 *4 (-1157 *2)))) (-2882 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-3755 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| -3958 *4) (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-3469 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-497)) (-5 *1 (-884 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-497)) (-5 *1 (-884 *3 *4)))) (-3147 (*1 *2 *2 *2) (-12 (-4 *3 (-393)) (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3)))) (-2881 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2879 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2880 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2879 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2879 (*1 *2 *3 *3) (-12 (-4 *2 (-497)) (-4 *2 (-393)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1157 *2)))) (-2878 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-585 (-696))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2877 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-585 *3)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2876 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3760 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2875 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3760 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-3760 (*1 *2 *3) (-12 (-4 *2 (-497)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1157 *2)))) (-2874 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3147 *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2873 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3147 *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2872 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3147 *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-3758 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3)))) (-2871 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-3193 (*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3)))) (-2869 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *5 *3)) (-4 *3 (-1157 *5)))) (-2868 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *5 *3)) (-4 *3 (-1157 *5)))) (-2867 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-497)) (-5 *1 (-884 *4 *2)) (-4 *2 (-1157 *4)))) (-2866 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *5 *3)) (-4 *3 (-1157 *5)))) (-2865 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *5 *3)) (-4 *3 (-1157 *5)))) (-2864 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-497)) (-5 *1 (-884 *4 *2)) (-4 *2 (-1157 *4)))) (-2863 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3759 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2862 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3759 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-2861 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3759 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) (-3759 (*1 *2 *3 *3) (-12 (-4 *2 (-497)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1157 *2))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3321 (((-1132) $) 14 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3209 (((-1051) $) 11 T ELT)) (-3950 (((-774) $) 21 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-885) (-13 (-997) (-10 -8 (-15 -3209 ((-1051) $)) (-15 -3321 ((-1132) $))))) (T -885)) -((-3209 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-885)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-885))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 40 T ELT)) (-1314 (((-3 $ "failed") $ $) 54 T ELT)) (-3727 (($) NIL T CONST)) (-2890 (((-585 (-784 (-832) (-832))) $) 64 T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2889 (((-832) $) 91 T ELT)) (-2892 (((-585 (-832)) $) 17 T ELT)) (-2891 (((-1071 $) (-696)) 39 T ELT)) (-2893 (($ (-585 (-832))) 16 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3012 (($ $) 67 T ELT)) (-3950 (((-774) $) 87 T ELT) (((-585 (-832)) $) 11 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) 10 T CONST)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 44 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 42 T ELT)) (-3842 (($ $ $) 46 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) 49 T ELT)) (-3961 (((-696) $) 22 T ELT))) -(((-886) (-13 (-723) (-554 (-585 (-832))) (-10 -8 (-15 -2893 ($ (-585 (-832)))) (-15 -2892 ((-585 (-832)) $)) (-15 -3961 ((-696) $)) (-15 -2891 ((-1071 $) (-696))) (-15 -2890 ((-585 (-784 (-832) (-832))) $)) (-15 -2889 ((-832) $)) (-15 -3012 ($ $))))) (T -886)) -((-2893 (*1 *1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-886)))) (-2892 (*1 *2 *1) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-886)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-886)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1071 (-886))) (-5 *1 (-886)))) (-2890 (*1 *2 *1) (-12 (-5 *2 (-585 (-784 (-832) (-832)))) (-5 *1 (-886)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-886)))) (-3012 (*1 *1 *1) (-5 *1 (-886)))) -((-3953 (($ $ |#2|) 31 T ELT)) (-3840 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-350 (-486)) $) 27 T ELT) (($ $ (-350 (-486))) 29 T ELT))) -(((-887 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-350 (-486)))) (-15 * (|#1| (-350 (-486)) |#1|)) (-15 -3953 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|))) (-888 |#2| |#3| |#4|) (-963) (-718) (-758)) (T -887)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 |#3|) $) 96 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 72 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 73 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 75 (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3962 (($ $) 81 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2895 (((-85) $) 95 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3941 (((-85) $) 83 T ELT)) (-2896 (($ |#1| |#2|) 82 T ELT) (($ $ |#3| |#2|) 98 T ELT) (($ $ (-585 |#3|) (-585 |#2|)) 97 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3469 (((-3 $ "failed") $ $) 71 (|has| |#1| (-497)) ELT)) (-3952 ((|#2| $) 84 T ELT)) (-2894 (($ $) 94 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 (-486))) 78 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) 70 (|has| |#1| (-497)) ELT) (($ |#1|) 68 (|has| |#1| (-146)) ELT)) (-3680 ((|#1| $ |#2|) 80 T ELT)) (-2705 (((-634 $) $) 69 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 74 (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 79 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-350 (-486)) $) 77 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 76 (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-888 |#1| |#2| |#3|) (-113) (-963) (-718) (-758)) (T -888)) -((-3177 (*1 *2 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *3 (-718)) (-4 *4 (-758)) (-4 *2 (-963)))) (-2897 (*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *4 (-758)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *2 *4)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *2 (-718)))) (-2896 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-888 *4 *3 *2)) (-4 *4 (-963)) (-4 *3 (-718)) (-4 *2 (-758)))) (-2896 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 *5)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-718)) (-4 *6 (-758)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-718)) (-4 *5 (-758)) (-5 *2 (-585 *5)))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-718)) (-4 *5 (-758)) (-5 *2 (-85)))) (-2894 (*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *4 (-758))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2896 ($ $ |t#3| |t#2|)) (-15 -2896 ($ $ (-585 |t#3|) (-585 |t#2|))) (-15 -2897 ($ $)) (-15 -3177 (|t#1| $)) (-15 -3952 (|t#2| $)) (-15 -3084 ((-585 |t#3|) $)) (-15 -2895 ((-85) $)) (-15 -2894 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-497)) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-557 (-486)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) |has| |#1| (-497)) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-246) |has| |#1| (-497)) ((-381 |#1|) . T) ((-497) |has| |#1| (-497)) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-497)) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-497)) ((-665) . T) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-2898 (((-1003 (-179)) $) 8 T ELT)) (-2899 (((-1003 (-179)) $) 9 T ELT)) (-2900 (((-1003 (-179)) $) 10 T ELT)) (-2901 (((-585 (-585 (-856 (-179)))) $) 11 T ELT)) (-3950 (((-774) $) 6 T ELT))) -(((-889) (-113)) (T -889)) -((-2901 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-585 (-585 (-856 (-179))))))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1003 (-179))))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1003 (-179))))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1003 (-179)))))) -(-13 (-554 (-774)) (-10 -8 (-15 -2901 ((-585 (-585 (-856 (-179)))) $)) (-15 -2900 ((-1003 (-179)) $)) (-15 -2899 ((-1003 (-179)) $)) (-15 -2898 ((-1003 (-179)) $)))) -(((-554 (-774)) . T)) -((-3084 (((-585 |#4|) $) 23 T ELT)) (-2911 (((-85) $) 55 T ELT)) (-2902 (((-85) $) 54 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2907 (((-85) $) 56 T ELT)) (-2909 (((-85) $ $) 62 T ELT)) (-2908 (((-85) $ $) 65 T ELT)) (-2910 (((-85) $) 60 T ELT)) (-2903 (((-585 |#5|) (-585 |#5|) $) 98 T ELT)) (-2904 (((-585 |#5|) (-585 |#5|) $) 95 T ELT)) (-2905 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2917 (((-585 |#4|) $) 27 T ELT)) (-2916 (((-85) |#4| $) 34 T ELT)) (-2906 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2913 (($ $ |#4|) 39 T ELT)) (-2915 (($ $ |#4|) 38 T ELT)) (-2914 (($ $ |#4|) 40 T ELT)) (-3059 (((-85) $ $) 46 T ELT))) -(((-890 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2902 ((-85) |#1|)) (-15 -2903 ((-585 |#5|) (-585 |#5|) |#1|)) (-15 -2904 ((-585 |#5|) (-585 |#5|) |#1|)) (-15 -2905 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2906 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2907 ((-85) |#1|)) (-15 -2908 ((-85) |#1| |#1|)) (-15 -2909 ((-85) |#1| |#1|)) (-15 -2910 ((-85) |#1|)) (-15 -2911 ((-85) |#1|)) (-15 -2912 ((-2 (|:| |under| |#1|) (|:| -3133 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2913 (|#1| |#1| |#4|)) (-15 -2914 (|#1| |#1| |#4|)) (-15 -2915 (|#1| |#1| |#4|)) (-15 -2916 ((-85) |#4| |#1|)) (-15 -2917 ((-585 |#4|) |#1|)) (-15 -3084 ((-585 |#4|) |#1|)) (-15 -3059 ((-85) |#1| |#1|))) (-891 |#2| |#3| |#4| |#5|) (-963) (-719) (-758) (-979 |#2| |#3| |#4|)) (T -890)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3084 (((-585 |#3|) $) 39 T ELT)) (-2911 (((-85) $) 32 T ELT)) (-2902 (((-85) $) 23 (|has| |#1| (-497)) ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3713 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT)) (-3727 (($) 59 T CONST)) (-2907 (((-85) $) 28 (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) 30 (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) 31 (|has| |#1| (-497)) ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 24 (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) 25 (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ "failed") (-585 |#4|)) 42 T ELT)) (-3159 (($ (-585 |#4|)) 41 T ELT)) (-1355 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3409 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-497)) ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT)) (-3183 ((|#3| $) 40 T ELT)) (-2611 (((-585 |#4|) $) 48 T ELT)) (-3248 (((-85) |#4| $) 53 (|has| |#4| (-72)) ELT)) (-3846 (($ (-1 |#4| |#4|) $) 60 T ELT)) (-2917 (((-585 |#3|) $) 38 T ELT)) (-2916 (((-85) |#3| $) 37 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-497)) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1731 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 51 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 46 T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) 64 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) 55 T ELT)) (-3406 (((-85) $) 58 T ELT)) (-3568 (($) 57 T ELT)) (-1732 (((-696) |#4| $) 52 (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) 47 T ELT)) (-3403 (($ $) 56 T ELT)) (-3975 (((-475) $) 70 (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) 65 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-2915 (($ $ |#3|) 36 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3950 (((-774) $) 13 T ELT) (((-585 |#4|) $) 43 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3961 (((-696) $) 44 T ELT))) -(((-891 |#1| |#2| |#3| |#4|) (-113) (-963) (-719) (-758) (-979 |t#1| |t#2| |t#3|)) (T -891)) -((-3160 (*1 *1 *2) (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *1 (-891 *3 *4 *5 *6)))) (-3159 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *1 (-891 *3 *4 *5 *6)))) (-3183 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-979 *3 *4 *2)) (-4 *2 (-758)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *5)))) (-2917 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *5)))) (-2916 (*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *3 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-4 *6 (-979 *4 *5 *3)) (-5 *2 (-85)))) (-2915 (*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *5 (-979 *3 *4 *2)))) (-2914 (*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *5 (-979 *3 *4 *2)))) (-2913 (*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *5 (-979 *3 *4 *2)))) (-2912 (*1 *2 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-4 *6 (-979 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3133 *1) (|:| |upper| *1))) (-4 *1 (-891 *4 *5 *3 *6)))) (-2911 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-2910 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85)))) (-2909 (*1 *2 *1 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85)))) (-2908 (*1 *2 *1 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85)))) (-2906 (*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-497)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2905 (*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-497)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2904 (*1 *2 *2 *1) (-12 (-5 *2 (-585 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)))) (-2903 (*1 *2 *2 *1) (-12 (-5 *2 (-585 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)))) (-2902 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85))))) -(-13 (-1015) (-124 |t#4|) (-318 |t#4|) (-554 (-585 |t#4|)) (-10 -8 (-15 -3160 ((-3 $ "failed") (-585 |t#4|))) (-15 -3159 ($ (-585 |t#4|))) (-15 -3183 (|t#3| $)) (-15 -3084 ((-585 |t#3|) $)) (-15 -2917 ((-585 |t#3|) $)) (-15 -2916 ((-85) |t#3| $)) (-15 -2915 ($ $ |t#3|)) (-15 -2914 ($ $ |t#3|)) (-15 -2913 ($ $ |t#3|)) (-15 -2912 ((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |t#3|)) (-15 -2911 ((-85) $)) (IF (|has| |t#1| (-497)) (PROGN (-15 -2910 ((-85) $)) (-15 -2909 ((-85) $ $)) (-15 -2908 ((-85) $ $)) (-15 -2907 ((-85) $)) (-15 -2906 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2905 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2904 ((-585 |t#4|) (-585 |t#4|) $)) (-15 -2903 ((-585 |t#4|) (-585 |t#4|) $)) (-15 -2902 ((-85) $))) |%noBranch|))) -(((-34) . T) ((-72) . T) ((-554 (-585 |#4|)) . T) ((-554 (-774)) . T) ((-124 |#4|) . T) ((-555 (-475)) |has| |#4| (-555 (-475))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-318 |#4|) . T) ((-381 |#4|) . T) ((-430 |#4|) . T) ((-457 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-2919 (((-585 |#4|) |#4| |#4|) 135 T ELT)) (-2942 (((-585 |#4|) (-585 |#4|) (-85)) 123 (|has| |#1| (-393)) ELT) (((-585 |#4|) (-585 |#4|)) 124 (|has| |#1| (-393)) ELT)) (-2929 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|)) 44 T ELT)) (-2928 (((-85) |#4|) 43 T ELT)) (-2941 (((-585 |#4|) |#4|) 120 (|has| |#1| (-393)) ELT)) (-2924 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-1 (-85) |#4|) (-585 |#4|)) 24 T ELT)) (-2925 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 (-1 (-85) |#4|)) (-585 |#4|)) 30 T ELT)) (-2926 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 (-1 (-85) |#4|)) (-585 |#4|)) 31 T ELT)) (-2937 (((-3 (-2 (|:| |bas| (-417 |#1| |#2| |#3| |#4|)) (|:| -3326 (-585 |#4|))) "failed") (-585 |#4|)) 90 T ELT)) (-2939 (((-585 |#4|) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2940 (((-585 |#4|) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2918 (((-585 |#4|) (-585 |#4|)) 126 T ELT)) (-2934 (((-585 |#4|) (-585 |#4|) (-585 |#4|) (-85)) 59 T ELT) (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 61 T ELT)) (-2935 ((|#4| |#4| (-585 |#4|)) 60 T ELT)) (-2943 (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 131 (|has| |#1| (-393)) ELT)) (-2945 (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 134 (|has| |#1| (-393)) ELT)) (-2944 (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 133 (|has| |#1| (-393)) ELT)) (-2920 (((-585 |#4|) (-585 |#4|) (-585 |#4|) (-1 (-585 |#4|) (-585 |#4|))) 105 T ELT) (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 107 T ELT) (((-585 |#4|) (-585 |#4|) |#4|) 139 T ELT) (((-585 |#4|) |#4| |#4|) 136 T ELT) (((-585 |#4|) (-585 |#4|)) 106 T ELT)) (-2948 (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 117 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2927 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|)) 52 T ELT)) (-2923 (((-85) (-585 |#4|)) 79 T ELT)) (-2922 (((-85) (-585 |#4|) (-585 (-585 |#4|))) 67 T ELT)) (-2931 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|)) 37 T ELT)) (-2930 (((-85) |#4|) 36 T ELT)) (-2947 (((-585 |#4|) (-585 |#4|)) 116 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2946 (((-585 |#4|) (-585 |#4|)) 115 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2936 (((-585 |#4|) (-585 |#4|)) 83 T ELT)) (-2938 (((-585 |#4|) (-585 |#4|)) 97 T ELT)) (-2921 (((-85) (-585 |#4|) (-585 |#4|)) 65 T ELT)) (-2933 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|)) 50 T ELT)) (-2932 (((-85) |#4|) 45 T ELT))) -(((-892 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2920 ((-585 |#4|) (-585 |#4|))) (-15 -2920 ((-585 |#4|) |#4| |#4|)) (-15 -2918 ((-585 |#4|) (-585 |#4|))) (-15 -2919 ((-585 |#4|) |#4| |#4|)) (-15 -2920 ((-585 |#4|) (-585 |#4|) |#4|)) (-15 -2920 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -2920 ((-585 |#4|) (-585 |#4|) (-585 |#4|) (-1 (-585 |#4|) (-585 |#4|)))) (-15 -2921 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -2922 ((-85) (-585 |#4|) (-585 (-585 |#4|)))) (-15 -2923 ((-85) (-585 |#4|))) (-15 -2924 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-1 (-85) |#4|) (-585 |#4|))) (-15 -2925 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 (-1 (-85) |#4|)) (-585 |#4|))) (-15 -2926 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 (-1 (-85) |#4|)) (-585 |#4|))) (-15 -2927 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -2928 ((-85) |#4|)) (-15 -2929 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -2930 ((-85) |#4|)) (-15 -2931 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -2932 ((-85) |#4|)) (-15 -2933 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -2934 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -2934 ((-585 |#4|) (-585 |#4|) (-585 |#4|) (-85))) (-15 -2935 (|#4| |#4| (-585 |#4|))) (-15 -2936 ((-585 |#4|) (-585 |#4|))) (-15 -2937 ((-3 (-2 (|:| |bas| (-417 |#1| |#2| |#3| |#4|)) (|:| -3326 (-585 |#4|))) "failed") (-585 |#4|))) (-15 -2938 ((-585 |#4|) (-585 |#4|))) (-15 -2939 ((-585 |#4|) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2940 ((-585 |#4|) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-393)) (PROGN (-15 -2941 ((-585 |#4|) |#4|)) (-15 -2942 ((-585 |#4|) (-585 |#4|))) (-15 -2942 ((-585 |#4|) (-585 |#4|) (-85))) (-15 -2943 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -2944 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -2945 ((-585 |#4|) (-585 |#4|) (-585 |#4|)))) |%noBranch|) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (PROGN (-15 -2946 ((-585 |#4|) (-585 |#4|))) (-15 -2947 ((-585 |#4|) (-585 |#4|))) (-15 -2948 ((-585 |#4|) (-585 |#4|) (-585 |#4|)))) |%noBranch|) |%noBranch|)) (-497) (-719) (-758) (-979 |#1| |#2| |#3|)) (T -892)) -((-2948 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2947 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2946 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2945 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-393)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2944 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-393)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2943 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-393)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2942 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-85)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *7)))) (-2942 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-393)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2941 (*1 *2 *3) (-12 (-4 *4 (-393)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-2940 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-892 *5 *6 *7 *8)))) (-2939 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-585 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-979 *6 *7 *8)) (-4 *6 (-497)) (-4 *7 (-719)) (-4 *8 (-758)) (-5 *1 (-892 *6 *7 *8 *9)))) (-2938 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2937 (*1 *2 *3) (|partial| -12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-417 *4 *5 *6 *7)) (|:| -3326 (-585 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-2936 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2935 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *2)))) (-2934 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-85)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *7)))) (-2934 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2933 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-2932 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-2931 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-2930 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-2929 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-2926 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1 (-85) *8))) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-585 *8)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1 (-85) *8))) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-585 *8)))) (-2924 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-585 *8)))) (-2923 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *7)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-585 *8))) (-5 *3 (-585 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *5 *6 *7 *8)))) (-2921 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *7)))) (-2920 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-585 *7) (-585 *7))) (-5 *2 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *7)))) (-2920 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2920 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *3)) (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *3)))) (-2919 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-2918 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2920 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-2920 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) -((-2949 (((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2951 (((-585 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1181 |#1|)))) (-632 |#1|) (-1181 |#1|)) 45 T ELT)) (-2950 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT))) -(((-893 |#1|) (-10 -7 (-15 -2949 ((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2950 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2951 ((-585 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1181 |#1|)))) (-632 |#1|) (-1181 |#1|)))) (-312)) (T -893)) -((-2951 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-585 (-2 (|:| C (-632 *5)) (|:| |g| (-1181 *5))))) (-5 *1 (-893 *5)) (-5 *3 (-632 *5)) (-5 *4 (-1181 *5)))) (-2950 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-632 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-893 *5)))) (-2949 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-312)) (-5 *2 (-2 (|:| R (-632 *6)) (|:| A (-632 *6)) (|:| |Ainv| (-632 *6)))) (-5 *1 (-893 *6)) (-5 *3 (-632 *6))))) -((-3974 (((-348 |#4|) |#4|) 61 T ELT))) -(((-894 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3974 ((-348 |#4|) |#4|))) (-758) (-719) (-393) (-863 |#3| |#2| |#1|)) (T -894)) -((-3974 (*1 *2 *3) (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-393)) (-5 *2 (-348 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-863 *6 *5 *4))))) -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3841 (($ (-696)) 123 (|has| |#1| (-23)) ELT)) (-2200 (((-1187) $ (-486) (-486)) 35 (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) 96 T ELT) (((-85) $) 90 (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) 87 (|has| $ (-1037 |#1|)) ELT) (($ $) 86 (-12 (|has| |#1| (-758)) (|has| $ (-1037 |#1|))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) 97 T ELT) (($ $) 91 (|has| |#1| (-758)) ELT)) (-3791 ((|#1| $ (-486) |#1|) 47 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2299 (($ $) 88 (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) 98 T ELT)) (-1355 (($ $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3409 (($ |#1| $) 70 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 68 (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 105 T ELT)) (-1577 ((|#1| $ (-486) |#1|) 48 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 46 T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) 95 T ELT) (((-486) |#1| $) 94 (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) 93 (|has| |#1| (-72)) ELT)) (-3709 (($ (-585 |#1|)) 129 T ELT)) (-3838 (((-632 |#1|) $ $) 116 (|has| |#1| (-963)) ELT)) (-3617 (($ (-696) |#1|) 65 T ELT)) (-2202 (((-486) $) 38 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) 80 (|has| |#1| (-758)) ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) 104 T ELT)) (-3248 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) 39 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) 81 (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 112 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3835 ((|#1| $) 113 (-12 (|has| |#1| (-963)) (|has| |#1| (-917))) ELT)) (-3836 ((|#1| $) 114 (-12 (|has| |#1| (-963)) (|has| |#1| (-917))) ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) 57 T ELT) (($ $ $ (-486)) 56 T ELT)) (-2205 (((-585 (-486)) $) 41 T ELT)) (-2206 (((-85) (-486) $) 42 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 37 (|has| (-486) (-758)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 107 T ELT)) (-2201 (($ $ |#1|) 36 (|has| $ (-1037 |#1|)) ELT)) (-3772 (($ $ (-585 |#1|)) 127 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) 43 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-486) |#1|) 45 T ELT) ((|#1| $ (-486)) 44 T ELT) (($ $ (-1148 (-486))) 66 T ELT)) (-3839 ((|#1| $ $) 117 (|has| |#1| (-963)) ELT)) (-3915 (((-832) $) 128 T ELT)) (-2307 (($ $ (-486)) 59 T ELT) (($ $ (-1148 (-486))) 58 T ELT)) (-3837 (($ $ $) 115 T ELT)) (-1732 (((-696) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 103 T ELT)) (-1736 (($ $ $ (-486)) 89 (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 72 (|has| |#1| (-555 (-475))) ELT) (($ (-585 |#1|)) 130 T ELT)) (-3533 (($ (-585 |#1|)) 67 T ELT)) (-3805 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 101 T ELT)) (-2569 (((-85) $ $) 82 (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) 84 (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) 83 (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 85 (|has| |#1| (-758)) ELT)) (-3840 (($ $) 122 (|has| |#1| (-21)) ELT) (($ $ $) 121 (|has| |#1| (-21)) ELT)) (-3842 (($ $ $) 124 (|has| |#1| (-25)) ELT)) (* (($ (-486) $) 120 (|has| |#1| (-21)) ELT) (($ |#1| $) 119 (|has| |#1| (-665)) ELT) (($ $ |#1|) 118 (|has| |#1| (-665)) ELT)) (-3961 (((-696) $) 100 T ELT))) -(((-895 |#1|) (-113) (-963)) (T -895)) -((-3709 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-963)) (-4 *1 (-895 *3)))) (-3915 (*1 *2 *1) (-12 (-4 *1 (-895 *3)) (-4 *3 (-963)) (-5 *2 (-832)))) (-3837 (*1 *1 *1 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-963)))) (-3772 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-895 *3)) (-4 *3 (-963))))) -(-13 (-1180 |t#1|) (-559 (-585 |t#1|)) (-10 -8 (-15 -3709 ($ (-585 |t#1|))) (-15 -3915 ((-832) $)) (-15 -3837 ($ $ $)) (-15 -3772 ($ $ (-585 |t#1|))))) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-559 (-585 |#1|)) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 (-486) |#1|) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-540 (-486) |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-19 |#1|) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-1015) OR (|has| |#1| (-1015)) (|has| |#1| (-758))) ((-1037 |#1|) . T) ((-1131) . T) ((-1180 |#1|) . T)) -((-3846 (((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)) 17 T ELT))) -(((-896 |#1| |#2|) (-10 -7 (-15 -3846 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)))) (-963) (-963)) (T -896)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-5 *2 (-856 *6)) (-5 *1 (-896 *5 *6))))) -((-2954 ((|#1| (-856 |#1|)) 14 T ELT)) (-2953 ((|#1| (-856 |#1|)) 13 T ELT)) (-2952 ((|#1| (-856 |#1|)) 12 T ELT)) (-2956 ((|#1| (-856 |#1|)) 16 T ELT)) (-2960 ((|#1| (-856 |#1|)) 24 T ELT)) (-2955 ((|#1| (-856 |#1|)) 15 T ELT)) (-2957 ((|#1| (-856 |#1|)) 17 T ELT)) (-2959 ((|#1| (-856 |#1|)) 23 T ELT)) (-2958 ((|#1| (-856 |#1|)) 22 T ELT))) -(((-897 |#1|) (-10 -7 (-15 -2952 (|#1| (-856 |#1|))) (-15 -2953 (|#1| (-856 |#1|))) (-15 -2954 (|#1| (-856 |#1|))) (-15 -2955 (|#1| (-856 |#1|))) (-15 -2956 (|#1| (-856 |#1|))) (-15 -2957 (|#1| (-856 |#1|))) (-15 -2958 (|#1| (-856 |#1|))) (-15 -2959 (|#1| (-856 |#1|))) (-15 -2960 (|#1| (-856 |#1|)))) (-963)) (T -897)) -((-2960 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2958 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) -((-2978 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2976 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2980 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2961 (((-3 |#1| "failed") |#1| (-696)) 1 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2981 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2979 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2977 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2984 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2972 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2982 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2970 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2986 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2974 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2987 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2975 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2985 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2973 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2983 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2971 (((-3 |#1| "failed") |#1|) 11 T ELT))) -(((-898 |#1|) (-113) (-1117)) (T -898)) -((-2987 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2986 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2985 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2984 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2983 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2982 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2981 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2980 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2979 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2978 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2976 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2975 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2974 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2973 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2972 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2971 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2970 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117)))) (-2961 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-696)) (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(-13 (-10 -7 (-15 -2961 ((-3 |t#1| "failed") |t#1| (-696))) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -2970 ((-3 |t#1| "failed") |t#1|)) (-15 -2971 ((-3 |t#1| "failed") |t#1|)) (-15 -2972 ((-3 |t#1| "failed") |t#1|)) (-15 -2973 ((-3 |t#1| "failed") |t#1|)) (-15 -2974 ((-3 |t#1| "failed") |t#1|)) (-15 -2975 ((-3 |t#1| "failed") |t#1|)) (-15 -2976 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -2978 ((-3 |t#1| "failed") |t#1|)) (-15 -2979 ((-3 |t#1| "failed") |t#1|)) (-15 -2980 ((-3 |t#1| "failed") |t#1|)) (-15 -2981 ((-3 |t#1| "failed") |t#1|)) (-15 -2982 ((-3 |t#1| "failed") |t#1|)) (-15 -2983 ((-3 |t#1| "failed") |t#1|)) (-15 -2984 ((-3 |t#1| "failed") |t#1|)) (-15 -2985 ((-3 |t#1| "failed") |t#1|)) (-15 -2986 ((-3 |t#1| "failed") |t#1|)) (-15 -2987 ((-3 |t#1| "failed") |t#1|)))) -((-2989 ((|#4| |#4| (-585 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2988 ((|#4| |#4| (-585 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3846 ((|#4| (-1 |#4| (-859 |#1|)) |#4|) 33 T ELT))) -(((-899 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2988 (|#4| |#4| |#3|)) (-15 -2988 (|#4| |#4| (-585 |#3|))) (-15 -2989 (|#4| |#4| |#3|)) (-15 -2989 (|#4| |#4| (-585 |#3|))) (-15 -3846 (|#4| (-1 |#4| (-859 |#1|)) |#4|))) (-963) (-719) (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ "failed") (-1092))))) (-863 (-859 |#1|) |#2| |#3|)) (T -899)) -((-3846 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-859 *4))) (-4 *4 (-963)) (-4 *2 (-863 (-859 *4) *5 *6)) (-4 *5 (-719)) (-4 *6 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ #1="failed") (-1092)))))) (-5 *1 (-899 *4 *5 *6 *2)))) (-2989 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ #1#) (-1092)))))) (-4 *4 (-963)) (-4 *5 (-719)) (-5 *1 (-899 *4 *5 *6 *2)) (-4 *2 (-863 (-859 *4) *5 *6)))) (-2989 (*1 *2 *2 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ #1#) (-1092)))))) (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-863 (-859 *4) *5 *3)))) (-2988 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ #1#) (-1092)))))) (-4 *4 (-963)) (-4 *5 (-719)) (-5 *1 (-899 *4 *5 *6 *2)) (-4 *2 (-863 (-859 *4) *5 *6)))) (-2988 (*1 *2 *2 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ #1#) (-1092)))))) (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-863 (-859 *4) *5 *3))))) -((-2990 ((|#2| |#3|) 35 T ELT)) (-3923 (((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|) 79 T ELT)) (-3922 (((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) 100 T ELT))) -(((-900 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3922 ((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -3923 ((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|)) (-15 -2990 (|#2| |#3|))) (-299) (-1157 |#1|) (-1157 |#2|) (-663 |#2| |#3|)) (T -900)) -((-2990 (*1 *2 *3) (-12 (-4 *3 (-1157 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-900 *4 *2 *3 *5)) (-4 *4 (-299)) (-4 *5 (-663 *2 *3)))) (-3923 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3)) (-5 *2 (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-900 *4 *3 *5 *6)) (-4 *6 (-663 *3 *5)))) (-3922 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -2014 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-663 *4 *5))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3404 (((-3 (-85) #1="failed") $) 71 T ELT)) (-3652 (($ $) 36 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2994 (($ $ (-3 (-85) #1#)) 72 T ELT)) (-2995 (($ (-585 |#4|) |#4|) 25 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2991 (($ $) 69 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3406 (((-85) $) 70 T ELT)) (-3568 (($) 30 T ELT)) (-2992 ((|#4| $) 74 T ELT)) (-2993 (((-585 |#4|) $) 73 T ELT)) (-3950 (((-774) $) 68 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-901 |#1| |#2| |#3| |#4|) (-13 (-1015) (-554 (-774)) (-10 -8 (-15 -3568 ($)) (-15 -2995 ($ (-585 |#4|) |#4|)) (-15 -3404 ((-3 (-85) #1="failed") $)) (-15 -2994 ($ $ (-3 (-85) #1#))) (-15 -3406 ((-85) $)) (-15 -2993 ((-585 |#4|) $)) (-15 -2992 (|#4| $)) (-15 -2991 ($ $)) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (-15 -3652 ($ $)) |%noBranch|) |%noBranch|))) (-393) (-758) (-719) (-863 |#1| |#3| |#2|)) (T -901)) -((-3568 (*1 *1) (-12 (-4 *2 (-393)) (-4 *3 (-758)) (-4 *4 (-719)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-863 *2 *4 *3)))) (-2995 (*1 *1 *2 *3) (-12 (-5 *2 (-585 *3)) (-4 *3 (-863 *4 *6 *5)) (-4 *4 (-393)) (-4 *5 (-758)) (-4 *6 (-719)) (-5 *1 (-901 *4 *5 *6 *3)))) (-3404 (*1 *2 *1) (|partial| -12 (-4 *3 (-393)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *2 (-85)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4)))) (-2994 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-393)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4)))) (-3406 (*1 *2 *1) (-12 (-4 *3 (-393)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *2 (-85)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4)))) (-2993 (*1 *2 *1) (-12 (-4 *3 (-393)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *2 (-585 *6)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4)))) (-2992 (*1 *2 *1) (-12 (-4 *2 (-863 *3 *5 *4)) (-5 *1 (-901 *3 *4 *5 *2)) (-4 *3 (-393)) (-4 *4 (-758)) (-4 *5 (-719)))) (-2991 (*1 *1 *1) (-12 (-4 *2 (-393)) (-4 *3 (-758)) (-4 *4 (-719)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-863 *2 *4 *3)))) (-3652 (*1 *1 *1) (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-393)) (-4 *3 (-758)) (-4 *4 (-719)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-863 *2 *4 *3))))) -((-2996 (((-901 (-350 (-486)) (-775 |#1|) (-197 |#2| (-696)) (-206 |#1| (-350 (-486)))) (-901 (-350 (-486)) (-775 |#1|) (-197 |#2| (-696)) (-206 |#1| (-350 (-486))))) 82 T ELT))) -(((-902 |#1| |#2|) (-10 -7 (-15 -2996 ((-901 (-350 (-486)) (-775 |#1|) (-197 |#2| (-696)) (-206 |#1| (-350 (-486)))) (-901 (-350 (-486)) (-775 |#1|) (-197 |#2| (-696)) (-206 |#1| (-350 (-486))))))) (-585 (-1092)) (-696)) (T -902)) -((-2996 (*1 *2 *2) (-12 (-5 *2 (-901 (-350 (-486)) (-775 *3) (-197 *4 (-696)) (-206 *3 (-350 (-486))))) (-14 *3 (-585 (-1092))) (-14 *4 (-696)) (-5 *1 (-902 *3 *4))))) -((-3272 (((-85) |#5| |#5|) 44 T ELT)) (-3275 (((-85) |#5| |#5|) 59 T ELT)) (-3280 (((-85) |#5| (-585 |#5|)) 81 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3276 (((-85) (-585 |#4|) (-585 |#4|)) 65 T ELT)) (-3282 (((-85) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) 70 T ELT)) (-3271 (((-1187)) 32 T ELT)) (-3270 (((-1187) (-1075) (-1075) (-1075)) 28 T ELT)) (-3281 (((-585 |#5|) (-585 |#5|)) 100 T ELT)) (-3283 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)))) 92 T ELT)) (-3284 (((-585 (-2 (|:| -3269 (-585 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-585 |#4|)))) (-585 |#4|) (-585 |#5|) (-85) (-85)) 122 T ELT)) (-3274 (((-85) |#5| |#5|) 53 T ELT)) (-3279 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3277 (((-85) (-585 |#4|) (-585 |#4|)) 64 T ELT)) (-3278 (((-85) (-585 |#4|) (-585 |#4|)) 66 T ELT)) (-3702 (((-85) (-585 |#4|) (-585 |#4|)) 67 T ELT)) (-3285 (((-3 (-2 (|:| -3269 (-585 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-585 |#4|))) #1#) (-585 |#4|) |#5| (-585 |#4|) (-85) (-85) (-85) (-85) (-85)) 117 T ELT)) (-3273 (((-585 |#5|) (-585 |#5|)) 49 T ELT))) -(((-903 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3270 ((-1187) (-1075) (-1075) (-1075))) (-15 -3271 ((-1187))) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3273 ((-585 |#5|) (-585 |#5|))) (-15 -3274 ((-85) |#5| |#5|)) (-15 -3275 ((-85) |#5| |#5|)) (-15 -3276 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3277 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3278 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3702 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3279 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3280 ((-85) |#5| |#5|)) (-15 -3280 ((-85) |#5| (-585 |#5|))) (-15 -3281 ((-585 |#5|) (-585 |#5|))) (-15 -3282 ((-85) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)))) (-15 -3283 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) (-15 -3284 ((-585 (-2 (|:| -3269 (-585 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-585 |#4|)))) (-585 |#4|) (-585 |#5|) (-85) (-85))) (-15 -3285 ((-3 (-2 (|:| -3269 (-585 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-585 |#4|))) #1#) (-585 |#4|) |#5| (-585 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|)) (T -903)) -((-3285 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| -3269 (-585 *9)) (|:| -1601 *4) (|:| |ineq| (-585 *9)))) (-5 *1 (-903 *6 *7 *8 *9 *4)) (-5 *3 (-585 *9)) (-4 *4 (-985 *6 *7 *8 *9)))) (-3284 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-585 *10)) (-5 *5 (-85)) (-4 *10 (-985 *6 *7 *8 *9)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-979 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| -3269 (-585 *9)) (|:| -1601 *10) (|:| |ineq| (-585 *9))))) (-5 *1 (-903 *6 *7 *8 *9 *10)) (-5 *3 (-585 *9)))) (-3283 (*1 *2 *2) (-12 (-5 *2 (-585 (-2 (|:| |val| (-585 *6)) (|:| -1601 *7)))) (-4 *6 (-979 *3 *4 *5)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) (-3282 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1601 *8))) (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-985 *4 *5 *6 *7)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)))) (-3281 (*1 *2 *2) (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) (-3280 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-903 *5 *6 *7 *8 *3)))) (-3280 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3702 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3273 (*1 *2 *2) (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3271 (*1 *2) (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-1187)) (-5 *1 (-903 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) (-3270 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7))))) -((-3834 (((-1092) $) 15 T ELT)) (-3405 (((-1075) $) 16 T ELT)) (-3229 (($ (-1092) (-1075)) 14 T ELT)) (-3950 (((-774) $) 13 T ELT))) -(((-904) (-13 (-554 (-774)) (-10 -8 (-15 -3229 ($ (-1092) (-1075))) (-15 -3834 ((-1092) $)) (-15 -3405 ((-1075) $))))) (T -904)) -((-3229 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1075)) (-5 *1 (-904)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-904)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-904))))) -((-3160 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1092) #1#) $) 72 T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 (-486) #1#) $) 102 T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-1092) $) 67 T ELT) (((-350 (-486)) $) NIL T ELT) (((-486) $) 99 T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) 121 T ELT) (((-632 |#2|) (-632 $)) 35 T ELT)) (-2997 (($) 105 T ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 82 T ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 91 T ELT)) (-2999 (($ $) 10 T ELT)) (-3448 (((-634 $) $) 27 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3449 (($) 16 T CONST)) (-3131 (($ $) 61 T ELT)) (-3761 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2998 (($ $) 12 T ELT)) (-3975 (((-802 (-486)) $) 77 T ELT) (((-802 (-330)) $) 86 T ELT) (((-475) $) 47 T ELT) (((-330) $) 51 T ELT) (((-179) $) 55 T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1092)) 64 T ELT)) (-3129 (((-696)) 38 T CONST)) (-2688 (((-85) $ $) 57 T ELT))) -(((-905 |#1| |#2|) (-10 -7 (-15 -2688 ((-85) |#1| |#1|)) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -3449 (|#1|) -3956) (-15 -3448 ((-634 |#1|) |#1|)) (-15 -3160 ((-3 (-486) #1="failed") |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3975 ((-179) |#1|)) (-15 -3975 ((-330) |#1|)) (-15 -3975 ((-475) |#1|)) (-15 -3950 (|#1| (-1092))) (-15 -3160 ((-3 (-1092) #1#) |#1|)) (-15 -3159 ((-1092) |#1|)) (-15 -2997 (|#1|)) (-15 -3131 (|#1| |#1|)) (-15 -2998 (|#1| |#1|)) (-15 -2999 (|#1| |#1|)) (-15 -2799 ((-800 (-330) |#1|) |#1| (-802 (-330)) (-800 (-330) |#1|))) (-15 -2799 ((-800 (-486) |#1|) |#1| (-802 (-486)) (-800 (-486) |#1|))) (-15 -3975 ((-802 (-330)) |#1|)) (-15 -3975 ((-802 (-486)) |#1|)) (-15 -2281 ((-632 |#2|) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-632 (-486)) (-632 |#1|))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3846 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3950 (|#1| |#2|)) (-15 -3950 (|#1| (-350 (-486)))) (-15 -3950 (|#1| |#1|)) (-15 -3129 ((-696)) -3956) (-15 -3950 (|#1| (-486))) (-15 -3950 ((-774) |#1|))) (-906 |#2|) (-497)) (T -905)) -((-3129 (*1 *2) (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-905 *3 *4)) (-4 *3 (-906 *4))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3132 ((|#1| $) 173 (|has| |#1| (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 164 (|has| |#1| (-823)) ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1="failed") (-585 (-1087 $)) (-1087 $)) 167 (|has| |#1| (-823)) ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3626 (((-486) $) 154 (|has| |#1| (-742)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| #2="failed") $) 203 T ELT) (((-3 (-1092) #2#) $) 162 (|has| |#1| (-952 (-1092))) ELT) (((-3 (-350 (-486)) #2#) $) 145 (|has| |#1| (-952 (-486))) ELT) (((-3 (-486) #2#) $) 143 (|has| |#1| (-952 (-486))) ELT)) (-3159 ((|#1| $) 204 T ELT) (((-1092) $) 163 (|has| |#1| (-952 (-1092))) ELT) (((-350 (-486)) $) 146 (|has| |#1| (-952 (-486))) ELT) (((-486) $) 144 (|has| |#1| (-952 (-486))) ELT)) (-2567 (($ $ $) 71 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 188 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 187 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 186 T ELT) (((-632 |#1|) (-632 $)) 185 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2997 (($) 171 (|has| |#1| (-485)) ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3726 (((-85) $) 89 T ELT)) (-3189 (((-85) $) 156 (|has| |#1| (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 180 (|has| |#1| (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 179 (|has| |#1| (-798 (-330))) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2999 (($ $) 175 T ELT)) (-3001 ((|#1| $) 177 T ELT)) (-3448 (((-634 $) $) 142 (|has| |#1| (-1068)) ELT)) (-3190 (((-85) $) 155 (|has| |#1| (-742)) ELT)) (-1606 (((-3 (-585 $) #3="failed") (-585 $) $) 68 T ELT)) (-2534 (($ $ $) 147 (|has| |#1| (-758)) ELT)) (-2860 (($ $ $) 148 (|has| |#1| (-758)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 195 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 190 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 189 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 184 T ELT) (((-632 |#1|) (-1181 $)) 183 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3449 (($) 141 (|has| |#1| (-1068)) CONST)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3131 (($ $) 172 (|has| |#1| (-258)) ELT)) (-3133 ((|#1| $) 169 (|has| |#1| (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 166 (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 165 (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) 201 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 200 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 199 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) 198 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) 197 (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) |#1|) 196 (|has| |#1| (-457 (-1092) |#1|)) ELT)) (-1608 (((-696) $) 74 T ELT)) (-3803 (($ $ |#1|) 202 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-3761 (($ $ (-1 |#1| |#1|)) 194 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 193 T ELT) (($ $) 140 (|has| |#1| (-189)) ELT) (($ $ (-696)) 138 (|has| |#1| (-189)) ELT) (($ $ (-1092)) 136 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 134 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 133 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 132 (|has| |#1| (-813 (-1092))) ELT)) (-2998 (($ $) 174 T ELT)) (-3000 ((|#1| $) 176 T ELT)) (-3975 (((-802 (-486)) $) 182 (|has| |#1| (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) 181 (|has| |#1| (-555 (-802 (-330)))) ELT) (((-475) $) 159 (|has| |#1| (-555 (-475))) ELT) (((-330) $) 158 (|has| |#1| (-935)) ELT) (((-179) $) 157 (|has| |#1| (-935)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) 168 (-2565 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT) (($ |#1|) 207 T ELT) (($ (-1092)) 161 (|has| |#1| (-952 (-1092))) ELT)) (-2705 (((-634 $) $) 160 (OR (|has| |#1| (-118)) (-2565 (|has| $ (-118)) (|has| |#1| (-823)))) ELT)) (-3129 (((-696)) 40 T CONST)) (-3134 ((|#1| $) 170 (|has| |#1| (-485)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3386 (($ $) 153 (|has| |#1| (-742)) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) 192 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 191 T ELT) (($ $) 139 (|has| |#1| (-189)) ELT) (($ $ (-696)) 137 (|has| |#1| (-189)) ELT) (($ $ (-1092)) 135 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 131 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 130 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 129 (|has| |#1| (-813 (-1092))) ELT)) (-2569 (((-85) $ $) 149 (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) 151 (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 150 (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 152 (|has| |#1| (-758)) ELT)) (-3953 (($ $ $) 83 T ELT) (($ |#1| |#1|) 178 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT) (($ |#1| $) 206 T ELT) (($ $ |#1|) 205 T ELT))) -(((-906 |#1|) (-113) (-497)) (T -906)) -((-3953 (*1 *1 *2 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)))) (-2999 (*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)))) (-2998 (*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)) (-4 *2 (-258)))) (-3131 (*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)) (-4 *2 (-258)))) (-2997 (*1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-485)) (-4 *2 (-497)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)) (-4 *2 (-485)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)) (-4 *2 (-485))))) -(-13 (-312) (-38 |t#1|) (-952 |t#1|) (-288 |t#1|) (-184 |t#1|) (-329 |t#1|) (-796 |t#1|) (-343 |t#1|) (-10 -8 (-15 -3953 ($ |t#1| |t#1|)) (-15 -3001 (|t#1| $)) (-15 -3000 (|t#1| $)) (-15 -2999 ($ $)) (-15 -2998 ($ $)) (IF (|has| |t#1| (-1068)) (-6 (-1068)) |%noBranch|) (IF (|has| |t#1| (-952 (-486))) (PROGN (-6 (-952 (-486))) (-6 (-952 (-350 (-486))))) |%noBranch|) (IF (|has| |t#1| (-758)) (-6 (-758)) |%noBranch|) (IF (|has| |t#1| (-742)) (-6 (-742)) |%noBranch|) (IF (|has| |t#1| (-935)) (-6 (-935)) |%noBranch|) (IF (|has| |t#1| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-952 (-1092))) (-6 (-952 (-1092))) |%noBranch|) (IF (|has| |t#1| (-258)) (PROGN (-15 -3132 (|t#1| $)) (-15 -3131 ($ $))) |%noBranch|) (IF (|has| |t#1| (-485)) (PROGN (-15 -2997 ($)) (-15 -3134 (|t#1| $)) (-15 -3133 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) OR (|has| |#1| (-742)) (|has| |#1| (-120))) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 (-1092)) |has| |#1| (-952 (-1092))) ((-557 |#1|) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-555 (-179)) |has| |#1| (-935)) ((-555 (-330)) |has| |#1| (-935)) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-555 (-802 (-330))) |has| |#1| (-555 (-802 (-330)))) ((-555 (-802 (-486))) |has| |#1| (-555 (-802 (-486)))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) . T) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) . T) ((-258) . T) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) . T) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-343 |#1|) . T) ((-381 |#1|) . T) ((-393) . T) ((-457 (-1092) |#1|) |has| |#1| (-457 (-1092) |#1|)) ((-457 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 (-486)) |has| |#1| (-582 (-486))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-582 (-486)) |has| |#1| (-582 (-486))) ((-582 |#1|) . T) ((-656 (-350 (-486))) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-665) . T) ((-716) |has| |#1| (-742)) ((-718) |has| |#1| (-742)) ((-720) |has| |#1| (-742)) ((-723) |has| |#1| (-742)) ((-742) |has| |#1| (-742)) ((-757) |has| |#1| (-742)) ((-758) OR (|has| |#1| (-758)) (|has| |#1| (-742))) ((-761) OR (|has| |#1| (-758)) (|has| |#1| (-742))) ((-808 $ (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-811 (-1092)) |has| |#1| (-811 (-1092))) ((-813 (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-798 (-330)) |has| |#1| (-798 (-330))) ((-798 (-486)) |has| |#1| (-798 (-486))) ((-796 |#1|) . T) ((-823) |has| |#1| (-823)) ((-834) . T) ((-935) |has| |#1| (-935)) ((-952 (-350 (-486))) |has| |#1| (-952 (-486))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 (-1092)) |has| |#1| (-952 (-1092))) ((-952 |#1|) . T) ((-965 (-350 (-486))) . T) ((-965 |#1|) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 |#1|) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1068) |has| |#1| (-1068)) ((-1131) . T) ((-1136) . T)) -((-3846 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) -(((-907 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3846 (|#4| (-1 |#2| |#1|) |#3|))) (-497) (-497) (-906 |#1|) (-906 |#2|)) (T -907)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-497)) (-4 *6 (-497)) (-4 *2 (-906 *6)) (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-906 *5))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3002 (($ (-1058 |#1| |#2|)) 11 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-3126 (((-1058 |#1| |#2|) $) 12 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 ((|#2| $ (-197 |#1| |#2|)) 16 T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT))) -(((-908 |#1| |#2|) (-13 (-21) (-241 (-197 |#1| |#2|) |#2|) (-10 -8 (-15 -3002 ($ (-1058 |#1| |#2|))) (-15 -3126 ((-1058 |#1| |#2|) $)))) (-832) (-312)) (T -908)) -((-3002 (*1 *1 *2) (-12 (-5 *2 (-1058 *3 *4)) (-14 *3 (-832)) (-4 *4 (-312)) (-5 *1 (-908 *3 *4)))) (-3126 (*1 *2 *1) (-12 (-5 *2 (-1058 *3 *4)) (-5 *1 (-908 *3 *4)) (-14 *3 (-832)) (-4 *4 (-312))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3209 (((-1051) $) 10 T ELT)) (-3950 (((-774) $) 16 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-909) (-13 (-997) (-10 -8 (-15 -3209 ((-1051) $))))) (T -909)) -((-3209 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-909))))) -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3727 (($) 6 T CONST)) (-3005 (($ $) 44 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 52 T ELT)) (-2611 (((-585 |#1|) $) 51 T ELT)) (-3248 (((-85) |#1| $) 56 (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3836 (((-696) $) 43 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3004 ((|#1| $) 42 T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 54 T ELT)) (-1277 ((|#1| $) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 49 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3007 ((|#1| |#1| $) 46 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3006 ((|#1| $) 45 T ELT)) (-1732 (((-696) |#1| $) 55 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 50 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-3003 ((|#1| $) 41 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 48 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) 47 T ELT))) -(((-910 |#1|) (-113) (-1131)) (T -910)) -((-3007 (*1 *2 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131)))) (-3005 (*1 *1 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131)))) (-3836 (*1 *2 *1) (-12 (-4 *1 (-910 *3)) (-4 *3 (-1131)) (-5 *2 (-696)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131))))) -(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3007 (|t#1| |t#1| $)) (-15 -3006 (|t#1| $)) (-15 -3005 ($ $)) (-15 -3836 ((-696) $)) (-15 -3004 (|t#1| $)) (-15 -3003 (|t#1| $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3646 ((|#1| $) 12 T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-485)) ELT)) (-3026 (((-85) $) NIL (|has| |#1| (-485)) ELT)) (-3025 (((-350 (-486)) $) NIL (|has| |#1| (-485)) ELT)) (-3008 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3135 ((|#1| $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3009 ((|#1| $) 15 T ELT)) (-3010 ((|#1| $) 14 T ELT)) (-3011 ((|#1| $) 13 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) NIL (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) |#1|) NIL (|has| |#1| (-457 (-1092) |#1|)) ELT)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3761 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3012 (($ $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 ((|#1| $) NIL (|has| |#1| (-975)) ELT)) (-2663 (($) 8 T CONST)) (-2669 (($) 10 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-312)) ELT))) -(((-911 |#1|) (-913 |#1|) (-146)) (T -911)) -NIL -((-3191 (((-85) $) 43 T ELT)) (-3160 (((-3 (-486) #1="failed") $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3159 (((-486) $) NIL T ELT) (((-350 (-486)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) 78 T ELT)) (-3026 (((-85) $) 72 T ELT)) (-3025 (((-350 (-486)) $) 76 T ELT)) (-2412 (((-85) $) 42 T ELT)) (-3135 ((|#2| $) 22 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2487 (($ $) 58 T ELT)) (-3761 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3975 (((-475) $) 67 T ELT)) (-3012 (($ $) 17 T ELT)) (-3950 (((-774) $) 53 T ELT) (($ (-486)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-350 (-486))) NIL T ELT)) (-3129 (((-696)) 10 T CONST)) (-3386 ((|#2| $) 71 T ELT)) (-3059 (((-85) $ $) 26 T ELT)) (-2688 (((-85) $ $) 69 T ELT)) (-3840 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3842 (($ $ $) 27 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT))) -(((-912 |#1| |#2|) (-10 -7 (-15 -3950 (|#1| (-350 (-486)))) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1|)) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -2688 ((-85) |#1| |#1|)) (-15 * (|#1| (-350 (-486)) |#1|)) (-15 * (|#1| |#1| (-350 (-486)))) (-15 -2487 (|#1| |#1|)) (-15 -3975 ((-475) |#1|)) (-15 -3027 ((-3 (-350 (-486)) #1="failed") |#1|)) (-15 -3025 ((-350 (-486)) |#1|)) (-15 -3026 ((-85) |#1|)) (-15 -3386 (|#2| |#1|)) (-15 -3135 (|#2| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -3846 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3950 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3129 ((-696)) -3956) (-15 -3950 (|#1| (-486))) (-15 -2412 ((-85) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 -3191 ((-85) |#1|)) (-15 * (|#1| (-832) |#1|)) (-15 -3842 (|#1| |#1| |#1|)) (-15 -3950 ((-774) |#1|)) (-15 -3059 ((-85) |#1| |#1|))) (-913 |#2|) (-146)) (T -912)) -((-3129 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-696)) (-5 *1 (-912 *3 *4)) (-4 *3 (-913 *4))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-486) #1="failed") $) 143 (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) 141 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) 138 T ELT)) (-3159 (((-486) $) 142 (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) 140 (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) 139 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 123 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 122 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 121 T ELT) (((-632 |#1|) (-632 $)) 120 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3646 ((|#1| $) 111 T ELT)) (-3027 (((-3 (-350 (-486)) "failed") $) 107 (|has| |#1| (-485)) ELT)) (-3026 (((-85) $) 109 (|has| |#1| (-485)) ELT)) (-3025 (((-350 (-486)) $) 108 (|has| |#1| (-485)) ELT)) (-3008 (($ |#1| |#1| |#1| |#1|) 112 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3135 ((|#1| $) 113 T ELT)) (-2534 (($ $ $) 95 (|has| |#1| (-758)) ELT)) (-2860 (($ $ $) 96 (|has| |#1| (-758)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 126 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 125 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 124 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 119 T ELT) (((-632 |#1|) (-1181 $)) 118 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 104 (|has| |#1| (-312)) ELT)) (-3009 ((|#1| $) 114 T ELT)) (-3010 ((|#1| $) 115 T ELT)) (-3011 ((|#1| $) 116 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) 132 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 131 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 130 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) 129 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) 128 (|has| |#1| (-457 (-1092) |#1|)) ELT) (($ $ (-1092) |#1|) 127 (|has| |#1| (-457 (-1092) |#1|)) ELT)) (-3803 (($ $ |#1|) 133 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3761 (($ $ (-1 |#1| |#1|)) 137 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 136 T ELT) (($ $) 94 (|has| |#1| (-189)) ELT) (($ $ (-696)) 92 (|has| |#1| (-189)) ELT) (($ $ (-1092)) 90 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 88 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 87 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 86 (|has| |#1| (-813 (-1092))) ELT)) (-3975 (((-475) $) 105 (|has| |#1| (-555 (-475))) ELT)) (-3012 (($ $) 117 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-486))) 82 (OR (|has| |#1| (-312)) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-2705 (((-634 $) $) 106 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3386 ((|#1| $) 110 (|has| |#1| (-975)) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) 135 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 134 T ELT) (($ $) 93 (|has| |#1| (-189)) ELT) (($ $ (-696)) 91 (|has| |#1| (-189)) ELT) (($ $ (-1092)) 89 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 85 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 84 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 83 (|has| |#1| (-813 (-1092))) ELT)) (-2569 (((-85) $ $) 97 (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) 99 (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 98 (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 100 (|has| |#1| (-758)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 103 (|has| |#1| (-312)) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ $ (-350 (-486))) 102 (|has| |#1| (-312)) ELT) (($ (-350 (-486)) $) 101 (|has| |#1| (-312)) ELT))) -(((-913 |#1|) (-113) (-146)) (T -913)) -((-3012 (*1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3008 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3386 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)) (-4 *2 (-975)))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-85)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-350 (-486))))) (-3027 (*1 *2 *1) (|partial| -12 (-4 *1 (-913 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-350 (-486)))))) -(-13 (-38 |t#1|) (-355 |t#1|) (-184 |t#1|) (-288 |t#1|) (-329 |t#1|) (-10 -8 (-15 -3012 ($ $)) (-15 -3011 (|t#1| $)) (-15 -3010 (|t#1| $)) (-15 -3009 (|t#1| $)) (-15 -3135 (|t#1| $)) (-15 -3008 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3646 (|t#1| $)) (IF (|has| |t#1| (-246)) (-6 (-246)) |%noBranch|) (IF (|has| |t#1| (-758)) (-6 (-758)) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-201)) |%noBranch|) (IF (|has| |t#1| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-975)) (-15 -3386 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-485)) (PROGN (-15 -3026 ((-85) $)) (-15 -3025 ((-350 (-486)) $)) (-15 -3027 ((-3 (-350 (-486)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-312)) ((-38 |#1|) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-312)) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-312))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) |has| |#1| (-312)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-381 |#1|) . T) ((-457 (-1092) |#1|) |has| |#1| (-457 (-1092) |#1|)) ((-457 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-312)) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-312)) ((-592 (-486)) |has| |#1| (-582 (-486))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-312)) ((-584 |#1|) . T) ((-582 (-486)) |has| |#1| (-582 (-486))) ((-582 |#1|) . T) ((-656 (-350 (-486))) |has| |#1| (-312)) ((-656 |#1|) . T) ((-665) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-808 $ (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-811 (-1092)) |has| |#1| (-811 (-1092))) ((-813 (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-965 (-350 (-486))) |has| |#1| (-312)) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-970 (-350 (-486))) |has| |#1| (-312)) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-3846 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) -(((-914 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3846 (|#3| (-1 |#4| |#2|) |#1|))) (-913 |#2|) (-146) (-913 |#4|) (-146)) (T -914)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-913 *6)) (-5 *1 (-914 *4 *5 *2 *6)) (-4 *4 (-913 *5))))) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3727 (($) NIL T CONST)) (-3005 (($ $) 24 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3013 (($ (-585 |#1|)) 34 T ELT)) (-2611 (((-585 |#1|) $) NIL T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3836 (((-696) $) 27 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 29 T ELT)) (-3612 (($ |#1| $) 18 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3004 ((|#1| $) 28 T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1277 ((|#1| $) 23 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3007 ((|#1| |#1| $) 17 T ELT)) (-3406 (((-85) $) 19 T ELT)) (-3568 (($) NIL T ELT)) (-3006 ((|#1| $) 22 T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) NIL T ELT)) (-3003 ((|#1| $) 31 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-915 |#1|) (-13 (-910 |#1|) (-10 -8 (-15 -3013 ($ (-585 |#1|))))) (-1015)) (T -915)) -((-3013 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-915 *3))))) -((-3040 (($ $) 12 T ELT)) (-3014 (($ $ (-486)) 13 T ELT))) -(((-916 |#1|) (-10 -7 (-15 -3040 (|#1| |#1|)) (-15 -3014 (|#1| |#1| (-486)))) (-917)) (T -916)) -NIL -((-3040 (($ $) 6 T ELT)) (-3014 (($ $ (-486)) 7 T ELT)) (** (($ $ (-350 (-486))) 8 T ELT))) -(((-917) (-113)) (T -917)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-917)) (-5 *2 (-350 (-486))))) (-3014 (*1 *1 *1 *2) (-12 (-4 *1 (-917)) (-5 *2 (-486)))) (-3040 (*1 *1 *1) (-4 *1 (-917)))) -(-13 (-10 -8 (-15 -3040 ($ $)) (-15 -3014 ($ $ (-486))) (-15 ** ($ $ (-350 (-486)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1648 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2065 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2063 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1787 (((-632 (-350 |#2|)) (-1181 $)) NIL T ELT) (((-632 (-350 |#2|))) NIL T ELT)) (-3333 (((-350 |#2|) $) NIL T ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3139 (((-696)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1662 (((-85)) NIL T ELT)) (-1661 (((-85) |#1|) 162 T ELT) (((-85) |#2|) 166 T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| (-350 |#2|) (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| (-350 |#2|) (-952 (-350 (-486)))) ELT) (((-3 (-350 |#2|) #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| (-350 |#2|) (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| (-350 |#2|) (-952 (-350 (-486)))) ELT) (((-350 |#2|) $) NIL T ELT)) (-1797 (($ (-1181 (-350 |#2|)) (-1181 $)) NIL T ELT) (($ (-1181 (-350 |#2|))) 79 T ELT) (($ (-1181 |#2|) |#2|) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-350 |#2|) (-299)) ELT)) (-2567 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1786 (((-632 (-350 |#2|)) $ (-1181 $)) NIL T ELT) (((-632 (-350 |#2|)) $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-350 |#2|))) (|:| |vec| (-1181 (-350 |#2|)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-350 |#2|)) (-632 $)) NIL T ELT)) (-1653 (((-1181 $) (-1181 $)) NIL T ELT)) (-3845 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-350 |#3|)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1640 (((-585 (-585 |#1|))) NIL (|has| |#1| (-320)) ELT)) (-1665 (((-85) |#1| |#1|) NIL T ELT)) (-3111 (((-832)) NIL T ELT)) (-2997 (($) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1660 (((-85)) NIL T ELT)) (-1659 (((-85) |#1|) 61 T ELT) (((-85) |#2|) 164 T ELT)) (-2566 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3506 (($ $) NIL T ELT)) (-2836 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1681 (((-85) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1769 (($ $ (-696)) NIL (|has| (-350 |#2|) (-299)) ELT) (($ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3726 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3775 (((-832) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-745 (-832)) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3380 (((-696)) NIL T ELT)) (-1654 (((-1181 $) (-1181 $)) NIL T ELT)) (-3135 (((-350 |#2|) $) NIL T ELT)) (-1641 (((-585 (-859 |#1|)) (-1092)) NIL (|has| |#1| (-312)) ELT)) (-3448 (((-634 $) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2016 ((|#3| $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2012 (((-832) $) NIL (|has| (-350 |#2|) (-320)) ELT)) (-3082 ((|#3| $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| (-350 |#2|) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-350 |#2|))) (|:| |vec| (-1181 (-350 |#2|)))) (-1181 $) $) NIL T ELT) (((-632 (-350 |#2|)) (-1181 $)) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1649 (((-632 (-350 |#2|))) 57 T ELT)) (-1651 (((-632 (-350 |#2|))) 56 T ELT)) (-2487 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1646 (($ (-1181 |#2|) |#2|) 80 T ELT)) (-1650 (((-632 (-350 |#2|))) 55 T ELT)) (-1652 (((-632 (-350 |#2|))) 54 T ELT)) (-1645 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1647 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1658 (((-1181 $)) 51 T ELT)) (-3922 (((-1181 $)) 50 T ELT)) (-1657 (((-85) $) NIL T ELT)) (-1656 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3449 (($) NIL (|has| (-350 |#2|) (-299)) CONST)) (-2402 (($ (-832)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1643 (((-3 |#2| #1#)) 70 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1667 (((-696)) NIL T ELT)) (-2411 (($) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3735 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-696) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3803 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1644 (((-3 |#2| #1#)) 68 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3760 (((-350 |#2|) (-1181 $)) NIL T ELT) (((-350 |#2|)) 47 T ELT)) (-1770 (((-696) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-3 (-696) #1#) $ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3761 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-696)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2410 (((-632 (-350 |#2|)) (-1181 $) (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3188 ((|#3|) 58 T ELT)) (-1675 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3227 (((-1181 (-350 |#2|)) $ (-1181 $)) NIL T ELT) (((-632 (-350 |#2|)) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 (-350 |#2|)) $) 81 T ELT) (((-632 (-350 |#2|)) (-1181 $)) NIL T ELT)) (-3975 (((-1181 (-350 |#2|)) $) NIL T ELT) (($ (-1181 (-350 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1655 (((-1181 $) (-1181 $)) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-350 |#2|)) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2705 (($ $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-634 $) $) NIL (|has| (-350 |#2|) (-118)) ELT)) (-2452 ((|#3| $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1664 (((-85)) 65 T ELT)) (-1663 (((-85) |#1|) 167 T ELT) (((-85) |#2|) 168 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1666 (((-85)) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-696)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1092)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-813 (-1092))))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 |#2|)) NIL T ELT) (($ (-350 |#2|) $) NIL T ELT) (($ (-350 (-486)) $) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-486))) NIL (|has| (-350 |#2|) (-312)) ELT))) -(((-918 |#1| |#2| |#3| |#4| |#5|) (-291 |#1| |#2| |#3|) (-1136) (-1157 |#1|) (-1157 (-350 |#2|)) (-350 |#2|) (-696)) (T -918)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3020 (((-585 (-486)) $) 73 T ELT)) (-3016 (($ (-585 (-486))) 81 T ELT)) (-3132 (((-486) $) 48 (|has| (-486) (-258)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL (|has| (-486) (-742)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) 60 T ELT) (((-3 (-1092) #1#) $) NIL (|has| (-486) (-952 (-1092))) ELT) (((-3 (-350 (-486)) #1#) $) 57 (|has| (-486) (-952 (-486))) ELT) (((-3 (-486) #1#) $) 60 (|has| (-486) (-952 (-486))) ELT)) (-3159 (((-486) $) NIL T ELT) (((-1092) $) NIL (|has| (-486) (-952 (-1092))) ELT) (((-350 (-486)) $) NIL (|has| (-486) (-952 (-486))) ELT) (((-486) $) NIL (|has| (-486) (-952 (-486))) ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-486)) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-486) (-485)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3018 (((-585 (-486)) $) 79 T ELT)) (-3189 (((-85) $) NIL (|has| (-486) (-742)) ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (|has| (-486) (-798 (-486))) ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (|has| (-486) (-798 (-330))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-486) $) 45 T ELT)) (-3448 (((-634 $) $) NIL (|has| (-486) (-1068)) ELT)) (-3190 (((-85) $) NIL (|has| (-486) (-742)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-486) (-758)) ELT)) (-3846 (($ (-1 (-486) (-486)) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| (-486) (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL T ELT) (((-632 (-486)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-486) (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-486) (-258)) ELT) (((-350 (-486)) $) 50 T ELT)) (-3019 (((-1071 (-486)) $) 78 T ELT)) (-3015 (($ (-585 (-486)) (-585 (-486))) 82 T ELT)) (-3133 (((-486) $) 64 (|has| (-486) (-485)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| (-486) (-823)) ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3771 (($ $ (-585 (-486)) (-585 (-486))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-486) (-486)) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-249 (-486))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-585 (-249 (-486)))) NIL (|has| (-486) (-260 (-486))) ELT) (($ $ (-585 (-1092)) (-585 (-486))) NIL (|has| (-486) (-457 (-1092) (-486))) ELT) (($ $ (-1092) (-486)) NIL (|has| (-486) (-457 (-1092) (-486))) ELT)) (-1608 (((-696) $) NIL T ELT)) (-3803 (($ $ (-486)) NIL (|has| (-486) (-241 (-486) (-486))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-486) (-486))) NIL T ELT) (($ $ (-1 (-486) (-486)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $) 15 (|has| (-486) (-189)) ELT) (($ $ (-696)) NIL (|has| (-486) (-189)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-486) $) 47 T ELT)) (-3017 (((-585 (-486)) $) 80 T ELT)) (-3975 (((-802 (-486)) $) NIL (|has| (-486) (-555 (-802 (-486)))) ELT) (((-802 (-330)) $) NIL (|has| (-486) (-555 (-802 (-330)))) ELT) (((-475) $) NIL (|has| (-486) (-555 (-475))) ELT) (((-330) $) NIL (|has| (-486) (-935)) ELT) (((-179) $) NIL (|has| (-486) (-935)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-486) (-823))) ELT)) (-3950 (((-774) $) 108 T ELT) (($ (-486)) 51 T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) 27 T ELT) (($ (-486)) 51 T ELT) (($ (-1092)) NIL (|has| (-486) (-952 (-1092))) ELT) (((-350 (-486)) $) 25 T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-486) (-823))) (|has| (-486) (-118))) ELT)) (-3129 (((-696)) 13 T CONST)) (-3134 (((-486) $) 62 (|has| (-486) (-485)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-486) (-742)) ELT)) (-2663 (($) 14 T CONST)) (-2669 (($) 17 T CONST)) (-2672 (($ $ (-1 (-486) (-486))) NIL T ELT) (($ $ (-1 (-486) (-486)) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| (-486) (-813 (-1092))) ELT) (($ $) NIL (|has| (-486) (-189)) ELT) (($ $ (-696)) NIL (|has| (-486) (-189)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-3059 (((-85) $ $) 21 T ELT)) (-2687 (((-85) $ $) NIL (|has| (-486) (-758)) ELT)) (-2688 (((-85) $ $) 40 (|has| (-486) (-758)) ELT)) (-3953 (($ $ $) 36 T ELT) (($ (-486) (-486)) 38 T ELT)) (-3840 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3842 (($ $ $) 28 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ (-486) $) 32 T ELT) (($ $ (-486)) NIL T ELT))) -(((-919 |#1|) (-13 (-906 (-486)) (-554 (-350 (-486))) (-10 -8 (-15 -3131 ((-350 (-486)) $)) (-15 -3020 ((-585 (-486)) $)) (-15 -3019 ((-1071 (-486)) $)) (-15 -3018 ((-585 (-486)) $)) (-15 -3017 ((-585 (-486)) $)) (-15 -3016 ($ (-585 (-486)))) (-15 -3015 ($ (-585 (-486)) (-585 (-486)))))) (-486)) (T -919)) -((-3131 (*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486)))) (-3020 (*1 *2 *1) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-1071 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486)))) (-3016 (*1 *1 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486)))) (-3015 (*1 *1 *2 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486))))) -((-3021 (((-51) (-350 (-486)) (-486)) 9 T ELT))) -(((-920) (-10 -7 (-15 -3021 ((-51) (-350 (-486)) (-486))))) (T -920)) -((-3021 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-486))) (-5 *4 (-486)) (-5 *2 (-51)) (-5 *1 (-920))))) -((-3139 (((-486)) 21 T ELT)) (-3024 (((-486)) 26 T ELT)) (-3023 (((-1187) (-486)) 24 T ELT)) (-3022 (((-486) (-486)) 27 T ELT) (((-486)) 20 T ELT))) -(((-921) (-10 -7 (-15 -3022 ((-486))) (-15 -3139 ((-486))) (-15 -3022 ((-486) (-486))) (-15 -3023 ((-1187) (-486))) (-15 -3024 ((-486))))) (T -921)) -((-3024 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-921)))) (-3023 (*1 *2 *3) (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-921)))) (-3022 (*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-921)))) (-3139 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-921)))) (-3022 (*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-921))))) -((-3736 (((-348 |#1|) |#1|) 43 T ELT)) (-3735 (((-348 |#1|) |#1|) 41 T ELT))) -(((-922 |#1|) (-10 -7 (-15 -3735 ((-348 |#1|) |#1|)) (-15 -3736 ((-348 |#1|) |#1|))) (-1157 (-350 (-486)))) (T -922)) -((-3736 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1157 (-350 (-486)))))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1157 (-350 (-486))))))) -((-3027 (((-3 (-350 (-486)) "failed") |#1|) 15 T ELT)) (-3026 (((-85) |#1|) 14 T ELT)) (-3025 (((-350 (-486)) |#1|) 10 T ELT))) -(((-923 |#1|) (-10 -7 (-15 -3025 ((-350 (-486)) |#1|)) (-15 -3026 ((-85) |#1|)) (-15 -3027 ((-3 (-350 (-486)) "failed") |#1|))) (-952 (-350 (-486)))) (T -923)) -((-3027 (*1 *2 *3) (|partial| -12 (-5 *2 (-350 (-486))) (-5 *1 (-923 *3)) (-4 *3 (-952 *2)))) (-3026 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-923 *3)) (-4 *3 (-952 (-350 (-486)))))) (-3025 (*1 *2 *3) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-923 *3)) (-4 *3 (-952 *2))))) -((-3791 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3803 ((|#2| $ #1#) 10 T ELT)) (-3031 (((-85) $ $) 18 T ELT))) -(((-924 |#1| |#2|) (-10 -7 (-15 -3791 (|#2| |#1| #1="value" |#2|)) (-15 -3031 ((-85) |#1| |#1|)) (-15 -3803 (|#2| |#1| #1#))) (-925 |#2|) (-1131)) (T -924)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ "value" |#1|) 35 (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) 36 (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-3034 (((-585 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3033 (((-585 |#1|) $) 40 T ELT)) (-3530 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ "value") 42 T ELT)) (-3032 (((-486) $ $) 39 T ELT)) (-3636 (((-85) $) 41 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) 46 T ELT)) (-3031 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) -(((-925 |#1|) (-113) (-1131)) (T -925)) -((-3525 (*1 *2 *1) (-12 (-4 *3 (-1131)) (-5 *2 (-585 *1)) (-4 *1 (-925 *3)))) (-3034 (*1 *2 *1) (-12 (-4 *3 (-1131)) (-5 *2 (-585 *1)) (-4 *1 (-925 *3)))) (-3530 (*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-5 *2 (-85)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-1131)))) (-3803 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-925 *2)) (-4 *2 (-1131)))) (-3636 (*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-5 *2 (-85)))) (-3033 (*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-5 *2 (-585 *3)))) (-3032 (*1 *2 *1 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-5 *2 (-486)))) (-3031 (*1 *2 *1 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-85)))) (-3030 (*1 *2 *1 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-85)))) (-3029 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-1037 *3)) (-4 *1 (-925 *3)) (-4 *3 (-1131)))) (-3791 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (-4 *1 (-1037 *2)) (-4 *1 (-925 *2)) (-4 *2 (-1131)))) (-3028 (*1 *2 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-925 *2)) (-4 *2 (-1131))))) -(-13 (-430 |t#1|) (-10 -8 (-15 -3525 ((-585 $) $)) (-15 -3034 ((-585 $) $)) (-15 -3530 ((-85) $)) (-15 -3405 (|t#1| $)) (-15 -3803 (|t#1| $ "value")) (-15 -3636 ((-85) $)) (-15 -3033 ((-585 |t#1|) $)) (-15 -3032 ((-486) $ $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3031 ((-85) $ $)) (-15 -3030 ((-85) $ $))) |%noBranch|) (IF (|has| $ (-1037 |t#1|)) (PROGN (-15 -3029 ($ $ (-585 $))) (-15 -3791 (|t#1| $ "value" |t#1|)) (-15 -3028 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1131) . T)) -((-3040 (($ $) 9 T ELT) (($ $ (-832)) 49 T ELT) (($ (-350 (-486))) 13 T ELT) (($ (-486)) 15 T ELT)) (-3186 (((-3 $ #1="failed") (-1087 $) (-832) (-774)) 24 T ELT) (((-3 $ #1#) (-1087 $) (-832)) 32 T ELT)) (-3014 (($ $ (-486)) 58 T ELT)) (-3129 (((-696)) 18 T CONST)) (-3187 (((-585 $) (-1087 $)) NIL T ELT) (((-585 $) (-1087 (-350 (-486)))) 63 T ELT) (((-585 $) (-1087 (-486))) 68 T ELT) (((-585 $) (-859 $)) 72 T ELT) (((-585 $) (-859 (-350 (-486)))) 76 T ELT) (((-585 $) (-859 (-486))) 80 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT) (($ $ (-350 (-486))) 53 T ELT))) -(((-926 |#1|) (-10 -7 (-15 -3040 (|#1| (-486))) (-15 -3040 (|#1| (-350 (-486)))) (-15 -3040 (|#1| |#1| (-832))) (-15 -3187 ((-585 |#1|) (-859 (-486)))) (-15 -3187 ((-585 |#1|) (-859 (-350 (-486))))) (-15 -3187 ((-585 |#1|) (-859 |#1|))) (-15 -3187 ((-585 |#1|) (-1087 (-486)))) (-15 -3187 ((-585 |#1|) (-1087 (-350 (-486))))) (-15 -3187 ((-585 |#1|) (-1087 |#1|))) (-15 -3186 ((-3 |#1| #1="failed") (-1087 |#1|) (-832))) (-15 -3186 ((-3 |#1| #1#) (-1087 |#1|) (-832) (-774))) (-15 ** (|#1| |#1| (-350 (-486)))) (-15 -3014 (|#1| |#1| (-486))) (-15 -3040 (|#1| |#1|)) (-15 ** (|#1| |#1| (-486))) (-15 -3129 ((-696)) -3956) (-15 ** (|#1| |#1| (-696))) (-15 ** (|#1| |#1| (-832)))) (-927)) (T -926)) -((-3129 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-926 *3)) (-4 *3 (-927))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 111 T ELT)) (-2065 (($ $) 112 T ELT)) (-2063 (((-85) $) 114 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 131 T ELT)) (-3974 (((-348 $) $) 132 T ELT)) (-3040 (($ $) 95 T ELT) (($ $ (-832)) 81 T ELT) (($ (-350 (-486))) 80 T ELT) (($ (-486)) 79 T ELT)) (-1609 (((-85) $ $) 122 T ELT)) (-3626 (((-486) $) 148 T ELT)) (-3727 (($) 23 T CONST)) (-3186 (((-3 $ "failed") (-1087 $) (-832) (-774)) 89 T ELT) (((-3 $ "failed") (-1087 $) (-832)) 88 T ELT)) (-3160 (((-3 (-486) #1="failed") $) 108 (|has| (-350 (-486)) (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) 106 (|has| (-350 (-486)) (-952 (-350 (-486)))) ELT) (((-3 (-350 (-486)) #1#) $) 103 T ELT)) (-3159 (((-486) $) 107 (|has| (-350 (-486)) (-952 (-486))) ELT) (((-350 (-486)) $) 105 (|has| (-350 (-486)) (-952 (-350 (-486)))) ELT) (((-350 (-486)) $) 104 T ELT)) (-3036 (($ $ (-774)) 78 T ELT)) (-3035 (($ $ (-774)) 77 T ELT)) (-2567 (($ $ $) 126 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 125 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 120 T ELT)) (-3726 (((-85) $) 133 T ELT)) (-3189 (((-85) $) 146 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 94 T ELT)) (-3190 (((-85) $) 147 T ELT)) (-1606 (((-3 (-585 $) #2="failed") (-585 $) $) 129 T ELT)) (-2534 (($ $ $) 140 T ELT)) (-2860 (($ $ $) 141 T ELT)) (-3037 (((-3 (-1087 $) "failed") $) 90 T ELT)) (-3039 (((-3 (-774) "failed") $) 92 T ELT)) (-3038 (((-3 (-1087 $) "failed") $) 91 T ELT)) (-1896 (($ (-585 $)) 118 T ELT) (($ $ $) 117 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 134 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 119 T ELT)) (-3147 (($ (-585 $)) 116 T ELT) (($ $ $) 115 T ELT)) (-3735 (((-348 $) $) 130 T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 127 T ELT)) (-3469 (((-3 $ "failed") $ $) 110 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 121 T ELT)) (-1608 (((-696) $) 123 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 124 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 (-486))) 138 T ELT) (($ $) 109 T ELT) (($ (-350 (-486))) 102 T ELT) (($ (-486)) 101 T ELT) (($ (-350 (-486))) 98 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 113 T ELT)) (-3773 (((-350 (-486)) $ $) 76 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3187 (((-585 $) (-1087 $)) 87 T ELT) (((-585 $) (-1087 (-350 (-486)))) 86 T ELT) (((-585 $) (-1087 (-486))) 85 T ELT) (((-585 $) (-859 $)) 84 T ELT) (((-585 $) (-859 (-350 (-486)))) 83 T ELT) (((-585 $) (-859 (-486))) 82 T ELT)) (-3386 (($ $) 149 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2569 (((-85) $ $) 142 T ELT)) (-2570 (((-85) $ $) 144 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 143 T ELT)) (-2688 (((-85) $ $) 145 T ELT)) (-3953 (($ $ $) 139 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 135 T ELT) (($ $ (-350 (-486))) 93 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-350 (-486)) $) 137 T ELT) (($ $ (-350 (-486))) 136 T ELT) (($ (-486) $) 100 T ELT) (($ $ (-486)) 99 T ELT) (($ (-350 (-486)) $) 97 T ELT) (($ $ (-350 (-486))) 96 T ELT))) -(((-927) (-113)) (T -927)) -((-3040 (*1 *1 *1) (-4 *1 (-927))) (-3039 (*1 *2 *1) (|partial| -12 (-4 *1 (-927)) (-5 *2 (-774)))) (-3038 (*1 *2 *1) (|partial| -12 (-5 *2 (-1087 *1)) (-4 *1 (-927)))) (-3037 (*1 *2 *1) (|partial| -12 (-5 *2 (-1087 *1)) (-4 *1 (-927)))) (-3186 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1087 *1)) (-5 *3 (-832)) (-5 *4 (-774)) (-4 *1 (-927)))) (-3186 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1087 *1)) (-5 *3 (-832)) (-4 *1 (-927)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-1087 *1)) (-4 *1 (-927)) (-5 *2 (-585 *1)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-1087 (-350 (-486)))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-1087 (-486))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-859 *1)) (-4 *1 (-927)) (-5 *2 (-585 *1)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-859 (-350 (-486)))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-859 (-486))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) (-3040 (*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-832)))) (-3040 (*1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-4 *1 (-927)))) (-3040 (*1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-927)))) (-3036 (*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-774)))) (-3035 (*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-774)))) (-3773 (*1 *2 *1 *1) (-12 (-4 *1 (-927)) (-5 *2 (-350 (-486)))))) -(-13 (-120) (-757) (-146) (-312) (-355 (-350 (-486))) (-38 (-486)) (-38 (-350 (-486))) (-917) (-10 -8 (-15 -3039 ((-3 (-774) "failed") $)) (-15 -3038 ((-3 (-1087 $) "failed") $)) (-15 -3037 ((-3 (-1087 $) "failed") $)) (-15 -3186 ((-3 $ "failed") (-1087 $) (-832) (-774))) (-15 -3186 ((-3 $ "failed") (-1087 $) (-832))) (-15 -3187 ((-585 $) (-1087 $))) (-15 -3187 ((-585 $) (-1087 (-350 (-486))))) (-15 -3187 ((-585 $) (-1087 (-486)))) (-15 -3187 ((-585 $) (-859 $))) (-15 -3187 ((-585 $) (-859 (-350 (-486))))) (-15 -3187 ((-585 $) (-859 (-486)))) (-15 -3040 ($ $ (-832))) (-15 -3040 ($ $)) (-15 -3040 ($ (-350 (-486)))) (-15 -3040 ($ (-486))) (-15 -3036 ($ $ (-774))) (-15 -3035 ($ $ (-774))) (-15 -3773 ((-350 (-486)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 (-486)) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 (-486) (-486)) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-355 (-350 (-486))) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 (-486)) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 (-486)) . T) ((-584 $) . T) ((-656 (-350 (-486))) . T) ((-656 (-486)) . T) ((-656 $) . T) ((-665) . T) ((-716) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-757) . T) ((-758) . T) ((-761) . T) ((-834) . T) ((-917) . T) ((-952 (-350 (-486))) . T) ((-952 (-486)) |has| (-350 (-486)) (-952 (-486))) ((-965 (-350 (-486))) . T) ((-965 (-486)) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 (-486)) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) . T)) -((-3041 (((-2 (|:| |ans| |#2|) (|:| -3140 |#2|) (|:| |sol?| (-85))) (-486) |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-585 |#2|)) (-1 (-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) -(((-928 |#1| |#2|) (-10 -7 (-15 -3041 ((-2 (|:| |ans| |#2|) (|:| -3140 |#2|) (|:| |sol?| (-85))) (-486) |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-585 |#2|)) (-1 (-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-393) (-120) (-952 (-486)) (-582 (-486))) (-13 (-1117) (-27) (-364 |#1|))) (T -928)) -((-3041 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1092)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) #1="failed") *4 (-585 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) #1#) *4 *4)) (-4 *4 (-13 (-1117) (-27) (-364 *8))) (-4 *8 (-13 (-393) (-120) (-952 *3) (-582 *3))) (-5 *3 (-486)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3140 *4) (|:| |sol?| (-85)))) (-5 *1 (-928 *8 *4))))) -((-3042 (((-3 (-585 |#2|) #1="failed") (-486) |#2| |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-585 |#2|)) (-1 (-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) -(((-929 |#1| |#2|) (-10 -7 (-15 -3042 ((-3 (-585 |#2|) #1="failed") (-486) |#2| |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-585 |#2|)) (-1 (-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-393) (-120) (-952 (-486)) (-582 (-486))) (-13 (-1117) (-27) (-364 |#1|))) (T -929)) -((-3042 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1092)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) #1="failed") *4 (-585 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) #1#) *4 *4)) (-4 *4 (-13 (-1117) (-27) (-364 *8))) (-4 *8 (-13 (-393) (-120) (-952 *3) (-582 *3))) (-5 *3 (-486)) (-5 *2 (-585 *4)) (-5 *1 (-929 *8 *4))))) -((-3045 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3269 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-486)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-486) (-1 |#2| |#2|)) 39 T ELT)) (-3043 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |c| (-350 |#2|)) (|:| -3096 |#2|)) "failed") (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3044 (((-2 (|:| |ans| (-350 |#2|)) (|:| |nosol| (-85))) (-350 |#2|) (-350 |#2|)) 76 T ELT))) -(((-930 |#1| |#2|) (-10 -7 (-15 -3043 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |c| (-350 |#2|)) (|:| -3096 |#2|)) "failed") (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|))) (-15 -3044 ((-2 (|:| |ans| (-350 |#2|)) (|:| |nosol| (-85))) (-350 |#2|) (-350 |#2|))) (-15 -3045 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3269 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-486)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-486) (-1 |#2| |#2|)))) (-13 (-312) (-120) (-952 (-486))) (-1157 |#1|)) (T -930)) -((-3045 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1157 *6)) (-4 *6 (-13 (-312) (-120) (-952 *4))) (-5 *4 (-486)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) (|:| -3269 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-930 *6 *3)))) (-3044 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-120) (-952 (-486)))) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| |ans| (-350 *5)) (|:| |nosol| (-85)))) (-5 *1 (-930 *4 *5)) (-5 *3 (-350 *5)))) (-3043 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-486)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |c| (-350 *6)) (|:| -3096 *6))) (-5 *1 (-930 *5 *6)) (-5 *3 (-350 *6))))) -((-3046 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |h| |#2|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| -3096 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3047 (((-3 (-585 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)) 34 T ELT))) -(((-931 |#1| |#2|) (-10 -7 (-15 -3046 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |h| |#2|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| -3096 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|))) (-15 -3047 ((-3 (-585 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)))) (-13 (-312) (-120) (-952 (-486))) (-1157 |#1|)) (T -931)) -((-3047 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-952 (-486)))) (-4 *5 (-1157 *4)) (-5 *2 (-585 (-350 *5))) (-5 *1 (-931 *4 *5)) (-5 *3 (-350 *5)))) (-3046 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-486)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |h| *6) (|:| |c1| (-350 *6)) (|:| |c2| (-350 *6)) (|:| -3096 *6))) (-5 *1 (-931 *5 *6)) (-5 *3 (-350 *6))))) -((-3048 (((-1 |#1|) (-585 (-2 (|:| -3405 |#1|) (|:| -1523 (-486))))) 34 T ELT)) (-3103 (((-1 |#1|) (-1011 |#1|)) 42 T ELT)) (-3049 (((-1 |#1|) (-1181 |#1|) (-1181 (-486)) (-486)) 31 T ELT))) -(((-932 |#1|) (-10 -7 (-15 -3103 ((-1 |#1|) (-1011 |#1|))) (-15 -3048 ((-1 |#1|) (-585 (-2 (|:| -3405 |#1|) (|:| -1523 (-486)))))) (-15 -3049 ((-1 |#1|) (-1181 |#1|) (-1181 (-486)) (-486)))) (-1015)) (T -932)) -((-3049 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1181 *6)) (-5 *4 (-1181 (-486))) (-5 *5 (-486)) (-4 *6 (-1015)) (-5 *2 (-1 *6)) (-5 *1 (-932 *6)))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3405 *4) (|:| -1523 (-486))))) (-4 *4 (-1015)) (-5 *2 (-1 *4)) (-5 *1 (-932 *4)))) (-3103 (*1 *2 *3) (-12 (-5 *3 (-1011 *4)) (-4 *4 (-1015)) (-5 *2 (-1 *4)) (-5 *1 (-932 *4))))) -((-3775 (((-696) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) -(((-933 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3775 ((-696) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-312) (-1157 |#1|) (-1157 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-13 (-320) (-312))) (T -933)) -((-3775 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-283 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-312)) (-4 *7 (-1157 *6)) (-4 *4 (-1157 (-350 *7))) (-4 *8 (-291 *6 *7 *4)) (-4 *9 (-13 (-320) (-312))) (-5 *2 (-696)) (-5 *1 (-933 *6 *7 *4 *8 *9))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3598 (((-1051) $) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-1051) $) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-934) (-13 (-997) (-10 -8 (-15 -3598 ((-1051) $)) (-15 -3236 ((-1051) $))))) (T -934)) -((-3598 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-934)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-934))))) -((-3975 (((-179) $) 6 T ELT) (((-330) $) 9 T ELT))) -(((-935) (-113)) (T -935)) -NIL -(-13 (-555 (-179)) (-555 (-330))) -(((-555 (-179)) . T) ((-555 (-330)) . T)) -((-3137 (((-3 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) "failed") |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) 32 T ELT) (((-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-350 (-486))) 29 T ELT)) (-3052 (((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-350 (-486))) 34 T ELT) (((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-350 (-486))) 30 T ELT) (((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) 33 T ELT) (((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1|) 28 T ELT)) (-3051 (((-585 (-350 (-486))) (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) 20 T ELT)) (-3050 (((-350 (-486)) (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) 17 T ELT))) -(((-936 |#1|) (-10 -7 (-15 -3052 ((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1|)) (-15 -3052 ((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-15 -3052 ((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-350 (-486)))) (-15 -3052 ((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-350 (-486)))) (-15 -3137 ((-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-350 (-486)))) (-15 -3137 ((-3 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) "failed") |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-15 -3050 ((-350 (-486)) (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-15 -3051 ((-585 (-350 (-486))) (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))))) (-1157 (-486))) (T -936)) -((-3051 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-5 *2 (-585 (-350 (-486)))) (-5 *1 (-936 *4)) (-4 *4 (-1157 (-486))))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) (-5 *2 (-350 (-486))) (-5 *1 (-936 *4)) (-4 *4 (-1157 (-486))))) (-3137 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))))) (-3137 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) (-5 *4 (-350 (-486))) (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))))) (-3052 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-350 (-486))) (-5 *2 (-585 (-2 (|:| -3141 *5) (|:| -3140 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))) (-5 *4 (-2 (|:| -3141 *5) (|:| -3140 *5))))) (-3052 (*1 *2 *3 *4) (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))) (-5 *4 (-350 (-486))))) (-3052 (*1 *2 *3 *4) (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))) (-5 *4 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))))) (-3052 (*1 *2 *3) (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486)))))) -((-3137 (((-3 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) "failed") |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) 35 T ELT) (((-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-350 (-486))) 32 T ELT)) (-3052 (((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-350 (-486))) 30 T ELT) (((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-350 (-486))) 26 T ELT) (((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) 28 T ELT) (((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1|) 24 T ELT))) -(((-937 |#1|) (-10 -7 (-15 -3052 ((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1|)) (-15 -3052 ((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-15 -3052 ((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-350 (-486)))) (-15 -3052 ((-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-350 (-486)))) (-15 -3137 ((-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-350 (-486)))) (-15 -3137 ((-3 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) "failed") |#1| (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))) (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))))) (-1157 (-350 (-486)))) (T -937)) -((-3137 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) (-5 *1 (-937 *3)) (-4 *3 (-1157 (-350 (-486)))))) (-3137 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) (-5 *4 (-350 (-486))) (-5 *1 (-937 *3)) (-4 *3 (-1157 *4)))) (-3052 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-350 (-486))) (-5 *2 (-585 (-2 (|:| -3141 *5) (|:| -3140 *5)))) (-5 *1 (-937 *3)) (-4 *3 (-1157 *5)) (-5 *4 (-2 (|:| -3141 *5) (|:| -3140 *5))))) (-3052 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-486))) (-5 *2 (-585 (-2 (|:| -3141 *4) (|:| -3140 *4)))) (-5 *1 (-937 *3)) (-4 *3 (-1157 *4)))) (-3052 (*1 *2 *3 *4) (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-5 *1 (-937 *3)) (-4 *3 (-1157 (-350 (-486)))) (-5 *4 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))))) (-3052 (*1 *2 *3) (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) (-5 *1 (-937 *3)) (-4 *3 (-1157 (-350 (-486))))))) -((-3576 (((-585 (-330)) (-859 (-486)) (-330)) 28 T ELT) (((-585 (-330)) (-859 (-350 (-486))) (-330)) 27 T ELT)) (-3972 (((-585 (-585 (-330))) (-585 (-859 (-486))) (-585 (-1092)) (-330)) 37 T ELT))) -(((-938) (-10 -7 (-15 -3576 ((-585 (-330)) (-859 (-350 (-486))) (-330))) (-15 -3576 ((-585 (-330)) (-859 (-486)) (-330))) (-15 -3972 ((-585 (-585 (-330))) (-585 (-859 (-486))) (-585 (-1092)) (-330))))) (T -938)) -((-3972 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-859 (-486)))) (-5 *4 (-585 (-1092))) (-5 *2 (-585 (-585 (-330)))) (-5 *1 (-938)) (-5 *5 (-330)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-859 (-486))) (-5 *2 (-585 (-330))) (-5 *1 (-938)) (-5 *4 (-330)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-859 (-350 (-486)))) (-5 *2 (-585 (-330))) (-5 *1 (-938)) (-5 *4 (-330))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 75 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-3040 (($ $) NIL T ELT) (($ $ (-832)) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-486)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) 70 T ELT)) (-3727 (($) NIL T CONST)) (-3186 (((-3 $ #1#) (-1087 $) (-832) (-774)) NIL T ELT) (((-3 $ #1#) (-1087 $) (-832)) 55 T ELT)) (-3160 (((-3 (-350 (-486)) #1#) $) NIL (|has| (-350 (-486)) (-952 (-350 (-486)))) ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-486) #1#) $) NIL (OR (|has| (-350 (-486)) (-952 (-486))) (|has| |#1| (-952 (-486)))) ELT)) (-3159 (((-350 (-486)) $) 17 (|has| (-350 (-486)) (-952 (-350 (-486)))) ELT) (((-350 (-486)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-486) $) NIL (OR (|has| (-350 (-486)) (-952 (-486))) (|has| |#1| (-952 (-486)))) ELT)) (-3036 (($ $ (-774)) 47 T ELT)) (-3035 (($ $ (-774)) 48 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3185 (((-350 (-486)) $ $) 21 T ELT)) (-3470 (((-3 $ #1#) $) 88 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-3189 (((-85) $) 66 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL T ELT)) (-3190 (((-85) $) 69 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3037 (((-3 (-1087 $) #1#) $) 83 T ELT)) (-3039 (((-3 (-774) #1#) $) 82 T ELT)) (-3038 (((-3 (-1087 $) #1#) $) 80 T ELT)) (-3053 (((-3 (-976 $ (-1087 $)) #1#) $) 78 T ELT)) (-1896 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 89 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3950 (((-774) $) 87 T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ $) 63 T ELT) (($ (-350 (-486))) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3773 (((-350 (-486)) $ $) 27 T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3187 (((-585 $) (-1087 $)) 61 T ELT) (((-585 $) (-1087 (-350 (-486)))) NIL T ELT) (((-585 $) (-1087 (-486))) NIL T ELT) (((-585 $) (-859 $)) NIL T ELT) (((-585 $) (-859 (-350 (-486)))) NIL T ELT) (((-585 $) (-859 (-486))) NIL T ELT)) (-3054 (($ (-976 $ (-1087 $)) (-774)) 46 T ELT)) (-3386 (($ $) 22 T ELT)) (-2663 (($) 32 T CONST)) (-2669 (($) 39 T CONST)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 76 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 24 T ELT)) (-3953 (($ $ $) 37 T ELT)) (-3840 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3842 (($ $ $) 111 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ (-486) $) 71 T ELT) (($ $ (-486)) NIL T ELT) (($ (-350 (-486)) $) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT))) -(((-939 |#1|) (-13 (-927) (-355 |#1|) (-38 |#1|) (-10 -8 (-15 -3054 ($ (-976 $ (-1087 $)) (-774))) (-15 -3053 ((-3 (-976 $ (-1087 $)) "failed") $)) (-15 -3185 ((-350 (-486)) $ $)))) (-13 (-757) (-312) (-935))) (T -939)) -((-3054 (*1 *1 *2 *3) (-12 (-5 *2 (-976 (-939 *4) (-1087 (-939 *4)))) (-5 *3 (-774)) (-5 *1 (-939 *4)) (-4 *4 (-13 (-757) (-312) (-935))))) (-3053 (*1 *2 *1) (|partial| -12 (-5 *2 (-976 (-939 *3) (-1087 (-939 *3)))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-757) (-312) (-935))))) (-3185 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-757) (-312) (-935)))))) -((-3055 (((-2 (|:| -3269 |#2|) (|:| -2516 (-585 |#1|))) |#2| (-585 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) -(((-940 |#1| |#2|) (-10 -7 (-15 -3055 (|#2| |#2| |#1|)) (-15 -3055 ((-2 (|:| -3269 |#2|) (|:| -2516 (-585 |#1|))) |#2| (-585 |#1|)))) (-312) (-602 |#1|)) (T -940)) -((-3055 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3269 *3) (|:| -2516 (-585 *5)))) (-5 *1 (-940 *5 *3)) (-5 *4 (-585 *5)) (-4 *3 (-602 *5)))) (-3055 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-940 *3 *2)) (-4 *2 (-602 *3))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3056 ((|#1| $ |#1|) 12 T ELT)) (-3058 (($ |#1|) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3057 ((|#1| $) 11 T ELT)) (-3950 (((-774) $) 17 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 9 T ELT))) -(((-941 |#1|) (-13 (-1015) (-10 -8 (-15 -3058 ($ |#1|)) (-15 -3057 (|#1| $)) (-15 -3056 (|#1| $ |#1|)) (-15 -3059 ((-85) $ $)))) (-1131)) (T -941)) -((-3059 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-941 *3)) (-4 *3 (-1131)))) (-3058 (*1 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1131)))) (-3057 (*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1131)))) (-3056 (*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1131))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3684 (((-585 (-2 (|:| -3865 $) (|:| -1703 (-585 |#4|)))) (-585 |#4|)) NIL T ELT)) (-3685 (((-585 $) (-585 |#4|)) 113 T ELT) (((-585 $) (-585 |#4|) (-85)) 114 T ELT) (((-585 $) (-585 |#4|) (-85) (-85)) 112 T ELT) (((-585 $) (-585 |#4|) (-85) (-85) (-85) (-85)) 115 T ELT)) (-3084 (((-585 |#3|) $) NIL T ELT)) (-2911 (((-85) $) NIL T ELT)) (-2902 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3691 ((|#4| |#4| $) NIL T ELT)) (-3778 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 107 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3713 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 62 T ELT)) (-3727 (($) NIL T CONST)) (-2907 (((-85) $) 28 (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3692 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ #1#) (-585 |#4|)) NIL T ELT)) (-3159 (($ (-585 |#4|)) NIL T ELT)) (-3802 (((-3 $ #1#) $) 44 T ELT)) (-3688 ((|#4| |#4| $) 65 T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3409 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 80 (|has| |#1| (-497)) ELT)) (-3697 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3699 (((-2 (|:| -3865 (-585 |#4|)) (|:| -1703 (-585 |#4|))) $) NIL T ELT)) (-3200 (((-85) |#4| $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT)) (-3201 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3441 (((-2 (|:| |val| (-585 |#4|)) (|:| |towers| (-585 $))) (-585 |#4|) (-85) (-85)) 128 T ELT)) (-3698 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3183 ((|#3| $) 37 T ELT)) (-2611 (((-585 |#4|) $) 18 T ELT)) (-3248 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3846 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2917 (((-585 |#3|) $) NIL T ELT)) (-2916 (((-85) |#3| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3194 (((-3 |#4| (-585 $)) |#4| |#4| $) NIL T ELT)) (-3193 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 105 T ELT)) (-3801 (((-3 |#4| #1#) $) 41 T ELT)) (-3195 (((-585 $) |#4| $) 88 T ELT)) (-3197 (((-3 (-85) (-585 $)) |#4| $) NIL T ELT)) (-3196 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 98 T ELT) (((-85) |#4| $) 60 T ELT)) (-3241 (((-585 $) |#4| $) 110 T ELT) (((-585 $) (-585 |#4|) $) NIL T ELT) (((-585 $) (-585 |#4|) (-585 $)) 111 T ELT) (((-585 $) |#4| (-585 $)) NIL T ELT)) (-3442 (((-585 $) (-585 |#4|) (-85) (-85) (-85)) 123 T ELT)) (-3443 (($ |#4| $) 77 T ELT) (($ (-585 |#4|) $) 78 T ELT) (((-585 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 74 T ELT)) (-3700 (((-585 |#4|) $) NIL T ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3702 (((-85) $ $) NIL T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-497)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 (((-3 |#4| #1#) $) 39 T ELT)) (-1731 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3772 (($ $ |#4|) NIL T ELT) (((-585 $) |#4| $) 90 T ELT) (((-585 $) |#4| (-585 $)) NIL T ELT) (((-585 $) (-585 |#4|) $) NIL T ELT) (((-585 $) (-585 |#4|) (-585 $)) 84 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 17 T ELT)) (-3568 (($) 14 T ELT)) (-3952 (((-696) $) NIL T ELT)) (-1732 (((-696) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) NIL T ELT)) (-3403 (($ $) 13 T ELT)) (-3975 (((-475) $) NIL (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) 21 T ELT)) (-2913 (($ $ |#3|) 48 T ELT)) (-2915 (($ $ |#3|) 50 T ELT)) (-3687 (($ $) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-3950 (((-774) $) 34 T ELT) (((-585 |#4|) $) 45 T ELT)) (-3681 (((-696) $) NIL (|has| |#3| (-320)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3693 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) NIL T ELT)) (-3192 (((-585 $) |#4| $) 87 T ELT) (((-585 $) |#4| (-585 $)) NIL T ELT) (((-585 $) (-585 |#4|) $) NIL T ELT) (((-585 $) (-585 |#4|) (-585 $)) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3683 (((-585 |#3|) $) NIL T ELT)) (-3199 (((-85) |#4| $) NIL T ELT)) (-3937 (((-85) |#3| $) 61 T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-942 |#1| |#2| |#3| |#4|) (-13 (-985 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3443 ((-585 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3685 ((-585 $) (-585 |#4|) (-85) (-85))) (-15 -3685 ((-585 $) (-585 |#4|) (-85) (-85) (-85) (-85))) (-15 -3442 ((-585 $) (-585 |#4|) (-85) (-85) (-85))) (-15 -3441 ((-2 (|:| |val| (-585 |#4|)) (|:| |towers| (-585 $))) (-585 |#4|) (-85) (-85))))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|)) (T -942)) -((-3443 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *3))) (-5 *1 (-942 *5 *6 *7 *3)) (-4 *3 (-979 *5 *6 *7)))) (-3685 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-3685 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-3442 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-3441 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-585 *8)) (|:| |towers| (-585 (-942 *5 *6 *7 *8))))) (-5 *1 (-942 *5 *6 *7 *8)) (-5 *3 (-585 *8))))) -((-3060 (((-585 (-2 (|:| |radval| (-265 (-486))) (|:| |radmult| (-486)) (|:| |radvect| (-585 (-632 (-265 (-486))))))) (-632 (-350 (-859 (-486))))) 67 T ELT)) (-3061 (((-585 (-632 (-265 (-486)))) (-265 (-486)) (-632 (-350 (-859 (-486))))) 52 T ELT)) (-3062 (((-585 (-265 (-486))) (-632 (-350 (-859 (-486))))) 45 T ELT)) (-3066 (((-585 (-632 (-265 (-486)))) (-632 (-350 (-859 (-486))))) 85 T ELT)) (-3064 (((-632 (-265 (-486))) (-632 (-265 (-486)))) 38 T ELT)) (-3065 (((-585 (-632 (-265 (-486)))) (-585 (-632 (-265 (-486))))) 74 T ELT)) (-3063 (((-3 (-632 (-265 (-486))) "failed") (-632 (-350 (-859 (-486))))) 82 T ELT))) -(((-943) (-10 -7 (-15 -3060 ((-585 (-2 (|:| |radval| (-265 (-486))) (|:| |radmult| (-486)) (|:| |radvect| (-585 (-632 (-265 (-486))))))) (-632 (-350 (-859 (-486)))))) (-15 -3061 ((-585 (-632 (-265 (-486)))) (-265 (-486)) (-632 (-350 (-859 (-486)))))) (-15 -3062 ((-585 (-265 (-486))) (-632 (-350 (-859 (-486)))))) (-15 -3063 ((-3 (-632 (-265 (-486))) "failed") (-632 (-350 (-859 (-486)))))) (-15 -3064 ((-632 (-265 (-486))) (-632 (-265 (-486))))) (-15 -3065 ((-585 (-632 (-265 (-486)))) (-585 (-632 (-265 (-486)))))) (-15 -3066 ((-585 (-632 (-265 (-486)))) (-632 (-350 (-859 (-486)))))))) (T -943)) -((-3066 (*1 *2 *3) (-12 (-5 *3 (-632 (-350 (-859 (-486))))) (-5 *2 (-585 (-632 (-265 (-486))))) (-5 *1 (-943)))) (-3065 (*1 *2 *2) (-12 (-5 *2 (-585 (-632 (-265 (-486))))) (-5 *1 (-943)))) (-3064 (*1 *2 *2) (-12 (-5 *2 (-632 (-265 (-486)))) (-5 *1 (-943)))) (-3063 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 (-350 (-859 (-486))))) (-5 *2 (-632 (-265 (-486)))) (-5 *1 (-943)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-632 (-350 (-859 (-486))))) (-5 *2 (-585 (-265 (-486)))) (-5 *1 (-943)))) (-3061 (*1 *2 *3 *4) (-12 (-5 *4 (-632 (-350 (-859 (-486))))) (-5 *2 (-585 (-632 (-265 (-486))))) (-5 *1 (-943)) (-5 *3 (-265 (-486))))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-632 (-350 (-859 (-486))))) (-5 *2 (-585 (-2 (|:| |radval| (-265 (-486))) (|:| |radmult| (-486)) (|:| |radvect| (-585 (-632 (-265 (-486)))))))) (-5 *1 (-943))))) -((-3070 (((-585 (-632 |#1|)) (-585 (-632 |#1|))) 69 T ELT) (((-632 |#1|) (-632 |#1|)) 68 T ELT) (((-585 (-632 |#1|)) (-585 (-632 |#1|)) (-585 (-632 |#1|))) 67 T ELT) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 64 T ELT)) (-3069 (((-585 (-632 |#1|)) (-585 (-632 |#1|)) (-832)) 62 T ELT) (((-632 |#1|) (-632 |#1|) (-832)) 61 T ELT)) (-3071 (((-585 (-632 (-486))) (-585 (-585 (-486)))) 80 T ELT) (((-585 (-632 (-486))) (-585 (-815 (-486))) (-486)) 79 T ELT) (((-632 (-486)) (-585 (-486))) 76 T ELT) (((-632 (-486)) (-815 (-486)) (-486)) 74 T ELT)) (-3068 (((-632 (-859 |#1|)) (-696)) 94 T ELT)) (-3067 (((-585 (-632 |#1|)) (-585 (-632 |#1|)) (-832)) 48 (|has| |#1| (-6 (-4000 #1="*"))) ELT) (((-632 |#1|) (-632 |#1|) (-832)) 46 (|has| |#1| (-6 (-4000 #1#))) ELT))) -(((-944 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4000 #1="*"))) (-15 -3067 ((-632 |#1|) (-632 |#1|) (-832))) |%noBranch|) (IF (|has| |#1| (-6 (-4000 #1#))) (-15 -3067 ((-585 (-632 |#1|)) (-585 (-632 |#1|)) (-832))) |%noBranch|) (-15 -3068 ((-632 (-859 |#1|)) (-696))) (-15 -3069 ((-632 |#1|) (-632 |#1|) (-832))) (-15 -3069 ((-585 (-632 |#1|)) (-585 (-632 |#1|)) (-832))) (-15 -3070 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3070 ((-585 (-632 |#1|)) (-585 (-632 |#1|)) (-585 (-632 |#1|)))) (-15 -3070 ((-632 |#1|) (-632 |#1|))) (-15 -3070 ((-585 (-632 |#1|)) (-585 (-632 |#1|)))) (-15 -3071 ((-632 (-486)) (-815 (-486)) (-486))) (-15 -3071 ((-632 (-486)) (-585 (-486)))) (-15 -3071 ((-585 (-632 (-486))) (-585 (-815 (-486))) (-486))) (-15 -3071 ((-585 (-632 (-486))) (-585 (-585 (-486)))))) (-963)) (T -944)) -((-3071 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-486)))) (-5 *2 (-585 (-632 (-486)))) (-5 *1 (-944 *4)) (-4 *4 (-963)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-815 (-486)))) (-5 *4 (-486)) (-5 *2 (-585 (-632 *4))) (-5 *1 (-944 *5)) (-4 *5 (-963)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-632 (-486))) (-5 *1 (-944 *4)) (-4 *4 (-963)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-815 (-486))) (-5 *4 (-486)) (-5 *2 (-632 *4)) (-5 *1 (-944 *5)) (-4 *5 (-963)))) (-3070 (*1 *2 *2) (-12 (-5 *2 (-585 (-632 *3))) (-4 *3 (-963)) (-5 *1 (-944 *3)))) (-3070 (*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-944 *3)))) (-3070 (*1 *2 *2 *2) (-12 (-5 *2 (-585 (-632 *3))) (-4 *3 (-963)) (-5 *1 (-944 *3)))) (-3070 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-944 *3)))) (-3069 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-632 *4))) (-5 *3 (-832)) (-4 *4 (-963)) (-5 *1 (-944 *4)))) (-3069 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-832)) (-4 *4 (-963)) (-5 *1 (-944 *4)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-632 (-859 *4))) (-5 *1 (-944 *4)) (-4 *4 (-963)))) (-3067 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-632 *4))) (-5 *3 (-832)) (|has| *4 (-6 (-4000 #1="*"))) (-4 *4 (-963)) (-5 *1 (-944 *4)))) (-3067 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-832)) (|has| *4 (-6 (-4000 #1#))) (-4 *4 (-963)) (-5 *1 (-944 *4))))) -((-3075 (((-632 |#1|) (-585 (-632 |#1|)) (-1181 |#1|)) 69 (|has| |#1| (-258)) ELT)) (-3421 (((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-1181 (-1181 |#1|))) 107 (|has| |#1| (-312)) ELT) (((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-1181 |#1|)) 104 (|has| |#1| (-312)) ELT)) (-3079 (((-1181 |#1|) (-585 (-1181 |#1|)) (-486)) 113 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT)) (-3078 (((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-832)) 119 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-85)) 118 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|))) 117 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-85) (-486) (-486)) 116 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT)) (-3077 (((-85) (-585 (-632 |#1|))) 101 (|has| |#1| (-312)) ELT) (((-85) (-585 (-632 |#1|)) (-486)) 100 (|has| |#1| (-312)) ELT)) (-3074 (((-1181 (-1181 |#1|)) (-585 (-632 |#1|)) (-1181 |#1|)) 66 (|has| |#1| (-258)) ELT)) (-3073 (((-632 |#1|) (-585 (-632 |#1|)) (-632 |#1|)) 46 T ELT)) (-3072 (((-632 |#1|) (-1181 (-1181 |#1|))) 39 T ELT)) (-3076 (((-632 |#1|) (-585 (-632 |#1|)) (-585 (-632 |#1|)) (-486)) 93 (|has| |#1| (-312)) ELT) (((-632 |#1|) (-585 (-632 |#1|)) (-585 (-632 |#1|))) 92 (|has| |#1| (-312)) ELT) (((-632 |#1|) (-585 (-632 |#1|)) (-585 (-632 |#1|)) (-85) (-486)) 91 (|has| |#1| (-312)) ELT))) -(((-945 |#1|) (-10 -7 (-15 -3072 ((-632 |#1|) (-1181 (-1181 |#1|)))) (-15 -3073 ((-632 |#1|) (-585 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-258)) (PROGN (-15 -3074 ((-1181 (-1181 |#1|)) (-585 (-632 |#1|)) (-1181 |#1|))) (-15 -3075 ((-632 |#1|) (-585 (-632 |#1|)) (-1181 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3076 ((-632 |#1|) (-585 (-632 |#1|)) (-585 (-632 |#1|)) (-85) (-486))) (-15 -3076 ((-632 |#1|) (-585 (-632 |#1|)) (-585 (-632 |#1|)))) (-15 -3076 ((-632 |#1|) (-585 (-632 |#1|)) (-585 (-632 |#1|)) (-486))) (-15 -3077 ((-85) (-585 (-632 |#1|)) (-486))) (-15 -3077 ((-85) (-585 (-632 |#1|)))) (-15 -3421 ((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-1181 |#1|))) (-15 -3421 ((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-1181 (-1181 |#1|))))) |%noBranch|) (IF (|has| |#1| (-320)) (IF (|has| |#1| (-312)) (PROGN (-15 -3078 ((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-85) (-486) (-486))) (-15 -3078 ((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)))) (-15 -3078 ((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-85))) (-15 -3078 ((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-832))) (-15 -3079 ((-1181 |#1|) (-585 (-1181 |#1|)) (-486)))) |%noBranch|) |%noBranch|)) (-963)) (T -945)) -((-3079 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1181 *5))) (-5 *4 (-486)) (-5 *2 (-1181 *5)) (-5 *1 (-945 *5)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-963)))) (-3078 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-963)) (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) (-3078 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-963)) (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) (-3078 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-320)) (-4 *4 (-963)) (-5 *2 (-585 (-585 (-632 *4)))) (-5 *1 (-945 *4)) (-5 *3 (-585 (-632 *4))))) (-3078 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-85)) (-5 *5 (-486)) (-4 *6 (-312)) (-4 *6 (-320)) (-4 *6 (-963)) (-5 *2 (-585 (-585 (-632 *6)))) (-5 *1 (-945 *6)) (-5 *3 (-585 (-632 *6))))) (-3421 (*1 *2 *3 *4) (-12 (-5 *4 (-1181 (-1181 *5))) (-4 *5 (-312)) (-4 *5 (-963)) (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) (-3421 (*1 *2 *3 *4) (-12 (-5 *4 (-1181 *5)) (-4 *5 (-312)) (-4 *5 (-963)) (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-585 (-632 *4))) (-4 *4 (-312)) (-4 *4 (-963)) (-5 *2 (-85)) (-5 *1 (-945 *4)))) (-3077 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-632 *5))) (-5 *4 (-486)) (-4 *5 (-312)) (-4 *5 (-963)) (-5 *2 (-85)) (-5 *1 (-945 *5)))) (-3076 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-585 (-632 *5))) (-5 *4 (-486)) (-5 *2 (-632 *5)) (-5 *1 (-945 *5)) (-4 *5 (-312)) (-4 *5 (-963)))) (-3076 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-632 *4))) (-5 *2 (-632 *4)) (-5 *1 (-945 *4)) (-4 *4 (-312)) (-4 *4 (-963)))) (-3076 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-585 (-632 *6))) (-5 *4 (-85)) (-5 *5 (-486)) (-5 *2 (-632 *6)) (-5 *1 (-945 *6)) (-4 *6 (-312)) (-4 *6 (-963)))) (-3075 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-632 *5))) (-5 *4 (-1181 *5)) (-4 *5 (-258)) (-4 *5 (-963)) (-5 *2 (-632 *5)) (-5 *1 (-945 *5)))) (-3074 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-632 *5))) (-4 *5 (-258)) (-4 *5 (-963)) (-5 *2 (-1181 (-1181 *5))) (-5 *1 (-945 *5)) (-5 *4 (-1181 *5)))) (-3073 (*1 *2 *3 *2) (-12 (-5 *3 (-585 (-632 *4))) (-5 *2 (-632 *4)) (-4 *4 (-963)) (-5 *1 (-945 *4)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-1181 (-1181 *4))) (-4 *4 (-963)) (-5 *2 (-632 *4)) (-5 *1 (-945 *4))))) -((-3080 ((|#1| (-832) |#1|) 18 T ELT))) -(((-946 |#1|) (-10 -7 (-15 -3080 (|#1| (-832) |#1|))) (-13 (-1015) (-10 -8 (-15 -3842 ($ $ $))))) (T -946)) -((-3080 (*1 *2 *3 *2) (-12 (-5 *3 (-832)) (-5 *1 (-946 *2)) (-4 *2 (-13 (-1015) (-10 -8 (-15 -3842 ($ $ $)))))))) -((-3081 ((|#1| |#1| (-832)) 18 T ELT))) -(((-947 |#1|) (-10 -7 (-15 -3081 (|#1| |#1| (-832)))) (-13 (-1015) (-10 -8 (-15 * ($ $ $))))) (T -947)) -((-3081 (*1 *2 *2 *3) (-12 (-5 *3 (-832)) (-5 *1 (-947 *2)) (-4 *2 (-13 (-1015) (-10 -8 (-15 * ($ $ $)))))))) -((-3950 ((|#1| (-262)) 11 T ELT) (((-1187) |#1|) 9 T ELT))) -(((-948 |#1|) (-10 -7 (-15 -3950 ((-1187) |#1|)) (-15 -3950 (|#1| (-262)))) (-1131)) (T -948)) -((-3950 (*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-948 *2)) (-4 *2 (-1131)))) (-3950 (*1 *2 *3) (-12 (-5 *2 (-1187)) (-5 *1 (-948 *3)) (-4 *3 (-1131))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3845 (($ |#4|) 24 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3082 ((|#4| $) 26 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 45 T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3129 (((-696)) 42 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 21 T CONST)) (-2669 (($) 22 T CONST)) (-3059 (((-85) $ $) 39 T ELT)) (-3840 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 28 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT))) -(((-949 |#1| |#2| |#3| |#4| |#5|) (-13 (-146) (-38 |#1|) (-10 -8 (-15 -3845 ($ |#4|)) (-15 -3950 ($ |#4|)) (-15 -3082 (|#4| $)))) (-312) (-719) (-758) (-863 |#1| |#2| |#3|) (-585 |#4|)) (T -949)) -((-3845 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-863 *3 *4 *5)) (-14 *6 (-585 *2)))) (-3950 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-863 *3 *4 *5)) (-14 *6 (-585 *2)))) (-3082 (*1 *2 *1) (-12 (-4 *2 (-863 *3 *4 *5)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-14 *6 (-585 *2))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3209 (((-1051) $) 11 T ELT)) (-3950 (((-774) $) 17 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-950) (-13 (-997) (-10 -8 (-15 -3209 ((-1051) $))))) (T -950)) -((-3209 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-950))))) -((-3159 ((|#2| $) 10 T ELT))) -(((-951 |#1| |#2|) (-10 -7 (-15 -3159 (|#2| |#1|))) (-952 |#2|) (-1131)) (T -951)) -NIL -((-3160 (((-3 |#1| "failed") $) 9 T ELT)) (-3159 ((|#1| $) 8 T ELT)) (-3950 (($ |#1|) 6 T ELT))) -(((-952 |#1|) (-113) (-1131)) (T -952)) -((-3160 (*1 *2 *1) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1131)))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1131))))) -(-13 (-557 |t#1|) (-10 -8 (-15 -3160 ((-3 |t#1| "failed") $)) (-15 -3159 (|t#1| $)))) -(((-557 |#1|) . T)) -((-3083 (((-585 (-585 (-249 (-350 (-859 |#2|))))) (-585 (-859 |#2|)) (-585 (-1092))) 38 T ELT))) -(((-953 |#1| |#2|) (-10 -7 (-15 -3083 ((-585 (-585 (-249 (-350 (-859 |#2|))))) (-585 (-859 |#2|)) (-585 (-1092))))) (-497) (-13 (-497) (-952 |#1|))) (T -953)) -((-3083 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *6))) (-5 *4 (-585 (-1092))) (-4 *6 (-13 (-497) (-952 *5))) (-4 *5 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *6)))))) (-5 *1 (-953 *5 *6))))) -((-3084 (((-585 (-1092)) (-350 (-859 |#1|))) 17 T ELT)) (-3086 (((-350 (-1087 (-350 (-859 |#1|)))) (-350 (-859 |#1|)) (-1092)) 24 T ELT)) (-3087 (((-350 (-859 |#1|)) (-350 (-1087 (-350 (-859 |#1|)))) (-1092)) 26 T ELT)) (-3085 (((-3 (-1092) "failed") (-350 (-859 |#1|))) 20 T ELT)) (-3771 (((-350 (-859 |#1|)) (-350 (-859 |#1|)) (-585 (-249 (-350 (-859 |#1|))))) 32 T ELT) (((-350 (-859 |#1|)) (-350 (-859 |#1|)) (-249 (-350 (-859 |#1|)))) 33 T ELT) (((-350 (-859 |#1|)) (-350 (-859 |#1|)) (-585 (-1092)) (-585 (-350 (-859 |#1|)))) 28 T ELT) (((-350 (-859 |#1|)) (-350 (-859 |#1|)) (-1092) (-350 (-859 |#1|))) 29 T ELT)) (-3950 (((-350 (-859 |#1|)) |#1|) 11 T ELT))) -(((-954 |#1|) (-10 -7 (-15 -3084 ((-585 (-1092)) (-350 (-859 |#1|)))) (-15 -3085 ((-3 (-1092) "failed") (-350 (-859 |#1|)))) (-15 -3086 ((-350 (-1087 (-350 (-859 |#1|)))) (-350 (-859 |#1|)) (-1092))) (-15 -3087 ((-350 (-859 |#1|)) (-350 (-1087 (-350 (-859 |#1|)))) (-1092))) (-15 -3771 ((-350 (-859 |#1|)) (-350 (-859 |#1|)) (-1092) (-350 (-859 |#1|)))) (-15 -3771 ((-350 (-859 |#1|)) (-350 (-859 |#1|)) (-585 (-1092)) (-585 (-350 (-859 |#1|))))) (-15 -3771 ((-350 (-859 |#1|)) (-350 (-859 |#1|)) (-249 (-350 (-859 |#1|))))) (-15 -3771 ((-350 (-859 |#1|)) (-350 (-859 |#1|)) (-585 (-249 (-350 (-859 |#1|)))))) (-15 -3950 ((-350 (-859 |#1|)) |#1|))) (-497)) (T -954)) -((-3950 (*1 *2 *3) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-954 *3)) (-4 *3 (-497)))) (-3771 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-249 (-350 (-859 *4))))) (-5 *2 (-350 (-859 *4))) (-4 *4 (-497)) (-5 *1 (-954 *4)))) (-3771 (*1 *2 *2 *3) (-12 (-5 *3 (-249 (-350 (-859 *4)))) (-5 *2 (-350 (-859 *4))) (-4 *4 (-497)) (-5 *1 (-954 *4)))) (-3771 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-585 (-1092))) (-5 *4 (-585 (-350 (-859 *5)))) (-5 *2 (-350 (-859 *5))) (-4 *5 (-497)) (-5 *1 (-954 *5)))) (-3771 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-350 (-859 *4))) (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *1 (-954 *4)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-1087 (-350 (-859 *5))))) (-5 *4 (-1092)) (-5 *2 (-350 (-859 *5))) (-5 *1 (-954 *5)) (-4 *5 (-497)))) (-3086 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-497)) (-5 *2 (-350 (-1087 (-350 (-859 *5))))) (-5 *1 (-954 *5)) (-5 *3 (-350 (-859 *5))))) (-3085 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-5 *2 (-1092)) (-5 *1 (-954 *4)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-5 *2 (-585 (-1092))) (-5 *1 (-954 *4))))) -((-3088 (((-330)) 17 T ELT)) (-3103 (((-1 (-330)) (-330) (-330)) 22 T ELT)) (-3096 (((-1 (-330)) (-696)) 48 T ELT)) (-3089 (((-330)) 37 T ELT)) (-3092 (((-1 (-330)) (-330) (-330)) 38 T ELT)) (-3090 (((-330)) 29 T ELT)) (-3093 (((-1 (-330)) (-330)) 30 T ELT)) (-3091 (((-330) (-696)) 43 T ELT)) (-3094 (((-1 (-330)) (-696)) 44 T ELT)) (-3095 (((-1 (-330)) (-696) (-696)) 47 T ELT)) (-3387 (((-1 (-330)) (-696) (-696)) 45 T ELT))) -(((-955) (-10 -7 (-15 -3088 ((-330))) (-15 -3089 ((-330))) (-15 -3090 ((-330))) (-15 -3091 ((-330) (-696))) (-15 -3103 ((-1 (-330)) (-330) (-330))) (-15 -3092 ((-1 (-330)) (-330) (-330))) (-15 -3093 ((-1 (-330)) (-330))) (-15 -3094 ((-1 (-330)) (-696))) (-15 -3387 ((-1 (-330)) (-696) (-696))) (-15 -3095 ((-1 (-330)) (-696) (-696))) (-15 -3096 ((-1 (-330)) (-696))))) (T -955)) -((-3096 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-330))) (-5 *1 (-955)))) (-3095 (*1 *2 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-330))) (-5 *1 (-955)))) (-3387 (*1 *2 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-330))) (-5 *1 (-955)))) (-3094 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-330))) (-5 *1 (-955)))) (-3093 (*1 *2 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-955)) (-5 *3 (-330)))) (-3092 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-955)) (-5 *3 (-330)))) (-3103 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-955)) (-5 *3 (-330)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-330)) (-5 *1 (-955)))) (-3090 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-955)))) (-3089 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-955)))) (-3088 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-955))))) -((-3735 (((-348 |#1|) |#1|) 33 T ELT))) -(((-956 |#1|) (-10 -7 (-15 -3735 ((-348 |#1|) |#1|))) (-1157 (-350 (-859 (-486))))) (T -956)) -((-3735 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-956 *3)) (-4 *3 (-1157 (-350 (-859 (-486)))))))) -((-3097 (((-350 (-348 (-859 |#1|))) (-350 (-859 |#1|))) 14 T ELT))) -(((-957 |#1|) (-10 -7 (-15 -3097 ((-350 (-348 (-859 |#1|))) (-350 (-859 |#1|))))) (-258)) (T -957)) -((-3097 (*1 *2 *3) (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-258)) (-5 *2 (-350 (-348 (-859 *4)))) (-5 *1 (-957 *4))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3727 (($) 23 T CONST)) (-3101 ((|#1| $) 29 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3100 ((|#1| $) 28 T ELT)) (-3098 ((|#1|) 26 T CONST)) (-3950 (((-774) $) 13 T ELT)) (-3099 ((|#1| $) 27 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT))) -(((-958 |#1|) (-113) (-23)) (T -958)) -((-3101 (*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23)))) (-3098 (*1 *2) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3101 (|t#1| $)) (-15 -3100 (|t#1| $)) (-15 -3099 (|t#1| $)) (-15 -3098 (|t#1|) -3956))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3102 (($) 31 T CONST)) (-3727 (($) 23 T CONST)) (-3101 ((|#1| $) 29 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3100 ((|#1| $) 28 T ELT)) (-3098 ((|#1|) 26 T CONST)) (-3950 (((-774) $) 13 T ELT)) (-3099 ((|#1| $) 27 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT))) -(((-959 |#1|) (-113) (-23)) (T -959)) -((-3102 (*1 *1) (-12 (-4 *1 (-959 *2)) (-4 *2 (-23))))) -(-13 (-958 |t#1|) (-10 -8 (-15 -3102 ($) -3956))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-958 |#1|) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3684 (((-585 (-2 (|:| -3865 $) (|:| -1703 (-585 (-705 |#1| (-775 |#2|)))))) (-585 (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-3685 (((-585 $) (-585 (-705 |#1| (-775 |#2|)))) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) (-85)) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) (-85) (-85)) NIL T ELT)) (-3084 (((-585 (-775 |#2|)) $) NIL T ELT)) (-2911 (((-85) $) NIL T ELT)) (-2902 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3696 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3691 (((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3778 (((-585 (-2 (|:| |val| (-705 |#1| (-775 |#2|))) (|:| -1601 $))) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ (-775 |#2|)) NIL T ELT)) (-3713 (($ (-1 (-85) (-705 |#1| (-775 |#2|))) $) NIL (|has| $ (-318 (-705 |#1| (-775 |#2|)))) ELT) (((-3 (-705 |#1| (-775 |#2|)) #1="failed") $ (-775 |#2|)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2907 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3692 (((-585 (-705 |#1| (-775 |#2|))) (-585 (-705 |#1| (-775 |#2|))) $ (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) (-1 (-85) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-2903 (((-585 (-705 |#1| (-775 |#2|))) (-585 (-705 |#1| (-775 |#2|))) $) NIL (|has| |#1| (-497)) ELT)) (-2904 (((-585 (-705 |#1| (-775 |#2|))) (-585 (-705 |#1| (-775 |#2|))) $) NIL (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ #1#) (-585 (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-3159 (($ (-585 (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-3802 (((-3 $ #1#) $) NIL T ELT)) (-3688 (((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-705 |#1| (-775 |#2|)))) (|has| (-705 |#1| (-775 |#2|)) (-72))) ELT)) (-3409 (($ (-705 |#1| (-775 |#2|)) $) NIL (-12 (|has| $ (-318 (-705 |#1| (-775 |#2|)))) (|has| (-705 |#1| (-775 |#2|)) (-72))) ELT) (($ (-1 (-85) (-705 |#1| (-775 |#2|))) $) NIL (|has| $ (-318 (-705 |#1| (-775 |#2|)))) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-705 |#1| (-775 |#2|))) (|:| |den| |#1|)) (-705 |#1| (-775 |#2|)) $) NIL (|has| |#1| (-497)) ELT)) (-3697 (((-85) (-705 |#1| (-775 |#2|)) $ (-1 (-85) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-3686 (((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3845 (((-705 |#1| (-775 |#2|)) (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) $ (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) NIL (|has| (-705 |#1| (-775 |#2|)) (-72)) ELT) (((-705 |#1| (-775 |#2|)) (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) $ (-705 |#1| (-775 |#2|))) NIL T ELT) (((-705 |#1| (-775 |#2|)) (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) $) NIL T ELT) (((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $ (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) (-1 (-85) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-3699 (((-2 (|:| -3865 (-585 (-705 |#1| (-775 |#2|)))) (|:| -1703 (-585 (-705 |#1| (-775 |#2|))))) $) NIL T ELT)) (-3200 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3198 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3201 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3698 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3183 (((-775 |#2|) $) NIL T ELT)) (-2611 (((-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3248 (((-85) (-705 |#1| (-775 |#2|)) $) NIL (|has| (-705 |#1| (-775 |#2|)) (-72)) ELT)) (-3329 (($ (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3846 (($ (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-2917 (((-585 (-775 |#2|)) $) NIL T ELT)) (-2916 (((-85) (-775 |#2|) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3194 (((-3 (-705 |#1| (-775 |#2|)) (-585 $)) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3193 (((-585 (-2 (|:| |val| (-705 |#1| (-775 |#2|))) (|:| -1601 $))) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3801 (((-3 (-705 |#1| (-775 |#2|)) #1#) $) NIL T ELT)) (-3195 (((-585 $) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3197 (((-3 (-85) (-585 $)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3196 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 $))) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3241 (((-585 $) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) (-585 $)) NIL T ELT) (((-585 $) (-705 |#1| (-775 |#2|)) (-585 $)) NIL T ELT)) (-3443 (($ (-705 |#1| (-775 |#2|)) $) NIL T ELT) (($ (-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3700 (((-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3694 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 (((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3702 (((-85) $ $) NIL T ELT)) (-2906 (((-2 (|:| |num| (-705 |#1| (-775 |#2|))) (|:| |den| |#1|)) (-705 |#1| (-775 |#2|)) $) NIL (|has| |#1| (-497)) ELT)) (-3695 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 (((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 (((-3 (-705 |#1| (-775 |#2|)) #1#) $) NIL T ELT)) (-1731 (((-3 (-705 |#1| (-775 |#2|)) #1#) (-1 (-85) (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3682 (((-3 $ #1#) $ (-705 |#1| (-775 |#2|))) NIL T ELT)) (-3772 (($ $ (-705 |#1| (-775 |#2|))) NIL T ELT) (((-585 $) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-585 $) (-705 |#1| (-775 |#2|)) (-585 $)) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) (-585 $)) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-705 |#1| (-775 |#2|))) (-585 (-705 |#1| (-775 |#2|)))) NIL (-12 (|has| (-705 |#1| (-775 |#2|)) (-260 (-705 |#1| (-775 |#2|)))) (|has| (-705 |#1| (-775 |#2|)) (-1015))) ELT) (($ $ (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) NIL (-12 (|has| (-705 |#1| (-775 |#2|)) (-260 (-705 |#1| (-775 |#2|)))) (|has| (-705 |#1| (-775 |#2|)) (-1015))) ELT) (($ $ (-249 (-705 |#1| (-775 |#2|)))) NIL (-12 (|has| (-705 |#1| (-775 |#2|)) (-260 (-705 |#1| (-775 |#2|)))) (|has| (-705 |#1| (-775 |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-705 |#1| (-775 |#2|))))) NIL (-12 (|has| (-705 |#1| (-775 |#2|)) (-260 (-705 |#1| (-775 |#2|)))) (|has| (-705 |#1| (-775 |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3952 (((-696) $) NIL T ELT)) (-1732 (((-696) (-705 |#1| (-775 |#2|)) $) NIL (|has| (-705 |#1| (-775 |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-705 |#1| (-775 |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-2913 (($ $ (-775 |#2|)) NIL T ELT)) (-2915 (($ $ (-775 |#2|)) NIL T ELT)) (-3687 (($ $) NIL T ELT)) (-2914 (($ $ (-775 |#2|)) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (((-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3681 (((-696) $) NIL (|has| (-775 |#2|) (-320)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 (-705 |#1| (-775 |#2|))))) #1#) (-585 (-705 |#1| (-775 |#2|))) (-1 (-85) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 (-705 |#1| (-775 |#2|))))) #1#) (-585 (-705 |#1| (-775 |#2|))) (-1 (-85) (-705 |#1| (-775 |#2|))) (-1 (-85) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-3693 (((-85) $ (-1 (-85) (-705 |#1| (-775 |#2|)) (-585 (-705 |#1| (-775 |#2|))))) NIL T ELT)) (-3192 (((-585 $) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-585 $) (-705 |#1| (-775 |#2|)) (-585 $)) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) (-585 $)) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3683 (((-585 (-775 |#2|)) $) NIL T ELT)) (-3199 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3937 (((-85) (-775 |#2|) $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-960 |#1| |#2|) (-13 (-985 |#1| (-471 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|))) (-10 -8 (-15 -3685 ((-585 $) (-585 (-705 |#1| (-775 |#2|))) (-85) (-85))))) (-393) (-585 (-1092))) (T -960)) -((-3685 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) (-14 *6 (-585 (-1092))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-960 *5 *6))))) -((-3103 (((-1 (-486)) (-1003 (-486))) 32 T ELT)) (-3107 (((-486) (-486) (-486) (-486) (-486)) 29 T ELT)) (-3105 (((-1 (-486)) |RationalNumber|) NIL T ELT)) (-3106 (((-1 (-486)) |RationalNumber|) NIL T ELT)) (-3104 (((-1 (-486)) (-486) |RationalNumber|) NIL T ELT))) -(((-961) (-10 -7 (-15 -3103 ((-1 (-486)) (-1003 (-486)))) (-15 -3104 ((-1 (-486)) (-486) |RationalNumber|)) (-15 -3105 ((-1 (-486)) |RationalNumber|)) (-15 -3106 ((-1 (-486)) |RationalNumber|)) (-15 -3107 ((-486) (-486) (-486) (-486) (-486))))) (T -961)) -((-3107 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-961)))) (-3106 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-486))) (-5 *1 (-961)))) (-3105 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-486))) (-5 *1 (-961)))) (-3104 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-486))) (-5 *1 (-961)) (-5 *3 (-486)))) (-3103 (*1 *2 *3) (-12 (-5 *3 (-1003 (-486))) (-5 *2 (-1 (-486))) (-5 *1 (-961))))) -((-3950 (((-774) $) NIL T ELT) (($ (-486)) 10 T ELT))) -(((-962 |#1|) (-10 -7 (-15 -3950 (|#1| (-486))) (-15 -3950 ((-774) |#1|))) (-963)) (T -962)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-963) (-113)) (T -963)) -((-3129 (*1 *2) (-12 (-4 *1 (-963)) (-5 *2 (-696))))) -(-13 (-972) (-1063) (-592 $) (-557 (-486)) (-10 -7 (-15 -3129 ((-696)) -3956) (-6 -3995))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-486)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-3108 (((-350 (-859 |#2|)) (-585 |#2|) (-585 |#2|) (-696) (-696)) 55 T ELT))) -(((-964 |#1| |#2|) (-10 -7 (-15 -3108 ((-350 (-859 |#2|)) (-585 |#2|) (-585 |#2|) (-696) (-696)))) (-1092) (-312)) (T -964)) -((-3108 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-696)) (-4 *6 (-312)) (-5 *2 (-350 (-859 *6))) (-5 *1 (-964 *5 *6)) (-14 *5 (-1092))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) -(((-965 |#1|) (-113) (-1027)) (T -965)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-965 *2)) (-4 *2 (-1027))))) -(-13 (-1015) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-3123 (((-85) $) 38 T ELT)) (-3125 (((-85) $) 17 T ELT)) (-3117 (((-696) $) 13 T ELT)) (-3116 (((-696) $) 14 T ELT)) (-3124 (((-85) $) 30 T ELT)) (-3122 (((-85) $) 40 T ELT))) -(((-966 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3116 ((-696) |#1|)) (-15 -3117 ((-696) |#1|)) (-15 -3122 ((-85) |#1|)) (-15 -3123 ((-85) |#1|)) (-15 -3124 ((-85) |#1|)) (-15 -3125 ((-85) |#1|))) (-967 |#2| |#3| |#4| |#5| |#6|) (-696) (-696) (-963) (-196 |#3| |#4|) (-196 |#2| |#4|)) (T -966)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3123 (((-85) $) 63 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3125 (((-85) $) 65 T ELT)) (-3727 (($) 23 T CONST)) (-3112 (($ $) 46 (|has| |#3| (-258)) ELT)) (-3114 ((|#4| $ (-486)) 51 T ELT)) (-3845 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) 86 (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) 82 T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) 81 T ELT)) (-3111 (((-696) $) 45 (|has| |#3| (-497)) ELT)) (-3115 ((|#3| $ (-486) (-486)) 53 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-3110 (((-696) $) 44 (|has| |#3| (-497)) ELT)) (-3109 (((-585 |#5|) $) 43 (|has| |#3| (-497)) ELT)) (-3117 (((-696) $) 57 T ELT)) (-3116 (((-696) $) 56 T ELT)) (-3121 (((-486) $) 61 T ELT)) (-3119 (((-486) $) 59 T ELT)) (-2611 (((-585 |#3|) $) 80 T ELT)) (-3248 (((-85) |#3| $) 85 (|has| |#3| (-72)) ELT)) (-3120 (((-486) $) 60 T ELT)) (-3118 (((-486) $) 58 T ELT)) (-3126 (($ (-585 (-585 |#3|))) 66 T ELT)) (-3846 (($ (-1 |#3| |#3|) $) 71 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 49 T ELT)) (-3597 (((-585 (-585 |#3|)) $) 55 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1731 (((-3 |#3| "failed") (-1 (-85) |#3|) $) 83 T ELT)) (-3469 (((-3 $ "failed") $ |#3|) 48 (|has| |#3| (-497)) ELT)) (-1733 (((-85) (-1 (-85) |#3|) $) 78 T ELT)) (-3771 (($ $ (-585 |#3|) (-585 |#3|)) 75 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-249 |#3|)) 73 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-585 (-249 |#3|))) 72 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT)) (-1224 (((-85) $ $) 67 T ELT)) (-3406 (((-85) $) 70 T ELT)) (-3568 (($) 69 T ELT)) (-3803 ((|#3| $ (-486) (-486)) 54 T ELT) ((|#3| $ (-486) (-486) |#3|) 52 T ELT)) (-3124 (((-85) $) 64 T ELT)) (-1732 (((-696) |#3| $) 84 (|has| |#3| (-72)) ELT) (((-696) (-1 (-85) |#3|) $) 79 T ELT)) (-3403 (($ $) 68 T ELT)) (-3113 ((|#5| $ (-486)) 50 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-1734 (((-85) (-1 (-85) |#3|) $) 77 T ELT)) (-3122 (((-85) $) 62 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ |#3|) 47 (|has| |#3| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#3| $) 33 T ELT) (($ $ |#3|) 37 T ELT)) (-3961 (((-696) $) 76 T ELT))) -(((-967 |#1| |#2| |#3| |#4| |#5|) (-113) (-696) (-696) (-963) (-196 |t#2| |t#3|) (-196 |t#1| |t#3|)) (T -967)) -((-3126 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *5))) (-4 *5 (-963)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-486)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-486)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-486)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-486)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-696)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-696)))) (-3597 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-585 (-585 *5))))) (-3803 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-963)))) (-3115 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-963)))) (-3803 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *2 (-963)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) (-3114 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *6 *2 *7)) (-4 *6 (-963)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6)))) (-3113 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *6 *7 *2)) (-4 *6 (-963)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6)))) (-3846 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3469 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-963)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-497)))) (-3953 (*1 *1 *1 *2) (-12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-963)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-312)))) (-3112 (*1 *1 *1) (-12 (-4 *1 (-967 *2 *3 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *2 *4)) (-4 *4 (-258)))) (-3111 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-497)) (-5 *2 (-696)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-497)) (-5 *2 (-696)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-497)) (-5 *2 (-585 *7))))) -(-13 (-82 |t#3| |t#3|) (-318 |t#3|) (-10 -8 (IF (|has| |t#3| (-146)) (-6 (-656 |t#3|)) |%noBranch|) (-15 -3126 ($ (-585 (-585 |t#3|)))) (-15 -3125 ((-85) $)) (-15 -3124 ((-85) $)) (-15 -3123 ((-85) $)) (-15 -3122 ((-85) $)) (-15 -3121 ((-486) $)) (-15 -3120 ((-486) $)) (-15 -3119 ((-486) $)) (-15 -3118 ((-486) $)) (-15 -3117 ((-696) $)) (-15 -3116 ((-696) $)) (-15 -3597 ((-585 (-585 |t#3|)) $)) (-15 -3803 (|t#3| $ (-486) (-486))) (-15 -3115 (|t#3| $ (-486) (-486))) (-15 -3803 (|t#3| $ (-486) (-486) |t#3|)) (-15 -3114 (|t#4| $ (-486))) (-15 -3113 (|t#5| $ (-486))) (-15 -3846 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-497)) (-15 -3469 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-312)) (-15 -3953 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-258)) (-15 -3112 ($ $)) |%noBranch|) (IF (|has| |t#3| (-497)) (PROGN (-15 -3111 ((-696) $)) (-15 -3110 ((-696) $)) (-15 -3109 ((-585 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-82 |#3| |#3|) . T) ((-104) . T) ((-554 (-774)) . T) ((-260 |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ((-318 |#3|) . T) ((-381 |#3|) . T) ((-430 |#3|) . T) ((-457 |#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ((-13) . T) ((-590 (-486)) . T) ((-590 |#3|) . T) ((-592 |#3|) . T) ((-584 |#3|) |has| |#3| (-146)) ((-656 |#3|) |has| |#3| (-146)) ((-965 |#3|) . T) ((-970 |#3|) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3125 (((-85) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3112 (($ $) 46 (|has| |#3| (-258)) ELT)) (-3114 (((-197 |#2| |#3|) $ (-486)) 35 T ELT)) (-3845 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3127 (($ (-632 |#3|)) 44 T ELT)) (-3111 (((-696) $) 48 (|has| |#3| (-497)) ELT)) (-3115 ((|#3| $ (-486) (-486)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-3110 (((-696) $) 50 (|has| |#3| (-497)) ELT)) (-3109 (((-585 (-197 |#1| |#3|)) $) 54 (|has| |#3| (-497)) ELT)) (-3117 (((-696) $) NIL T ELT)) (-3116 (((-696) $) NIL T ELT)) (-3121 (((-486) $) NIL T ELT)) (-3119 (((-486) $) NIL T ELT)) (-2611 (((-585 |#3|) $) NIL T ELT)) (-3248 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-3120 (((-486) $) NIL T ELT)) (-3118 (((-486) $) NIL T ELT)) (-3126 (($ (-585 (-585 |#3|))) 30 T ELT)) (-3846 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3597 (((-585 (-585 |#3|)) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1731 (((-3 |#3| #1#) (-1 (-85) |#3|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-497)) ELT)) (-1733 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3771 (($ $ (-585 |#3|) (-585 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-585 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#3| $ (-486) (-486)) NIL T ELT) ((|#3| $ (-486) (-486) |#3|) NIL T ELT)) (-3915 (((-107)) 58 (|has| |#3| (-312)) ELT)) (-3124 (((-85) $) NIL T ELT)) (-1732 (((-696) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-696) (-1 (-85) |#3|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) 65 (|has| |#3| (-555 (-475))) ELT)) (-3113 (((-197 |#1| |#3|) $ (-486)) 39 T ELT)) (-3950 (((-774) $) 18 T ELT) (((-632 |#3|) $) 41 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-2663 (($) 15 T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-968 |#1| |#2| |#3|) (-13 (-967 |#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) (-554 (-632 |#3|)) (-10 -8 (IF (|has| |#3| (-312)) (-6 (-1189 |#3|)) |%noBranch|) (IF (|has| |#3| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|) (-15 -3127 ($ (-632 |#3|))))) (-696) (-696) (-963)) (T -968)) -((-3127 (*1 *1 *2) (-12 (-5 *2 (-632 *5)) (-4 *5 (-963)) (-5 *1 (-968 *3 *4 *5)) (-14 *3 (-696)) (-14 *4 (-696))))) -((-3845 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3846 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) -(((-969 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3846 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3845 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-696) (-696) (-963) (-196 |#2| |#3|) (-196 |#1| |#3|) (-967 |#1| |#2| |#3| |#4| |#5|) (-963) (-196 |#2| |#7|) (-196 |#1| |#7|) (-967 |#1| |#2| |#7| |#8| |#9|)) (T -969)) -((-3845 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-963)) (-4 *2 (-963)) (-14 *5 (-696)) (-14 *6 (-696)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *12 (-967 *5 *6 *2 *10 *11)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-963)) (-4 *10 (-963)) (-14 *5 (-696)) (-14 *6 (-696)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *2 (-967 *5 *6 *10 *11 *12)) (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ |#1|) 33 T ELT))) -(((-970 |#1|) (-113) (-972)) (T -970)) -NIL -(-13 (-21) (-965 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-965 |#1|) . T) ((-1015) . T) ((-1131) . T)) -((-3128 (((-85) $ $) 10 T ELT))) -(((-971 |#1|) (-10 -7 (-15 -3128 ((-85) |#1| |#1|))) (-972)) (T -971)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-972) (-113)) (T -972)) -((-3128 (*1 *2 *1 *1) (-12 (-4 *1 (-972)) (-5 *2 (-85))))) -(-13 (-21) (-1027) (-10 -8 (-15 -3128 ((-85) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-1027) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3834 (((-1092) $) 11 T ELT)) (-3739 ((|#1| $) 12 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3229 (($ (-1092) |#1|) 10 T ELT)) (-3950 (((-774) $) 22 (|has| |#1| (-1015)) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-1015)) ELT))) -(((-973 |#1| |#2|) (-13 (-1131) (-10 -8 (-15 -3229 ($ (-1092) |#1|)) (-15 -3834 ((-1092) $)) (-15 -3739 (|#1| $)) (IF (|has| |#1| (-1015)) (-6 (-1015)) |%noBranch|))) (-1008 |#2|) (-1131)) (T -973)) -((-3229 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-4 *4 (-1131)) (-5 *1 (-973 *3 *4)) (-4 *3 (-1008 *4)))) (-3834 (*1 *2 *1) (-12 (-4 *4 (-1131)) (-5 *2 (-1092)) (-5 *1 (-973 *3 *4)) (-4 *3 (-1008 *4)))) (-3739 (*1 *2 *1) (-12 (-4 *2 (-1008 *3)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1131))))) -((-3774 (($ $) 17 T ELT)) (-3130 (($ $) 25 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 54 T ELT)) (-3135 (($ $) 27 T ELT)) (-3131 (($ $) 12 T ELT)) (-3133 (($ $) 40 T ELT)) (-3975 (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (((-802 (-330)) $) 36 T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) 31 T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) 31 T ELT)) (-3129 (((-696)) 9 T CONST)) (-3134 (($ $) 44 T ELT))) -(((-974 |#1|) (-10 -7 (-15 -3130 (|#1| |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3131 (|#1| |#1|)) (-15 -3133 (|#1| |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -2799 ((-800 (-330) |#1|) |#1| (-802 (-330)) (-800 (-330) |#1|))) (-15 -3975 ((-802 (-330)) |#1|)) (-15 -3950 (|#1| (-350 (-486)))) (-15 -3950 (|#1| (-486))) (-15 -3975 ((-179) |#1|)) (-15 -3975 ((-330) |#1|)) (-15 -3950 (|#1| (-350 (-486)))) (-15 -3950 (|#1| |#1|)) (-15 -3129 ((-696)) -3956) (-15 -3950 (|#1| (-486))) (-15 -3950 ((-774) |#1|))) (-975)) (T -974)) -((-3129 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-974 *3)) (-4 *3 (-975))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3132 (((-486) $) 108 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-3774 (($ $) 106 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-3040 (($ $) 116 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3626 (((-486) $) 133 T ELT)) (-3727 (($) 23 T CONST)) (-3130 (($ $) 105 T ELT)) (-3160 (((-3 (-486) #1="failed") $) 121 T ELT) (((-3 (-350 (-486)) #1#) $) 118 T ELT)) (-3159 (((-486) $) 122 T ELT) (((-350 (-486)) $) 119 T ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3726 (((-85) $) 89 T ELT)) (-3189 (((-85) $) 131 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 112 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 115 T ELT)) (-3135 (($ $) 111 T ELT)) (-3190 (((-85) $) 132 T ELT)) (-1606 (((-3 (-585 $) #2="failed") (-585 $) $) 68 T ELT)) (-2534 (($ $ $) 125 T ELT)) (-2860 (($ $ $) 126 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3131 (($ $) 107 T ELT)) (-3133 (($ $) 109 T ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-3975 (((-330) $) 124 T ELT) (((-179) $) 123 T ELT) (((-802 (-330)) $) 113 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT) (($ (-486)) 120 T ELT) (($ (-350 (-486))) 117 T ELT)) (-3129 (((-696)) 40 T CONST)) (-3134 (($ $) 110 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3386 (($ $) 134 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2569 (((-85) $ $) 127 T ELT)) (-2570 (((-85) $ $) 129 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 128 T ELT)) (-2688 (((-85) $ $) 130 T ELT)) (-3953 (($ $ $) 83 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT) (($ $ (-350 (-486))) 114 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT))) -(((-975) (-113)) (T -975)) -((-3135 (*1 *1 *1) (-4 *1 (-975))) (-3134 (*1 *1 *1) (-4 *1 (-975))) (-3133 (*1 *1 *1) (-4 *1 (-975))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-486)))) (-3131 (*1 *1 *1) (-4 *1 (-975))) (-3774 (*1 *1 *1) (-4 *1 (-975))) (-3130 (*1 *1 *1) (-4 *1 (-975)))) -(-13 (-312) (-757) (-935) (-952 (-486)) (-952 (-350 (-486))) (-917) (-555 (-802 (-330))) (-798 (-330)) (-120) (-10 -8 (-15 -3135 ($ $)) (-15 -3134 ($ $)) (-15 -3133 ($ $)) (-15 -3132 ((-486) $)) (-15 -3131 ($ $)) (-15 -3774 ($ $)) (-15 -3130 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-555 (-179)) . T) ((-555 (-330)) . T) ((-555 (-802 (-330))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 $) . T) ((-656 (-350 (-486))) . T) ((-656 $) . T) ((-665) . T) ((-716) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-757) . T) ((-758) . T) ((-761) . T) ((-798 (-330)) . T) ((-834) . T) ((-917) . T) ((-935) . T) ((-952 (-350 (-486))) . T) ((-952 (-486)) . T) ((-965 (-350 (-486))) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) |#2| $) 26 T ELT)) (-3139 ((|#1| $) 10 T ELT)) (-3626 (((-486) |#2| $) 119 T ELT)) (-3186 (((-3 $ #1="failed") |#2| (-832)) 76 T ELT)) (-3140 ((|#1| $) 31 T ELT)) (-3185 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3137 (($ $) 28 T ELT)) (-3470 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3189 (((-85) |#2| $) NIL T ELT)) (-3190 (((-85) |#2| $) NIL T ELT)) (-3136 (((-85) |#2| $) 27 T ELT)) (-3138 ((|#1| $) 120 T ELT)) (-3141 ((|#1| $) 30 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3188 ((|#2| $) 104 T ELT)) (-3950 (((-774) $) 95 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3773 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3187 (((-585 $) |#2|) 78 T ELT)) (-3059 (((-85) $ $) 99 T ELT))) -(((-976 |#1| |#2|) (-13 (-982 |#1| |#2|) (-10 -8 (-15 -3141 (|#1| $)) (-15 -3140 (|#1| $)) (-15 -3139 (|#1| $)) (-15 -3138 (|#1| $)) (-15 -3137 ($ $)) (-15 -3136 ((-85) |#2| $)) (-15 -3185 (|#1| |#2| $ |#1|)))) (-13 (-757) (-312)) (-1157 |#1|)) (T -976)) -((-3185 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2)))) (-3141 (*1 *2 *1) (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2)))) (-3140 (*1 *2 *1) (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2)))) (-3139 (*1 *2 *1) (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2)))) (-3138 (*1 *2 *1) (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2)))) (-3137 (*1 *1 *1) (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2)))) (-3136 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-757) (-312))) (-5 *2 (-85)) (-5 *1 (-976 *4 *3)) (-4 *3 (-1157 *4))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-2049 (($ $ $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2044 (($ $ $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3626 (((-486) $) NIL T ELT)) (-2444 (($ $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3142 (($ (-1092)) 10 T ELT) (($ (-486)) 7 T ELT)) (-3160 (((-3 (-486) #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-632 (-486)) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) NIL T ELT)) (-3026 (((-85) $) NIL T ELT)) (-3025 (((-350 (-486)) $) NIL T ELT)) (-2997 (($) NIL T ELT) (($ $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-2050 (($ $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1370 (($ $ $) NIL T ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2676 (((-85) $) NIL T ELT)) (-3448 (((-634 $) $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2043 (($ $ $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-2046 (($ $) NIL T ELT)) (-3836 (($ $) NIL T ELT)) (-2282 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL T ELT) (((-632 (-486)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2041 (($ $ $) NIL T ELT)) (-3449 (($) NIL T CONST)) (-2048 (($ $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1368 (($ $) NIL T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2677 (((-85) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2047 (($ $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-486) $) 16 T ELT) (((-475) $) NIL T ELT) (((-802 (-486)) $) NIL T ELT) (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (($ (-1092)) 9 T ELT)) (-3950 (((-774) $) 23 T ELT) (($ (-486)) 6 T ELT) (($ $) NIL T ELT) (($ (-486)) 6 T ELT)) (-3129 (((-696)) NIL T CONST)) (-2051 (((-85) $ $) NIL T ELT)) (-3104 (($ $ $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2697 (($) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2045 (($ $ $ $) NIL T ELT)) (-3386 (($ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-3840 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-486) $) NIL T ELT))) -(((-977) (-13 (-485) (-559 (-1092)) (-10 -8 (-6 -3985) (-6 -3990) (-6 -3986) (-15 -3142 ($ (-1092))) (-15 -3142 ($ (-486)))))) (T -977)) -((-3142 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-977)))) (-3142 (*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-977))))) -((-3800 (($ $) 46 T ELT)) (-3169 (((-85) $ $) 82 T ELT)) (-3160 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 (-486) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-859 (-350 (-486)))) 247 T ELT) (((-3 $ #1#) (-859 (-486))) 246 T ELT) (((-3 $ #1#) (-859 |#2|)) 249 T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-350 (-486)) $) NIL T ELT) (((-486) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-859 (-350 (-486)))) 235 T ELT) (($ (-859 (-486))) 231 T ELT) (($ (-859 |#2|)) 255 T ELT)) (-3962 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3697 (((-85) $ $) 131 T ELT) (((-85) $ (-585 $)) 135 T ELT)) (-3175 (((-85) $) 60 T ELT)) (-3755 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 125 T ELT)) (-3146 (($ $) 160 T ELT)) (-3157 (($ $) 156 T ELT)) (-3158 (($ $) 155 T ELT)) (-3168 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3167 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3698 (((-85) $ $) 143 T ELT) (((-85) $ (-585 $)) 144 T ELT)) (-3183 ((|#4| $) 32 T ELT)) (-3162 (($ $ $) 128 T ELT)) (-3176 (((-85) $) 59 T ELT)) (-3182 (((-696) $) 35 T ELT)) (-3143 (($ $) 174 T ELT)) (-3144 (($ $) 171 T ELT)) (-3171 (((-585 $) $) 72 T ELT)) (-3174 (($ $) 62 T ELT)) (-3145 (($ $) 167 T ELT)) (-3172 (((-585 $) $) 69 T ELT)) (-3173 (($ $) 64 T ELT)) (-3177 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3161 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3484 (-696))) $ $) 130 T ELT)) (-3163 (((-2 (|:| -3958 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $) 126 T ELT) (((-2 (|:| -3958 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $ |#4|) 127 T ELT)) (-3164 (((-2 (|:| -3958 $) (|:| |gap| (-696)) (|:| -2905 $)) $ $) 121 T ELT) (((-2 (|:| -3958 $) (|:| |gap| (-696)) (|:| -2905 $)) $ $ |#4|) 123 T ELT)) (-3166 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3165 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3179 (((-585 $) $) 54 T ELT)) (-3694 (((-85) $ $) 140 T ELT) (((-85) $ (-585 $)) 141 T ELT)) (-3689 (($ $ $) 116 T ELT)) (-3449 (($ $) 37 T ELT)) (-3702 (((-85) $ $) 80 T ELT)) (-3695 (((-85) $ $) 136 T ELT) (((-85) $ (-585 $)) 138 T ELT)) (-3690 (($ $ $) 112 T ELT)) (-3181 (($ $) 41 T ELT)) (-3147 ((|#2| |#2| $) 164 T ELT) (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3155 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3156 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3180 (($ $) 49 T ELT)) (-3178 (($ $) 55 T ELT)) (-3975 (((-802 (-330)) $) NIL T ELT) (((-802 (-486)) $) NIL T ELT) (((-475) $) NIL T ELT) (($ (-859 (-350 (-486)))) 237 T ELT) (($ (-859 (-486))) 233 T ELT) (($ (-859 |#2|)) 248 T ELT) (((-1075) $) 278 T ELT) (((-859 |#2|) $) 184 T ELT)) (-3950 (((-774) $) 29 T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-859 |#2|) $) 185 T ELT) (($ (-350 (-486))) NIL T ELT) (($ $) NIL T ELT)) (-3170 (((-3 (-85) #1#) $ $) 79 T ELT))) -(((-978 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3950 (|#1| |#1|)) (-15 -3147 (|#1| |#1| |#1|)) (-15 -3147 (|#1| (-585 |#1|))) (-15 -3950 (|#1| (-350 (-486)))) (-15 -3950 ((-859 |#2|) |#1|)) (-15 -3975 ((-859 |#2|) |#1|)) (-15 -3975 ((-1075) |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -3144 (|#1| |#1|)) (-15 -3145 (|#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -3147 (|#2| |#2| |#1|)) (-15 -3155 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3155 (|#1| |#1| |#2|)) (-15 -3156 (|#1| |#1| |#2|)) (-15 -3157 (|#1| |#1|)) (-15 -3158 (|#1| |#1|)) (-15 -3975 (|#1| (-859 |#2|))) (-15 -3159 (|#1| (-859 |#2|))) (-15 -3160 ((-3 |#1| #1="failed") (-859 |#2|))) (-15 -3975 (|#1| (-859 (-486)))) (-15 -3159 (|#1| (-859 (-486)))) (-15 -3160 ((-3 |#1| #1#) (-859 (-486)))) (-15 -3975 (|#1| (-859 (-350 (-486))))) (-15 -3159 (|#1| (-859 (-350 (-486))))) (-15 -3160 ((-3 |#1| #1#) (-859 (-350 (-486))))) (-15 -3689 (|#1| |#1| |#1|)) (-15 -3690 (|#1| |#1| |#1|)) (-15 -3161 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3484 (-696))) |#1| |#1|)) (-15 -3162 (|#1| |#1| |#1|)) (-15 -3755 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-15 -3163 ((-2 (|:| -3958 |#1|) (|:| |gap| (-696)) (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1| |#4|)) (-15 -3163 ((-2 (|:| -3958 |#1|) (|:| |gap| (-696)) (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-15 -3164 ((-2 (|:| -3958 |#1|) (|:| |gap| (-696)) (|:| -2905 |#1|)) |#1| |#1| |#4|)) (-15 -3164 ((-2 (|:| -3958 |#1|) (|:| |gap| (-696)) (|:| -2905 |#1|)) |#1| |#1|)) (-15 -3165 (|#1| |#1| |#1| |#4|)) (-15 -3166 (|#1| |#1| |#1| |#4|)) (-15 -3165 (|#1| |#1| |#1|)) (-15 -3166 (|#1| |#1| |#1|)) (-15 -3167 (|#1| |#1| |#1| |#4|)) (-15 -3168 (|#1| |#1| |#1| |#4|)) (-15 -3167 (|#1| |#1| |#1|)) (-15 -3168 (|#1| |#1| |#1|)) (-15 -3698 ((-85) |#1| (-585 |#1|))) (-15 -3698 ((-85) |#1| |#1|)) (-15 -3694 ((-85) |#1| (-585 |#1|))) (-15 -3694 ((-85) |#1| |#1|)) (-15 -3695 ((-85) |#1| (-585 |#1|))) (-15 -3695 ((-85) |#1| |#1|)) (-15 -3697 ((-85) |#1| (-585 |#1|))) (-15 -3697 ((-85) |#1| |#1|)) (-15 -3169 ((-85) |#1| |#1|)) (-15 -3702 ((-85) |#1| |#1|)) (-15 -3170 ((-3 (-85) #1#) |#1| |#1|)) (-15 -3171 ((-585 |#1|) |#1|)) (-15 -3172 ((-585 |#1|) |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -3174 (|#1| |#1|)) (-15 -3175 ((-85) |#1|)) (-15 -3176 ((-85) |#1|)) (-15 -3962 (|#1| |#1| |#4|)) (-15 -3177 (|#1| |#1| |#4|)) (-15 -3178 (|#1| |#1|)) (-15 -3179 ((-585 |#1|) |#1|)) (-15 -3180 (|#1| |#1|)) (-15 -3800 (|#1| |#1|)) (-15 -3181 (|#1| |#1|)) (-15 -3449 (|#1| |#1|)) (-15 -3182 ((-696) |#1|)) (-15 -3183 (|#4| |#1|)) (-15 -3975 ((-475) |#1|)) (-15 -3975 ((-802 (-486)) |#1|)) (-15 -3975 ((-802 (-330)) |#1|)) (-15 -3950 (|#1| |#4|)) (-15 -3160 ((-3 |#4| #1#) |#1|)) (-15 -3159 (|#4| |#1|)) (-15 -3177 (|#2| |#1|)) (-15 -3962 (|#1| |#1|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3950 (|#1| |#2|)) (-15 -3950 (|#1| (-486))) (-15 -3950 ((-774) |#1|))) (-979 |#2| |#3| |#4|) (-963) (-719) (-758)) (T -978)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 |#3|) $) 124 T ELT)) (-3086 (((-1087 $) $ |#3|) 139 T ELT) (((-1087 |#1|) $) 138 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 101 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 102 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 104 (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) 126 T ELT) (((-696) $ (-585 |#3|)) 125 T ELT)) (-3800 (($ $) 294 T ELT)) (-3169 (((-85) $ $) 280 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3758 (($ $ $) 239 (|has| |#1| (-497)) ELT)) (-3151 (((-585 $) $ $) 234 (|has| |#1| (-497)) ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 114 (|has| |#1| (-823)) ELT)) (-3778 (($ $) 112 (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) 111 (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1="failed") (-585 (-1087 $)) (-1087 $)) 117 (|has| |#1| (-823)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| #2="failed") $) 182 T ELT) (((-3 (-350 (-486)) #2#) $) 179 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #2#) $) 177 (|has| |#1| (-952 (-486))) ELT) (((-3 |#3| #2#) $) 154 T ELT) (((-3 $ "failed") (-859 (-350 (-486)))) 254 (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#3| (-555 (-1092)))) ELT) (((-3 $ "failed") (-859 (-486))) 251 (OR (-12 (-2563 (|has| |#1| (-38 (-350 (-486))))) (|has| |#1| (-38 (-486))) (|has| |#3| (-555 (-1092)))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#3| (-555 (-1092))))) ELT) (((-3 $ "failed") (-859 |#1|)) 248 (OR (-12 (-2563 (|has| |#1| (-38 (-350 (-486))))) (-2563 (|has| |#1| (-38 (-486)))) (|has| |#3| (-555 (-1092)))) (-12 (-2563 (|has| |#1| (-485))) (-2563 (|has| |#1| (-38 (-350 (-486))))) (|has| |#1| (-38 (-486))) (|has| |#3| (-555 (-1092)))) (-12 (-2563 (|has| |#1| (-906 (-486)))) (|has| |#1| (-38 (-350 (-486)))) (|has| |#3| (-555 (-1092))))) ELT)) (-3159 ((|#1| $) 181 T ELT) (((-350 (-486)) $) 180 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) 178 (|has| |#1| (-952 (-486))) ELT) ((|#3| $) 155 T ELT) (($ (-859 (-350 (-486)))) 253 (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#3| (-555 (-1092)))) ELT) (($ (-859 (-486))) 250 (OR (-12 (-2563 (|has| |#1| (-38 (-350 (-486))))) (|has| |#1| (-38 (-486))) (|has| |#3| (-555 (-1092)))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#3| (-555 (-1092))))) ELT) (($ (-859 |#1|)) 247 (OR (-12 (-2563 (|has| |#1| (-38 (-350 (-486))))) (-2563 (|has| |#1| (-38 (-486)))) (|has| |#3| (-555 (-1092)))) (-12 (-2563 (|has| |#1| (-485))) (-2563 (|has| |#1| (-38 (-350 (-486))))) (|has| |#1| (-38 (-486))) (|has| |#3| (-555 (-1092)))) (-12 (-2563 (|has| |#1| (-906 (-486)))) (|has| |#1| (-38 (-350 (-486)))) (|has| |#3| (-555 (-1092))))) ELT)) (-3759 (($ $ $ |#3|) 122 (|has| |#1| (-146)) ELT) (($ $ $) 235 (|has| |#1| (-497)) ELT)) (-3962 (($ $) 172 T ELT) (($ $ |#3|) 289 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 150 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 149 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 148 T ELT) (((-632 |#1|) (-632 $)) 147 T ELT)) (-3697 (((-85) $ $) 279 T ELT) (((-85) $ (-585 $)) 278 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3175 (((-85) $) 287 T ELT)) (-3755 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 259 T ELT)) (-3146 (($ $) 228 (|has| |#1| (-393)) ELT)) (-3506 (($ $) 194 (|has| |#1| (-393)) ELT) (($ $ |#3|) 119 (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) 123 T ELT)) (-3726 (((-85) $) 110 (|has| |#1| (-823)) ELT)) (-3157 (($ $) 244 (|has| |#1| (-497)) ELT)) (-3158 (($ $) 245 (|has| |#1| (-497)) ELT)) (-3168 (($ $ $) 271 T ELT) (($ $ $ |#3|) 269 T ELT)) (-3167 (($ $ $) 270 T ELT) (($ $ $ |#3|) 268 T ELT)) (-1625 (($ $ |#1| |#2| $) 190 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 98 (-12 (|has| |#3| (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 97 (-12 (|has| |#3| (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2422 (((-696) $) 187 T ELT)) (-3698 (((-85) $ $) 273 T ELT) (((-85) $ (-585 $)) 272 T ELT)) (-3148 (($ $ $ $ $) 230 (|has| |#1| (-497)) ELT)) (-3183 ((|#3| $) 298 T ELT)) (-3087 (($ (-1087 |#1|) |#3|) 131 T ELT) (($ (-1087 $) |#3|) 130 T ELT)) (-2824 (((-585 $) $) 140 T ELT)) (-3941 (((-85) $) 170 T ELT)) (-2896 (($ |#1| |#2|) 171 T ELT) (($ $ |#3| (-696)) 133 T ELT) (($ $ (-585 |#3|) (-585 (-696))) 132 T ELT)) (-3162 (($ $ $) 258 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#3|) 134 T ELT)) (-3176 (((-85) $) 288 T ELT)) (-2823 ((|#2| $) 188 T ELT) (((-696) $ |#3|) 136 T ELT) (((-585 (-696)) $ (-585 |#3|)) 135 T ELT)) (-3182 (((-696) $) 297 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) 189 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3085 (((-3 |#3| #3="failed") $) 137 T ELT)) (-3143 (($ $) 225 (|has| |#1| (-393)) ELT)) (-3144 (($ $) 226 (|has| |#1| (-393)) ELT)) (-3171 (((-585 $) $) 283 T ELT)) (-3174 (($ $) 286 T ELT)) (-3145 (($ $) 227 (|has| |#1| (-393)) ELT)) (-3172 (((-585 $) $) 284 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 152 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 151 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 146 T ELT) (((-632 |#1|) (-1181 $)) 145 T ELT)) (-3173 (($ $) 285 T ELT)) (-2897 (($ $) 168 T ELT)) (-3177 ((|#1| $) 167 T ELT) (($ $ |#3|) 290 T ELT)) (-1896 (($ (-585 $)) 108 (|has| |#1| (-393)) ELT) (($ $ $) 107 (|has| |#1| (-393)) ELT)) (-3161 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3484 (-696))) $ $) 257 T ELT)) (-3163 (((-2 (|:| -3958 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $) 261 T ELT) (((-2 (|:| -3958 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $ |#3|) 260 T ELT)) (-3164 (((-2 (|:| -3958 $) (|:| |gap| (-696)) (|:| -2905 $)) $ $) 263 T ELT) (((-2 (|:| -3958 $) (|:| |gap| (-696)) (|:| -2905 $)) $ $ |#3|) 262 T ELT)) (-3166 (($ $ $) 267 T ELT) (($ $ $ |#3|) 265 T ELT)) (-3165 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3193 (($ $ $) 233 (|has| |#1| (-497)) ELT)) (-3179 (((-585 $) $) 292 T ELT)) (-2826 (((-3 (-585 $) #3#) $) 128 T ELT)) (-2825 (((-3 (-585 $) #3#) $) 129 T ELT)) (-2827 (((-3 (-2 (|:| |var| |#3|) (|:| -2403 (-696))) #3#) $) 127 T ELT)) (-3694 (((-85) $ $) 275 T ELT) (((-85) $ (-585 $)) 274 T ELT)) (-3689 (($ $ $) 255 T ELT)) (-3449 (($ $) 296 T ELT)) (-3702 (((-85) $ $) 281 T ELT)) (-3695 (((-85) $ $) 277 T ELT) (((-85) $ (-585 $)) 276 T ELT)) (-3690 (($ $ $) 256 T ELT)) (-3181 (($ $) 295 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3152 (((-2 (|:| -3147 $) (|:| |coef2| $)) $ $) 236 (|has| |#1| (-497)) ELT)) (-3153 (((-2 (|:| -3147 $) (|:| |coef1| $)) $ $) 237 (|has| |#1| (-497)) ELT)) (-1802 (((-85) $) 184 T ELT)) (-1801 ((|#1| $) 185 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 109 (|has| |#1| (-393)) ELT)) (-3147 ((|#1| |#1| $) 229 (|has| |#1| (-393)) ELT) (($ (-585 $)) 106 (|has| |#1| (-393)) ELT) (($ $ $) 105 (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 116 (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 115 (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) 113 (|has| |#1| (-823)) ELT)) (-3154 (((-2 (|:| -3147 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 238 (|has| |#1| (-497)) ELT)) (-3469 (((-3 $ "failed") $ |#1|) 192 (|has| |#1| (-497)) ELT) (((-3 $ "failed") $ $) 100 (|has| |#1| (-497)) ELT)) (-3155 (($ $ |#1|) 242 (|has| |#1| (-497)) ELT) (($ $ $) 240 (|has| |#1| (-497)) ELT)) (-3156 (($ $ |#1|) 243 (|has| |#1| (-497)) ELT) (($ $ $) 241 (|has| |#1| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) 163 T ELT) (($ $ (-249 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-585 $) (-585 $)) 160 T ELT) (($ $ |#3| |#1|) 159 T ELT) (($ $ (-585 |#3|) (-585 |#1|)) 158 T ELT) (($ $ |#3| $) 157 T ELT) (($ $ (-585 |#3|) (-585 $)) 156 T ELT)) (-3760 (($ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 |#3|) (-585 (-696))) 52 T ELT) (($ $ |#3| (-696)) 51 T ELT) (($ $ (-585 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3952 ((|#2| $) 169 T ELT) (((-696) $ |#3|) 144 T ELT) (((-585 (-696)) $ (-585 |#3|)) 143 T ELT)) (-3180 (($ $) 293 T ELT)) (-3178 (($ $) 291 T ELT)) (-3975 (((-802 (-330)) $) 96 (-12 (|has| |#3| (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) 95 (-12 (|has| |#3| (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) 94 (-12 (|has| |#3| (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT) (($ (-859 (-350 (-486)))) 252 (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#3| (-555 (-1092)))) ELT) (($ (-859 (-486))) 249 (OR (-12 (-2563 (|has| |#1| (-38 (-350 (-486))))) (|has| |#1| (-38 (-486))) (|has| |#3| (-555 (-1092)))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#3| (-555 (-1092))))) ELT) (($ (-859 |#1|)) 246 (|has| |#3| (-555 (-1092))) ELT) (((-1075) $) 224 (-12 (|has| |#1| (-952 (-486))) (|has| |#3| (-555 (-1092)))) ELT) (((-859 |#1|) $) 223 (|has| |#3| (-555 (-1092))) ELT)) (-2820 ((|#1| $) 193 (|has| |#1| (-393)) ELT) (($ $ |#3|) 120 (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) 118 (-2565 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 183 T ELT) (($ |#3|) 153 T ELT) (((-859 |#1|) $) 222 (|has| |#3| (-555 (-1092))) ELT) (($ (-350 (-486))) 92 (OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ELT) (($ $) 99 (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) 186 T ELT)) (-3680 ((|#1| $ |#2|) 173 T ELT) (($ $ |#3| (-696)) 142 T ELT) (($ $ (-585 |#3|) (-585 (-696))) 141 T ELT)) (-2705 (((-634 $) $) 93 (OR (-2565 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) 40 T CONST)) (-1624 (($ $ $ (-696)) 191 (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 103 (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-3170 (((-3 (-85) "failed") $ $) 282 T ELT)) (-2669 (($) 45 T CONST)) (-3149 (($ $ $ $ (-696)) 231 (|has| |#1| (-497)) ELT)) (-3150 (($ $ $ (-696)) 232 (|has| |#1| (-497)) ELT)) (-2672 (($ $ (-585 |#3|) (-585 (-696))) 55 T ELT) (($ $ |#3| (-696)) 54 T ELT) (($ $ (-585 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 174 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 176 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) 175 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 165 T ELT) (($ $ |#1|) 164 T ELT))) -(((-979 |#1| |#2| |#3|) (-113) (-963) (-719) (-758)) (T -979)) -((-3183 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-696)))) (-3449 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3181 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3800 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3180 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3179 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-979 *3 *4 *5)))) (-3178 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3177 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3962 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3174 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3173 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3172 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-979 *3 *4 *5)))) (-3171 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-979 *3 *4 *5)))) (-3170 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3702 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3169 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3697 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3697 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)))) (-3695 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3695 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)))) (-3694 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3694 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)))) (-3698 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3698 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)))) (-3168 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3167 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3168 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3167 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3166 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3165 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3166 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3165 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3164 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| -3958 *1) (|:| |gap| (-696)) (|:| -2905 *1))) (-4 *1 (-979 *3 *4 *5)))) (-3164 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-2 (|:| -3958 *1) (|:| |gap| (-696)) (|:| -2905 *1))) (-4 *1 (-979 *4 *5 *3)))) (-3163 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| -3958 *1) (|:| |gap| (-696)) (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-979 *3 *4 *5)))) (-3163 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-2 (|:| -3958 *1) (|:| |gap| (-696)) (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-979 *4 *5 *3)))) (-3755 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-979 *3 *4 *5)))) (-3162 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3161 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3484 (-696)))) (-4 *1 (-979 *3 *4 *5)))) (-3690 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3689 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3160 (*1 *1 *2) (|partial| -12 (-5 *2 (-859 (-350 (-486)))) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)))) (-3159 (*1 *1 *2) (-12 (-5 *2 (-859 (-350 (-486)))) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-859 (-350 (-486)))) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)))) (-3160 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-4 *3 (-38 (-486))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))))) (-3159 (*1 *1 *2) (OR (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-4 *3 (-38 (-486))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))))) (-3975 (*1 *1 *2) (OR (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-4 *3 (-38 (-486))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))))) (-3160 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-859 *3)) (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-2563 (-4 *3 (-38 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 *3)) (-12 (-2563 (-4 *3 (-485))) (-2563 (-4 *3 (-38 (-350 (-486))))) (-4 *3 (-38 (-486))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 *3)) (-12 (-2563 (-4 *3 (-906 (-486)))) (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))))) (-3159 (*1 *1 *2) (OR (-12 (-5 *2 (-859 *3)) (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-2563 (-4 *3 (-38 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 *3)) (-12 (-2563 (-4 *3 (-485))) (-2563 (-4 *3 (-38 (-350 (-486))))) (-4 *3 (-38 (-486))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 *3)) (-12 (-2563 (-4 *3 (-906 (-486)))) (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-859 *3)) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *5 (-555 (-1092))) (-4 *4 (-719)) (-4 *5 (-758)))) (-3158 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3157 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3156 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3155 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3156 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3155 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3758 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3154 (*1 *2 *1 *1) (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| -3147 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-979 *3 *4 *5)))) (-3153 (*1 *2 *1 *1) (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| -3147 *1) (|:| |coef1| *1))) (-4 *1 (-979 *3 *4 *5)))) (-3152 (*1 *2 *1 *1) (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| -3147 *1) (|:| |coef2| *1))) (-4 *1 (-979 *3 *4 *5)))) (-3759 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3151 (*1 *2 *1 *1) (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-979 *3 *4 *5)))) (-3193 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3150 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *3 (-497)))) (-3149 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *3 (-497)))) (-3148 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-497)))) (-3147 (*1 *2 *2 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-393)))) (-3146 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-393)))) (-3145 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-393)))) (-3144 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-393)))) (-3143 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-393))))) -(-13 (-863 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3183 (|t#3| $)) (-15 -3182 ((-696) $)) (-15 -3449 ($ $)) (-15 -3181 ($ $)) (-15 -3800 ($ $)) (-15 -3180 ($ $)) (-15 -3179 ((-585 $) $)) (-15 -3178 ($ $)) (-15 -3177 ($ $ |t#3|)) (-15 -3962 ($ $ |t#3|)) (-15 -3176 ((-85) $)) (-15 -3175 ((-85) $)) (-15 -3174 ($ $)) (-15 -3173 ($ $)) (-15 -3172 ((-585 $) $)) (-15 -3171 ((-585 $) $)) (-15 -3170 ((-3 (-85) "failed") $ $)) (-15 -3702 ((-85) $ $)) (-15 -3169 ((-85) $ $)) (-15 -3697 ((-85) $ $)) (-15 -3697 ((-85) $ (-585 $))) (-15 -3695 ((-85) $ $)) (-15 -3695 ((-85) $ (-585 $))) (-15 -3694 ((-85) $ $)) (-15 -3694 ((-85) $ (-585 $))) (-15 -3698 ((-85) $ $)) (-15 -3698 ((-85) $ (-585 $))) (-15 -3168 ($ $ $)) (-15 -3167 ($ $ $)) (-15 -3168 ($ $ $ |t#3|)) (-15 -3167 ($ $ $ |t#3|)) (-15 -3166 ($ $ $)) (-15 -3165 ($ $ $)) (-15 -3166 ($ $ $ |t#3|)) (-15 -3165 ($ $ $ |t#3|)) (-15 -3164 ((-2 (|:| -3958 $) (|:| |gap| (-696)) (|:| -2905 $)) $ $)) (-15 -3164 ((-2 (|:| -3958 $) (|:| |gap| (-696)) (|:| -2905 $)) $ $ |t#3|)) (-15 -3163 ((-2 (|:| -3958 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $)) (-15 -3163 ((-2 (|:| -3958 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2905 $)) $ $ |t#3|)) (-15 -3755 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-15 -3162 ($ $ $)) (-15 -3161 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3484 (-696))) $ $)) (-15 -3690 ($ $ $)) (-15 -3689 ($ $ $)) (IF (|has| |t#3| (-555 (-1092))) (PROGN (-6 (-554 (-859 |t#1|))) (-6 (-555 (-859 |t#1|))) (IF (|has| |t#1| (-38 (-350 (-486)))) (PROGN (-15 -3160 ((-3 $ "failed") (-859 (-350 (-486))))) (-15 -3159 ($ (-859 (-350 (-486))))) (-15 -3975 ($ (-859 (-350 (-486))))) (-15 -3160 ((-3 $ "failed") (-859 (-486)))) (-15 -3159 ($ (-859 (-486)))) (-15 -3975 ($ (-859 (-486)))) (IF (|has| |t#1| (-906 (-486))) |%noBranch| (PROGN (-15 -3160 ((-3 $ "failed") (-859 |t#1|))) (-15 -3159 ($ (-859 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-486))) (IF (|has| |t#1| (-38 (-350 (-486)))) |%noBranch| (PROGN (-15 -3160 ((-3 $ "failed") (-859 (-486)))) (-15 -3159 ($ (-859 (-486)))) (-15 -3975 ($ (-859 (-486)))) (IF (|has| |t#1| (-485)) |%noBranch| (PROGN (-15 -3160 ((-3 $ "failed") (-859 |t#1|))) (-15 -3159 ($ (-859 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-486))) |%noBranch| (IF (|has| |t#1| (-38 (-350 (-486)))) |%noBranch| (PROGN (-15 -3160 ((-3 $ "failed") (-859 |t#1|))) (-15 -3159 ($ (-859 |t#1|)))))) (-15 -3975 ($ (-859 |t#1|))) (IF (|has| |t#1| (-952 (-486))) (-6 (-555 (-1075))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-497)) (PROGN (-15 -3158 ($ $)) (-15 -3157 ($ $)) (-15 -3156 ($ $ |t#1|)) (-15 -3155 ($ $ |t#1|)) (-15 -3156 ($ $ $)) (-15 -3155 ($ $ $)) (-15 -3758 ($ $ $)) (-15 -3154 ((-2 (|:| -3147 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3153 ((-2 (|:| -3147 $) (|:| |coef1| $)) $ $)) (-15 -3152 ((-2 (|:| -3147 $) (|:| |coef2| $)) $ $)) (-15 -3759 ($ $ $)) (-15 -3151 ((-585 $) $ $)) (-15 -3193 ($ $ $)) (-15 -3150 ($ $ $ (-696))) (-15 -3149 ($ $ $ $ (-696))) (-15 -3148 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-393)) (PROGN (-15 -3147 (|t#1| |t#1| $)) (-15 -3146 ($ $)) (-15 -3145 ($ $)) (-15 -3144 ($ $)) (-15 -3143 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-557 |#3|) . T) ((-557 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-554 (-774)) . T) ((-554 (-859 |#1|)) |has| |#3| (-555 (-1092))) ((-146) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-555 (-475)) -12 (|has| |#1| (-555 (-475))) (|has| |#3| (-555 (-475)))) ((-555 (-802 (-330))) -12 (|has| |#1| (-555 (-802 (-330)))) (|has| |#3| (-555 (-802 (-330))))) ((-555 (-802 (-486))) -12 (|has| |#1| (-555 (-802 (-486)))) (|has| |#3| (-555 (-802 (-486))))) ((-555 (-859 |#1|)) |has| |#3| (-555 (-1092))) ((-555 (-1075)) -12 (|has| |#1| (-952 (-486))) (|has| |#3| (-555 (-1092)))) ((-246) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-381 |#1|) . T) ((-393) OR (|has| |#1| (-823)) (|has| |#1| (-393))) ((-457 |#3| |#1|) . T) ((-457 |#3| $) . T) ((-457 $ $) . T) ((-497) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 (-486)) |has| |#1| (-582 (-486))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-582 (-486)) |has| |#1| (-582 (-486))) ((-582 |#1|) . T) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393))) ((-665) . T) ((-808 $ |#3|) . T) ((-811 |#3|) . T) ((-813 |#3|) . T) ((-798 (-330)) -12 (|has| |#1| (-798 (-330))) (|has| |#3| (-798 (-330)))) ((-798 (-486)) -12 (|has| |#1| (-798 (-486))) (|has| |#3| (-798 (-486)))) ((-863 |#1| |#2| |#3|) . T) ((-823) |has| |#1| (-823)) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 |#1|) . T) ((-952 |#3|) . T) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) |has| |#1| (-823))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3184 (((-585 (-1051)) $) 18 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 27 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-1051) $) 20 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-980) (-13 (-997) (-10 -8 (-15 -3184 ((-585 (-1051)) $)) (-15 -3236 ((-1051) $))))) (T -980)) -((-3184 (*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-980)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-980))))) -((-3191 (((-85) |#3| $) 15 T ELT)) (-3186 (((-3 $ #1="failed") |#3| (-832)) 29 T ELT)) (-3470 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3189 (((-85) |#3| $) 19 T ELT)) (-3190 (((-85) |#3| $) 17 T ELT))) -(((-981 |#1| |#2| |#3|) (-10 -7 (-15 -3186 ((-3 |#1| #1="failed") |#3| (-832))) (-15 -3470 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3189 ((-85) |#3| |#1|)) (-15 -3190 ((-85) |#3| |#1|)) (-15 -3191 ((-85) |#3| |#1|))) (-982 |#2| |#3|) (-13 (-757) (-312)) (-1157 |#2|)) (T -981)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) |#2| $) 25 T ELT)) (-3626 (((-486) |#2| $) 26 T ELT)) (-3186 (((-3 $ "failed") |#2| (-832)) 19 T ELT)) (-3185 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3470 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3189 (((-85) |#2| $) 23 T ELT)) (-3190 (((-85) |#2| $) 24 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3188 ((|#2| $) 21 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3773 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3187 (((-585 $) |#2|) 20 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) -(((-982 |#1| |#2|) (-113) (-13 (-757) (-312)) (-1157 |t#1|)) (T -982)) -((-3626 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) (-5 *2 (-486)))) (-3191 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) (-5 *2 (-85)))) (-3190 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) (-5 *2 (-85)))) (-3189 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) (-5 *2 (-85)))) (-3470 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-982 *3 *2)) (-4 *3 (-13 (-757) (-312))) (-4 *2 (-1157 *3)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *2)) (-4 *3 (-13 (-757) (-312))) (-4 *2 (-1157 *3)))) (-3187 (*1 *2 *3) (-12 (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) (-5 *2 (-585 *1)) (-4 *1 (-982 *4 *3)))) (-3186 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-832)) (-4 *4 (-13 (-757) (-312))) (-4 *1 (-982 *4 *2)) (-4 *2 (-1157 *4)))) (-3773 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-982 *2 *3)) (-4 *2 (-13 (-757) (-312))) (-4 *3 (-1157 *2)))) (-3185 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-982 *2 *3)) (-4 *2 (-13 (-757) (-312))) (-4 *3 (-1157 *2))))) -(-13 (-1015) (-10 -8 (-15 -3626 ((-486) |t#2| $)) (-15 -3191 ((-85) |t#2| $)) (-15 -3190 ((-85) |t#2| $)) (-15 -3189 ((-85) |t#2| $)) (-15 -3470 ((-3 |t#2| "failed") |t#2| $)) (-15 -3188 (|t#2| $)) (-15 -3187 ((-585 $) |t#2|)) (-15 -3186 ((-3 $ "failed") |t#2| (-832))) (-15 -3773 (|t#1| |t#2| $ |t#1|)) (-15 -3185 (|t#1| |t#2| $ |t#1|)))) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-3439 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-585 |#4|) (-585 |#5|) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) (-696)) 114 T ELT)) (-3436 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696)) 63 T ELT)) (-3440 (((-1187) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-696)) 99 T ELT)) (-3434 (((-696) (-585 |#4|) (-585 |#5|)) 30 T ELT)) (-3437 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696)) 65 T ELT) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696) (-85)) 67 T ELT)) (-3438 (((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85) (-85) (-85) (-85)) 86 T ELT) (((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85)) 87 T ELT)) (-3975 (((-1075) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) 92 T ELT)) (-3435 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-85)) 62 T ELT)) (-3433 (((-696) (-585 |#4|) (-585 |#5|)) 21 T ELT))) -(((-983 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3433 ((-696) (-585 |#4|) (-585 |#5|))) (-15 -3434 ((-696) (-585 |#4|) (-585 |#5|))) (-15 -3435 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-85))) (-15 -3436 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696))) (-15 -3436 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3437 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696) (-85))) (-15 -3437 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696))) (-15 -3437 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3438 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85))) (-15 -3438 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3439 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-585 |#4|) (-585 |#5|) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) (-696))) (-15 -3975 ((-1075) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)))) (-15 -3440 ((-1187) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-696)))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|)) (T -983)) -((-3440 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1601 *9)))) (-5 *4 (-696)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-1187)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1601 *8))) (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-985 *4 *5 *6 *7)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1075)) (-5 *1 (-983 *4 *5 *6 *7 *8)))) (-3439 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-585 *11)) (|:| |todo| (-585 (-2 (|:| |val| *3) (|:| -1601 *11)))))) (-5 *6 (-696)) (-5 *2 (-585 (-2 (|:| |val| (-585 *10)) (|:| -1601 *11)))) (-5 *3 (-585 *10)) (-5 *4 (-585 *11)) (-4 *10 (-979 *7 *8 *9)) (-4 *11 (-985 *7 *8 *9 *10)) (-4 *7 (-393)) (-4 *8 (-719)) (-4 *9 (-758)) (-5 *1 (-983 *7 *8 *9 *10 *11)))) (-3438 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) (-3438 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) (-3437 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3437 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-696)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) (-3437 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-696)) (-5 *6 (-85)) (-4 *7 (-393)) (-4 *8 (-719)) (-4 *9 (-758)) (-4 *3 (-979 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-983 *7 *8 *9 *3 *4)) (-4 *4 (-985 *7 *8 *9 *3)))) (-3436 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3436 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-696)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) (-3435 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) (-3434 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-696)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) (-3433 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-696)) (-5 *1 (-983 *5 *6 *7 *8 *9))))) -((-3200 (((-85) |#5| $) 26 T ELT)) (-3198 (((-85) |#5| $) 29 T ELT)) (-3201 (((-85) |#5| $) 18 T ELT) (((-85) $) 52 T ELT)) (-3241 (((-585 $) |#5| $) NIL T ELT) (((-585 $) (-585 |#5|) $) 94 T ELT) (((-585 $) (-585 |#5|) (-585 $)) 92 T ELT) (((-585 $) |#5| (-585 $)) 95 T ELT)) (-3772 (($ $ |#5|) NIL T ELT) (((-585 $) |#5| $) NIL T ELT) (((-585 $) |#5| (-585 $)) 73 T ELT) (((-585 $) (-585 |#5|) $) 75 T ELT) (((-585 $) (-585 |#5|) (-585 $)) 77 T ELT)) (-3192 (((-585 $) |#5| $) NIL T ELT) (((-585 $) |#5| (-585 $)) 64 T ELT) (((-585 $) (-585 |#5|) $) 69 T ELT) (((-585 $) (-585 |#5|) (-585 $)) 71 T ELT)) (-3199 (((-85) |#5| $) 32 T ELT))) -(((-984 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3772 ((-585 |#1|) (-585 |#5|) (-585 |#1|))) (-15 -3772 ((-585 |#1|) (-585 |#5|) |#1|)) (-15 -3772 ((-585 |#1|) |#5| (-585 |#1|))) (-15 -3772 ((-585 |#1|) |#5| |#1|)) (-15 -3192 ((-585 |#1|) (-585 |#5|) (-585 |#1|))) (-15 -3192 ((-585 |#1|) (-585 |#5|) |#1|)) (-15 -3192 ((-585 |#1|) |#5| (-585 |#1|))) (-15 -3192 ((-585 |#1|) |#5| |#1|)) (-15 -3241 ((-585 |#1|) |#5| (-585 |#1|))) (-15 -3241 ((-585 |#1|) (-585 |#5|) (-585 |#1|))) (-15 -3241 ((-585 |#1|) (-585 |#5|) |#1|)) (-15 -3241 ((-585 |#1|) |#5| |#1|)) (-15 -3198 ((-85) |#5| |#1|)) (-15 -3201 ((-85) |#1|)) (-15 -3199 ((-85) |#5| |#1|)) (-15 -3200 ((-85) |#5| |#1|)) (-15 -3201 ((-85) |#5| |#1|)) (-15 -3772 (|#1| |#1| |#5|))) (-985 |#2| |#3| |#4| |#5|) (-393) (-719) (-758) (-979 |#2| |#3| |#4|)) (T -984)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3684 (((-585 (-2 (|:| -3865 $) (|:| -1703 (-585 |#4|)))) (-585 |#4|)) 91 T ELT)) (-3685 (((-585 $) (-585 |#4|)) 92 T ELT) (((-585 $) (-585 |#4|) (-85)) 120 T ELT)) (-3084 (((-585 |#3|) $) 39 T ELT)) (-2911 (((-85) $) 32 T ELT)) (-2902 (((-85) $) 23 (|has| |#1| (-497)) ELT)) (-3696 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3691 ((|#4| |#4| $) 98 T ELT)) (-3778 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 135 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3713 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3727 (($) 59 T CONST)) (-2907 (((-85) $) 28 (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) 30 (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) 31 (|has| |#1| (-497)) ELT)) (-3692 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 24 (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) 25 (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ "failed") (-585 |#4|)) 42 T ELT)) (-3159 (($ (-585 |#4|)) 41 T ELT)) (-3802 (((-3 $ #1#) $) 88 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-1355 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3409 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-497)) ELT)) (-3697 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3686 ((|#4| |#4| $) 93 T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3699 (((-2 (|:| -3865 (-585 |#4|)) (|:| -1703 (-585 |#4|))) $) 111 T ELT)) (-3200 (((-85) |#4| $) 145 T ELT)) (-3198 (((-85) |#4| $) 142 T ELT)) (-3201 (((-85) |#4| $) 146 T ELT) (((-85) $) 143 T ELT)) (-3698 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3183 ((|#3| $) 40 T ELT)) (-2611 (((-585 |#4|) $) 48 T ELT)) (-3248 (((-85) |#4| $) 53 (|has| |#4| (-72)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3846 (($ (-1 |#4| |#4|) $) 60 T ELT)) (-2917 (((-585 |#3|) $) 38 T ELT)) (-2916 (((-85) |#3| $) 37 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3194 (((-3 |#4| (-585 $)) |#4| |#4| $) 137 T ELT)) (-3193 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 136 T ELT)) (-3801 (((-3 |#4| #1#) $) 89 T ELT)) (-3195 (((-585 $) |#4| $) 138 T ELT)) (-3197 (((-3 (-85) (-585 $)) |#4| $) 141 T ELT)) (-3196 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 140 T ELT) (((-85) |#4| $) 139 T ELT)) (-3241 (((-585 $) |#4| $) 134 T ELT) (((-585 $) (-585 |#4|) $) 133 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 132 T ELT) (((-585 $) |#4| (-585 $)) 131 T ELT)) (-3443 (($ |#4| $) 126 T ELT) (($ (-585 |#4|) $) 125 T ELT)) (-3700 (((-585 |#4|) $) 113 T ELT)) (-3694 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3702 (((-85) $ $) 116 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-497)) ELT)) (-3695 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3804 (((-3 |#4| #1#) $) 90 T ELT)) (-1731 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 51 T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3772 (($ $ |#4|) 83 T ELT) (((-585 $) |#4| $) 124 T ELT) (((-585 $) |#4| (-585 $)) 123 T ELT) (((-585 $) (-585 |#4|) $) 122 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 121 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 46 T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) 64 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) 55 T ELT)) (-3406 (((-85) $) 58 T ELT)) (-3568 (($) 57 T ELT)) (-3952 (((-696) $) 112 T ELT)) (-1732 (((-696) |#4| $) 52 (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) 47 T ELT)) (-3403 (($ $) 56 T ELT)) (-3975 (((-475) $) 70 (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) 65 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-2915 (($ $ |#3|) 36 T ELT)) (-3687 (($ $) 94 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3950 (((-774) $) 13 T ELT) (((-585 |#4|) $) 43 T ELT)) (-3681 (((-696) $) 82 (|has| |#3| (-320)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3693 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) 104 T ELT)) (-3192 (((-585 $) |#4| $) 130 T ELT) (((-585 $) |#4| (-585 $)) 129 T ELT) (((-585 $) (-585 |#4|) $) 128 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 127 T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3683 (((-585 |#3|) $) 87 T ELT)) (-3199 (((-85) |#4| $) 144 T ELT)) (-3937 (((-85) |#3| $) 86 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3961 (((-696) $) 44 T ELT))) -(((-985 |#1| |#2| |#3| |#4|) (-113) (-393) (-719) (-758) (-979 |t#1| |t#2| |t#3|)) (T -985)) -((-3201 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3200 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3199 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-3198 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3197 (*1 *2 *3 *1) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-3 (-85) (-585 *1))) (-4 *1 (-985 *4 *5 *6 *3)))) (-3196 (*1 *2 *3 *1) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *1)))) (-4 *1 (-985 *4 *5 *6 *3)))) (-3196 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3195 (*1 *2 *3 *1) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)))) (-3194 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-3 *3 (-585 *1))) (-4 *1 (-985 *4 *5 *6 *3)))) (-3193 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *1)))) (-4 *1 (-985 *4 *5 *6 *3)))) (-3778 (*1 *2 *3 *1) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *1)))) (-4 *1 (-985 *4 *5 *6 *3)))) (-3241 (*1 *2 *3 *1) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)))) (-3241 (*1 *2 *3 *1) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *7)))) (-3241 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-985 *4 *5 *6 *7)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)))) (-3241 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)))) (-3192 (*1 *2 *3 *1) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)))) (-3192 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)))) (-3192 (*1 *2 *3 *1) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *7)))) (-3192 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-985 *4 *5 *6 *7)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)))) (-3443 (*1 *1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5 *2)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3443 (*1 *1 *2 *1) (-12 (-5 *2 (-585 *6)) (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)))) (-3772 (*1 *2 *3 *1) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)))) (-3772 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)))) (-3772 (*1 *2 *3 *1) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *7)))) (-3772 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-985 *4 *5 *6 *7)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *5 *6 *7 *8))))) -(-13 (-1126 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3201 ((-85) |t#4| $)) (-15 -3200 ((-85) |t#4| $)) (-15 -3199 ((-85) |t#4| $)) (-15 -3201 ((-85) $)) (-15 -3198 ((-85) |t#4| $)) (-15 -3197 ((-3 (-85) (-585 $)) |t#4| $)) (-15 -3196 ((-585 (-2 (|:| |val| (-85)) (|:| -1601 $))) |t#4| $)) (-15 -3196 ((-85) |t#4| $)) (-15 -3195 ((-585 $) |t#4| $)) (-15 -3194 ((-3 |t#4| (-585 $)) |t#4| |t#4| $)) (-15 -3193 ((-585 (-2 (|:| |val| |t#4|) (|:| -1601 $))) |t#4| |t#4| $)) (-15 -3778 ((-585 (-2 (|:| |val| |t#4|) (|:| -1601 $))) |t#4| $)) (-15 -3241 ((-585 $) |t#4| $)) (-15 -3241 ((-585 $) (-585 |t#4|) $)) (-15 -3241 ((-585 $) (-585 |t#4|) (-585 $))) (-15 -3241 ((-585 $) |t#4| (-585 $))) (-15 -3192 ((-585 $) |t#4| $)) (-15 -3192 ((-585 $) |t#4| (-585 $))) (-15 -3192 ((-585 $) (-585 |t#4|) $)) (-15 -3192 ((-585 $) (-585 |t#4|) (-585 $))) (-15 -3443 ($ |t#4| $)) (-15 -3443 ($ (-585 |t#4|) $)) (-15 -3772 ((-585 $) |t#4| $)) (-15 -3772 ((-585 $) |t#4| (-585 $))) (-15 -3772 ((-585 $) (-585 |t#4|) $)) (-15 -3772 ((-585 $) (-585 |t#4|) (-585 $))) (-15 -3685 ((-585 $) (-585 |t#4|) (-85))))) -(((-34) . T) ((-72) . T) ((-554 (-585 |#4|)) . T) ((-554 (-774)) . T) ((-124 |#4|) . T) ((-555 (-475)) |has| |#4| (-555 (-475))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-318 |#4|) . T) ((-381 |#4|) . T) ((-430 |#4|) . T) ((-457 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-13) . T) ((-891 |#1| |#2| |#3| |#4|) . T) ((-1015) . T) ((-1037 |#4|) . T) ((-1126 |#1| |#2| |#3| |#4|) . T) ((-1131) . T)) -((-3208 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|) 86 T ELT)) (-3205 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3207 (((-585 |#5|) |#4| |#5|) 74 T ELT)) (-3206 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3289 (((-1187)) 36 T ELT)) (-3287 (((-1187)) 25 T ELT)) (-3288 (((-1187) (-1075) (-1075) (-1075)) 32 T ELT)) (-3286 (((-1187) (-1075) (-1075) (-1075)) 21 T ELT)) (-3202 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3203 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) |#3| (-85)) 117 T ELT) (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3204 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 112 T ELT))) -(((-986 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3286 ((-1187) (-1075) (-1075) (-1075))) (-15 -3287 ((-1187))) (-15 -3288 ((-1187) (-1075) (-1075) (-1075))) (-15 -3289 ((-1187))) (-15 -3202 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3203 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3203 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) |#3| (-85))) (-15 -3204 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3205 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3206 ((-85) |#4| |#5|)) (-15 -3206 ((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3207 ((-585 |#5|) |#4| |#5|)) (-15 -3208 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|)) (T -986)) -((-3208 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3207 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 *4)) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3206 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3206 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3205 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3204 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1601 *9)))) (-5 *5 (-85)) (-4 *8 (-979 *6 *7 *4)) (-4 *9 (-985 *6 *7 *4 *8)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *4 (-758)) (-5 *2 (-585 (-2 (|:| |val| *8) (|:| -1601 *9)))) (-5 *1 (-986 *6 *7 *4 *8 *9)))) (-3203 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-986 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) (-3202 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3289 (*1 *2) (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-1187)) (-5 *1 (-986 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) (-3288 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3287 (*1 *2) (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-1187)) (-5 *1 (-986 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) (-3286 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3321 (((-1132) $) 14 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3209 (((-1051) $) 11 T ELT)) (-3950 (((-774) $) 21 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-987) (-13 (-997) (-10 -8 (-15 -3209 ((-1051) $)) (-15 -3321 ((-1132) $))))) (T -987)) -((-3209 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-987)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-987))))) -((-3269 (((-85) $ $) 7 T ELT))) -(((-988) (-13 (-1131) (-10 -8 (-15 -3269 ((-85) $ $))))) (T -988)) -((-3269 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-988))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3212 (($ $ (-585 (-1092)) (-1 (-85) (-585 |#3|))) 34 T ELT)) (-3213 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-585 (-1092))) 21 T ELT)) (-3531 ((|#3| $) 13 T ELT)) (-3160 (((-3 (-249 |#3|) "failed") $) 60 T ELT)) (-3159 (((-249 |#3|) $) NIL T ELT)) (-3210 (((-585 (-1092)) $) 16 T ELT)) (-3211 (((-802 |#1|) $) 11 T ELT)) (-3532 ((|#3| $) 12 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-832)) 41 T ELT)) (-3950 (((-774) $) 89 T ELT) (($ (-249 |#3|)) 22 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 38 T ELT))) -(((-989 |#1| |#2| |#3|) (-13 (-1015) (-241 |#3| |#3|) (-952 (-249 |#3|)) (-10 -8 (-15 -3213 ($ |#3| |#3|)) (-15 -3213 ($ |#3| |#3| (-585 (-1092)))) (-15 -3212 ($ $ (-585 (-1092)) (-1 (-85) (-585 |#3|)))) (-15 -3211 ((-802 |#1|) $)) (-15 -3532 (|#3| $)) (-15 -3531 (|#3| $)) (-15 -3803 (|#3| $ |#3| (-832))) (-15 -3210 ((-585 (-1092)) $)))) (-1015) (-13 (-963) (-798 |#1|) (-555 (-802 |#1|))) (-13 (-364 |#2|) (-798 |#1|) (-555 (-802 |#1|)))) (T -989)) -((-3213 (*1 *1 *2 *2) (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) (-5 *1 (-989 *3 *4 *2)) (-4 *2 (-13 (-364 *4) (-798 *3) (-555 (-802 *3)))))) (-3213 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-585 (-1092))) (-4 *4 (-1015)) (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-989 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))))) (-3212 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-1 (-85) (-585 *6))) (-4 *6 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))) (-4 *4 (-1015)) (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-989 *4 *5 *6)))) (-3211 (*1 *2 *1) (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 *2))) (-5 *2 (-802 *3)) (-5 *1 (-989 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-798 *3) (-555 *2))))) (-3532 (*1 *2 *1) (-12 (-4 *3 (-1015)) (-4 *2 (-13 (-364 *4) (-798 *3) (-555 (-802 *3)))) (-5 *1 (-989 *3 *4 *2)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))))) (-3531 (*1 *2 *1) (-12 (-4 *3 (-1015)) (-4 *2 (-13 (-364 *4) (-798 *3) (-555 (-802 *3)))) (-5 *1 (-989 *3 *4 *2)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))))) (-3803 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-832)) (-4 *4 (-1015)) (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-989 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))))) (-3210 (*1 *2 *1) (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) (-5 *2 (-585 (-1092))) (-5 *1 (-989 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-798 *3) (-555 (-802 *3))))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3545 (((-1092) $) 8 T ELT)) (-3245 (((-1075) $) 17 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 11 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 14 T ELT))) -(((-990 |#1|) (-13 (-1015) (-10 -8 (-15 -3545 ((-1092) $)))) (-1092)) (T -990)) -((-3545 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-990 *3)) (-14 *3 *2)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3215 (($ (-585 (-989 |#1| |#2| |#3|))) 15 T ELT)) (-3214 (((-585 (-989 |#1| |#2| |#3|)) $) 22 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-832)) 28 T ELT)) (-3950 (((-774) $) 18 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 21 T ELT))) -(((-991 |#1| |#2| |#3|) (-13 (-1015) (-241 |#3| |#3|) (-10 -8 (-15 -3215 ($ (-585 (-989 |#1| |#2| |#3|)))) (-15 -3214 ((-585 (-989 |#1| |#2| |#3|)) $)) (-15 -3803 (|#3| $ |#3| (-832))))) (-1015) (-13 (-963) (-798 |#1|) (-555 (-802 |#1|))) (-13 (-364 |#2|) (-798 |#1|) (-555 (-802 |#1|)))) (T -991)) -((-3215 (*1 *1 *2) (-12 (-5 *2 (-585 (-989 *3 *4 *5))) (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) (-4 *5 (-13 (-364 *4) (-798 *3) (-555 (-802 *3)))) (-5 *1 (-991 *3 *4 *5)))) (-3214 (*1 *2 *1) (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) (-5 *2 (-585 (-989 *3 *4 *5))) (-5 *1 (-991 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-798 *3) (-555 (-802 *3)))))) (-3803 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-832)) (-4 *4 (-1015)) (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-991 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4))))))) -((-3216 (((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85) (-85)) 88 T ELT) (((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|))) 92 T ELT) (((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85)) 90 T ELT))) -(((-992 |#1| |#2|) (-10 -7 (-15 -3216 ((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85))) (-15 -3216 ((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)))) (-15 -3216 ((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85) (-85)))) (-13 (-258) (-120)) (-585 (-1092))) (T -992)) -((-3216 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) (-5 *1 (-992 *5 *6)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092))))) (-3216 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-5 *2 (-585 (-2 (|:| -1752 (-1087 *4)) (|:| -3227 (-585 (-859 *4)))))) (-5 *1 (-992 *4 *5)) (-5 *3 (-585 (-859 *4))) (-14 *5 (-585 (-1092))))) (-3216 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) (-5 *1 (-992 *5 *6)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 132 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-312)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-1787 (((-632 |#1|) (-1181 $)) NIL T ELT) (((-632 |#1|)) 117 T ELT)) (-3333 ((|#1| $) 121 T ELT)) (-1676 (((-1104 (-832) (-696)) (-486)) NIL (|has| |#1| (-299)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3139 (((-696)) 43 (|has| |#1| (-320)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT)) (-1797 (($ (-1181 |#1|) (-1181 $)) NIL T ELT) (($ (-1181 |#1|)) 46 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1786 (((-632 |#1|) $ (-1181 $)) NIL T ELT) (((-632 |#1|) $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 109 T ELT) (((-632 |#1|) (-632 $)) 104 T ELT)) (-3845 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-350 |#2|)) NIL (|has| |#1| (-312)) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3111 (((-832)) 80 T ELT)) (-2997 (($) 47 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-2836 (($) NIL (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1769 (($ $ (-696)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3775 (((-832) $) NIL (|has| |#1| (-299)) ELT) (((-745 (-832)) $) NIL (|has| |#1| (-299)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3135 ((|#1| $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-2016 ((|#2| $) 87 (|has| |#1| (-312)) ELT)) (-2012 (((-832) $) 140 (|has| |#1| (-320)) ELT)) (-3082 ((|#2| $) 59 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3449 (($) NIL (|has| |#1| (-299)) CONST)) (-2402 (($ (-832)) 131 (|has| |#1| (-320)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2411 (($) 123 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1677 (((-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486))))) NIL (|has| |#1| (-299)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 ((|#1| (-1181 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1770 (((-696) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-696) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3761 (($ $ (-696)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL (|has| |#1| (-312)) ELT)) (-2410 (((-632 |#1|) (-1181 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3188 ((|#2|) 77 T ELT)) (-1675 (($) NIL (|has| |#1| (-299)) ELT)) (-3227 (((-1181 |#1|) $ (-1181 $)) 92 T ELT) (((-632 |#1|) (-1181 $) (-1181 $)) NIL T ELT) (((-1181 |#1|) $) 72 T ELT) (((-632 |#1|) (-1181 $)) 88 T ELT)) (-3975 (((-1181 |#1|) $) NIL T ELT) (($ (-1181 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (|has| |#1| (-299)) ELT)) (-3950 (((-774) $) 58 T ELT) (($ (-486)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-2705 (($ $) NIL (|has| |#1| (-299)) ELT) (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-2452 ((|#2| $) 85 T ELT)) (-3129 (((-696)) 79 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-2014 (((-1181 $)) 84 T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 32 T CONST)) (-2669 (($) 19 T CONST)) (-2672 (($ $ (-696)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1092)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL (|has| |#1| (-312)) ELT)) (-3059 (((-85) $ $) 64 T ELT)) (-3953 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 66 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-312)) ELT))) -(((-993 |#1| |#2| |#3|) (-663 |#1| |#2|) (-146) (-1157 |#1|) |#2|) (T -993)) -NIL -((-3735 (((-348 |#3|) |#3|) 18 T ELT))) -(((-994 |#1| |#2| |#3|) (-10 -7 (-15 -3735 ((-348 |#3|) |#3|))) (-1157 (-350 (-486))) (-13 (-312) (-120) (-663 (-350 (-486)) |#1|)) (-1157 |#2|)) (T -994)) -((-3735 (*1 *2 *3) (-12 (-4 *4 (-1157 (-350 (-486)))) (-4 *5 (-13 (-312) (-120) (-663 (-350 (-486)) *4))) (-5 *2 (-348 *3)) (-5 *1 (-994 *4 *5 *3)) (-4 *3 (-1157 *5))))) -((-3735 (((-348 |#3|) |#3|) 19 T ELT))) -(((-995 |#1| |#2| |#3|) (-10 -7 (-15 -3735 ((-348 |#3|) |#3|))) (-1157 (-350 (-859 (-486)))) (-13 (-312) (-120) (-663 (-350 (-859 (-486))) |#1|)) (-1157 |#2|)) (T -995)) -((-3735 (*1 *2 *3) (-12 (-4 *4 (-1157 (-350 (-859 (-486))))) (-4 *5 (-13 (-312) (-120) (-663 (-350 (-859 (-486))) *4))) (-5 *2 (-348 *3)) (-5 *1 (-995 *4 *5 *3)) (-4 *3 (-1157 *5))))) -((-2571 (((-85) $ $) NIL T ELT)) (-2534 (($ $ $) 16 T ELT)) (-2860 (($ $ $) 17 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3217 (($) 6 T ELT)) (-3975 (((-1092) $) 20 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 15 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 9 T ELT))) -(((-996) (-13 (-758) (-555 (-1092)) (-10 -8 (-15 -3217 ($))))) (T -996)) -((-3217 (*1 *1) (-5 *1 (-996)))) -((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-1097)) 20 T ELT) (((-1097) $) 19 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) -(((-997) (-113)) (T -997)) NIL -(-13 (-64)) -(((-64) . T) ((-72) . T) ((-557 (-1097)) . T) ((-554 (-774)) . T) ((-554 (-1097)) . T) ((-431 (-1097)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-3220 ((|#1| |#1| (-1 (-486) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-85) |#1|)) 33 T ELT)) (-3218 (((-1187)) 21 T ELT)) (-3219 (((-585 |#1|)) 13 T ELT))) -(((-998 |#1|) (-10 -7 (-15 -3218 ((-1187))) (-15 -3219 ((-585 |#1|))) (-15 -3220 (|#1| |#1| (-1 (-85) |#1|))) (-15 -3220 (|#1| |#1| (-1 (-486) |#1| |#1|)))) (-105)) (T -998)) -((-3220 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-486) *2 *2)) (-4 *2 (-105)) (-5 *1 (-998 *2)))) (-3220 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-998 *2)))) (-3219 (*1 *2) (-12 (-5 *2 (-585 *3)) (-5 *1 (-998 *3)) (-4 *3 (-105)))) (-3218 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-998 *3)) (-4 *3 (-105))))) -((-3223 (($ (-78) $) 20 T ELT)) (-3224 (((-634 (-78)) (-448) $) 19 T ELT)) (-3568 (($) 7 T ELT)) (-3222 (($) 21 T ELT)) (-3221 (($) 22 T ELT)) (-3225 (((-585 (-149)) $) 10 T ELT)) (-3950 (((-774) $) 25 T ELT))) -(((-999) (-13 (-554 (-774)) (-10 -8 (-15 -3568 ($)) (-15 -3225 ((-585 (-149)) $)) (-15 -3224 ((-634 (-78)) (-448) $)) (-15 -3223 ($ (-78) $)) (-15 -3222 ($)) (-15 -3221 ($))))) (T -999)) -((-3568 (*1 *1) (-5 *1 (-999))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-585 (-149))) (-5 *1 (-999)))) (-3224 (*1 *2 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-78))) (-5 *1 (-999)))) (-3223 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-999)))) (-3222 (*1 *1) (-5 *1 (-999))) (-3221 (*1 *1) (-5 *1 (-999)))) -((-3226 (((-1181 (-632 |#1|)) (-585 (-632 |#1|))) 45 T ELT) (((-1181 (-632 (-859 |#1|))) (-585 (-1092)) (-632 (-859 |#1|))) 75 T ELT) (((-1181 (-632 (-350 (-859 |#1|)))) (-585 (-1092)) (-632 (-350 (-859 |#1|)))) 92 T ELT)) (-3227 (((-1181 |#1|) (-632 |#1|) (-585 (-632 |#1|))) 39 T ELT))) -(((-1000 |#1|) (-10 -7 (-15 -3226 ((-1181 (-632 (-350 (-859 |#1|)))) (-585 (-1092)) (-632 (-350 (-859 |#1|))))) (-15 -3226 ((-1181 (-632 (-859 |#1|))) (-585 (-1092)) (-632 (-859 |#1|)))) (-15 -3226 ((-1181 (-632 |#1|)) (-585 (-632 |#1|)))) (-15 -3227 ((-1181 |#1|) (-632 |#1|) (-585 (-632 |#1|))))) (-312)) (T -1000)) -((-3227 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-632 *5))) (-5 *3 (-632 *5)) (-4 *5 (-312)) (-5 *2 (-1181 *5)) (-5 *1 (-1000 *5)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-585 (-632 *4))) (-4 *4 (-312)) (-5 *2 (-1181 (-632 *4))) (-5 *1 (-1000 *4)))) (-3226 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1092))) (-4 *5 (-312)) (-5 *2 (-1181 (-632 (-859 *5)))) (-5 *1 (-1000 *5)) (-5 *4 (-632 (-859 *5))))) (-3226 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1092))) (-4 *5 (-312)) (-5 *2 (-1181 (-632 (-350 (-859 *5))))) (-5 *1 (-1000 *5)) (-5 *4 (-632 (-350 (-859 *5))))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1489 (((-585 (-696)) $) NIL T ELT) (((-585 (-696)) $ (-1092)) NIL T ELT)) (-1523 (((-696) $) NIL T ELT) (((-696) $ (-1092)) NIL T ELT)) (-3084 (((-585 (-1002 (-1092))) $) NIL T ELT)) (-3086 (((-1087 $) $ (-1002 (-1092))) NIL T ELT) (((-1087 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-1002 (-1092)))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-1485 (($ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-1002 (-1092)) #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL T ELT) (((-3 (-1041 |#1| (-1092)) #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-1002 (-1092)) $) NIL T ELT) (((-1092) $) NIL T ELT) (((-1041 |#1| (-1092)) $) NIL T ELT)) (-3759 (($ $ $ (-1002 (-1092))) NIL (|has| |#1| (-146)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT) (($ $ (-1002 (-1092))) NIL (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| (-471 (-1002 (-1092))) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-1002 (-1092)) (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-1002 (-1092)) (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-3775 (((-696) $ (-1092)) NIL T ELT) (((-696) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3087 (($ (-1087 |#1|) (-1002 (-1092))) NIL T ELT) (($ (-1087 $) (-1002 (-1092))) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-471 (-1002 (-1092)))) NIL T ELT) (($ $ (-1002 (-1092)) (-696)) NIL T ELT) (($ $ (-585 (-1002 (-1092))) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-1002 (-1092))) NIL T ELT)) (-2823 (((-471 (-1002 (-1092))) $) NIL T ELT) (((-696) $ (-1002 (-1092))) NIL T ELT) (((-585 (-696)) $ (-585 (-1002 (-1092)))) NIL T ELT)) (-1626 (($ (-1 (-471 (-1002 (-1092))) (-471 (-1002 (-1092)))) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1524 (((-1 $ (-696)) (-1092)) NIL T ELT) (((-1 $ (-696)) $) NIL (|has| |#1| (-190)) ELT)) (-3085 (((-3 (-1002 (-1092)) #1#) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1487 (((-1002 (-1092)) $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1488 (((-85) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-1002 (-1092))) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-1486 (($ $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-823)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-1002 (-1092)) |#1|) NIL T ELT) (($ $ (-585 (-1002 (-1092))) (-585 |#1|)) NIL T ELT) (($ $ (-1002 (-1092)) $) NIL T ELT) (($ $ (-585 (-1002 (-1092))) (-585 $)) NIL T ELT) (($ $ (-1092) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-585 (-1092)) (-585 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1092) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-585 (-1092)) (-585 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3760 (($ $ (-1002 (-1092))) NIL (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 (-1002 (-1092))) (-585 (-696))) NIL T ELT) (($ $ (-1002 (-1092)) (-696)) NIL T ELT) (($ $ (-585 (-1002 (-1092)))) NIL T ELT) (($ $ (-1002 (-1092))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-1490 (((-585 (-1092)) $) NIL T ELT)) (-3952 (((-471 (-1002 (-1092))) $) NIL T ELT) (((-696) $ (-1002 (-1092))) NIL T ELT) (((-585 (-696)) $ (-585 (-1002 (-1092)))) NIL T ELT) (((-696) $ (-1092)) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-1002 (-1092)) (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-1002 (-1092)) (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-1002 (-1092)) (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT) (($ $ (-1002 (-1092))) NIL (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1002 (-1092))) NIL T ELT) (($ (-1092)) NIL T ELT) (($ (-1041 |#1| (-1092))) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-471 (-1002 (-1092)))) NIL T ELT) (($ $ (-1002 (-1092)) (-696)) NIL T ELT) (($ $ (-585 (-1002 (-1092))) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-585 (-1002 (-1092))) (-585 (-696))) NIL T ELT) (($ $ (-1002 (-1092)) (-696)) NIL T ELT) (($ $ (-585 (-1002 (-1092)))) NIL T ELT) (($ $ (-1002 (-1092))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1001 |#1|) (-13 (-213 |#1| (-1092) (-1002 (-1092)) (-471 (-1002 (-1092)))) (-952 (-1041 |#1| (-1092)))) (-963)) (T -1001)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-1523 (((-696) $) NIL T ELT)) (-3834 ((|#1| $) 10 T ELT)) (-3160 (((-3 |#1| "failed") $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3775 (((-696) $) 11 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-1524 (($ |#1| (-696)) 9 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3761 (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2672 (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 16 T ELT))) -(((-1002 |#1|) (-228 |#1|) (-758)) (T -1002)) -NIL -((-2571 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3739 (($ |#1| |#1|) 16 T ELT)) (-3846 (((-585 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-757)) ELT)) (-3232 ((|#1| $) 12 T ELT)) (-3234 ((|#1| $) 11 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3230 (((-486) $) 15 T ELT)) (-3231 ((|#1| $) 14 T ELT)) (-3233 ((|#1| $) 13 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3966 (((-585 |#1|) $) 42 (|has| |#1| (-757)) ELT) (((-585 |#1|) (-585 $)) 41 (|has| |#1| (-757)) ELT)) (-3975 (($ |#1|) 29 T ELT)) (-3950 (((-774) $) 28 (|has| |#1| (-1015)) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3740 (($ |#1| |#1|) 10 T ELT)) (-3235 (($ $ (-486)) 17 T ELT)) (-3059 (((-85) $ $) 22 (|has| |#1| (-1015)) ELT))) -(((-1003 |#1|) (-13 (-1008 |#1|) (-10 -7 (IF (|has| |#1| (-1015)) (-6 (-1015)) |%noBranch|) (IF (|has| |#1| (-757)) (-6 (-1009 |#1| (-585 |#1|))) |%noBranch|))) (-1131)) (T -1003)) -NIL -((-3846 (((-585 |#2|) (-1 |#2| |#1|) (-1003 |#1|)) 27 (|has| |#1| (-757)) ELT) (((-1003 |#2|) (-1 |#2| |#1|) (-1003 |#1|)) 14 T ELT))) -(((-1004 |#1| |#2|) (-10 -7 (-15 -3846 ((-1003 |#2|) (-1 |#2| |#1|) (-1003 |#1|))) (IF (|has| |#1| (-757)) (-15 -3846 ((-585 |#2|) (-1 |#2| |#1|) (-1003 |#1|))) |%noBranch|)) (-1131) (-1131)) (T -1004)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1003 *5)) (-4 *5 (-757)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-585 *6)) (-5 *1 (-1004 *5 *6)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1003 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1003 *6)) (-5 *1 (-1004 *5 *6))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 16 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3228 (((-585 (-1051)) $) 10 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-1005) (-13 (-997) (-10 -8 (-15 -3228 ((-585 (-1051)) $))))) (T -1005)) -((-3228 (*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-1005))))) -((-2571 (((-85) $ $) NIL (|has| (-1003 |#1|) (-1015)) ELT)) (-3834 (((-1092) $) NIL T ELT)) (-3739 (((-1003 |#1|) $) NIL T ELT)) (-3245 (((-1075) $) NIL (|has| (-1003 |#1|) (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| (-1003 |#1|) (-1015)) ELT)) (-3229 (($ (-1092) (-1003 |#1|)) NIL T ELT)) (-3950 (((-774) $) NIL (|has| (-1003 |#1|) (-1015)) ELT)) (-1267 (((-85) $ $) NIL (|has| (-1003 |#1|) (-1015)) ELT)) (-3059 (((-85) $ $) NIL (|has| (-1003 |#1|) (-1015)) ELT))) -(((-1006 |#1|) (-13 (-1131) (-10 -8 (-15 -3229 ($ (-1092) (-1003 |#1|))) (-15 -3834 ((-1092) $)) (-15 -3739 ((-1003 |#1|) $)) (IF (|has| (-1003 |#1|) (-1015)) (-6 (-1015)) |%noBranch|))) (-1131)) (T -1006)) -((-3229 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1003 *4)) (-4 *4 (-1131)) (-5 *1 (-1006 *4)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1006 *3)) (-4 *3 (-1131)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-1003 *3)) (-5 *1 (-1006 *3)) (-4 *3 (-1131))))) -((-3846 (((-1006 |#2|) (-1 |#2| |#1|) (-1006 |#1|)) 19 T ELT))) -(((-1007 |#1| |#2|) (-10 -7 (-15 -3846 ((-1006 |#2|) (-1 |#2| |#1|) (-1006 |#1|)))) (-1131) (-1131)) (T -1007)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1006 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1006 *6)) (-5 *1 (-1007 *5 *6))))) -((-3739 (($ |#1| |#1|) 8 T ELT)) (-3232 ((|#1| $) 11 T ELT)) (-3234 ((|#1| $) 13 T ELT)) (-3230 (((-486) $) 9 T ELT)) (-3231 ((|#1| $) 10 T ELT)) (-3233 ((|#1| $) 12 T ELT)) (-3975 (($ |#1|) 6 T ELT)) (-3740 (($ |#1| |#1|) 15 T ELT)) (-3235 (($ $ (-486)) 14 T ELT))) -(((-1008 |#1|) (-113) (-1131)) (T -1008)) -((-3740 (*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131)))) (-3235 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-1008 *3)) (-4 *3 (-1131)))) (-3234 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131)))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1131)) (-5 *2 (-486)))) (-3739 (*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131))))) -(-13 (-559 |t#1|) (-10 -8 (-15 -3740 ($ |t#1| |t#1|)) (-15 -3235 ($ $ (-486))) (-15 -3234 (|t#1| $)) (-15 -3233 (|t#1| $)) (-15 -3232 (|t#1| $)) (-15 -3231 (|t#1| $)) (-15 -3230 ((-486) $)) (-15 -3739 ($ |t#1| |t#1|)))) +(-13 (-965) (-815 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-559 (-488)) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 $) . T) ((-667) . T) ((-810 $ |#1|) . T) ((-815 |#1|) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-3764 (($ $ |#2|) NIL T ELT) (($ $ (-587 |#2|)) 10 T ELT) (($ $ |#2| (-698)) 12 T ELT) (($ $ (-587 |#2|) (-587 (-698))) 15 T ELT)) (-2675 (($ $ |#2|) 16 T ELT) (($ $ (-587 |#2|)) 18 T ELT) (($ $ |#2| (-698)) 19 T ELT) (($ $ (-587 |#2|) (-587 (-698))) 21 T ELT))) +(((-814 |#1| |#2|) (-10 -7 (-15 -2675 (|#1| |#1| (-587 |#2|) (-587 (-698)))) (-15 -2675 (|#1| |#1| |#2| (-698))) (-15 -2675 (|#1| |#1| (-587 |#2|))) (-15 -3764 (|#1| |#1| (-587 |#2|) (-587 (-698)))) (-15 -3764 (|#1| |#1| |#2| (-698))) (-15 -3764 (|#1| |#1| (-587 |#2|))) (-15 -2675 (|#1| |#1| |#2|)) (-15 -3764 (|#1| |#1| |#2|))) (-815 |#2|) (-72)) (T -814)) +NIL +((-3764 (($ $ |#1|) 7 T ELT) (($ $ (-587 |#1|)) 15 T ELT) (($ $ |#1| (-698)) 14 T ELT) (($ $ (-587 |#1|) (-587 (-698))) 13 T ELT)) (-2675 (($ $ |#1|) 6 T ELT) (($ $ (-587 |#1|)) 12 T ELT) (($ $ |#1| (-698)) 11 T ELT) (($ $ (-587 |#1|) (-587 (-698))) 10 T ELT))) +(((-815 |#1|) (-113) (-72)) (T -815)) +((-3764 (*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *1 (-815 *3)) (-4 *3 (-72)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-698)) (-4 *1 (-815 *2)) (-4 *2 (-72)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 (-698))) (-4 *1 (-815 *4)) (-4 *4 (-72)))) (-2675 (*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *1 (-815 *3)) (-4 *3 (-72)))) (-2675 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-698)) (-4 *1 (-815 *2)) (-4 *2 (-72)))) (-2675 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 (-698))) (-4 *1 (-815 *4)) (-4 *4 (-72))))) +(-13 (-810 $ |t#1|) (-10 -8 (-15 -3764 ($ $ (-587 |t#1|))) (-15 -3764 ($ $ |t#1| (-698))) (-15 -3764 ($ $ (-587 |t#1|) (-587 (-698)))) (-15 -2675 ($ $ (-587 |t#1|))) (-15 -2675 ($ $ |t#1| (-698))) (-15 -2675 ($ $ (-587 |t#1|) (-587 (-698)))))) +(((-13) . T) ((-810 $ |#1|) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3408 ((|#1| $) 26 T ELT)) (-3031 ((|#1| $ |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-1297 (($ $ $) NIL (|has| $ (-1039 |#1|)) ELT)) (-1298 (($ $ $) NIL (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1039 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1039 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1039 |#1|)) ELT)) (-3032 (($ $ (-587 $)) NIL (|has| $ (-1039 |#1|)) ELT)) (-3730 (($) NIL T CONST)) (-3143 (($ $) 25 T ELT)) (-2676 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-3037 (((-587 $) $) NIL T ELT)) (-3033 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3144 (($ $) 23 T ELT)) (-3036 (((-587 |#1|) $) NIL T ELT)) (-3533 (((-85) $) 20 T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3035 (((-488) $ $) NIL T ELT)) (-3639 (((-85) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3953 (((-1120 |#1|) $) 9 T ELT) (((-776) $) 29 (|has| |#1| (-556 (-776))) ELT)) (-3528 (((-587 $) $) NIL T ELT)) (-3034 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3062 (((-85) $ $) 21 (|has| |#1| (-72)) ELT))) +(((-816 |#1|) (-13 (-92 |#1|) (-556 (-1120 |#1|)) (-10 -8 (-15 -2676 ($ |#1|)) (-15 -2676 ($ $ $)))) (-1017)) (T -816)) +((-2676 (*1 *1 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1017)))) (-2676 (*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1017))))) +((-2574 (((-85) $ $) NIL T ELT)) (-2692 (((-1013 |#1|) $) 61 T ELT)) (-2915 (((-587 $) (-587 $)) 104 T ELT)) (-3629 (((-488) $) 84 T ELT)) (-3730 (($) NIL T CONST)) (-3473 (((-3 $ "failed") $) NIL T ELT)) (-3778 (((-698) $) 81 T ELT)) (-2696 (((-1013 |#1|) $ |#1|) 71 T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2679 (((-85) $) 89 T ELT)) (-2681 (((-698) $) 85 T ELT)) (-2537 (($ $ $) NIL (OR (|has| |#1| (-322)) (|has| |#1| (-760))) ELT)) (-2863 (($ $ $) NIL (OR (|has| |#1| (-322)) (|has| |#1| (-760))) ELT)) (-2685 (((-2 (|:| |preimage| (-587 |#1|)) (|:| |image| (-587 |#1|))) $) 56 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) 131 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2678 (((-1013 |#1|) $) 136 (|has| |#1| (-322)) ELT)) (-2680 (((-85) $) 82 T ELT)) (-3806 ((|#1| $ |#1|) 69 T ELT)) (-3955 (((-698) $) 63 T ELT)) (-2687 (($ (-587 (-587 |#1|))) 119 T ELT)) (-2682 (((-888) $) 75 T ELT)) (-2688 (($ (-587 |#1|)) 32 T ELT)) (-3015 (($ $ $) NIL T ELT)) (-2441 (($ $ $) NIL T ELT)) (-2684 (($ (-587 (-587 |#1|))) 58 T ELT)) (-2683 (($ (-587 (-587 |#1|))) 124 T ELT)) (-2677 (($ (-587 |#1|)) 133 T ELT)) (-3953 (((-776) $) 118 T ELT) (($ (-587 (-587 |#1|))) 92 T ELT) (($ (-587 |#1|)) 93 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2672 (($) 24 T CONST)) (-2572 (((-85) $ $) NIL (OR (|has| |#1| (-322)) (|has| |#1| (-760))) ELT)) (-2573 (((-85) $ $) NIL (OR (|has| |#1| (-322)) (|has| |#1| (-760))) ELT)) (-3062 (((-85) $ $) 67 T ELT)) (-2690 (((-85) $ $) NIL (OR (|has| |#1| (-322)) (|has| |#1| (-760))) ELT)) (-2691 (((-85) $ $) 91 T ELT)) (-3956 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ $ $) 33 T ELT))) +(((-817 |#1|) (-13 (-819 |#1|) (-10 -8 (-15 -2685 ((-2 (|:| |preimage| (-587 |#1|)) (|:| |image| (-587 |#1|))) $)) (-15 -2684 ($ (-587 (-587 |#1|)))) (-15 -3953 ($ (-587 (-587 |#1|)))) (-15 -3953 ($ (-587 |#1|))) (-15 -2683 ($ (-587 (-587 |#1|)))) (-15 -3955 ((-698) $)) (-15 -2682 ((-888) $)) (-15 -3778 ((-698) $)) (-15 -2681 ((-698) $)) (-15 -3629 ((-488) $)) (-15 -2680 ((-85) $)) (-15 -2679 ((-85) $)) (-15 -2915 ((-587 $) (-587 $))) (IF (|has| |#1| (-322)) (-15 -2678 ((-1013 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-487)) (-15 -2677 ($ (-587 |#1|))) (IF (|has| |#1| (-322)) (-15 -2677 ($ (-587 |#1|))) |%noBranch|)))) (-1017)) (T -817)) +((-2685 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-587 *3)) (|:| |image| (-587 *3)))) (-5 *1 (-817 *3)) (-4 *3 (-1017)))) (-2684 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1017)) (-5 *1 (-817 *3)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1017)) (-5 *1 (-817 *3)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-5 *1 (-817 *3)))) (-2683 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1017)) (-5 *1 (-817 *3)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-817 *3)) (-4 *3 (-1017)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-817 *3)) (-4 *3 (-1017)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-817 *3)) (-4 *3 (-1017)))) (-2681 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-817 *3)) (-4 *3 (-1017)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-817 *3)) (-4 *3 (-1017)))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1017)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1017)))) (-2915 (*1 *2 *2) (-12 (-5 *2 (-587 (-817 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1017)))) (-2678 (*1 *2 *1) (-12 (-5 *2 (-1013 *3)) (-5 *1 (-817 *3)) (-4 *3 (-322)) (-4 *3 (-1017)))) (-2677 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-5 *1 (-817 *3))))) +((-2686 ((|#2| (-1060 |#1| |#2|)) 48 T ELT))) +(((-818 |#1| |#2|) (-10 -7 (-15 -2686 (|#2| (-1060 |#1| |#2|)))) (-834) (-13 (-965) (-10 -7 (-6 (-4003 "*"))))) (T -818)) +((-2686 (*1 *2 *3) (-12 (-5 *3 (-1060 *4 *2)) (-14 *4 (-834)) (-4 *2 (-13 (-965) (-10 -7 (-6 (-4003 "*"))))) (-5 *1 (-818 *4 *2))))) +((-2574 (((-85) $ $) 7 T ELT)) (-2692 (((-1013 |#1|) $) 42 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 20 T ELT)) (-2696 (((-1013 |#1|) $ |#1|) 41 T ELT)) (-2415 (((-85) $) 22 T ELT)) (-2537 (($ $ $) 35 (OR (|has| |#1| (-760)) (|has| |#1| (-322))) ELT)) (-2863 (($ $ $) 36 (OR (|has| |#1| (-760)) (|has| |#1| (-322))) ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 30 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3806 ((|#1| $ |#1|) 45 T ELT)) (-2687 (($ (-587 (-587 |#1|))) 43 T ELT)) (-2688 (($ (-587 |#1|)) 44 T ELT)) (-3015 (($ $ $) 27 T ELT)) (-2441 (($ $ $) 26 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2672 (($) 24 T CONST)) (-2572 (((-85) $ $) 37 (OR (|has| |#1| (-760)) (|has| |#1| (-322))) ELT)) (-2573 (((-85) $ $) 39 (OR (|has| |#1| (-760)) (|has| |#1| (-322))) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 38 (OR (|has| |#1| (-760)) (|has| |#1| (-322))) ELT)) (-2691 (((-85) $ $) 40 T ELT)) (-3956 (($ $ $) 29 T ELT)) (** (($ $ (-834)) 17 T ELT) (($ $ (-698)) 21 T ELT) (($ $ (-488)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-819 |#1|) (-113) (-1017)) (T -819)) +((-2688 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-4 *1 (-819 *3)))) (-2687 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1017)) (-4 *1 (-819 *3)))) (-2692 (*1 *2 *1) (-12 (-4 *1 (-819 *3)) (-4 *3 (-1017)) (-5 *2 (-1013 *3)))) (-2696 (*1 *2 *1 *3) (-12 (-4 *1 (-819 *3)) (-4 *3 (-1017)) (-5 *2 (-1013 *3)))) (-2691 (*1 *2 *1 *1) (-12 (-4 *1 (-819 *3)) (-4 *3 (-1017)) (-5 *2 (-85))))) +(-13 (-416) (-243 |t#1| |t#1|) (-10 -8 (-15 -2688 ($ (-587 |t#1|))) (-15 -2687 ($ (-587 (-587 |t#1|)))) (-15 -2692 ((-1013 |t#1|) $)) (-15 -2696 ((-1013 |t#1|) $ |t#1|)) (-15 -2691 ((-85) $ $)) (IF (|has| |t#1| (-760)) (-6 (-760)) |%noBranch|) (IF (|has| |t#1| (-322)) (-6 (-760)) |%noBranch|))) +(((-72) . T) ((-556 (-776)) . T) ((-243 |#1| |#1|) . T) ((-416) . T) ((-13) . T) ((-667) . T) ((-760) OR (|has| |#1| (-760)) (|has| |#1| (-322))) ((-763) OR (|has| |#1| (-760)) (|has| |#1| (-322))) ((-1029) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-2698 (((-587 (-587 (-698))) $) 163 T ELT)) (-2694 (((-587 (-698)) (-817 |#1|) $) 191 T ELT)) (-2693 (((-587 (-698)) (-817 |#1|) $) 192 T ELT)) (-2692 (((-1013 |#1|) $) 155 T ELT)) (-2699 (((-587 (-817 |#1|)) $) 152 T ELT)) (-3000 (((-817 |#1|) $ (-488)) 157 T ELT) (((-817 |#1|) $) 158 T ELT)) (-2697 (($ (-587 (-817 |#1|))) 165 T ELT)) (-3778 (((-698) $) 159 T ELT)) (-2695 (((-1013 (-1013 |#1|)) $) 189 T ELT)) (-2696 (((-1013 |#1|) $ |#1|) 180 T ELT) (((-1013 (-1013 |#1|)) $ (-1013 |#1|)) 201 T ELT) (((-1013 (-587 |#1|)) $ (-587 |#1|)) 204 T ELT)) (-3251 (((-85) (-817 |#1|) $) 140 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2689 (((-1189) $) 145 T ELT) (((-1189) $ (-488) (-488)) 205 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2701 (((-587 (-817 |#1|)) $) 146 T ELT)) (-3806 (((-817 |#1|) $ (-698)) 153 T ELT)) (-3955 (((-698) $) 160 T ELT)) (-3953 (((-776) $) 177 T ELT) (((-587 (-817 |#1|)) $) 28 T ELT) (($ (-587 (-817 |#1|))) 164 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2700 (((-587 |#1|) $) 162 T ELT)) (-3062 (((-85) $ $) 198 T ELT)) (-2690 (((-85) $ $) 195 T ELT)) (-2691 (((-85) $ $) 194 T ELT))) +(((-820 |#1|) (-13 (-1017) (-10 -8 (-15 -3953 ((-587 (-817 |#1|)) $)) (-15 -2701 ((-587 (-817 |#1|)) $)) (-15 -3806 ((-817 |#1|) $ (-698))) (-15 -3000 ((-817 |#1|) $ (-488))) (-15 -3000 ((-817 |#1|) $)) (-15 -3778 ((-698) $)) (-15 -3955 ((-698) $)) (-15 -2700 ((-587 |#1|) $)) (-15 -2699 ((-587 (-817 |#1|)) $)) (-15 -2698 ((-587 (-587 (-698))) $)) (-15 -3953 ($ (-587 (-817 |#1|)))) (-15 -2697 ($ (-587 (-817 |#1|)))) (-15 -2696 ((-1013 |#1|) $ |#1|)) (-15 -2695 ((-1013 (-1013 |#1|)) $)) (-15 -2696 ((-1013 (-1013 |#1|)) $ (-1013 |#1|))) (-15 -2696 ((-1013 (-587 |#1|)) $ (-587 |#1|))) (-15 -3251 ((-85) (-817 |#1|) $)) (-15 -2694 ((-587 (-698)) (-817 |#1|) $)) (-15 -2693 ((-587 (-698)) (-817 |#1|) $)) (-15 -2692 ((-1013 |#1|) $)) (-15 -2691 ((-85) $ $)) (-15 -2690 ((-85) $ $)) (-15 -2689 ((-1189) $)) (-15 -2689 ((-1189) $ (-488) (-488))))) (-1017)) (T -820)) +((-3953 (*1 *2 *1) (-12 (-5 *2 (-587 (-817 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1017)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-587 (-817 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1017)))) (-3806 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-5 *2 (-817 *4)) (-5 *1 (-820 *4)) (-4 *4 (-1017)))) (-3000 (*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-5 *2 (-817 *4)) (-5 *1 (-820 *4)) (-4 *4 (-1017)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-817 *3)) (-5 *1 (-820 *3)) (-4 *3 (-1017)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-820 *3)) (-4 *3 (-1017)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-820 *3)) (-4 *3 (-1017)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-820 *3)) (-4 *3 (-1017)))) (-2699 (*1 *2 *1) (-12 (-5 *2 (-587 (-817 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1017)))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-698)))) (-5 *1 (-820 *3)) (-4 *3 (-1017)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-587 (-817 *3))) (-4 *3 (-1017)) (-5 *1 (-820 *3)))) (-2697 (*1 *1 *2) (-12 (-5 *2 (-587 (-817 *3))) (-4 *3 (-1017)) (-5 *1 (-820 *3)))) (-2696 (*1 *2 *1 *3) (-12 (-5 *2 (-1013 *3)) (-5 *1 (-820 *3)) (-4 *3 (-1017)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-1013 (-1013 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1017)))) (-2696 (*1 *2 *1 *3) (-12 (-4 *4 (-1017)) (-5 *2 (-1013 (-1013 *4))) (-5 *1 (-820 *4)) (-5 *3 (-1013 *4)))) (-2696 (*1 *2 *1 *3) (-12 (-4 *4 (-1017)) (-5 *2 (-1013 (-587 *4))) (-5 *1 (-820 *4)) (-5 *3 (-587 *4)))) (-3251 (*1 *2 *3 *1) (-12 (-5 *3 (-817 *4)) (-4 *4 (-1017)) (-5 *2 (-85)) (-5 *1 (-820 *4)))) (-2694 (*1 *2 *3 *1) (-12 (-5 *3 (-817 *4)) (-4 *4 (-1017)) (-5 *2 (-587 (-698))) (-5 *1 (-820 *4)))) (-2693 (*1 *2 *3 *1) (-12 (-5 *3 (-817 *4)) (-4 *4 (-1017)) (-5 *2 (-587 (-698))) (-5 *1 (-820 *4)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-1013 *3)) (-5 *1 (-820 *3)) (-4 *3 (-1017)))) (-2691 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-820 *3)) (-4 *3 (-1017)))) (-2690 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-820 *3)) (-4 *3 (-1017)))) (-2689 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-820 *3)) (-4 *3 (-1017)))) (-2689 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-488)) (-5 *2 (-1189)) (-5 *1 (-820 *4)) (-4 *4 (-1017))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3936 (((-698)) NIL T ELT)) (-3336 (($ $ (-834)) NIL (|has| $ (-322)) ELT) (($ $) NIL T ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 $ #1#) $) NIL T ELT)) (-3162 (($ $) NIL T ELT)) (-1800 (($ (-1183 $)) NIL T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2570 (($ $ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3000 (($) NIL T ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-2839 (($) NIL T ELT)) (-1684 (((-85) $) NIL T ELT)) (-1772 (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-3778 (((-747 (-834)) $) NIL T ELT) (((-834) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2018 (($) NIL (|has| $ (-322)) ELT)) (-2016 (((-85) $) NIL (|has| $ (-322)) ELT)) (-3138 (($ $ (-834)) NIL (|has| $ (-322)) ELT) (($ $) NIL T ELT)) (-3451 (((-636 $) $) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2019 (((-1089 $) $ (-834)) NIL (|has| $ (-322)) ELT) (((-1089 $) $) NIL T ELT)) (-2015 (((-834) $) NIL T ELT)) (-1631 (((-1089 $) $) NIL (|has| $ (-322)) ELT)) (-1630 (((-3 (-1089 $) #1#) $ $) NIL (|has| $ (-322)) ELT) (((-1089 $) $) NIL (|has| $ (-322)) ELT)) (-1632 (($ $ (-1089 $)) NIL (|has| $ (-322)) ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3452 (($) NIL T CONST)) (-2405 (($ (-834)) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2414 (($) NIL (|has| $ (-322)) ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) NIL T ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-3937 (((-834)) NIL T ELT) (((-747 (-834))) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-1773 (((-3 (-698) #1#) $ $) NIL T ELT) (((-698) $) NIL T ELT)) (-3918 (((-107)) NIL T ELT)) (-3764 (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-3955 (((-834) $) NIL T ELT) (((-747 (-834)) $) NIL T ELT)) (-3191 (((-1089 $)) NIL T ELT)) (-1678 (($) NIL T ELT)) (-1633 (($) NIL (|has| $ (-322)) ELT)) (-3230 (((-634 $) (-1183 $)) NIL T ELT) (((-1183 $) $) NIL T ELT)) (-3978 (((-488) $) NIL T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT)) (-2708 (((-636 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 $) (-834)) NIL T ELT) (((-1183 $)) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3940 (((-85) $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-3935 (($ $ (-698)) NIL (|has| $ (-322)) ELT) (($ $) NIL (|has| $ (-322)) ELT)) (-2675 (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT))) +(((-821 |#1|) (-13 (-301) (-282 $) (-557 (-488))) (-834)) (T -821)) +NIL +((-2703 (((-3 (-587 (-1089 |#4|)) #1="failed") (-587 (-1089 |#4|)) (-1089 |#4|)) 164 T ELT)) (-2706 ((|#1|) 101 T ELT)) (-2705 (((-350 (-1089 |#4|)) (-1089 |#4|)) 173 T ELT)) (-2707 (((-350 (-1089 |#4|)) (-587 |#3|) (-1089 |#4|)) 83 T ELT)) (-2704 (((-350 (-1089 |#4|)) (-1089 |#4|)) 183 T ELT)) (-2702 (((-3 (-587 (-1089 |#4|)) #1#) (-587 (-1089 |#4|)) (-1089 |#4|) |#3|) 117 T ELT))) +(((-822 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2703 ((-3 (-587 (-1089 |#4|)) #1="failed") (-587 (-1089 |#4|)) (-1089 |#4|))) (-15 -2704 ((-350 (-1089 |#4|)) (-1089 |#4|))) (-15 -2705 ((-350 (-1089 |#4|)) (-1089 |#4|))) (-15 -2706 (|#1|)) (-15 -2702 ((-3 (-587 (-1089 |#4|)) #1#) (-587 (-1089 |#4|)) (-1089 |#4|) |#3|)) (-15 -2707 ((-350 (-1089 |#4|)) (-587 |#3|) (-1089 |#4|)))) (-825) (-721) (-760) (-865 |#1| |#2| |#3|)) (T -822)) +((-2707 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *7)) (-4 *7 (-760)) (-4 *5 (-825)) (-4 *6 (-721)) (-4 *8 (-865 *5 *6 *7)) (-5 *2 (-350 (-1089 *8))) (-5 *1 (-822 *5 *6 *7 *8)) (-5 *4 (-1089 *8)))) (-2702 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-587 (-1089 *7))) (-5 *3 (-1089 *7)) (-4 *7 (-865 *5 *6 *4)) (-4 *5 (-825)) (-4 *6 (-721)) (-4 *4 (-760)) (-5 *1 (-822 *5 *6 *4 *7)))) (-2706 (*1 *2) (-12 (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-825)) (-5 *1 (-822 *2 *3 *4 *5)) (-4 *5 (-865 *2 *3 *4)))) (-2705 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-865 *4 *5 *6)) (-5 *2 (-350 (-1089 *7))) (-5 *1 (-822 *4 *5 *6 *7)) (-5 *3 (-1089 *7)))) (-2704 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-865 *4 *5 *6)) (-5 *2 (-350 (-1089 *7))) (-5 *1 (-822 *4 *5 *6 *7)) (-5 *3 (-1089 *7)))) (-2703 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-1089 *7))) (-5 *3 (-1089 *7)) (-4 *7 (-865 *4 *5 *6)) (-4 *4 (-825)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-822 *4 *5 *6 *7))))) +((-2703 (((-3 (-587 (-1089 |#2|)) "failed") (-587 (-1089 |#2|)) (-1089 |#2|)) 39 T ELT)) (-2706 ((|#1|) 71 T ELT)) (-2705 (((-350 (-1089 |#2|)) (-1089 |#2|)) 125 T ELT)) (-2707 (((-350 (-1089 |#2|)) (-1089 |#2|)) 109 T ELT)) (-2704 (((-350 (-1089 |#2|)) (-1089 |#2|)) 136 T ELT))) +(((-823 |#1| |#2|) (-10 -7 (-15 -2703 ((-3 (-587 (-1089 |#2|)) "failed") (-587 (-1089 |#2|)) (-1089 |#2|))) (-15 -2704 ((-350 (-1089 |#2|)) (-1089 |#2|))) (-15 -2705 ((-350 (-1089 |#2|)) (-1089 |#2|))) (-15 -2706 (|#1|)) (-15 -2707 ((-350 (-1089 |#2|)) (-1089 |#2|)))) (-825) (-1159 |#1|)) (T -823)) +((-2707 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-1159 *4)) (-5 *2 (-350 (-1089 *5))) (-5 *1 (-823 *4 *5)) (-5 *3 (-1089 *5)))) (-2706 (*1 *2) (-12 (-4 *2 (-825)) (-5 *1 (-823 *2 *3)) (-4 *3 (-1159 *2)))) (-2705 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-1159 *4)) (-5 *2 (-350 (-1089 *5))) (-5 *1 (-823 *4 *5)) (-5 *3 (-1089 *5)))) (-2704 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-1159 *4)) (-5 *2 (-350 (-1089 *5))) (-5 *1 (-823 *4 *5)) (-5 *3 (-1089 *5)))) (-2703 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-1089 *5))) (-5 *3 (-1089 *5)) (-4 *5 (-1159 *4)) (-4 *4 (-825)) (-5 *1 (-823 *4 *5))))) +((-2710 (((-3 (-587 (-1089 $)) "failed") (-587 (-1089 $)) (-1089 $)) 46 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 18 T ELT)) (-2708 (((-636 $) $) 40 T ELT))) +(((-824 |#1|) (-10 -7 (-15 -2708 ((-636 |#1|) |#1|)) (-15 -2710 ((-3 (-587 (-1089 |#1|)) "failed") (-587 (-1089 |#1|)) (-1089 |#1|))) (-15 -2714 ((-1089 |#1|) (-1089 |#1|) (-1089 |#1|)))) (-825)) (T -824)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) 75 T ELT)) (-3781 (($ $) 66 T ELT)) (-3977 (((-350 $) $) 67 T ELT)) (-2710 (((-3 (-587 (-1089 $)) "failed") (-587 (-1089 $)) (-1089 $)) 72 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3729 (((-85) $) 68 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-1899 (($ $ $) 60 T ELT) (($ (-587 $)) 59 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 58 T ELT)) (-3150 (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) 73 T ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) 74 T ELT)) (-3738 (((-350 $) $) 65 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-2709 (((-3 (-1183 $) "failed") (-634 $)) 71 (|has| $ (-118)) ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT)) (-2708 (((-636 $) $) 70 (|has| $ (-118)) ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-825) (-113)) (T -825)) +((-2714 (*1 *2 *2 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-825)))) (-2713 (*1 *2 *3) (-12 (-4 *1 (-825)) (-5 *2 (-350 (-1089 *1))) (-5 *3 (-1089 *1)))) (-2712 (*1 *2 *3) (-12 (-4 *1 (-825)) (-5 *2 (-350 (-1089 *1))) (-5 *3 (-1089 *1)))) (-2711 (*1 *2 *3) (-12 (-4 *1 (-825)) (-5 *2 (-350 (-1089 *1))) (-5 *3 (-1089 *1)))) (-2710 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-1089 *1))) (-5 *3 (-1089 *1)) (-4 *1 (-825)))) (-2709 (*1 *2 *3) (|partial| -12 (-5 *3 (-634 *1)) (-4 *1 (-118)) (-4 *1 (-825)) (-5 *2 (-1183 *1)))) (-2708 (*1 *2 *1) (-12 (-5 *2 (-636 *1)) (-4 *1 (-118)) (-4 *1 (-825))))) +(-13 (-1138) (-10 -8 (-15 -2713 ((-350 (-1089 $)) (-1089 $))) (-15 -2712 ((-350 (-1089 $)) (-1089 $))) (-15 -2711 ((-350 (-1089 $)) (-1089 $))) (-15 -2714 ((-1089 $) (-1089 $) (-1089 $))) (-15 -2710 ((-3 (-587 (-1089 $)) "failed") (-587 (-1089 $)) (-1089 $))) (IF (|has| $ (-118)) (PROGN (-15 -2709 ((-3 (-1183 $) "failed") (-634 $))) (-15 -2708 ((-636 $) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-559 (-488)) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-248) . T) ((-395) . T) ((-499) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 $) . T) ((-586 $) . T) ((-658 $) . T) ((-667) . T) ((-967 $) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T) ((-1138) . T)) +((-2716 (((-3 (-2 (|:| -3778 (-698)) (|:| -2388 |#5|)) #1="failed") (-285 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2715 (((-85) (-285 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3778 (((-3 (-698) #1#) (-285 |#2| |#3| |#4| |#5|)) 15 T ELT))) +(((-826 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3778 ((-3 (-698) #1="failed") (-285 |#2| |#3| |#4| |#5|))) (-15 -2715 ((-85) (-285 |#2| |#3| |#4| |#5|))) (-15 -2716 ((-3 (-2 (|:| -3778 (-698)) (|:| -2388 |#5|)) #1#) (-285 |#2| |#3| |#4| |#5|)))) (-13 (-499) (-954 (-488))) (-366 |#1|) (-1159 |#2|) (-1159 (-352 |#3|)) (-293 |#2| |#3| |#4|)) (T -826)) +((-2716 (*1 *2 *3) (|partial| -12 (-5 *3 (-285 *5 *6 *7 *8)) (-4 *5 (-366 *4)) (-4 *6 (-1159 *5)) (-4 *7 (-1159 (-352 *6))) (-4 *8 (-293 *5 *6 *7)) (-4 *4 (-13 (-499) (-954 (-488)))) (-5 *2 (-2 (|:| -3778 (-698)) (|:| -2388 *8))) (-5 *1 (-826 *4 *5 *6 *7 *8)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-285 *5 *6 *7 *8)) (-4 *5 (-366 *4)) (-4 *6 (-1159 *5)) (-4 *7 (-1159 (-352 *6))) (-4 *8 (-293 *5 *6 *7)) (-4 *4 (-13 (-499) (-954 (-488)))) (-5 *2 (-85)) (-5 *1 (-826 *4 *5 *6 *7 *8)))) (-3778 (*1 *2 *3) (|partial| -12 (-5 *3 (-285 *5 *6 *7 *8)) (-4 *5 (-366 *4)) (-4 *6 (-1159 *5)) (-4 *7 (-1159 (-352 *6))) (-4 *8 (-293 *5 *6 *7)) (-4 *4 (-13 (-499) (-954 (-488)))) (-5 *2 (-698)) (-5 *1 (-826 *4 *5 *6 *7 *8))))) +((-2716 (((-3 (-2 (|:| -3778 (-698)) (|:| -2388 |#3|)) #1="failed") (-285 (-352 (-488)) |#1| |#2| |#3|)) 64 T ELT)) (-2715 (((-85) (-285 (-352 (-488)) |#1| |#2| |#3|)) 16 T ELT)) (-3778 (((-3 (-698) #1#) (-285 (-352 (-488)) |#1| |#2| |#3|)) 14 T ELT))) +(((-827 |#1| |#2| |#3|) (-10 -7 (-15 -3778 ((-3 (-698) #1="failed") (-285 (-352 (-488)) |#1| |#2| |#3|))) (-15 -2715 ((-85) (-285 (-352 (-488)) |#1| |#2| |#3|))) (-15 -2716 ((-3 (-2 (|:| -3778 (-698)) (|:| -2388 |#3|)) #1#) (-285 (-352 (-488)) |#1| |#2| |#3|)))) (-1159 (-352 (-488))) (-1159 (-352 |#1|)) (-293 (-352 (-488)) |#1| |#2|)) (T -827)) +((-2716 (*1 *2 *3) (|partial| -12 (-5 *3 (-285 (-352 (-488)) *4 *5 *6)) (-4 *4 (-1159 (-352 (-488)))) (-4 *5 (-1159 (-352 *4))) (-4 *6 (-293 (-352 (-488)) *4 *5)) (-5 *2 (-2 (|:| -3778 (-698)) (|:| -2388 *6))) (-5 *1 (-827 *4 *5 *6)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-285 (-352 (-488)) *4 *5 *6)) (-4 *4 (-1159 (-352 (-488)))) (-4 *5 (-1159 (-352 *4))) (-4 *6 (-293 (-352 (-488)) *4 *5)) (-5 *2 (-85)) (-5 *1 (-827 *4 *5 *6)))) (-3778 (*1 *2 *3) (|partial| -12 (-5 *3 (-285 (-352 (-488)) *4 *5 *6)) (-4 *4 (-1159 (-352 (-488)))) (-4 *5 (-1159 (-352 *4))) (-4 *6 (-293 (-352 (-488)) *4 *5)) (-5 *2 (-698)) (-5 *1 (-827 *4 *5 *6))))) +((-2721 ((|#2| |#2|) 26 T ELT)) (-2719 (((-488) (-587 (-2 (|:| |den| (-488)) (|:| |gcdnum| (-488))))) 15 T ELT)) (-2717 (((-834) (-488)) 38 T ELT)) (-2720 (((-488) |#2|) 45 T ELT)) (-2718 (((-488) |#2|) 21 T ELT) (((-2 (|:| |den| (-488)) (|:| |gcdnum| (-488))) |#1|) 20 T ELT))) +(((-828 |#1| |#2|) (-10 -7 (-15 -2717 ((-834) (-488))) (-15 -2718 ((-2 (|:| |den| (-488)) (|:| |gcdnum| (-488))) |#1|)) (-15 -2718 ((-488) |#2|)) (-15 -2719 ((-488) (-587 (-2 (|:| |den| (-488)) (|:| |gcdnum| (-488)))))) (-15 -2720 ((-488) |#2|)) (-15 -2721 (|#2| |#2|))) (-1159 (-352 (-488))) (-1159 (-352 |#1|))) (T -828)) +((-2721 (*1 *2 *2) (-12 (-4 *3 (-1159 (-352 (-488)))) (-5 *1 (-828 *3 *2)) (-4 *2 (-1159 (-352 *3))))) (-2720 (*1 *2 *3) (-12 (-4 *4 (-1159 (-352 *2))) (-5 *2 (-488)) (-5 *1 (-828 *4 *3)) (-4 *3 (-1159 (-352 *4))))) (-2719 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| |den| (-488)) (|:| |gcdnum| (-488))))) (-4 *4 (-1159 (-352 *2))) (-5 *2 (-488)) (-5 *1 (-828 *4 *5)) (-4 *5 (-1159 (-352 *4))))) (-2718 (*1 *2 *3) (-12 (-4 *4 (-1159 (-352 *2))) (-5 *2 (-488)) (-5 *1 (-828 *4 *3)) (-4 *3 (-1159 (-352 *4))))) (-2718 (*1 *2 *3) (-12 (-4 *3 (-1159 (-352 (-488)))) (-5 *2 (-2 (|:| |den| (-488)) (|:| |gcdnum| (-488)))) (-5 *1 (-828 *3 *4)) (-4 *4 (-1159 (-352 *3))))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-488)) (-4 *4 (-1159 (-352 *3))) (-5 *2 (-834)) (-5 *1 (-828 *4 *5)) (-4 *5 (-1159 (-352 *4)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3135 ((|#1| $) 99 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2570 (($ $ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) 93 T ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-2729 (($ |#1| (-350 |#1|)) 91 T ELT)) (-2723 (((-1089 |#1|) |#1| |#1|) 52 T ELT)) (-2722 (($ $) 60 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2724 (((-488) $) 96 T ELT)) (-2725 (($ $ (-488)) 98 T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-2726 ((|#1| $) 95 T ELT)) (-2727 (((-350 |#1|) $) 94 T ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) 92 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-2728 (($ $) 49 T ELT)) (-3953 (((-776) $) 123 T ELT) (($ (-488)) 72 T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ |#1|) 40 T ELT) (((-352 |#1|) $) 77 T ELT) (($ (-352 (-350 |#1|))) 85 T ELT)) (-3132 (((-698)) 70 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 12 T CONST)) (-3062 (((-85) $ $) 86 T ELT)) (-3956 (($ $ $) NIL T ELT)) (-3843 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 48 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) +(((-829 |#1|) (-13 (-314) (-38 |#1|) (-10 -8 (-15 -3953 ((-352 |#1|) $)) (-15 -3953 ($ (-352 (-350 |#1|)))) (-15 -2728 ($ $)) (-15 -2727 ((-350 |#1|) $)) (-15 -2726 (|#1| $)) (-15 -2725 ($ $ (-488))) (-15 -2724 ((-488) $)) (-15 -2723 ((-1089 |#1|) |#1| |#1|)) (-15 -2722 ($ $)) (-15 -2729 ($ |#1| (-350 |#1|))) (-15 -3135 (|#1| $)))) (-260)) (T -829)) +((-3953 (*1 *2 *1) (-12 (-5 *2 (-352 *3)) (-5 *1 (-829 *3)) (-4 *3 (-260)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-352 (-350 *3))) (-4 *3 (-260)) (-5 *1 (-829 *3)))) (-2728 (*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-260)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-350 *3)) (-5 *1 (-829 *3)) (-4 *3 (-260)))) (-2726 (*1 *2 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-260)))) (-2725 (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-829 *3)) (-4 *3 (-260)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-829 *3)) (-4 *3 (-260)))) (-2723 (*1 *2 *3 *3) (-12 (-5 *2 (-1089 *3)) (-5 *1 (-829 *3)) (-4 *3 (-260)))) (-2722 (*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-260)))) (-2729 (*1 *1 *2 *3) (-12 (-5 *3 (-350 *2)) (-4 *2 (-260)) (-5 *1 (-829 *2)))) (-3135 (*1 *2 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-260))))) +((-2729 (((-51) (-861 |#1|) (-350 (-861 |#1|)) (-1094)) 17 T ELT) (((-51) (-352 (-861 |#1|)) (-1094)) 18 T ELT))) +(((-830 |#1|) (-10 -7 (-15 -2729 ((-51) (-352 (-861 |#1|)) (-1094))) (-15 -2729 ((-51) (-861 |#1|) (-350 (-861 |#1|)) (-1094)))) (-13 (-260) (-120))) (T -830)) +((-2729 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-350 (-861 *6))) (-5 *5 (-1094)) (-5 *3 (-861 *6)) (-4 *6 (-13 (-260) (-120))) (-5 *2 (-51)) (-5 *1 (-830 *6)))) (-2729 (*1 *2 *3 *4) (-12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-120))) (-5 *2 (-51)) (-5 *1 (-830 *5))))) +((-2730 ((|#4| (-587 |#4|)) 148 T ELT) (((-1089 |#4|) (-1089 |#4|) (-1089 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3150 (((-1089 |#4|) (-587 (-1089 |#4|))) 141 T ELT) (((-1089 |#4|) (-1089 |#4|) (-1089 |#4|)) 61 T ELT) ((|#4| (-587 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) +(((-831 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3150 (|#4| |#4| |#4|)) (-15 -3150 (|#4| (-587 |#4|))) (-15 -3150 ((-1089 |#4|) (-1089 |#4|) (-1089 |#4|))) (-15 -3150 ((-1089 |#4|) (-587 (-1089 |#4|)))) (-15 -2730 (|#4| |#4| |#4|)) (-15 -2730 ((-1089 |#4|) (-1089 |#4|) (-1089 |#4|))) (-15 -2730 (|#4| (-587 |#4|)))) (-721) (-760) (-260) (-865 |#3| |#1| |#2|)) (T -831)) +((-2730 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-865 *6 *4 *5)) (-5 *1 (-831 *4 *5 *6 *2)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-260)))) (-2730 (*1 *2 *2 *2) (-12 (-5 *2 (-1089 *6)) (-4 *6 (-865 *5 *3 *4)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *5 (-260)) (-5 *1 (-831 *3 *4 *5 *6)))) (-2730 (*1 *2 *2 *2) (-12 (-4 *3 (-721)) (-4 *4 (-760)) (-4 *5 (-260)) (-5 *1 (-831 *3 *4 *5 *2)) (-4 *2 (-865 *5 *3 *4)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-587 (-1089 *7))) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-260)) (-5 *2 (-1089 *7)) (-5 *1 (-831 *4 *5 *6 *7)) (-4 *7 (-865 *6 *4 *5)))) (-3150 (*1 *2 *2 *2) (-12 (-5 *2 (-1089 *6)) (-4 *6 (-865 *5 *3 *4)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *5 (-260)) (-5 *1 (-831 *3 *4 *5 *6)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-865 *6 *4 *5)) (-5 *1 (-831 *4 *5 *6 *2)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-260)))) (-3150 (*1 *2 *2 *2) (-12 (-4 *3 (-721)) (-4 *4 (-760)) (-4 *5 (-260)) (-5 *1 (-831 *3 *4 *5 *2)) (-4 *2 (-865 *5 *3 *4))))) +((-2743 (((-820 (-488)) (-888)) 38 T ELT) (((-820 (-488)) (-587 (-488))) 34 T ELT)) (-2731 (((-820 (-488)) (-587 (-488))) 66 T ELT) (((-820 (-488)) (-834)) 67 T ELT)) (-2742 (((-820 (-488))) 39 T ELT)) (-2740 (((-820 (-488))) 53 T ELT) (((-820 (-488)) (-587 (-488))) 52 T ELT)) (-2739 (((-820 (-488))) 51 T ELT) (((-820 (-488)) (-587 (-488))) 50 T ELT)) (-2738 (((-820 (-488))) 49 T ELT) (((-820 (-488)) (-587 (-488))) 48 T ELT)) (-2737 (((-820 (-488))) 47 T ELT) (((-820 (-488)) (-587 (-488))) 46 T ELT)) (-2736 (((-820 (-488))) 45 T ELT) (((-820 (-488)) (-587 (-488))) 44 T ELT)) (-2741 (((-820 (-488))) 55 T ELT) (((-820 (-488)) (-587 (-488))) 54 T ELT)) (-2735 (((-820 (-488)) (-587 (-488))) 71 T ELT) (((-820 (-488)) (-834)) 73 T ELT)) (-2734 (((-820 (-488)) (-587 (-488))) 68 T ELT) (((-820 (-488)) (-834)) 69 T ELT)) (-2732 (((-820 (-488)) (-587 (-488))) 64 T ELT) (((-820 (-488)) (-834)) 65 T ELT)) (-2733 (((-820 (-488)) (-587 (-834))) 57 T ELT))) +(((-832) (-10 -7 (-15 -2731 ((-820 (-488)) (-834))) (-15 -2731 ((-820 (-488)) (-587 (-488)))) (-15 -2732 ((-820 (-488)) (-834))) (-15 -2732 ((-820 (-488)) (-587 (-488)))) (-15 -2733 ((-820 (-488)) (-587 (-834)))) (-15 -2734 ((-820 (-488)) (-834))) (-15 -2734 ((-820 (-488)) (-587 (-488)))) (-15 -2735 ((-820 (-488)) (-834))) (-15 -2735 ((-820 (-488)) (-587 (-488)))) (-15 -2736 ((-820 (-488)) (-587 (-488)))) (-15 -2736 ((-820 (-488)))) (-15 -2737 ((-820 (-488)) (-587 (-488)))) (-15 -2737 ((-820 (-488)))) (-15 -2738 ((-820 (-488)) (-587 (-488)))) (-15 -2738 ((-820 (-488)))) (-15 -2739 ((-820 (-488)) (-587 (-488)))) (-15 -2739 ((-820 (-488)))) (-15 -2740 ((-820 (-488)) (-587 (-488)))) (-15 -2740 ((-820 (-488)))) (-15 -2741 ((-820 (-488)) (-587 (-488)))) (-15 -2741 ((-820 (-488)))) (-15 -2742 ((-820 (-488)))) (-15 -2743 ((-820 (-488)) (-587 (-488)))) (-15 -2743 ((-820 (-488)) (-888))))) (T -832)) +((-2743 (*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2742 (*1 *2) (-12 (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2741 (*1 *2) (-12 (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2741 (*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2740 (*1 *2) (-12 (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2740 (*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2739 (*1 *2) (-12 (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2738 (*1 *2) (-12 (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2737 (*1 *2) (-12 (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2736 (*1 *2) (-12 (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-587 (-834))) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-820 (-488))) (-5 *1 (-832))))) +((-2745 (((-587 (-861 |#1|)) (-587 (-861 |#1|)) (-587 (-1094))) 14 T ELT)) (-2744 (((-587 (-861 |#1|)) (-587 (-861 |#1|)) (-587 (-1094))) 13 T ELT))) +(((-833 |#1|) (-10 -7 (-15 -2744 ((-587 (-861 |#1|)) (-587 (-861 |#1|)) (-587 (-1094)))) (-15 -2745 ((-587 (-861 |#1|)) (-587 (-861 |#1|)) (-587 (-1094))))) (-395)) (T -833)) +((-2745 (*1 *2 *2 *3) (-12 (-5 *2 (-587 (-861 *4))) (-5 *3 (-587 (-1094))) (-4 *4 (-395)) (-5 *1 (-833 *4)))) (-2744 (*1 *2 *2 *3) (-12 (-5 *2 (-587 (-861 *4))) (-5 *3 (-587 (-1094))) (-4 *4 (-395)) (-5 *1 (-833 *4))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3473 (((-3 $ "failed") $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3150 (($ $ $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2672 (($) NIL T CONST)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-698)) NIL T ELT) (($ $ (-834)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-834) (-13 (-722) (-667) (-10 -8 (-15 -3150 ($ $ $)) (-6 (-4003 "*"))))) (T -834)) +((-3150 (*1 *1 *1 *1) (-5 *1 (-834)))) +((-698) (|%ilt| 0 |#1|)) +((-3953 (((-267 |#1|) (-420)) 16 T ELT))) +(((-835 |#1|) (-10 -7 (-15 -3953 ((-267 |#1|) (-420)))) (-499)) (T -835)) +((-3953 (*1 *2 *3) (-12 (-5 *3 (-420)) (-5 *2 (-267 *4)) (-5 *1 (-835 *4)) (-4 *4 (-499))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 66 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-1899 (($ $ $) 60 T ELT) (($ (-587 $)) 59 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 58 T ELT)) (-3150 (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 65 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-836) (-113)) (T -836)) +((-2747 (*1 *2 *3) (-12 (-4 *1 (-836)) (-5 *2 (-2 (|:| -3961 (-587 *1)) (|:| -2414 *1))) (-5 *3 (-587 *1)))) (-2746 (*1 *2 *3 *1) (-12 (-4 *1 (-836)) (-5 *2 (-636 (-587 *1))) (-5 *3 (-587 *1))))) +(-13 (-395) (-10 -8 (-15 -2747 ((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $))) (-15 -2746 ((-636 (-587 $)) (-587 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-559 (-488)) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-248) . T) ((-395) . T) ((-499) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 $) . T) ((-586 $) . T) ((-658 $) . T) ((-667) . T) ((-967 $) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-3111 (((-1089 |#2|) (-587 |#2|) (-587 |#2|)) 17 T ELT) (((-1152 |#1| |#2|) (-1152 |#1| |#2|) (-587 |#2|) (-587 |#2|)) 13 T ELT))) +(((-837 |#1| |#2|) (-10 -7 (-15 -3111 ((-1152 |#1| |#2|) (-1152 |#1| |#2|) (-587 |#2|) (-587 |#2|))) (-15 -3111 ((-1089 |#2|) (-587 |#2|) (-587 |#2|)))) (-1094) (-314)) (T -837)) +((-3111 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *5)) (-4 *5 (-314)) (-5 *2 (-1089 *5)) (-5 *1 (-837 *4 *5)) (-14 *4 (-1094)))) (-3111 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1152 *4 *5)) (-5 *3 (-587 *5)) (-14 *4 (-1094)) (-4 *5 (-314)) (-5 *1 (-837 *4 *5))))) +((-2748 ((|#2| (-587 |#1|) (-587 |#1|)) 28 T ELT))) +(((-838 |#1| |#2|) (-10 -7 (-15 -2748 (|#2| (-587 |#1|) (-587 |#1|)))) (-314) (-1159 |#1|)) (T -838)) +((-2748 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-314)) (-4 *2 (-1159 *4)) (-5 *1 (-838 *4 *2))))) +((-2750 (((-488) (-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|))))))))) (-1077)) 175 T ELT)) (-2769 ((|#4| |#4|) 194 T ELT)) (-2754 (((-587 (-352 (-861 |#1|))) (-587 (-1094))) 146 T ELT)) (-2768 (((-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488)))) (-634 |#4|) (-587 (-352 (-861 |#1|))) (-587 (-587 |#4|)) (-698) (-698) (-488)) 88 T ELT)) (-2758 (((-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|)))))) (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|)))))) (-587 |#4|)) 69 T ELT)) (-2767 (((-634 |#4|) (-634 |#4|) (-587 |#4|)) 65 T ELT)) (-2751 (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|))))))))) (-1077)) 187 T ELT)) (-2749 (((-488) (-634 |#4|) (-834) (-1077)) 167 T ELT) (((-488) (-634 |#4|) (-587 (-1094)) (-834) (-1077)) 166 T ELT) (((-488) (-634 |#4|) (-587 |#4|) (-834) (-1077)) 165 T ELT) (((-488) (-634 |#4|) (-1077)) 154 T ELT) (((-488) (-634 |#4|) (-587 (-1094)) (-1077)) 153 T ELT) (((-488) (-634 |#4|) (-587 |#4|) (-1077)) 152 T ELT) (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|))))))))) (-634 |#4|) (-834)) 151 T ELT) (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|))))))))) (-634 |#4|) (-587 (-1094)) (-834)) 150 T ELT) (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|))))))))) (-634 |#4|) (-587 |#4|) (-834)) 149 T ELT) (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|))))))))) (-634 |#4|)) 148 T ELT) (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|))))))))) (-634 |#4|) (-587 (-1094))) 147 T ELT) (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|))))))))) (-634 |#4|) (-587 |#4|)) 143 T ELT)) (-2755 ((|#4| (-861 |#1|)) 80 T ELT)) (-2765 (((-85) (-587 |#4|) (-587 (-587 |#4|))) 191 T ELT)) (-2764 (((-587 (-587 (-488))) (-488) (-488)) 161 T ELT)) (-2763 (((-587 (-587 |#4|)) (-587 (-587 |#4|))) 106 T ELT)) (-2762 (((-698) (-587 (-2 (|:| -3114 (-698)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488)))))) (|:| |fgb| (-587 |#4|))))) 100 T ELT)) (-2761 (((-698) (-587 (-2 (|:| -3114 (-698)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488)))))) (|:| |fgb| (-587 |#4|))))) 99 T ELT)) (-2770 (((-85) (-587 (-861 |#1|))) 19 T ELT) (((-85) (-587 |#4|)) 15 T ELT)) (-2756 (((-2 (|:| |sysok| (-85)) (|:| |z0| (-587 |#4|)) (|:| |n0| (-587 |#4|))) (-587 |#4|) (-587 |#4|)) 84 T ELT)) (-2760 (((-587 |#4|) |#4|) 57 T ELT)) (-2753 (((-587 (-352 (-861 |#1|))) (-587 |#4|)) 142 T ELT) (((-634 (-352 (-861 |#1|))) (-634 |#4|)) 66 T ELT) (((-352 (-861 |#1|)) |#4|) 139 T ELT)) (-2752 (((-2 (|:| |rgl| (-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|)))))))))) (|:| |rgsz| (-488))) (-634 |#4|) (-587 (-352 (-861 |#1|))) (-698) (-1077) (-488)) 112 T ELT)) (-2757 (((-587 (-2 (|:| -3114 (-698)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488)))))) (|:| |fgb| (-587 |#4|)))) (-634 |#4|) (-698)) 98 T ELT)) (-2766 (((-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488))))) (-634 |#4|) (-698)) 121 T ELT)) (-2759 (((-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|)))))) (-2 (|:| |mat| (-634 (-352 (-861 |#1|)))) (|:| |vec| (-587 (-352 (-861 |#1|)))) (|:| -3114 (-698)) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488))))) 56 T ELT))) +(((-839 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2749 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|))))))))) (-634 |#4|) (-587 |#4|))) (-15 -2749 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|))))))))) (-634 |#4|) (-587 (-1094)))) (-15 -2749 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|))))))))) (-634 |#4|))) (-15 -2749 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|))))))))) (-634 |#4|) (-587 |#4|) (-834))) (-15 -2749 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|))))))))) (-634 |#4|) (-587 (-1094)) (-834))) (-15 -2749 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|))))))))) (-634 |#4|) (-834))) (-15 -2749 ((-488) (-634 |#4|) (-587 |#4|) (-1077))) (-15 -2749 ((-488) (-634 |#4|) (-587 (-1094)) (-1077))) (-15 -2749 ((-488) (-634 |#4|) (-1077))) (-15 -2749 ((-488) (-634 |#4|) (-587 |#4|) (-834) (-1077))) (-15 -2749 ((-488) (-634 |#4|) (-587 (-1094)) (-834) (-1077))) (-15 -2749 ((-488) (-634 |#4|) (-834) (-1077))) (-15 -2750 ((-488) (-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|))))))))) (-1077))) (-15 -2751 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|))))))))) (-1077))) (-15 -2752 ((-2 (|:| |rgl| (-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|)))))))))) (|:| |rgsz| (-488))) (-634 |#4|) (-587 (-352 (-861 |#1|))) (-698) (-1077) (-488))) (-15 -2753 ((-352 (-861 |#1|)) |#4|)) (-15 -2753 ((-634 (-352 (-861 |#1|))) (-634 |#4|))) (-15 -2753 ((-587 (-352 (-861 |#1|))) (-587 |#4|))) (-15 -2754 ((-587 (-352 (-861 |#1|))) (-587 (-1094)))) (-15 -2755 (|#4| (-861 |#1|))) (-15 -2756 ((-2 (|:| |sysok| (-85)) (|:| |z0| (-587 |#4|)) (|:| |n0| (-587 |#4|))) (-587 |#4|) (-587 |#4|))) (-15 -2757 ((-587 (-2 (|:| -3114 (-698)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488)))))) (|:| |fgb| (-587 |#4|)))) (-634 |#4|) (-698))) (-15 -2758 ((-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|)))))) (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|)))))) (-587 |#4|))) (-15 -2759 ((-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|)))))) (-2 (|:| |mat| (-634 (-352 (-861 |#1|)))) (|:| |vec| (-587 (-352 (-861 |#1|)))) (|:| -3114 (-698)) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488)))))) (-15 -2760 ((-587 |#4|) |#4|)) (-15 -2761 ((-698) (-587 (-2 (|:| -3114 (-698)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488)))))) (|:| |fgb| (-587 |#4|)))))) (-15 -2762 ((-698) (-587 (-2 (|:| -3114 (-698)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488)))))) (|:| |fgb| (-587 |#4|)))))) (-15 -2763 ((-587 (-587 |#4|)) (-587 (-587 |#4|)))) (-15 -2764 ((-587 (-587 (-488))) (-488) (-488))) (-15 -2765 ((-85) (-587 |#4|) (-587 (-587 |#4|)))) (-15 -2766 ((-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488))))) (-634 |#4|) (-698))) (-15 -2767 ((-634 |#4|) (-634 |#4|) (-587 |#4|))) (-15 -2768 ((-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-861 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 |#1|)))) (|:| -2017 (-587 (-1183 (-352 (-861 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488)))) (-634 |#4|) (-587 (-352 (-861 |#1|))) (-587 (-587 |#4|)) (-698) (-698) (-488))) (-15 -2769 (|#4| |#4|)) (-15 -2770 ((-85) (-587 |#4|))) (-15 -2770 ((-85) (-587 (-861 |#1|))))) (-13 (-260) (-120)) (-13 (-760) (-557 (-1094))) (-721) (-865 |#1| |#3| |#2|)) (T -839)) +((-2770 (*1 *2 *3) (-12 (-5 *3 (-587 (-861 *4))) (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *2 (-85)) (-5 *1 (-839 *4 *5 *6 *7)) (-4 *7 (-865 *4 *6 *5)))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-865 *4 *6 *5)) (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *2 (-85)) (-5 *1 (-839 *4 *5 *6 *7)))) (-2769 (*1 *2 *2) (-12 (-4 *3 (-13 (-260) (-120))) (-4 *4 (-13 (-760) (-557 (-1094)))) (-4 *5 (-721)) (-5 *1 (-839 *3 *4 *5 *2)) (-4 *2 (-865 *3 *5 *4)))) (-2768 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488))))) (-5 *4 (-634 *12)) (-5 *5 (-587 (-352 (-861 *9)))) (-5 *6 (-587 (-587 *12))) (-5 *7 (-698)) (-5 *8 (-488)) (-4 *9 (-13 (-260) (-120))) (-4 *12 (-865 *9 *11 *10)) (-4 *10 (-13 (-760) (-557 (-1094)))) (-4 *11 (-721)) (-5 *2 (-2 (|:| |eqzro| (-587 *12)) (|:| |neqzro| (-587 *12)) (|:| |wcond| (-587 (-861 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 *9)))) (|:| -2017 (-587 (-1183 (-352 (-861 *9))))))))) (-5 *1 (-839 *9 *10 *11 *12)))) (-2767 (*1 *2 *2 *3) (-12 (-5 *2 (-634 *7)) (-5 *3 (-587 *7)) (-4 *7 (-865 *4 *6 *5)) (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *1 (-839 *4 *5 *6 *7)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-698)) (-4 *8 (-865 *5 *7 *6)) (-4 *5 (-13 (-260) (-120))) (-4 *6 (-13 (-760) (-557 (-1094)))) (-4 *7 (-721)) (-5 *2 (-587 (-2 (|:| |det| *8) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488)))))) (-5 *1 (-839 *5 *6 *7 *8)))) (-2765 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-587 *8))) (-5 *3 (-587 *8)) (-4 *8 (-865 *5 *7 *6)) (-4 *5 (-13 (-260) (-120))) (-4 *6 (-13 (-760) (-557 (-1094)))) (-4 *7 (-721)) (-5 *2 (-85)) (-5 *1 (-839 *5 *6 *7 *8)))) (-2764 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *2 (-587 (-587 (-488)))) (-5 *1 (-839 *4 *5 *6 *7)) (-5 *3 (-488)) (-4 *7 (-865 *4 *6 *5)))) (-2763 (*1 *2 *2) (-12 (-5 *2 (-587 (-587 *6))) (-4 *6 (-865 *3 *5 *4)) (-4 *3 (-13 (-260) (-120))) (-4 *4 (-13 (-760) (-557 (-1094)))) (-4 *5 (-721)) (-5 *1 (-839 *3 *4 *5 *6)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -3114 (-698)) (|:| |eqns| (-587 (-2 (|:| |det| *7) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488)))))) (|:| |fgb| (-587 *7))))) (-4 *7 (-865 *4 *6 *5)) (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *2 (-698)) (-5 *1 (-839 *4 *5 *6 *7)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -3114 (-698)) (|:| |eqns| (-587 (-2 (|:| |det| *7) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488)))))) (|:| |fgb| (-587 *7))))) (-4 *7 (-865 *4 *6 *5)) (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *2 (-698)) (-5 *1 (-839 *4 *5 *6 *7)))) (-2760 (*1 *2 *3) (-12 (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *2 (-587 *3)) (-5 *1 (-839 *4 *5 *6 *3)) (-4 *3 (-865 *4 *6 *5)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-634 (-352 (-861 *4)))) (|:| |vec| (-587 (-352 (-861 *4)))) (|:| -3114 (-698)) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488))))) (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *2 (-2 (|:| |partsol| (-1183 (-352 (-861 *4)))) (|:| -2017 (-587 (-1183 (-352 (-861 *4))))))) (-5 *1 (-839 *4 *5 *6 *7)) (-4 *7 (-865 *4 *6 *5)))) (-2758 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1183 (-352 (-861 *4)))) (|:| -2017 (-587 (-1183 (-352 (-861 *4))))))) (-5 *3 (-587 *7)) (-4 *4 (-13 (-260) (-120))) (-4 *7 (-865 *4 *6 *5)) (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *1 (-839 *4 *5 *6 *7)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-4 *8 (-865 *5 *7 *6)) (-4 *5 (-13 (-260) (-120))) (-4 *6 (-13 (-760) (-557 (-1094)))) (-4 *7 (-721)) (-5 *2 (-587 (-2 (|:| -3114 (-698)) (|:| |eqns| (-587 (-2 (|:| |det| *8) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488)))))) (|:| |fgb| (-587 *8))))) (-5 *1 (-839 *5 *6 *7 *8)) (-5 *4 (-698)))) (-2756 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-4 *7 (-865 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-587 *7)) (|:| |n0| (-587 *7)))) (-5 *1 (-839 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-861 *4)) (-4 *4 (-13 (-260) (-120))) (-4 *2 (-865 *4 *6 *5)) (-5 *1 (-839 *4 *5 *6 *2)) (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-587 (-1094))) (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *2 (-587 (-352 (-861 *4)))) (-5 *1 (-839 *4 *5 *6 *7)) (-4 *7 (-865 *4 *6 *5)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-865 *4 *6 *5)) (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *2 (-587 (-352 (-861 *4)))) (-5 *1 (-839 *4 *5 *6 *7)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-865 *4 *6 *5)) (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *2 (-634 (-352 (-861 *4)))) (-5 *1 (-839 *4 *5 *6 *7)))) (-2753 (*1 *2 *3) (-12 (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *2 (-352 (-861 *4))) (-5 *1 (-839 *4 *5 *6 *3)) (-4 *3 (-865 *4 *6 *5)))) (-2752 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-634 *11)) (-5 *4 (-587 (-352 (-861 *8)))) (-5 *5 (-698)) (-5 *6 (-1077)) (-4 *8 (-13 (-260) (-120))) (-4 *11 (-865 *8 *10 *9)) (-4 *9 (-13 (-760) (-557 (-1094)))) (-4 *10 (-721)) (-5 *2 (-2 (|:| |rgl| (-587 (-2 (|:| |eqzro| (-587 *11)) (|:| |neqzro| (-587 *11)) (|:| |wcond| (-587 (-861 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 *8)))) (|:| -2017 (-587 (-1183 (-352 (-861 *8)))))))))) (|:| |rgsz| (-488)))) (-5 *1 (-839 *8 *9 *10 *11)) (-5 *7 (-488)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *7)) (|:| |neqzro| (-587 *7)) (|:| |wcond| (-587 (-861 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 *4)))) (|:| -2017 (-587 (-1183 (-352 (-861 *4)))))))))) (-5 *1 (-839 *4 *5 *6 *7)) (-4 *7 (-865 *4 *6 *5)))) (-2750 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8)) (|:| |wcond| (-587 (-861 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 *5)))) (|:| -2017 (-587 (-1183 (-352 (-861 *5)))))))))) (-5 *4 (-1077)) (-4 *5 (-13 (-260) (-120))) (-4 *8 (-865 *5 *7 *6)) (-4 *6 (-13 (-760) (-557 (-1094)))) (-4 *7 (-721)) (-5 *2 (-488)) (-5 *1 (-839 *5 *6 *7 *8)))) (-2749 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *9)) (-5 *4 (-834)) (-5 *5 (-1077)) (-4 *9 (-865 *6 *8 *7)) (-4 *6 (-13 (-260) (-120))) (-4 *7 (-13 (-760) (-557 (-1094)))) (-4 *8 (-721)) (-5 *2 (-488)) (-5 *1 (-839 *6 *7 *8 *9)))) (-2749 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-634 *10)) (-5 *4 (-587 (-1094))) (-5 *5 (-834)) (-5 *6 (-1077)) (-4 *10 (-865 *7 *9 *8)) (-4 *7 (-13 (-260) (-120))) (-4 *8 (-13 (-760) (-557 (-1094)))) (-4 *9 (-721)) (-5 *2 (-488)) (-5 *1 (-839 *7 *8 *9 *10)))) (-2749 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-634 *10)) (-5 *4 (-587 *10)) (-5 *5 (-834)) (-5 *6 (-1077)) (-4 *10 (-865 *7 *9 *8)) (-4 *7 (-13 (-260) (-120))) (-4 *8 (-13 (-760) (-557 (-1094)))) (-4 *9 (-721)) (-5 *2 (-488)) (-5 *1 (-839 *7 *8 *9 *10)))) (-2749 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-1077)) (-4 *8 (-865 *5 *7 *6)) (-4 *5 (-13 (-260) (-120))) (-4 *6 (-13 (-760) (-557 (-1094)))) (-4 *7 (-721)) (-5 *2 (-488)) (-5 *1 (-839 *5 *6 *7 *8)))) (-2749 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *9)) (-5 *4 (-587 (-1094))) (-5 *5 (-1077)) (-4 *9 (-865 *6 *8 *7)) (-4 *6 (-13 (-260) (-120))) (-4 *7 (-13 (-760) (-557 (-1094)))) (-4 *8 (-721)) (-5 *2 (-488)) (-5 *1 (-839 *6 *7 *8 *9)))) (-2749 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *9)) (-5 *4 (-587 *9)) (-5 *5 (-1077)) (-4 *9 (-865 *6 *8 *7)) (-4 *6 (-13 (-260) (-120))) (-4 *7 (-13 (-760) (-557 (-1094)))) (-4 *8 (-721)) (-5 *2 (-488)) (-5 *1 (-839 *6 *7 *8 *9)))) (-2749 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-834)) (-4 *8 (-865 *5 *7 *6)) (-4 *5 (-13 (-260) (-120))) (-4 *6 (-13 (-760) (-557 (-1094)))) (-4 *7 (-721)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8)) (|:| |wcond| (-587 (-861 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 *5)))) (|:| -2017 (-587 (-1183 (-352 (-861 *5)))))))))) (-5 *1 (-839 *5 *6 *7 *8)))) (-2749 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *9)) (-5 *4 (-587 (-1094))) (-5 *5 (-834)) (-4 *9 (-865 *6 *8 *7)) (-4 *6 (-13 (-260) (-120))) (-4 *7 (-13 (-760) (-557 (-1094)))) (-4 *8 (-721)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *9)) (|:| |neqzro| (-587 *9)) (|:| |wcond| (-587 (-861 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 *6)))) (|:| -2017 (-587 (-1183 (-352 (-861 *6)))))))))) (-5 *1 (-839 *6 *7 *8 *9)))) (-2749 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *9)) (-5 *5 (-834)) (-4 *9 (-865 *6 *8 *7)) (-4 *6 (-13 (-260) (-120))) (-4 *7 (-13 (-760) (-557 (-1094)))) (-4 *8 (-721)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *9)) (|:| |neqzro| (-587 *9)) (|:| |wcond| (-587 (-861 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 *6)))) (|:| -2017 (-587 (-1183 (-352 (-861 *6)))))))))) (-5 *1 (-839 *6 *7 *8 *9)) (-5 *4 (-587 *9)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-865 *4 *6 *5)) (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *7)) (|:| |neqzro| (-587 *7)) (|:| |wcond| (-587 (-861 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 *4)))) (|:| -2017 (-587 (-1183 (-352 (-861 *4)))))))))) (-5 *1 (-839 *4 *5 *6 *7)))) (-2749 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-587 (-1094))) (-4 *8 (-865 *5 *7 *6)) (-4 *5 (-13 (-260) (-120))) (-4 *6 (-13 (-760) (-557 (-1094)))) (-4 *7 (-721)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8)) (|:| |wcond| (-587 (-861 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 *5)))) (|:| -2017 (-587 (-1183 (-352 (-861 *5)))))))))) (-5 *1 (-839 *5 *6 *7 *8)))) (-2749 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-4 *8 (-865 *5 *7 *6)) (-4 *5 (-13 (-260) (-120))) (-4 *6 (-13 (-760) (-557 (-1094)))) (-4 *7 (-721)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8)) (|:| |wcond| (-587 (-861 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1183 (-352 (-861 *5)))) (|:| -2017 (-587 (-1183 (-352 (-861 *5)))))))))) (-5 *1 (-839 *5 *6 *7 *8)) (-5 *4 (-587 *8))))) +((-3881 (($ $ (-1005 (-181))) 125 T ELT) (($ $ (-1005 (-181)) (-1005 (-181))) 126 T ELT)) (-2902 (((-1005 (-181)) $) 73 T ELT)) (-2903 (((-1005 (-181)) $) 72 T ELT)) (-2794 (((-1005 (-181)) $) 74 T ELT)) (-2775 (((-488) (-488)) 66 T ELT)) (-2779 (((-488) (-488)) 61 T ELT)) (-2777 (((-488) (-488)) 64 T ELT)) (-2773 (((-85) (-85)) 68 T ELT)) (-2776 (((-488)) 65 T ELT)) (-3140 (($ $ (-1005 (-181))) 129 T ELT) (($ $) 130 T ELT)) (-2796 (($ (-1 (-858 (-181)) (-181)) (-1005 (-181))) 148 T ELT) (($ (-1 (-858 (-181)) (-181)) (-1005 (-181)) (-1005 (-181)) (-1005 (-181))) 149 T ELT)) (-2782 (($ (-1 (-181) (-181)) (-1005 (-181))) 156 T ELT) (($ (-1 (-181) (-181))) 160 T ELT)) (-2795 (($ (-1 (-181) (-181)) (-1005 (-181))) 144 T ELT) (($ (-1 (-181) (-181)) (-1005 (-181)) (-1005 (-181))) 145 T ELT) (($ (-587 (-1 (-181) (-181))) (-1005 (-181))) 153 T ELT) (($ (-587 (-1 (-181) (-181))) (-1005 (-181)) (-1005 (-181))) 154 T ELT) (($ (-1 (-181) (-181)) (-1 (-181) (-181)) (-1005 (-181))) 146 T ELT) (($ (-1 (-181) (-181)) (-1 (-181) (-181)) (-1005 (-181)) (-1005 (-181)) (-1005 (-181))) 147 T ELT) (($ $ (-1005 (-181))) 131 T ELT)) (-2781 (((-85) $) 69 T ELT)) (-2772 (((-488)) 70 T ELT)) (-2780 (((-488)) 59 T ELT)) (-2778 (((-488)) 62 T ELT)) (-2904 (((-587 (-587 (-858 (-181)))) $) 35 T ELT)) (-2771 (((-85) (-85)) 71 T ELT)) (-3953 (((-776) $) 174 T ELT)) (-2774 (((-85)) 67 T ELT))) +(((-840) (-13 (-870) (-10 -8 (-15 -2795 ($ (-1 (-181) (-181)) (-1005 (-181)))) (-15 -2795 ($ (-1 (-181) (-181)) (-1005 (-181)) (-1005 (-181)))) (-15 -2795 ($ (-587 (-1 (-181) (-181))) (-1005 (-181)))) (-15 -2795 ($ (-587 (-1 (-181) (-181))) (-1005 (-181)) (-1005 (-181)))) (-15 -2795 ($ (-1 (-181) (-181)) (-1 (-181) (-181)) (-1005 (-181)))) (-15 -2795 ($ (-1 (-181) (-181)) (-1 (-181) (-181)) (-1005 (-181)) (-1005 (-181)) (-1005 (-181)))) (-15 -2796 ($ (-1 (-858 (-181)) (-181)) (-1005 (-181)))) (-15 -2796 ($ (-1 (-858 (-181)) (-181)) (-1005 (-181)) (-1005 (-181)) (-1005 (-181)))) (-15 -2782 ($ (-1 (-181) (-181)) (-1005 (-181)))) (-15 -2782 ($ (-1 (-181) (-181)))) (-15 -2795 ($ $ (-1005 (-181)))) (-15 -2781 ((-85) $)) (-15 -3881 ($ $ (-1005 (-181)))) (-15 -3881 ($ $ (-1005 (-181)) (-1005 (-181)))) (-15 -3140 ($ $ (-1005 (-181)))) (-15 -3140 ($ $)) (-15 -2794 ((-1005 (-181)) $)) (-15 -2780 ((-488))) (-15 -2779 ((-488) (-488))) (-15 -2778 ((-488))) (-15 -2777 ((-488) (-488))) (-15 -2776 ((-488))) (-15 -2775 ((-488) (-488))) (-15 -2774 ((-85))) (-15 -2773 ((-85) (-85))) (-15 -2772 ((-488))) (-15 -2771 ((-85) (-85)))))) (T -840)) +((-2795 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-181) (-181))) (-5 *3 (-1005 (-181))) (-5 *1 (-840)))) (-2795 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-181) (-181))) (-5 *3 (-1005 (-181))) (-5 *1 (-840)))) (-2795 (*1 *1 *2 *3) (-12 (-5 *2 (-587 (-1 (-181) (-181)))) (-5 *3 (-1005 (-181))) (-5 *1 (-840)))) (-2795 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-587 (-1 (-181) (-181)))) (-5 *3 (-1005 (-181))) (-5 *1 (-840)))) (-2795 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-181) (-181))) (-5 *3 (-1005 (-181))) (-5 *1 (-840)))) (-2795 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-181) (-181))) (-5 *3 (-1005 (-181))) (-5 *1 (-840)))) (-2796 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-858 (-181)) (-181))) (-5 *3 (-1005 (-181))) (-5 *1 (-840)))) (-2796 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-858 (-181)) (-181))) (-5 *3 (-1005 (-181))) (-5 *1 (-840)))) (-2782 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-181) (-181))) (-5 *3 (-1005 (-181))) (-5 *1 (-840)))) (-2782 (*1 *1 *2) (-12 (-5 *2 (-1 (-181) (-181))) (-5 *1 (-840)))) (-2795 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 (-181))) (-5 *1 (-840)))) (-2781 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-840)))) (-3881 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 (-181))) (-5 *1 (-840)))) (-3881 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1005 (-181))) (-5 *1 (-840)))) (-3140 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 (-181))) (-5 *1 (-840)))) (-3140 (*1 *1 *1) (-5 *1 (-840))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-1005 (-181))) (-5 *1 (-840)))) (-2780 (*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-840)))) (-2779 (*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-840)))) (-2778 (*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-840)))) (-2777 (*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-840)))) (-2776 (*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-840)))) (-2775 (*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-840)))) (-2774 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840)))) (-2772 (*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-840)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840))))) +((-2782 (((-840) |#1| (-1094)) 17 T ELT) (((-840) |#1| (-1094) (-1005 (-181))) 21 T ELT)) (-2795 (((-840) |#1| |#1| (-1094) (-1005 (-181))) 19 T ELT) (((-840) |#1| (-1094) (-1005 (-181))) 15 T ELT))) +(((-841 |#1|) (-10 -7 (-15 -2795 ((-840) |#1| (-1094) (-1005 (-181)))) (-15 -2795 ((-840) |#1| |#1| (-1094) (-1005 (-181)))) (-15 -2782 ((-840) |#1| (-1094) (-1005 (-181)))) (-15 -2782 ((-840) |#1| (-1094)))) (-557 (-477))) (T -841)) +((-2782 (*1 *2 *3 *4) (-12 (-5 *4 (-1094)) (-5 *2 (-840)) (-5 *1 (-841 *3)) (-4 *3 (-557 (-477))))) (-2782 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1094)) (-5 *5 (-1005 (-181))) (-5 *2 (-840)) (-5 *1 (-841 *3)) (-4 *3 (-557 (-477))))) (-2795 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1094)) (-5 *5 (-1005 (-181))) (-5 *2 (-840)) (-5 *1 (-841 *3)) (-4 *3 (-557 (-477))))) (-2795 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1094)) (-5 *5 (-1005 (-181))) (-5 *2 (-840)) (-5 *1 (-841 *3)) (-4 *3 (-557 (-477)))))) +((-3881 (($ $ (-1005 (-181)) (-1005 (-181)) (-1005 (-181))) 123 T ELT)) (-2901 (((-1005 (-181)) $) 64 T ELT)) (-2902 (((-1005 (-181)) $) 63 T ELT)) (-2903 (((-1005 (-181)) $) 62 T ELT)) (-2793 (((-587 (-587 (-181))) $) 69 T ELT)) (-2794 (((-1005 (-181)) $) 65 T ELT)) (-2787 (((-488) (-488)) 57 T ELT)) (-2791 (((-488) (-488)) 52 T ELT)) (-2789 (((-488) (-488)) 55 T ELT)) (-2785 (((-85) (-85)) 59 T ELT)) (-2788 (((-488)) 56 T ELT)) (-3140 (($ $ (-1005 (-181))) 126 T ELT) (($ $) 127 T ELT)) (-2796 (($ (-1 (-858 (-181)) (-181)) (-1005 (-181))) 133 T ELT) (($ (-1 (-858 (-181)) (-181)) (-1005 (-181)) (-1005 (-181)) (-1005 (-181)) (-1005 (-181))) 134 T ELT)) (-2795 (($ (-1 (-181) (-181)) (-1 (-181) (-181)) (-1 (-181) (-181)) (-1 (-181) (-181)) (-1005 (-181))) 140 T ELT) (($ (-1 (-181) (-181)) (-1 (-181) (-181)) (-1 (-181) (-181)) (-1 (-181) (-181)) (-1005 (-181)) (-1005 (-181)) (-1005 (-181)) (-1005 (-181))) 141 T ELT) (($ $ (-1005 (-181))) 129 T ELT)) (-2784 (((-488)) 60 T ELT)) (-2792 (((-488)) 50 T ELT)) (-2790 (((-488)) 53 T ELT)) (-2904 (((-587 (-587 (-858 (-181)))) $) 157 T ELT)) (-2783 (((-85) (-85)) 61 T ELT)) (-3953 (((-776) $) 155 T ELT)) (-2786 (((-85)) 58 T ELT))) +(((-842) (-13 (-891) (-10 -8 (-15 -2796 ($ (-1 (-858 (-181)) (-181)) (-1005 (-181)))) (-15 -2796 ($ (-1 (-858 (-181)) (-181)) (-1005 (-181)) (-1005 (-181)) (-1005 (-181)) (-1005 (-181)))) (-15 -2795 ($ (-1 (-181) (-181)) (-1 (-181) (-181)) (-1 (-181) (-181)) (-1 (-181) (-181)) (-1005 (-181)))) (-15 -2795 ($ (-1 (-181) (-181)) (-1 (-181) (-181)) (-1 (-181) (-181)) (-1 (-181) (-181)) (-1005 (-181)) (-1005 (-181)) (-1005 (-181)) (-1005 (-181)))) (-15 -2795 ($ $ (-1005 (-181)))) (-15 -3881 ($ $ (-1005 (-181)) (-1005 (-181)) (-1005 (-181)))) (-15 -3140 ($ $ (-1005 (-181)))) (-15 -3140 ($ $)) (-15 -2794 ((-1005 (-181)) $)) (-15 -2793 ((-587 (-587 (-181))) $)) (-15 -2792 ((-488))) (-15 -2791 ((-488) (-488))) (-15 -2790 ((-488))) (-15 -2789 ((-488) (-488))) (-15 -2788 ((-488))) (-15 -2787 ((-488) (-488))) (-15 -2786 ((-85))) (-15 -2785 ((-85) (-85))) (-15 -2784 ((-488))) (-15 -2783 ((-85) (-85)))))) (T -842)) +((-2796 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-858 (-181)) (-181))) (-5 *3 (-1005 (-181))) (-5 *1 (-842)))) (-2796 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-858 (-181)) (-181))) (-5 *3 (-1005 (-181))) (-5 *1 (-842)))) (-2795 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-181) (-181))) (-5 *3 (-1005 (-181))) (-5 *1 (-842)))) (-2795 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-181) (-181))) (-5 *3 (-1005 (-181))) (-5 *1 (-842)))) (-2795 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 (-181))) (-5 *1 (-842)))) (-3881 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1005 (-181))) (-5 *1 (-842)))) (-3140 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 (-181))) (-5 *1 (-842)))) (-3140 (*1 *1 *1) (-5 *1 (-842))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-1005 (-181))) (-5 *1 (-842)))) (-2793 (*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-181)))) (-5 *1 (-842)))) (-2792 (*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-842)))) (-2791 (*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-842)))) (-2790 (*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-842)))) (-2789 (*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-842)))) (-2788 (*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-842)))) (-2787 (*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-842)))) (-2786 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-842)))) (-2785 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-842)))) (-2784 (*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-842)))) (-2783 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-842))))) +((-2797 (((-587 (-1005 (-181))) (-587 (-587 (-858 (-181))))) 34 T ELT))) +(((-843) (-10 -7 (-15 -2797 ((-587 (-1005 (-181))) (-587 (-587 (-858 (-181)))))))) (T -843)) +((-2797 (*1 *2 *3) (-12 (-5 *3 (-587 (-587 (-858 (-181))))) (-5 *2 (-587 (-1005 (-181)))) (-5 *1 (-843))))) +((-2799 (((-267 (-488)) (-1094)) 16 T ELT)) (-2800 (((-267 (-488)) (-1094)) 14 T ELT)) (-3959 (((-267 (-488)) (-1094)) 12 T ELT)) (-2798 (((-267 (-488)) (-1094) (-450)) 19 T ELT))) +(((-844) (-10 -7 (-15 -2798 ((-267 (-488)) (-1094) (-450))) (-15 -3959 ((-267 (-488)) (-1094))) (-15 -2799 ((-267 (-488)) (-1094))) (-15 -2800 ((-267 (-488)) (-1094))))) (T -844)) +((-2800 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-267 (-488))) (-5 *1 (-844)))) (-2799 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-267 (-488))) (-5 *1 (-844)))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-267 (-488))) (-5 *1 (-844)))) (-2798 (*1 *2 *3 *4) (-12 (-5 *3 (-1094)) (-5 *4 (-450)) (-5 *2 (-267 (-488))) (-5 *1 (-844))))) +((-2799 ((|#2| |#2|) 28 T ELT)) (-2800 ((|#2| |#2|) 29 T ELT)) (-3959 ((|#2| |#2|) 27 T ELT)) (-2798 ((|#2| |#2| (-450)) 26 T ELT))) +(((-845 |#1| |#2|) (-10 -7 (-15 -2798 (|#2| |#2| (-450))) (-15 -3959 (|#2| |#2|)) (-15 -2799 (|#2| |#2|)) (-15 -2800 (|#2| |#2|))) (-1017) (-366 |#1|)) (T -845)) +((-2800 (*1 *2 *2) (-12 (-4 *3 (-1017)) (-5 *1 (-845 *3 *2)) (-4 *2 (-366 *3)))) (-2799 (*1 *2 *2) (-12 (-4 *3 (-1017)) (-5 *1 (-845 *3 *2)) (-4 *2 (-366 *3)))) (-3959 (*1 *2 *2) (-12 (-4 *3 (-1017)) (-5 *1 (-845 *3 *2)) (-4 *2 (-366 *3)))) (-2798 (*1 *2 *2 *3) (-12 (-5 *3 (-450)) (-4 *4 (-1017)) (-5 *1 (-845 *4 *2)) (-4 *2 (-366 *4))))) +((-2802 (((-802 |#1| |#3|) |#2| (-804 |#1|) (-802 |#1| |#3|)) 25 T ELT)) (-2801 (((-1 (-85) |#2|) (-1 (-85) |#3|)) 13 T ELT))) +(((-846 |#1| |#2| |#3|) (-10 -7 (-15 -2801 ((-1 (-85) |#2|) (-1 (-85) |#3|))) (-15 -2802 ((-802 |#1| |#3|) |#2| (-804 |#1|) (-802 |#1| |#3|)))) (-1017) (-800 |#1|) (-13 (-1017) (-954 |#2|))) (T -846)) +((-2802 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-802 *5 *6)) (-5 *4 (-804 *5)) (-4 *5 (-1017)) (-4 *6 (-13 (-1017) (-954 *3))) (-4 *3 (-800 *5)) (-5 *1 (-846 *5 *3 *6)))) (-2801 (*1 *2 *3) (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1017) (-954 *5))) (-4 *5 (-800 *4)) (-4 *4 (-1017)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-846 *4 *5 *6))))) +((-2802 (((-802 |#1| |#3|) |#3| (-804 |#1|) (-802 |#1| |#3|)) 30 T ELT))) +(((-847 |#1| |#2| |#3|) (-10 -7 (-15 -2802 ((-802 |#1| |#3|) |#3| (-804 |#1|) (-802 |#1| |#3|)))) (-1017) (-13 (-499) (-800 |#1|)) (-13 (-366 |#2|) (-557 (-804 |#1|)) (-800 |#1|) (-954 (-554 $)))) (T -847)) +((-2802 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-802 *5 *3)) (-4 *5 (-1017)) (-4 *3 (-13 (-366 *6) (-557 *4) (-800 *5) (-954 (-554 $)))) (-5 *4 (-804 *5)) (-4 *6 (-13 (-499) (-800 *5))) (-5 *1 (-847 *5 *6 *3))))) +((-2802 (((-802 (-488) |#1|) |#1| (-804 (-488)) (-802 (-488) |#1|)) 13 T ELT))) +(((-848 |#1|) (-10 -7 (-15 -2802 ((-802 (-488) |#1|) |#1| (-804 (-488)) (-802 (-488) |#1|)))) (-487)) (T -848)) +((-2802 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-802 (-488) *3)) (-5 *4 (-804 (-488))) (-4 *3 (-487)) (-5 *1 (-848 *3))))) +((-2802 (((-802 |#1| |#2|) (-554 |#2|) (-804 |#1|) (-802 |#1| |#2|)) 57 T ELT))) +(((-849 |#1| |#2|) (-10 -7 (-15 -2802 ((-802 |#1| |#2|) (-554 |#2|) (-804 |#1|) (-802 |#1| |#2|)))) (-1017) (-13 (-1017) (-954 (-554 $)) (-557 (-804 |#1|)) (-800 |#1|))) (T -849)) +((-2802 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-802 *5 *6)) (-5 *3 (-554 *6)) (-4 *5 (-1017)) (-4 *6 (-13 (-1017) (-954 (-554 $)) (-557 *4) (-800 *5))) (-5 *4 (-804 *5)) (-5 *1 (-849 *5 *6))))) +((-2802 (((-799 |#1| |#2| |#3|) |#3| (-804 |#1|) (-799 |#1| |#2| |#3|)) 17 T ELT))) +(((-850 |#1| |#2| |#3|) (-10 -7 (-15 -2802 ((-799 |#1| |#2| |#3|) |#3| (-804 |#1|) (-799 |#1| |#2| |#3|)))) (-1017) (-800 |#1|) (-612 |#2|)) (T -850)) +((-2802 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *6 *3)) (-5 *4 (-804 *5)) (-4 *5 (-1017)) (-4 *6 (-800 *5)) (-4 *3 (-612 *6)) (-5 *1 (-850 *5 *6 *3))))) +((-2802 (((-802 |#1| |#5|) |#5| (-804 |#1|) (-802 |#1| |#5|)) 17 (|has| |#3| (-800 |#1|)) ELT) (((-802 |#1| |#5|) |#5| (-804 |#1|) (-802 |#1| |#5|) (-1 (-802 |#1| |#5|) |#3| (-804 |#1|) (-802 |#1| |#5|))) 16 T ELT))) +(((-851 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2802 ((-802 |#1| |#5|) |#5| (-804 |#1|) (-802 |#1| |#5|) (-1 (-802 |#1| |#5|) |#3| (-804 |#1|) (-802 |#1| |#5|)))) (IF (|has| |#3| (-800 |#1|)) (-15 -2802 ((-802 |#1| |#5|) |#5| (-804 |#1|) (-802 |#1| |#5|))) |%noBranch|)) (-1017) (-721) (-760) (-13 (-965) (-800 |#1|)) (-13 (-865 |#4| |#2| |#3|) (-557 (-804 |#1|)))) (T -851)) +((-2802 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-802 *5 *3)) (-4 *5 (-1017)) (-4 *3 (-13 (-865 *8 *6 *7) (-557 *4))) (-5 *4 (-804 *5)) (-4 *7 (-800 *5)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *8 (-13 (-965) (-800 *5))) (-5 *1 (-851 *5 *6 *7 *8 *3)))) (-2802 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-802 *6 *3) *8 (-804 *6) (-802 *6 *3))) (-4 *8 (-760)) (-5 *2 (-802 *6 *3)) (-5 *4 (-804 *6)) (-4 *6 (-1017)) (-4 *3 (-13 (-865 *9 *7 *8) (-557 *4))) (-4 *7 (-721)) (-4 *9 (-13 (-965) (-800 *6))) (-5 *1 (-851 *6 *7 *8 *9 *3))))) +((-3215 (((-267 (-488)) (-1094) (-587 (-1 (-85) |#1|))) 18 T ELT) (((-267 (-488)) (-1094) (-1 (-85) |#1|)) 15 T ELT))) +(((-852 |#1|) (-10 -7 (-15 -3215 ((-267 (-488)) (-1094) (-1 (-85) |#1|))) (-15 -3215 ((-267 (-488)) (-1094) (-587 (-1 (-85) |#1|))))) (-1133)) (T -852)) +((-3215 (*1 *2 *3 *4) (-12 (-5 *3 (-1094)) (-5 *4 (-587 (-1 (-85) *5))) (-4 *5 (-1133)) (-5 *2 (-267 (-488))) (-5 *1 (-852 *5)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *3 (-1094)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1133)) (-5 *2 (-267 (-488))) (-5 *1 (-852 *5))))) +((-3215 ((|#2| |#2| (-587 (-1 (-85) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-85) |#3|)) 13 T ELT))) +(((-853 |#1| |#2| |#3|) (-10 -7 (-15 -3215 (|#2| |#2| (-1 (-85) |#3|))) (-15 -3215 (|#2| |#2| (-587 (-1 (-85) |#3|))))) (-1017) (-366 |#1|) (-1133)) (T -853)) +((-3215 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-1 (-85) *5))) (-4 *5 (-1133)) (-4 *4 (-1017)) (-5 *1 (-853 *4 *2 *5)) (-4 *2 (-366 *4)))) (-3215 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1133)) (-4 *4 (-1017)) (-5 *1 (-853 *4 *2 *5)) (-4 *2 (-366 *4))))) +((-2802 (((-802 |#1| |#3|) |#3| (-804 |#1|) (-802 |#1| |#3|)) 25 T ELT))) +(((-854 |#1| |#2| |#3|) (-10 -7 (-15 -2802 ((-802 |#1| |#3|) |#3| (-804 |#1|) (-802 |#1| |#3|)))) (-1017) (-13 (-499) (-800 |#1|) (-557 (-804 |#1|))) (-908 |#2|)) (T -854)) +((-2802 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-802 *5 *3)) (-4 *5 (-1017)) (-4 *3 (-908 *6)) (-4 *6 (-13 (-499) (-800 *5) (-557 *4))) (-5 *4 (-804 *5)) (-5 *1 (-854 *5 *6 *3))))) +((-2802 (((-802 |#1| (-1094)) (-1094) (-804 |#1|) (-802 |#1| (-1094))) 18 T ELT))) +(((-855 |#1|) (-10 -7 (-15 -2802 ((-802 |#1| (-1094)) (-1094) (-804 |#1|) (-802 |#1| (-1094))))) (-1017)) (T -855)) +((-2802 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-802 *5 (-1094))) (-5 *3 (-1094)) (-5 *4 (-804 *5)) (-4 *5 (-1017)) (-5 *1 (-855 *5))))) +((-2803 (((-802 |#1| |#3|) (-587 |#3|) (-587 (-804 |#1|)) (-802 |#1| |#3|) (-1 (-802 |#1| |#3|) |#3| (-804 |#1|) (-802 |#1| |#3|))) 34 T ELT)) (-2802 (((-802 |#1| |#3|) (-587 |#3|) (-587 (-804 |#1|)) (-1 |#3| (-587 |#3|)) (-802 |#1| |#3|) (-1 (-802 |#1| |#3|) |#3| (-804 |#1|) (-802 |#1| |#3|))) 33 T ELT))) +(((-856 |#1| |#2| |#3|) (-10 -7 (-15 -2802 ((-802 |#1| |#3|) (-587 |#3|) (-587 (-804 |#1|)) (-1 |#3| (-587 |#3|)) (-802 |#1| |#3|) (-1 (-802 |#1| |#3|) |#3| (-804 |#1|) (-802 |#1| |#3|)))) (-15 -2803 ((-802 |#1| |#3|) (-587 |#3|) (-587 (-804 |#1|)) (-802 |#1| |#3|) (-1 (-802 |#1| |#3|) |#3| (-804 |#1|) (-802 |#1| |#3|))))) (-1017) (-965) (-13 (-965) (-557 (-804 |#1|)) (-954 |#2|))) (T -856)) +((-2803 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 (-804 *6))) (-5 *5 (-1 (-802 *6 *8) *8 (-804 *6) (-802 *6 *8))) (-4 *6 (-1017)) (-4 *8 (-13 (-965) (-557 (-804 *6)) (-954 *7))) (-5 *2 (-802 *6 *8)) (-4 *7 (-965)) (-5 *1 (-856 *6 *7 *8)))) (-2802 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-587 (-804 *7))) (-5 *5 (-1 *9 (-587 *9))) (-5 *6 (-1 (-802 *7 *9) *9 (-804 *7) (-802 *7 *9))) (-4 *7 (-1017)) (-4 *9 (-13 (-965) (-557 (-804 *7)) (-954 *8))) (-5 *2 (-802 *7 *9)) (-5 *3 (-587 *9)) (-4 *8 (-965)) (-5 *1 (-856 *7 *8 *9))))) +((-2811 (((-1089 (-352 (-488))) (-488)) 80 T ELT)) (-2810 (((-1089 (-488)) (-488)) 83 T ELT)) (-3340 (((-1089 (-488)) (-488)) 77 T ELT)) (-2809 (((-488) (-1089 (-488))) 73 T ELT)) (-2808 (((-1089 (-352 (-488))) (-488)) 66 T ELT)) (-2807 (((-1089 (-488)) (-488)) 49 T ELT)) (-2806 (((-1089 (-488)) (-488)) 85 T ELT)) (-2805 (((-1089 (-488)) (-488)) 84 T ELT)) (-2804 (((-1089 (-352 (-488))) (-488)) 68 T ELT))) +(((-857) (-10 -7 (-15 -2804 ((-1089 (-352 (-488))) (-488))) (-15 -2805 ((-1089 (-488)) (-488))) (-15 -2806 ((-1089 (-488)) (-488))) (-15 -2807 ((-1089 (-488)) (-488))) (-15 -2808 ((-1089 (-352 (-488))) (-488))) (-15 -2809 ((-488) (-1089 (-488)))) (-15 -3340 ((-1089 (-488)) (-488))) (-15 -2810 ((-1089 (-488)) (-488))) (-15 -2811 ((-1089 (-352 (-488))) (-488))))) (T -857)) +((-2811 (*1 *2 *3) (-12 (-5 *2 (-1089 (-352 (-488)))) (-5 *1 (-857)) (-5 *3 (-488)))) (-2810 (*1 *2 *3) (-12 (-5 *2 (-1089 (-488))) (-5 *1 (-857)) (-5 *3 (-488)))) (-3340 (*1 *2 *3) (-12 (-5 *2 (-1089 (-488))) (-5 *1 (-857)) (-5 *3 (-488)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-1089 (-488))) (-5 *2 (-488)) (-5 *1 (-857)))) (-2808 (*1 *2 *3) (-12 (-5 *2 (-1089 (-352 (-488)))) (-5 *1 (-857)) (-5 *3 (-488)))) (-2807 (*1 *2 *3) (-12 (-5 *2 (-1089 (-488))) (-5 *1 (-857)) (-5 *3 (-488)))) (-2806 (*1 *2 *3) (-12 (-5 *2 (-1089 (-488))) (-5 *1 (-857)) (-5 *3 (-488)))) (-2805 (*1 *2 *3) (-12 (-5 *2 (-1089 (-488))) (-5 *1 (-857)) (-5 *3 (-488)))) (-2804 (*1 *2 *3) (-12 (-5 *2 (-1089 (-352 (-488)))) (-5 *1 (-857)) (-5 *3 (-488))))) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3844 (($ (-698)) NIL (|has| |#1| (-23)) ELT)) (-2203 (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 |#1|)) ELT)) (-1740 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-760)) ELT)) (-1738 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1039 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1039 |#1|)) (|has| |#1| (-760))) ELT)) (-2915 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-760)) ELT)) (-3794 ((|#1| $ (-488) |#1|) NIL (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-1150 (-488)) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3730 (($) NIL T CONST)) (-2302 (($ $) NIL (|has| $ (-1039 |#1|)) ELT)) (-2303 (($ $) NIL T ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-3412 (($ |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1580 ((|#1| $ (-488) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-488)) NIL T ELT)) (-3425 (((-488) (-1 (-85) |#1|) $) NIL T ELT) (((-488) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-488) |#1| $ (-488)) NIL (|has| |#1| (-72)) ELT)) (-3712 (($ (-587 |#1|)) 9 T ELT)) (-3841 (((-634 |#1|) $ $) NIL (|has| |#1| (-965)) ELT)) (-3620 (($ (-698) |#1|) NIL T ELT)) (-2205 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-3524 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-2614 (((-587 |#1|) $) NIL T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2206 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3838 ((|#1| $) NIL (-12 (|has| |#1| (-919)) (|has| |#1| (-965))) ELT)) (-3839 ((|#1| $) NIL (-12 (|has| |#1| (-919)) (|has| |#1| (-965))) ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-2309 (($ |#1| $ (-488)) NIL T ELT) (($ $ $ (-488)) NIL T ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) NIL T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-3807 ((|#1| $) NIL (|has| (-488) (-760)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2204 (($ $ |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3775 (($ $ (-587 |#1|)) 25 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#1| $ (-488) |#1|) NIL T ELT) ((|#1| $ (-488)) 18 T ELT) (($ $ (-1150 (-488))) NIL T ELT)) (-3842 ((|#1| $ $) NIL (|has| |#1| (-965)) ELT)) (-3918 (((-834) $) 13 T ELT)) (-2310 (($ $ (-488)) NIL T ELT) (($ $ (-1150 (-488))) NIL T ELT)) (-3840 (($ $ $) 23 T ELT)) (-1735 (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) NIL T ELT)) (-1739 (($ $ $ (-488)) NIL (|has| $ (-1039 |#1|)) ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) NIL (|has| |#1| (-557 (-477))) ELT) (($ (-587 |#1|)) 14 T ELT)) (-3536 (($ (-587 |#1|)) NIL T ELT)) (-3808 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-587 $)) NIL T ELT)) (-3953 (((-776) $) NIL (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2572 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2690 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3843 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3845 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-488) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-667)) ELT) (($ $ |#1|) NIL (|has| |#1| (-667)) ELT)) (-3964 (((-698) $) 11 T ELT))) +(((-858 |#1|) (-897 |#1|) (-965)) (T -858)) +NIL +((-2814 (((-424 |#1| |#2|) (-861 |#2|)) 22 T ELT)) (-2817 (((-208 |#1| |#2|) (-861 |#2|)) 35 T ELT)) (-2815 (((-861 |#2|) (-424 |#1| |#2|)) 27 T ELT)) (-2813 (((-208 |#1| |#2|) (-424 |#1| |#2|)) 57 T ELT)) (-2816 (((-861 |#2|) (-208 |#1| |#2|)) 32 T ELT)) (-2812 (((-424 |#1| |#2|) (-208 |#1| |#2|)) 48 T ELT))) +(((-859 |#1| |#2|) (-10 -7 (-15 -2812 ((-424 |#1| |#2|) (-208 |#1| |#2|))) (-15 -2813 ((-208 |#1| |#2|) (-424 |#1| |#2|))) (-15 -2814 ((-424 |#1| |#2|) (-861 |#2|))) (-15 -2815 ((-861 |#2|) (-424 |#1| |#2|))) (-15 -2816 ((-861 |#2|) (-208 |#1| |#2|))) (-15 -2817 ((-208 |#1| |#2|) (-861 |#2|)))) (-587 (-1094)) (-965)) (T -859)) +((-2817 (*1 *2 *3) (-12 (-5 *3 (-861 *5)) (-4 *5 (-965)) (-5 *2 (-208 *4 *5)) (-5 *1 (-859 *4 *5)) (-14 *4 (-587 (-1094))))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-208 *4 *5)) (-14 *4 (-587 (-1094))) (-4 *5 (-965)) (-5 *2 (-861 *5)) (-5 *1 (-859 *4 *5)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-424 *4 *5)) (-14 *4 (-587 (-1094))) (-4 *5 (-965)) (-5 *2 (-861 *5)) (-5 *1 (-859 *4 *5)))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-861 *5)) (-4 *5 (-965)) (-5 *2 (-424 *4 *5)) (-5 *1 (-859 *4 *5)) (-14 *4 (-587 (-1094))))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-424 *4 *5)) (-14 *4 (-587 (-1094))) (-4 *5 (-965)) (-5 *2 (-208 *4 *5)) (-5 *1 (-859 *4 *5)))) (-2812 (*1 *2 *3) (-12 (-5 *3 (-208 *4 *5)) (-14 *4 (-587 (-1094))) (-4 *5 (-965)) (-5 *2 (-424 *4 *5)) (-5 *1 (-859 *4 *5))))) +((-2818 (((-587 |#2|) |#2| |#2|) 10 T ELT)) (-2821 (((-698) (-587 |#1|)) 47 (|has| |#1| (-759)) ELT)) (-2819 (((-587 |#2|) |#2|) 11 T ELT)) (-2822 (((-698) (-587 |#1|) (-488) (-488)) 45 (|has| |#1| (-759)) ELT)) (-2820 ((|#1| |#2|) 37 (|has| |#1| (-759)) ELT))) +(((-860 |#1| |#2|) (-10 -7 (-15 -2818 ((-587 |#2|) |#2| |#2|)) (-15 -2819 ((-587 |#2|) |#2|)) (IF (|has| |#1| (-759)) (PROGN (-15 -2820 (|#1| |#2|)) (-15 -2821 ((-698) (-587 |#1|))) (-15 -2822 ((-698) (-587 |#1|) (-488) (-488)))) |%noBranch|)) (-314) (-1159 |#1|)) (T -860)) +((-2822 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 *5)) (-5 *4 (-488)) (-4 *5 (-759)) (-4 *5 (-314)) (-5 *2 (-698)) (-5 *1 (-860 *5 *6)) (-4 *6 (-1159 *5)))) (-2821 (*1 *2 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-759)) (-4 *4 (-314)) (-5 *2 (-698)) (-5 *1 (-860 *4 *5)) (-4 *5 (-1159 *4)))) (-2820 (*1 *2 *3) (-12 (-4 *2 (-314)) (-4 *2 (-759)) (-5 *1 (-860 *2 *3)) (-4 *3 (-1159 *2)))) (-2819 (*1 *2 *3) (-12 (-4 *4 (-314)) (-5 *2 (-587 *3)) (-5 *1 (-860 *4 *3)) (-4 *3 (-1159 *4)))) (-2818 (*1 *2 *3 *3) (-12 (-4 *4 (-314)) (-5 *2 (-587 *3)) (-5 *1 (-860 *4 *3)) (-4 *3 (-1159 *4))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3087 (((-587 (-1094)) $) 16 T ELT)) (-3089 (((-1089 $) $ (-1094)) 21 T ELT) (((-1089 |#1|) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-2825 (((-698) $) NIL T ELT) (((-698) $ (-587 (-1094))) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3781 (($ $) NIL (|has| |#1| (-395)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-395)) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-1094) #1#) $) NIL T ELT)) (-3162 ((|#1| $) NIL T ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-1094) $) NIL T ELT)) (-3762 (($ $ $ (-1094)) NIL (|has| |#1| (-148)) ELT)) (-3965 (($ $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#1|) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3509 (($ $) NIL (|has| |#1| (-395)) ELT) (($ $ (-1094)) NIL (|has| |#1| (-395)) ELT)) (-2824 (((-587 $) $) NIL T ELT)) (-3729 (((-85) $) NIL (|has| |#1| (-825)) ELT)) (-1628 (($ $ |#1| (-473 (-1094)) $) NIL T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (-12 (|has| (-1094) (-800 (-332))) (|has| |#1| (-800 (-332)))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (-12 (|has| (-1094) (-800 (-488))) (|has| |#1| (-800 (-488)))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2425 (((-698) $) NIL T ELT)) (-3090 (($ (-1089 |#1|) (-1094)) NIL T ELT) (($ (-1089 $) (-1094)) NIL T ELT)) (-2827 (((-587 $) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-473 (-1094))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT)) (-3769 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $ (-1094)) NIL T ELT)) (-2826 (((-473 (-1094)) $) NIL T ELT) (((-698) $ (-1094)) NIL T ELT) (((-587 (-698)) $ (-587 (-1094))) NIL T ELT)) (-1629 (($ (-1 (-473 (-1094)) (-473 (-1094))) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3088 (((-3 (-1094) #1#) $) 19 T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) NIL T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-395)) ELT) (($ $ $) NIL (|has| |#1| (-395)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2829 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2828 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2830 (((-3 (-2 (|:| |var| (-1094)) (|:| -2406 (-698))) #1#) $) NIL T ELT)) (-3818 (($ $ (-1094)) 29 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1805 (((-85) $) NIL T ELT)) (-1804 ((|#1| $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#1| (-395)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-395)) ELT) (($ $ $) NIL (|has| |#1| (-395)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#1| (-825)) ELT)) (-3472 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-499)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-499)) ELT)) (-3774 (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ (-1094) |#1|) NIL T ELT) (($ $ (-587 (-1094)) (-587 |#1|)) NIL T ELT) (($ $ (-1094) $) NIL T ELT) (($ $ (-587 (-1094)) (-587 $)) NIL T ELT)) (-3763 (($ $ (-1094)) NIL (|has| |#1| (-148)) ELT)) (-3764 (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094))) NIL T ELT) (($ $ (-1094)) NIL T ELT)) (-3955 (((-473 (-1094)) $) NIL T ELT) (((-698) $ (-1094)) NIL T ELT) (((-587 (-698)) $ (-587 (-1094))) NIL T ELT)) (-3978 (((-804 (-332)) $) NIL (-12 (|has| (-1094) (-557 (-804 (-332)))) (|has| |#1| (-557 (-804 (-332))))) ELT) (((-804 (-488)) $) NIL (-12 (|has| (-1094) (-557 (-804 (-488)))) (|has| |#1| (-557 (-804 (-488))))) ELT) (((-477) $) NIL (-12 (|has| (-1094) (-557 (-477))) (|has| |#1| (-557 (-477)))) ELT)) (-2823 ((|#1| $) NIL (|has| |#1| (-395)) ELT) (($ $ (-1094)) NIL (|has| |#1| (-395)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-825))) ELT)) (-3953 (((-776) $) 25 T ELT) (($ (-488)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1094)) 27 T ELT) (($ (-352 (-488))) NIL (OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) ELT) (($ $) NIL (|has| |#1| (-499)) ELT)) (-3823 (((-587 |#1|) $) NIL T ELT)) (-3683 ((|#1| $ (-473 (-1094))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-825))) (|has| |#1| (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1627 (($ $ $ (-698)) NIL (|has| |#1| (-148)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094))) NIL T ELT) (($ $ (-1094)) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-861 |#1|) (-13 (-865 |#1| (-473 (-1094)) (-1094)) (-10 -8 (IF (|has| |#1| (-38 (-352 (-488)))) (-15 -3818 ($ $ (-1094))) |%noBranch|))) (-965)) (T -861)) +((-3818 (*1 *1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-861 *3)) (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965))))) +((-3849 (((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)) 19 T ELT))) +(((-862 |#1| |#2|) (-10 -7 (-15 -3849 ((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)))) (-965) (-965)) (T -862)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-861 *5)) (-4 *5 (-965)) (-4 *6 (-965)) (-5 *2 (-861 *6)) (-5 *1 (-862 *5 *6))))) +((-3089 (((-1152 |#1| (-861 |#2|)) (-861 |#2|) (-1180 |#1|)) 18 T ELT))) +(((-863 |#1| |#2|) (-10 -7 (-15 -3089 ((-1152 |#1| (-861 |#2|)) (-861 |#2|) (-1180 |#1|)))) (-1094) (-965)) (T -863)) +((-3089 (*1 *2 *3 *4) (-12 (-5 *4 (-1180 *5)) (-14 *5 (-1094)) (-4 *6 (-965)) (-5 *2 (-1152 *5 (-861 *6))) (-5 *1 (-863 *5 *6)) (-5 *3 (-861 *6))))) +((-2825 (((-698) $) 88 T ELT) (((-698) $ (-587 |#4|)) 93 T ELT)) (-3781 (($ $) 214 T ELT)) (-3977 (((-350 $) $) 206 T ELT)) (-2710 (((-3 (-587 (-1089 $)) #1="failed") (-587 (-1089 $)) (-1089 $)) 141 T ELT)) (-3163 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL T ELT) (((-3 (-488) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3162 ((|#2| $) NIL T ELT) (((-352 (-488)) $) NIL T ELT) (((-488) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3762 (($ $ $ |#4|) 95 T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL T ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL T ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 $) (-1183 $)) 131 T ELT) (((-634 |#2|) (-634 $)) 121 T ELT)) (-3509 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2824 (((-587 $) $) 77 T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) 240 T ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) 233 T ELT)) (-2827 (((-587 $) $) 34 T ELT)) (-2899 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-698)) NIL T ELT) (($ $ (-587 |#4|) (-587 (-698))) 71 T ELT)) (-3769 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $ |#4|) 203 T ELT)) (-2829 (((-3 (-587 $) #1#) $) 52 T ELT)) (-2828 (((-3 (-587 $) #1#) $) 39 T ELT)) (-2830 (((-3 (-2 (|:| |var| |#4|) (|:| -2406 (-698))) #1#) $) 57 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 134 T ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) 147 T ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) 145 T ELT)) (-3738 (((-350 $) $) 165 T ELT)) (-3774 (($ $ (-587 (-251 $))) 24 T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-587 |#4|) (-587 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-587 |#4|) (-587 $)) NIL T ELT)) (-3763 (($ $ |#4|) 97 T ELT)) (-3978 (((-804 (-332)) $) 254 T ELT) (((-804 (-488)) $) 247 T ELT) (((-477) $) 262 T ELT)) (-2823 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) 185 T ELT)) (-3683 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-698)) 62 T ELT) (($ $ (-587 |#4|) (-587 (-698))) 69 T ELT)) (-2708 (((-636 $) $) 195 T ELT)) (-1269 (((-85) $ $) 227 T ELT))) +(((-864 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2714 ((-1089 |#1|) (-1089 |#1|) (-1089 |#1|))) (-15 -3977 ((-350 |#1|) |#1|)) (-15 -3781 (|#1| |#1|)) (-15 -2708 ((-636 |#1|) |#1|)) (-15 -3978 ((-477) |#1|)) (-15 -3978 ((-804 (-488)) |#1|)) (-15 -3978 ((-804 (-332)) |#1|)) (-15 -2802 ((-802 (-488) |#1|) |#1| (-804 (-488)) (-802 (-488) |#1|))) (-15 -2802 ((-802 (-332) |#1|) |#1| (-804 (-332)) (-802 (-332) |#1|))) (-15 -3738 ((-350 |#1|) |#1|)) (-15 -2712 ((-350 (-1089 |#1|)) (-1089 |#1|))) (-15 -2711 ((-350 (-1089 |#1|)) (-1089 |#1|))) (-15 -2710 ((-3 (-587 (-1089 |#1|)) #1="failed") (-587 (-1089 |#1|)) (-1089 |#1|))) (-15 -2709 ((-3 (-1183 |#1|) #1#) (-634 |#1|))) (-15 -3509 (|#1| |#1| |#4|)) (-15 -2823 (|#1| |#1| |#4|)) (-15 -3763 (|#1| |#1| |#4|)) (-15 -3762 (|#1| |#1| |#1| |#4|)) (-15 -2824 ((-587 |#1|) |#1|)) (-15 -2825 ((-698) |#1| (-587 |#4|))) (-15 -2825 ((-698) |#1|)) (-15 -2830 ((-3 (-2 (|:| |var| |#4|) (|:| -2406 (-698))) #1#) |#1|)) (-15 -2829 ((-3 (-587 |#1|) #1#) |#1|)) (-15 -2828 ((-3 (-587 |#1|) #1#) |#1|)) (-15 -2899 (|#1| |#1| (-587 |#4|) (-587 (-698)))) (-15 -2899 (|#1| |#1| |#4| (-698))) (-15 -3769 ((-2 (|:| -1977 |#1|) (|:| -2908 |#1|)) |#1| |#1| |#4|)) (-15 -2827 ((-587 |#1|) |#1|)) (-15 -3683 (|#1| |#1| (-587 |#4|) (-587 (-698)))) (-15 -3683 (|#1| |#1| |#4| (-698))) (-15 -2284 ((-634 |#2|) (-634 |#1|))) (-15 -2284 ((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 |#1|) (-1183 |#1|))) (-15 -2284 ((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 |#1|) (-1183 |#1|))) (-15 -2284 ((-634 (-488)) (-634 |#1|))) (-15 -3163 ((-3 |#4| #1#) |#1|)) (-15 -3162 (|#4| |#1|)) (-15 -3774 (|#1| |#1| (-587 |#4|) (-587 |#1|))) (-15 -3774 (|#1| |#1| |#4| |#1|)) (-15 -3774 (|#1| |#1| (-587 |#4|) (-587 |#2|))) (-15 -3774 (|#1| |#1| |#4| |#2|)) (-15 -3774 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -3774 (|#1| |#1| |#1| |#1|)) (-15 -3774 (|#1| |#1| (-251 |#1|))) (-15 -3774 (|#1| |#1| (-587 (-251 |#1|)))) (-15 -2899 (|#1| |#2| |#3|)) (-15 -3683 (|#2| |#1| |#3|)) (-15 -3163 ((-3 (-488) #1#) |#1|)) (-15 -3162 ((-488) |#1|)) (-15 -3163 ((-3 (-352 (-488)) #1#) |#1|)) (-15 -3162 ((-352 (-488)) |#1|)) (-15 -3162 (|#2| |#1|)) (-15 -3163 ((-3 |#2| #1#) |#1|)) (-15 -2823 (|#2| |#1|)) (-15 -3509 (|#1| |#1|)) (-15 -1269 ((-85) |#1| |#1|))) (-865 |#2| |#3| |#4|) (-965) (-721) (-760)) (T -864)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3087 (((-587 |#3|) $) 124 T ELT)) (-3089 (((-1089 $) $ |#3|) 139 T ELT) (((-1089 |#1|) $) 138 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 101 (|has| |#1| (-499)) ELT)) (-2068 (($ $) 102 (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) 104 (|has| |#1| (-499)) ELT)) (-2825 (((-698) $) 126 T ELT) (((-698) $ (-587 |#3|)) 125 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) 114 (|has| |#1| (-825)) ELT)) (-3781 (($ $) 112 (|has| |#1| (-395)) ELT)) (-3977 (((-350 $) $) 111 (|has| |#1| (-395)) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1="failed") (-587 (-1089 $)) (-1089 $)) 117 (|has| |#1| (-825)) ELT)) (-3730 (($) 23 T CONST)) (-3163 (((-3 |#1| #2="failed") $) 182 T ELT) (((-3 (-352 (-488)) #2#) $) 179 (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 (-488) #2#) $) 177 (|has| |#1| (-954 (-488))) ELT) (((-3 |#3| #2#) $) 154 T ELT)) (-3162 ((|#1| $) 181 T ELT) (((-352 (-488)) $) 180 (|has| |#1| (-954 (-352 (-488)))) ELT) (((-488) $) 178 (|has| |#1| (-954 (-488))) ELT) ((|#3| $) 155 T ELT)) (-3762 (($ $ $ |#3|) 122 (|has| |#1| (-148)) ELT)) (-3965 (($ $) 172 T ELT)) (-2284 (((-634 (-488)) (-634 $)) 150 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) 149 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) 148 T ELT) (((-634 |#1|) (-634 $)) 147 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3509 (($ $) 194 (|has| |#1| (-395)) ELT) (($ $ |#3|) 119 (|has| |#1| (-395)) ELT)) (-2824 (((-587 $) $) 123 T ELT)) (-3729 (((-85) $) 110 (|has| |#1| (-825)) ELT)) (-1628 (($ $ |#1| |#2| $) 190 T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) 98 (-12 (|has| |#3| (-800 (-332))) (|has| |#1| (-800 (-332)))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) 97 (-12 (|has| |#3| (-800 (-488))) (|has| |#1| (-800 (-488)))) ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-2425 (((-698) $) 187 T ELT)) (-3090 (($ (-1089 |#1|) |#3|) 131 T ELT) (($ (-1089 $) |#3|) 130 T ELT)) (-2827 (((-587 $) $) 140 T ELT)) (-3944 (((-85) $) 170 T ELT)) (-2899 (($ |#1| |#2|) 171 T ELT) (($ $ |#3| (-698)) 133 T ELT) (($ $ (-587 |#3|) (-587 (-698))) 132 T ELT)) (-3769 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $ |#3|) 134 T ELT)) (-2826 ((|#2| $) 188 T ELT) (((-698) $ |#3|) 136 T ELT) (((-587 (-698)) $ (-587 |#3|)) 135 T ELT)) (-1629 (($ (-1 |#2| |#2|) $) 189 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3088 (((-3 |#3| "failed") $) 137 T ELT)) (-2285 (((-634 (-488)) (-1183 $)) 152 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) 151 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) 146 T ELT) (((-634 |#1|) (-1183 $)) 145 T ELT)) (-2900 (($ $) 168 T ELT)) (-3180 ((|#1| $) 167 T ELT)) (-1899 (($ (-587 $)) 108 (|has| |#1| (-395)) ELT) (($ $ $) 107 (|has| |#1| (-395)) ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2829 (((-3 (-587 $) "failed") $) 128 T ELT)) (-2828 (((-3 (-587 $) "failed") $) 129 T ELT)) (-2830 (((-3 (-2 (|:| |var| |#3|) (|:| -2406 (-698))) "failed") $) 127 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-1805 (((-85) $) 184 T ELT)) (-1804 ((|#1| $) 185 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 109 (|has| |#1| (-395)) ELT)) (-3150 (($ (-587 $)) 106 (|has| |#1| (-395)) ELT) (($ $ $) 105 (|has| |#1| (-395)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) 116 (|has| |#1| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) 115 (|has| |#1| (-825)) ELT)) (-3738 (((-350 $) $) 113 (|has| |#1| (-825)) ELT)) (-3472 (((-3 $ "failed") $ |#1|) 192 (|has| |#1| (-499)) ELT) (((-3 $ "failed") $ $) 100 (|has| |#1| (-499)) ELT)) (-3774 (($ $ (-587 (-251 $))) 163 T ELT) (($ $ (-251 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-587 $) (-587 $)) 160 T ELT) (($ $ |#3| |#1|) 159 T ELT) (($ $ (-587 |#3|) (-587 |#1|)) 158 T ELT) (($ $ |#3| $) 157 T ELT) (($ $ (-587 |#3|) (-587 $)) 156 T ELT)) (-3763 (($ $ |#3|) 121 (|has| |#1| (-148)) ELT)) (-3764 (($ $ (-587 |#3|) (-587 (-698))) 52 T ELT) (($ $ |#3| (-698)) 51 T ELT) (($ $ (-587 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3955 ((|#2| $) 169 T ELT) (((-698) $ |#3|) 144 T ELT) (((-587 (-698)) $ (-587 |#3|)) 143 T ELT)) (-3978 (((-804 (-332)) $) 96 (-12 (|has| |#3| (-557 (-804 (-332)))) (|has| |#1| (-557 (-804 (-332))))) ELT) (((-804 (-488)) $) 95 (-12 (|has| |#3| (-557 (-804 (-488)))) (|has| |#1| (-557 (-804 (-488))))) ELT) (((-477) $) 94 (-12 (|has| |#3| (-557 (-477))) (|has| |#1| (-557 (-477)))) ELT)) (-2823 ((|#1| $) 193 (|has| |#1| (-395)) ELT) (($ $ |#3|) 120 (|has| |#1| (-395)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) 118 (-2568 (|has| $ (-118)) (|has| |#1| (-825))) ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#1|) 183 T ELT) (($ |#3|) 153 T ELT) (($ $) 99 (|has| |#1| (-499)) ELT) (($ (-352 (-488))) 92 (OR (|has| |#1| (-954 (-352 (-488)))) (|has| |#1| (-38 (-352 (-488))))) ELT)) (-3823 (((-587 |#1|) $) 186 T ELT)) (-3683 ((|#1| $ |#2|) 173 T ELT) (($ $ |#3| (-698)) 142 T ELT) (($ $ (-587 |#3|) (-587 (-698))) 141 T ELT)) (-2708 (((-636 $) $) 93 (OR (-2568 (|has| $ (-118)) (|has| |#1| (-825))) (|has| |#1| (-118))) ELT)) (-3132 (((-698)) 40 T CONST)) (-1627 (($ $ $ (-698)) 191 (|has| |#1| (-148)) ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 103 (|has| |#1| (-499)) ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-587 |#3|) (-587 (-698))) 55 T ELT) (($ $ |#3| (-698)) 54 T ELT) (($ $ (-587 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ |#1|) 174 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-352 (-488))) 176 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) 175 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ |#1| $) 165 T ELT) (($ $ |#1|) 164 T ELT))) +(((-865 |#1| |#2| |#3|) (-113) (-965) (-721) (-760)) (T -865)) +((-3509 (*1 *1 *1) (-12 (-4 *1 (-865 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-395)))) (-3955 (*1 *2 *1 *3) (-12 (-4 *1 (-865 *4 *5 *3)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 (-760)) (-5 *2 (-698)))) (-3955 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *6)) (-4 *1 (-865 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-587 (-698))))) (-3683 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-698)) (-4 *1 (-865 *4 *5 *2)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *2 (-760)))) (-3683 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *6)) (-5 *3 (-587 (-698))) (-4 *1 (-865 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *6 (-760)))) (-2827 (*1 *2 *1) (-12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-587 *1)) (-4 *1 (-865 *3 *4 *5)))) (-3089 (*1 *2 *1 *3) (-12 (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 (-760)) (-5 *2 (-1089 *1)) (-4 *1 (-865 *4 *5 *3)))) (-3089 (*1 *2 *1) (-12 (-4 *1 (-865 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-1089 *3)))) (-3088 (*1 *2 *1) (|partial| -12 (-4 *1 (-865 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)))) (-2826 (*1 *2 *1 *3) (-12 (-4 *1 (-865 *4 *5 *3)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 (-760)) (-5 *2 (-698)))) (-2826 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *6)) (-4 *1 (-865 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-587 (-698))))) (-3769 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 (-760)) (-5 *2 (-2 (|:| -1977 *1) (|:| -2908 *1))) (-4 *1 (-865 *4 *5 *3)))) (-2899 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-698)) (-4 *1 (-865 *4 *5 *2)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *2 (-760)))) (-2899 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *6)) (-5 *3 (-587 (-698))) (-4 *1 (-865 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *6 (-760)))) (-3090 (*1 *1 *2 *3) (-12 (-5 *2 (-1089 *4)) (-4 *4 (-965)) (-4 *1 (-865 *4 *5 *3)) (-4 *5 (-721)) (-4 *3 (-760)))) (-3090 (*1 *1 *2 *3) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-865 *4 *5 *3)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 (-760)))) (-2828 (*1 *2 *1) (|partial| -12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-587 *1)) (-4 *1 (-865 *3 *4 *5)))) (-2829 (*1 *2 *1) (|partial| -12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-587 *1)) (-4 *1 (-865 *3 *4 *5)))) (-2830 (*1 *2 *1) (|partial| -12 (-4 *1 (-865 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-2 (|:| |var| *5) (|:| -2406 (-698)))))) (-2825 (*1 *2 *1) (-12 (-4 *1 (-865 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-698)))) (-2825 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *6)) (-4 *1 (-865 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-698)))) (-3087 (*1 *2 *1) (-12 (-4 *1 (-865 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-587 *5)))) (-2824 (*1 *2 *1) (-12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-587 *1)) (-4 *1 (-865 *3 *4 *5)))) (-3762 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-865 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)) (-4 *3 (-148)))) (-3763 (*1 *1 *1 *2) (-12 (-4 *1 (-865 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)) (-4 *3 (-148)))) (-2823 (*1 *1 *1 *2) (-12 (-4 *1 (-865 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)) (-4 *3 (-395)))) (-3509 (*1 *1 *1 *2) (-12 (-4 *1 (-865 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)) (-4 *3 (-395)))) (-3781 (*1 *1 *1) (-12 (-4 *1 (-865 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-395)))) (-3977 (*1 *2 *1) (-12 (-4 *3 (-395)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-350 *1)) (-4 *1 (-865 *3 *4 *5))))) +(-13 (-813 |t#3|) (-279 |t#1| |t#2|) (-262 $) (-459 |t#3| |t#1|) (-459 |t#3| $) (-954 |t#3|) (-331 |t#1|) (-10 -8 (-15 -3955 ((-698) $ |t#3|)) (-15 -3955 ((-587 (-698)) $ (-587 |t#3|))) (-15 -3683 ($ $ |t#3| (-698))) (-15 -3683 ($ $ (-587 |t#3|) (-587 (-698)))) (-15 -2827 ((-587 $) $)) (-15 -3089 ((-1089 $) $ |t#3|)) (-15 -3089 ((-1089 |t#1|) $)) (-15 -3088 ((-3 |t#3| "failed") $)) (-15 -2826 ((-698) $ |t#3|)) (-15 -2826 ((-587 (-698)) $ (-587 |t#3|))) (-15 -3769 ((-2 (|:| -1977 $) (|:| -2908 $)) $ $ |t#3|)) (-15 -2899 ($ $ |t#3| (-698))) (-15 -2899 ($ $ (-587 |t#3|) (-587 (-698)))) (-15 -3090 ($ (-1089 |t#1|) |t#3|)) (-15 -3090 ($ (-1089 $) |t#3|)) (-15 -2828 ((-3 (-587 $) "failed") $)) (-15 -2829 ((-3 (-587 $) "failed") $)) (-15 -2830 ((-3 (-2 (|:| |var| |t#3|) (|:| -2406 (-698))) "failed") $)) (-15 -2825 ((-698) $)) (-15 -2825 ((-698) $ (-587 |t#3|))) (-15 -3087 ((-587 |t#3|) $)) (-15 -2824 ((-587 $) $)) (IF (|has| |t#1| (-557 (-477))) (IF (|has| |t#3| (-557 (-477))) (-6 (-557 (-477))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-557 (-804 (-488)))) (IF (|has| |t#3| (-557 (-804 (-488)))) (-6 (-557 (-804 (-488)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-557 (-804 (-332)))) (IF (|has| |t#3| (-557 (-804 (-332)))) (-6 (-557 (-804 (-332)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-800 (-488))) (IF (|has| |t#3| (-800 (-488))) (-6 (-800 (-488))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-800 (-332))) (IF (|has| |t#3| (-800 (-332))) (-6 (-800 (-332))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-148)) (PROGN (-15 -3762 ($ $ $ |t#3|)) (-15 -3763 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-395)) (PROGN (-6 (-395)) (-15 -2823 ($ $ |t#3|)) (-15 -3509 ($ $)) (-15 -3509 ($ $ |t#3|)) (-15 -3977 ((-350 $) $)) (-15 -3781 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3999)) (-6 -3999) |%noBranch|) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-38 |#1|) |has| |#1| (-148)) ((-38 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395))) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-148))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) OR (|has| |#1| (-954 (-352 (-488)))) (|has| |#1| (-38 (-352 (-488))))) ((-559 (-488)) . T) ((-559 |#1|) . T) ((-559 |#3|) . T) ((-559 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395))) ((-556 (-776)) . T) ((-148) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-148))) ((-557 (-477)) -12 (|has| |#1| (-557 (-477))) (|has| |#3| (-557 (-477)))) ((-557 (-804 (-332))) -12 (|has| |#1| (-557 (-804 (-332)))) (|has| |#3| (-557 (-804 (-332))))) ((-557 (-804 (-488))) -12 (|has| |#1| (-557 (-804 (-488)))) (|has| |#3| (-557 (-804 (-488))))) ((-248) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395))) ((-262 $) . T) ((-279 |#1| |#2|) . T) ((-331 |#1|) . T) ((-357 |#1|) . T) ((-383 |#1|) . T) ((-395) OR (|has| |#1| (-825)) (|has| |#1| (-395))) ((-459 |#3| |#1|) . T) ((-459 |#3| $) . T) ((-459 $ $) . T) ((-499) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395))) ((-13) . T) ((-592 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-594 (-488)) |has| |#1| (-584 (-488))) ((-594 |#1|) . T) ((-594 $) . T) ((-586 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-586 |#1|) |has| |#1| (-148)) ((-586 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395))) ((-584 (-488)) |has| |#1| (-584 (-488))) ((-584 |#1|) . T) ((-658 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-658 |#1|) |has| |#1| (-148)) ((-658 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395))) ((-667) . T) ((-810 $ |#3|) . T) ((-813 |#3|) . T) ((-815 |#3|) . T) ((-800 (-332)) -12 (|has| |#1| (-800 (-332))) (|has| |#3| (-800 (-332)))) ((-800 (-488)) -12 (|has| |#1| (-800 (-488))) (|has| |#3| (-800 (-488)))) ((-825) |has| |#1| (-825)) ((-954 (-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((-954 (-488)) |has| |#1| (-954 (-488))) ((-954 |#1|) . T) ((-954 |#3|) . T) ((-967 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-148))) ((-972 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-972 |#1|) . T) ((-972 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-148))) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T) ((-1138) |has| |#1| (-825))) +((-3087 (((-587 |#2|) |#5|) 40 T ELT)) (-3089 (((-1089 |#5|) |#5| |#2| (-1089 |#5|)) 23 T ELT) (((-352 (-1089 |#5|)) |#5| |#2|) 16 T ELT)) (-3090 ((|#5| (-352 (-1089 |#5|)) |#2|) 30 T ELT)) (-3088 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2829 (((-3 (-587 |#5|) #1#) |#5|) 64 T ELT)) (-2831 (((-3 (-2 (|:| |val| |#5|) (|:| -2406 (-488))) #1#) |#5|) 53 T ELT)) (-2828 (((-3 (-587 |#5|) #1#) |#5|) 66 T ELT)) (-2830 (((-3 (-2 (|:| |var| |#2|) (|:| -2406 (-488))) #1#) |#5|) 56 T ELT))) +(((-866 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3087 ((-587 |#2|) |#5|)) (-15 -3088 ((-3 |#2| #1="failed") |#5|)) (-15 -3089 ((-352 (-1089 |#5|)) |#5| |#2|)) (-15 -3090 (|#5| (-352 (-1089 |#5|)) |#2|)) (-15 -3089 ((-1089 |#5|) |#5| |#2| (-1089 |#5|))) (-15 -2828 ((-3 (-587 |#5|) #1#) |#5|)) (-15 -2829 ((-3 (-587 |#5|) #1#) |#5|)) (-15 -2830 ((-3 (-2 (|:| |var| |#2|) (|:| -2406 (-488))) #1#) |#5|)) (-15 -2831 ((-3 (-2 (|:| |val| |#5|) (|:| -2406 (-488))) #1#) |#5|))) (-721) (-760) (-965) (-865 |#3| |#1| |#2|) (-13 (-314) (-10 -8 (-15 -3953 ($ |#4|)) (-15 -3004 (|#4| $)) (-15 -3003 (|#4| $))))) (T -866)) +((-2831 (*1 *2 *3) (|partial| -12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-965)) (-4 *7 (-865 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2406 (-488)))) (-5 *1 (-866 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-314) (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $))))))) (-2830 (*1 *2 *3) (|partial| -12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-965)) (-4 *7 (-865 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2406 (-488)))) (-5 *1 (-866 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-314) (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $))))))) (-2829 (*1 *2 *3) (|partial| -12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-965)) (-4 *7 (-865 *6 *4 *5)) (-5 *2 (-587 *3)) (-5 *1 (-866 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-314) (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $))))))) (-2828 (*1 *2 *3) (|partial| -12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-965)) (-4 *7 (-865 *6 *4 *5)) (-5 *2 (-587 *3)) (-5 *1 (-866 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-314) (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $))))))) (-3089 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1089 *3)) (-4 *3 (-13 (-314) (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $))))) (-4 *7 (-865 *6 *5 *4)) (-4 *5 (-721)) (-4 *4 (-760)) (-4 *6 (-965)) (-5 *1 (-866 *5 *4 *6 *7 *3)))) (-3090 (*1 *2 *3 *4) (-12 (-5 *3 (-352 (-1089 *2))) (-4 *5 (-721)) (-4 *4 (-760)) (-4 *6 (-965)) (-4 *2 (-13 (-314) (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $))))) (-5 *1 (-866 *5 *4 *6 *7 *2)) (-4 *7 (-865 *6 *5 *4)))) (-3089 (*1 *2 *3 *4) (-12 (-4 *5 (-721)) (-4 *4 (-760)) (-4 *6 (-965)) (-4 *7 (-865 *6 *5 *4)) (-5 *2 (-352 (-1089 *3))) (-5 *1 (-866 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-314) (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $))))))) (-3088 (*1 *2 *3) (|partial| -12 (-4 *4 (-721)) (-4 *5 (-965)) (-4 *6 (-865 *5 *4 *2)) (-4 *2 (-760)) (-5 *1 (-866 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-314) (-10 -8 (-15 -3953 ($ *6)) (-15 -3004 (*6 $)) (-15 -3003 (*6 $))))))) (-3087 (*1 *2 *3) (-12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-965)) (-4 *7 (-865 *6 *4 *5)) (-5 *2 (-587 *5)) (-5 *1 (-866 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-314) (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $)))))))) +((-3849 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) +(((-867 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3849 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-721) (-760) (-965) (-865 |#3| |#1| |#2|) (-13 (-1017) (-10 -8 (-15 -3845 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-698)))))) (T -867)) +((-3849 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-760)) (-4 *8 (-965)) (-4 *6 (-721)) (-4 *2 (-13 (-1017) (-10 -8 (-15 -3845 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-698)))))) (-5 *1 (-867 *6 *7 *8 *5 *2)) (-4 *5 (-865 *8 *6 *7))))) +((-2832 (((-2 (|:| -2406 (-698)) (|:| -3961 |#5|) (|:| |radicand| |#5|)) |#3| (-698)) 48 T ELT)) (-2833 (((-2 (|:| -2406 (-698)) (|:| -3961 |#5|) (|:| |radicand| |#5|)) (-352 (-488)) (-698)) 43 T ELT)) (-2835 (((-2 (|:| -2406 (-698)) (|:| -3961 |#4|) (|:| |radicand| (-587 |#4|))) |#4| (-698)) 64 T ELT)) (-2834 (((-2 (|:| -2406 (-698)) (|:| -3961 |#5|) (|:| |radicand| |#5|)) |#5| (-698)) 73 (|has| |#3| (-395)) ELT))) +(((-868 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2832 ((-2 (|:| -2406 (-698)) (|:| -3961 |#5|) (|:| |radicand| |#5|)) |#3| (-698))) (-15 -2833 ((-2 (|:| -2406 (-698)) (|:| -3961 |#5|) (|:| |radicand| |#5|)) (-352 (-488)) (-698))) (IF (|has| |#3| (-395)) (-15 -2834 ((-2 (|:| -2406 (-698)) (|:| -3961 |#5|) (|:| |radicand| |#5|)) |#5| (-698))) |%noBranch|) (-15 -2835 ((-2 (|:| -2406 (-698)) (|:| -3961 |#4|) (|:| |radicand| (-587 |#4|))) |#4| (-698)))) (-721) (-760) (-499) (-865 |#3| |#1| |#2|) (-13 (-314) (-10 -8 (-15 -3953 ($ |#4|)) (-15 -3004 (|#4| $)) (-15 -3003 (|#4| $))))) (T -868)) +((-2835 (*1 *2 *3 *4) (-12 (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-499)) (-4 *3 (-865 *7 *5 *6)) (-5 *2 (-2 (|:| -2406 (-698)) (|:| -3961 *3) (|:| |radicand| (-587 *3)))) (-5 *1 (-868 *5 *6 *7 *3 *8)) (-5 *4 (-698)) (-4 *8 (-13 (-314) (-10 -8 (-15 -3953 ($ *3)) (-15 -3004 (*3 $)) (-15 -3003 (*3 $))))))) (-2834 (*1 *2 *3 *4) (-12 (-4 *7 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-499)) (-4 *8 (-865 *7 *5 *6)) (-5 *2 (-2 (|:| -2406 (-698)) (|:| -3961 *3) (|:| |radicand| *3))) (-5 *1 (-868 *5 *6 *7 *8 *3)) (-5 *4 (-698)) (-4 *3 (-13 (-314) (-10 -8 (-15 -3953 ($ *8)) (-15 -3004 (*8 $)) (-15 -3003 (*8 $))))))) (-2833 (*1 *2 *3 *4) (-12 (-5 *3 (-352 (-488))) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-499)) (-4 *8 (-865 *7 *5 *6)) (-5 *2 (-2 (|:| -2406 (-698)) (|:| -3961 *9) (|:| |radicand| *9))) (-5 *1 (-868 *5 *6 *7 *8 *9)) (-5 *4 (-698)) (-4 *9 (-13 (-314) (-10 -8 (-15 -3953 ($ *8)) (-15 -3004 (*8 $)) (-15 -3003 (*8 $))))))) (-2832 (*1 *2 *3 *4) (-12 (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-499)) (-4 *7 (-865 *3 *5 *6)) (-5 *2 (-2 (|:| -2406 (-698)) (|:| -3961 *8) (|:| |radicand| *8))) (-5 *1 (-868 *5 *6 *3 *7 *8)) (-5 *4 (-698)) (-4 *8 (-13 (-314) (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $)))))))) +((-2574 (((-85) $ $) NIL T ELT)) (-2836 (($ (-1037)) 8 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 15 T ELT) (((-1037) $) 12 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 11 T ELT))) +(((-869) (-13 (-1017) (-556 (-1037)) (-10 -8 (-15 -2836 ($ (-1037)))))) (T -869)) +((-2836 (*1 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-869))))) +((-2902 (((-1005 (-181)) $) 8 T ELT)) (-2903 (((-1005 (-181)) $) 9 T ELT)) (-2904 (((-587 (-587 (-858 (-181)))) $) 10 T ELT)) (-3953 (((-776) $) 6 T ELT))) +(((-870) (-113)) (T -870)) +((-2904 (*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-587 (-587 (-858 (-181))))))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-1005 (-181))))) (-2902 (*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-1005 (-181)))))) +(-13 (-556 (-776)) (-10 -8 (-15 -2904 ((-587 (-587 (-858 (-181)))) $)) (-15 -2903 ((-1005 (-181)) $)) (-15 -2902 ((-1005 (-181)) $)))) +(((-556 (-776)) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 80 (|has| |#1| (-499)) ELT)) (-2068 (($ $) 81 (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3162 (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) NIL T ELT)) (-3965 (($ $) 32 T ELT)) (-3473 (((-3 $ #1#) $) 43 T ELT)) (-3509 (($ $) NIL (|has| |#1| (-395)) ELT)) (-1628 (($ $ |#1| |#2| $) 64 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2425 (((-698) $) 18 T ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| |#2|) NIL T ELT)) (-2826 ((|#2| $) 25 T ELT)) (-1629 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2900 (($ $) 29 T ELT)) (-3180 ((|#1| $) 27 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1805 (((-85) $) 52 T ELT)) (-1804 ((|#1| $) NIL T ELT)) (-3744 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-104)) (|has| |#1| (-499))) ELT)) (-3472 (((-3 $ #1#) $ $) 92 (|has| |#1| (-499)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-499)) ELT)) (-3955 ((|#2| $) 23 T ELT)) (-2823 ((|#1| $) NIL (|has| |#1| (-395)) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) 47 T ELT) (($ $) NIL (|has| |#1| (-499)) ELT) (($ |#1|) 42 T ELT) (($ (-352 (-488))) NIL (OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) ELT)) (-3823 (((-587 |#1|) $) NIL T ELT)) (-3683 ((|#1| $ |#2|) 38 T ELT)) (-2708 (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-3132 (((-698)) 15 T CONST)) (-1627 (($ $ $ (-698)) 76 (|has| |#1| (-148)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) 86 (|has| |#1| (-499)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 28 T CONST)) (-2672 (($) 12 T CONST)) (-3062 (((-85) $ $) 85 T ELT)) (-3956 (($ $ |#1|) 93 (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) 71 T ELT) (($ $ (-698)) 69 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-871 |#1| |#2|) (-13 (-279 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-499)) (IF (|has| |#2| (-104)) (-15 -3744 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3999)) (-6 -3999) |%noBranch|))) (-965) (-720)) (T -871)) +((-3744 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-871 *3 *2)) (-4 *2 (-104)) (-4 *3 (-499)) (-4 *3 (-965)) (-4 *2 (-720))))) +((-2837 (((-3 (-634 |#1|) "failed") |#2| (-834)) 18 T ELT))) +(((-872 |#1| |#2|) (-10 -7 (-15 -2837 ((-3 (-634 |#1|) "failed") |#2| (-834)))) (-499) (-604 |#1|)) (T -872)) +((-2837 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-834)) (-4 *5 (-499)) (-5 *2 (-634 *5)) (-5 *1 (-872 *5 *3)) (-4 *3 (-604 *5))))) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 |#1|)) ELT)) (-1740 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-760)) ELT)) (-1738 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1039 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1039 |#1|)) (|has| |#1| (-760))) ELT)) (-2915 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-760)) ELT)) (-3794 ((|#1| $ (-488) |#1|) 18 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-1150 (-488)) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3730 (($) NIL T CONST)) (-2302 (($ $) NIL (|has| $ (-1039 |#1|)) ELT)) (-2303 (($ $) NIL T ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-3412 (($ |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1580 ((|#1| $ (-488) |#1|) 17 (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-488)) 15 T ELT)) (-3425 (((-488) (-1 (-85) |#1|) $) NIL T ELT) (((-488) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-488) |#1| $ (-488)) NIL (|has| |#1| (-72)) ELT)) (-3620 (($ (-698) |#1|) 14 T ELT)) (-2205 (((-488) $) 10 (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-3524 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-2614 (((-587 |#1|) $) 23 T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2206 (((-488) $) 22 (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-2309 (($ |#1| $ (-488)) NIL T ELT) (($ $ $ (-488)) NIL T ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) NIL T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-3807 ((|#1| $) NIL (|has| (-488) (-760)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2204 (($ $ |#1|) 19 (|has| $ (-1039 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) 11 T ELT)) (-3806 ((|#1| $ (-488) |#1|) NIL T ELT) ((|#1| $ (-488)) 16 T ELT) (($ $ (-1150 (-488))) NIL T ELT)) (-2310 (($ $ (-488)) NIL T ELT) (($ $ (-1150 (-488))) NIL T ELT)) (-1735 (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) NIL T ELT)) (-1739 (($ $ $ (-488)) NIL (|has| $ (-1039 |#1|)) ELT)) (-3406 (($ $) 20 T ELT)) (-3978 (((-477) $) NIL (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 13 T ELT)) (-3808 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3953 (((-776) $) NIL (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2572 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2690 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3964 (((-698) $) 8 T ELT))) +(((-873 |#1|) (-19 |#1|) (-1133)) (T -873)) +NIL +((-3847 (((-873 |#2|) (-1 |#2| |#1| |#2|) (-873 |#1|) |#2|) 16 T ELT)) (-3848 ((|#2| (-1 |#2| |#1| |#2|) (-873 |#1|) |#2|) 18 T ELT)) (-3849 (((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)) 13 T ELT))) +(((-874 |#1| |#2|) (-10 -7 (-15 -3847 ((-873 |#2|) (-1 |#2| |#1| |#2|) (-873 |#1|) |#2|)) (-15 -3848 (|#2| (-1 |#2| |#1| |#2|) (-873 |#1|) |#2|)) (-15 -3849 ((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)))) (-1133) (-1133)) (T -874)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-873 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-873 *6)) (-5 *1 (-874 *5 *6)))) (-3848 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-873 *5)) (-4 *5 (-1133)) (-4 *2 (-1133)) (-5 *1 (-874 *5 *2)))) (-3847 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-873 *6)) (-4 *6 (-1133)) (-4 *5 (-1133)) (-5 *2 (-873 *5)) (-5 *1 (-874 *6 *5))))) +((-2838 (($ $ (-1008 $)) 7 T ELT) (($ $ (-1094)) 6 T ELT))) +(((-875) (-113)) (T -875)) +((-2838 (*1 *1 *1 *2) (-12 (-5 *2 (-1008 *1)) (-4 *1 (-875)))) (-2838 (*1 *1 *1 *2) (-12 (-4 *1 (-875)) (-5 *2 (-1094))))) +(-13 (-10 -8 (-15 -2838 ($ $ (-1094))) (-15 -2838 ($ $ (-1008 $))))) +((-2839 (((-2 (|:| -3961 (-587 (-488))) (|:| |poly| (-587 (-1089 |#1|))) (|:| |prim| (-1089 |#1|))) (-587 (-861 |#1|)) (-587 (-1094)) (-1094)) 26 T ELT) (((-2 (|:| -3961 (-587 (-488))) (|:| |poly| (-587 (-1089 |#1|))) (|:| |prim| (-1089 |#1|))) (-587 (-861 |#1|)) (-587 (-1094))) 27 T ELT) (((-2 (|:| |coef1| (-488)) (|:| |coef2| (-488)) (|:| |prim| (-1089 |#1|))) (-861 |#1|) (-1094) (-861 |#1|) (-1094)) 49 T ELT))) +(((-876 |#1|) (-10 -7 (-15 -2839 ((-2 (|:| |coef1| (-488)) (|:| |coef2| (-488)) (|:| |prim| (-1089 |#1|))) (-861 |#1|) (-1094) (-861 |#1|) (-1094))) (-15 -2839 ((-2 (|:| -3961 (-587 (-488))) (|:| |poly| (-587 (-1089 |#1|))) (|:| |prim| (-1089 |#1|))) (-587 (-861 |#1|)) (-587 (-1094)))) (-15 -2839 ((-2 (|:| -3961 (-587 (-488))) (|:| |poly| (-587 (-1089 |#1|))) (|:| |prim| (-1089 |#1|))) (-587 (-861 |#1|)) (-587 (-1094)) (-1094)))) (-13 (-314) (-120))) (T -876)) +((-2839 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 (-861 *6))) (-5 *4 (-587 (-1094))) (-5 *5 (-1094)) (-4 *6 (-13 (-314) (-120))) (-5 *2 (-2 (|:| -3961 (-587 (-488))) (|:| |poly| (-587 (-1089 *6))) (|:| |prim| (-1089 *6)))) (-5 *1 (-876 *6)))) (-2839 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-587 (-1094))) (-4 *5 (-13 (-314) (-120))) (-5 *2 (-2 (|:| -3961 (-587 (-488))) (|:| |poly| (-587 (-1089 *5))) (|:| |prim| (-1089 *5)))) (-5 *1 (-876 *5)))) (-2839 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-861 *5)) (-5 *4 (-1094)) (-4 *5 (-13 (-314) (-120))) (-5 *2 (-2 (|:| |coef1| (-488)) (|:| |coef2| (-488)) (|:| |prim| (-1089 *5)))) (-5 *1 (-876 *5))))) +((-2842 (((-587 |#1|) |#1| |#1|) 47 T ELT)) (-3729 (((-85) |#1|) 44 T ELT)) (-2841 ((|#1| |#1|) 80 T ELT)) (-2840 ((|#1| |#1|) 79 T ELT))) +(((-877 |#1|) (-10 -7 (-15 -3729 ((-85) |#1|)) (-15 -2840 (|#1| |#1|)) (-15 -2841 (|#1| |#1|)) (-15 -2842 ((-587 |#1|) |#1| |#1|))) (-487)) (T -877)) +((-2842 (*1 *2 *3 *3) (-12 (-5 *2 (-587 *3)) (-5 *1 (-877 *3)) (-4 *3 (-487)))) (-2841 (*1 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-487)))) (-2840 (*1 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-487)))) (-3729 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-877 *3)) (-4 *3 (-487))))) +((-2843 (((-1189) (-776)) 9 T ELT))) +(((-878) (-10 -7 (-15 -2843 ((-1189) (-776))))) (T -878)) +((-2843 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1189)) (-5 *1 (-878))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))) ELT)) (-2489 (($ $ $) 65 (-12 (|has| |#1| (-721)) (|has| |#2| (-721))) ELT)) (-1316 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))) ELT)) (-3142 (((-698)) 36 (-12 (|has| |#1| (-322)) (|has| |#2| (-322))) ELT)) (-2844 ((|#2| $) 22 T ELT)) (-2845 ((|#1| $) 21 T ELT)) (-3730 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-416)) (|has| |#2| (-416))) (-12 (|has| |#1| (-667)) (|has| |#2| (-667))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))) CONST)) (-3473 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-416)) (|has| |#2| (-416))) (-12 (|has| |#1| (-667)) (|has| |#2| (-667)))) ELT)) (-3000 (($) NIL (-12 (|has| |#1| (-322)) (|has| |#2| (-322))) ELT)) (-3192 (((-85) $) NIL (-12 (|has| |#1| (-721)) (|has| |#2| (-721))) ELT)) (-1218 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))) ELT)) (-2415 (((-85) $) NIL (OR (-12 (|has| |#1| (-416)) (|has| |#2| (-416))) (-12 (|has| |#1| (-667)) (|has| |#2| (-667)))) ELT)) (-2537 (($ $ $) NIL (OR (-12 (|has| |#1| (-721)) (|has| |#2| (-721))) (-12 (|has| |#1| (-760)) (|has| |#2| (-760)))) ELT)) (-2863 (($ $ $) NIL (OR (-12 (|has| |#1| (-721)) (|has| |#2| (-721))) (-12 (|has| |#1| (-760)) (|has| |#2| (-760)))) ELT)) (-2846 (($ |#1| |#2|) 20 T ELT)) (-2015 (((-834) $) NIL (-12 (|has| |#1| (-322)) (|has| |#2| (-322))) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) 39 (-12 (|has| |#1| (-416)) (|has| |#2| (-416))) ELT)) (-2405 (($ (-834)) NIL (-12 (|has| |#1| (-322)) (|has| |#2| (-322))) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3015 (($ $ $) NIL (-12 (|has| |#1| (-416)) (|has| |#2| (-416))) ELT)) (-2441 (($ $ $) NIL (-12 (|has| |#1| (-416)) (|has| |#2| (-416))) ELT)) (-3953 (((-776) $) 14 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))) CONST)) (-2672 (($) 25 (OR (-12 (|has| |#1| (-416)) (|has| |#2| (-416))) (-12 (|has| |#1| (-667)) (|has| |#2| (-667)))) CONST)) (-2572 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-721)) (|has| |#2| (-721))) (-12 (|has| |#1| (-760)) (|has| |#2| (-760)))) ELT)) (-2573 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-721)) (|has| |#2| (-721))) (-12 (|has| |#1| (-760)) (|has| |#2| (-760)))) ELT)) (-3062 (((-85) $ $) 19 T ELT)) (-2690 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-721)) (|has| |#2| (-721))) (-12 (|has| |#1| (-760)) (|has| |#2| (-760)))) ELT)) (-2691 (((-85) $ $) 69 (OR (-12 (|has| |#1| (-721)) (|has| |#2| (-721))) (-12 (|has| |#1| (-760)) (|has| |#2| (-760)))) ELT)) (-3956 (($ $ $) NIL (-12 (|has| |#1| (-416)) (|has| |#2| (-416))) ELT)) (-3843 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3845 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))) ELT)) (** (($ $ (-488)) NIL (-12 (|has| |#1| (-416)) (|has| |#2| (-416))) ELT) (($ $ (-698)) 32 (OR (-12 (|has| |#1| (-416)) (|has| |#2| (-416))) (-12 (|has| |#1| (-667)) (|has| |#2| (-667)))) ELT) (($ $ (-834)) NIL (OR (-12 (|has| |#1| (-416)) (|has| |#2| (-416))) (-12 (|has| |#1| (-667)) (|has| |#2| (-667)))) ELT)) (* (($ (-488) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-698) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))) ELT) (($ (-834) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-416)) (|has| |#2| (-416))) (-12 (|has| |#1| (-667)) (|has| |#2| (-667)))) ELT))) +(((-879 |#1| |#2|) (-13 (-1017) (-10 -8 (IF (|has| |#1| (-322)) (IF (|has| |#2| (-322)) (-6 (-322)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-667)) (IF (|has| |#2| (-667)) (-6 (-667)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-104)) (IF (|has| |#2| (-104)) (-6 (-104)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-416)) (IF (|has| |#2| (-416)) (-6 (-416)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-721)) (IF (|has| |#2| (-721)) (-6 (-721)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-760)) (IF (|has| |#2| (-760)) (-6 (-760)) |%noBranch|) |%noBranch|) (-15 -2846 ($ |#1| |#2|)) (-15 -2845 (|#1| $)) (-15 -2844 (|#2| $)))) (-1017) (-1017)) (T -879)) +((-2846 (*1 *1 *2 *3) (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1017)))) (-2845 (*1 *2 *1) (-12 (-4 *2 (-1017)) (-5 *1 (-879 *2 *3)) (-4 *3 (-1017)))) (-2844 (*1 *2 *1) (-12 (-4 *2 (-1017)) (-5 *1 (-879 *3 *2)) (-4 *3 (-1017))))) +((-3408 (((-1019) $) 13 T ELT)) (-2847 (($ (-450) (-1019)) 15 T ELT)) (-3548 (((-450) $) 11 T ELT)) (-3953 (((-776) $) 25 T ELT))) +(((-880) (-13 (-556 (-776)) (-10 -8 (-15 -3548 ((-450) $)) (-15 -3408 ((-1019) $)) (-15 -2847 ($ (-450) (-1019)))))) (T -880)) +((-3548 (*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-880)))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-1019)) (-5 *1 (-880)))) (-2847 (*1 *1 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-1019)) (-5 *1 (-880))))) +((-2574 (((-85) $ $) NIL T ELT)) (-2318 (($ $) 29 T ELT)) (-2861 (($) 17 T CONST)) (-2567 (($ $ $) NIL T ELT)) (-2566 (($ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2852 (((-636 (-786 $ $)) $) 62 T ELT)) (-2854 (((-636 $) $) 52 T ELT)) (-2851 (((-636 (-786 $ $)) $) 63 T ELT)) (-2850 (((-636 (-786 $ $)) $) 64 T ELT)) (-2855 (((-636 |#1|) $) 43 T ELT)) (-2853 (((-636 (-786 $ $)) $) 61 T ELT)) (-2859 (($ $ $) 38 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2860 (($) 16 T CONST)) (-2858 (($ $ $) 39 T ELT)) (-2848 (($ $ $) 36 T ELT)) (-2849 (($ $ $) 34 T ELT)) (-3953 (((-776) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2568 (($ $ $) NIL T ELT)) (-2316 (($ $ $) 37 T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2317 (($ $ $) 35 T ELT))) +(((-881 |#1|) (-13 (-884) (-559 |#1|) (-10 -8 (-15 -2855 ((-636 |#1|) $)) (-15 -2854 ((-636 $) $)) (-15 -2853 ((-636 (-786 $ $)) $)) (-15 -2852 ((-636 (-786 $ $)) $)) (-15 -2851 ((-636 (-786 $ $)) $)) (-15 -2850 ((-636 (-786 $ $)) $)) (-15 -2849 ($ $ $)) (-15 -2848 ($ $ $)))) (-1017)) (T -881)) +((-2855 (*1 *2 *1) (-12 (-5 *2 (-636 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1017)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-636 (-881 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1017)))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-636 (-786 (-881 *3) (-881 *3)))) (-5 *1 (-881 *3)) (-4 *3 (-1017)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-636 (-786 (-881 *3) (-881 *3)))) (-5 *1 (-881 *3)) (-4 *3 (-1017)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-636 (-786 (-881 *3) (-881 *3)))) (-5 *1 (-881 *3)) (-4 *3 (-1017)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-636 (-786 (-881 *3) (-881 *3)))) (-5 *1 (-881 *3)) (-4 *3 (-1017)))) (-2849 (*1 *1 *1 *1) (-12 (-5 *1 (-881 *2)) (-4 *2 (-1017)))) (-2848 (*1 *1 *1 *1) (-12 (-5 *1 (-881 *2)) (-4 *2 (-1017))))) +((-3655 (((-881 |#1|) (-881 |#1|)) 46 T ELT)) (-2857 (((-881 |#1|) (-881 |#1|)) 22 T ELT)) (-2856 (((-1013 |#1|) (-881 |#1|)) 41 T ELT))) +(((-882 |#1|) (-13 (-1133) (-10 -7 (-15 -2857 ((-881 |#1|) (-881 |#1|))) (-15 -2856 ((-1013 |#1|) (-881 |#1|))) (-15 -3655 ((-881 |#1|) (-881 |#1|))))) (-1017)) (T -882)) +((-2857 (*1 *2 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-1017)) (-5 *1 (-882 *3)))) (-2856 (*1 *2 *3) (-12 (-5 *3 (-881 *4)) (-4 *4 (-1017)) (-5 *2 (-1013 *4)) (-5 *1 (-882 *4)))) (-3655 (*1 *2 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-1017)) (-5 *1 (-882 *3))))) +((-3849 (((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)) 29 T ELT))) +(((-883 |#1| |#2|) (-13 (-1133) (-10 -7 (-15 -3849 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|))))) (-1017) (-1017)) (T -883)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-5 *2 (-881 *6)) (-5 *1 (-883 *5 *6))))) +((-2574 (((-85) $ $) 19 T ELT)) (-2318 (($ $) 8 T ELT)) (-2861 (($) 17 T CONST)) (-2567 (($ $ $) 9 T ELT)) (-2566 (($ $) 11 T ELT)) (-3248 (((-1077) $) 23 T ELT)) (-2859 (($ $ $) 15 T ELT)) (-3249 (((-1037) $) 22 T ELT)) (-2860 (($) 16 T CONST)) (-2858 (($ $ $) 14 T ELT)) (-3953 (((-776) $) 21 T ELT)) (-1269 (((-85) $ $) 20 T ELT)) (-2568 (($ $ $) 10 T ELT)) (-2316 (($ $ $) 6 T ELT)) (-3062 (((-85) $ $) 18 T ELT)) (-2317 (($ $ $) 7 T ELT))) +(((-884) (-113)) (T -884)) +((-2861 (*1 *1) (-4 *1 (-884))) (-2860 (*1 *1) (-4 *1 (-884))) (-2859 (*1 *1 *1 *1) (-4 *1 (-884))) (-2858 (*1 *1 *1 *1) (-4 *1 (-884)))) +(-13 (-84) (-1017) (-10 -8 (-15 -2861 ($) -3959) (-15 -2860 ($) -3959) (-15 -2859 ($ $ $)) (-15 -2858 ($ $ $)))) +(((-72) . T) ((-84) . T) ((-556 (-776)) . T) ((-13) . T) ((-608) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3730 (($) 6 T CONST)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 54 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 49 T ELT)) (-2862 (($ $ $) 41 T ELT)) (-3524 (($ $ $) 42 T ELT)) (-2614 (((-587 |#1|) $) 48 T ELT)) (-3251 (((-85) |#1| $) 53 (|has| |#1| (-72)) ELT)) (-2863 ((|#1| $) 43 T ELT)) (-3332 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-1278 ((|#1| $) 35 T ELT)) (-3615 (($ |#1| $) 36 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 51 T ELT)) (-1279 ((|#1| $) 37 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) 46 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-1735 (((-698) |#1| $) 52 (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) 47 T ELT)) (-3406 (($ $) 9 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1280 (($ (-587 |#1|)) 38 T ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) 45 T ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) 44 T ELT))) +(((-885 |#1|) (-113) (-760)) (T -885)) +((-2863 (*1 *2 *1) (-12 (-4 *1 (-885 *2)) (-4 *2 (-760)))) (-3524 (*1 *1 *1 *1) (-12 (-4 *1 (-885 *2)) (-4 *2 (-760)))) (-2862 (*1 *1 *1 *1) (-12 (-4 *1 (-885 *2)) (-4 *2 (-760))))) +(-13 (-76 |t#1|) (-320 |t#1|) (-10 -8 (-15 -2863 (|t#1| $)) (-15 -3524 ($ $ $)) (-15 -2862 ($ $ $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-320 |#1|) . T) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-1017) |has| |#1| (-1017)) ((-1039 |#1|) . T) ((-1133) . T)) +((-2875 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3150 |#2|)) |#2| |#2|) 105 T ELT)) (-3761 ((|#2| |#2| |#2|) 103 T ELT)) (-2876 (((-2 (|:| |coef2| |#2|) (|:| -3150 |#2|)) |#2| |#2|) 107 T ELT)) (-2877 (((-2 (|:| |coef1| |#2|) (|:| -3150 |#2|)) |#2| |#2|) 109 T ELT)) (-2884 (((-2 (|:| |coef2| |#2|) (|:| -2882 |#1|)) |#2| |#2|) 132 (|has| |#1| (-395)) ELT)) (-2891 (((-2 (|:| |coef2| |#2|) (|:| -3762 |#1|)) |#2| |#2|) 56 T ELT)) (-2865 (((-2 (|:| |coef2| |#2|) (|:| -3762 |#1|)) |#2| |#2|) 80 T ELT)) (-2866 (((-2 (|:| |coef1| |#2|) (|:| -3762 |#1|)) |#2| |#2|) 82 T ELT)) (-2874 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2869 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-698)) 89 T ELT)) (-2879 (((-2 (|:| |coef2| |#2|) (|:| -3763 |#1|)) |#2|) 121 T ELT)) (-2872 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-698)) 92 T ELT)) (-2881 (((-587 (-698)) |#2| |#2|) 102 T ELT)) (-2889 ((|#1| |#2| |#2|) 50 T ELT)) (-2883 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2882 |#1|)) |#2| |#2|) 130 (|has| |#1| (-395)) ELT)) (-2882 ((|#1| |#2| |#2|) 128 (|has| |#1| (-395)) ELT)) (-2890 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3762 |#1|)) |#2| |#2|) 54 T ELT)) (-2864 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3762 |#1|)) |#2| |#2|) 79 T ELT)) (-3762 ((|#1| |#2| |#2|) 76 T ELT)) (-3758 (((-2 (|:| -3961 |#1|) (|:| -1977 |#2|) (|:| -2908 |#2|)) |#2| |#2|) 41 T ELT)) (-2888 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2873 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3196 ((|#2| |#2| |#2|) 93 T ELT)) (-2868 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-698)) 87 T ELT)) (-2867 ((|#2| |#2| |#2| (-698)) 85 T ELT)) (-3150 ((|#2| |#2| |#2|) 136 (|has| |#1| (-395)) ELT)) (-3472 (((-1183 |#2|) (-1183 |#2|) |#1|) 22 T ELT)) (-2885 (((-2 (|:| -1977 |#2|) (|:| -2908 |#2|)) |#2| |#2|) 46 T ELT)) (-2878 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3763 |#1|)) |#2|) 119 T ELT)) (-3763 ((|#1| |#2|) 116 T ELT)) (-2871 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-698)) 91 T ELT)) (-2870 ((|#2| |#2| |#2| (-698)) 90 T ELT)) (-2880 (((-587 |#2|) |#2| |#2|) 99 T ELT)) (-2887 ((|#2| |#2| |#1| |#1| (-698)) 62 T ELT)) (-2886 ((|#1| |#1| |#1| (-698)) 61 T ELT)) (* (((-1183 |#2|) |#1| (-1183 |#2|)) 17 T ELT))) +(((-886 |#1| |#2|) (-10 -7 (-15 -3762 (|#1| |#2| |#2|)) (-15 -2864 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3762 |#1|)) |#2| |#2|)) (-15 -2865 ((-2 (|:| |coef2| |#2|) (|:| -3762 |#1|)) |#2| |#2|)) (-15 -2866 ((-2 (|:| |coef1| |#2|) (|:| -3762 |#1|)) |#2| |#2|)) (-15 -2867 (|#2| |#2| |#2| (-698))) (-15 -2868 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-698))) (-15 -2869 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-698))) (-15 -2870 (|#2| |#2| |#2| (-698))) (-15 -2871 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-698))) (-15 -2872 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-698))) (-15 -3196 (|#2| |#2| |#2|)) (-15 -2873 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2874 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3761 (|#2| |#2| |#2|)) (-15 -2875 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3150 |#2|)) |#2| |#2|)) (-15 -2876 ((-2 (|:| |coef2| |#2|) (|:| -3150 |#2|)) |#2| |#2|)) (-15 -2877 ((-2 (|:| |coef1| |#2|) (|:| -3150 |#2|)) |#2| |#2|)) (-15 -3763 (|#1| |#2|)) (-15 -2878 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3763 |#1|)) |#2|)) (-15 -2879 ((-2 (|:| |coef2| |#2|) (|:| -3763 |#1|)) |#2|)) (-15 -2880 ((-587 |#2|) |#2| |#2|)) (-15 -2881 ((-587 (-698)) |#2| |#2|)) (IF (|has| |#1| (-395)) (PROGN (-15 -2882 (|#1| |#2| |#2|)) (-15 -2883 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2882 |#1|)) |#2| |#2|)) (-15 -2884 ((-2 (|:| |coef2| |#2|) (|:| -2882 |#1|)) |#2| |#2|)) (-15 -3150 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1183 |#2|) |#1| (-1183 |#2|))) (-15 -3472 ((-1183 |#2|) (-1183 |#2|) |#1|)) (-15 -3758 ((-2 (|:| -3961 |#1|) (|:| -1977 |#2|) (|:| -2908 |#2|)) |#2| |#2|)) (-15 -2885 ((-2 (|:| -1977 |#2|) (|:| -2908 |#2|)) |#2| |#2|)) (-15 -2886 (|#1| |#1| |#1| (-698))) (-15 -2887 (|#2| |#2| |#1| |#1| (-698))) (-15 -2888 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2889 (|#1| |#2| |#2|)) (-15 -2890 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3762 |#1|)) |#2| |#2|)) (-15 -2891 ((-2 (|:| |coef2| |#2|) (|:| -3762 |#1|)) |#2| |#2|))) (-499) (-1159 |#1|)) (T -886)) +((-2891 (*1 *2 *3 *3) (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3762 *4))) (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4)))) (-2890 (*1 *2 *3 *3) (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3762 *4))) (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4)))) (-2889 (*1 *2 *3 *3) (-12 (-4 *2 (-499)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1159 *2)))) (-2888 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-499)) (-5 *1 (-886 *3 *2)) (-4 *2 (-1159 *3)))) (-2887 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-698)) (-4 *3 (-499)) (-5 *1 (-886 *3 *2)) (-4 *2 (-1159 *3)))) (-2886 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-698)) (-4 *2 (-499)) (-5 *1 (-886 *2 *4)) (-4 *4 (-1159 *2)))) (-2885 (*1 *2 *3 *3) (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| -1977 *3) (|:| -2908 *3))) (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4)))) (-3758 (*1 *2 *3 *3) (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| -3961 *4) (|:| -1977 *3) (|:| -2908 *3))) (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4)))) (-3472 (*1 *2 *2 *3) (-12 (-5 *2 (-1183 *4)) (-4 *4 (-1159 *3)) (-4 *3 (-499)) (-5 *1 (-886 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1183 *4)) (-4 *4 (-1159 *3)) (-4 *3 (-499)) (-5 *1 (-886 *3 *4)))) (-3150 (*1 *2 *2 *2) (-12 (-4 *3 (-395)) (-4 *3 (-499)) (-5 *1 (-886 *3 *2)) (-4 *2 (-1159 *3)))) (-2884 (*1 *2 *3 *3) (-12 (-4 *4 (-395)) (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2882 *4))) (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4)))) (-2883 (*1 *2 *3 *3) (-12 (-4 *4 (-395)) (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2882 *4))) (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4)))) (-2882 (*1 *2 *3 *3) (-12 (-4 *2 (-499)) (-4 *2 (-395)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1159 *2)))) (-2881 (*1 *2 *3 *3) (-12 (-4 *4 (-499)) (-5 *2 (-587 (-698))) (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4)))) (-2880 (*1 *2 *3 *3) (-12 (-4 *4 (-499)) (-5 *2 (-587 *3)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4)))) (-2879 (*1 *2 *3) (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3763 *4))) (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4)))) (-2878 (*1 *2 *3) (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3763 *4))) (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4)))) (-3763 (*1 *2 *3) (-12 (-4 *2 (-499)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1159 *2)))) (-2877 (*1 *2 *3 *3) (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3150 *3))) (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4)))) (-2876 (*1 *2 *3 *3) (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3150 *3))) (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4)))) (-2875 (*1 *2 *3 *3) (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3150 *3))) (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4)))) (-3761 (*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-886 *3 *2)) (-4 *2 (-1159 *3)))) (-2874 (*1 *2 *3 *3) (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4)))) (-2873 (*1 *2 *3 *3) (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4)))) (-3196 (*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-886 *3 *2)) (-4 *2 (-1159 *3)))) (-2872 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-698)) (-4 *5 (-499)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-886 *5 *3)) (-4 *3 (-1159 *5)))) (-2871 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-698)) (-4 *5 (-499)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-886 *5 *3)) (-4 *3 (-1159 *5)))) (-2870 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-698)) (-4 *4 (-499)) (-5 *1 (-886 *4 *2)) (-4 *2 (-1159 *4)))) (-2869 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-698)) (-4 *5 (-499)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-886 *5 *3)) (-4 *3 (-1159 *5)))) (-2868 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-698)) (-4 *5 (-499)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-886 *5 *3)) (-4 *3 (-1159 *5)))) (-2867 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-698)) (-4 *4 (-499)) (-5 *1 (-886 *4 *2)) (-4 *2 (-1159 *4)))) (-2866 (*1 *2 *3 *3) (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3762 *4))) (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4)))) (-2865 (*1 *2 *3 *3) (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3762 *4))) (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4)))) (-2864 (*1 *2 *3 *3) (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3762 *4))) (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4)))) (-3762 (*1 *2 *3 *3) (-12 (-4 *2 (-499)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1159 *2))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3324 (((-1134) $) 14 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3212 (((-1053) $) 11 T ELT)) (-3953 (((-776) $) 21 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-887) (-13 (-999) (-10 -8 (-15 -3212 ((-1053) $)) (-15 -3324 ((-1134) $))))) (T -887)) +((-3212 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-887)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-887))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 40 T ELT)) (-1316 (((-3 $ "failed") $ $) 54 T ELT)) (-3730 (($) NIL T CONST)) (-2893 (((-587 (-786 (-834) (-834))) $) 64 T ELT)) (-3192 (((-85) $) NIL T ELT)) (-2892 (((-834) $) 91 T ELT)) (-2895 (((-587 (-834)) $) 17 T ELT)) (-2894 (((-1073 $) (-698)) 39 T ELT)) (-2896 (($ (-587 (-834))) 16 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3015 (($ $) 67 T ELT)) (-3953 (((-776) $) 87 T ELT) (((-587 (-834)) $) 11 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) 10 T CONST)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 44 T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 42 T ELT)) (-3845 (($ $ $) 46 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) 49 T ELT)) (-3964 (((-698) $) 22 T ELT))) +(((-888) (-13 (-725) (-556 (-587 (-834))) (-10 -8 (-15 -2896 ($ (-587 (-834)))) (-15 -2895 ((-587 (-834)) $)) (-15 -3964 ((-698) $)) (-15 -2894 ((-1073 $) (-698))) (-15 -2893 ((-587 (-786 (-834) (-834))) $)) (-15 -2892 ((-834) $)) (-15 -3015 ($ $))))) (T -888)) +((-2896 (*1 *1 *2) (-12 (-5 *2 (-587 (-834))) (-5 *1 (-888)))) (-2895 (*1 *2 *1) (-12 (-5 *2 (-587 (-834))) (-5 *1 (-888)))) (-3964 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-888)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1073 (-888))) (-5 *1 (-888)))) (-2893 (*1 *2 *1) (-12 (-5 *2 (-587 (-786 (-834) (-834)))) (-5 *1 (-888)))) (-2892 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-888)))) (-3015 (*1 *1 *1) (-5 *1 (-888)))) +((-3956 (($ $ |#2|) 31 T ELT)) (-3843 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-352 (-488)) $) 27 T ELT) (($ $ (-352 (-488))) 29 T ELT))) +(((-889 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-352 (-488)))) (-15 * (|#1| (-352 (-488)) |#1|)) (-15 -3956 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3843 (|#1| |#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 * (|#1| (-488) |#1|)) (-15 * (|#1| (-698) |#1|)) (-15 * (|#1| (-834) |#1|))) (-890 |#2| |#3| |#4|) (-965) (-720) (-760)) (T -889)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3087 (((-587 |#3|) $) 96 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 72 (|has| |#1| (-499)) ELT)) (-2068 (($ $) 73 (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) 75 (|has| |#1| (-499)) ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3965 (($ $) 81 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-2898 (((-85) $) 95 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3944 (((-85) $) 83 T ELT)) (-2899 (($ |#1| |#2|) 82 T ELT) (($ $ |#3| |#2|) 98 T ELT) (($ $ (-587 |#3|) (-587 |#2|)) 97 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-2900 (($ $) 85 T ELT)) (-3180 ((|#1| $) 86 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3472 (((-3 $ "failed") $ $) 71 (|has| |#1| (-499)) ELT)) (-3955 ((|#2| $) 84 T ELT)) (-2897 (($ $) 94 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ (-352 (-488))) 78 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $) 70 (|has| |#1| (-499)) ELT) (($ |#1|) 68 (|has| |#1| (-148)) ELT)) (-3683 ((|#1| $ |#2|) 80 T ELT)) (-2708 (((-636 $) $) 69 (|has| |#1| (-118)) ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 74 (|has| |#1| (-499)) ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ |#1|) 79 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-352 (-488)) $) 77 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 76 (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-890 |#1| |#2| |#3|) (-113) (-965) (-720) (-760)) (T -890)) +((-3180 (*1 *2 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *3 (-720)) (-4 *4 (-760)) (-4 *2 (-965)))) (-2900 (*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-720)) (-4 *4 (-760)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *2 *4)) (-4 *3 (-965)) (-4 *4 (-760)) (-4 *2 (-720)))) (-2899 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-890 *4 *3 *2)) (-4 *4 (-965)) (-4 *3 (-720)) (-4 *2 (-760)))) (-2899 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *6)) (-5 *3 (-587 *5)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-720)) (-4 *6 (-760)))) (-3087 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-720)) (-4 *5 (-760)) (-5 *2 (-587 *5)))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-720)) (-4 *5 (-760)) (-5 *2 (-85)))) (-2897 (*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-720)) (-4 *4 (-760))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2899 ($ $ |t#3| |t#2|)) (-15 -2899 ($ $ (-587 |t#3|) (-587 |t#2|))) (-15 -2900 ($ $)) (-15 -3180 (|t#1| $)) (-15 -3955 (|t#2| $)) (-15 -3087 ((-587 |t#3|) $)) (-15 -2898 ((-85) $)) (-15 -2897 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-38 |#1|) |has| |#1| (-148)) ((-38 $) |has| |#1| (-499)) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-559 (-488)) . T) ((-559 |#1|) |has| |#1| (-148)) ((-559 $) |has| |#1| (-499)) ((-556 (-776)) . T) ((-148) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-248) |has| |#1| (-499)) ((-383 |#1|) . T) ((-499) |has| |#1| (-499)) ((-13) . T) ((-592 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-594 |#1|) . T) ((-594 $) . T) ((-586 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-586 |#1|) |has| |#1| (-148)) ((-586 $) |has| |#1| (-499)) ((-658 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-658 |#1|) |has| |#1| (-148)) ((-658 $) |has| |#1| (-499)) ((-667) . T) ((-967 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-972 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-972 |#1|) . T) ((-972 $) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-2901 (((-1005 (-181)) $) 8 T ELT)) (-2902 (((-1005 (-181)) $) 9 T ELT)) (-2903 (((-1005 (-181)) $) 10 T ELT)) (-2904 (((-587 (-587 (-858 (-181)))) $) 11 T ELT)) (-3953 (((-776) $) 6 T ELT))) +(((-891) (-113)) (T -891)) +((-2904 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-587 (-587 (-858 (-181))))))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-1005 (-181))))) (-2902 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-1005 (-181))))) (-2901 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-1005 (-181)))))) +(-13 (-556 (-776)) (-10 -8 (-15 -2904 ((-587 (-587 (-858 (-181)))) $)) (-15 -2903 ((-1005 (-181)) $)) (-15 -2902 ((-1005 (-181)) $)) (-15 -2901 ((-1005 (-181)) $)))) +(((-556 (-776)) . T)) +((-3087 (((-587 |#4|) $) 23 T ELT)) (-2914 (((-85) $) 55 T ELT)) (-2905 (((-85) $) 54 T ELT)) (-2915 (((-2 (|:| |under| $) (|:| -3136 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2910 (((-85) $) 56 T ELT)) (-2912 (((-85) $ $) 62 T ELT)) (-2911 (((-85) $ $) 65 T ELT)) (-2913 (((-85) $) 60 T ELT)) (-2906 (((-587 |#5|) (-587 |#5|) $) 98 T ELT)) (-2907 (((-587 |#5|) (-587 |#5|) $) 95 T ELT)) (-2908 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2920 (((-587 |#4|) $) 27 T ELT)) (-2919 (((-85) |#4| $) 34 T ELT)) (-2909 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2916 (($ $ |#4|) 39 T ELT)) (-2918 (($ $ |#4|) 38 T ELT)) (-2917 (($ $ |#4|) 40 T ELT)) (-3062 (((-85) $ $) 46 T ELT))) +(((-892 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2905 ((-85) |#1|)) (-15 -2906 ((-587 |#5|) (-587 |#5|) |#1|)) (-15 -2907 ((-587 |#5|) (-587 |#5|) |#1|)) (-15 -2908 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2909 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2910 ((-85) |#1|)) (-15 -2911 ((-85) |#1| |#1|)) (-15 -2912 ((-85) |#1| |#1|)) (-15 -2913 ((-85) |#1|)) (-15 -2914 ((-85) |#1|)) (-15 -2915 ((-2 (|:| |under| |#1|) (|:| -3136 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2916 (|#1| |#1| |#4|)) (-15 -2917 (|#1| |#1| |#4|)) (-15 -2918 (|#1| |#1| |#4|)) (-15 -2919 ((-85) |#4| |#1|)) (-15 -2920 ((-587 |#4|) |#1|)) (-15 -3087 ((-587 |#4|) |#1|)) (-15 -3062 ((-85) |#1| |#1|))) (-893 |#2| |#3| |#4| |#5|) (-965) (-721) (-760) (-981 |#2| |#3| |#4|)) (T -892)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3087 (((-587 |#3|) $) 39 T ELT)) (-2914 (((-85) $) 32 T ELT)) (-2905 (((-85) $) 23 (|has| |#1| (-499)) ELT)) (-2915 (((-2 (|:| |under| $) (|:| -3136 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3716 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-320 |#4|)) ELT)) (-3730 (($) 59 T CONST)) (-2910 (((-85) $) 28 (|has| |#1| (-499)) ELT)) (-2912 (((-85) $ $) 30 (|has| |#1| (-499)) ELT)) (-2911 (((-85) $ $) 29 (|has| |#1| (-499)) ELT)) (-2913 (((-85) $) 31 (|has| |#1| (-499)) ELT)) (-2906 (((-587 |#4|) (-587 |#4|) $) 24 (|has| |#1| (-499)) ELT)) (-2907 (((-587 |#4|) (-587 |#4|) $) 25 (|has| |#1| (-499)) ELT)) (-3163 (((-3 $ "failed") (-587 |#4|)) 42 T ELT)) (-3162 (($ (-587 |#4|)) 41 T ELT)) (-1357 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-320 |#4|))) ELT)) (-3412 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-320 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-320 |#4|)) ELT)) (-2908 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-499)) ELT)) (-3848 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT)) (-3186 ((|#3| $) 40 T ELT)) (-2614 (((-587 |#4|) $) 48 T ELT)) (-3251 (((-85) |#4| $) 53 (|has| |#4| (-72)) ELT)) (-3849 (($ (-1 |#4| |#4|) $) 60 T ELT)) (-2920 (((-587 |#3|) $) 38 T ELT)) (-2919 (((-85) |#3| $) 37 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2909 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-499)) ELT)) (-3249 (((-1037) $) 12 T ELT)) (-1734 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 51 T ELT)) (-1736 (((-85) (-1 (-85) |#4|) $) 46 T ELT)) (-3774 (($ $ (-587 |#4|) (-587 |#4|)) 64 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ |#4| |#4|) 63 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-251 |#4|)) 62 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-587 (-251 |#4|))) 61 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT)) (-1226 (((-85) $ $) 55 T ELT)) (-3409 (((-85) $) 58 T ELT)) (-3571 (($) 57 T ELT)) (-1735 (((-698) |#4| $) 52 (|has| |#4| (-72)) ELT) (((-698) (-1 (-85) |#4|) $) 47 T ELT)) (-3406 (($ $) 56 T ELT)) (-3978 (((-477) $) 70 (|has| |#4| (-557 (-477))) ELT)) (-3536 (($ (-587 |#4|)) 65 T ELT)) (-2916 (($ $ |#3|) 34 T ELT)) (-2918 (($ $ |#3|) 36 T ELT)) (-2917 (($ $ |#3|) 35 T ELT)) (-3953 (((-776) $) 13 T ELT) (((-587 |#4|) $) 43 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-1737 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3964 (((-698) $) 44 T ELT))) +(((-893 |#1| |#2| |#3| |#4|) (-113) (-965) (-721) (-760) (-981 |t#1| |t#2| |t#3|)) (T -893)) +((-3163 (*1 *1 *2) (|partial| -12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *1 (-893 *3 *4 *5 *6)))) (-3162 (*1 *1 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *1 (-893 *3 *4 *5 *6)))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-981 *3 *4 *2)) (-4 *2 (-760)))) (-3087 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-587 *5)))) (-2920 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-587 *5)))) (-2919 (*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *3 *6)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 (-760)) (-4 *6 (-981 *4 *5 *3)) (-5 *2 (-85)))) (-2918 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)) (-4 *5 (-981 *3 *4 *2)))) (-2917 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)) (-4 *5 (-981 *3 *4 *2)))) (-2916 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)) (-4 *5 (-981 *3 *4 *2)))) (-2915 (*1 *2 *1 *3) (-12 (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 (-760)) (-4 *6 (-981 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3136 *1) (|:| |upper| *1))) (-4 *1 (-893 *4 *5 *3 *6)))) (-2914 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-85)))) (-2913 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-5 *2 (-85)))) (-2912 (*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-5 *2 (-85)))) (-2911 (*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-5 *2 (-85)))) (-2910 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-5 *2 (-85)))) (-2909 (*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-4 *4 (-499)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2908 (*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-4 *4 (-499)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2907 (*1 *2 *2 *1) (-12 (-5 *2 (-587 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)))) (-2906 (*1 *2 *2 *1) (-12 (-5 *2 (-587 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-5 *2 (-85))))) +(-13 (-1017) (-124 |t#4|) (-320 |t#4|) (-556 (-587 |t#4|)) (-10 -8 (-15 -3163 ((-3 $ "failed") (-587 |t#4|))) (-15 -3162 ($ (-587 |t#4|))) (-15 -3186 (|t#3| $)) (-15 -3087 ((-587 |t#3|) $)) (-15 -2920 ((-587 |t#3|) $)) (-15 -2919 ((-85) |t#3| $)) (-15 -2918 ($ $ |t#3|)) (-15 -2917 ($ $ |t#3|)) (-15 -2916 ($ $ |t#3|)) (-15 -2915 ((-2 (|:| |under| $) (|:| -3136 $) (|:| |upper| $)) $ |t#3|)) (-15 -2914 ((-85) $)) (IF (|has| |t#1| (-499)) (PROGN (-15 -2913 ((-85) $)) (-15 -2912 ((-85) $ $)) (-15 -2911 ((-85) $ $)) (-15 -2910 ((-85) $)) (-15 -2909 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2908 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2907 ((-587 |t#4|) (-587 |t#4|) $)) (-15 -2906 ((-587 |t#4|) (-587 |t#4|) $)) (-15 -2905 ((-85) $))) |%noBranch|))) +(((-34) . T) ((-72) . T) ((-556 (-587 |#4|)) . T) ((-556 (-776)) . T) ((-124 |#4|) . T) ((-557 (-477)) |has| |#4| (-557 (-477))) ((-262 |#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ((-320 |#4|) . T) ((-383 |#4|) . T) ((-432 |#4|) . T) ((-459 |#4| |#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-2922 (((-587 |#4|) |#4| |#4|) 135 T ELT)) (-2945 (((-587 |#4|) (-587 |#4|) (-85)) 123 (|has| |#1| (-395)) ELT) (((-587 |#4|) (-587 |#4|)) 124 (|has| |#1| (-395)) ELT)) (-2932 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|)) 44 T ELT)) (-2931 (((-85) |#4|) 43 T ELT)) (-2944 (((-587 |#4|) |#4|) 120 (|has| |#1| (-395)) ELT)) (-2927 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-1 (-85) |#4|) (-587 |#4|)) 24 T ELT)) (-2928 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 (-1 (-85) |#4|)) (-587 |#4|)) 30 T ELT)) (-2929 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 (-1 (-85) |#4|)) (-587 |#4|)) 31 T ELT)) (-2940 (((-3 (-2 (|:| |bas| (-419 |#1| |#2| |#3| |#4|)) (|:| -3329 (-587 |#4|))) "failed") (-587 |#4|)) 90 T ELT)) (-2942 (((-587 |#4|) (-587 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2943 (((-587 |#4|) (-587 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2921 (((-587 |#4|) (-587 |#4|)) 126 T ELT)) (-2937 (((-587 |#4|) (-587 |#4|) (-587 |#4|) (-85)) 59 T ELT) (((-587 |#4|) (-587 |#4|) (-587 |#4|)) 61 T ELT)) (-2938 ((|#4| |#4| (-587 |#4|)) 60 T ELT)) (-2946 (((-587 |#4|) (-587 |#4|) (-587 |#4|)) 131 (|has| |#1| (-395)) ELT)) (-2948 (((-587 |#4|) (-587 |#4|) (-587 |#4|)) 134 (|has| |#1| (-395)) ELT)) (-2947 (((-587 |#4|) (-587 |#4|) (-587 |#4|)) 133 (|has| |#1| (-395)) ELT)) (-2923 (((-587 |#4|) (-587 |#4|) (-587 |#4|) (-1 (-587 |#4|) (-587 |#4|))) 105 T ELT) (((-587 |#4|) (-587 |#4|) (-587 |#4|)) 107 T ELT) (((-587 |#4|) (-587 |#4|) |#4|) 139 T ELT) (((-587 |#4|) |#4| |#4|) 136 T ELT) (((-587 |#4|) (-587 |#4|)) 106 T ELT)) (-2951 (((-587 |#4|) (-587 |#4|) (-587 |#4|)) 117 (-12 (|has| |#1| (-120)) (|has| |#1| (-260))) ELT)) (-2930 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|)) 52 T ELT)) (-2926 (((-85) (-587 |#4|)) 79 T ELT)) (-2925 (((-85) (-587 |#4|) (-587 (-587 |#4|))) 67 T ELT)) (-2934 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|)) 37 T ELT)) (-2933 (((-85) |#4|) 36 T ELT)) (-2950 (((-587 |#4|) (-587 |#4|)) 116 (-12 (|has| |#1| (-120)) (|has| |#1| (-260))) ELT)) (-2949 (((-587 |#4|) (-587 |#4|)) 115 (-12 (|has| |#1| (-120)) (|has| |#1| (-260))) ELT)) (-2939 (((-587 |#4|) (-587 |#4|)) 83 T ELT)) (-2941 (((-587 |#4|) (-587 |#4|)) 97 T ELT)) (-2924 (((-85) (-587 |#4|) (-587 |#4|)) 65 T ELT)) (-2936 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|)) 50 T ELT)) (-2935 (((-85) |#4|) 45 T ELT))) +(((-894 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2923 ((-587 |#4|) (-587 |#4|))) (-15 -2923 ((-587 |#4|) |#4| |#4|)) (-15 -2921 ((-587 |#4|) (-587 |#4|))) (-15 -2922 ((-587 |#4|) |#4| |#4|)) (-15 -2923 ((-587 |#4|) (-587 |#4|) |#4|)) (-15 -2923 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -2923 ((-587 |#4|) (-587 |#4|) (-587 |#4|) (-1 (-587 |#4|) (-587 |#4|)))) (-15 -2924 ((-85) (-587 |#4|) (-587 |#4|))) (-15 -2925 ((-85) (-587 |#4|) (-587 (-587 |#4|)))) (-15 -2926 ((-85) (-587 |#4|))) (-15 -2927 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-1 (-85) |#4|) (-587 |#4|))) (-15 -2928 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 (-1 (-85) |#4|)) (-587 |#4|))) (-15 -2929 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 (-1 (-85) |#4|)) (-587 |#4|))) (-15 -2930 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -2931 ((-85) |#4|)) (-15 -2932 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -2933 ((-85) |#4|)) (-15 -2934 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -2935 ((-85) |#4|)) (-15 -2936 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -2937 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -2937 ((-587 |#4|) (-587 |#4|) (-587 |#4|) (-85))) (-15 -2938 (|#4| |#4| (-587 |#4|))) (-15 -2939 ((-587 |#4|) (-587 |#4|))) (-15 -2940 ((-3 (-2 (|:| |bas| (-419 |#1| |#2| |#3| |#4|)) (|:| -3329 (-587 |#4|))) "failed") (-587 |#4|))) (-15 -2941 ((-587 |#4|) (-587 |#4|))) (-15 -2942 ((-587 |#4|) (-587 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2943 ((-587 |#4|) (-587 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-395)) (PROGN (-15 -2944 ((-587 |#4|) |#4|)) (-15 -2945 ((-587 |#4|) (-587 |#4|))) (-15 -2945 ((-587 |#4|) (-587 |#4|) (-85))) (-15 -2946 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -2947 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -2948 ((-587 |#4|) (-587 |#4|) (-587 |#4|)))) |%noBranch|) (IF (|has| |#1| (-260)) (IF (|has| |#1| (-120)) (PROGN (-15 -2949 ((-587 |#4|) (-587 |#4|))) (-15 -2950 ((-587 |#4|) (-587 |#4|))) (-15 -2951 ((-587 |#4|) (-587 |#4|) (-587 |#4|)))) |%noBranch|) |%noBranch|)) (-499) (-721) (-760) (-981 |#1| |#2| |#3|)) (T -894)) +((-2951 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-260)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2950 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-260)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2949 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-260)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2948 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-395)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2947 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-395)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2946 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-395)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2945 (*1 *2 *2 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-85)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-894 *4 *5 *6 *7)))) (-2945 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-395)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2944 (*1 *2 *3) (-12 (-4 *4 (-395)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-587 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-981 *4 *5 *6)))) (-2943 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-587 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-499)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *1 (-894 *5 *6 *7 *8)))) (-2942 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-587 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-981 *6 *7 *8)) (-4 *6 (-499)) (-4 *7 (-721)) (-4 *8 (-760)) (-5 *1 (-894 *6 *7 *8 *9)))) (-2941 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2940 (*1 *2 *3) (|partial| -12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-419 *4 *5 *6 *7)) (|:| -3329 (-587 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-2939 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2938 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-981 *4 *5 *6)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-894 *4 *5 *6 *2)))) (-2937 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-85)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-894 *4 *5 *6 *7)))) (-2937 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2936 (*1 *2 *3) (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-2935 (*1 *2 *3) (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-981 *4 *5 *6)))) (-2934 (*1 *2 *3) (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-2933 (*1 *2 *3) (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-981 *4 *5 *6)))) (-2932 (*1 *2 *3) (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-2931 (*1 *2 *3) (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-981 *4 *5 *6)))) (-2930 (*1 *2 *3) (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-2929 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-1 (-85) *8))) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-499)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-2 (|:| |goodPols| (-587 *8)) (|:| |badPols| (-587 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-587 *8)))) (-2928 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-1 (-85) *8))) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-499)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-2 (|:| |goodPols| (-587 *8)) (|:| |badPols| (-587 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-587 *8)))) (-2927 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-499)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-2 (|:| |goodPols| (-587 *8)) (|:| |badPols| (-587 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-587 *8)))) (-2926 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-894 *4 *5 *6 *7)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-587 *8))) (-5 *3 (-587 *8)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-499)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-85)) (-5 *1 (-894 *5 *6 *7 *8)))) (-2924 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-894 *4 *5 *6 *7)))) (-2923 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-587 *7) (-587 *7))) (-5 *2 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-894 *4 *5 *6 *7)))) (-2923 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2923 (*1 *2 *2 *3) (-12 (-5 *2 (-587 *3)) (-4 *3 (-981 *4 *5 *6)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-894 *4 *5 *6 *3)))) (-2922 (*1 *2 *3 *3) (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-587 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-981 *4 *5 *6)))) (-2921 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2923 (*1 *2 *3 *3) (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-587 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-981 *4 *5 *6)))) (-2923 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6))))) +((-2952 (((-2 (|:| R (-634 |#1|)) (|:| A (-634 |#1|)) (|:| |Ainv| (-634 |#1|))) (-634 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2954 (((-587 (-2 (|:| C (-634 |#1|)) (|:| |g| (-1183 |#1|)))) (-634 |#1|) (-1183 |#1|)) 45 T ELT)) (-2953 (((-634 |#1|) (-634 |#1|) (-634 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT))) +(((-895 |#1|) (-10 -7 (-15 -2952 ((-2 (|:| R (-634 |#1|)) (|:| A (-634 |#1|)) (|:| |Ainv| (-634 |#1|))) (-634 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2953 ((-634 |#1|) (-634 |#1|) (-634 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2954 ((-587 (-2 (|:| C (-634 |#1|)) (|:| |g| (-1183 |#1|)))) (-634 |#1|) (-1183 |#1|)))) (-314)) (T -895)) +((-2954 (*1 *2 *3 *4) (-12 (-4 *5 (-314)) (-5 *2 (-587 (-2 (|:| C (-634 *5)) (|:| |g| (-1183 *5))))) (-5 *1 (-895 *5)) (-5 *3 (-634 *5)) (-5 *4 (-1183 *5)))) (-2953 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-634 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-314)) (-5 *1 (-895 *5)))) (-2952 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-314)) (-5 *2 (-2 (|:| R (-634 *6)) (|:| A (-634 *6)) (|:| |Ainv| (-634 *6)))) (-5 *1 (-895 *6)) (-5 *3 (-634 *6))))) +((-3977 (((-350 |#4|) |#4|) 61 T ELT))) +(((-896 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3977 ((-350 |#4|) |#4|))) (-760) (-721) (-395) (-865 |#3| |#2| |#1|)) (T -896)) +((-3977 (*1 *2 *3) (-12 (-4 *4 (-760)) (-4 *5 (-721)) (-4 *6 (-395)) (-5 *2 (-350 *3)) (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-865 *6 *5 *4))))) +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3844 (($ (-698)) 123 (|has| |#1| (-23)) ELT)) (-2203 (((-1189) $ (-488) (-488)) 35 (|has| $ (-1039 |#1|)) ELT)) (-1740 (((-85) (-1 (-85) |#1| |#1|) $) 96 T ELT) (((-85) $) 90 (|has| |#1| (-760)) ELT)) (-1738 (($ (-1 (-85) |#1| |#1|) $) 87 (|has| $ (-1039 |#1|)) ELT) (($ $) 86 (-12 (|has| |#1| (-760)) (|has| $ (-1039 |#1|))) ELT)) (-2915 (($ (-1 (-85) |#1| |#1|) $) 97 T ELT) (($ $) 91 (|has| |#1| (-760)) ELT)) (-3794 ((|#1| $ (-488) |#1|) 47 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-1150 (-488)) |#1|) 55 (|has| $ (-1039 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) 69 (|has| $ (-320 |#1|)) ELT)) (-3730 (($) 6 T CONST)) (-2302 (($ $) 88 (|has| $ (-1039 |#1|)) ELT)) (-2303 (($ $) 98 T ELT)) (-1357 (($ $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-3412 (($ |#1| $) 70 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 68 (|has| $ (-320 |#1|)) ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 105 T ELT)) (-1580 ((|#1| $ (-488) |#1|) 48 (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-488)) 46 T ELT)) (-3425 (((-488) (-1 (-85) |#1|) $) 95 T ELT) (((-488) |#1| $) 94 (|has| |#1| (-72)) ELT) (((-488) |#1| $ (-488)) 93 (|has| |#1| (-72)) ELT)) (-3712 (($ (-587 |#1|)) 129 T ELT)) (-3841 (((-634 |#1|) $ $) 116 (|has| |#1| (-965)) ELT)) (-3620 (($ (-698) |#1|) 65 T ELT)) (-2205 (((-488) $) 38 (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) 80 (|has| |#1| (-760)) ELT)) (-3524 (($ (-1 (-85) |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| (-760)) ELT)) (-2614 (((-587 |#1|) $) 104 T ELT)) (-3251 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2206 (((-488) $) 39 (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) 81 (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 112 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3838 ((|#1| $) 113 (-12 (|has| |#1| (-965)) (|has| |#1| (-919))) ELT)) (-3839 ((|#1| $) 114 (-12 (|has| |#1| (-965)) (|has| |#1| (-919))) ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-2309 (($ |#1| $ (-488)) 57 T ELT) (($ $ $ (-488)) 56 T ELT)) (-2208 (((-587 (-488)) $) 41 T ELT)) (-2209 (((-85) (-488) $) 42 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-3807 ((|#1| $) 37 (|has| (-488) (-760)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 107 T ELT)) (-2204 (($ $ |#1|) 36 (|has| $ (-1039 |#1|)) ELT)) (-3775 (($ $ (-587 |#1|)) 127 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-2207 (((-85) |#1| $) 40 (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) 43 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#1| $ (-488) |#1|) 45 T ELT) ((|#1| $ (-488)) 44 T ELT) (($ $ (-1150 (-488))) 66 T ELT)) (-3842 ((|#1| $ $) 117 (|has| |#1| (-965)) ELT)) (-3918 (((-834) $) 128 T ELT)) (-2310 (($ $ (-488)) 59 T ELT) (($ $ (-1150 (-488))) 58 T ELT)) (-3840 (($ $ $) 115 T ELT)) (-1735 (((-698) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) 103 T ELT)) (-1739 (($ $ $ (-488)) 89 (|has| $ (-1039 |#1|)) ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 72 (|has| |#1| (-557 (-477))) ELT) (($ (-587 |#1|)) 130 T ELT)) (-3536 (($ (-587 |#1|)) 67 T ELT)) (-3808 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) 101 T ELT)) (-2572 (((-85) $ $) 82 (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) 84 (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2690 (((-85) $ $) 83 (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) 85 (|has| |#1| (-760)) ELT)) (-3843 (($ $) 122 (|has| |#1| (-21)) ELT) (($ $ $) 121 (|has| |#1| (-21)) ELT)) (-3845 (($ $ $) 124 (|has| |#1| (-25)) ELT)) (* (($ (-488) $) 120 (|has| |#1| (-21)) ELT) (($ |#1| $) 119 (|has| |#1| (-667)) ELT) (($ $ |#1|) 118 (|has| |#1| (-667)) ELT)) (-3964 (((-698) $) 100 T ELT))) +(((-897 |#1|) (-113) (-965)) (T -897)) +((-3712 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-965)) (-4 *1 (-897 *3)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-897 *3)) (-4 *3 (-965)) (-5 *2 (-834)))) (-3840 (*1 *1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-965)))) (-3775 (*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *1 (-897 *3)) (-4 *3 (-965))))) +(-13 (-1182 |t#1|) (-561 (-587 |t#1|)) (-10 -8 (-15 -3712 ($ (-587 |t#1|))) (-15 -3918 ((-834) $)) (-15 -3840 ($ $ $)) (-15 -3775 ($ $ (-587 |t#1|))))) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-760)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-760)) (|has| |#1| (-556 (-776)))) ((-124 |#1|) . T) ((-561 (-587 |#1|)) . T) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-243 (-488) |#1|) . T) ((-243 (-1150 (-488)) $) . T) ((-245 (-488) |#1|) . T) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-320 |#1|) . T) ((-326 |#1|) . T) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-542 (-488) |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-597 |#1|) . T) ((-19 |#1|) . T) ((-760) |has| |#1| (-760)) ((-763) |has| |#1| (-760)) ((-1017) OR (|has| |#1| (-1017)) (|has| |#1| (-760))) ((-1039 |#1|) . T) ((-1133) . T) ((-1182 |#1|) . T)) +((-3849 (((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)) 17 T ELT))) +(((-898 |#1| |#2|) (-10 -7 (-15 -3849 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) (-965) (-965)) (T -898)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-965)) (-4 *6 (-965)) (-5 *2 (-858 *6)) (-5 *1 (-898 *5 *6))))) +((-2957 ((|#1| (-858 |#1|)) 14 T ELT)) (-2956 ((|#1| (-858 |#1|)) 13 T ELT)) (-2955 ((|#1| (-858 |#1|)) 12 T ELT)) (-2959 ((|#1| (-858 |#1|)) 16 T ELT)) (-2963 ((|#1| (-858 |#1|)) 24 T ELT)) (-2958 ((|#1| (-858 |#1|)) 15 T ELT)) (-2960 ((|#1| (-858 |#1|)) 17 T ELT)) (-2962 ((|#1| (-858 |#1|)) 23 T ELT)) (-2961 ((|#1| (-858 |#1|)) 22 T ELT))) +(((-899 |#1|) (-10 -7 (-15 -2955 (|#1| (-858 |#1|))) (-15 -2956 (|#1| (-858 |#1|))) (-15 -2957 (|#1| (-858 |#1|))) (-15 -2958 (|#1| (-858 |#1|))) (-15 -2959 (|#1| (-858 |#1|))) (-15 -2960 (|#1| (-858 |#1|))) (-15 -2961 (|#1| (-858 |#1|))) (-15 -2962 (|#1| (-858 |#1|))) (-15 -2963 (|#1| (-858 |#1|)))) (-965)) (T -899)) +((-2963 (*1 *2 *3) (-12 (-5 *3 (-858 *2)) (-5 *1 (-899 *2)) (-4 *2 (-965)))) (-2962 (*1 *2 *3) (-12 (-5 *3 (-858 *2)) (-5 *1 (-899 *2)) (-4 *2 (-965)))) (-2961 (*1 *2 *3) (-12 (-5 *3 (-858 *2)) (-5 *1 (-899 *2)) (-4 *2 (-965)))) (-2960 (*1 *2 *3) (-12 (-5 *3 (-858 *2)) (-5 *1 (-899 *2)) (-4 *2 (-965)))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-858 *2)) (-5 *1 (-899 *2)) (-4 *2 (-965)))) (-2958 (*1 *2 *3) (-12 (-5 *3 (-858 *2)) (-5 *1 (-899 *2)) (-4 *2 (-965)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-858 *2)) (-5 *1 (-899 *2)) (-4 *2 (-965)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-858 *2)) (-5 *1 (-899 *2)) (-4 *2 (-965)))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-858 *2)) (-5 *1 (-899 *2)) (-4 *2 (-965))))) +((-2981 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2979 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2983 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2971 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2964 (((-3 |#1| "failed") |#1| (-698)) 1 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2984 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2972 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2982 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2970 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2980 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2987 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2975 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2985 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2973 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2989 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2977 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2990 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2978 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2988 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2976 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2986 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2974 (((-3 |#1| "failed") |#1|) 11 T ELT))) +(((-900 |#1|) (-113) (-1119)) (T -900)) +((-2990 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2989 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2988 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2987 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2986 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2985 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2984 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2983 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2982 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2981 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2980 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2979 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2978 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2976 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2975 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2974 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2973 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2972 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2971 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2970 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119)))) (-2964 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-698)) (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(-13 (-10 -7 (-15 -2964 ((-3 |t#1| "failed") |t#1| (-698))) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -2970 ((-3 |t#1| "failed") |t#1|)) (-15 -2971 ((-3 |t#1| "failed") |t#1|)) (-15 -2972 ((-3 |t#1| "failed") |t#1|)) (-15 -2973 ((-3 |t#1| "failed") |t#1|)) (-15 -2974 ((-3 |t#1| "failed") |t#1|)) (-15 -2975 ((-3 |t#1| "failed") |t#1|)) (-15 -2976 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -2978 ((-3 |t#1| "failed") |t#1|)) (-15 -2979 ((-3 |t#1| "failed") |t#1|)) (-15 -2980 ((-3 |t#1| "failed") |t#1|)) (-15 -2981 ((-3 |t#1| "failed") |t#1|)) (-15 -2982 ((-3 |t#1| "failed") |t#1|)) (-15 -2983 ((-3 |t#1| "failed") |t#1|)) (-15 -2984 ((-3 |t#1| "failed") |t#1|)) (-15 -2985 ((-3 |t#1| "failed") |t#1|)) (-15 -2986 ((-3 |t#1| "failed") |t#1|)) (-15 -2987 ((-3 |t#1| "failed") |t#1|)) (-15 -2988 ((-3 |t#1| "failed") |t#1|)) (-15 -2989 ((-3 |t#1| "failed") |t#1|)) (-15 -2990 ((-3 |t#1| "failed") |t#1|)))) +((-2992 ((|#4| |#4| (-587 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2991 ((|#4| |#4| (-587 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3849 ((|#4| (-1 |#4| (-861 |#1|)) |#4|) 33 T ELT))) +(((-901 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2991 (|#4| |#4| |#3|)) (-15 -2991 (|#4| |#4| (-587 |#3|))) (-15 -2992 (|#4| |#4| |#3|)) (-15 -2992 (|#4| |#4| (-587 |#3|))) (-15 -3849 (|#4| (-1 |#4| (-861 |#1|)) |#4|))) (-965) (-721) (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $)) (-15 -3837 ((-3 $ "failed") (-1094))))) (-865 (-861 |#1|) |#2| |#3|)) (T -901)) +((-3849 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-861 *4))) (-4 *4 (-965)) (-4 *2 (-865 (-861 *4) *5 *6)) (-4 *5 (-721)) (-4 *6 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $)) (-15 -3837 ((-3 $ #1="failed") (-1094)))))) (-5 *1 (-901 *4 *5 *6 *2)))) (-2992 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *6)) (-4 *6 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $)) (-15 -3837 ((-3 $ #1#) (-1094)))))) (-4 *4 (-965)) (-4 *5 (-721)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-865 (-861 *4) *5 *6)))) (-2992 (*1 *2 *2 *3) (-12 (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $)) (-15 -3837 ((-3 $ #1#) (-1094)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-865 (-861 *4) *5 *3)))) (-2991 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *6)) (-4 *6 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $)) (-15 -3837 ((-3 $ #1#) (-1094)))))) (-4 *4 (-965)) (-4 *5 (-721)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-865 (-861 *4) *5 *6)))) (-2991 (*1 *2 *2 *3) (-12 (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $)) (-15 -3837 ((-3 $ #1#) (-1094)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-865 (-861 *4) *5 *3))))) +((-2993 ((|#2| |#3|) 35 T ELT)) (-3926 (((-2 (|:| -2017 (-634 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-634 |#2|))) |#2|) 79 T ELT)) (-3925 (((-2 (|:| -2017 (-634 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-634 |#2|)))) 100 T ELT))) +(((-902 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3925 ((-2 (|:| -2017 (-634 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-634 |#2|))))) (-15 -3926 ((-2 (|:| -2017 (-634 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-634 |#2|))) |#2|)) (-15 -2993 (|#2| |#3|))) (-301) (-1159 |#1|) (-1159 |#2|) (-665 |#2| |#3|)) (T -902)) +((-2993 (*1 *2 *3) (-12 (-4 *3 (-1159 *2)) (-4 *2 (-1159 *4)) (-5 *1 (-902 *4 *2 *3 *5)) (-4 *4 (-301)) (-4 *5 (-665 *2 *3)))) (-3926 (*1 *2 *3) (-12 (-4 *4 (-301)) (-4 *3 (-1159 *4)) (-4 *5 (-1159 *3)) (-5 *2 (-2 (|:| -2017 (-634 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-634 *3)))) (-5 *1 (-902 *4 *3 *5 *6)) (-4 *6 (-665 *3 *5)))) (-3925 (*1 *2) (-12 (-4 *3 (-301)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 *4)) (-5 *2 (-2 (|:| -2017 (-634 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-634 *4)))) (-5 *1 (-902 *3 *4 *5 *6)) (-4 *6 (-665 *4 *5))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3407 (((-3 (-85) #1="failed") $) 71 T ELT)) (-3655 (($ $) 36 (-12 (|has| |#1| (-120)) (|has| |#1| (-260))) ELT)) (-2997 (($ $ (-3 (-85) #1#)) 72 T ELT)) (-2998 (($ (-587 |#4|) |#4|) 25 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2994 (($ $) 69 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3409 (((-85) $) 70 T ELT)) (-3571 (($) 30 T ELT)) (-2995 ((|#4| $) 74 T ELT)) (-2996 (((-587 |#4|) $) 73 T ELT)) (-3953 (((-776) $) 68 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-903 |#1| |#2| |#3| |#4|) (-13 (-1017) (-556 (-776)) (-10 -8 (-15 -3571 ($)) (-15 -2998 ($ (-587 |#4|) |#4|)) (-15 -3407 ((-3 (-85) #1="failed") $)) (-15 -2997 ($ $ (-3 (-85) #1#))) (-15 -3409 ((-85) $)) (-15 -2996 ((-587 |#4|) $)) (-15 -2995 (|#4| $)) (-15 -2994 ($ $)) (IF (|has| |#1| (-260)) (IF (|has| |#1| (-120)) (-15 -3655 ($ $)) |%noBranch|) |%noBranch|))) (-395) (-760) (-721) (-865 |#1| |#3| |#2|)) (T -903)) +((-3571 (*1 *1) (-12 (-4 *2 (-395)) (-4 *3 (-760)) (-4 *4 (-721)) (-5 *1 (-903 *2 *3 *4 *5)) (-4 *5 (-865 *2 *4 *3)))) (-2998 (*1 *1 *2 *3) (-12 (-5 *2 (-587 *3)) (-4 *3 (-865 *4 *6 *5)) (-4 *4 (-395)) (-4 *5 (-760)) (-4 *6 (-721)) (-5 *1 (-903 *4 *5 *6 *3)))) (-3407 (*1 *2 *1) (|partial| -12 (-4 *3 (-395)) (-4 *4 (-760)) (-4 *5 (-721)) (-5 *2 (-85)) (-5 *1 (-903 *3 *4 *5 *6)) (-4 *6 (-865 *3 *5 *4)))) (-2997 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-395)) (-4 *4 (-760)) (-4 *5 (-721)) (-5 *1 (-903 *3 *4 *5 *6)) (-4 *6 (-865 *3 *5 *4)))) (-3409 (*1 *2 *1) (-12 (-4 *3 (-395)) (-4 *4 (-760)) (-4 *5 (-721)) (-5 *2 (-85)) (-5 *1 (-903 *3 *4 *5 *6)) (-4 *6 (-865 *3 *5 *4)))) (-2996 (*1 *2 *1) (-12 (-4 *3 (-395)) (-4 *4 (-760)) (-4 *5 (-721)) (-5 *2 (-587 *6)) (-5 *1 (-903 *3 *4 *5 *6)) (-4 *6 (-865 *3 *5 *4)))) (-2995 (*1 *2 *1) (-12 (-4 *2 (-865 *3 *5 *4)) (-5 *1 (-903 *3 *4 *5 *2)) (-4 *3 (-395)) (-4 *4 (-760)) (-4 *5 (-721)))) (-2994 (*1 *1 *1) (-12 (-4 *2 (-395)) (-4 *3 (-760)) (-4 *4 (-721)) (-5 *1 (-903 *2 *3 *4 *5)) (-4 *5 (-865 *2 *4 *3)))) (-3655 (*1 *1 *1) (-12 (-4 *2 (-120)) (-4 *2 (-260)) (-4 *2 (-395)) (-4 *3 (-760)) (-4 *4 (-721)) (-5 *1 (-903 *2 *3 *4 *5)) (-4 *5 (-865 *2 *4 *3))))) +((-2999 (((-903 (-352 (-488)) (-777 |#1|) (-199 |#2| (-698)) (-208 |#1| (-352 (-488)))) (-903 (-352 (-488)) (-777 |#1|) (-199 |#2| (-698)) (-208 |#1| (-352 (-488))))) 82 T ELT))) +(((-904 |#1| |#2|) (-10 -7 (-15 -2999 ((-903 (-352 (-488)) (-777 |#1|) (-199 |#2| (-698)) (-208 |#1| (-352 (-488)))) (-903 (-352 (-488)) (-777 |#1|) (-199 |#2| (-698)) (-208 |#1| (-352 (-488))))))) (-587 (-1094)) (-698)) (T -904)) +((-2999 (*1 *2 *2) (-12 (-5 *2 (-903 (-352 (-488)) (-777 *3) (-199 *4 (-698)) (-208 *3 (-352 (-488))))) (-14 *3 (-587 (-1094))) (-14 *4 (-698)) (-5 *1 (-904 *3 *4))))) +((-3275 (((-85) |#5| |#5|) 44 T ELT)) (-3278 (((-85) |#5| |#5|) 59 T ELT)) (-3283 (((-85) |#5| (-587 |#5|)) 81 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3279 (((-85) (-587 |#4|) (-587 |#4|)) 65 T ELT)) (-3285 (((-85) (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|)) (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) 70 T ELT)) (-3274 (((-1189)) 32 T ELT)) (-3273 (((-1189) (-1077) (-1077) (-1077)) 28 T ELT)) (-3284 (((-587 |#5|) (-587 |#5|)) 100 T ELT)) (-3286 (((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|)))) 92 T ELT)) (-3287 (((-587 (-2 (|:| -3272 (-587 |#4|)) (|:| -1604 |#5|) (|:| |ineq| (-587 |#4|)))) (-587 |#4|) (-587 |#5|) (-85) (-85)) 122 T ELT)) (-3277 (((-85) |#5| |#5|) 53 T ELT)) (-3282 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3280 (((-85) (-587 |#4|) (-587 |#4|)) 64 T ELT)) (-3281 (((-85) (-587 |#4|) (-587 |#4|)) 66 T ELT)) (-3705 (((-85) (-587 |#4|) (-587 |#4|)) 67 T ELT)) (-3288 (((-3 (-2 (|:| -3272 (-587 |#4|)) (|:| -1604 |#5|) (|:| |ineq| (-587 |#4|))) #1#) (-587 |#4|) |#5| (-587 |#4|) (-85) (-85) (-85) (-85) (-85)) 117 T ELT)) (-3276 (((-587 |#5|) (-587 |#5|)) 49 T ELT))) +(((-905 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3273 ((-1189) (-1077) (-1077) (-1077))) (-15 -3274 ((-1189))) (-15 -3275 ((-85) |#5| |#5|)) (-15 -3276 ((-587 |#5|) (-587 |#5|))) (-15 -3277 ((-85) |#5| |#5|)) (-15 -3278 ((-85) |#5| |#5|)) (-15 -3279 ((-85) (-587 |#4|) (-587 |#4|))) (-15 -3280 ((-85) (-587 |#4|) (-587 |#4|))) (-15 -3281 ((-85) (-587 |#4|) (-587 |#4|))) (-15 -3705 ((-85) (-587 |#4|) (-587 |#4|))) (-15 -3282 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3283 ((-85) |#5| |#5|)) (-15 -3283 ((-85) |#5| (-587 |#5|))) (-15 -3284 ((-587 |#5|) (-587 |#5|))) (-15 -3285 ((-85) (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|)) (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|)))) (-15 -3286 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) (-15 -3287 ((-587 (-2 (|:| -3272 (-587 |#4|)) (|:| -1604 |#5|) (|:| |ineq| (-587 |#4|)))) (-587 |#4|) (-587 |#5|) (-85) (-85))) (-15 -3288 ((-3 (-2 (|:| -3272 (-587 |#4|)) (|:| -1604 |#5|) (|:| |ineq| (-587 |#4|))) #1#) (-587 |#4|) |#5| (-587 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-395) (-721) (-760) (-981 |#1| |#2| |#3|) (-987 |#1| |#2| |#3| |#4|)) (T -905)) +((-3288 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) (-4 *9 (-981 *6 *7 *8)) (-5 *2 (-2 (|:| -3272 (-587 *9)) (|:| -1604 *4) (|:| |ineq| (-587 *9)))) (-5 *1 (-905 *6 *7 *8 *9 *4)) (-5 *3 (-587 *9)) (-4 *4 (-987 *6 *7 *8 *9)))) (-3287 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-587 *10)) (-5 *5 (-85)) (-4 *10 (-987 *6 *7 *8 *9)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) (-4 *9 (-981 *6 *7 *8)) (-5 *2 (-587 (-2 (|:| -3272 (-587 *9)) (|:| -1604 *10) (|:| |ineq| (-587 *9))))) (-5 *1 (-905 *6 *7 *8 *9 *10)) (-5 *3 (-587 *9)))) (-3286 (*1 *2 *2) (-12 (-5 *2 (-587 (-2 (|:| |val| (-587 *6)) (|:| -1604 *7)))) (-4 *6 (-981 *3 *4 *5)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) (-3285 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1604 *8))) (-4 *7 (-981 *4 *5 *6)) (-4 *8 (-987 *4 *5 *6 *7)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *8)))) (-3284 (*1 *2 *2) (-12 (-5 *2 (-587 *7)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) (-3283 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-987 *5 *6 *7 *8)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *8 (-981 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-905 *5 *6 *7 *8 *3)))) (-3283 (*1 *2 *3 *3) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-3282 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-3705 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-3281 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-3280 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *3) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-587 *7)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-3274 (*1 *2) (-12 (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-1189)) (-5 *1 (-905 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6)))) (-3273 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7))))) +((-3837 (((-1094) $) 15 T ELT)) (-3408 (((-1077) $) 16 T ELT)) (-3232 (($ (-1094) (-1077)) 14 T ELT)) (-3953 (((-776) $) 13 T ELT))) +(((-906) (-13 (-556 (-776)) (-10 -8 (-15 -3232 ($ (-1094) (-1077))) (-15 -3837 ((-1094) $)) (-15 -3408 ((-1077) $))))) (T -906)) +((-3232 (*1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-1077)) (-5 *1 (-906)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-906)))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-906))))) +((-3163 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1094) #1#) $) 72 T ELT) (((-3 (-352 (-488)) #1#) $) NIL T ELT) (((-3 (-488) #1#) $) 102 T ELT)) (-3162 ((|#2| $) NIL T ELT) (((-1094) $) 67 T ELT) (((-352 (-488)) $) NIL T ELT) (((-488) $) 99 T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL T ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL T ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 $) (-1183 $)) 121 T ELT) (((-634 |#2|) (-634 $)) 35 T ELT)) (-3000 (($) 105 T ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) 82 T ELT) (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) 91 T ELT)) (-3002 (($ $) 10 T ELT)) (-3451 (((-636 $) $) 27 T ELT)) (-3849 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3452 (($) 16 T CONST)) (-3134 (($ $) 61 T ELT)) (-3764 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-698)) NIL T ELT) (($ $ (-1094)) NIL T ELT) (($ $ (-587 (-1094))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-3001 (($ $) 12 T ELT)) (-3978 (((-804 (-488)) $) 77 T ELT) (((-804 (-332)) $) 86 T ELT) (((-477) $) 47 T ELT) (((-332) $) 51 T ELT) (((-181) $) 55 T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1094)) 64 T ELT)) (-3132 (((-698)) 38 T CONST)) (-2691 (((-85) $ $) 57 T ELT))) +(((-907 |#1| |#2|) (-10 -7 (-15 -2691 ((-85) |#1| |#1|)) (-15 -3764 (|#1| |#1| (-698))) (-15 -3764 (|#1| |#1|)) (-15 -3764 (|#1| |#1| (-587 (-1094)) (-587 (-698)))) (-15 -3764 (|#1| |#1| (-1094) (-698))) (-15 -3764 (|#1| |#1| (-587 (-1094)))) (-15 -3764 (|#1| |#1| (-1094))) (-15 -3452 (|#1|) -3959) (-15 -3451 ((-636 |#1|) |#1|)) (-15 -3163 ((-3 (-488) #1="failed") |#1|)) (-15 -3162 ((-488) |#1|)) (-15 -3163 ((-3 (-352 (-488)) #1#) |#1|)) (-15 -3162 ((-352 (-488)) |#1|)) (-15 -3978 ((-181) |#1|)) (-15 -3978 ((-332) |#1|)) (-15 -3978 ((-477) |#1|)) (-15 -3953 (|#1| (-1094))) (-15 -3163 ((-3 (-1094) #1#) |#1|)) (-15 -3162 ((-1094) |#1|)) (-15 -3000 (|#1|)) (-15 -3134 (|#1| |#1|)) (-15 -3001 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -2802 ((-802 (-332) |#1|) |#1| (-804 (-332)) (-802 (-332) |#1|))) (-15 -2802 ((-802 (-488) |#1|) |#1| (-804 (-488)) (-802 (-488) |#1|))) (-15 -3978 ((-804 (-332)) |#1|)) (-15 -3978 ((-804 (-488)) |#1|)) (-15 -2284 ((-634 |#2|) (-634 |#1|))) (-15 -2284 ((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 |#1|) (-1183 |#1|))) (-15 -2284 ((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 |#1|) (-1183 |#1|))) (-15 -2284 ((-634 (-488)) (-634 |#1|))) (-15 -3764 (|#1| |#1| (-1 |#2| |#2|) (-698))) (-15 -3764 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3849 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3163 ((-3 |#2| #1#) |#1|)) (-15 -3162 (|#2| |#1|)) (-15 -3953 (|#1| |#2|)) (-15 -3953 (|#1| (-352 (-488)))) (-15 -3953 (|#1| |#1|)) (-15 -3132 ((-698)) -3959) (-15 -3953 (|#1| (-488))) (-15 -3953 ((-776) |#1|))) (-908 |#2|) (-499)) (T -907)) +((-3132 (*1 *2) (-12 (-4 *4 (-499)) (-5 *2 (-698)) (-5 *1 (-907 *3 *4)) (-4 *3 (-908 *4))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3135 ((|#1| $) 173 (|has| |#1| (-260)) ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) 164 (|has| |#1| (-825)) ELT)) (-3781 (($ $) 91 T ELT)) (-3977 (((-350 $) $) 90 T ELT)) (-2710 (((-3 (-587 (-1089 $)) #1="failed") (-587 (-1089 $)) (-1089 $)) 167 (|has| |#1| (-825)) ELT)) (-1612 (((-85) $ $) 75 T ELT)) (-3629 (((-488) $) 154 (|has| |#1| (-744)) ELT)) (-3730 (($) 23 T CONST)) (-3163 (((-3 |#1| #2="failed") $) 203 T ELT) (((-3 (-1094) #2#) $) 162 (|has| |#1| (-954 (-1094))) ELT) (((-3 (-352 (-488)) #2#) $) 145 (|has| |#1| (-954 (-488))) ELT) (((-3 (-488) #2#) $) 143 (|has| |#1| (-954 (-488))) ELT)) (-3162 ((|#1| $) 204 T ELT) (((-1094) $) 163 (|has| |#1| (-954 (-1094))) ELT) (((-352 (-488)) $) 146 (|has| |#1| (-954 (-488))) ELT) (((-488) $) 144 (|has| |#1| (-954 (-488))) ELT)) (-2570 (($ $ $) 71 T ELT)) (-2284 (((-634 (-488)) (-634 $)) 188 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) 187 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) 186 T ELT) (((-634 |#1|) (-634 $)) 185 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3000 (($) 171 (|has| |#1| (-487)) ELT)) (-2569 (($ $ $) 72 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 66 T ELT)) (-3729 (((-85) $) 89 T ELT)) (-3192 (((-85) $) 156 (|has| |#1| (-744)) ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) 180 (|has| |#1| (-800 (-488))) ELT) (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) 179 (|has| |#1| (-800 (-332))) ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3002 (($ $) 175 T ELT)) (-3004 ((|#1| $) 177 T ELT)) (-3451 (((-636 $) $) 142 (|has| |#1| (-1070)) ELT)) (-3193 (((-85) $) 155 (|has| |#1| (-744)) ELT)) (-1609 (((-3 (-587 $) #3="failed") (-587 $) $) 68 T ELT)) (-2537 (($ $ $) 147 (|has| |#1| (-760)) ELT)) (-2863 (($ $ $) 148 (|has| |#1| (-760)) ELT)) (-3849 (($ (-1 |#1| |#1|) $) 195 T ELT)) (-2285 (((-634 (-488)) (-1183 $)) 190 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) 189 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) 184 T ELT) (((-634 |#1|) (-1183 $)) 183 T ELT)) (-1899 (($ $ $) 60 T ELT) (($ (-587 $)) 59 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 88 T ELT)) (-3452 (($) 141 (|has| |#1| (-1070)) CONST)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 58 T ELT)) (-3150 (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-3134 (($ $) 172 (|has| |#1| (-260)) ELT)) (-3136 ((|#1| $) 169 (|has| |#1| (-487)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) 166 (|has| |#1| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) 165 (|has| |#1| (-825)) ELT)) (-3738 (((-350 $) $) 92 T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 69 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 65 T ELT)) (-3774 (($ $ (-587 |#1|) (-587 |#1|)) 201 (|has| |#1| (-262 |#1|)) ELT) (($ $ |#1| |#1|) 200 (|has| |#1| (-262 |#1|)) ELT) (($ $ (-251 |#1|)) 199 (|has| |#1| (-262 |#1|)) ELT) (($ $ (-587 (-251 |#1|))) 198 (|has| |#1| (-262 |#1|)) ELT) (($ $ (-587 (-1094)) (-587 |#1|)) 197 (|has| |#1| (-459 (-1094) |#1|)) ELT) (($ $ (-1094) |#1|) 196 (|has| |#1| (-459 (-1094) |#1|)) ELT)) (-1611 (((-698) $) 74 T ELT)) (-3806 (($ $ |#1|) 202 (|has| |#1| (-243 |#1| |#1|)) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 73 T ELT)) (-3764 (($ $ (-1 |#1| |#1|)) 194 T ELT) (($ $ (-1 |#1| |#1|) (-698)) 193 T ELT) (($ $) 140 (|has| |#1| (-191)) ELT) (($ $ (-698)) 138 (|has| |#1| (-191)) ELT) (($ $ (-1094)) 136 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) 134 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) 133 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 132 (|has| |#1| (-815 (-1094))) ELT)) (-3001 (($ $) 174 T ELT)) (-3003 ((|#1| $) 176 T ELT)) (-3978 (((-804 (-488)) $) 182 (|has| |#1| (-557 (-804 (-488)))) ELT) (((-804 (-332)) $) 181 (|has| |#1| (-557 (-804 (-332)))) ELT) (((-477) $) 159 (|has| |#1| (-557 (-477))) ELT) (((-332) $) 158 (|has| |#1| (-937)) ELT) (((-181) $) 157 (|has| |#1| (-937)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) 168 (-2568 (|has| $ (-118)) (|has| |#1| (-825))) ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT) (($ (-352 (-488))) 84 T ELT) (($ |#1|) 207 T ELT) (($ (-1094)) 161 (|has| |#1| (-954 (-1094))) ELT)) (-2708 (((-636 $) $) 160 (OR (|has| |#1| (-118)) (-2568 (|has| $ (-118)) (|has| |#1| (-825)))) ELT)) (-3132 (((-698)) 40 T CONST)) (-3137 ((|#1| $) 170 (|has| |#1| (-487)) ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-3389 (($ $) 153 (|has| |#1| (-744)) ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-1 |#1| |#1|)) 192 T ELT) (($ $ (-1 |#1| |#1|) (-698)) 191 T ELT) (($ $) 139 (|has| |#1| (-191)) ELT) (($ $ (-698)) 137 (|has| |#1| (-191)) ELT) (($ $ (-1094)) 135 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) 131 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) 130 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 129 (|has| |#1| (-815 (-1094))) ELT)) (-2572 (((-85) $ $) 149 (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) 151 (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 150 (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) 152 (|has| |#1| (-760)) ELT)) (-3956 (($ $ $) 83 T ELT) (($ |#1| |#1|) 178 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 87 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-352 (-488))) 86 T ELT) (($ (-352 (-488)) $) 85 T ELT) (($ |#1| $) 206 T ELT) (($ $ |#1|) 205 T ELT))) +(((-908 |#1|) (-113) (-499)) (T -908)) +((-3956 (*1 *1 *2 *2) (-12 (-4 *1 (-908 *2)) (-4 *2 (-499)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-499)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-499)))) (-3002 (*1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-499)))) (-3001 (*1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-499)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-499)) (-4 *2 (-260)))) (-3134 (*1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-499)) (-4 *2 (-260)))) (-3000 (*1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-487)) (-4 *2 (-499)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-499)) (-4 *2 (-487)))) (-3136 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-499)) (-4 *2 (-487))))) +(-13 (-314) (-38 |t#1|) (-954 |t#1|) (-290 |t#1|) (-186 |t#1|) (-331 |t#1|) (-798 |t#1|) (-345 |t#1|) (-10 -8 (-15 -3956 ($ |t#1| |t#1|)) (-15 -3004 (|t#1| $)) (-15 -3003 (|t#1| $)) (-15 -3002 ($ $)) (-15 -3001 ($ $)) (IF (|has| |t#1| (-1070)) (-6 (-1070)) |%noBranch|) (IF (|has| |t#1| (-954 (-488))) (PROGN (-6 (-954 (-488))) (-6 (-954 (-352 (-488))))) |%noBranch|) (IF (|has| |t#1| (-760)) (-6 (-760)) |%noBranch|) (IF (|has| |t#1| (-744)) (-6 (-744)) |%noBranch|) (IF (|has| |t#1| (-937)) (-6 (-937)) |%noBranch|) (IF (|has| |t#1| (-557 (-477))) (-6 (-557 (-477))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-954 (-1094))) (-6 (-954 (-1094))) |%noBranch|) (IF (|has| |t#1| (-260)) (PROGN (-15 -3135 (|t#1| $)) (-15 -3134 ($ $))) |%noBranch|) (IF (|has| |t#1| (-487)) (PROGN (-15 -3000 ($)) (-15 -3137 (|t#1| $)) (-15 -3136 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-352 (-488))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) OR (|has| |#1| (-744)) (|has| |#1| (-120))) ((-559 (-352 (-488))) . T) ((-559 (-488)) . T) ((-559 (-1094)) |has| |#1| (-954 (-1094))) ((-559 |#1|) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-557 (-181)) |has| |#1| (-937)) ((-557 (-332)) |has| |#1| (-937)) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-557 (-804 (-332))) |has| |#1| (-557 (-804 (-332)))) ((-557 (-804 (-488))) |has| |#1| (-557 (-804 (-488)))) ((-188 $) OR (|has| |#1| (-191)) (|has| |#1| (-192))) ((-186 |#1|) . T) ((-192) |has| |#1| (-192)) ((-191) OR (|has| |#1| (-191)) (|has| |#1| (-192))) ((-227 |#1|) . T) ((-203) . T) ((-243 |#1| $) |has| |#1| (-243 |#1| |#1|)) ((-248) . T) ((-260) . T) ((-262 |#1|) |has| |#1| (-262 |#1|)) ((-314) . T) ((-290 |#1|) . T) ((-331 |#1|) . T) ((-345 |#1|) . T) ((-383 |#1|) . T) ((-395) . T) ((-459 (-1094) |#1|) |has| |#1| (-459 (-1094) |#1|)) ((-459 |#1| |#1|) |has| |#1| (-262 |#1|)) ((-499) . T) ((-13) . T) ((-592 (-352 (-488))) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 (-352 (-488))) . T) ((-594 (-488)) |has| |#1| (-584 (-488))) ((-594 |#1|) . T) ((-594 $) . T) ((-586 (-352 (-488))) . T) ((-586 |#1|) . T) ((-586 $) . T) ((-584 (-488)) |has| |#1| (-584 (-488))) ((-584 |#1|) . T) ((-658 (-352 (-488))) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-667) . T) ((-718) |has| |#1| (-744)) ((-720) |has| |#1| (-744)) ((-722) |has| |#1| (-744)) ((-725) |has| |#1| (-744)) ((-744) |has| |#1| (-744)) ((-759) |has| |#1| (-744)) ((-760) OR (|has| |#1| (-760)) (|has| |#1| (-744))) ((-763) OR (|has| |#1| (-760)) (|has| |#1| (-744))) ((-810 $ (-1094)) OR (|has| |#1| (-815 (-1094))) (|has| |#1| (-813 (-1094)))) ((-813 (-1094)) |has| |#1| (-813 (-1094))) ((-815 (-1094)) OR (|has| |#1| (-815 (-1094))) (|has| |#1| (-813 (-1094)))) ((-800 (-332)) |has| |#1| (-800 (-332))) ((-800 (-488)) |has| |#1| (-800 (-488))) ((-798 |#1|) . T) ((-825) |has| |#1| (-825)) ((-836) . T) ((-937) |has| |#1| (-937)) ((-954 (-352 (-488))) |has| |#1| (-954 (-488))) ((-954 (-488)) |has| |#1| (-954 (-488))) ((-954 (-1094)) |has| |#1| (-954 (-1094))) ((-954 |#1|) . T) ((-967 (-352 (-488))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-972 (-352 (-488))) . T) ((-972 |#1|) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1070) |has| |#1| (-1070)) ((-1133) . T) ((-1138) . T)) +((-3849 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) +(((-909 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3849 (|#4| (-1 |#2| |#1|) |#3|))) (-499) (-499) (-908 |#1|) (-908 |#2|)) (T -909)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-499)) (-4 *6 (-499)) (-4 *2 (-908 *6)) (-5 *1 (-909 *5 *6 *4 *2)) (-4 *4 (-908 *5))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1316 (((-3 $ "failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3005 (($ (-1060 |#1| |#2|)) 11 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-3129 (((-1060 |#1| |#2|) $) 12 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3806 ((|#2| $ (-199 |#1| |#2|)) 16 T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT))) +(((-910 |#1| |#2|) (-13 (-21) (-243 (-199 |#1| |#2|) |#2|) (-10 -8 (-15 -3005 ($ (-1060 |#1| |#2|))) (-15 -3129 ((-1060 |#1| |#2|) $)))) (-834) (-314)) (T -910)) +((-3005 (*1 *1 *2) (-12 (-5 *2 (-1060 *3 *4)) (-14 *3 (-834)) (-4 *4 (-314)) (-5 *1 (-910 *3 *4)))) (-3129 (*1 *2 *1) (-12 (-5 *2 (-1060 *3 *4)) (-5 *1 (-910 *3 *4)) (-14 *3 (-834)) (-4 *4 (-314))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3212 (((-1053) $) 10 T ELT)) (-3953 (((-776) $) 16 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-911) (-13 (-999) (-10 -8 (-15 -3212 ((-1053) $))))) (T -911)) +((-3212 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-911))))) +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3730 (($) 6 T CONST)) (-3008 (($ $) 44 T ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 52 T ELT)) (-2614 (((-587 |#1|) $) 51 T ELT)) (-3251 (((-85) |#1| $) 56 (|has| |#1| (-72)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3839 (((-698) $) 43 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-1278 ((|#1| $) 35 T ELT)) (-3615 (($ |#1| $) 36 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-3007 ((|#1| $) 42 T ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 54 T ELT)) (-1279 ((|#1| $) 37 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) 49 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3010 ((|#1| |#1| $) 46 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3009 ((|#1| $) 45 T ELT)) (-1735 (((-698) |#1| $) 55 (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) 50 T ELT)) (-3406 (($ $) 9 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1280 (($ (-587 |#1|)) 38 T ELT)) (-3006 ((|#1| $) 41 T ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) 48 T ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) 47 T ELT))) +(((-912 |#1|) (-113) (-1133)) (T -912)) +((-3010 (*1 *2 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1133)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1133)))) (-3008 (*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1133)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-1133)) (-5 *2 (-698)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1133)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1133))))) +(-13 (-76 |t#1|) (-320 |t#1|) (-10 -8 (-15 -3010 (|t#1| |t#1| $)) (-15 -3009 (|t#1| $)) (-15 -3008 ($ $)) (-15 -3839 ((-698) $)) (-15 -3007 (|t#1| $)) (-15 -3006 (|t#1| $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-320 |#1|) . T) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-1017) |has| |#1| (-1017)) ((-1039 |#1|) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3162 (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#1|) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3649 ((|#1| $) 12 T ELT)) (-3030 (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-487)) ELT)) (-3029 (((-85) $) NIL (|has| |#1| (-487)) ELT)) (-3028 (((-352 (-488)) $) NIL (|has| |#1| (-487)) ELT)) (-3011 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3138 ((|#1| $) NIL T ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) NIL T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3012 ((|#1| $) 15 T ELT)) (-3013 ((|#1| $) 14 T ELT)) (-3014 ((|#1| $) 13 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3774 (($ $ (-587 |#1|) (-587 |#1|)) NIL (|has| |#1| (-262 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-262 |#1|)) ELT) (($ $ (-251 |#1|)) NIL (|has| |#1| (-262 |#1|)) ELT) (($ $ (-587 (-251 |#1|))) NIL (|has| |#1| (-262 |#1|)) ELT) (($ $ (-587 (-1094)) (-587 |#1|)) NIL (|has| |#1| (-459 (-1094) |#1|)) ELT) (($ $ (-1094) |#1|) NIL (|has| |#1| (-459 (-1094) |#1|)) ELT)) (-3806 (($ $ |#1|) NIL (|has| |#1| (-243 |#1| |#1|)) ELT)) (-3764 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $) NIL (|has| |#1| (-191)) ELT) (($ $ (-698)) NIL (|has| |#1| (-191)) ELT) (($ $ (-1094)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-815 (-1094))) ELT)) (-3978 (((-477) $) NIL (|has| |#1| (-557 (-477))) ELT)) (-3015 (($ $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-352 (-488))) NIL (OR (|has| |#1| (-314)) (|has| |#1| (-954 (-352 (-488))))) ELT)) (-2708 (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3389 ((|#1| $) NIL (|has| |#1| (-977)) ELT)) (-2666 (($) 8 T CONST)) (-2672 (($) 10 T CONST)) (-2675 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $) NIL (|has| |#1| (-191)) ELT) (($ $ (-698)) NIL (|has| |#1| (-191)) ELT) (($ $ (-1094)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-815 (-1094))) ELT)) (-2572 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL (|has| |#1| (-314)) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-314)) ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-314)) ELT))) +(((-913 |#1|) (-915 |#1|) (-148)) (T -913)) +NIL +((-3194 (((-85) $) 43 T ELT)) (-3163 (((-3 (-488) #1="failed") $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3162 (((-488) $) NIL T ELT) (((-352 (-488)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3030 (((-3 (-352 (-488)) #1#) $) 78 T ELT)) (-3029 (((-85) $) 72 T ELT)) (-3028 (((-352 (-488)) $) 76 T ELT)) (-2415 (((-85) $) 42 T ELT)) (-3138 ((|#2| $) 22 T ELT)) (-3849 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2490 (($ $) 58 T ELT)) (-3764 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-698)) NIL T ELT) (($ $ (-1094)) NIL T ELT) (($ $ (-587 (-1094))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-3978 (((-477) $) 67 T ELT)) (-3015 (($ $) 17 T ELT)) (-3953 (((-776) $) 53 T ELT) (($ (-488)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-352 (-488))) NIL T ELT)) (-3132 (((-698)) 10 T CONST)) (-3389 ((|#2| $) 71 T ELT)) (-3062 (((-85) $ $) 26 T ELT)) (-2691 (((-85) $ $) 69 T ELT)) (-3843 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3845 (($ $ $) 27 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT))) +(((-914 |#1| |#2|) (-10 -7 (-15 -3953 (|#1| (-352 (-488)))) (-15 -3764 (|#1| |#1| (-698))) (-15 -3764 (|#1| |#1|)) (-15 -3764 (|#1| |#1| (-587 (-1094)) (-587 (-698)))) (-15 -3764 (|#1| |#1| (-1094) (-698))) (-15 -3764 (|#1| |#1| (-587 (-1094)))) (-15 -3764 (|#1| |#1| (-1094))) (-15 -2691 ((-85) |#1| |#1|)) (-15 * (|#1| (-352 (-488)) |#1|)) (-15 * (|#1| |#1| (-352 (-488)))) (-15 -2490 (|#1| |#1|)) (-15 -3978 ((-477) |#1|)) (-15 -3030 ((-3 (-352 (-488)) #1="failed") |#1|)) (-15 -3028 ((-352 (-488)) |#1|)) (-15 -3029 ((-85) |#1|)) (-15 -3389 (|#2| |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -3015 (|#1| |#1|)) (-15 -3849 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3764 (|#1| |#1| (-1 |#2| |#2|) (-698))) (-15 -3764 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3163 ((-3 |#2| #1#) |#1|)) (-15 -3162 (|#2| |#1|)) (-15 -3162 ((-352 (-488)) |#1|)) (-15 -3163 ((-3 (-352 (-488)) #1#) |#1|)) (-15 -3162 ((-488) |#1|)) (-15 -3163 ((-3 (-488) #1#) |#1|)) (-15 -3953 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3132 ((-698)) -3959) (-15 -3953 (|#1| (-488))) (-15 -2415 ((-85) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3843 (|#1| |#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 * (|#1| (-488) |#1|)) (-15 * (|#1| (-698) |#1|)) (-15 -3194 ((-85) |#1|)) (-15 * (|#1| (-834) |#1|)) (-15 -3845 (|#1| |#1| |#1|)) (-15 -3953 ((-776) |#1|)) (-15 -3062 ((-85) |#1| |#1|))) (-915 |#2|) (-148)) (T -914)) +((-3132 (*1 *2) (-12 (-4 *4 (-148)) (-5 *2 (-698)) (-5 *1 (-914 *3 *4)) (-4 *3 (-915 *4))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3163 (((-3 (-488) #1="failed") $) 143 (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) 141 (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #1#) $) 138 T ELT)) (-3162 (((-488) $) 142 (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) 140 (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) 139 T ELT)) (-2284 (((-634 (-488)) (-634 $)) 123 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) 122 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) 121 T ELT) (((-634 |#1|) (-634 $)) 120 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3649 ((|#1| $) 111 T ELT)) (-3030 (((-3 (-352 (-488)) "failed") $) 107 (|has| |#1| (-487)) ELT)) (-3029 (((-85) $) 109 (|has| |#1| (-487)) ELT)) (-3028 (((-352 (-488)) $) 108 (|has| |#1| (-487)) ELT)) (-3011 (($ |#1| |#1| |#1| |#1|) 112 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3138 ((|#1| $) 113 T ELT)) (-2537 (($ $ $) 95 (|has| |#1| (-760)) ELT)) (-2863 (($ $ $) 96 (|has| |#1| (-760)) ELT)) (-3849 (($ (-1 |#1| |#1|) $) 126 T ELT)) (-2285 (((-634 (-488)) (-1183 $)) 125 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) 124 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) 119 T ELT) (((-634 |#1|) (-1183 $)) 118 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 104 (|has| |#1| (-314)) ELT)) (-3012 ((|#1| $) 114 T ELT)) (-3013 ((|#1| $) 115 T ELT)) (-3014 ((|#1| $) 116 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3774 (($ $ (-587 |#1|) (-587 |#1|)) 132 (|has| |#1| (-262 |#1|)) ELT) (($ $ |#1| |#1|) 131 (|has| |#1| (-262 |#1|)) ELT) (($ $ (-251 |#1|)) 130 (|has| |#1| (-262 |#1|)) ELT) (($ $ (-587 (-251 |#1|))) 129 (|has| |#1| (-262 |#1|)) ELT) (($ $ (-587 (-1094)) (-587 |#1|)) 128 (|has| |#1| (-459 (-1094) |#1|)) ELT) (($ $ (-1094) |#1|) 127 (|has| |#1| (-459 (-1094) |#1|)) ELT)) (-3806 (($ $ |#1|) 133 (|has| |#1| (-243 |#1| |#1|)) ELT)) (-3764 (($ $ (-1 |#1| |#1|)) 137 T ELT) (($ $ (-1 |#1| |#1|) (-698)) 136 T ELT) (($ $) 94 (|has| |#1| (-191)) ELT) (($ $ (-698)) 92 (|has| |#1| (-191)) ELT) (($ $ (-1094)) 90 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) 88 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) 87 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 86 (|has| |#1| (-815 (-1094))) ELT)) (-3978 (((-477) $) 105 (|has| |#1| (-557 (-477))) ELT)) (-3015 (($ $) 117 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-352 (-488))) 82 (OR (|has| |#1| (-314)) (|has| |#1| (-954 (-352 (-488))))) ELT)) (-2708 (((-636 $) $) 106 (|has| |#1| (-118)) ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-3389 ((|#1| $) 110 (|has| |#1| (-977)) ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-1 |#1| |#1|)) 135 T ELT) (($ $ (-1 |#1| |#1|) (-698)) 134 T ELT) (($ $) 93 (|has| |#1| (-191)) ELT) (($ $ (-698)) 91 (|has| |#1| (-191)) ELT) (($ $ (-1094)) 89 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) 85 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) 84 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 83 (|has| |#1| (-815 (-1094))) ELT)) (-2572 (((-85) $ $) 97 (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) 99 (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 98 (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) 100 (|has| |#1| (-760)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 103 (|has| |#1| (-314)) ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ $ (-352 (-488))) 102 (|has| |#1| (-314)) ELT) (($ (-352 (-488)) $) 101 (|has| |#1| (-314)) ELT))) +(((-915 |#1|) (-113) (-148)) (T -915)) +((-3015 (*1 *1 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-148)))) (-3014 (*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-148)))) (-3013 (*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-148)))) (-3012 (*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-148)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-148)))) (-3011 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-915 *2)) (-4 *2 (-148)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-148)))) (-3389 (*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-148)) (-4 *2 (-977)))) (-3029 (*1 *2 *1) (-12 (-4 *1 (-915 *3)) (-4 *3 (-148)) (-4 *3 (-487)) (-5 *2 (-85)))) (-3028 (*1 *2 *1) (-12 (-4 *1 (-915 *3)) (-4 *3 (-148)) (-4 *3 (-487)) (-5 *2 (-352 (-488))))) (-3030 (*1 *2 *1) (|partial| -12 (-4 *1 (-915 *3)) (-4 *3 (-148)) (-4 *3 (-487)) (-5 *2 (-352 (-488)))))) +(-13 (-38 |t#1|) (-357 |t#1|) (-186 |t#1|) (-290 |t#1|) (-331 |t#1|) (-10 -8 (-15 -3015 ($ $)) (-15 -3014 (|t#1| $)) (-15 -3013 (|t#1| $)) (-15 -3012 (|t#1| $)) (-15 -3138 (|t#1| $)) (-15 -3011 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3649 (|t#1| $)) (IF (|has| |t#1| (-248)) (-6 (-248)) |%noBranch|) (IF (|has| |t#1| (-760)) (-6 (-760)) |%noBranch|) (IF (|has| |t#1| (-314)) (-6 (-203)) |%noBranch|) (IF (|has| |t#1| (-557 (-477))) (-6 (-557 (-477))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-977)) (-15 -3389 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-487)) (PROGN (-15 -3029 ((-85) $)) (-15 -3028 ((-352 (-488)) $)) (-15 -3030 ((-3 (-352 (-488)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-352 (-488))) |has| |#1| (-314)) ((-38 |#1|) . T) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) |has| |#1| (-314)) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-314)) (|has| |#1| (-248))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) OR (|has| |#1| (-954 (-352 (-488)))) (|has| |#1| (-314))) ((-559 (-488)) . T) ((-559 |#1|) . T) ((-556 (-776)) . T) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-188 $) OR (|has| |#1| (-191)) (|has| |#1| (-192))) ((-186 |#1|) . T) ((-192) |has| |#1| (-192)) ((-191) OR (|has| |#1| (-191)) (|has| |#1| (-192))) ((-227 |#1|) . T) ((-203) |has| |#1| (-314)) ((-243 |#1| $) |has| |#1| (-243 |#1| |#1|)) ((-248) OR (|has| |#1| (-314)) (|has| |#1| (-248))) ((-262 |#1|) |has| |#1| (-262 |#1|)) ((-290 |#1|) . T) ((-331 |#1|) . T) ((-357 |#1|) . T) ((-383 |#1|) . T) ((-459 (-1094) |#1|) |has| |#1| (-459 (-1094) |#1|)) ((-459 |#1| |#1|) |has| |#1| (-262 |#1|)) ((-13) . T) ((-592 (-352 (-488))) |has| |#1| (-314)) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 (-352 (-488))) |has| |#1| (-314)) ((-594 (-488)) |has| |#1| (-584 (-488))) ((-594 |#1|) . T) ((-594 $) . T) ((-586 (-352 (-488))) |has| |#1| (-314)) ((-586 |#1|) . T) ((-584 (-488)) |has| |#1| (-584 (-488))) ((-584 |#1|) . T) ((-658 (-352 (-488))) |has| |#1| (-314)) ((-658 |#1|) . T) ((-667) . T) ((-760) |has| |#1| (-760)) ((-763) |has| |#1| (-760)) ((-810 $ (-1094)) OR (|has| |#1| (-815 (-1094))) (|has| |#1| (-813 (-1094)))) ((-813 (-1094)) |has| |#1| (-813 (-1094))) ((-815 (-1094)) OR (|has| |#1| (-815 (-1094))) (|has| |#1| (-813 (-1094)))) ((-954 (-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((-954 (-488)) |has| |#1| (-954 (-488))) ((-954 |#1|) . T) ((-967 (-352 (-488))) |has| |#1| (-314)) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-314)) (|has| |#1| (-248))) ((-972 (-352 (-488))) |has| |#1| (-314)) ((-972 |#1|) . T) ((-972 $) OR (|has| |#1| (-314)) (|has| |#1| (-248))) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-3849 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) +(((-916 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3849 (|#3| (-1 |#4| |#2|) |#1|))) (-915 |#2|) (-148) (-915 |#4|) (-148)) (T -916)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-148)) (-4 *6 (-148)) (-4 *2 (-915 *6)) (-5 *1 (-916 *4 *5 *2 *6)) (-4 *4 (-915 *5))))) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3730 (($) NIL T CONST)) (-3008 (($ $) 24 T ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3016 (($ (-587 |#1|)) 34 T ELT)) (-2614 (((-587 |#1|) $) NIL T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3839 (((-698) $) 27 T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-1278 ((|#1| $) 29 T ELT)) (-3615 (($ |#1| $) 18 T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-3007 ((|#1| $) 28 T ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1279 ((|#1| $) 23 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3010 ((|#1| |#1| $) 17 T ELT)) (-3409 (((-85) $) 19 T ELT)) (-3571 (($) NIL T ELT)) (-3009 ((|#1| $) 22 T ELT)) (-1735 (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3953 (((-776) $) NIL (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1280 (($ (-587 |#1|)) NIL T ELT)) (-3006 ((|#1| $) 31 T ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3062 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-917 |#1|) (-13 (-912 |#1|) (-10 -8 (-15 -3016 ($ (-587 |#1|))))) (-1017)) (T -917)) +((-3016 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-5 *1 (-917 *3))))) +((-3043 (($ $) 12 T ELT)) (-3017 (($ $ (-488)) 13 T ELT))) +(((-918 |#1|) (-10 -7 (-15 -3043 (|#1| |#1|)) (-15 -3017 (|#1| |#1| (-488)))) (-919)) (T -918)) +NIL +((-3043 (($ $) 6 T ELT)) (-3017 (($ $ (-488)) 7 T ELT)) (** (($ $ (-352 (-488))) 8 T ELT))) +(((-919) (-113)) (T -919)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-919)) (-5 *2 (-352 (-488))))) (-3017 (*1 *1 *1 *2) (-12 (-4 *1 (-919)) (-5 *2 (-488)))) (-3043 (*1 *1 *1) (-4 *1 (-919)))) +(-13 (-10 -8 (-15 -3043 ($ $)) (-15 -3017 ($ $ (-488))) (-15 ** ($ $ (-352 (-488)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1651 (((-2 (|:| |num| (-1183 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-2068 (($ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-2066 (((-85) $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-1790 (((-634 (-352 |#2|)) (-1183 $)) NIL T ELT) (((-634 (-352 |#2|))) NIL T ELT)) (-3336 (((-352 |#2|) $) NIL T ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) NIL (|has| (-352 |#2|) (-301)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3977 (((-350 $) $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-1612 (((-85) $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3142 (((-698)) NIL (|has| (-352 |#2|) (-322)) ELT)) (-1665 (((-85)) NIL T ELT)) (-1664 (((-85) |#1|) 162 T ELT) (((-85) |#2|) 166 T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL (|has| (-352 |#2|) (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| (-352 |#2|) (-954 (-352 (-488)))) ELT) (((-3 (-352 |#2|) #1#) $) NIL T ELT)) (-3162 (((-488) $) NIL (|has| (-352 |#2|) (-954 (-488))) ELT) (((-352 (-488)) $) NIL (|has| (-352 |#2|) (-954 (-352 (-488)))) ELT) (((-352 |#2|) $) NIL T ELT)) (-1800 (($ (-1183 (-352 |#2|)) (-1183 $)) NIL T ELT) (($ (-1183 (-352 |#2|))) 79 T ELT) (($ (-1183 |#2|) |#2|) NIL T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-352 |#2|) (-301)) ELT)) (-2570 (($ $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-1789 (((-634 (-352 |#2|)) $ (-1183 $)) NIL T ELT) (((-634 (-352 |#2|)) $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| (-352 |#2|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| (-352 |#2|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-352 |#2|))) (|:| |vec| (-1183 (-352 |#2|)))) (-634 $) (-1183 $)) NIL T ELT) (((-634 (-352 |#2|)) (-634 $)) NIL T ELT)) (-1656 (((-1183 $) (-1183 $)) NIL T ELT)) (-3848 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-352 |#3|)) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-1643 (((-587 (-587 |#1|))) NIL (|has| |#1| (-322)) ELT)) (-1668 (((-85) |#1| |#1|) NIL T ELT)) (-3114 (((-834)) NIL T ELT)) (-3000 (($) NIL (|has| (-352 |#2|) (-322)) ELT)) (-1663 (((-85)) NIL T ELT)) (-1662 (((-85) |#1|) 61 T ELT) (((-85) |#2|) 164 T ELT)) (-2569 (($ $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3509 (($ $) NIL T ELT)) (-2839 (($) NIL (|has| (-352 |#2|) (-301)) ELT)) (-1684 (((-85) $) NIL (|has| (-352 |#2|) (-301)) ELT)) (-1772 (($ $ (-698)) NIL (|has| (-352 |#2|) (-301)) ELT) (($ $) NIL (|has| (-352 |#2|) (-301)) ELT)) (-3729 (((-85) $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3778 (((-834) $) NIL (|has| (-352 |#2|) (-301)) ELT) (((-747 (-834)) $) NIL (|has| (-352 |#2|) (-301)) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3383 (((-698)) NIL T ELT)) (-1657 (((-1183 $) (-1183 $)) NIL T ELT)) (-3138 (((-352 |#2|) $) NIL T ELT)) (-1644 (((-587 (-861 |#1|)) (-1094)) NIL (|has| |#1| (-314)) ELT)) (-3451 (((-636 $) $) NIL (|has| (-352 |#2|) (-301)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-2019 ((|#3| $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-2015 (((-834) $) NIL (|has| (-352 |#2|) (-322)) ELT)) (-3085 ((|#3| $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| (-352 |#2|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| (-352 |#2|) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-352 |#2|))) (|:| |vec| (-1183 (-352 |#2|)))) (-1183 $) $) NIL T ELT) (((-634 (-352 |#2|)) (-1183 $)) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| (-352 |#2|) (-314)) ELT) (($ $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1652 (((-634 (-352 |#2|))) 57 T ELT)) (-1654 (((-634 (-352 |#2|))) 56 T ELT)) (-2490 (($ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-1649 (($ (-1183 |#2|) |#2|) 80 T ELT)) (-1653 (((-634 (-352 |#2|))) 55 T ELT)) (-1655 (((-634 (-352 |#2|))) 54 T ELT)) (-1648 (((-2 (|:| |num| (-634 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1650 (((-2 (|:| |num| (-1183 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1661 (((-1183 $)) 51 T ELT)) (-3925 (((-1183 $)) 50 T ELT)) (-1660 (((-85) $) NIL T ELT)) (-1659 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3452 (($) NIL (|has| (-352 |#2|) (-301)) CONST)) (-2405 (($ (-834)) NIL (|has| (-352 |#2|) (-322)) ELT)) (-1646 (((-3 |#2| #1#)) 70 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1670 (((-698)) NIL T ELT)) (-2414 (($) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3150 (($ (-587 $)) NIL (|has| (-352 |#2|) (-314)) ELT) (($ $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) NIL (|has| (-352 |#2|) (-301)) ELT)) (-3738 (((-350 $) $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-352 |#2|) (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3472 (((-3 $ #1#) $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-1611 (((-698) $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3806 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1647 (((-3 |#2| #1#)) 68 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3763 (((-352 |#2|) (-1183 $)) NIL T ELT) (((-352 |#2|)) 47 T ELT)) (-1773 (((-698) $) NIL (|has| (-352 |#2|) (-301)) ELT) (((-3 (-698) #1#) $ $) NIL (|has| (-352 |#2|) (-301)) ELT)) (-3764 (($ $ (-1 (-352 |#2|) (-352 |#2|))) NIL (|has| (-352 |#2|) (-314)) ELT) (($ $ (-1 (-352 |#2|) (-352 |#2|)) (-698)) NIL (|has| (-352 |#2|) (-314)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (OR (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094))))) ELT) (($ $ (-1094) (-698)) NIL (OR (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094))))) ELT) (($ $ (-587 (-1094))) NIL (OR (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094))))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094))))) ELT) (($ $ (-698)) NIL (OR (-12 (|has| (-352 |#2|) (-192)) (|has| (-352 |#2|) (-314))) (-12 (|has| (-352 |#2|) (-191)) (|has| (-352 |#2|) (-314))) (|has| (-352 |#2|) (-301))) ELT) (($ $) NIL (OR (-12 (|has| (-352 |#2|) (-192)) (|has| (-352 |#2|) (-314))) (-12 (|has| (-352 |#2|) (-191)) (|has| (-352 |#2|) (-314))) (|has| (-352 |#2|) (-301))) ELT)) (-2413 (((-634 (-352 |#2|)) (-1183 $) (-1 (-352 |#2|) (-352 |#2|))) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3191 ((|#3|) 58 T ELT)) (-1678 (($) NIL (|has| (-352 |#2|) (-301)) ELT)) (-3230 (((-1183 (-352 |#2|)) $ (-1183 $)) NIL T ELT) (((-634 (-352 |#2|)) (-1183 $) (-1183 $)) NIL T ELT) (((-1183 (-352 |#2|)) $) 81 T ELT) (((-634 (-352 |#2|)) (-1183 $)) NIL T ELT)) (-3978 (((-1183 (-352 |#2|)) $) NIL T ELT) (($ (-1183 (-352 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (|has| (-352 |#2|) (-301)) ELT)) (-1658 (((-1183 $) (-1183 $)) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ (-352 |#2|)) NIL T ELT) (($ (-352 (-488))) NIL (OR (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-954 (-352 (-488))))) ELT) (($ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-2708 (($ $) NIL (|has| (-352 |#2|) (-301)) ELT) (((-636 $) $) NIL (|has| (-352 |#2|) (-118)) ELT)) (-2455 ((|#3| $) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-1667 (((-85)) 65 T ELT)) (-1666 (((-85) |#1|) 167 T ELT) (((-85) |#2|) 168 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 $)) NIL T ELT)) (-2067 (((-85) $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-1645 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1669 (((-85)) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $ (-1 (-352 |#2|) (-352 |#2|))) NIL (|has| (-352 |#2|) (-314)) ELT) (($ $ (-1 (-352 |#2|) (-352 |#2|)) (-698)) NIL (|has| (-352 |#2|) (-314)) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (OR (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094))))) ELT) (($ $ (-1094) (-698)) NIL (OR (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094))))) ELT) (($ $ (-587 (-1094))) NIL (OR (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094))))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-813 (-1094)))) (-12 (|has| (-352 |#2|) (-314)) (|has| (-352 |#2|) (-815 (-1094))))) ELT) (($ $ (-698)) NIL (OR (-12 (|has| (-352 |#2|) (-192)) (|has| (-352 |#2|) (-314))) (-12 (|has| (-352 |#2|) (-191)) (|has| (-352 |#2|) (-314))) (|has| (-352 |#2|) (-301))) ELT) (($ $) NIL (OR (-12 (|has| (-352 |#2|) (-192)) (|has| (-352 |#2|) (-314))) (-12 (|has| (-352 |#2|) (-191)) (|has| (-352 |#2|) (-314))) (|has| (-352 |#2|) (-301))) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ $) NIL (|has| (-352 |#2|) (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL (|has| (-352 |#2|) (-314)) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 |#2|)) NIL T ELT) (($ (-352 |#2|) $) NIL T ELT) (($ (-352 (-488)) $) NIL (|has| (-352 |#2|) (-314)) ELT) (($ $ (-352 (-488))) NIL (|has| (-352 |#2|) (-314)) ELT))) +(((-920 |#1| |#2| |#3| |#4| |#5|) (-293 |#1| |#2| |#3|) (-1138) (-1159 |#1|) (-1159 (-352 |#2|)) (-352 |#2|) (-698)) (T -920)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3023 (((-587 (-488)) $) 73 T ELT)) (-3019 (($ (-587 (-488))) 81 T ELT)) (-3135 (((-488) $) 48 (|has| (-488) (-260)) ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-488) (-825)) ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| (-488) (-825)) ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3629 (((-488) $) NIL (|has| (-488) (-744)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) 60 T ELT) (((-3 (-1094) #1#) $) NIL (|has| (-488) (-954 (-1094))) ELT) (((-3 (-352 (-488)) #1#) $) 57 (|has| (-488) (-954 (-488))) ELT) (((-3 (-488) #1#) $) 60 (|has| (-488) (-954 (-488))) ELT)) (-3162 (((-488) $) NIL T ELT) (((-1094) $) NIL (|has| (-488) (-954 (-1094))) ELT) (((-352 (-488)) $) NIL (|has| (-488) (-954 (-488))) ELT) (((-488) $) NIL (|has| (-488) (-954 (-488))) ELT)) (-2570 (($ $ $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| (-488) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| (-488) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL T ELT) (((-634 (-488)) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3000 (($) NIL (|has| (-488) (-487)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-3021 (((-587 (-488)) $) 79 T ELT)) (-3192 (((-85) $) NIL (|has| (-488) (-744)) ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (|has| (-488) (-800 (-488))) ELT) (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (|has| (-488) (-800 (-332))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3002 (($ $) NIL T ELT)) (-3004 (((-488) $) 45 T ELT)) (-3451 (((-636 $) $) NIL (|has| (-488) (-1070)) ELT)) (-3193 (((-85) $) NIL (|has| (-488) (-744)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2537 (($ $ $) NIL (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| (-488) (-760)) ELT)) (-3849 (($ (-1 (-488) (-488)) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| (-488) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| (-488) (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL T ELT) (((-634 (-488)) (-1183 $)) NIL T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL T ELT)) (-3452 (($) NIL (|has| (-488) (-1070)) CONST)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3134 (($ $) NIL (|has| (-488) (-260)) ELT) (((-352 (-488)) $) 50 T ELT)) (-3022 (((-1073 (-488)) $) 78 T ELT)) (-3018 (($ (-587 (-488)) (-587 (-488))) 82 T ELT)) (-3136 (((-488) $) 64 (|has| (-488) (-487)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-488) (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| (-488) (-825)) ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-3774 (($ $ (-587 (-488)) (-587 (-488))) NIL (|has| (-488) (-262 (-488))) ELT) (($ $ (-488) (-488)) NIL (|has| (-488) (-262 (-488))) ELT) (($ $ (-251 (-488))) NIL (|has| (-488) (-262 (-488))) ELT) (($ $ (-587 (-251 (-488)))) NIL (|has| (-488) (-262 (-488))) ELT) (($ $ (-587 (-1094)) (-587 (-488))) NIL (|has| (-488) (-459 (-1094) (-488))) ELT) (($ $ (-1094) (-488)) NIL (|has| (-488) (-459 (-1094) (-488))) ELT)) (-1611 (((-698) $) NIL T ELT)) (-3806 (($ $ (-488)) NIL (|has| (-488) (-243 (-488) (-488))) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-3764 (($ $ (-1 (-488) (-488))) NIL T ELT) (($ $ (-1 (-488) (-488)) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $) 15 (|has| (-488) (-191)) ELT) (($ $ (-698)) NIL (|has| (-488) (-191)) ELT)) (-3001 (($ $) NIL T ELT)) (-3003 (((-488) $) 47 T ELT)) (-3020 (((-587 (-488)) $) 80 T ELT)) (-3978 (((-804 (-488)) $) NIL (|has| (-488) (-557 (-804 (-488)))) ELT) (((-804 (-332)) $) NIL (|has| (-488) (-557 (-804 (-332)))) ELT) (((-477) $) NIL (|has| (-488) (-557 (-477))) ELT) (((-332) $) NIL (|has| (-488) (-937)) ELT) (((-181) $) NIL (|has| (-488) (-937)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| (-488) (-825))) ELT)) (-3953 (((-776) $) 108 T ELT) (($ (-488)) 51 T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) 27 T ELT) (($ (-488)) 51 T ELT) (($ (-1094)) NIL (|has| (-488) (-954 (-1094))) ELT) (((-352 (-488)) $) 25 T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-488) (-825))) (|has| (-488) (-118))) ELT)) (-3132 (((-698)) 13 T CONST)) (-3137 (((-488) $) 62 (|has| (-488) (-487)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3389 (($ $) NIL (|has| (-488) (-744)) ELT)) (-2666 (($) 14 T CONST)) (-2672 (($) 17 T CONST)) (-2675 (($ $ (-1 (-488) (-488))) NIL T ELT) (($ $ (-1 (-488) (-488)) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| (-488) (-815 (-1094))) ELT) (($ $) NIL (|has| (-488) (-191)) ELT) (($ $ (-698)) NIL (|has| (-488) (-191)) ELT)) (-2572 (((-85) $ $) NIL (|has| (-488) (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| (-488) (-760)) ELT)) (-3062 (((-85) $ $) 21 T ELT)) (-2690 (((-85) $ $) NIL (|has| (-488) (-760)) ELT)) (-2691 (((-85) $ $) 40 (|has| (-488) (-760)) ELT)) (-3956 (($ $ $) 36 T ELT) (($ (-488) (-488)) 38 T ELT)) (-3843 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3845 (($ $ $) 28 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ (-488) $) 32 T ELT) (($ $ (-488)) NIL T ELT))) +(((-921 |#1|) (-13 (-908 (-488)) (-556 (-352 (-488))) (-10 -8 (-15 -3134 ((-352 (-488)) $)) (-15 -3023 ((-587 (-488)) $)) (-15 -3022 ((-1073 (-488)) $)) (-15 -3021 ((-587 (-488)) $)) (-15 -3020 ((-587 (-488)) $)) (-15 -3019 ($ (-587 (-488)))) (-15 -3018 ($ (-587 (-488)) (-587 (-488)))))) (-488)) (T -921)) +((-3134 (*1 *2 *1) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-921 *3)) (-14 *3 (-488)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-921 *3)) (-14 *3 (-488)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-1073 (-488))) (-5 *1 (-921 *3)) (-14 *3 (-488)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-921 *3)) (-14 *3 (-488)))) (-3020 (*1 *2 *1) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-921 *3)) (-14 *3 (-488)))) (-3019 (*1 *1 *2) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-921 *3)) (-14 *3 (-488)))) (-3018 (*1 *1 *2 *2) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-921 *3)) (-14 *3 (-488))))) +((-3024 (((-51) (-352 (-488)) (-488)) 9 T ELT))) +(((-922) (-10 -7 (-15 -3024 ((-51) (-352 (-488)) (-488))))) (T -922)) +((-3024 (*1 *2 *3 *4) (-12 (-5 *3 (-352 (-488))) (-5 *4 (-488)) (-5 *2 (-51)) (-5 *1 (-922))))) +((-3142 (((-488)) 21 T ELT)) (-3027 (((-488)) 26 T ELT)) (-3026 (((-1189) (-488)) 24 T ELT)) (-3025 (((-488) (-488)) 27 T ELT) (((-488)) 20 T ELT))) +(((-923) (-10 -7 (-15 -3025 ((-488))) (-15 -3142 ((-488))) (-15 -3025 ((-488) (-488))) (-15 -3026 ((-1189) (-488))) (-15 -3027 ((-488))))) (T -923)) +((-3027 (*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-923)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-488)) (-5 *2 (-1189)) (-5 *1 (-923)))) (-3025 (*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-923)))) (-3142 (*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-923)))) (-3025 (*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-923))))) +((-3739 (((-350 |#1|) |#1|) 43 T ELT)) (-3738 (((-350 |#1|) |#1|) 41 T ELT))) +(((-924 |#1|) (-10 -7 (-15 -3738 ((-350 |#1|) |#1|)) (-15 -3739 ((-350 |#1|) |#1|))) (-1159 (-352 (-488)))) (T -924)) +((-3739 (*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1159 (-352 (-488)))))) (-3738 (*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1159 (-352 (-488))))))) +((-3030 (((-3 (-352 (-488)) "failed") |#1|) 15 T ELT)) (-3029 (((-85) |#1|) 14 T ELT)) (-3028 (((-352 (-488)) |#1|) 10 T ELT))) +(((-925 |#1|) (-10 -7 (-15 -3028 ((-352 (-488)) |#1|)) (-15 -3029 ((-85) |#1|)) (-15 -3030 ((-3 (-352 (-488)) "failed") |#1|))) (-954 (-352 (-488)))) (T -925)) +((-3030 (*1 *2 *3) (|partial| -12 (-5 *2 (-352 (-488))) (-5 *1 (-925 *3)) (-4 *3 (-954 *2)))) (-3029 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-925 *3)) (-4 *3 (-954 (-352 (-488)))))) (-3028 (*1 *2 *3) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-925 *3)) (-4 *3 (-954 *2))))) +((-3794 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3806 ((|#2| $ #1#) 10 T ELT)) (-3034 (((-85) $ $) 18 T ELT))) +(((-926 |#1| |#2|) (-10 -7 (-15 -3794 (|#2| |#1| #1="value" |#2|)) (-15 -3034 ((-85) |#1| |#1|)) (-15 -3806 (|#2| |#1| #1#))) (-927 |#2|) (-1133)) (T -926)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3408 ((|#1| $) 43 T ELT)) (-3031 ((|#1| $ |#1|) 34 (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ "value" |#1|) 35 (|has| $ (-1039 |#1|)) ELT)) (-3032 (($ $ (-587 $)) 36 (|has| $ (-1039 |#1|)) ELT)) (-3730 (($) 6 T CONST)) (-3037 (((-587 $) $) 45 T ELT)) (-3033 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3036 (((-587 |#1|) $) 40 T ELT)) (-3533 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#1| $ "value") 42 T ELT)) (-3035 (((-488) $ $) 39 T ELT)) (-3639 (((-85) $) 41 T ELT)) (-3406 (($ $) 9 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-3528 (((-587 $) $) 46 T ELT)) (-3034 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-927 |#1|) (-113) (-1133)) (T -927)) +((-3528 (*1 *2 *1) (-12 (-4 *3 (-1133)) (-5 *2 (-587 *1)) (-4 *1 (-927 *3)))) (-3037 (*1 *2 *1) (-12 (-4 *3 (-1133)) (-5 *2 (-587 *1)) (-4 *1 (-927 *3)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1133)) (-5 *2 (-85)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1133)))) (-3806 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-927 *2)) (-4 *2 (-1133)))) (-3639 (*1 *2 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1133)) (-5 *2 (-85)))) (-3036 (*1 *2 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1133)) (-5 *2 (-587 *3)))) (-3035 (*1 *2 *1 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1133)) (-5 *2 (-488)))) (-3034 (*1 *2 *1 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1133)) (-4 *3 (-72)) (-5 *2 (-85)))) (-3033 (*1 *2 *1 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1133)) (-4 *3 (-72)) (-5 *2 (-85)))) (-3032 (*1 *1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-1039 *3)) (-4 *1 (-927 *3)) (-4 *3 (-1133)))) (-3794 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (-4 *1 (-1039 *2)) (-4 *1 (-927 *2)) (-4 *2 (-1133)))) (-3031 (*1 *2 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-927 *2)) (-4 *2 (-1133))))) +(-13 (-432 |t#1|) (-10 -8 (-15 -3528 ((-587 $) $)) (-15 -3037 ((-587 $) $)) (-15 -3533 ((-85) $)) (-15 -3408 (|t#1| $)) (-15 -3806 (|t#1| $ "value")) (-15 -3639 ((-85) $)) (-15 -3036 ((-587 |t#1|) $)) (-15 -3035 ((-488) $ $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3034 ((-85) $ $)) (-15 -3033 ((-85) $ $))) |%noBranch|) (IF (|has| $ (-1039 |t#1|)) (PROGN (-15 -3032 ($ $ (-587 $))) (-15 -3794 (|t#1| $ "value" |t#1|)) (-15 -3031 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-1017) |has| |#1| (-1017)) ((-1133) . T)) +((-3043 (($ $) 9 T ELT) (($ $ (-834)) 49 T ELT) (($ (-352 (-488))) 13 T ELT) (($ (-488)) 15 T ELT)) (-3189 (((-3 $ #1="failed") (-1089 $) (-834) (-776)) 24 T ELT) (((-3 $ #1#) (-1089 $) (-834)) 32 T ELT)) (-3017 (($ $ (-488)) 58 T ELT)) (-3132 (((-698)) 18 T CONST)) (-3190 (((-587 $) (-1089 $)) NIL T ELT) (((-587 $) (-1089 (-352 (-488)))) 63 T ELT) (((-587 $) (-1089 (-488))) 68 T ELT) (((-587 $) (-861 $)) 72 T ELT) (((-587 $) (-861 (-352 (-488)))) 76 T ELT) (((-587 $) (-861 (-488))) 80 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT) (($ $ (-352 (-488))) 53 T ELT))) +(((-928 |#1|) (-10 -7 (-15 -3043 (|#1| (-488))) (-15 -3043 (|#1| (-352 (-488)))) (-15 -3043 (|#1| |#1| (-834))) (-15 -3190 ((-587 |#1|) (-861 (-488)))) (-15 -3190 ((-587 |#1|) (-861 (-352 (-488))))) (-15 -3190 ((-587 |#1|) (-861 |#1|))) (-15 -3190 ((-587 |#1|) (-1089 (-488)))) (-15 -3190 ((-587 |#1|) (-1089 (-352 (-488))))) (-15 -3190 ((-587 |#1|) (-1089 |#1|))) (-15 -3189 ((-3 |#1| #1="failed") (-1089 |#1|) (-834))) (-15 -3189 ((-3 |#1| #1#) (-1089 |#1|) (-834) (-776))) (-15 ** (|#1| |#1| (-352 (-488)))) (-15 -3017 (|#1| |#1| (-488))) (-15 -3043 (|#1| |#1|)) (-15 ** (|#1| |#1| (-488))) (-15 -3132 ((-698)) -3959) (-15 ** (|#1| |#1| (-698))) (-15 ** (|#1| |#1| (-834)))) (-929)) (T -928)) +((-3132 (*1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-928 *3)) (-4 *3 (-929))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 111 T ELT)) (-2068 (($ $) 112 T ELT)) (-2066 (((-85) $) 114 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3781 (($ $) 131 T ELT)) (-3977 (((-350 $) $) 132 T ELT)) (-3043 (($ $) 95 T ELT) (($ $ (-834)) 81 T ELT) (($ (-352 (-488))) 80 T ELT) (($ (-488)) 79 T ELT)) (-1612 (((-85) $ $) 122 T ELT)) (-3629 (((-488) $) 148 T ELT)) (-3730 (($) 23 T CONST)) (-3189 (((-3 $ "failed") (-1089 $) (-834) (-776)) 89 T ELT) (((-3 $ "failed") (-1089 $) (-834)) 88 T ELT)) (-3163 (((-3 (-488) #1="failed") $) 108 (|has| (-352 (-488)) (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) 106 (|has| (-352 (-488)) (-954 (-352 (-488)))) ELT) (((-3 (-352 (-488)) #1#) $) 103 T ELT)) (-3162 (((-488) $) 107 (|has| (-352 (-488)) (-954 (-488))) ELT) (((-352 (-488)) $) 105 (|has| (-352 (-488)) (-954 (-352 (-488)))) ELT) (((-352 (-488)) $) 104 T ELT)) (-3039 (($ $ (-776)) 78 T ELT)) (-3038 (($ $ (-776)) 77 T ELT)) (-2570 (($ $ $) 126 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-2569 (($ $ $) 125 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 120 T ELT)) (-3729 (((-85) $) 133 T ELT)) (-3192 (((-85) $) 146 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3017 (($ $ (-488)) 94 T ELT)) (-3193 (((-85) $) 147 T ELT)) (-1609 (((-3 (-587 $) #2="failed") (-587 $) $) 129 T ELT)) (-2537 (($ $ $) 140 T ELT)) (-2863 (($ $ $) 141 T ELT)) (-3040 (((-3 (-1089 $) "failed") $) 90 T ELT)) (-3042 (((-3 (-776) "failed") $) 92 T ELT)) (-3041 (((-3 (-1089 $) "failed") $) 91 T ELT)) (-1899 (($ (-587 $)) 118 T ELT) (($ $ $) 117 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 134 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 119 T ELT)) (-3150 (($ (-587 $)) 116 T ELT) (($ $ $) 115 T ELT)) (-3738 (((-350 $) $) 130 T ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 127 T ELT)) (-3472 (((-3 $ "failed") $ $) 110 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 121 T ELT)) (-1611 (((-698) $) 123 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 124 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ (-352 (-488))) 138 T ELT) (($ $) 109 T ELT) (($ (-352 (-488))) 102 T ELT) (($ (-488)) 101 T ELT) (($ (-352 (-488))) 98 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 113 T ELT)) (-3776 (((-352 (-488)) $ $) 76 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-3190 (((-587 $) (-1089 $)) 87 T ELT) (((-587 $) (-1089 (-352 (-488)))) 86 T ELT) (((-587 $) (-1089 (-488))) 85 T ELT) (((-587 $) (-861 $)) 84 T ELT) (((-587 $) (-861 (-352 (-488)))) 83 T ELT) (((-587 $) (-861 (-488))) 82 T ELT)) (-3389 (($ $) 149 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2572 (((-85) $ $) 142 T ELT)) (-2573 (((-85) $ $) 144 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 143 T ELT)) (-2691 (((-85) $ $) 145 T ELT)) (-3956 (($ $ $) 139 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 135 T ELT) (($ $ (-352 (-488))) 93 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-352 (-488)) $) 137 T ELT) (($ $ (-352 (-488))) 136 T ELT) (($ (-488) $) 100 T ELT) (($ $ (-488)) 99 T ELT) (($ (-352 (-488)) $) 97 T ELT) (($ $ (-352 (-488))) 96 T ELT))) +(((-929) (-113)) (T -929)) +((-3043 (*1 *1 *1) (-4 *1 (-929))) (-3042 (*1 *2 *1) (|partial| -12 (-4 *1 (-929)) (-5 *2 (-776)))) (-3041 (*1 *2 *1) (|partial| -12 (-5 *2 (-1089 *1)) (-4 *1 (-929)))) (-3040 (*1 *2 *1) (|partial| -12 (-5 *2 (-1089 *1)) (-4 *1 (-929)))) (-3189 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1089 *1)) (-5 *3 (-834)) (-5 *4 (-776)) (-4 *1 (-929)))) (-3189 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1089 *1)) (-5 *3 (-834)) (-4 *1 (-929)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-1089 *1)) (-4 *1 (-929)) (-5 *2 (-587 *1)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-1089 (-352 (-488)))) (-5 *2 (-587 *1)) (-4 *1 (-929)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-1089 (-488))) (-5 *2 (-587 *1)) (-4 *1 (-929)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-861 *1)) (-4 *1 (-929)) (-5 *2 (-587 *1)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-861 (-352 (-488)))) (-5 *2 (-587 *1)) (-4 *1 (-929)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-861 (-488))) (-5 *2 (-587 *1)) (-4 *1 (-929)))) (-3043 (*1 *1 *1 *2) (-12 (-4 *1 (-929)) (-5 *2 (-834)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-352 (-488))) (-4 *1 (-929)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-929)))) (-3039 (*1 *1 *1 *2) (-12 (-4 *1 (-929)) (-5 *2 (-776)))) (-3038 (*1 *1 *1 *2) (-12 (-4 *1 (-929)) (-5 *2 (-776)))) (-3776 (*1 *2 *1 *1) (-12 (-4 *1 (-929)) (-5 *2 (-352 (-488)))))) +(-13 (-120) (-759) (-148) (-314) (-357 (-352 (-488))) (-38 (-488)) (-38 (-352 (-488))) (-919) (-10 -8 (-15 -3042 ((-3 (-776) "failed") $)) (-15 -3041 ((-3 (-1089 $) "failed") $)) (-15 -3040 ((-3 (-1089 $) "failed") $)) (-15 -3189 ((-3 $ "failed") (-1089 $) (-834) (-776))) (-15 -3189 ((-3 $ "failed") (-1089 $) (-834))) (-15 -3190 ((-587 $) (-1089 $))) (-15 -3190 ((-587 $) (-1089 (-352 (-488))))) (-15 -3190 ((-587 $) (-1089 (-488)))) (-15 -3190 ((-587 $) (-861 $))) (-15 -3190 ((-587 $) (-861 (-352 (-488))))) (-15 -3190 ((-587 $) (-861 (-488)))) (-15 -3043 ($ $ (-834))) (-15 -3043 ($ $)) (-15 -3043 ($ (-352 (-488)))) (-15 -3043 ($ (-488))) (-15 -3039 ($ $ (-776))) (-15 -3038 ($ $ (-776))) (-15 -3776 ((-352 (-488)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-352 (-488))) . T) ((-38 (-488)) . T) ((-38 $) . T) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) . T) ((-82 (-488) (-488)) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-559 (-352 (-488))) . T) ((-559 (-488)) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-203) . T) ((-248) . T) ((-260) . T) ((-314) . T) ((-357 (-352 (-488))) . T) ((-395) . T) ((-499) . T) ((-13) . T) ((-592 (-352 (-488))) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 (-352 (-488))) . T) ((-594 (-488)) . T) ((-594 $) . T) ((-586 (-352 (-488))) . T) ((-586 (-488)) . T) ((-586 $) . T) ((-658 (-352 (-488))) . T) ((-658 (-488)) . T) ((-658 $) . T) ((-667) . T) ((-718) . T) ((-720) . T) ((-722) . T) ((-725) . T) ((-759) . T) ((-760) . T) ((-763) . T) ((-836) . T) ((-919) . T) ((-954 (-352 (-488))) . T) ((-954 (-488)) |has| (-352 (-488)) (-954 (-488))) ((-967 (-352 (-488))) . T) ((-967 (-488)) . T) ((-967 $) . T) ((-972 (-352 (-488))) . T) ((-972 (-488)) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T) ((-1138) . T)) +((-3044 (((-2 (|:| |ans| |#2|) (|:| -3143 |#2|) (|:| |sol?| (-85))) (-488) |#2| |#2| (-1094) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-587 |#2|)) (-1 (-3 (-2 (|:| -2141 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) +(((-930 |#1| |#2|) (-10 -7 (-15 -3044 ((-2 (|:| |ans| |#2|) (|:| -3143 |#2|) (|:| |sol?| (-85))) (-488) |#2| |#2| (-1094) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-587 |#2|)) (-1 (-3 (-2 (|:| -2141 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-395) (-120) (-954 (-488)) (-584 (-488))) (-13 (-1119) (-27) (-366 |#1|))) (T -930)) +((-3044 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1094)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) #1="failed") *4 (-587 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2141 *4) (|:| |coeff| *4)) #1#) *4 *4)) (-4 *4 (-13 (-1119) (-27) (-366 *8))) (-4 *8 (-13 (-395) (-120) (-954 *3) (-584 *3))) (-5 *3 (-488)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3143 *4) (|:| |sol?| (-85)))) (-5 *1 (-930 *8 *4))))) +((-3045 (((-3 (-587 |#2|) #1="failed") (-488) |#2| |#2| |#2| (-1094) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-587 |#2|)) (-1 (-3 (-2 (|:| -2141 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) +(((-931 |#1| |#2|) (-10 -7 (-15 -3045 ((-3 (-587 |#2|) #1="failed") (-488) |#2| |#2| |#2| (-1094) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-587 |#2|)) (-1 (-3 (-2 (|:| -2141 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-395) (-120) (-954 (-488)) (-584 (-488))) (-13 (-1119) (-27) (-366 |#1|))) (T -931)) +((-3045 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1094)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) #1="failed") *4 (-587 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2141 *4) (|:| |coeff| *4)) #1#) *4 *4)) (-4 *4 (-13 (-1119) (-27) (-366 *8))) (-4 *8 (-13 (-395) (-120) (-954 *3) (-584 *3))) (-5 *3 (-488)) (-5 *2 (-587 *4)) (-5 *1 (-931 *8 *4))))) +((-3048 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3272 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-488)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-488) (-1 |#2| |#2|)) 39 T ELT)) (-3046 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-352 |#2|)) (|:| |c| (-352 |#2|)) (|:| -3099 |#2|)) "failed") (-352 |#2|) (-352 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3047 (((-2 (|:| |ans| (-352 |#2|)) (|:| |nosol| (-85))) (-352 |#2|) (-352 |#2|)) 76 T ELT))) +(((-932 |#1| |#2|) (-10 -7 (-15 -3046 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-352 |#2|)) (|:| |c| (-352 |#2|)) (|:| -3099 |#2|)) "failed") (-352 |#2|) (-352 |#2|) (-1 |#2| |#2|))) (-15 -3047 ((-2 (|:| |ans| (-352 |#2|)) (|:| |nosol| (-85))) (-352 |#2|) (-352 |#2|))) (-15 -3048 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3272 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-488)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-488) (-1 |#2| |#2|)))) (-13 (-314) (-120) (-954 (-488))) (-1159 |#1|)) (T -932)) +((-3048 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1159 *6)) (-4 *6 (-13 (-314) (-120) (-954 *4))) (-5 *4 (-488)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) (|:| -3272 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-932 *6 *3)))) (-3047 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-314) (-120) (-954 (-488)))) (-4 *5 (-1159 *4)) (-5 *2 (-2 (|:| |ans| (-352 *5)) (|:| |nosol| (-85)))) (-5 *1 (-932 *4 *5)) (-5 *3 (-352 *5)))) (-3046 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1159 *5)) (-4 *5 (-13 (-314) (-120) (-954 (-488)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-352 *6)) (|:| |c| (-352 *6)) (|:| -3099 *6))) (-5 *1 (-932 *5 *6)) (-5 *3 (-352 *6))))) +((-3049 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-352 |#2|)) (|:| |h| |#2|) (|:| |c1| (-352 |#2|)) (|:| |c2| (-352 |#2|)) (|:| -3099 |#2|)) #1="failed") (-352 |#2|) (-352 |#2|) (-352 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3050 (((-3 (-587 (-352 |#2|)) #1#) (-352 |#2|) (-352 |#2|) (-352 |#2|)) 34 T ELT))) +(((-933 |#1| |#2|) (-10 -7 (-15 -3049 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-352 |#2|)) (|:| |h| |#2|) (|:| |c1| (-352 |#2|)) (|:| |c2| (-352 |#2|)) (|:| -3099 |#2|)) #1="failed") (-352 |#2|) (-352 |#2|) (-352 |#2|) (-1 |#2| |#2|))) (-15 -3050 ((-3 (-587 (-352 |#2|)) #1#) (-352 |#2|) (-352 |#2|) (-352 |#2|)))) (-13 (-314) (-120) (-954 (-488))) (-1159 |#1|)) (T -933)) +((-3050 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-314) (-120) (-954 (-488)))) (-4 *5 (-1159 *4)) (-5 *2 (-587 (-352 *5))) (-5 *1 (-933 *4 *5)) (-5 *3 (-352 *5)))) (-3049 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1159 *5)) (-4 *5 (-13 (-314) (-120) (-954 (-488)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-352 *6)) (|:| |h| *6) (|:| |c1| (-352 *6)) (|:| |c2| (-352 *6)) (|:| -3099 *6))) (-5 *1 (-933 *5 *6)) (-5 *3 (-352 *6))))) +((-3051 (((-1 |#1|) (-587 (-2 (|:| -3408 |#1|) (|:| -1526 (-488))))) 34 T ELT)) (-3106 (((-1 |#1|) (-1013 |#1|)) 42 T ELT)) (-3052 (((-1 |#1|) (-1183 |#1|) (-1183 (-488)) (-488)) 31 T ELT))) +(((-934 |#1|) (-10 -7 (-15 -3106 ((-1 |#1|) (-1013 |#1|))) (-15 -3051 ((-1 |#1|) (-587 (-2 (|:| -3408 |#1|) (|:| -1526 (-488)))))) (-15 -3052 ((-1 |#1|) (-1183 |#1|) (-1183 (-488)) (-488)))) (-1017)) (T -934)) +((-3052 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1183 *6)) (-5 *4 (-1183 (-488))) (-5 *5 (-488)) (-4 *6 (-1017)) (-5 *2 (-1 *6)) (-5 *1 (-934 *6)))) (-3051 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -3408 *4) (|:| -1526 (-488))))) (-4 *4 (-1017)) (-5 *2 (-1 *4)) (-5 *1 (-934 *4)))) (-3106 (*1 *2 *3) (-12 (-5 *3 (-1013 *4)) (-4 *4 (-1017)) (-5 *2 (-1 *4)) (-5 *1 (-934 *4))))) +((-3778 (((-698) (-285 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) +(((-935 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3778 ((-698) (-285 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-314) (-1159 |#1|) (-1159 (-352 |#2|)) (-293 |#1| |#2| |#3|) (-13 (-322) (-314))) (T -935)) +((-3778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-285 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-314)) (-4 *7 (-1159 *6)) (-4 *4 (-1159 (-352 *7))) (-4 *8 (-293 *6 *7 *4)) (-4 *9 (-13 (-322) (-314))) (-5 *2 (-698)) (-5 *1 (-935 *6 *7 *4 *8 *9))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3601 (((-1053) $) 10 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-3239 (((-1053) $) 12 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-936) (-13 (-999) (-10 -8 (-15 -3601 ((-1053) $)) (-15 -3239 ((-1053) $))))) (T -936)) +((-3601 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-936)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-936))))) +((-3978 (((-181) $) 6 T ELT) (((-332) $) 9 T ELT))) +(((-937) (-113)) (T -937)) +NIL +(-13 (-557 (-181)) (-557 (-332))) +(((-557 (-181)) . T) ((-557 (-332)) . T)) +((-3140 (((-3 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) "failed") |#1| (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) 32 T ELT) (((-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) |#1| (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) (-352 (-488))) 29 T ELT)) (-3055 (((-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) |#1| (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) (-352 (-488))) 34 T ELT) (((-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) |#1| (-352 (-488))) 30 T ELT) (((-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) |#1| (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) 33 T ELT) (((-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) |#1|) 28 T ELT)) (-3054 (((-587 (-352 (-488))) (-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))))) 20 T ELT)) (-3053 (((-352 (-488)) (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) 17 T ELT))) +(((-938 |#1|) (-10 -7 (-15 -3055 ((-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) |#1|)) (-15 -3055 ((-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) |#1| (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))))) (-15 -3055 ((-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) |#1| (-352 (-488)))) (-15 -3055 ((-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) |#1| (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) (-352 (-488)))) (-15 -3140 ((-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) |#1| (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) (-352 (-488)))) (-15 -3140 ((-3 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) "failed") |#1| (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))))) (-15 -3053 ((-352 (-488)) (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))))) (-15 -3054 ((-587 (-352 (-488))) (-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))))))) (-1159 (-488))) (T -938)) +((-3054 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))))) (-5 *2 (-587 (-352 (-488)))) (-5 *1 (-938 *4)) (-4 *4 (-1159 (-488))))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) (-5 *2 (-352 (-488))) (-5 *1 (-938 *4)) (-4 *4 (-1159 (-488))))) (-3140 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) (-5 *1 (-938 *3)) (-4 *3 (-1159 (-488))))) (-3140 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) (-5 *4 (-352 (-488))) (-5 *1 (-938 *3)) (-4 *3 (-1159 (-488))))) (-3055 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-352 (-488))) (-5 *2 (-587 (-2 (|:| -3144 *5) (|:| -3143 *5)))) (-5 *1 (-938 *3)) (-4 *3 (-1159 (-488))) (-5 *4 (-2 (|:| -3144 *5) (|:| -3143 *5))))) (-3055 (*1 *2 *3 *4) (-12 (-5 *2 (-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))))) (-5 *1 (-938 *3)) (-4 *3 (-1159 (-488))) (-5 *4 (-352 (-488))))) (-3055 (*1 *2 *3 *4) (-12 (-5 *2 (-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))))) (-5 *1 (-938 *3)) (-4 *3 (-1159 (-488))) (-5 *4 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))))) (-3055 (*1 *2 *3) (-12 (-5 *2 (-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))))) (-5 *1 (-938 *3)) (-4 *3 (-1159 (-488)))))) +((-3140 (((-3 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) "failed") |#1| (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) 35 T ELT) (((-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) |#1| (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) (-352 (-488))) 32 T ELT)) (-3055 (((-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) |#1| (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) (-352 (-488))) 30 T ELT) (((-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) |#1| (-352 (-488))) 26 T ELT) (((-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) |#1| (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) 28 T ELT) (((-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) |#1|) 24 T ELT))) +(((-939 |#1|) (-10 -7 (-15 -3055 ((-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) |#1|)) (-15 -3055 ((-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) |#1| (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))))) (-15 -3055 ((-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) |#1| (-352 (-488)))) (-15 -3055 ((-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) |#1| (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) (-352 (-488)))) (-15 -3140 ((-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) |#1| (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) (-352 (-488)))) (-15 -3140 ((-3 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) "failed") |#1| (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))) (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))))) (-1159 (-352 (-488)))) (T -939)) +((-3140 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) (-5 *1 (-939 *3)) (-4 *3 (-1159 (-352 (-488)))))) (-3140 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) (-5 *4 (-352 (-488))) (-5 *1 (-939 *3)) (-4 *3 (-1159 *4)))) (-3055 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-352 (-488))) (-5 *2 (-587 (-2 (|:| -3144 *5) (|:| -3143 *5)))) (-5 *1 (-939 *3)) (-4 *3 (-1159 *5)) (-5 *4 (-2 (|:| -3144 *5) (|:| -3143 *5))))) (-3055 (*1 *2 *3 *4) (-12 (-5 *4 (-352 (-488))) (-5 *2 (-587 (-2 (|:| -3144 *4) (|:| -3143 *4)))) (-5 *1 (-939 *3)) (-4 *3 (-1159 *4)))) (-3055 (*1 *2 *3 *4) (-12 (-5 *2 (-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))))) (-5 *1 (-939 *3)) (-4 *3 (-1159 (-352 (-488)))) (-5 *4 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))))) (-3055 (*1 *2 *3) (-12 (-5 *2 (-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))))) (-5 *1 (-939 *3)) (-4 *3 (-1159 (-352 (-488))))))) +((-3579 (((-587 (-332)) (-861 (-488)) (-332)) 28 T ELT) (((-587 (-332)) (-861 (-352 (-488))) (-332)) 27 T ELT)) (-3975 (((-587 (-587 (-332))) (-587 (-861 (-488))) (-587 (-1094)) (-332)) 37 T ELT))) +(((-940) (-10 -7 (-15 -3579 ((-587 (-332)) (-861 (-352 (-488))) (-332))) (-15 -3579 ((-587 (-332)) (-861 (-488)) (-332))) (-15 -3975 ((-587 (-587 (-332))) (-587 (-861 (-488))) (-587 (-1094)) (-332))))) (T -940)) +((-3975 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 (-861 (-488)))) (-5 *4 (-587 (-1094))) (-5 *2 (-587 (-587 (-332)))) (-5 *1 (-940)) (-5 *5 (-332)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-861 (-488))) (-5 *2 (-587 (-332))) (-5 *1 (-940)) (-5 *4 (-332)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-861 (-352 (-488)))) (-5 *2 (-587 (-332))) (-5 *1 (-940)) (-5 *4 (-332))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 75 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-3043 (($ $) NIL T ELT) (($ $ (-834)) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ (-488)) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3629 (((-488) $) 70 T ELT)) (-3730 (($) NIL T CONST)) (-3189 (((-3 $ #1#) (-1089 $) (-834) (-776)) NIL T ELT) (((-3 $ #1#) (-1089 $) (-834)) 55 T ELT)) (-3163 (((-3 (-352 (-488)) #1#) $) NIL (|has| (-352 (-488)) (-954 (-352 (-488)))) ELT) (((-3 (-352 (-488)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-488) #1#) $) NIL (OR (|has| (-352 (-488)) (-954 (-488))) (|has| |#1| (-954 (-488)))) ELT)) (-3162 (((-352 (-488)) $) 17 (|has| (-352 (-488)) (-954 (-352 (-488)))) ELT) (((-352 (-488)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-488) $) NIL (OR (|has| (-352 (-488)) (-954 (-488))) (|has| |#1| (-954 (-488)))) ELT)) (-3039 (($ $ (-776)) 47 T ELT)) (-3038 (($ $ (-776)) 48 T ELT)) (-2570 (($ $ $) NIL T ELT)) (-3188 (((-352 (-488)) $ $) 21 T ELT)) (-3473 (((-3 $ #1#) $) 88 T ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-3192 (((-85) $) 66 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3017 (($ $ (-488)) NIL T ELT)) (-3193 (((-85) $) 69 T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-3040 (((-3 (-1089 $) #1#) $) 83 T ELT)) (-3042 (((-3 (-776) #1#) $) 82 T ELT)) (-3041 (((-3 (-1089 $) #1#) $) 80 T ELT)) (-3056 (((-3 (-978 $ (-1089 $)) #1#) $) 78 T ELT)) (-1899 (($ (-587 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) 89 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ (-587 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-3953 (((-776) $) 87 T ELT) (($ (-488)) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ $) 63 T ELT) (($ (-352 (-488))) NIL T ELT) (($ (-488)) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3776 (((-352 (-488)) $ $) 27 T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3190 (((-587 $) (-1089 $)) 61 T ELT) (((-587 $) (-1089 (-352 (-488)))) NIL T ELT) (((-587 $) (-1089 (-488))) NIL T ELT) (((-587 $) (-861 $)) NIL T ELT) (((-587 $) (-861 (-352 (-488)))) NIL T ELT) (((-587 $) (-861 (-488))) NIL T ELT)) (-3057 (($ (-978 $ (-1089 $)) (-776)) 46 T ELT)) (-3389 (($ $) 22 T ELT)) (-2666 (($) 32 T CONST)) (-2672 (($) 39 T CONST)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 76 T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 24 T ELT)) (-3956 (($ $ $) 37 T ELT)) (-3843 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3845 (($ $ $) 111 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ (-488) $) 71 T ELT) (($ $ (-488)) NIL T ELT) (($ (-352 (-488)) $) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT))) +(((-941 |#1|) (-13 (-929) (-357 |#1|) (-38 |#1|) (-10 -8 (-15 -3057 ($ (-978 $ (-1089 $)) (-776))) (-15 -3056 ((-3 (-978 $ (-1089 $)) "failed") $)) (-15 -3188 ((-352 (-488)) $ $)))) (-13 (-759) (-314) (-937))) (T -941)) +((-3057 (*1 *1 *2 *3) (-12 (-5 *2 (-978 (-941 *4) (-1089 (-941 *4)))) (-5 *3 (-776)) (-5 *1 (-941 *4)) (-4 *4 (-13 (-759) (-314) (-937))))) (-3056 (*1 *2 *1) (|partial| -12 (-5 *2 (-978 (-941 *3) (-1089 (-941 *3)))) (-5 *1 (-941 *3)) (-4 *3 (-13 (-759) (-314) (-937))))) (-3188 (*1 *2 *1 *1) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-941 *3)) (-4 *3 (-13 (-759) (-314) (-937)))))) +((-3058 (((-2 (|:| -3272 |#2|) (|:| -2519 (-587 |#1|))) |#2| (-587 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) +(((-942 |#1| |#2|) (-10 -7 (-15 -3058 (|#2| |#2| |#1|)) (-15 -3058 ((-2 (|:| -3272 |#2|) (|:| -2519 (-587 |#1|))) |#2| (-587 |#1|)))) (-314) (-604 |#1|)) (T -942)) +((-3058 (*1 *2 *3 *4) (-12 (-4 *5 (-314)) (-5 *2 (-2 (|:| -3272 *3) (|:| -2519 (-587 *5)))) (-5 *1 (-942 *5 *3)) (-5 *4 (-587 *5)) (-4 *3 (-604 *5)))) (-3058 (*1 *2 *2 *3) (-12 (-4 *3 (-314)) (-5 *1 (-942 *3 *2)) (-4 *2 (-604 *3))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3059 ((|#1| $ |#1|) 12 T ELT)) (-3061 (($ |#1|) 10 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3060 ((|#1| $) 11 T ELT)) (-3953 (((-776) $) 17 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 9 T ELT))) +(((-943 |#1|) (-13 (-1017) (-10 -8 (-15 -3061 ($ |#1|)) (-15 -3060 (|#1| $)) (-15 -3059 (|#1| $ |#1|)) (-15 -3062 ((-85) $ $)))) (-1133)) (T -943)) +((-3062 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-943 *3)) (-4 *3 (-1133)))) (-3061 (*1 *1 *2) (-12 (-5 *1 (-943 *2)) (-4 *2 (-1133)))) (-3060 (*1 *2 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-1133)))) (-3059 (*1 *2 *1 *2) (-12 (-5 *1 (-943 *2)) (-4 *2 (-1133))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3687 (((-587 (-2 (|:| -3868 $) (|:| -1706 (-587 |#4|)))) (-587 |#4|)) NIL T ELT)) (-3688 (((-587 $) (-587 |#4|)) 113 T ELT) (((-587 $) (-587 |#4|) (-85)) 114 T ELT) (((-587 $) (-587 |#4|) (-85) (-85)) 112 T ELT) (((-587 $) (-587 |#4|) (-85) (-85) (-85) (-85)) 115 T ELT)) (-3087 (((-587 |#3|) $) NIL T ELT)) (-2914 (((-85) $) NIL T ELT)) (-2905 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3699 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3694 ((|#4| |#4| $) NIL T ELT)) (-3781 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 $))) |#4| $) 107 T ELT)) (-2915 (((-2 (|:| |under| $) (|:| -3136 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3716 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-320 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 62 T ELT)) (-3730 (($) NIL T CONST)) (-2910 (((-85) $) 28 (|has| |#1| (-499)) ELT)) (-2912 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-2911 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-2913 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3695 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2906 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-499)) ELT)) (-2907 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-499)) ELT)) (-3163 (((-3 $ #1#) (-587 |#4|)) NIL T ELT)) (-3162 (($ (-587 |#4|)) NIL T ELT)) (-3805 (((-3 $ #1#) $) 44 T ELT)) (-3691 ((|#4| |#4| $) 65 T ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 |#4|)) (|has| |#4| (-72))) ELT)) (-3412 (($ |#4| $) NIL (-12 (|has| $ (-320 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-320 |#4|)) ELT)) (-2908 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 80 (|has| |#1| (-499)) ELT)) (-3700 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3848 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3702 (((-2 (|:| -3868 (-587 |#4|)) (|:| -1706 (-587 |#4|))) $) NIL T ELT)) (-3203 (((-85) |#4| $) NIL T ELT)) (-3201 (((-85) |#4| $) NIL T ELT)) (-3204 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3444 (((-2 (|:| |val| (-587 |#4|)) (|:| |towers| (-587 $))) (-587 |#4|) (-85) (-85)) 128 T ELT)) (-3701 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3186 ((|#3| $) 37 T ELT)) (-2614 (((-587 |#4|) $) 18 T ELT)) (-3251 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3332 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3849 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2920 (((-587 |#3|) $) NIL T ELT)) (-2919 (((-85) |#3| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3197 (((-3 |#4| (-587 $)) |#4| |#4| $) NIL T ELT)) (-3196 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 $))) |#4| |#4| $) 105 T ELT)) (-3804 (((-3 |#4| #1#) $) 41 T ELT)) (-3198 (((-587 $) |#4| $) 88 T ELT)) (-3200 (((-3 (-85) (-587 $)) |#4| $) NIL T ELT)) (-3199 (((-587 (-2 (|:| |val| (-85)) (|:| -1604 $))) |#4| $) 98 T ELT) (((-85) |#4| $) 60 T ELT)) (-3244 (((-587 $) |#4| $) 110 T ELT) (((-587 $) (-587 |#4|) $) NIL T ELT) (((-587 $) (-587 |#4|) (-587 $)) 111 T ELT) (((-587 $) |#4| (-587 $)) NIL T ELT)) (-3445 (((-587 $) (-587 |#4|) (-85) (-85) (-85)) 123 T ELT)) (-3446 (($ |#4| $) 77 T ELT) (($ (-587 |#4|) $) 78 T ELT) (((-587 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 74 T ELT)) (-3703 (((-587 |#4|) $) NIL T ELT)) (-3697 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3692 ((|#4| |#4| $) NIL T ELT)) (-3705 (((-85) $ $) NIL T ELT)) (-2909 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-499)) ELT)) (-3698 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3693 ((|#4| |#4| $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3807 (((-3 |#4| #1#) $) 39 T ELT)) (-1734 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3685 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3775 (($ $ |#4|) NIL T ELT) (((-587 $) |#4| $) 90 T ELT) (((-587 $) |#4| (-587 $)) NIL T ELT) (((-587 $) (-587 |#4|) $) NIL T ELT) (((-587 $) (-587 |#4|) (-587 $)) 84 T ELT)) (-1736 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3774 (($ $ (-587 |#4|) (-587 |#4|)) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-251 |#4|)) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-587 (-251 |#4|))) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) 17 T ELT)) (-3571 (($) 14 T ELT)) (-3955 (((-698) $) NIL T ELT)) (-1735 (((-698) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-698) (-1 (-85) |#4|) $) NIL T ELT)) (-3406 (($ $) 13 T ELT)) (-3978 (((-477) $) NIL (|has| |#4| (-557 (-477))) ELT)) (-3536 (($ (-587 |#4|)) 21 T ELT)) (-2916 (($ $ |#3|) 48 T ELT)) (-2918 (($ $ |#3|) 50 T ELT)) (-3690 (($ $) NIL T ELT)) (-2917 (($ $ |#3|) NIL T ELT)) (-3953 (((-776) $) 34 T ELT) (((-587 |#4|) $) 45 T ELT)) (-3684 (((-698) $) NIL (|has| |#3| (-322)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3704 (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#4|))) #1#) (-587 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#4|))) #1#) (-587 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3696 (((-85) $ (-1 (-85) |#4| (-587 |#4|))) NIL T ELT)) (-3195 (((-587 $) |#4| $) 87 T ELT) (((-587 $) |#4| (-587 $)) NIL T ELT) (((-587 $) (-587 |#4|) $) NIL T ELT) (((-587 $) (-587 |#4|) (-587 $)) NIL T ELT)) (-1737 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3686 (((-587 |#3|) $) NIL T ELT)) (-3202 (((-85) |#4| $) NIL T ELT)) (-3940 (((-85) |#3| $) 61 T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-944 |#1| |#2| |#3| |#4|) (-13 (-987 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3446 ((-587 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3688 ((-587 $) (-587 |#4|) (-85) (-85))) (-15 -3688 ((-587 $) (-587 |#4|) (-85) (-85) (-85) (-85))) (-15 -3445 ((-587 $) (-587 |#4|) (-85) (-85) (-85))) (-15 -3444 ((-2 (|:| |val| (-587 |#4|)) (|:| |towers| (-587 $))) (-587 |#4|) (-85) (-85))))) (-395) (-721) (-760) (-981 |#1| |#2| |#3|)) (T -944)) +((-3446 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-587 (-944 *5 *6 *7 *3))) (-5 *1 (-944 *5 *6 *7 *3)) (-4 *3 (-981 *5 *6 *7)))) (-3688 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-587 (-944 *5 *6 *7 *8))) (-5 *1 (-944 *5 *6 *7 *8)))) (-3688 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-587 (-944 *5 *6 *7 *8))) (-5 *1 (-944 *5 *6 *7 *8)))) (-3445 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-587 (-944 *5 *6 *7 *8))) (-5 *1 (-944 *5 *6 *7 *8)))) (-3444 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *8 (-981 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-587 *8)) (|:| |towers| (-587 (-944 *5 *6 *7 *8))))) (-5 *1 (-944 *5 *6 *7 *8)) (-5 *3 (-587 *8))))) +((-3063 (((-587 (-2 (|:| |radval| (-267 (-488))) (|:| |radmult| (-488)) (|:| |radvect| (-587 (-634 (-267 (-488))))))) (-634 (-352 (-861 (-488))))) 67 T ELT)) (-3064 (((-587 (-634 (-267 (-488)))) (-267 (-488)) (-634 (-352 (-861 (-488))))) 52 T ELT)) (-3065 (((-587 (-267 (-488))) (-634 (-352 (-861 (-488))))) 45 T ELT)) (-3069 (((-587 (-634 (-267 (-488)))) (-634 (-352 (-861 (-488))))) 85 T ELT)) (-3067 (((-634 (-267 (-488))) (-634 (-267 (-488)))) 38 T ELT)) (-3068 (((-587 (-634 (-267 (-488)))) (-587 (-634 (-267 (-488))))) 74 T ELT)) (-3066 (((-3 (-634 (-267 (-488))) "failed") (-634 (-352 (-861 (-488))))) 82 T ELT))) +(((-945) (-10 -7 (-15 -3063 ((-587 (-2 (|:| |radval| (-267 (-488))) (|:| |radmult| (-488)) (|:| |radvect| (-587 (-634 (-267 (-488))))))) (-634 (-352 (-861 (-488)))))) (-15 -3064 ((-587 (-634 (-267 (-488)))) (-267 (-488)) (-634 (-352 (-861 (-488)))))) (-15 -3065 ((-587 (-267 (-488))) (-634 (-352 (-861 (-488)))))) (-15 -3066 ((-3 (-634 (-267 (-488))) "failed") (-634 (-352 (-861 (-488)))))) (-15 -3067 ((-634 (-267 (-488))) (-634 (-267 (-488))))) (-15 -3068 ((-587 (-634 (-267 (-488)))) (-587 (-634 (-267 (-488)))))) (-15 -3069 ((-587 (-634 (-267 (-488)))) (-634 (-352 (-861 (-488)))))))) (T -945)) +((-3069 (*1 *2 *3) (-12 (-5 *3 (-634 (-352 (-861 (-488))))) (-5 *2 (-587 (-634 (-267 (-488))))) (-5 *1 (-945)))) (-3068 (*1 *2 *2) (-12 (-5 *2 (-587 (-634 (-267 (-488))))) (-5 *1 (-945)))) (-3067 (*1 *2 *2) (-12 (-5 *2 (-634 (-267 (-488)))) (-5 *1 (-945)))) (-3066 (*1 *2 *3) (|partial| -12 (-5 *3 (-634 (-352 (-861 (-488))))) (-5 *2 (-634 (-267 (-488)))) (-5 *1 (-945)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-634 (-352 (-861 (-488))))) (-5 *2 (-587 (-267 (-488)))) (-5 *1 (-945)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *4 (-634 (-352 (-861 (-488))))) (-5 *2 (-587 (-634 (-267 (-488))))) (-5 *1 (-945)) (-5 *3 (-267 (-488))))) (-3063 (*1 *2 *3) (-12 (-5 *3 (-634 (-352 (-861 (-488))))) (-5 *2 (-587 (-2 (|:| |radval| (-267 (-488))) (|:| |radmult| (-488)) (|:| |radvect| (-587 (-634 (-267 (-488)))))))) (-5 *1 (-945))))) +((-3073 (((-587 (-634 |#1|)) (-587 (-634 |#1|))) 69 T ELT) (((-634 |#1|) (-634 |#1|)) 68 T ELT) (((-587 (-634 |#1|)) (-587 (-634 |#1|)) (-587 (-634 |#1|))) 67 T ELT) (((-634 |#1|) (-634 |#1|) (-634 |#1|)) 64 T ELT)) (-3072 (((-587 (-634 |#1|)) (-587 (-634 |#1|)) (-834)) 62 T ELT) (((-634 |#1|) (-634 |#1|) (-834)) 61 T ELT)) (-3074 (((-587 (-634 (-488))) (-587 (-587 (-488)))) 80 T ELT) (((-587 (-634 (-488))) (-587 (-817 (-488))) (-488)) 79 T ELT) (((-634 (-488)) (-587 (-488))) 76 T ELT) (((-634 (-488)) (-817 (-488)) (-488)) 74 T ELT)) (-3071 (((-634 (-861 |#1|)) (-698)) 94 T ELT)) (-3070 (((-587 (-634 |#1|)) (-587 (-634 |#1|)) (-834)) 48 (|has| |#1| (-6 (-4003 #1="*"))) ELT) (((-634 |#1|) (-634 |#1|) (-834)) 46 (|has| |#1| (-6 (-4003 #1#))) ELT))) +(((-946 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4003 #1="*"))) (-15 -3070 ((-634 |#1|) (-634 |#1|) (-834))) |%noBranch|) (IF (|has| |#1| (-6 (-4003 #1#))) (-15 -3070 ((-587 (-634 |#1|)) (-587 (-634 |#1|)) (-834))) |%noBranch|) (-15 -3071 ((-634 (-861 |#1|)) (-698))) (-15 -3072 ((-634 |#1|) (-634 |#1|) (-834))) (-15 -3072 ((-587 (-634 |#1|)) (-587 (-634 |#1|)) (-834))) (-15 -3073 ((-634 |#1|) (-634 |#1|) (-634 |#1|))) (-15 -3073 ((-587 (-634 |#1|)) (-587 (-634 |#1|)) (-587 (-634 |#1|)))) (-15 -3073 ((-634 |#1|) (-634 |#1|))) (-15 -3073 ((-587 (-634 |#1|)) (-587 (-634 |#1|)))) (-15 -3074 ((-634 (-488)) (-817 (-488)) (-488))) (-15 -3074 ((-634 (-488)) (-587 (-488)))) (-15 -3074 ((-587 (-634 (-488))) (-587 (-817 (-488))) (-488))) (-15 -3074 ((-587 (-634 (-488))) (-587 (-587 (-488)))))) (-965)) (T -946)) +((-3074 (*1 *2 *3) (-12 (-5 *3 (-587 (-587 (-488)))) (-5 *2 (-587 (-634 (-488)))) (-5 *1 (-946 *4)) (-4 *4 (-965)))) (-3074 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-817 (-488)))) (-5 *4 (-488)) (-5 *2 (-587 (-634 *4))) (-5 *1 (-946 *5)) (-4 *5 (-965)))) (-3074 (*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-634 (-488))) (-5 *1 (-946 *4)) (-4 *4 (-965)))) (-3074 (*1 *2 *3 *4) (-12 (-5 *3 (-817 (-488))) (-5 *4 (-488)) (-5 *2 (-634 *4)) (-5 *1 (-946 *5)) (-4 *5 (-965)))) (-3073 (*1 *2 *2) (-12 (-5 *2 (-587 (-634 *3))) (-4 *3 (-965)) (-5 *1 (-946 *3)))) (-3073 (*1 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-965)) (-5 *1 (-946 *3)))) (-3073 (*1 *2 *2 *2) (-12 (-5 *2 (-587 (-634 *3))) (-4 *3 (-965)) (-5 *1 (-946 *3)))) (-3073 (*1 *2 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-965)) (-5 *1 (-946 *3)))) (-3072 (*1 *2 *2 *3) (-12 (-5 *2 (-587 (-634 *4))) (-5 *3 (-834)) (-4 *4 (-965)) (-5 *1 (-946 *4)))) (-3072 (*1 *2 *2 *3) (-12 (-5 *2 (-634 *4)) (-5 *3 (-834)) (-4 *4 (-965)) (-5 *1 (-946 *4)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-634 (-861 *4))) (-5 *1 (-946 *4)) (-4 *4 (-965)))) (-3070 (*1 *2 *2 *3) (-12 (-5 *2 (-587 (-634 *4))) (-5 *3 (-834)) (|has| *4 (-6 (-4003 #1="*"))) (-4 *4 (-965)) (-5 *1 (-946 *4)))) (-3070 (*1 *2 *2 *3) (-12 (-5 *2 (-634 *4)) (-5 *3 (-834)) (|has| *4 (-6 (-4003 #1#))) (-4 *4 (-965)) (-5 *1 (-946 *4))))) +((-3078 (((-634 |#1|) (-587 (-634 |#1|)) (-1183 |#1|)) 69 (|has| |#1| (-260)) ELT)) (-3424 (((-587 (-587 (-634 |#1|))) (-587 (-634 |#1|)) (-1183 (-1183 |#1|))) 107 (|has| |#1| (-314)) ELT) (((-587 (-587 (-634 |#1|))) (-587 (-634 |#1|)) (-1183 |#1|)) 104 (|has| |#1| (-314)) ELT)) (-3082 (((-1183 |#1|) (-587 (-1183 |#1|)) (-488)) 113 (-12 (|has| |#1| (-314)) (|has| |#1| (-322))) ELT)) (-3081 (((-587 (-587 (-634 |#1|))) (-587 (-634 |#1|)) (-834)) 119 (-12 (|has| |#1| (-314)) (|has| |#1| (-322))) ELT) (((-587 (-587 (-634 |#1|))) (-587 (-634 |#1|)) (-85)) 118 (-12 (|has| |#1| (-314)) (|has| |#1| (-322))) ELT) (((-587 (-587 (-634 |#1|))) (-587 (-634 |#1|))) 117 (-12 (|has| |#1| (-314)) (|has| |#1| (-322))) ELT) (((-587 (-587 (-634 |#1|))) (-587 (-634 |#1|)) (-85) (-488) (-488)) 116 (-12 (|has| |#1| (-314)) (|has| |#1| (-322))) ELT)) (-3080 (((-85) (-587 (-634 |#1|))) 101 (|has| |#1| (-314)) ELT) (((-85) (-587 (-634 |#1|)) (-488)) 100 (|has| |#1| (-314)) ELT)) (-3077 (((-1183 (-1183 |#1|)) (-587 (-634 |#1|)) (-1183 |#1|)) 66 (|has| |#1| (-260)) ELT)) (-3076 (((-634 |#1|) (-587 (-634 |#1|)) (-634 |#1|)) 46 T ELT)) (-3075 (((-634 |#1|) (-1183 (-1183 |#1|))) 39 T ELT)) (-3079 (((-634 |#1|) (-587 (-634 |#1|)) (-587 (-634 |#1|)) (-488)) 93 (|has| |#1| (-314)) ELT) (((-634 |#1|) (-587 (-634 |#1|)) (-587 (-634 |#1|))) 92 (|has| |#1| (-314)) ELT) (((-634 |#1|) (-587 (-634 |#1|)) (-587 (-634 |#1|)) (-85) (-488)) 91 (|has| |#1| (-314)) ELT))) +(((-947 |#1|) (-10 -7 (-15 -3075 ((-634 |#1|) (-1183 (-1183 |#1|)))) (-15 -3076 ((-634 |#1|) (-587 (-634 |#1|)) (-634 |#1|))) (IF (|has| |#1| (-260)) (PROGN (-15 -3077 ((-1183 (-1183 |#1|)) (-587 (-634 |#1|)) (-1183 |#1|))) (-15 -3078 ((-634 |#1|) (-587 (-634 |#1|)) (-1183 |#1|)))) |%noBranch|) (IF (|has| |#1| (-314)) (PROGN (-15 -3079 ((-634 |#1|) (-587 (-634 |#1|)) (-587 (-634 |#1|)) (-85) (-488))) (-15 -3079 ((-634 |#1|) (-587 (-634 |#1|)) (-587 (-634 |#1|)))) (-15 -3079 ((-634 |#1|) (-587 (-634 |#1|)) (-587 (-634 |#1|)) (-488))) (-15 -3080 ((-85) (-587 (-634 |#1|)) (-488))) (-15 -3080 ((-85) (-587 (-634 |#1|)))) (-15 -3424 ((-587 (-587 (-634 |#1|))) (-587 (-634 |#1|)) (-1183 |#1|))) (-15 -3424 ((-587 (-587 (-634 |#1|))) (-587 (-634 |#1|)) (-1183 (-1183 |#1|))))) |%noBranch|) (IF (|has| |#1| (-322)) (IF (|has| |#1| (-314)) (PROGN (-15 -3081 ((-587 (-587 (-634 |#1|))) (-587 (-634 |#1|)) (-85) (-488) (-488))) (-15 -3081 ((-587 (-587 (-634 |#1|))) (-587 (-634 |#1|)))) (-15 -3081 ((-587 (-587 (-634 |#1|))) (-587 (-634 |#1|)) (-85))) (-15 -3081 ((-587 (-587 (-634 |#1|))) (-587 (-634 |#1|)) (-834))) (-15 -3082 ((-1183 |#1|) (-587 (-1183 |#1|)) (-488)))) |%noBranch|) |%noBranch|)) (-965)) (T -947)) +((-3082 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-1183 *5))) (-5 *4 (-488)) (-5 *2 (-1183 *5)) (-5 *1 (-947 *5)) (-4 *5 (-314)) (-4 *5 (-322)) (-4 *5 (-965)))) (-3081 (*1 *2 *3 *4) (-12 (-5 *4 (-834)) (-4 *5 (-314)) (-4 *5 (-322)) (-4 *5 (-965)) (-5 *2 (-587 (-587 (-634 *5)))) (-5 *1 (-947 *5)) (-5 *3 (-587 (-634 *5))))) (-3081 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-314)) (-4 *5 (-322)) (-4 *5 (-965)) (-5 *2 (-587 (-587 (-634 *5)))) (-5 *1 (-947 *5)) (-5 *3 (-587 (-634 *5))))) (-3081 (*1 *2 *3) (-12 (-4 *4 (-314)) (-4 *4 (-322)) (-4 *4 (-965)) (-5 *2 (-587 (-587 (-634 *4)))) (-5 *1 (-947 *4)) (-5 *3 (-587 (-634 *4))))) (-3081 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-85)) (-5 *5 (-488)) (-4 *6 (-314)) (-4 *6 (-322)) (-4 *6 (-965)) (-5 *2 (-587 (-587 (-634 *6)))) (-5 *1 (-947 *6)) (-5 *3 (-587 (-634 *6))))) (-3424 (*1 *2 *3 *4) (-12 (-5 *4 (-1183 (-1183 *5))) (-4 *5 (-314)) (-4 *5 (-965)) (-5 *2 (-587 (-587 (-634 *5)))) (-5 *1 (-947 *5)) (-5 *3 (-587 (-634 *5))))) (-3424 (*1 *2 *3 *4) (-12 (-5 *4 (-1183 *5)) (-4 *5 (-314)) (-4 *5 (-965)) (-5 *2 (-587 (-587 (-634 *5)))) (-5 *1 (-947 *5)) (-5 *3 (-587 (-634 *5))))) (-3080 (*1 *2 *3) (-12 (-5 *3 (-587 (-634 *4))) (-4 *4 (-314)) (-4 *4 (-965)) (-5 *2 (-85)) (-5 *1 (-947 *4)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-634 *5))) (-5 *4 (-488)) (-4 *5 (-314)) (-4 *5 (-965)) (-5 *2 (-85)) (-5 *1 (-947 *5)))) (-3079 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-587 (-634 *5))) (-5 *4 (-488)) (-5 *2 (-634 *5)) (-5 *1 (-947 *5)) (-4 *5 (-314)) (-4 *5 (-965)))) (-3079 (*1 *2 *3 *3) (-12 (-5 *3 (-587 (-634 *4))) (-5 *2 (-634 *4)) (-5 *1 (-947 *4)) (-4 *4 (-314)) (-4 *4 (-965)))) (-3079 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-587 (-634 *6))) (-5 *4 (-85)) (-5 *5 (-488)) (-5 *2 (-634 *6)) (-5 *1 (-947 *6)) (-4 *6 (-314)) (-4 *6 (-965)))) (-3078 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-634 *5))) (-5 *4 (-1183 *5)) (-4 *5 (-260)) (-4 *5 (-965)) (-5 *2 (-634 *5)) (-5 *1 (-947 *5)))) (-3077 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-634 *5))) (-4 *5 (-260)) (-4 *5 (-965)) (-5 *2 (-1183 (-1183 *5))) (-5 *1 (-947 *5)) (-5 *4 (-1183 *5)))) (-3076 (*1 *2 *3 *2) (-12 (-5 *3 (-587 (-634 *4))) (-5 *2 (-634 *4)) (-4 *4 (-965)) (-5 *1 (-947 *4)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-1183 (-1183 *4))) (-4 *4 (-965)) (-5 *2 (-634 *4)) (-5 *1 (-947 *4))))) +((-3083 ((|#1| (-834) |#1|) 18 T ELT))) +(((-948 |#1|) (-10 -7 (-15 -3083 (|#1| (-834) |#1|))) (-13 (-1017) (-10 -8 (-15 -3845 ($ $ $))))) (T -948)) +((-3083 (*1 *2 *3 *2) (-12 (-5 *3 (-834)) (-5 *1 (-948 *2)) (-4 *2 (-13 (-1017) (-10 -8 (-15 -3845 ($ $ $)))))))) +((-3084 ((|#1| |#1| (-834)) 18 T ELT))) +(((-949 |#1|) (-10 -7 (-15 -3084 (|#1| |#1| (-834)))) (-13 (-1017) (-10 -8 (-15 * ($ $ $))))) (T -949)) +((-3084 (*1 *2 *2 *3) (-12 (-5 *3 (-834)) (-5 *1 (-949 *2)) (-4 *2 (-13 (-1017) (-10 -8 (-15 * ($ $ $)))))))) +((-3953 ((|#1| (-264)) 11 T ELT) (((-1189) |#1|) 9 T ELT))) +(((-950 |#1|) (-10 -7 (-15 -3953 ((-1189) |#1|)) (-15 -3953 (|#1| (-264)))) (-1133)) (T -950)) +((-3953 (*1 *2 *3) (-12 (-5 *3 (-264)) (-5 *1 (-950 *2)) (-4 *2 (-1133)))) (-3953 (*1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *1 (-950 *3)) (-4 *3 (-1133))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3848 (($ |#4|) 24 T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3085 ((|#4| $) 26 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 45 T ELT) (($ (-488)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3132 (((-698)) 42 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 21 T CONST)) (-2672 (($) 22 T CONST)) (-3062 (((-85) $ $) 39 T ELT)) (-3843 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 28 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT))) +(((-951 |#1| |#2| |#3| |#4| |#5|) (-13 (-148) (-38 |#1|) (-10 -8 (-15 -3848 ($ |#4|)) (-15 -3953 ($ |#4|)) (-15 -3085 (|#4| $)))) (-314) (-721) (-760) (-865 |#1| |#2| |#3|) (-587 |#4|)) (T -951)) +((-3848 (*1 *1 *2) (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-951 *3 *4 *5 *2 *6)) (-4 *2 (-865 *3 *4 *5)) (-14 *6 (-587 *2)))) (-3953 (*1 *1 *2) (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-951 *3 *4 *5 *2 *6)) (-4 *2 (-865 *3 *4 *5)) (-14 *6 (-587 *2)))) (-3085 (*1 *2 *1) (-12 (-4 *2 (-865 *3 *4 *5)) (-5 *1 (-951 *3 *4 *5 *2 *6)) (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-14 *6 (-587 *2))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3212 (((-1053) $) 11 T ELT)) (-3953 (((-776) $) 17 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-952) (-13 (-999) (-10 -8 (-15 -3212 ((-1053) $))))) (T -952)) +((-3212 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-952))))) +((-3162 ((|#2| $) 10 T ELT))) +(((-953 |#1| |#2|) (-10 -7 (-15 -3162 (|#2| |#1|))) (-954 |#2|) (-1133)) (T -953)) +NIL +((-3163 (((-3 |#1| "failed") $) 9 T ELT)) (-3162 ((|#1| $) 8 T ELT)) (-3953 (($ |#1|) 6 T ELT))) +(((-954 |#1|) (-113) (-1133)) (T -954)) +((-3163 (*1 *2 *1) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1133)))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-954 *2)) (-4 *2 (-1133))))) +(-13 (-559 |t#1|) (-10 -8 (-15 -3163 ((-3 |t#1| "failed") $)) (-15 -3162 (|t#1| $)))) (((-559 |#1|) . T)) -((-3739 (($ |#1| |#1|) 8 T ELT)) (-3846 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3232 ((|#1| $) 11 T ELT)) (-3234 ((|#1| $) 13 T ELT)) (-3230 (((-486) $) 9 T ELT)) (-3231 ((|#1| $) 10 T ELT)) (-3233 ((|#1| $) 12 T ELT)) (-3966 ((|#2| (-585 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3975 (($ |#1|) 6 T ELT)) (-3740 (($ |#1| |#1|) 15 T ELT)) (-3235 (($ $ (-486)) 14 T ELT))) -(((-1009 |#1| |#2|) (-113) (-757) (-1066 |t#1|)) (T -1009)) -((-3966 (*1 *2 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-757)) (-4 *2 (-1066 *4)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *2)) (-4 *3 (-757)) (-4 *2 (-1066 *3)))) (-3846 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-757)) (-4 *2 (-1066 *4))))) -(-13 (-1008 |t#1|) (-10 -8 (-15 -3966 (|t#2| (-585 $))) (-15 -3966 (|t#2| $)) (-15 -3846 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-559 |#1|) . T) ((-1008 |#1|) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3801 (((-1051) $) 14 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 20 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-3236 (((-585 (-1051)) $) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-1010) (-13 (-997) (-10 -8 (-15 -3236 ((-585 (-1051)) $)) (-15 -3801 ((-1051) $))))) (T -1010)) -((-3236 (*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-1010)))) (-3801 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1010))))) -((-2571 (((-85) $ $) NIL T ELT)) (-1807 (($) NIL (|has| |#1| (-320)) ELT)) (-3237 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3239 (($ $ $) 81 T ELT)) (-3238 (((-85) $ $) 83 T ELT)) (-3139 (((-696)) NIL (|has| |#1| (-320)) ELT)) (-3242 (($ (-585 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) 75 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 T ELT)) (-2997 (($) NIL (|has| |#1| (-320)) ELT)) (-3244 (((-85) $ $) NIL T ELT)) (-2534 ((|#1| $) 56 (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) 20 T ELT)) (-3248 (((-85) |#1| $) 74 (|has| |#1| (-72)) ELT)) (-2860 ((|#1| $) 54 (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-320)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3241 (($ $ $) 79 T ELT)) (-1276 ((|#1| $) 26 T ELT)) (-3612 (($ |#1| $) 70 T ELT)) (-2402 (($ (-832)) NIL (|has| |#1| (-320)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 32 T ELT)) (-1277 ((|#1| $) 28 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 22 T ELT)) (-3568 (($) 12 T ELT)) (-3240 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1467 (($) NIL T ELT) (($ (-585 |#1|)) NIL T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) 17 T ELT)) (-3975 (((-475) $) 51 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 63 T ELT)) (-1808 (($ $) NIL (|has| |#1| (-320)) ELT)) (-3950 (((-774) $) NIL T ELT)) (-1809 (((-696) $) NIL T ELT)) (-3243 (($ (-585 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-1278 (($ (-585 |#1|)) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) 53 T ELT)) (-3961 (((-696) $) 11 T ELT))) -(((-1011 |#1|) (-369 |#1|) (-1015)) (T -1011)) -NIL -((-3237 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3239 (($ $ $) 10 T ELT)) (-3240 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) -(((-1012 |#1| |#2|) (-10 -7 (-15 -3237 (|#1| |#2| |#1|)) (-15 -3237 (|#1| |#1| |#2|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -3239 (|#1| |#1| |#1|)) (-15 -3240 (|#1| |#1| |#2|)) (-15 -3240 (|#1| |#1| |#1|))) (-1013 |#2|) (-1015)) (T -1012)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3237 (($ $ $) 23 T ELT) (($ $ |#1|) 22 T ELT) (($ |#1| $) 21 T ELT)) (-3239 (($ $ $) 25 T ELT)) (-3238 (((-85) $ $) 24 T ELT)) (-3242 (($) 30 T ELT) (($ (-585 |#1|)) 29 T ELT)) (-3713 (($ (-1 (-85) |#1|) $) 46 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 38 T CONST)) (-1355 (($ $) 48 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3409 (($ |#1| $) 47 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 45 (|has| $ (-318 |#1|)) ELT)) (-3244 (((-85) $ $) 33 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3241 (($ $ $) 28 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3771 (($ $ (-585 |#1|) (-585 |#1|)) 43 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 42 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 41 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 (-249 |#1|))) 40 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 34 T ELT)) (-3406 (((-85) $) 37 T ELT)) (-3568 (($) 36 T ELT)) (-3240 (($ $ $) 27 T ELT) (($ $ |#1|) 26 T ELT)) (-3403 (($ $) 35 T ELT)) (-3975 (((-475) $) 49 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 44 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-3243 (($) 32 T ELT) (($ (-585 |#1|)) 31 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) -(((-1013 |#1|) (-113) (-1015)) (T -1013)) -((-3244 (*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1015)) (-5 *2 (-85)))) (-3243 (*1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3243 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-1013 *3)))) (-3242 (*1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3242 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-1013 *3)))) (-3241 (*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3240 (*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3240 (*1 *1 *1 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3239 (*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3238 (*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1015)) (-5 *2 (-85)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3237 (*1 *1 *1 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3237 (*1 *1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) -(-13 (-1015) (-124 |t#1|) (-10 -8 (-6 -3988) (-15 -3244 ((-85) $ $)) (-15 -3243 ($)) (-15 -3243 ($ (-585 |t#1|))) (-15 -3242 ($)) (-15 -3242 ($ (-585 |t#1|))) (-15 -3241 ($ $ $)) (-15 -3240 ($ $ $)) (-15 -3240 ($ $ |t#1|)) (-15 -3239 ($ $ $)) (-15 -3238 ((-85) $ $)) (-15 -3237 ($ $ $)) (-15 -3237 ($ $ |t#1|)) (-15 -3237 ($ |t#1| $)))) -(((-34) . T) ((-72) . T) ((-554 (-774)) . T) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-3245 (((-1075) $) 10 T ELT)) (-3246 (((-1035) $) 8 T ELT))) -(((-1014 |#1|) (-10 -7 (-15 -3245 ((-1075) |#1|)) (-15 -3246 ((-1035) |#1|))) (-1015)) (T -1014)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) -(((-1015) (-113)) (T -1015)) -((-3246 (*1 *2 *1) (-12 (-4 *1 (-1015)) (-5 *2 (-1035)))) (-3245 (*1 *2 *1) (-12 (-4 *1 (-1015)) (-5 *2 (-1075))))) -(-13 (-72) (-554 (-774)) (-10 -8 (-15 -3246 ((-1035) $)) (-15 -3245 ((-1075) $)))) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) 36 T ELT)) (-3250 (($ (-585 (-832))) 70 T ELT)) (-3252 (((-3 $ #1="failed") $ (-832) (-832)) 81 T ELT)) (-2997 (($) 40 T ELT)) (-3248 (((-85) (-832) $) 42 T ELT)) (-2012 (((-832) $) 64 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) 39 T ELT)) (-3253 (((-3 $ #1#) $ (-832)) 77 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3249 (((-1181 $)) 47 T ELT)) (-3251 (((-585 (-832)) $) 27 T ELT)) (-3247 (((-696) $ (-832) (-832)) 78 T ELT)) (-3950 (((-774) $) 32 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 24 T ELT))) -(((-1016 |#1| |#2|) (-13 (-320) (-10 -8 (-15 -3253 ((-3 $ #1="failed") $ (-832))) (-15 -3252 ((-3 $ #1#) $ (-832) (-832))) (-15 -3251 ((-585 (-832)) $)) (-15 -3250 ($ (-585 (-832)))) (-15 -3249 ((-1181 $))) (-15 -3248 ((-85) (-832) $)) (-15 -3247 ((-696) $ (-832) (-832))))) (-832) (-832)) (T -1016)) -((-3253 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-832)) (-5 *1 (-1016 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3252 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-832)) (-5 *1 (-1016 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3251 (*1 *2 *1) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1016 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) (-3250 (*1 *1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1016 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) (-3249 (*1 *2) (-12 (-5 *2 (-1181 (-1016 *3 *4))) (-5 *1 (-1016 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) (-3248 (*1 *2 *3 *1) (-12 (-5 *3 (-832)) (-5 *2 (-85)) (-5 *1 (-1016 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3247 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-696)) (-5 *1 (-1016 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3259 (((-1092) $) NIL T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3538 (((-1075) $) NIL T ELT)) (-3266 (((-85) $) NIL T ELT)) (-3268 (((-85) $) NIL T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3258 (((-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3257 (((-179) $) NIL T ELT)) (-3256 (((-774) $) NIL T ELT)) (-3269 (((-85) $ $) NIL T ELT)) (-3803 (($ $ (-486)) NIL T ELT) (($ $ (-585 (-486))) NIL T ELT)) (-3260 (((-585 $) $) NIL T ELT)) (-3975 (($ (-1075)) NIL T ELT) (($ (-1092)) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-179)) NIL T ELT) (($ (-774)) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-3254 (($ $) NIL T ELT)) (-3255 (($ $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3267 (((-85) $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3961 (((-486) $) NIL T ELT))) -(((-1017) (-1018 (-1075) (-1092) (-486) (-179) (-774))) (T -1017)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3263 (((-85) $) 36 T ELT)) (-3259 ((|#2| $) 31 T ELT)) (-3264 (((-85) $) 37 T ELT)) (-3538 ((|#1| $) 32 T ELT)) (-3266 (((-85) $) 39 T ELT)) (-3268 (((-85) $) 41 T ELT)) (-3265 (((-85) $) 38 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3262 (((-85) $) 35 T ELT)) (-3258 ((|#3| $) 30 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3261 (((-85) $) 34 T ELT)) (-3257 ((|#4| $) 29 T ELT)) (-3256 ((|#5| $) 28 T ELT)) (-3269 (((-85) $ $) 42 T ELT)) (-3803 (($ $ (-486)) 44 T ELT) (($ $ (-585 (-486))) 43 T ELT)) (-3260 (((-585 $) $) 33 T ELT)) (-3975 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-585 $)) 45 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-3254 (($ $) 26 T ELT)) (-3255 (($ $) 27 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3267 (((-85) $) 40 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3961 (((-486) $) 25 T ELT))) -(((-1018 |#1| |#2| |#3| |#4| |#5|) (-113) (-1015) (-1015) (-1015) (-1015) (-1015)) (T -1018)) -((-3269 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3268 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3260 (*1 *2 *1) (-12 (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-1018 *3 *4 *5 *6 *7)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-1018 *2 *3 *4 *5 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *2 *4 *5 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *2 *5 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *2 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *2)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)))) (-3255 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4 *5 *6)) (-4 *2 (-1015)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)))) (-3254 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4 *5 *6)) (-4 *2 (-1015)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-486))))) -(-13 (-1015) (-559 |t#1|) (-559 |t#2|) (-559 |t#3|) (-559 |t#4|) (-559 |t#4|) (-559 |t#5|) (-559 (-585 $)) (-241 (-486) $) (-241 (-585 (-486)) $) (-10 -8 (-15 -3269 ((-85) $ $)) (-15 -3268 ((-85) $)) (-15 -3267 ((-85) $)) (-15 -3266 ((-85) $)) (-15 -3265 ((-85) $)) (-15 -3264 ((-85) $)) (-15 -3263 ((-85) $)) (-15 -3262 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -3260 ((-585 $) $)) (-15 -3538 (|t#1| $)) (-15 -3259 (|t#2| $)) (-15 -3258 (|t#3| $)) (-15 -3257 (|t#4| $)) (-15 -3256 (|t#5| $)) (-15 -3255 ($ $)) (-15 -3254 ($ $)) (-15 -3961 ((-486) $)))) -(((-72) . T) ((-554 (-774)) . T) ((-559 (-585 $)) . T) ((-559 |#1|) . T) ((-559 |#2|) . T) ((-559 |#3|) . T) ((-559 |#4|) . T) ((-559 |#5|) . T) ((-241 (-486) $) . T) ((-241 (-585 (-486)) $) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3263 (((-85) $) 45 T ELT)) (-3259 ((|#2| $) 48 T ELT)) (-3264 (((-85) $) 20 T ELT)) (-3538 ((|#1| $) 21 T ELT)) (-3266 (((-85) $) 42 T ELT)) (-3268 (((-85) $) 14 T ELT)) (-3265 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3262 (((-85) $) 46 T ELT)) (-3258 ((|#3| $) 50 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3261 (((-85) $) 47 T ELT)) (-3257 ((|#4| $) 49 T ELT)) (-3256 ((|#5| $) 51 T ELT)) (-3269 (((-85) $ $) 41 T ELT)) (-3803 (($ $ (-486)) 62 T ELT) (($ $ (-585 (-486))) 64 T ELT)) (-3260 (((-585 $) $) 27 T ELT)) (-3975 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-585 $)) 52 T ELT)) (-3950 (((-774) $) 28 T ELT)) (-3254 (($ $) 26 T ELT)) (-3255 (($ $) 58 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3267 (((-85) $) 23 T ELT)) (-3059 (((-85) $ $) 40 T ELT)) (-3961 (((-486) $) 60 T ELT))) -(((-1019 |#1| |#2| |#3| |#4| |#5|) (-1018 |#1| |#2| |#3| |#4| |#5|) (-1015) (-1015) (-1015) (-1015) (-1015)) (T -1019)) -NIL -((-3272 (((-85) |#5| |#5|) 44 T ELT)) (-3275 (((-85) |#5| |#5|) 59 T ELT)) (-3280 (((-85) |#5| (-585 |#5|)) 82 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3276 (((-85) (-585 |#4|) (-585 |#4|)) 65 T ELT)) (-3282 (((-85) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) 70 T ELT)) (-3271 (((-1187)) 32 T ELT)) (-3270 (((-1187) (-1075) (-1075) (-1075)) 28 T ELT)) (-3281 (((-585 |#5|) (-585 |#5|)) 101 T ELT)) (-3283 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)))) 93 T ELT)) (-3284 (((-585 (-2 (|:| -3269 (-585 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-585 |#4|)))) (-585 |#4|) (-585 |#5|) (-85) (-85)) 123 T ELT)) (-3274 (((-85) |#5| |#5|) 53 T ELT)) (-3279 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3277 (((-85) (-585 |#4|) (-585 |#4|)) 64 T ELT)) (-3278 (((-85) (-585 |#4|) (-585 |#4|)) 66 T ELT)) (-3702 (((-85) (-585 |#4|) (-585 |#4|)) 67 T ELT)) (-3285 (((-3 (-2 (|:| -3269 (-585 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-585 |#4|))) #1#) (-585 |#4|) |#5| (-585 |#4|) (-85) (-85) (-85) (-85) (-85)) 118 T ELT)) (-3273 (((-585 |#5|) (-585 |#5|)) 49 T ELT))) -(((-1020 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3270 ((-1187) (-1075) (-1075) (-1075))) (-15 -3271 ((-1187))) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3273 ((-585 |#5|) (-585 |#5|))) (-15 -3274 ((-85) |#5| |#5|)) (-15 -3275 ((-85) |#5| |#5|)) (-15 -3276 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3277 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3278 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3702 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3279 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3280 ((-85) |#5| |#5|)) (-15 -3280 ((-85) |#5| (-585 |#5|))) (-15 -3281 ((-585 |#5|) (-585 |#5|))) (-15 -3282 ((-85) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)))) (-15 -3283 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) (-15 -3284 ((-585 (-2 (|:| -3269 (-585 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-585 |#4|)))) (-585 |#4|) (-585 |#5|) (-85) (-85))) (-15 -3285 ((-3 (-2 (|:| -3269 (-585 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-585 |#4|))) #1#) (-585 |#4|) |#5| (-585 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|)) (T -1020)) -((-3285 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| -3269 (-585 *9)) (|:| -1601 *4) (|:| |ineq| (-585 *9)))) (-5 *1 (-1020 *6 *7 *8 *9 *4)) (-5 *3 (-585 *9)) (-4 *4 (-985 *6 *7 *8 *9)))) (-3284 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-585 *10)) (-5 *5 (-85)) (-4 *10 (-985 *6 *7 *8 *9)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-979 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| -3269 (-585 *9)) (|:| -1601 *10) (|:| |ineq| (-585 *9))))) (-5 *1 (-1020 *6 *7 *8 *9 *10)) (-5 *3 (-585 *9)))) (-3283 (*1 *2 *2) (-12 (-5 *2 (-585 (-2 (|:| |val| (-585 *6)) (|:| -1601 *7)))) (-4 *6 (-979 *3 *4 *5)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))) (-3282 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1601 *8))) (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-985 *4 *5 *6 *7)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)))) (-3281 (*1 *2 *2) (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))) (-3280 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1020 *5 *6 *7 *8 *3)))) (-3280 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3702 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3273 (*1 *2 *2) (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3271 (*1 *2) (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-1187)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) (-3270 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7))))) -((-3300 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|) 106 T ELT)) (-3290 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3293 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3295 (((-585 |#5|) |#4| |#5|) 122 T ELT)) (-3297 (((-585 |#5|) |#4| |#5|) 129 T ELT)) (-3299 (((-585 |#5|) |#4| |#5|) 130 T ELT)) (-3294 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 107 T ELT)) (-3296 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 128 T ELT)) (-3298 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3291 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) |#3| (-85)) 91 T ELT) (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3292 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3289 (((-1187)) 36 T ELT)) (-3287 (((-1187)) 25 T ELT)) (-3288 (((-1187) (-1075) (-1075) (-1075)) 32 T ELT)) (-3286 (((-1187) (-1075) (-1075) (-1075)) 21 T ELT))) -(((-1021 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3286 ((-1187) (-1075) (-1075) (-1075))) (-15 -3287 ((-1187))) (-15 -3288 ((-1187) (-1075) (-1075) (-1075))) (-15 -3289 ((-1187))) (-15 -3290 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3291 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3291 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) |#3| (-85))) (-15 -3292 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3293 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3298 ((-85) |#4| |#5|)) (-15 -3294 ((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3295 ((-585 |#5|) |#4| |#5|)) (-15 -3296 ((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3297 ((-585 |#5|) |#4| |#5|)) (-15 -3298 ((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3299 ((-585 |#5|) |#4| |#5|)) (-15 -3300 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|)) (T -1021)) -((-3300 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3299 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3298 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3297 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3296 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3295 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3294 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3298 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3293 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3292 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3291 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1601 *9)))) (-5 *5 (-85)) (-4 *8 (-979 *6 *7 *4)) (-4 *9 (-985 *6 *7 *4 *8)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *4 (-758)) (-5 *2 (-585 (-2 (|:| |val| *8) (|:| -1601 *9)))) (-5 *1 (-1021 *6 *7 *4 *8 *9)))) (-3291 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1021 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) (-3290 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3289 (*1 *2) (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-1187)) (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) (-3288 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3287 (*1 *2) (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-1187)) (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) (-3286 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3684 (((-585 (-2 (|:| -3865 $) (|:| -1703 (-585 |#4|)))) (-585 |#4|)) 91 T ELT)) (-3685 (((-585 $) (-585 |#4|)) 92 T ELT) (((-585 $) (-585 |#4|) (-85)) 120 T ELT)) (-3084 (((-585 |#3|) $) 39 T ELT)) (-2911 (((-85) $) 32 T ELT)) (-2902 (((-85) $) 23 (|has| |#1| (-497)) ELT)) (-3696 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3691 ((|#4| |#4| $) 98 T ELT)) (-3778 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 135 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3713 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3727 (($) 59 T CONST)) (-2907 (((-85) $) 28 (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) 30 (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) 31 (|has| |#1| (-497)) ELT)) (-3692 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 24 (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) 25 (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ "failed") (-585 |#4|)) 42 T ELT)) (-3159 (($ (-585 |#4|)) 41 T ELT)) (-3802 (((-3 $ #1#) $) 88 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-1355 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3409 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-497)) ELT)) (-3697 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3686 ((|#4| |#4| $) 93 T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3699 (((-2 (|:| -3865 (-585 |#4|)) (|:| -1703 (-585 |#4|))) $) 111 T ELT)) (-3200 (((-85) |#4| $) 145 T ELT)) (-3198 (((-85) |#4| $) 142 T ELT)) (-3201 (((-85) |#4| $) 146 T ELT) (((-85) $) 143 T ELT)) (-3698 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3183 ((|#3| $) 40 T ELT)) (-2611 (((-585 |#4|) $) 48 T ELT)) (-3248 (((-85) |#4| $) 53 (|has| |#4| (-72)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3846 (($ (-1 |#4| |#4|) $) 60 T ELT)) (-2917 (((-585 |#3|) $) 38 T ELT)) (-2916 (((-85) |#3| $) 37 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3194 (((-3 |#4| (-585 $)) |#4| |#4| $) 137 T ELT)) (-3193 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 136 T ELT)) (-3801 (((-3 |#4| #1#) $) 89 T ELT)) (-3195 (((-585 $) |#4| $) 138 T ELT)) (-3197 (((-3 (-85) (-585 $)) |#4| $) 141 T ELT)) (-3196 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 140 T ELT) (((-85) |#4| $) 139 T ELT)) (-3241 (((-585 $) |#4| $) 134 T ELT) (((-585 $) (-585 |#4|) $) 133 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 132 T ELT) (((-585 $) |#4| (-585 $)) 131 T ELT)) (-3443 (($ |#4| $) 126 T ELT) (($ (-585 |#4|) $) 125 T ELT)) (-3700 (((-585 |#4|) $) 113 T ELT)) (-3694 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3702 (((-85) $ $) 116 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-497)) ELT)) (-3695 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3804 (((-3 |#4| #1#) $) 90 T ELT)) (-1731 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 51 T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3772 (($ $ |#4|) 83 T ELT) (((-585 $) |#4| $) 124 T ELT) (((-585 $) |#4| (-585 $)) 123 T ELT) (((-585 $) (-585 |#4|) $) 122 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 121 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 46 T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) 64 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) 55 T ELT)) (-3406 (((-85) $) 58 T ELT)) (-3568 (($) 57 T ELT)) (-3952 (((-696) $) 112 T ELT)) (-1732 (((-696) |#4| $) 52 (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) 47 T ELT)) (-3403 (($ $) 56 T ELT)) (-3975 (((-475) $) 70 (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) 65 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-2915 (($ $ |#3|) 36 T ELT)) (-3687 (($ $) 94 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3950 (((-774) $) 13 T ELT) (((-585 |#4|) $) 43 T ELT)) (-3681 (((-696) $) 82 (|has| |#3| (-320)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3693 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) 104 T ELT)) (-3192 (((-585 $) |#4| $) 130 T ELT) (((-585 $) |#4| (-585 $)) 129 T ELT) (((-585 $) (-585 |#4|) $) 128 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 127 T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3683 (((-585 |#3|) $) 87 T ELT)) (-3199 (((-85) |#4| $) 144 T ELT)) (-3937 (((-85) |#3| $) 86 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3961 (((-696) $) 44 T ELT))) -(((-1022 |#1| |#2| |#3| |#4|) (-113) (-393) (-719) (-758) (-979 |t#1| |t#2| |t#3|)) (T -1022)) -NIL -(-13 (-985 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-554 (-585 |#4|)) . T) ((-554 (-774)) . T) ((-124 |#4|) . T) ((-555 (-475)) |has| |#4| (-555 (-475))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-318 |#4|) . T) ((-381 |#4|) . T) ((-430 |#4|) . T) ((-457 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-13) . T) ((-891 |#1| |#2| |#3| |#4|) . T) ((-985 |#1| |#2| |#3| |#4|) . T) ((-1015) . T) ((-1037 |#4|) . T) ((-1126 |#1| |#2| |#3| |#4|) . T) ((-1131) . T)) -((-3311 (((-585 (-486)) (-486) (-486) (-486)) 40 T ELT)) (-3310 (((-585 (-486)) (-486) (-486) (-486)) 30 T ELT)) (-3309 (((-585 (-486)) (-486) (-486) (-486)) 35 T ELT)) (-3308 (((-486) (-486) (-486)) 22 T ELT)) (-3307 (((-1181 (-486)) (-585 (-486)) (-1181 (-486)) (-486)) 78 T ELT) (((-1181 (-486)) (-1181 (-486)) (-1181 (-486)) (-486)) 73 T ELT)) (-3306 (((-585 (-486)) (-585 (-832)) (-585 (-486)) (-85)) 56 T ELT)) (-3305 (((-632 (-486)) (-585 (-486)) (-585 (-486)) (-632 (-486))) 77 T ELT)) (-3304 (((-632 (-486)) (-585 (-832)) (-585 (-486))) 61 T ELT)) (-3303 (((-585 (-632 (-486))) (-585 (-832))) 66 T ELT)) (-3302 (((-585 (-486)) (-585 (-486)) (-585 (-486)) (-632 (-486))) 81 T ELT)) (-3301 (((-632 (-486)) (-585 (-486)) (-585 (-486)) (-585 (-486))) 91 T ELT))) -(((-1023) (-10 -7 (-15 -3301 ((-632 (-486)) (-585 (-486)) (-585 (-486)) (-585 (-486)))) (-15 -3302 ((-585 (-486)) (-585 (-486)) (-585 (-486)) (-632 (-486)))) (-15 -3303 ((-585 (-632 (-486))) (-585 (-832)))) (-15 -3304 ((-632 (-486)) (-585 (-832)) (-585 (-486)))) (-15 -3305 ((-632 (-486)) (-585 (-486)) (-585 (-486)) (-632 (-486)))) (-15 -3306 ((-585 (-486)) (-585 (-832)) (-585 (-486)) (-85))) (-15 -3307 ((-1181 (-486)) (-1181 (-486)) (-1181 (-486)) (-486))) (-15 -3307 ((-1181 (-486)) (-585 (-486)) (-1181 (-486)) (-486))) (-15 -3308 ((-486) (-486) (-486))) (-15 -3309 ((-585 (-486)) (-486) (-486) (-486))) (-15 -3310 ((-585 (-486)) (-486) (-486) (-486))) (-15 -3311 ((-585 (-486)) (-486) (-486) (-486))))) (T -1023)) -((-3311 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-1023)) (-5 *3 (-486)))) (-3310 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-1023)) (-5 *3 (-486)))) (-3309 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-1023)) (-5 *3 (-486)))) (-3308 (*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-1023)))) (-3307 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1181 (-486))) (-5 *3 (-585 (-486))) (-5 *4 (-486)) (-5 *1 (-1023)))) (-3307 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1181 (-486))) (-5 *3 (-486)) (-5 *1 (-1023)))) (-3306 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-585 (-486))) (-5 *3 (-585 (-832))) (-5 *4 (-85)) (-5 *1 (-1023)))) (-3305 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-632 (-486))) (-5 *3 (-585 (-486))) (-5 *1 (-1023)))) (-3304 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-832))) (-5 *4 (-585 (-486))) (-5 *2 (-632 (-486))) (-5 *1 (-1023)))) (-3303 (*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-585 (-632 (-486)))) (-5 *1 (-1023)))) (-3302 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-585 (-486))) (-5 *3 (-632 (-486))) (-5 *1 (-1023)))) (-3301 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-632 (-486))) (-5 *1 (-1023))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3312 (($ (-1 |#1| |#1| |#1|)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-1024 |#1|) (-13 (-1025 |#1|) (-1015) (-10 -8 (-15 -3312 ($ (-1 |#1| |#1| |#1|))))) (-72)) (T -1024)) -((-3312 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1024 *3))))) -((-3803 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-1025 |#1|) (-113) (-72)) (T -1025)) -NIL -(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|) (|:| |z| |t#1|)) (-3059 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|)))))))) -(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1131) . T)) -((** (($ $ (-832)) 10 T ELT))) -(((-1026 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-832)))) (-1027)) (T -1026)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (** (($ $ (-832)) 17 T ELT)) (* (($ $ $) 18 T ELT))) -(((-1027) (-113)) (T -1027)) -((* (*1 *1 *1 *1) (-4 *1 (-1027))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-832))))) -(-13 (-1015) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-832))))) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-3191 (((-85) $) NIL (|has| |#3| (-23)) ELT)) (-3710 (($ (-832)) NIL (|has| |#3| (-963)) ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#3|)) ELT)) (-2486 (($ $ $) NIL (|has| |#3| (-719)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-104)) ELT)) (-3139 (((-696)) NIL (|has| |#3| (-320)) ELT)) (-3791 ((|#3| $ (-486) |#3|) NIL (|has| $ (-1037 |#3|)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (-12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (-12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1015)) ELT)) (-3159 (((-486) $) NIL (-12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) ELT) (((-350 (-486)) $) NIL (-12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015))) ELT) ((|#3| $) NIL (|has| |#3| (-1015)) ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (-12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963))) ELT) (((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1181 |#3|))) (-632 $) (-1181 $)) NIL (|has| |#3| (-963)) ELT) (((-632 |#3|) (-632 $)) NIL (|has| |#3| (-963)) ELT)) (-3845 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| |#3| (-963)) ELT)) (-2997 (($) NIL (|has| |#3| (-320)) ELT)) (-1577 ((|#3| $ (-486) |#3|) NIL (|has| $ (-1037 |#3|)) ELT)) (-3115 ((|#3| $ (-486)) 12 T ELT)) (-3189 (((-85) $) NIL (|has| |#3| (-719)) ELT)) (-1216 (((-85) $ $) NIL (|has| |#3| (-23)) ELT)) (-2412 (((-85) $) NIL (|has| |#3| (-963)) ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#3| (-758)) ELT)) (-2611 (((-585 |#3|) $) NIL T ELT)) (-3248 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#3| (-758)) ELT)) (-3846 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#3| (-320)) ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (-12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| |#3| (-582 (-486))) (|has| |#3| (-963))) ELT) (((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1181 |#3|))) (-1181 $) $) NIL (|has| |#3| (-963)) ELT) (((-632 |#3|) (-1181 $)) NIL (|has| |#3| (-963)) ELT)) (-3245 (((-1075) $) NIL (|has| |#3| (-1015)) ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-2402 (($ (-832)) NIL (|has| |#3| (-320)) ELT)) (-3246 (((-1035) $) NIL (|has| |#3| (-1015)) ELT)) (-3804 ((|#3| $) NIL (|has| (-486) (-758)) ELT)) (-1731 (((-3 |#3| #1#) (-1 (-85) |#3|) $) NIL T ELT)) (-2201 (($ $ |#3|) NIL (|has| $ (-1037 |#3|)) ELT)) (-1733 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-585 |#3|) (-585 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#3| $) NIL (-12 (|has| $ (-318 |#3|)) (|has| |#3| (-72))) ELT)) (-2207 (((-585 |#3|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#3| $ (-486) |#3|) NIL T ELT) ((|#3| $ (-486)) NIL T ELT)) (-3839 ((|#3| $ $) NIL (|has| |#3| (-963)) ELT)) (-1469 (($ (-1181 |#3|)) NIL T ELT)) (-3915 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3761 (($ $ (-696)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-963))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-963)) ELT) (($ $ (-1 |#3| |#3|) (-696)) NIL (|has| |#3| (-963)) ELT)) (-1732 (((-696) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-696) (-1 (-85) |#3|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-1181 |#3|) $) NIL T ELT) (($ (-486)) NIL (OR (-12 (|has| |#3| (-952 (-486))) (|has| |#3| (-1015))) (|has| |#3| (-963))) ELT) (($ (-350 (-486))) NIL (-12 (|has| |#3| (-952 (-350 (-486)))) (|has| |#3| (-1015))) ELT) (($ |#3|) NIL (|has| |#3| (-1015)) ELT) (((-774) $) NIL (|has| |#3| (-554 (-774))) ELT)) (-3129 (((-696)) NIL (|has| |#3| (-963)) CONST)) (-1267 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3128 (((-85) $ $) NIL (|has| |#3| (-963)) ELT)) (-2663 (($) NIL (|has| |#3| (-23)) CONST)) (-2669 (($) NIL (|has| |#3| (-963)) CONST)) (-2672 (($ $ (-696)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-963))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-963))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))) ELT) (($ $ (-1092)) NIL (-12 (|has| |#3| (-813 (-1092))) (|has| |#3| (-963))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-963)) ELT) (($ $ (-1 |#3| |#3|) (-696)) NIL (|has| |#3| (-963)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-2688 (((-85) $ $) 24 (|has| |#3| (-758)) ELT)) (-3953 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3840 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3842 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-696)) NIL (|has| |#3| (-963)) ELT) (($ $ (-832)) NIL (|has| |#3| (-963)) ELT)) (* (($ $ $) NIL (|has| |#3| (-963)) ELT) (($ $ |#3|) NIL (|has| |#3| (-665)) ELT) (($ |#3| $) NIL (|has| |#3| (-665)) ELT) (($ (-486) $) NIL (|has| |#3| (-21)) ELT) (($ (-696) $) NIL (|has| |#3| (-23)) ELT) (($ (-832) $) NIL (|has| |#3| (-25)) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-1028 |#1| |#2| |#3|) (-196 |#1| |#3|) (-696) (-696) (-719)) (T -1028)) -NIL -((-3313 (((-585 (-1150 |#2| |#1|)) (-1150 |#2| |#1|) (-1150 |#2| |#1|)) 50 T ELT)) (-3319 (((-486) (-1150 |#2| |#1|)) 95 (|has| |#1| (-393)) ELT)) (-3317 (((-486) (-1150 |#2| |#1|)) 79 T ELT)) (-3314 (((-585 (-1150 |#2| |#1|)) (-1150 |#2| |#1|) (-1150 |#2| |#1|)) 58 T ELT)) (-3318 (((-486) (-1150 |#2| |#1|) (-1150 |#2| |#1|)) 81 (|has| |#1| (-393)) ELT)) (-3315 (((-585 |#1|) (-1150 |#2| |#1|) (-1150 |#2| |#1|)) 61 T ELT)) (-3316 (((-486) (-1150 |#2| |#1|) (-1150 |#2| |#1|)) 78 T ELT))) -(((-1029 |#1| |#2|) (-10 -7 (-15 -3313 ((-585 (-1150 |#2| |#1|)) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -3314 ((-585 (-1150 |#2| |#1|)) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -3315 ((-585 |#1|) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -3316 ((-486) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -3317 ((-486) (-1150 |#2| |#1|))) (IF (|has| |#1| (-393)) (PROGN (-15 -3318 ((-486) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -3319 ((-486) (-1150 |#2| |#1|)))) |%noBranch|)) (-742) (-1092)) (T -1029)) -((-3319 (*1 *2 *3) (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-393)) (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-486)) (-5 *1 (-1029 *4 *5)))) (-3318 (*1 *2 *3 *3) (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-393)) (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-486)) (-5 *1 (-1029 *4 *5)))) (-3317 (*1 *2 *3) (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-486)) (-5 *1 (-1029 *4 *5)))) (-3316 (*1 *2 *3 *3) (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-486)) (-5 *1 (-1029 *4 *5)))) (-3315 (*1 *2 *3 *3) (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-585 *4)) (-5 *1 (-1029 *4 *5)))) (-3314 (*1 *2 *3 *3) (-12 (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-585 (-1150 *5 *4))) (-5 *1 (-1029 *4 *5)) (-5 *3 (-1150 *5 *4)))) (-3313 (*1 *2 *3 *3) (-12 (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-585 (-1150 *5 *4))) (-5 *1 (-1029 *4 *5)) (-5 *3 (-1150 *5 *4))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3321 (((-1097) $) 12 T ELT)) (-3320 (((-585 (-1097)) $) 14 T ELT)) (-3322 (($ (-585 (-1097)) (-1097)) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 29 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 17 T ELT))) -(((-1030) (-13 (-1015) (-10 -8 (-15 -3322 ($ (-585 (-1097)) (-1097))) (-15 -3321 ((-1097) $)) (-15 -3320 ((-585 (-1097)) $))))) (T -1030)) -((-3322 (*1 *1 *2 *3) (-12 (-5 *2 (-585 (-1097))) (-5 *3 (-1097)) (-5 *1 (-1030)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-1030)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-585 (-1097))) (-5 *1 (-1030))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3323 (($ (-448) (-1030)) 14 T ELT)) (-3322 (((-1030) $) 20 T ELT)) (-3545 (((-448) $) 17 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 27 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-1031) (-13 (-997) (-10 -8 (-15 -3323 ($ (-448) (-1030))) (-15 -3545 ((-448) $)) (-15 -3322 ((-1030) $))))) (T -1031)) -((-3323 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1030)) (-5 *1 (-1031)))) (-3545 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-1031)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-1031))))) -((-3626 (((-3 (-486) #1="failed") |#2| (-1092) |#2| (-1075)) 19 T ELT) (((-3 (-486) #1#) |#2| (-1092) (-752 |#2|)) 17 T ELT) (((-3 (-486) #1#) |#2|) 60 T ELT))) -(((-1032 |#1| |#2|) (-10 -7 (-15 -3626 ((-3 (-486) #1="failed") |#2|)) (-15 -3626 ((-3 (-486) #1#) |#2| (-1092) (-752 |#2|))) (-15 -3626 ((-3 (-486) #1#) |#2| (-1092) |#2| (-1075)))) (-13 (-497) (-952 (-486)) (-582 (-486)) (-393)) (-13 (-27) (-1117) (-364 |#1|))) (T -1032)) -((-3626 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-1075)) (-4 *6 (-13 (-497) (-952 *2) (-582 *2) (-393))) (-5 *2 (-486)) (-5 *1 (-1032 *6 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))))) (-3626 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-752 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) (-4 *6 (-13 (-497) (-952 *2) (-582 *2) (-393))) (-5 *2 (-486)) (-5 *1 (-1032 *6 *3)))) (-3626 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-497) (-952 *2) (-582 *2) (-393))) (-5 *2 (-486)) (-5 *1 (-1032 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4)))))) -((-3626 (((-3 (-486) #1="failed") (-350 (-859 |#1|)) (-1092) (-350 (-859 |#1|)) (-1075)) 38 T ELT) (((-3 (-486) #1#) (-350 (-859 |#1|)) (-1092) (-752 (-350 (-859 |#1|)))) 33 T ELT) (((-3 (-486) #1#) (-350 (-859 |#1|))) 14 T ELT))) -(((-1033 |#1|) (-10 -7 (-15 -3626 ((-3 (-486) #1="failed") (-350 (-859 |#1|)))) (-15 -3626 ((-3 (-486) #1#) (-350 (-859 |#1|)) (-1092) (-752 (-350 (-859 |#1|))))) (-15 -3626 ((-3 (-486) #1#) (-350 (-859 |#1|)) (-1092) (-350 (-859 |#1|)) (-1075)))) (-393)) (T -1033)) -((-3626 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-350 (-859 *6))) (-5 *4 (-1092)) (-5 *5 (-1075)) (-4 *6 (-393)) (-5 *2 (-486)) (-5 *1 (-1033 *6)))) (-3626 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-752 (-350 (-859 *6)))) (-5 *3 (-350 (-859 *6))) (-4 *6 (-393)) (-5 *2 (-486)) (-5 *1 (-1033 *6)))) (-3626 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-393)) (-5 *2 (-486)) (-5 *1 (-1033 *4))))) -((-3652 (((-265 (-486)) (-48)) 12 T ELT))) -(((-1034) (-10 -7 (-15 -3652 ((-265 (-486)) (-48))))) (T -1034)) -((-3652 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-486))) (-5 *1 (-1034))))) -((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) 22 T ELT)) (-3191 (((-85) $) 49 T ELT)) (-3324 (($ $ $) 28 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 75 T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-2049 (($ $ $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2044 (($ $ $ $) 59 T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) 61 T ELT)) (-3626 (((-486) $) NIL T ELT)) (-2444 (($ $ $) 56 T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL T ELT)) (-2567 (($ $ $) 42 T ELT)) (-2281 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 70 T ELT) (((-632 (-486)) (-632 $)) 8 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3027 (((-3 (-350 (-486)) #1#) $) NIL T ELT)) (-3026 (((-85) $) NIL T ELT)) (-3025 (((-350 (-486)) $) NIL T ELT)) (-2997 (($) 73 T ELT) (($ $) 72 T ELT)) (-2566 (($ $ $) 41 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3726 (((-85) $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-2050 (($ $ $) 71 T ELT)) (-3189 (((-85) $) 76 T ELT)) (-1370 (($ $ $) NIL T ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL T ELT)) (-2564 (($ $ $) 27 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 50 T ELT)) (-2676 (((-85) $) 47 T ELT)) (-2563 (($ $) 23 T ELT)) (-3448 (((-634 $) $) NIL T ELT)) (-3190 (((-85) $) 60 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2043 (($ $ $ $) 57 T ELT)) (-2534 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2860 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2046 (($ $) NIL T ELT)) (-2012 (((-832) $) 66 T ELT)) (-3836 (($ $) 55 T ELT)) (-2282 (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL T ELT) (((-632 (-486)) (-1181 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2041 (($ $ $) NIL T ELT)) (-3449 (($) NIL T CONST)) (-2402 (($ (-832)) 65 T ELT)) (-2048 (($ $) 33 T ELT)) (-3246 (((-1035) $) 54 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL T ELT)) (-3147 (($ $ $) 45 T ELT) (($ (-585 $)) NIL T ELT)) (-1368 (($ $) NIL T ELT)) (-3735 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2677 (((-85) $) 48 T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 44 T ELT)) (-3761 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2047 (($ $) 34 T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-486) $) 12 T ELT) (((-475) $) NIL T ELT) (((-802 (-486)) $) NIL T ELT) (((-330) $) NIL T ELT) (((-179) $) NIL T ELT)) (-3950 (((-774) $) 11 T ELT) (($ (-486)) 13 T ELT) (($ $) NIL T ELT) (($ (-486)) 13 T ELT)) (-3129 (((-696)) NIL T CONST)) (-2051 (((-85) $ $) NIL T ELT)) (-3104 (($ $ $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2697 (($) 17 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2565 (($ $ $) 26 T ELT)) (-2045 (($ $ $ $) 58 T ELT)) (-3386 (($ $) 46 T ELT)) (-2313 (($ $ $) 25 T ELT)) (-2663 (($) 15 T CONST)) (-2669 (($) 16 T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2569 (((-85) $ $) 32 T ELT)) (-2570 (((-85) $ $) 30 T ELT)) (-3059 (((-85) $ $) 21 T ELT)) (-2687 (((-85) $ $) 31 T ELT)) (-2688 (((-85) $ $) 29 T ELT)) (-2314 (($ $ $) 24 T ELT)) (-3840 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3842 (($ $ $) 36 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 40 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-486) $) 14 T ELT))) -(((-1035) (-13 (-485) (-754) (-84) (-10 -8 (-6 -3985) (-6 -3990) (-6 -3986) (-15 -3324 ($ $ $))))) (T -1035)) -((-3324 (*1 *1 *1 *1) (-5 *1 (-1035)))) -((-486) (|%ismall?| |#1|)) -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3326 ((|#1| $) 42 T ELT)) (-3727 (($) 6 T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 55 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 51 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 50 T ELT)) (-3328 ((|#1| |#1| $) 44 T ELT)) (-3327 ((|#1| $) 43 T ELT)) (-2611 (((-585 |#1|) $) 49 T ELT)) (-3248 (((-85) |#1| $) 54 (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 52 T ELT)) (-1277 ((|#1| $) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 47 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3325 (((-696) $) 41 T ELT)) (-1732 (((-696) |#1| $) 53 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 48 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) 38 T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 46 T ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) 45 T ELT))) -(((-1036 |#1|) (-113) (-1131)) (T -1036)) -((-3328 (*1 *2 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1131)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1131)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1131)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-1131)) (-5 *2 (-696))))) -(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3328 (|t#1| |t#1| $)) (-15 -3327 (|t#1| $)) (-15 -3326 (|t#1| $)) (-15 -3325 ((-696) $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1037 |#1|) . T) ((-1131) . T)) -((-3727 (($) 6 T CONST)) (-3329 (($ (-1 |#1| |#1|) $) 12 T ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3403 (($ $) 9 T ELT))) -(((-1037 |#1|) (-113) (-1131)) (T -1037)) -((-3329 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1037 *3)) (-4 *3 (-1131))))) -(-13 (-34) (-10 -8 (-15 -3329 ($ (-1 |t#1| |t#1|) $)))) -(((-34) . T) ((-13) . T) ((-1131) . T)) -((-3333 ((|#3| $) 87 T ELT)) (-3160 (((-3 (-486) #1="failed") $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3159 (((-486) $) NIL T ELT) (((-350 (-486)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL T ELT) (((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1181 |#3|))) (-632 $) (-1181 $)) 84 T ELT) (((-632 |#3|) (-632 $)) 76 T ELT)) (-3761 (($ $ (-1 |#3| |#3|) (-696)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT)) (-3332 ((|#3| $) 89 T ELT)) (-3334 ((|#4| $) 43 T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 24 T ELT) (($ $ (-486)) 95 T ELT))) -(((-1038 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1|)) (-15 ** (|#1| |#1| (-486))) (-15 -3332 (|#3| |#1|)) (-15 -3333 (|#3| |#1|)) (-15 -3334 (|#4| |#1|)) (-15 -2281 ((-632 |#3|) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1181 |#3|))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 |#1|) (-1181 |#1|))) (-15 -2281 ((-632 (-486)) (-632 |#1|))) (-15 -3950 (|#1| |#3|)) (-15 -3160 ((-3 |#3| #1="failed") |#1|)) (-15 -3159 (|#3| |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3950 (|#1| (-350 (-486)))) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3761 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3761 (|#1| |#1| (-1 |#3| |#3|) (-696))) (-15 -3950 (|#1| (-486))) (-15 ** (|#1| |#1| (-696))) (-15 ** (|#1| |#1| (-832))) (-15 -3950 ((-774) |#1|))) (-1039 |#2| |#3| |#4| |#5|) (-696) (-963) (-196 |#2| |#3|) (-196 |#2| |#3|)) (T -1038)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3333 ((|#2| $) 91 T ELT)) (-3123 (((-85) $) 134 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3125 (((-85) $) 132 T ELT)) (-3336 (($ |#2|) 94 T ELT)) (-3727 (($) 23 T CONST)) (-3112 (($ $) 151 (|has| |#2| (-258)) ELT)) (-3114 ((|#3| $ (-486)) 146 T ELT)) (-3160 (((-3 (-486) #1="failed") $) 110 (|has| |#2| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) 107 (|has| |#2| (-952 (-350 (-486)))) ELT) (((-3 |#2| #1#) $) 104 T ELT)) (-3159 (((-486) $) 109 (|has| |#2| (-952 (-486))) ELT) (((-350 (-486)) $) 106 (|has| |#2| (-952 (-350 (-486)))) ELT) ((|#2| $) 105 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 100 (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 99 (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) 98 T ELT) (((-632 |#2|) (-632 $)) 97 T ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $) 116 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 115 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 111 (|has| |#2| (-72)) ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3111 (((-696) $) 152 (|has| |#2| (-497)) ELT)) (-3115 ((|#2| $ (-486) (-486)) 144 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3110 (((-696) $) 153 (|has| |#2| (-497)) ELT)) (-3109 (((-585 |#4|) $) 154 (|has| |#2| (-497)) ELT)) (-3117 (((-696) $) 140 T ELT)) (-3116 (((-696) $) 141 T ELT)) (-3330 ((|#2| $) 86 (|has| |#2| (-6 (-4000 #2="*"))) ELT)) (-3121 (((-486) $) 136 T ELT)) (-3119 (((-486) $) 138 T ELT)) (-2611 (((-585 |#2|) $) 117 T ELT)) (-3248 (((-85) |#2| $) 112 (|has| |#2| (-72)) ELT)) (-3120 (((-486) $) 137 T ELT)) (-3118 (((-486) $) 139 T ELT)) (-3126 (($ (-585 (-585 |#2|))) 131 T ELT)) (-3846 (($ (-1 |#2| |#2| |#2|) $ $) 148 T ELT) (($ (-1 |#2| |#2|) $) 126 T ELT)) (-3597 (((-585 (-585 |#2|)) $) 142 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 102 (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 101 (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) 96 T ELT) (((-632 |#2|) (-1181 $)) 95 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3593 (((-3 $ "failed") $) 85 (|has| |#2| (-312)) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-1731 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 114 T ELT)) (-3469 (((-3 $ "failed") $ |#2|) 149 (|has| |#2| (-497)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 119 T ELT)) (-3771 (($ $ (-585 (-249 |#2|))) 125 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) 124 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) 123 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 122 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1224 (((-85) $ $) 130 T ELT)) (-3406 (((-85) $) 127 T ELT)) (-3568 (($) 128 T ELT)) (-3803 ((|#2| $ (-486) (-486) |#2|) 145 T ELT) ((|#2| $ (-486) (-486)) 143 T ELT)) (-3761 (($ $ (-1 |#2| |#2|) (-696)) 65 T ELT) (($ $ (-1 |#2| |#2|)) 64 T ELT) (($ $) 55 (|has| |#2| (-189)) ELT) (($ $ (-696)) 53 (|has| |#2| (-189)) ELT) (($ $ (-1092)) 63 (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 61 (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 60 (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 59 (|has| |#2| (-813 (-1092))) ELT)) (-3332 ((|#2| $) 90 T ELT)) (-3335 (($ (-585 |#2|)) 93 T ELT)) (-3124 (((-85) $) 133 T ELT)) (-3334 ((|#3| $) 92 T ELT)) (-3331 ((|#2| $) 87 (|has| |#2| (-6 (-4000 #2#))) ELT)) (-1732 (((-696) (-1 (-85) |#2|) $) 118 T ELT) (((-696) |#2| $) 113 (|has| |#2| (-72)) ELT)) (-3403 (($ $) 129 T ELT)) (-3113 ((|#4| $ (-486)) 147 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 (-486))) 108 (|has| |#2| (-952 (-350 (-486)))) ELT) (($ |#2|) 103 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) 120 T ELT)) (-3122 (((-85) $) 135 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 |#2| |#2|) (-696)) 67 T ELT) (($ $ (-1 |#2| |#2|)) 66 T ELT) (($ $) 54 (|has| |#2| (-189)) ELT) (($ $ (-696)) 52 (|has| |#2| (-189)) ELT) (($ $ (-1092)) 62 (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 58 (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 57 (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 56 (|has| |#2| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ |#2|) 150 (|has| |#2| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 84 (|has| |#2| (-312)) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#2|) 156 T ELT) (($ |#2| $) 155 T ELT) ((|#4| $ |#4|) 89 T ELT) ((|#3| |#3| $) 88 T ELT)) (-3961 (((-696) $) 121 T ELT))) -(((-1039 |#1| |#2| |#3| |#4|) (-113) (-696) (-963) (-196 |t#1| |t#2|) (-196 |t#1| |t#2|)) (T -1039)) -((-3336 (*1 *1 *2) (-12 (-4 *2 (-963)) (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)))) (-3335 (*1 *1 *2) (-12 (-5 *2 (-585 *4)) (-4 *4 (-963)) (-4 *1 (-1039 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *2 *5)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-963)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-963)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *2 *5)) (-4 *4 (-963)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-4000 #1="*"))) (-4 *2 (-963)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-4000 #1#))) (-4 *2 (-963)))) (-3593 (*1 *1 *1) (|partial| -12 (-4 *1 (-1039 *2 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-1039 *3 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-312))))) -(-13 (-184 |t#2|) (-82 |t#2| |t#2|) (-967 |t#1| |t#1| |t#2| |t#3| |t#4|) (-355 |t#2|) (-329 |t#2|) (-10 -8 (IF (|has| |t#2| (-146)) (-6 (-656 |t#2|)) |%noBranch|) (-15 -3336 ($ |t#2|)) (-15 -3335 ($ (-585 |t#2|))) (-15 -3334 (|t#3| $)) (-15 -3333 (|t#2| $)) (-15 -3332 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4000 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3331 (|t#2| $)) (-15 -3330 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-312)) (PROGN (-15 -3593 ((-3 $ "failed") $)) (-15 ** ($ $ (-486)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4000 #1="*"))) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-557 (-350 (-486))) |has| |#2| (-952 (-350 (-486)))) ((-557 (-486)) . T) ((-557 |#2|) . T) ((-554 (-774)) . T) ((-186 $) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-184 |#2|) . T) ((-190) |has| |#2| (-190)) ((-189) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-225 |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-318 |#2|) . T) ((-329 |#2|) . T) ((-355 |#2|) . T) ((-381 |#2|) . T) ((-430 |#2|) . T) ((-457 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-13) . T) ((-590 (-486)) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-592 (-486)) |has| |#2| (-582 (-486))) ((-592 |#2|) . T) ((-592 $) . T) ((-584 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-4000 #1#)))) ((-582 (-486)) |has| |#2| (-582 (-486))) ((-582 |#2|) . T) ((-656 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-4000 #1#)))) ((-665) . T) ((-808 $ (-1092)) OR (|has| |#2| (-813 (-1092))) (|has| |#2| (-811 (-1092)))) ((-811 (-1092)) |has| |#2| (-811 (-1092))) ((-813 (-1092)) OR (|has| |#2| (-813 (-1092))) (|has| |#2| (-811 (-1092)))) ((-967 |#1| |#1| |#2| |#3| |#4|) . T) ((-952 (-350 (-486))) |has| |#2| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#2| (-952 (-486))) ((-952 |#2|) . T) ((-965 |#2|) . T) ((-970 |#2|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-3339 ((|#4| |#4|) 81 T ELT)) (-3337 ((|#4| |#4|) 76 T ELT)) (-3341 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2014 (-585 |#3|))) |#4| |#3|) 91 T ELT)) (-3340 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3338 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) -(((-1040 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3337 (|#4| |#4|)) (-15 -3338 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3339 (|#4| |#4|)) (-15 -3340 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3341 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2014 (-585 |#3|))) |#4| |#3|))) (-258) (-324 |#1|) (-324 |#1|) (-629 |#1| |#2| |#3|)) (T -1040)) -((-3341 (*1 *2 *3 *4) (-12 (-4 *5 (-258)) (-4 *6 (-324 *5)) (-4 *4 (-324 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-585 *4)))) (-5 *1 (-1040 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4)))) (-3340 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1040 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3339 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1040 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-3338 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1040 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3337 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1040 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 18 T ELT)) (-3084 (((-585 |#2|) $) 174 T ELT)) (-3086 (((-1087 $) $ |#2|) 60 T ELT) (((-1087 |#1|) $) 49 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 116 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 118 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 120 (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 |#2|)) 214 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3159 ((|#1| $) 165 T ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) ((|#2| $) NIL T ELT)) (-3759 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3962 (($ $) 218 T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) 90 T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT) (($ $ |#2|) NIL (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| (-471 |#2|) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| |#1| (-798 (-330))) (|has| |#2| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| |#1| (-798 (-486))) (|has| |#2| (-798 (-486)))) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 20 T ELT)) (-2422 (((-696) $) 30 T ELT)) (-3087 (($ (-1087 |#1|) |#2|) 54 T ELT) (($ (-1087 $) |#2|) 71 T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3941 (((-85) $) 38 T ELT)) (-2896 (($ |#1| (-471 |#2|)) 78 T ELT) (($ $ |#2| (-696)) 58 T ELT) (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#2|) NIL T ELT)) (-2823 (((-471 |#2|) $) 205 T ELT) (((-696) $ |#2|) 206 T ELT) (((-585 (-696)) $ (-585 |#2|)) 207 T ELT)) (-1626 (($ (-1 (-471 |#2|) (-471 |#2|)) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3085 (((-3 |#2| #1#) $) 177 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2897 (($ $) 217 T ELT)) (-3177 ((|#1| $) 43 T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| |#2|) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) 39 T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 148 (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) 153 (|has| |#1| (-393)) ELT) (($ $ $) 138 (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-823)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-497)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-585 |#2|) (-585 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-585 |#2|) (-585 $)) 194 T ELT)) (-3760 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3952 (((-471 |#2|) $) 201 T ELT) (((-696) $ |#2|) 196 T ELT) (((-585 (-696)) $ (-585 |#2|)) 199 T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| |#1| (-555 (-802 (-330)))) (|has| |#2| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| |#1| (-555 (-802 (-486)))) (|has| |#2| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| |#1| (-555 (-475))) (|has| |#2| (-555 (-475)))) ELT)) (-2820 ((|#1| $) 134 (|has| |#1| (-393)) ELT) (($ $ |#2|) 137 (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3950 (((-774) $) 159 T ELT) (($ (-486)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-3820 (((-585 |#1|) $) 162 T ELT)) (-3680 ((|#1| $ (-471 |#2|)) 80 T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) 87 T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) 123 (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 12 T CONST)) (-2669 (($) 14 T CONST)) (-2672 (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3059 (((-85) $ $) 106 T ELT)) (-3953 (($ $ |#1|) 132 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3842 (($ $ $) 55 T ELT)) (** (($ $ (-832)) 110 T ELT) (($ $ (-696)) 109 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1041 |#1| |#2|) (-863 |#1| (-471 |#2|) |#2|) (-963) (-758)) (T -1041)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3495 (($ $) 149 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 125 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3493 (($ $) 145 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 121 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3497 (($ $) 153 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 129 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3817 (((-859 |#1|) $ (-696)) NIL T ELT) (((-859 |#1|) $ (-696) (-696)) NIL T ELT)) (-2895 (((-85) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-696) $ |#2|) NIL T ELT) (((-696) $ |#2| (-696)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ $ (-585 |#2|) (-585 (-471 |#2|))) NIL T ELT) (($ $ |#2| (-471 |#2|)) NIL T ELT) (($ |#1| (-471 |#2|)) NIL T ELT) (($ $ |#2| (-696)) 63 T ELT) (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3946 (($ $) 119 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3815 (($ $ |#2|) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3679 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3772 (($ $ (-696)) 17 T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-3947 (($ $) 117 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (($ $ |#2| $) 104 T ELT) (($ $ (-585 |#2|) (-585 $)) 99 T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT)) (-3761 (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3952 (((-471 |#2|) $) NIL T ELT)) (-3342 (((-1 (-1071 |#3|) |#3|) (-585 |#2|) (-585 (-1071 |#3|))) 87 T ELT)) (-3498 (($ $) 155 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 131 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 151 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 127 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 147 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 123 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) 19 T ELT)) (-3950 (((-774) $) 194 T ELT) (($ (-486)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3680 ((|#1| $ (-471 |#2|)) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) ((|#3| $ (-696)) 43 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 161 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 137 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) 157 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 133 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 165 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 141 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) 167 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 143 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 163 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 139 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 159 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 135 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 52 T CONST)) (-2669 (($) 62 T CONST)) (-2672 (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#1|) 196 (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 66 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 109 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-350 (-486))) 114 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) 112 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) -(((-1042 |#1| |#2| |#3|) (-13 (-681 |#1| |#2|) (-10 -8 (-15 -3680 (|#3| $ (-696))) (-15 -3950 ($ |#2|)) (-15 -3950 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3342 ((-1 (-1071 |#3|) |#3|) (-585 |#2|) (-585 (-1071 |#3|)))) (IF (|has| |#1| (-38 (-350 (-486)))) (PROGN (-15 -3815 ($ $ |#2| |#1|)) (-15 -3679 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-963) (-758) (-863 |#1| (-471 |#2|) |#2|)) (T -1042)) -((-3680 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *2 (-863 *4 (-471 *5) *5)) (-5 *1 (-1042 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-758)))) (-3950 (*1 *1 *2) (-12 (-4 *3 (-963)) (-4 *2 (-758)) (-5 *1 (-1042 *3 *2 *4)) (-4 *4 (-863 *3 (-471 *2) *2)))) (-3950 (*1 *1 *2) (-12 (-4 *3 (-963)) (-4 *4 (-758)) (-5 *1 (-1042 *3 *4 *2)) (-4 *2 (-863 *3 (-471 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-758)) (-5 *1 (-1042 *3 *4 *2)) (-4 *2 (-863 *3 (-471 *4) *4)))) (-3342 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-1071 *7))) (-4 *6 (-758)) (-4 *7 (-863 *5 (-471 *6) *6)) (-4 *5 (-963)) (-5 *2 (-1 (-1071 *7) *7)) (-5 *1 (-1042 *5 *6 *7)))) (-3815 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-4 *2 (-758)) (-5 *1 (-1042 *3 *2 *4)) (-4 *4 (-863 *3 (-471 *2) *2)))) (-3679 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1042 *4 *3 *5))) (-4 *4 (-38 (-350 (-486)))) (-4 *4 (-963)) (-4 *3 (-758)) (-5 *1 (-1042 *4 *3 *5)) (-4 *5 (-863 *4 (-471 *3) *3))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3684 (((-585 (-2 (|:| -3865 $) (|:| -1703 (-585 |#4|)))) (-585 |#4|)) 91 T ELT)) (-3685 (((-585 $) (-585 |#4|)) 92 T ELT) (((-585 $) (-585 |#4|) (-85)) 120 T ELT)) (-3084 (((-585 |#3|) $) 39 T ELT)) (-2911 (((-85) $) 32 T ELT)) (-2902 (((-85) $) 23 (|has| |#1| (-497)) ELT)) (-3696 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3691 ((|#4| |#4| $) 98 T ELT)) (-3778 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 135 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3713 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3727 (($) 59 T CONST)) (-2907 (((-85) $) 28 (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) 30 (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) 31 (|has| |#1| (-497)) ELT)) (-3692 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 24 (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) 25 (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ "failed") (-585 |#4|)) 42 T ELT)) (-3159 (($ (-585 |#4|)) 41 T ELT)) (-3802 (((-3 $ #1#) $) 88 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-1355 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3409 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-497)) ELT)) (-3697 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3686 ((|#4| |#4| $) 93 T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3699 (((-2 (|:| -3865 (-585 |#4|)) (|:| -1703 (-585 |#4|))) $) 111 T ELT)) (-3200 (((-85) |#4| $) 145 T ELT)) (-3198 (((-85) |#4| $) 142 T ELT)) (-3201 (((-85) |#4| $) 146 T ELT) (((-85) $) 143 T ELT)) (-3698 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3183 ((|#3| $) 40 T ELT)) (-2611 (((-585 |#4|) $) 48 T ELT)) (-3248 (((-85) |#4| $) 53 (|has| |#4| (-72)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3846 (($ (-1 |#4| |#4|) $) 60 T ELT)) (-2917 (((-585 |#3|) $) 38 T ELT)) (-2916 (((-85) |#3| $) 37 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3194 (((-3 |#4| (-585 $)) |#4| |#4| $) 137 T ELT)) (-3193 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 136 T ELT)) (-3801 (((-3 |#4| #1#) $) 89 T ELT)) (-3195 (((-585 $) |#4| $) 138 T ELT)) (-3197 (((-3 (-85) (-585 $)) |#4| $) 141 T ELT)) (-3196 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 140 T ELT) (((-85) |#4| $) 139 T ELT)) (-3241 (((-585 $) |#4| $) 134 T ELT) (((-585 $) (-585 |#4|) $) 133 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 132 T ELT) (((-585 $) |#4| (-585 $)) 131 T ELT)) (-3443 (($ |#4| $) 126 T ELT) (($ (-585 |#4|) $) 125 T ELT)) (-3700 (((-585 |#4|) $) 113 T ELT)) (-3694 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3702 (((-85) $ $) 116 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-497)) ELT)) (-3695 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3804 (((-3 |#4| #1#) $) 90 T ELT)) (-1731 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 51 T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3772 (($ $ |#4|) 83 T ELT) (((-585 $) |#4| $) 124 T ELT) (((-585 $) |#4| (-585 $)) 123 T ELT) (((-585 $) (-585 |#4|) $) 122 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 121 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 46 T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) 64 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) 55 T ELT)) (-3406 (((-85) $) 58 T ELT)) (-3568 (($) 57 T ELT)) (-3952 (((-696) $) 112 T ELT)) (-1732 (((-696) |#4| $) 52 (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) 47 T ELT)) (-3403 (($ $) 56 T ELT)) (-3975 (((-475) $) 70 (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) 65 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-2915 (($ $ |#3|) 36 T ELT)) (-3687 (($ $) 94 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3950 (((-774) $) 13 T ELT) (((-585 |#4|) $) 43 T ELT)) (-3681 (((-696) $) 82 (|has| |#3| (-320)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3693 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) 104 T ELT)) (-3192 (((-585 $) |#4| $) 130 T ELT) (((-585 $) |#4| (-585 $)) 129 T ELT) (((-585 $) (-585 |#4|) $) 128 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 127 T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3683 (((-585 |#3|) $) 87 T ELT)) (-3199 (((-85) |#4| $) 144 T ELT)) (-3937 (((-85) |#3| $) 86 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3961 (((-696) $) 44 T ELT))) -(((-1043 |#1| |#2| |#3| |#4|) (-113) (-393) (-719) (-758) (-979 |t#1| |t#2| |t#3|)) (T -1043)) -NIL -(-13 (-1022 |t#1| |t#2| |t#3| |t#4|) (-709 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-554 (-585 |#4|)) . T) ((-554 (-774)) . T) ((-124 |#4|) . T) ((-555 (-475)) |has| |#4| (-555 (-475))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-318 |#4|) . T) ((-381 |#4|) . T) ((-430 |#4|) . T) ((-457 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-13) . T) ((-709 |#1| |#2| |#3| |#4|) . T) ((-891 |#1| |#2| |#3| |#4|) . T) ((-985 |#1| |#2| |#3| |#4|) . T) ((-1015) . T) ((-1037 |#4|) . T) ((-1022 |#1| |#2| |#3| |#4|) . T) ((-1126 |#1| |#2| |#3| |#4|) . T) ((-1131) . T)) -((-3576 (((-585 |#2|) |#1|) 15 T ELT)) (-3348 (((-585 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-585 |#2|) |#1|) 61 T ELT)) (-3346 (((-585 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-585 |#2|) |#1|) 59 T ELT)) (-3343 ((|#2| |#1|) 54 T ELT)) (-3344 (((-2 (|:| |solns| (-585 |#2|)) (|:| |maps| (-585 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3345 (((-585 |#2|) |#2| |#2|) 42 T ELT) (((-585 |#2|) |#1|) 58 T ELT)) (-3347 (((-585 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-585 |#2|) |#1|) 60 T ELT)) (-3352 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3350 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3349 ((|#2| |#2| |#2|) 50 T ELT)) (-3351 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) -(((-1044 |#1| |#2|) (-10 -7 (-15 -3576 ((-585 |#2|) |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -3344 ((-2 (|:| |solns| (-585 |#2|)) (|:| |maps| (-585 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3345 ((-585 |#2|) |#1|)) (-15 -3346 ((-585 |#2|) |#1|)) (-15 -3347 ((-585 |#2|) |#1|)) (-15 -3348 ((-585 |#2|) |#1|)) (-15 -3345 ((-585 |#2|) |#2| |#2|)) (-15 -3346 ((-585 |#2|) |#2| |#2| |#2|)) (-15 -3347 ((-585 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3348 ((-585 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3349 (|#2| |#2| |#2|)) (-15 -3350 (|#2| |#2| |#2| |#2|)) (-15 -3351 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3352 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1157 |#2|) (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (T -1044)) -((-3352 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2)))) (-3351 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2)))) (-3350 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2)))) (-3349 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2)))) (-3348 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-585 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1157 *3)))) (-3347 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-585 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1157 *3)))) (-3346 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-585 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1157 *3)))) (-3345 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-585 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1157 *3)))) (-3348 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4)))) (-3347 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4)))) (-3346 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4)))) (-3345 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4)))) (-3344 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-2 (|:| |solns| (-585 *5)) (|:| |maps| (-585 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1044 *3 *5)) (-4 *3 (-1157 *5)))) (-3343 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2)))) (-3576 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4))))) -((-3353 (((-585 (-585 (-249 (-265 |#1|)))) (-585 (-249 (-350 (-859 |#1|))))) 119 T ELT) (((-585 (-585 (-249 (-265 |#1|)))) (-585 (-249 (-350 (-859 |#1|)))) (-585 (-1092))) 118 T ELT) (((-585 (-585 (-249 (-265 |#1|)))) (-585 (-350 (-859 |#1|)))) 116 T ELT) (((-585 (-585 (-249 (-265 |#1|)))) (-585 (-350 (-859 |#1|))) (-585 (-1092))) 113 T ELT) (((-585 (-249 (-265 |#1|))) (-249 (-350 (-859 |#1|)))) 97 T ELT) (((-585 (-249 (-265 |#1|))) (-249 (-350 (-859 |#1|))) (-1092)) 98 T ELT) (((-585 (-249 (-265 |#1|))) (-350 (-859 |#1|))) 92 T ELT) (((-585 (-249 (-265 |#1|))) (-350 (-859 |#1|)) (-1092)) 82 T ELT)) (-3354 (((-585 (-585 (-265 |#1|))) (-585 (-350 (-859 |#1|))) (-585 (-1092))) 111 T ELT) (((-585 (-265 |#1|)) (-350 (-859 |#1|)) (-1092)) 54 T ELT)) (-3355 (((-1082 (-585 (-265 |#1|)) (-585 (-249 (-265 |#1|)))) (-350 (-859 |#1|)) (-1092)) 123 T ELT) (((-1082 (-585 (-265 |#1|)) (-585 (-249 (-265 |#1|)))) (-249 (-350 (-859 |#1|))) (-1092)) 122 T ELT))) -(((-1045 |#1|) (-10 -7 (-15 -3353 ((-585 (-249 (-265 |#1|))) (-350 (-859 |#1|)) (-1092))) (-15 -3353 ((-585 (-249 (-265 |#1|))) (-350 (-859 |#1|)))) (-15 -3353 ((-585 (-249 (-265 |#1|))) (-249 (-350 (-859 |#1|))) (-1092))) (-15 -3353 ((-585 (-249 (-265 |#1|))) (-249 (-350 (-859 |#1|))))) (-15 -3353 ((-585 (-585 (-249 (-265 |#1|)))) (-585 (-350 (-859 |#1|))) (-585 (-1092)))) (-15 -3353 ((-585 (-585 (-249 (-265 |#1|)))) (-585 (-350 (-859 |#1|))))) (-15 -3353 ((-585 (-585 (-249 (-265 |#1|)))) (-585 (-249 (-350 (-859 |#1|)))) (-585 (-1092)))) (-15 -3353 ((-585 (-585 (-249 (-265 |#1|)))) (-585 (-249 (-350 (-859 |#1|)))))) (-15 -3354 ((-585 (-265 |#1|)) (-350 (-859 |#1|)) (-1092))) (-15 -3354 ((-585 (-585 (-265 |#1|))) (-585 (-350 (-859 |#1|))) (-585 (-1092)))) (-15 -3355 ((-1082 (-585 (-265 |#1|)) (-585 (-249 (-265 |#1|)))) (-249 (-350 (-859 |#1|))) (-1092))) (-15 -3355 ((-1082 (-585 (-265 |#1|)) (-585 (-249 (-265 |#1|)))) (-350 (-859 |#1|)) (-1092)))) (-13 (-258) (-120))) (T -1045)) -((-3355 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1082 (-585 (-265 *5)) (-585 (-249 (-265 *5))))) (-5 *1 (-1045 *5)))) (-3355 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-859 *5)))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1082 (-585 (-265 *5)) (-585 (-249 (-265 *5))))) (-5 *1 (-1045 *5)))) (-3354 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-350 (-859 *5)))) (-5 *4 (-585 (-1092))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-265 *5)))) (-5 *1 (-1045 *5)))) (-3354 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-265 *5))) (-5 *1 (-1045 *5)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-585 (-249 (-350 (-859 *4))))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *4))))) (-5 *1 (-1045 *4)))) (-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-249 (-350 (-859 *5))))) (-5 *4 (-585 (-1092))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *5))))) (-5 *1 (-1045 *5)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-585 (-350 (-859 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *4))))) (-5 *1 (-1045 *4)))) (-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-350 (-859 *5)))) (-5 *4 (-585 (-1092))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *5))))) (-5 *1 (-1045 *5)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-249 (-350 (-859 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1045 *4)))) (-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-859 *5)))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1045 *5)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1045 *4)))) (-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1045 *5))))) -((-3357 (((-350 (-1087 (-265 |#1|))) (-1181 (-265 |#1|)) (-350 (-1087 (-265 |#1|))) (-486)) 36 T ELT)) (-3356 (((-350 (-1087 (-265 |#1|))) (-350 (-1087 (-265 |#1|))) (-350 (-1087 (-265 |#1|))) (-350 (-1087 (-265 |#1|)))) 48 T ELT))) -(((-1046 |#1|) (-10 -7 (-15 -3356 ((-350 (-1087 (-265 |#1|))) (-350 (-1087 (-265 |#1|))) (-350 (-1087 (-265 |#1|))) (-350 (-1087 (-265 |#1|))))) (-15 -3357 ((-350 (-1087 (-265 |#1|))) (-1181 (-265 |#1|)) (-350 (-1087 (-265 |#1|))) (-486)))) (-497)) (T -1046)) -((-3357 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-350 (-1087 (-265 *5)))) (-5 *3 (-1181 (-265 *5))) (-5 *4 (-486)) (-4 *5 (-497)) (-5 *1 (-1046 *5)))) (-3356 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-350 (-1087 (-265 *3)))) (-4 *3 (-497)) (-5 *1 (-1046 *3))))) -((-3576 (((-585 (-585 (-249 (-265 |#1|)))) (-585 (-249 (-265 |#1|))) (-585 (-1092))) 244 T ELT) (((-585 (-249 (-265 |#1|))) (-265 |#1|) (-1092)) 23 T ELT) (((-585 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1092)) 29 T ELT) (((-585 (-249 (-265 |#1|))) (-249 (-265 |#1|))) 28 T ELT) (((-585 (-249 (-265 |#1|))) (-265 |#1|)) 24 T ELT))) -(((-1047 |#1|) (-10 -7 (-15 -3576 ((-585 (-249 (-265 |#1|))) (-265 |#1|))) (-15 -3576 ((-585 (-249 (-265 |#1|))) (-249 (-265 |#1|)))) (-15 -3576 ((-585 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1092))) (-15 -3576 ((-585 (-249 (-265 |#1|))) (-265 |#1|) (-1092))) (-15 -3576 ((-585 (-585 (-249 (-265 |#1|)))) (-585 (-249 (-265 |#1|))) (-585 (-1092))))) (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (T -1047)) -((-3576 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-1092))) (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *5))))) (-5 *1 (-1047 *5)) (-5 *3 (-585 (-249 (-265 *5)))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1047 *5)) (-5 *3 (-265 *5)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1047 *5)) (-5 *3 (-249 (-265 *5))))) (-3576 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1047 *4)) (-5 *3 (-249 (-265 *4))))) (-3576 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1047 *4)) (-5 *3 (-265 *4))))) -((-3359 ((|#2| |#2|) 28 (|has| |#1| (-758)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 25 T ELT)) (-3358 ((|#2| |#2|) 27 (|has| |#1| (-758)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 22 T ELT))) -(((-1048 |#1| |#2|) (-10 -7 (-15 -3358 (|#2| |#2| (-1 (-85) |#1| |#1|))) (-15 -3359 (|#2| |#2| (-1 (-85) |#1| |#1|))) (IF (|has| |#1| (-758)) (PROGN (-15 -3358 (|#2| |#2|)) (-15 -3359 (|#2| |#2|))) |%noBranch|)) (-1131) (-13 (-540 (-486) |#1|) (-318 |#1|) (-1037 |#1|))) (T -1048)) -((-3359 (*1 *2 *2) (-12 (-4 *3 (-758)) (-4 *3 (-1131)) (-5 *1 (-1048 *3 *2)) (-4 *2 (-13 (-540 (-486) *3) (-318 *3) (-1037 *3))))) (-3358 (*1 *2 *2) (-12 (-4 *3 (-758)) (-4 *3 (-1131)) (-5 *1 (-1048 *3 *2)) (-4 *2 (-13 (-540 (-486) *3) (-318 *3) (-1037 *3))))) (-3359 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-1048 *4 *2)) (-4 *2 (-13 (-540 (-486) *4) (-318 *4) (-1037 *4))))) (-3358 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-1048 *4 *2)) (-4 *2 (-13 (-540 (-486) *4) (-318 *4) (-1037 *4)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3892 (((-1081 3 |#1|) $) 141 T ELT)) (-3369 (((-85) $) 101 T ELT)) (-3370 (($ $ (-585 (-856 |#1|))) 44 T ELT) (($ $ (-585 (-585 |#1|))) 104 T ELT) (($ (-585 (-856 |#1|))) 103 T ELT) (((-585 (-856 |#1|)) $) 102 T ELT)) (-3375 (((-85) $) 72 T ELT)) (-3709 (($ $ (-856 |#1|)) 76 T ELT) (($ $ (-585 |#1|)) 81 T ELT) (($ $ (-696)) 83 T ELT) (($ (-856 |#1|)) 77 T ELT) (((-856 |#1|) $) 75 T ELT)) (-3361 (((-2 (|:| -3854 (-696)) (|:| |curves| (-696)) (|:| |polygons| (-696)) (|:| |constructs| (-696))) $) 139 T ELT)) (-3379 (((-696) $) 53 T ELT)) (-3380 (((-696) $) 52 T ELT)) (-3891 (($ $ (-696) (-856 |#1|)) 67 T ELT)) (-3367 (((-85) $) 111 T ELT)) (-3368 (($ $ (-585 (-585 (-856 |#1|))) (-585 (-145)) (-145)) 118 T ELT) (($ $ (-585 (-585 (-585 |#1|))) (-585 (-145)) (-145)) 120 T ELT) (($ $ (-585 (-585 (-856 |#1|))) (-85) (-85)) 115 T ELT) (($ $ (-585 (-585 (-585 |#1|))) (-85) (-85)) 127 T ELT) (($ (-585 (-585 (-856 |#1|)))) 116 T ELT) (($ (-585 (-585 (-856 |#1|))) (-85) (-85)) 117 T ELT) (((-585 (-585 (-856 |#1|))) $) 114 T ELT)) (-3521 (($ (-585 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3362 (((-585 (-145)) $) 133 T ELT)) (-3366 (((-585 (-856 |#1|)) $) 130 T ELT)) (-3363 (((-585 (-585 (-145))) $) 132 T ELT)) (-3364 (((-585 (-585 (-585 (-856 |#1|)))) $) NIL T ELT)) (-3365 (((-585 (-585 (-585 (-696)))) $) 131 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3376 (((-696) $ (-585 (-856 |#1|))) 65 T ELT)) (-3373 (((-85) $) 84 T ELT)) (-3374 (($ $ (-585 (-856 |#1|))) 86 T ELT) (($ $ (-585 (-585 |#1|))) 92 T ELT) (($ (-585 (-856 |#1|))) 87 T ELT) (((-585 (-856 |#1|)) $) 85 T ELT)) (-3381 (($) 48 T ELT) (($ (-1081 3 |#1|)) 49 T ELT)) (-3403 (($ $) 63 T ELT)) (-3377 (((-585 $) $) 62 T ELT)) (-3757 (($ (-585 $)) 59 T ELT)) (-3378 (((-585 $) $) 61 T ELT)) (-3950 (((-774) $) 146 T ELT)) (-3371 (((-85) $) 94 T ELT)) (-3372 (($ $ (-585 (-856 |#1|))) 96 T ELT) (($ $ (-585 (-585 |#1|))) 99 T ELT) (($ (-585 (-856 |#1|))) 97 T ELT) (((-585 (-856 |#1|)) $) 95 T ELT)) (-3360 (($ $) 140 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-1049 |#1|) (-1050 |#1|) (-963)) (T -1049)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3892 (((-1081 3 |#1|) $) 17 T ELT)) (-3369 (((-85) $) 33 T ELT)) (-3370 (($ $ (-585 (-856 |#1|))) 37 T ELT) (($ $ (-585 (-585 |#1|))) 36 T ELT) (($ (-585 (-856 |#1|))) 35 T ELT) (((-585 (-856 |#1|)) $) 34 T ELT)) (-3375 (((-85) $) 48 T ELT)) (-3709 (($ $ (-856 |#1|)) 53 T ELT) (($ $ (-585 |#1|)) 52 T ELT) (($ $ (-696)) 51 T ELT) (($ (-856 |#1|)) 50 T ELT) (((-856 |#1|) $) 49 T ELT)) (-3361 (((-2 (|:| -3854 (-696)) (|:| |curves| (-696)) (|:| |polygons| (-696)) (|:| |constructs| (-696))) $) 19 T ELT)) (-3379 (((-696) $) 62 T ELT)) (-3380 (((-696) $) 63 T ELT)) (-3891 (($ $ (-696) (-856 |#1|)) 54 T ELT)) (-3367 (((-85) $) 25 T ELT)) (-3368 (($ $ (-585 (-585 (-856 |#1|))) (-585 (-145)) (-145)) 32 T ELT) (($ $ (-585 (-585 (-585 |#1|))) (-585 (-145)) (-145)) 31 T ELT) (($ $ (-585 (-585 (-856 |#1|))) (-85) (-85)) 30 T ELT) (($ $ (-585 (-585 (-585 |#1|))) (-85) (-85)) 29 T ELT) (($ (-585 (-585 (-856 |#1|)))) 28 T ELT) (($ (-585 (-585 (-856 |#1|))) (-85) (-85)) 27 T ELT) (((-585 (-585 (-856 |#1|))) $) 26 T ELT)) (-3521 (($ (-585 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3362 (((-585 (-145)) $) 20 T ELT)) (-3366 (((-585 (-856 |#1|)) $) 24 T ELT)) (-3363 (((-585 (-585 (-145))) $) 21 T ELT)) (-3364 (((-585 (-585 (-585 (-856 |#1|)))) $) 22 T ELT)) (-3365 (((-585 (-585 (-585 (-696)))) $) 23 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3376 (((-696) $ (-585 (-856 |#1|))) 55 T ELT)) (-3373 (((-85) $) 43 T ELT)) (-3374 (($ $ (-585 (-856 |#1|))) 47 T ELT) (($ $ (-585 (-585 |#1|))) 46 T ELT) (($ (-585 (-856 |#1|))) 45 T ELT) (((-585 (-856 |#1|)) $) 44 T ELT)) (-3381 (($) 65 T ELT) (($ (-1081 3 |#1|)) 64 T ELT)) (-3403 (($ $) 56 T ELT)) (-3377 (((-585 $) $) 57 T ELT)) (-3757 (($ (-585 $)) 59 T ELT)) (-3378 (((-585 $) $) 58 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-3371 (((-85) $) 38 T ELT)) (-3372 (($ $ (-585 (-856 |#1|))) 42 T ELT) (($ $ (-585 (-585 |#1|))) 41 T ELT) (($ (-585 (-856 |#1|))) 40 T ELT) (((-585 (-856 |#1|)) $) 39 T ELT)) (-3360 (($ $) 18 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) -(((-1050 |#1|) (-113) (-963)) (T -1050)) -((-3950 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-774)))) (-3381 (*1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-963)))) (-3381 (*1 *1 *2) (-12 (-5 *2 (-1081 3 *3)) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) (-3379 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) (-3521 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3521 (*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-963)))) (-3757 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3378 (*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-585 *1)) (-4 *1 (-1050 *3)))) (-3377 (*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-585 *1)) (-4 *1 (-1050 *3)))) (-3403 (*1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-963)))) (-3376 (*1 *2 *1 *3) (-12 (-5 *3 (-585 (-856 *4))) (-4 *1 (-1050 *4)) (-4 *4 (-963)) (-5 *2 (-696)))) (-3891 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *3 (-856 *4)) (-4 *1 (-1050 *4)) (-4 *4 (-963)))) (-3709 (*1 *1 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3709 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3709 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-856 *3)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85)))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) (-3374 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) (-3373 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85)))) (-3372 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3372 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3372 (*1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85)))) (-3370 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3370 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) (-3370 (*1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85)))) (-3368 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-585 (-856 *5)))) (-5 *3 (-585 (-145))) (-5 *4 (-145)) (-4 *1 (-1050 *5)) (-4 *5 (-963)))) (-3368 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-585 (-585 *5)))) (-5 *3 (-585 (-145))) (-5 *4 (-145)) (-4 *1 (-1050 *5)) (-4 *5 (-963)))) (-3368 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-585 (-585 (-856 *4)))) (-5 *3 (-85)) (-4 *1 (-1050 *4)) (-4 *4 (-963)))) (-3368 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-585 (-585 (-585 *4)))) (-5 *3 (-85)) (-4 *1 (-1050 *4)) (-4 *4 (-963)))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-856 *3)))) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) (-3368 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-585 (-585 (-856 *4)))) (-5 *3 (-85)) (-4 *4 (-963)) (-4 *1 (-1050 *4)))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-856 *3)))))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-585 (-696))))))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-585 (-856 *3))))))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-145)))))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-145))))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -3854 (-696)) (|:| |curves| (-696)) (|:| |polygons| (-696)) (|:| |constructs| (-696)))))) (-3360 (*1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-963)))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-1081 3 *3))))) -(-13 (-1015) (-10 -8 (-15 -3381 ($)) (-15 -3381 ($ (-1081 3 |t#1|))) (-15 -3380 ((-696) $)) (-15 -3379 ((-696) $)) (-15 -3521 ($ (-585 $))) (-15 -3521 ($ $ $)) (-15 -3757 ($ (-585 $))) (-15 -3378 ((-585 $) $)) (-15 -3377 ((-585 $) $)) (-15 -3403 ($ $)) (-15 -3376 ((-696) $ (-585 (-856 |t#1|)))) (-15 -3891 ($ $ (-696) (-856 |t#1|))) (-15 -3709 ($ $ (-856 |t#1|))) (-15 -3709 ($ $ (-585 |t#1|))) (-15 -3709 ($ $ (-696))) (-15 -3709 ($ (-856 |t#1|))) (-15 -3709 ((-856 |t#1|) $)) (-15 -3375 ((-85) $)) (-15 -3374 ($ $ (-585 (-856 |t#1|)))) (-15 -3374 ($ $ (-585 (-585 |t#1|)))) (-15 -3374 ($ (-585 (-856 |t#1|)))) (-15 -3374 ((-585 (-856 |t#1|)) $)) (-15 -3373 ((-85) $)) (-15 -3372 ($ $ (-585 (-856 |t#1|)))) (-15 -3372 ($ $ (-585 (-585 |t#1|)))) (-15 -3372 ($ (-585 (-856 |t#1|)))) (-15 -3372 ((-585 (-856 |t#1|)) $)) (-15 -3371 ((-85) $)) (-15 -3370 ($ $ (-585 (-856 |t#1|)))) (-15 -3370 ($ $ (-585 (-585 |t#1|)))) (-15 -3370 ($ (-585 (-856 |t#1|)))) (-15 -3370 ((-585 (-856 |t#1|)) $)) (-15 -3369 ((-85) $)) (-15 -3368 ($ $ (-585 (-585 (-856 |t#1|))) (-585 (-145)) (-145))) (-15 -3368 ($ $ (-585 (-585 (-585 |t#1|))) (-585 (-145)) (-145))) (-15 -3368 ($ $ (-585 (-585 (-856 |t#1|))) (-85) (-85))) (-15 -3368 ($ $ (-585 (-585 (-585 |t#1|))) (-85) (-85))) (-15 -3368 ($ (-585 (-585 (-856 |t#1|))))) (-15 -3368 ($ (-585 (-585 (-856 |t#1|))) (-85) (-85))) (-15 -3368 ((-585 (-585 (-856 |t#1|))) $)) (-15 -3367 ((-85) $)) (-15 -3366 ((-585 (-856 |t#1|)) $)) (-15 -3365 ((-585 (-585 (-585 (-696)))) $)) (-15 -3364 ((-585 (-585 (-585 (-856 |t#1|)))) $)) (-15 -3363 ((-585 (-585 (-145))) $)) (-15 -3362 ((-585 (-145)) $)) (-15 -3361 ((-2 (|:| -3854 (-696)) (|:| |curves| (-696)) (|:| |polygons| (-696)) (|:| |constructs| (-696))) $)) (-15 -3360 ($ $)) (-15 -3892 ((-1081 3 |t#1|) $)) (-15 -3950 ((-774) $)))) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 185 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) 7 T ELT)) (-3569 (((-85) $ (|[\|\|]| (-464))) 19 T ELT) (((-85) $ (|[\|\|]| (-172))) 23 T ELT) (((-85) $ (|[\|\|]| (-619))) 27 T ELT) (((-85) $ (|[\|\|]| (-1192))) 31 T ELT) (((-85) $ (|[\|\|]| (-111))) 35 T ELT) (((-85) $ (|[\|\|]| (-541))) 39 T ELT) (((-85) $ (|[\|\|]| (-106))) 43 T ELT) (((-85) $ (|[\|\|]| (-1031))) 47 T ELT) (((-85) $ (|[\|\|]| (-67))) 51 T ELT) (((-85) $ (|[\|\|]| (-624))) 55 T ELT) (((-85) $ (|[\|\|]| (-460))) 59 T ELT) (((-85) $ (|[\|\|]| (-980))) 63 T ELT) (((-85) $ (|[\|\|]| (-1193))) 67 T ELT) (((-85) $ (|[\|\|]| (-465))) 71 T ELT) (((-85) $ (|[\|\|]| (-1069))) 75 T ELT) (((-85) $ (|[\|\|]| (-127))) 79 T ELT) (((-85) $ (|[\|\|]| (-615))) 83 T ELT) (((-85) $ (|[\|\|]| (-263))) 87 T ELT) (((-85) $ (|[\|\|]| (-950))) 91 T ELT) (((-85) $ (|[\|\|]| (-154))) 95 T ELT) (((-85) $ (|[\|\|]| (-885))) 99 T ELT) (((-85) $ (|[\|\|]| (-987))) 103 T ELT) (((-85) $ (|[\|\|]| (-1005))) 107 T ELT) (((-85) $ (|[\|\|]| (-1010))) 111 T ELT) (((-85) $ (|[\|\|]| (-567))) 116 T ELT) (((-85) $ (|[\|\|]| (-1083))) 120 T ELT) (((-85) $ (|[\|\|]| (-129))) 124 T ELT) (((-85) $ (|[\|\|]| (-110))) 128 T ELT) (((-85) $ (|[\|\|]| (-419))) 132 T ELT) (((-85) $ (|[\|\|]| (-530))) 136 T ELT) (((-85) $ (|[\|\|]| (-448))) 140 T ELT) (((-85) $ (|[\|\|]| (-1075))) 144 T ELT) (((-85) $ (|[\|\|]| (-486))) 148 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3575 (((-464) $) 20 T ELT) (((-172) $) 24 T ELT) (((-619) $) 28 T ELT) (((-1192) $) 32 T ELT) (((-111) $) 36 T ELT) (((-541) $) 40 T ELT) (((-106) $) 44 T ELT) (((-1031) $) 48 T ELT) (((-67) $) 52 T ELT) (((-624) $) 56 T ELT) (((-460) $) 60 T ELT) (((-980) $) 64 T ELT) (((-1193) $) 68 T ELT) (((-465) $) 72 T ELT) (((-1069) $) 76 T ELT) (((-127) $) 80 T ELT) (((-615) $) 84 T ELT) (((-263) $) 88 T ELT) (((-950) $) 92 T ELT) (((-154) $) 96 T ELT) (((-885) $) 100 T ELT) (((-987) $) 104 T ELT) (((-1005) $) 108 T ELT) (((-1010) $) 112 T ELT) (((-567) $) 117 T ELT) (((-1083) $) 121 T ELT) (((-129) $) 125 T ELT) (((-110) $) 129 T ELT) (((-419) $) 133 T ELT) (((-530) $) 137 T ELT) (((-448) $) 141 T ELT) (((-1075) $) 145 T ELT) (((-486) $) 149 T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-1051) (-1053)) (T -1051)) -NIL -((-3382 (((-585 (-1097)) (-1075)) 9 T ELT))) -(((-1052) (-10 -7 (-15 -3382 ((-585 (-1097)) (-1075))))) (T -1052)) -((-3382 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-585 (-1097))) (-5 *1 (-1052))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-1097)) 20 T ELT) (((-1097) $) 19 T ELT)) (-3569 (((-85) $ (|[\|\|]| (-464))) 88 T ELT) (((-85) $ (|[\|\|]| (-172))) 86 T ELT) (((-85) $ (|[\|\|]| (-619))) 84 T ELT) (((-85) $ (|[\|\|]| (-1192))) 82 T ELT) (((-85) $ (|[\|\|]| (-111))) 80 T ELT) (((-85) $ (|[\|\|]| (-541))) 78 T ELT) (((-85) $ (|[\|\|]| (-106))) 76 T ELT) (((-85) $ (|[\|\|]| (-1031))) 74 T ELT) (((-85) $ (|[\|\|]| (-67))) 72 T ELT) (((-85) $ (|[\|\|]| (-624))) 70 T ELT) (((-85) $ (|[\|\|]| (-460))) 68 T ELT) (((-85) $ (|[\|\|]| (-980))) 66 T ELT) (((-85) $ (|[\|\|]| (-1193))) 64 T ELT) (((-85) $ (|[\|\|]| (-465))) 62 T ELT) (((-85) $ (|[\|\|]| (-1069))) 60 T ELT) (((-85) $ (|[\|\|]| (-127))) 58 T ELT) (((-85) $ (|[\|\|]| (-615))) 56 T ELT) (((-85) $ (|[\|\|]| (-263))) 54 T ELT) (((-85) $ (|[\|\|]| (-950))) 52 T ELT) (((-85) $ (|[\|\|]| (-154))) 50 T ELT) (((-85) $ (|[\|\|]| (-885))) 48 T ELT) (((-85) $ (|[\|\|]| (-987))) 46 T ELT) (((-85) $ (|[\|\|]| (-1005))) 44 T ELT) (((-85) $ (|[\|\|]| (-1010))) 42 T ELT) (((-85) $ (|[\|\|]| (-567))) 40 T ELT) (((-85) $ (|[\|\|]| (-1083))) 38 T ELT) (((-85) $ (|[\|\|]| (-129))) 36 T ELT) (((-85) $ (|[\|\|]| (-110))) 34 T ELT) (((-85) $ (|[\|\|]| (-419))) 32 T ELT) (((-85) $ (|[\|\|]| (-530))) 30 T ELT) (((-85) $ (|[\|\|]| (-448))) 28 T ELT) (((-85) $ (|[\|\|]| (-1075))) 26 T ELT) (((-85) $ (|[\|\|]| (-486))) 24 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3575 (((-464) $) 87 T ELT) (((-172) $) 85 T ELT) (((-619) $) 83 T ELT) (((-1192) $) 81 T ELT) (((-111) $) 79 T ELT) (((-541) $) 77 T ELT) (((-106) $) 75 T ELT) (((-1031) $) 73 T ELT) (((-67) $) 71 T ELT) (((-624) $) 69 T ELT) (((-460) $) 67 T ELT) (((-980) $) 65 T ELT) (((-1193) $) 63 T ELT) (((-465) $) 61 T ELT) (((-1069) $) 59 T ELT) (((-127) $) 57 T ELT) (((-615) $) 55 T ELT) (((-263) $) 53 T ELT) (((-950) $) 51 T ELT) (((-154) $) 49 T ELT) (((-885) $) 47 T ELT) (((-987) $) 45 T ELT) (((-1005) $) 43 T ELT) (((-1010) $) 41 T ELT) (((-567) $) 39 T ELT) (((-1083) $) 37 T ELT) (((-129) $) 35 T ELT) (((-110) $) 33 T ELT) (((-419) $) 31 T ELT) (((-530) $) 29 T ELT) (((-448) $) 27 T ELT) (((-1075) $) 25 T ELT) (((-486) $) 23 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) -(((-1053) (-113)) (T -1053)) -((-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-464))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-464)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-172)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-619)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1192))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1192)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-111)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-541))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-541)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-106)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1031))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1031)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-67)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-624)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-460))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-460)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-980))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-980)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1193))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1193)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-465))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-465)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1069))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1069)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-127)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-615))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-615)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-263)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-950))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-950)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-154)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-885))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-885)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-987))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-987)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1005))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1005)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1010))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1010)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-567)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1083)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-129)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-110)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-419))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-419)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-530)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-448))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-448)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1075)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-486))) (-5 *2 (-85)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-486))))) -(-13 (-997) (-1177) (-10 -8 (-15 -3569 ((-85) $ (|[\|\|]| (-464)))) (-15 -3575 ((-464) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-172)))) (-15 -3575 ((-172) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-619)))) (-15 -3575 ((-619) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-1192)))) (-15 -3575 ((-1192) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-111)))) (-15 -3575 ((-111) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-541)))) (-15 -3575 ((-541) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-106)))) (-15 -3575 ((-106) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-1031)))) (-15 -3575 ((-1031) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-67)))) (-15 -3575 ((-67) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-624)))) (-15 -3575 ((-624) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-460)))) (-15 -3575 ((-460) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-980)))) (-15 -3575 ((-980) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-1193)))) (-15 -3575 ((-1193) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-465)))) (-15 -3575 ((-465) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-1069)))) (-15 -3575 ((-1069) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-127)))) (-15 -3575 ((-127) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-615)))) (-15 -3575 ((-615) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-263)))) (-15 -3575 ((-263) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-950)))) (-15 -3575 ((-950) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-154)))) (-15 -3575 ((-154) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-885)))) (-15 -3575 ((-885) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-987)))) (-15 -3575 ((-987) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-1005)))) (-15 -3575 ((-1005) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-1010)))) (-15 -3575 ((-1010) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-567)))) (-15 -3575 ((-567) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-1083)))) (-15 -3575 ((-1083) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-129)))) (-15 -3575 ((-129) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-110)))) (-15 -3575 ((-110) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-419)))) (-15 -3575 ((-419) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-530)))) (-15 -3575 ((-530) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-448)))) (-15 -3575 ((-448) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-1075)))) (-15 -3575 ((-1075) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-486)))) (-15 -3575 ((-486) $)))) -(((-64) . T) ((-72) . T) ((-557 (-1097)) . T) ((-554 (-774)) . T) ((-554 (-1097)) . T) ((-431 (-1097)) . T) ((-13) . T) ((-1015) . T) ((-997) . T) ((-1131) . T) ((-1177) . T)) -((-3385 (((-1187) (-585 (-774))) 22 T ELT) (((-1187) (-774)) 21 T ELT)) (-3384 (((-1187) (-585 (-774))) 20 T ELT) (((-1187) (-774)) 19 T ELT)) (-3383 (((-1187) (-585 (-774))) 18 T ELT) (((-1187) (-774)) 10 T ELT) (((-1187) (-1075) (-774)) 16 T ELT))) -(((-1054) (-10 -7 (-15 -3383 ((-1187) (-1075) (-774))) (-15 -3383 ((-1187) (-774))) (-15 -3384 ((-1187) (-774))) (-15 -3385 ((-1187) (-774))) (-15 -3383 ((-1187) (-585 (-774)))) (-15 -3384 ((-1187) (-585 (-774)))) (-15 -3385 ((-1187) (-585 (-774)))))) (T -1054)) -((-3385 (*1 *2 *3) (-12 (-5 *3 (-585 (-774))) (-5 *2 (-1187)) (-5 *1 (-1054)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-585 (-774))) (-5 *2 (-1187)) (-5 *1 (-1054)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-585 (-774))) (-5 *2 (-1187)) (-5 *1 (-1054)))) (-3385 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-1054)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-1054)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-1054)))) (-3383 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-774)) (-5 *2 (-1187)) (-5 *1 (-1054))))) -((-3389 (($ $ $) 10 T ELT)) (-3388 (($ $) 9 T ELT)) (-3392 (($ $ $) 13 T ELT)) (-3394 (($ $ $) 15 T ELT)) (-3391 (($ $ $) 12 T ELT)) (-3393 (($ $ $) 14 T ELT)) (-3396 (($ $) 17 T ELT)) (-3395 (($ $) 16 T ELT)) (-3386 (($ $) 6 T ELT)) (-3390 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3387 (($ $ $) 8 T ELT))) +((-3086 (((-587 (-587 (-251 (-352 (-861 |#2|))))) (-587 (-861 |#2|)) (-587 (-1094))) 38 T ELT))) +(((-955 |#1| |#2|) (-10 -7 (-15 -3086 ((-587 (-587 (-251 (-352 (-861 |#2|))))) (-587 (-861 |#2|)) (-587 (-1094))))) (-499) (-13 (-499) (-954 |#1|))) (T -955)) +((-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-861 *6))) (-5 *4 (-587 (-1094))) (-4 *6 (-13 (-499) (-954 *5))) (-4 *5 (-499)) (-5 *2 (-587 (-587 (-251 (-352 (-861 *6)))))) (-5 *1 (-955 *5 *6))))) +((-3087 (((-587 (-1094)) (-352 (-861 |#1|))) 17 T ELT)) (-3089 (((-352 (-1089 (-352 (-861 |#1|)))) (-352 (-861 |#1|)) (-1094)) 24 T ELT)) (-3090 (((-352 (-861 |#1|)) (-352 (-1089 (-352 (-861 |#1|)))) (-1094)) 26 T ELT)) (-3088 (((-3 (-1094) "failed") (-352 (-861 |#1|))) 20 T ELT)) (-3774 (((-352 (-861 |#1|)) (-352 (-861 |#1|)) (-587 (-251 (-352 (-861 |#1|))))) 32 T ELT) (((-352 (-861 |#1|)) (-352 (-861 |#1|)) (-251 (-352 (-861 |#1|)))) 33 T ELT) (((-352 (-861 |#1|)) (-352 (-861 |#1|)) (-587 (-1094)) (-587 (-352 (-861 |#1|)))) 28 T ELT) (((-352 (-861 |#1|)) (-352 (-861 |#1|)) (-1094) (-352 (-861 |#1|))) 29 T ELT)) (-3953 (((-352 (-861 |#1|)) |#1|) 11 T ELT))) +(((-956 |#1|) (-10 -7 (-15 -3087 ((-587 (-1094)) (-352 (-861 |#1|)))) (-15 -3088 ((-3 (-1094) "failed") (-352 (-861 |#1|)))) (-15 -3089 ((-352 (-1089 (-352 (-861 |#1|)))) (-352 (-861 |#1|)) (-1094))) (-15 -3090 ((-352 (-861 |#1|)) (-352 (-1089 (-352 (-861 |#1|)))) (-1094))) (-15 -3774 ((-352 (-861 |#1|)) (-352 (-861 |#1|)) (-1094) (-352 (-861 |#1|)))) (-15 -3774 ((-352 (-861 |#1|)) (-352 (-861 |#1|)) (-587 (-1094)) (-587 (-352 (-861 |#1|))))) (-15 -3774 ((-352 (-861 |#1|)) (-352 (-861 |#1|)) (-251 (-352 (-861 |#1|))))) (-15 -3774 ((-352 (-861 |#1|)) (-352 (-861 |#1|)) (-587 (-251 (-352 (-861 |#1|)))))) (-15 -3953 ((-352 (-861 |#1|)) |#1|))) (-499)) (T -956)) +((-3953 (*1 *2 *3) (-12 (-5 *2 (-352 (-861 *3))) (-5 *1 (-956 *3)) (-4 *3 (-499)))) (-3774 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-251 (-352 (-861 *4))))) (-5 *2 (-352 (-861 *4))) (-4 *4 (-499)) (-5 *1 (-956 *4)))) (-3774 (*1 *2 *2 *3) (-12 (-5 *3 (-251 (-352 (-861 *4)))) (-5 *2 (-352 (-861 *4))) (-4 *4 (-499)) (-5 *1 (-956 *4)))) (-3774 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-587 (-1094))) (-5 *4 (-587 (-352 (-861 *5)))) (-5 *2 (-352 (-861 *5))) (-4 *5 (-499)) (-5 *1 (-956 *5)))) (-3774 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-352 (-861 *4))) (-5 *3 (-1094)) (-4 *4 (-499)) (-5 *1 (-956 *4)))) (-3090 (*1 *2 *3 *4) (-12 (-5 *3 (-352 (-1089 (-352 (-861 *5))))) (-5 *4 (-1094)) (-5 *2 (-352 (-861 *5))) (-5 *1 (-956 *5)) (-4 *5 (-499)))) (-3089 (*1 *2 *3 *4) (-12 (-5 *4 (-1094)) (-4 *5 (-499)) (-5 *2 (-352 (-1089 (-352 (-861 *5))))) (-5 *1 (-956 *5)) (-5 *3 (-352 (-861 *5))))) (-3088 (*1 *2 *3) (|partial| -12 (-5 *3 (-352 (-861 *4))) (-4 *4 (-499)) (-5 *2 (-1094)) (-5 *1 (-956 *4)))) (-3087 (*1 *2 *3) (-12 (-5 *3 (-352 (-861 *4))) (-4 *4 (-499)) (-5 *2 (-587 (-1094))) (-5 *1 (-956 *4))))) +((-3091 (((-332)) 17 T ELT)) (-3106 (((-1 (-332)) (-332) (-332)) 22 T ELT)) (-3099 (((-1 (-332)) (-698)) 48 T ELT)) (-3092 (((-332)) 37 T ELT)) (-3095 (((-1 (-332)) (-332) (-332)) 38 T ELT)) (-3093 (((-332)) 29 T ELT)) (-3096 (((-1 (-332)) (-332)) 30 T ELT)) (-3094 (((-332) (-698)) 43 T ELT)) (-3097 (((-1 (-332)) (-698)) 44 T ELT)) (-3098 (((-1 (-332)) (-698) (-698)) 47 T ELT)) (-3390 (((-1 (-332)) (-698) (-698)) 45 T ELT))) +(((-957) (-10 -7 (-15 -3091 ((-332))) (-15 -3092 ((-332))) (-15 -3093 ((-332))) (-15 -3094 ((-332) (-698))) (-15 -3106 ((-1 (-332)) (-332) (-332))) (-15 -3095 ((-1 (-332)) (-332) (-332))) (-15 -3096 ((-1 (-332)) (-332))) (-15 -3097 ((-1 (-332)) (-698))) (-15 -3390 ((-1 (-332)) (-698) (-698))) (-15 -3098 ((-1 (-332)) (-698) (-698))) (-15 -3099 ((-1 (-332)) (-698))))) (T -957)) +((-3099 (*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1 (-332))) (-5 *1 (-957)))) (-3098 (*1 *2 *3 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1 (-332))) (-5 *1 (-957)))) (-3390 (*1 *2 *3 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1 (-332))) (-5 *1 (-957)))) (-3097 (*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1 (-332))) (-5 *1 (-957)))) (-3096 (*1 *2 *3) (-12 (-5 *2 (-1 (-332))) (-5 *1 (-957)) (-5 *3 (-332)))) (-3095 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-332))) (-5 *1 (-957)) (-5 *3 (-332)))) (-3106 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-332))) (-5 *1 (-957)) (-5 *3 (-332)))) (-3094 (*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-332)) (-5 *1 (-957)))) (-3093 (*1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-957)))) (-3092 (*1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-957)))) (-3091 (*1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-957))))) +((-3738 (((-350 |#1|) |#1|) 33 T ELT))) +(((-958 |#1|) (-10 -7 (-15 -3738 ((-350 |#1|) |#1|))) (-1159 (-352 (-861 (-488))))) (T -958)) +((-3738 (*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-958 *3)) (-4 *3 (-1159 (-352 (-861 (-488)))))))) +((-3100 (((-352 (-350 (-861 |#1|))) (-352 (-861 |#1|))) 14 T ELT))) +(((-959 |#1|) (-10 -7 (-15 -3100 ((-352 (-350 (-861 |#1|))) (-352 (-861 |#1|))))) (-260)) (T -959)) +((-3100 (*1 *2 *3) (-12 (-5 *3 (-352 (-861 *4))) (-4 *4 (-260)) (-5 *2 (-352 (-350 (-861 *4)))) (-5 *1 (-959 *4))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3730 (($) 23 T CONST)) (-3104 ((|#1| $) 29 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3103 ((|#1| $) 28 T ELT)) (-3101 ((|#1|) 26 T CONST)) (-3953 (((-776) $) 13 T ELT)) (-3102 ((|#1| $) 27 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT))) +(((-960 |#1|) (-113) (-23)) (T -960)) +((-3104 (*1 *2 *1) (-12 (-4 *1 (-960 *2)) (-4 *2 (-23)))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-960 *2)) (-4 *2 (-23)))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-960 *2)) (-4 *2 (-23)))) (-3101 (*1 *2) (-12 (-4 *1 (-960 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3104 (|t#1| $)) (-15 -3103 (|t#1| $)) (-15 -3102 (|t#1| $)) (-15 -3101 (|t#1|) -3959))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3105 (($) 31 T CONST)) (-3730 (($) 23 T CONST)) (-3104 ((|#1| $) 29 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3103 ((|#1| $) 28 T ELT)) (-3101 ((|#1|) 26 T CONST)) (-3953 (((-776) $) 13 T ELT)) (-3102 ((|#1| $) 27 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT))) +(((-961 |#1|) (-113) (-23)) (T -961)) +((-3105 (*1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-23))))) +(-13 (-960 |t#1|) (-10 -8 (-15 -3105 ($) -3959))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-960 |#1|) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3687 (((-587 (-2 (|:| -3868 $) (|:| -1706 (-587 (-707 |#1| (-777 |#2|)))))) (-587 (-707 |#1| (-777 |#2|)))) NIL T ELT)) (-3688 (((-587 $) (-587 (-707 |#1| (-777 |#2|)))) NIL T ELT) (((-587 $) (-587 (-707 |#1| (-777 |#2|))) (-85)) NIL T ELT) (((-587 $) (-587 (-707 |#1| (-777 |#2|))) (-85) (-85)) NIL T ELT)) (-3087 (((-587 (-777 |#2|)) $) NIL T ELT)) (-2914 (((-85) $) NIL T ELT)) (-2905 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3699 (((-85) (-707 |#1| (-777 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3694 (((-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|)) $) NIL T ELT)) (-3781 (((-587 (-2 (|:| |val| (-707 |#1| (-777 |#2|))) (|:| -1604 $))) (-707 |#1| (-777 |#2|)) $) NIL T ELT)) (-2915 (((-2 (|:| |under| $) (|:| -3136 $) (|:| |upper| $)) $ (-777 |#2|)) NIL T ELT)) (-3716 (($ (-1 (-85) (-707 |#1| (-777 |#2|))) $) NIL (|has| $ (-320 (-707 |#1| (-777 |#2|)))) ELT) (((-3 (-707 |#1| (-777 |#2|)) #1="failed") $ (-777 |#2|)) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2910 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-2912 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-2911 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-2913 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3695 (((-587 (-707 |#1| (-777 |#2|))) (-587 (-707 |#1| (-777 |#2|))) $ (-1 (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|))) (-1 (-85) (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|)))) NIL T ELT)) (-2906 (((-587 (-707 |#1| (-777 |#2|))) (-587 (-707 |#1| (-777 |#2|))) $) NIL (|has| |#1| (-499)) ELT)) (-2907 (((-587 (-707 |#1| (-777 |#2|))) (-587 (-707 |#1| (-777 |#2|))) $) NIL (|has| |#1| (-499)) ELT)) (-3163 (((-3 $ #1#) (-587 (-707 |#1| (-777 |#2|)))) NIL T ELT)) (-3162 (($ (-587 (-707 |#1| (-777 |#2|)))) NIL T ELT)) (-3805 (((-3 $ #1#) $) NIL T ELT)) (-3691 (((-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|)) $) NIL T ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 (-707 |#1| (-777 |#2|)))) (|has| (-707 |#1| (-777 |#2|)) (-72))) ELT)) (-3412 (($ (-707 |#1| (-777 |#2|)) $) NIL (-12 (|has| $ (-320 (-707 |#1| (-777 |#2|)))) (|has| (-707 |#1| (-777 |#2|)) (-72))) ELT) (($ (-1 (-85) (-707 |#1| (-777 |#2|))) $) NIL (|has| $ (-320 (-707 |#1| (-777 |#2|)))) ELT)) (-2908 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-707 |#1| (-777 |#2|))) (|:| |den| |#1|)) (-707 |#1| (-777 |#2|)) $) NIL (|has| |#1| (-499)) ELT)) (-3700 (((-85) (-707 |#1| (-777 |#2|)) $ (-1 (-85) (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|)))) NIL T ELT)) (-3689 (((-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|)) $) NIL T ELT)) (-3848 (((-707 |#1| (-777 |#2|)) (-1 (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|))) $ (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|))) NIL (|has| (-707 |#1| (-777 |#2|)) (-72)) ELT) (((-707 |#1| (-777 |#2|)) (-1 (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|))) $ (-707 |#1| (-777 |#2|))) NIL T ELT) (((-707 |#1| (-777 |#2|)) (-1 (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|))) $) NIL T ELT) (((-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|)) $ (-1 (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|))) (-1 (-85) (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|)))) NIL T ELT)) (-3702 (((-2 (|:| -3868 (-587 (-707 |#1| (-777 |#2|)))) (|:| -1706 (-587 (-707 |#1| (-777 |#2|))))) $) NIL T ELT)) (-3203 (((-85) (-707 |#1| (-777 |#2|)) $) NIL T ELT)) (-3201 (((-85) (-707 |#1| (-777 |#2|)) $) NIL T ELT)) (-3204 (((-85) (-707 |#1| (-777 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3701 (((-85) (-707 |#1| (-777 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3186 (((-777 |#2|) $) NIL T ELT)) (-2614 (((-587 (-707 |#1| (-777 |#2|))) $) NIL T ELT)) (-3251 (((-85) (-707 |#1| (-777 |#2|)) $) NIL (|has| (-707 |#1| (-777 |#2|)) (-72)) ELT)) (-3332 (($ (-1 (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|))) $) NIL T ELT)) (-3849 (($ (-1 (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|))) $) NIL T ELT)) (-2920 (((-587 (-777 |#2|)) $) NIL T ELT)) (-2919 (((-85) (-777 |#2|) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3197 (((-3 (-707 |#1| (-777 |#2|)) (-587 $)) (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|)) $) NIL T ELT)) (-3196 (((-587 (-2 (|:| |val| (-707 |#1| (-777 |#2|))) (|:| -1604 $))) (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|)) $) NIL T ELT)) (-3804 (((-3 (-707 |#1| (-777 |#2|)) #1#) $) NIL T ELT)) (-3198 (((-587 $) (-707 |#1| (-777 |#2|)) $) NIL T ELT)) (-3200 (((-3 (-85) (-587 $)) (-707 |#1| (-777 |#2|)) $) NIL T ELT)) (-3199 (((-587 (-2 (|:| |val| (-85)) (|:| -1604 $))) (-707 |#1| (-777 |#2|)) $) NIL T ELT) (((-85) (-707 |#1| (-777 |#2|)) $) NIL T ELT)) (-3244 (((-587 $) (-707 |#1| (-777 |#2|)) $) NIL T ELT) (((-587 $) (-587 (-707 |#1| (-777 |#2|))) $) NIL T ELT) (((-587 $) (-587 (-707 |#1| (-777 |#2|))) (-587 $)) NIL T ELT) (((-587 $) (-707 |#1| (-777 |#2|)) (-587 $)) NIL T ELT)) (-3446 (($ (-707 |#1| (-777 |#2|)) $) NIL T ELT) (($ (-587 (-707 |#1| (-777 |#2|))) $) NIL T ELT)) (-3703 (((-587 (-707 |#1| (-777 |#2|))) $) NIL T ELT)) (-3697 (((-85) (-707 |#1| (-777 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3692 (((-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|)) $) NIL T ELT)) (-3705 (((-85) $ $) NIL T ELT)) (-2909 (((-2 (|:| |num| (-707 |#1| (-777 |#2|))) (|:| |den| |#1|)) (-707 |#1| (-777 |#2|)) $) NIL (|has| |#1| (-499)) ELT)) (-3698 (((-85) (-707 |#1| (-777 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3693 (((-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|)) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3807 (((-3 (-707 |#1| (-777 |#2|)) #1#) $) NIL T ELT)) (-1734 (((-3 (-707 |#1| (-777 |#2|)) #1#) (-1 (-85) (-707 |#1| (-777 |#2|))) $) NIL T ELT)) (-3685 (((-3 $ #1#) $ (-707 |#1| (-777 |#2|))) NIL T ELT)) (-3775 (($ $ (-707 |#1| (-777 |#2|))) NIL T ELT) (((-587 $) (-707 |#1| (-777 |#2|)) $) NIL T ELT) (((-587 $) (-707 |#1| (-777 |#2|)) (-587 $)) NIL T ELT) (((-587 $) (-587 (-707 |#1| (-777 |#2|))) $) NIL T ELT) (((-587 $) (-587 (-707 |#1| (-777 |#2|))) (-587 $)) NIL T ELT)) (-1736 (((-85) (-1 (-85) (-707 |#1| (-777 |#2|))) $) NIL T ELT)) (-3774 (($ $ (-587 (-707 |#1| (-777 |#2|))) (-587 (-707 |#1| (-777 |#2|)))) NIL (-12 (|has| (-707 |#1| (-777 |#2|)) (-262 (-707 |#1| (-777 |#2|)))) (|has| (-707 |#1| (-777 |#2|)) (-1017))) ELT) (($ $ (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|))) NIL (-12 (|has| (-707 |#1| (-777 |#2|)) (-262 (-707 |#1| (-777 |#2|)))) (|has| (-707 |#1| (-777 |#2|)) (-1017))) ELT) (($ $ (-251 (-707 |#1| (-777 |#2|)))) NIL (-12 (|has| (-707 |#1| (-777 |#2|)) (-262 (-707 |#1| (-777 |#2|)))) (|has| (-707 |#1| (-777 |#2|)) (-1017))) ELT) (($ $ (-587 (-251 (-707 |#1| (-777 |#2|))))) NIL (-12 (|has| (-707 |#1| (-777 |#2|)) (-262 (-707 |#1| (-777 |#2|)))) (|has| (-707 |#1| (-777 |#2|)) (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3955 (((-698) $) NIL T ELT)) (-1735 (((-698) (-707 |#1| (-777 |#2|)) $) NIL (|has| (-707 |#1| (-777 |#2|)) (-72)) ELT) (((-698) (-1 (-85) (-707 |#1| (-777 |#2|))) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) NIL (|has| (-707 |#1| (-777 |#2|)) (-557 (-477))) ELT)) (-3536 (($ (-587 (-707 |#1| (-777 |#2|)))) NIL T ELT)) (-2916 (($ $ (-777 |#2|)) NIL T ELT)) (-2918 (($ $ (-777 |#2|)) NIL T ELT)) (-3690 (($ $) NIL T ELT)) (-2917 (($ $ (-777 |#2|)) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (((-587 (-707 |#1| (-777 |#2|))) $) NIL T ELT)) (-3684 (((-698) $) NIL (|has| (-777 |#2|) (-322)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3704 (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 (-707 |#1| (-777 |#2|))))) #1#) (-587 (-707 |#1| (-777 |#2|))) (-1 (-85) (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 (-707 |#1| (-777 |#2|))))) #1#) (-587 (-707 |#1| (-777 |#2|))) (-1 (-85) (-707 |#1| (-777 |#2|))) (-1 (-85) (-707 |#1| (-777 |#2|)) (-707 |#1| (-777 |#2|)))) NIL T ELT)) (-3696 (((-85) $ (-1 (-85) (-707 |#1| (-777 |#2|)) (-587 (-707 |#1| (-777 |#2|))))) NIL T ELT)) (-3195 (((-587 $) (-707 |#1| (-777 |#2|)) $) NIL T ELT) (((-587 $) (-707 |#1| (-777 |#2|)) (-587 $)) NIL T ELT) (((-587 $) (-587 (-707 |#1| (-777 |#2|))) $) NIL T ELT) (((-587 $) (-587 (-707 |#1| (-777 |#2|))) (-587 $)) NIL T ELT)) (-1737 (((-85) (-1 (-85) (-707 |#1| (-777 |#2|))) $) NIL T ELT)) (-3686 (((-587 (-777 |#2|)) $) NIL T ELT)) (-3202 (((-85) (-707 |#1| (-777 |#2|)) $) NIL T ELT)) (-3940 (((-85) (-777 |#2|) $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-962 |#1| |#2|) (-13 (-987 |#1| (-473 (-777 |#2|)) (-777 |#2|) (-707 |#1| (-777 |#2|))) (-10 -8 (-15 -3688 ((-587 $) (-587 (-707 |#1| (-777 |#2|))) (-85) (-85))))) (-395) (-587 (-1094))) (T -962)) +((-3688 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 (-707 *5 (-777 *6)))) (-5 *4 (-85)) (-4 *5 (-395)) (-14 *6 (-587 (-1094))) (-5 *2 (-587 (-962 *5 *6))) (-5 *1 (-962 *5 *6))))) +((-3106 (((-1 (-488)) (-1005 (-488))) 32 T ELT)) (-3110 (((-488) (-488) (-488) (-488) (-488)) 29 T ELT)) (-3108 (((-1 (-488)) |RationalNumber|) NIL T ELT)) (-3109 (((-1 (-488)) |RationalNumber|) NIL T ELT)) (-3107 (((-1 (-488)) (-488) |RationalNumber|) NIL T ELT))) +(((-963) (-10 -7 (-15 -3106 ((-1 (-488)) (-1005 (-488)))) (-15 -3107 ((-1 (-488)) (-488) |RationalNumber|)) (-15 -3108 ((-1 (-488)) |RationalNumber|)) (-15 -3109 ((-1 (-488)) |RationalNumber|)) (-15 -3110 ((-488) (-488) (-488) (-488) (-488))))) (T -963)) +((-3110 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-963)))) (-3109 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-488))) (-5 *1 (-963)))) (-3108 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-488))) (-5 *1 (-963)))) (-3107 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-488))) (-5 *1 (-963)) (-5 *3 (-488)))) (-3106 (*1 *2 *3) (-12 (-5 *3 (-1005 (-488))) (-5 *2 (-1 (-488))) (-5 *1 (-963))))) +((-3953 (((-776) $) NIL T ELT) (($ (-488)) 10 T ELT))) +(((-964 |#1|) (-10 -7 (-15 -3953 (|#1| (-488))) (-15 -3953 ((-776) |#1|))) (-965)) (T -964)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-965) (-113)) (T -965)) +((-3132 (*1 *2) (-12 (-4 *1 (-965)) (-5 *2 (-698))))) +(-13 (-974) (-1065) (-594 $) (-559 (-488)) (-10 -7 (-15 -3132 ((-698)) -3959) (-6 -3998))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-559 (-488)) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 $) . T) ((-667) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-3111 (((-352 (-861 |#2|)) (-587 |#2|) (-587 |#2|) (-698) (-698)) 55 T ELT))) +(((-966 |#1| |#2|) (-10 -7 (-15 -3111 ((-352 (-861 |#2|)) (-587 |#2|) (-587 |#2|) (-698) (-698)))) (-1094) (-314)) (T -966)) +((-3111 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-587 *6)) (-5 *4 (-698)) (-4 *6 (-314)) (-5 *2 (-352 (-861 *6))) (-5 *1 (-966 *5 *6)) (-14 *5 (-1094))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) +(((-967 |#1|) (-113) (-1029)) (T -967)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-967 *2)) (-4 *2 (-1029))))) +(-13 (-1017) (-10 -8 (-15 * ($ $ |t#1|)))) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-3126 (((-85) $) 38 T ELT)) (-3128 (((-85) $) 17 T ELT)) (-3120 (((-698) $) 13 T ELT)) (-3119 (((-698) $) 14 T ELT)) (-3127 (((-85) $) 30 T ELT)) (-3125 (((-85) $) 40 T ELT))) +(((-968 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3119 ((-698) |#1|)) (-15 -3120 ((-698) |#1|)) (-15 -3125 ((-85) |#1|)) (-15 -3126 ((-85) |#1|)) (-15 -3127 ((-85) |#1|)) (-15 -3128 ((-85) |#1|))) (-969 |#2| |#3| |#4| |#5| |#6|) (-698) (-698) (-965) (-198 |#3| |#4|) (-198 |#2| |#4|)) (T -968)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3126 (((-85) $) 63 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3128 (((-85) $) 65 T ELT)) (-3730 (($) 23 T CONST)) (-3115 (($ $) 46 (|has| |#3| (-260)) ELT)) (-3117 ((|#4| $ (-488)) 51 T ELT)) (-3848 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) 86 (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) 82 T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) 81 T ELT)) (-3114 (((-698) $) 45 (|has| |#3| (-499)) ELT)) (-3118 ((|#3| $ (-488) (-488)) 53 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-3113 (((-698) $) 44 (|has| |#3| (-499)) ELT)) (-3112 (((-587 |#5|) $) 43 (|has| |#3| (-499)) ELT)) (-3120 (((-698) $) 57 T ELT)) (-3119 (((-698) $) 56 T ELT)) (-3124 (((-488) $) 61 T ELT)) (-3122 (((-488) $) 59 T ELT)) (-2614 (((-587 |#3|) $) 80 T ELT)) (-3251 (((-85) |#3| $) 85 (|has| |#3| (-72)) ELT)) (-3123 (((-488) $) 60 T ELT)) (-3121 (((-488) $) 58 T ELT)) (-3129 (($ (-587 (-587 |#3|))) 66 T ELT)) (-3849 (($ (-1 |#3| |#3|) $) 71 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 49 T ELT)) (-3600 (((-587 (-587 |#3|)) $) 55 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-1734 (((-3 |#3| "failed") (-1 (-85) |#3|) $) 83 T ELT)) (-3472 (((-3 $ "failed") $ |#3|) 48 (|has| |#3| (-499)) ELT)) (-1736 (((-85) (-1 (-85) |#3|) $) 78 T ELT)) (-3774 (($ $ (-587 |#3|) (-587 |#3|)) 75 (-12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017))) ELT) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017))) ELT) (($ $ (-251 |#3|)) 73 (-12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017))) ELT) (($ $ (-587 (-251 |#3|))) 72 (-12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017))) ELT)) (-1226 (((-85) $ $) 67 T ELT)) (-3409 (((-85) $) 70 T ELT)) (-3571 (($) 69 T ELT)) (-3806 ((|#3| $ (-488) (-488)) 54 T ELT) ((|#3| $ (-488) (-488) |#3|) 52 T ELT)) (-3127 (((-85) $) 64 T ELT)) (-1735 (((-698) |#3| $) 84 (|has| |#3| (-72)) ELT) (((-698) (-1 (-85) |#3|) $) 79 T ELT)) (-3406 (($ $) 68 T ELT)) (-3116 ((|#5| $ (-488)) 50 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-1737 (((-85) (-1 (-85) |#3|) $) 77 T ELT)) (-3125 (((-85) $) 62 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ |#3|) 47 (|has| |#3| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ |#3| $) 33 T ELT) (($ $ |#3|) 37 T ELT)) (-3964 (((-698) $) 76 T ELT))) +(((-969 |#1| |#2| |#3| |#4| |#5|) (-113) (-698) (-698) (-965) (-198 |t#2| |t#3|) (-198 |t#1| |t#3|)) (T -969)) +((-3129 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *5))) (-4 *5 (-965)) (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *6 (-198 *4 *5)) (-4 *7 (-198 *3 *5)))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) (-4 *7 (-198 *3 *5)) (-5 *2 (-85)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) (-4 *7 (-198 *3 *5)) (-5 *2 (-85)))) (-3126 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) (-4 *7 (-198 *3 *5)) (-5 *2 (-85)))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) (-4 *7 (-198 *3 *5)) (-5 *2 (-85)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) (-4 *7 (-198 *3 *5)) (-5 *2 (-488)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) (-4 *7 (-198 *3 *5)) (-5 *2 (-488)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) (-4 *7 (-198 *3 *5)) (-5 *2 (-488)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) (-4 *7 (-198 *3 *5)) (-5 *2 (-488)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) (-4 *7 (-198 *3 *5)) (-5 *2 (-698)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) (-4 *7 (-198 *3 *5)) (-5 *2 (-698)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) (-4 *7 (-198 *3 *5)) (-5 *2 (-587 (-587 *5))))) (-3806 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-488)) (-4 *1 (-969 *4 *5 *2 *6 *7)) (-4 *6 (-198 *5 *2)) (-4 *7 (-198 *4 *2)) (-4 *2 (-965)))) (-3118 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-488)) (-4 *1 (-969 *4 *5 *2 *6 *7)) (-4 *6 (-198 *5 *2)) (-4 *7 (-198 *4 *2)) (-4 *2 (-965)))) (-3806 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-488)) (-4 *1 (-969 *4 *5 *2 *6 *7)) (-4 *2 (-965)) (-4 *6 (-198 *5 *2)) (-4 *7 (-198 *4 *2)))) (-3117 (*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-4 *1 (-969 *4 *5 *6 *2 *7)) (-4 *6 (-965)) (-4 *7 (-198 *4 *6)) (-4 *2 (-198 *5 *6)))) (-3116 (*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-4 *1 (-969 *4 *5 *6 *7 *2)) (-4 *6 (-965)) (-4 *7 (-198 *5 *6)) (-4 *2 (-198 *4 *6)))) (-3849 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) (-4 *7 (-198 *3 *5)))) (-3472 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-969 *3 *4 *2 *5 *6)) (-4 *2 (-965)) (-4 *5 (-198 *4 *2)) (-4 *6 (-198 *3 *2)) (-4 *2 (-499)))) (-3956 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2 *5 *6)) (-4 *2 (-965)) (-4 *5 (-198 *4 *2)) (-4 *6 (-198 *3 *2)) (-4 *2 (-314)))) (-3115 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-198 *3 *4)) (-4 *6 (-198 *2 *4)) (-4 *4 (-260)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) (-4 *7 (-198 *3 *5)) (-4 *5 (-499)) (-5 *2 (-698)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) (-4 *7 (-198 *3 *5)) (-4 *5 (-499)) (-5 *2 (-698)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) (-4 *7 (-198 *3 *5)) (-4 *5 (-499)) (-5 *2 (-587 *7))))) +(-13 (-82 |t#3| |t#3|) (-320 |t#3|) (-10 -8 (IF (|has| |t#3| (-148)) (-6 (-658 |t#3|)) |%noBranch|) (-15 -3129 ($ (-587 (-587 |t#3|)))) (-15 -3128 ((-85) $)) (-15 -3127 ((-85) $)) (-15 -3126 ((-85) $)) (-15 -3125 ((-85) $)) (-15 -3124 ((-488) $)) (-15 -3123 ((-488) $)) (-15 -3122 ((-488) $)) (-15 -3121 ((-488) $)) (-15 -3120 ((-698) $)) (-15 -3119 ((-698) $)) (-15 -3600 ((-587 (-587 |t#3|)) $)) (-15 -3806 (|t#3| $ (-488) (-488))) (-15 -3118 (|t#3| $ (-488) (-488))) (-15 -3806 (|t#3| $ (-488) (-488) |t#3|)) (-15 -3117 (|t#4| $ (-488))) (-15 -3116 (|t#5| $ (-488))) (-15 -3849 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-499)) (-15 -3472 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-314)) (-15 -3956 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-260)) (-15 -3115 ($ $)) |%noBranch|) (IF (|has| |t#3| (-499)) (PROGN (-15 -3114 ((-698) $)) (-15 -3113 ((-698) $)) (-15 -3112 ((-587 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-82 |#3| |#3|) . T) ((-104) . T) ((-556 (-776)) . T) ((-262 |#3|) -12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017))) ((-320 |#3|) . T) ((-383 |#3|) . T) ((-432 |#3|) . T) ((-459 |#3| |#3|) -12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017))) ((-13) . T) ((-592 (-488)) . T) ((-592 |#3|) . T) ((-594 |#3|) . T) ((-586 |#3|) |has| |#3| (-148)) ((-658 |#3|) |has| |#3| (-148)) ((-967 |#3|) . T) ((-972 |#3|) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3126 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3128 (((-85) $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3115 (($ $) 46 (|has| |#3| (-260)) ELT)) (-3117 (((-199 |#2| |#3|) $ (-488)) 35 T ELT)) (-3848 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3130 (($ (-634 |#3|)) 44 T ELT)) (-3114 (((-698) $) 48 (|has| |#3| (-499)) ELT)) (-3118 ((|#3| $ (-488) (-488)) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-3113 (((-698) $) 50 (|has| |#3| (-499)) ELT)) (-3112 (((-587 (-199 |#1| |#3|)) $) 54 (|has| |#3| (-499)) ELT)) (-3120 (((-698) $) NIL T ELT)) (-3119 (((-698) $) NIL T ELT)) (-3124 (((-488) $) NIL T ELT)) (-3122 (((-488) $) NIL T ELT)) (-2614 (((-587 |#3|) $) NIL T ELT)) (-3251 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-3123 (((-488) $) NIL T ELT)) (-3121 (((-488) $) NIL T ELT)) (-3129 (($ (-587 (-587 |#3|))) 30 T ELT)) (-3849 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3600 (((-587 (-587 |#3|)) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1734 (((-3 |#3| #1#) (-1 (-85) |#3|) $) NIL T ELT)) (-3472 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-499)) ELT)) (-1736 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3774 (($ $ (-587 |#3|) (-587 |#3|)) NIL (-12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017))) ELT) (($ $ (-251 |#3|)) NIL (-12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017))) ELT) (($ $ (-587 (-251 |#3|))) NIL (-12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#3| $ (-488) (-488)) NIL T ELT) ((|#3| $ (-488) (-488) |#3|) NIL T ELT)) (-3918 (((-107)) 58 (|has| |#3| (-314)) ELT)) (-3127 (((-85) $) NIL T ELT)) (-1735 (((-698) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-698) (-1 (-85) |#3|) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) 65 (|has| |#3| (-557 (-477))) ELT)) (-3116 (((-199 |#1| |#3|) $ (-488)) 39 T ELT)) (-3953 (((-776) $) 18 T ELT) (((-634 |#3|) $) 41 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-1737 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3125 (((-85) $) NIL T ELT)) (-2666 (($) 15 T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#3|) NIL (|has| |#3| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-970 |#1| |#2| |#3|) (-13 (-969 |#1| |#2| |#3| (-199 |#2| |#3|) (-199 |#1| |#3|)) (-556 (-634 |#3|)) (-10 -8 (IF (|has| |#3| (-314)) (-6 (-1191 |#3|)) |%noBranch|) (IF (|has| |#3| (-557 (-477))) (-6 (-557 (-477))) |%noBranch|) (-15 -3130 ($ (-634 |#3|))))) (-698) (-698) (-965)) (T -970)) +((-3130 (*1 *1 *2) (-12 (-5 *2 (-634 *5)) (-4 *5 (-965)) (-5 *1 (-970 *3 *4 *5)) (-14 *3 (-698)) (-14 *4 (-698))))) +((-3848 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3849 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) +(((-971 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3849 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3848 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-698) (-698) (-965) (-198 |#2| |#3|) (-198 |#1| |#3|) (-969 |#1| |#2| |#3| |#4| |#5|) (-965) (-198 |#2| |#7|) (-198 |#1| |#7|) (-969 |#1| |#2| |#7| |#8| |#9|)) (T -971)) +((-3848 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-965)) (-4 *2 (-965)) (-14 *5 (-698)) (-14 *6 (-698)) (-4 *8 (-198 *6 *7)) (-4 *9 (-198 *5 *7)) (-4 *10 (-198 *6 *2)) (-4 *11 (-198 *5 *2)) (-5 *1 (-971 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-969 *5 *6 *7 *8 *9)) (-4 *12 (-969 *5 *6 *2 *10 *11)))) (-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-965)) (-4 *10 (-965)) (-14 *5 (-698)) (-14 *6 (-698)) (-4 *8 (-198 *6 *7)) (-4 *9 (-198 *5 *7)) (-4 *2 (-969 *5 *6 *10 *11 *12)) (-5 *1 (-971 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-969 *5 *6 *7 *8 *9)) (-4 *11 (-198 *6 *10)) (-4 *12 (-198 *5 *10))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-1218 (((-85) $ $) 20 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ |#1|) 33 T ELT))) +(((-972 |#1|) (-113) (-974)) (T -972)) +NIL +(-13 (-21) (-967 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-967 |#1|) . T) ((-1017) . T) ((-1133) . T)) +((-3131 (((-85) $ $) 10 T ELT))) +(((-973 |#1|) (-10 -7 (-15 -3131 ((-85) |#1| |#1|))) (-974)) (T -973)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-1218 (((-85) $ $) 20 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-974) (-113)) (T -974)) +((-3131 (*1 *2 *1 *1) (-12 (-4 *1 (-974)) (-5 *2 (-85))))) +(-13 (-21) (-1029) (-10 -8 (-15 -3131 ((-85) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-1029) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL (|has| |#1| (-1017)) ELT)) (-3837 (((-1094) $) 11 T ELT)) (-3742 ((|#1| $) 12 T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-3232 (($ (-1094) |#1|) 10 T ELT)) (-3953 (((-776) $) 22 (|has| |#1| (-1017)) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-1017)) ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-1017)) ELT))) +(((-975 |#1| |#2|) (-13 (-1133) (-10 -8 (-15 -3232 ($ (-1094) |#1|)) (-15 -3837 ((-1094) $)) (-15 -3742 (|#1| $)) (IF (|has| |#1| (-1017)) (-6 (-1017)) |%noBranch|))) (-1010 |#2|) (-1133)) (T -975)) +((-3232 (*1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-4 *4 (-1133)) (-5 *1 (-975 *3 *4)) (-4 *3 (-1010 *4)))) (-3837 (*1 *2 *1) (-12 (-4 *4 (-1133)) (-5 *2 (-1094)) (-5 *1 (-975 *3 *4)) (-4 *3 (-1010 *4)))) (-3742 (*1 *2 *1) (-12 (-4 *2 (-1010 *3)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1133))))) +((-3777 (($ $) 17 T ELT)) (-3133 (($ $) 25 T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) 54 T ELT)) (-3138 (($ $) 27 T ELT)) (-3134 (($ $) 12 T ELT)) (-3136 (($ $) 40 T ELT)) (-3978 (((-332) $) NIL T ELT) (((-181) $) NIL T ELT) (((-804 (-332)) $) 36 T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) 31 T ELT) (($ (-488)) NIL T ELT) (($ (-352 (-488))) 31 T ELT)) (-3132 (((-698)) 9 T CONST)) (-3137 (($ $) 44 T ELT))) +(((-976 |#1|) (-10 -7 (-15 -3133 (|#1| |#1|)) (-15 -3777 (|#1| |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -3136 (|#1| |#1|)) (-15 -3137 (|#1| |#1|)) (-15 -3138 (|#1| |#1|)) (-15 -2802 ((-802 (-332) |#1|) |#1| (-804 (-332)) (-802 (-332) |#1|))) (-15 -3978 ((-804 (-332)) |#1|)) (-15 -3953 (|#1| (-352 (-488)))) (-15 -3953 (|#1| (-488))) (-15 -3978 ((-181) |#1|)) (-15 -3978 ((-332) |#1|)) (-15 -3953 (|#1| (-352 (-488)))) (-15 -3953 (|#1| |#1|)) (-15 -3132 ((-698)) -3959) (-15 -3953 (|#1| (-488))) (-15 -3953 ((-776) |#1|))) (-977)) (T -976)) +((-3132 (*1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-976 *3)) (-4 *3 (-977))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3135 (((-488) $) 108 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-3777 (($ $) 106 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3781 (($ $) 91 T ELT)) (-3977 (((-350 $) $) 90 T ELT)) (-3043 (($ $) 116 T ELT)) (-1612 (((-85) $ $) 75 T ELT)) (-3629 (((-488) $) 133 T ELT)) (-3730 (($) 23 T CONST)) (-3133 (($ $) 105 T ELT)) (-3163 (((-3 (-488) #1="failed") $) 121 T ELT) (((-3 (-352 (-488)) #1#) $) 118 T ELT)) (-3162 (((-488) $) 122 T ELT) (((-352 (-488)) $) 119 T ELT)) (-2570 (($ $ $) 71 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-2569 (($ $ $) 72 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 66 T ELT)) (-3729 (((-85) $) 89 T ELT)) (-3192 (((-85) $) 131 T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) 112 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3017 (($ $ (-488)) 115 T ELT)) (-3138 (($ $) 111 T ELT)) (-3193 (((-85) $) 132 T ELT)) (-1609 (((-3 (-587 $) #2="failed") (-587 $) $) 68 T ELT)) (-2537 (($ $ $) 125 T ELT)) (-2863 (($ $ $) 126 T ELT)) (-1899 (($ $ $) 60 T ELT) (($ (-587 $)) 59 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 88 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 58 T ELT)) (-3150 (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-3134 (($ $) 107 T ELT)) (-3136 (($ $) 109 T ELT)) (-3738 (((-350 $) $) 92 T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 65 T ELT)) (-1611 (((-698) $) 74 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 73 T ELT)) (-3978 (((-332) $) 124 T ELT) (((-181) $) 123 T ELT) (((-804 (-332)) $) 113 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT) (($ (-352 (-488))) 84 T ELT) (($ (-488)) 120 T ELT) (($ (-352 (-488))) 117 T ELT)) (-3132 (((-698)) 40 T CONST)) (-3137 (($ $) 110 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-3389 (($ $) 134 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2572 (((-85) $ $) 127 T ELT)) (-2573 (((-85) $ $) 129 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 128 T ELT)) (-2691 (((-85) $ $) 130 T ELT)) (-3956 (($ $ $) 83 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 87 T ELT) (($ $ (-352 (-488))) 114 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-352 (-488))) 86 T ELT) (($ (-352 (-488)) $) 85 T ELT))) +(((-977) (-113)) (T -977)) +((-3138 (*1 *1 *1) (-4 *1 (-977))) (-3137 (*1 *1 *1) (-4 *1 (-977))) (-3136 (*1 *1 *1) (-4 *1 (-977))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-488)))) (-3134 (*1 *1 *1) (-4 *1 (-977))) (-3777 (*1 *1 *1) (-4 *1 (-977))) (-3133 (*1 *1 *1) (-4 *1 (-977)))) +(-13 (-314) (-759) (-937) (-954 (-488)) (-954 (-352 (-488))) (-919) (-557 (-804 (-332))) (-800 (-332)) (-120) (-10 -8 (-15 -3138 ($ $)) (-15 -3137 ($ $)) (-15 -3136 ($ $)) (-15 -3135 ((-488) $)) (-15 -3134 ($ $)) (-15 -3777 ($ $)) (-15 -3133 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-352 (-488))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-559 (-352 (-488))) . T) ((-559 (-488)) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-557 (-181)) . T) ((-557 (-332)) . T) ((-557 (-804 (-332))) . T) ((-203) . T) ((-248) . T) ((-260) . T) ((-314) . T) ((-395) . T) ((-499) . T) ((-13) . T) ((-592 (-352 (-488))) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 (-352 (-488))) . T) ((-594 $) . T) ((-586 (-352 (-488))) . T) ((-586 $) . T) ((-658 (-352 (-488))) . T) ((-658 $) . T) ((-667) . T) ((-718) . T) ((-720) . T) ((-722) . T) ((-725) . T) ((-759) . T) ((-760) . T) ((-763) . T) ((-800 (-332)) . T) ((-836) . T) ((-919) . T) ((-937) . T) ((-954 (-352 (-488))) . T) ((-954 (-488)) . T) ((-967 (-352 (-488))) . T) ((-967 $) . T) ((-972 (-352 (-488))) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T) ((-1138) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) |#2| $) 26 T ELT)) (-3142 ((|#1| $) 10 T ELT)) (-3629 (((-488) |#2| $) 119 T ELT)) (-3189 (((-3 $ #1="failed") |#2| (-834)) 76 T ELT)) (-3143 ((|#1| $) 31 T ELT)) (-3188 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3140 (($ $) 28 T ELT)) (-3473 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3192 (((-85) |#2| $) NIL T ELT)) (-3193 (((-85) |#2| $) NIL T ELT)) (-3139 (((-85) |#2| $) 27 T ELT)) (-3141 ((|#1| $) 120 T ELT)) (-3144 ((|#1| $) 30 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3191 ((|#2| $) 104 T ELT)) (-3953 (((-776) $) 95 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3776 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3190 (((-587 $) |#2|) 78 T ELT)) (-3062 (((-85) $ $) 99 T ELT))) +(((-978 |#1| |#2|) (-13 (-984 |#1| |#2|) (-10 -8 (-15 -3144 (|#1| $)) (-15 -3143 (|#1| $)) (-15 -3142 (|#1| $)) (-15 -3141 (|#1| $)) (-15 -3140 ($ $)) (-15 -3139 ((-85) |#2| $)) (-15 -3188 (|#1| |#2| $ |#1|)))) (-13 (-759) (-314)) (-1159 |#1|)) (T -978)) +((-3188 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-759) (-314))) (-5 *1 (-978 *2 *3)) (-4 *3 (-1159 *2)))) (-3144 (*1 *2 *1) (-12 (-4 *2 (-13 (-759) (-314))) (-5 *1 (-978 *2 *3)) (-4 *3 (-1159 *2)))) (-3143 (*1 *2 *1) (-12 (-4 *2 (-13 (-759) (-314))) (-5 *1 (-978 *2 *3)) (-4 *3 (-1159 *2)))) (-3142 (*1 *2 *1) (-12 (-4 *2 (-13 (-759) (-314))) (-5 *1 (-978 *2 *3)) (-4 *3 (-1159 *2)))) (-3141 (*1 *2 *1) (-12 (-4 *2 (-13 (-759) (-314))) (-5 *1 (-978 *2 *3)) (-4 *3 (-1159 *2)))) (-3140 (*1 *1 *1) (-12 (-4 *2 (-13 (-759) (-314))) (-5 *1 (-978 *2 *3)) (-4 *3 (-1159 *2)))) (-3139 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-759) (-314))) (-5 *2 (-85)) (-5 *1 (-978 *4 *3)) (-4 *3 (-1159 *4))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-2052 (($ $ $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2047 (($ $ $ $) NIL T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3629 (((-488) $) NIL T ELT)) (-2447 (($ $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3145 (($ (-1094)) 10 T ELT) (($ (-488)) 7 T ELT)) (-3163 (((-3 (-488) #1#) $) NIL T ELT)) (-3162 (((-488) $) NIL T ELT)) (-2570 (($ $ $) NIL T ELT)) (-2284 (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL T ELT) (((-634 (-488)) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3030 (((-3 (-352 (-488)) #1#) $) NIL T ELT)) (-3029 (((-85) $) NIL T ELT)) (-3028 (((-352 (-488)) $) NIL T ELT)) (-3000 (($) NIL T ELT) (($ $) NIL T ELT)) (-2569 (($ $ $) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-2045 (($ $ $ $) NIL T ELT)) (-2053 (($ $ $) NIL T ELT)) (-3192 (((-85) $) NIL T ELT)) (-1372 (($ $ $) NIL T ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2679 (((-85) $) NIL T ELT)) (-3451 (((-636 $) $) NIL T ELT)) (-3193 (((-85) $) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2046 (($ $ $ $) NIL T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-2049 (($ $) NIL T ELT)) (-3839 (($ $) NIL T ELT)) (-2285 (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL T ELT) (((-634 (-488)) (-1183 $)) NIL T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2044 (($ $ $) NIL T ELT)) (-3452 (($) NIL T CONST)) (-2051 (($ $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-1370 (($ $) NIL T ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-2680 (((-85) $) NIL T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-3764 (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-488) $) 16 T ELT) (((-477) $) NIL T ELT) (((-804 (-488)) $) NIL T ELT) (((-332) $) NIL T ELT) (((-181) $) NIL T ELT) (($ (-1094)) 9 T ELT)) (-3953 (((-776) $) 23 T ELT) (($ (-488)) 6 T ELT) (($ $) NIL T ELT) (($ (-488)) 6 T ELT)) (-3132 (((-698)) NIL T CONST)) (-2054 (((-85) $ $) NIL T ELT)) (-3107 (($ $ $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2700 (($) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2048 (($ $ $ $) NIL T ELT)) (-3389 (($ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) NIL T ELT)) (-3843 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-488) $) NIL T ELT))) +(((-979) (-13 (-487) (-561 (-1094)) (-10 -8 (-6 -3988) (-6 -3993) (-6 -3989) (-15 -3145 ($ (-1094))) (-15 -3145 ($ (-488)))))) (T -979)) +((-3145 (*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-979)))) (-3145 (*1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-979))))) +((-3803 (($ $) 46 T ELT)) (-3172 (((-85) $ $) 82 T ELT)) (-3163 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL T ELT) (((-3 (-488) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-861 (-352 (-488)))) 247 T ELT) (((-3 $ #1#) (-861 (-488))) 246 T ELT) (((-3 $ #1#) (-861 |#2|)) 249 T ELT)) (-3162 ((|#2| $) NIL T ELT) (((-352 (-488)) $) NIL T ELT) (((-488) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-861 (-352 (-488)))) 235 T ELT) (($ (-861 (-488))) 231 T ELT) (($ (-861 |#2|)) 255 T ELT)) (-3965 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3700 (((-85) $ $) 131 T ELT) (((-85) $ (-587 $)) 135 T ELT)) (-3178 (((-85) $) 60 T ELT)) (-3758 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 125 T ELT)) (-3149 (($ $) 160 T ELT)) (-3160 (($ $) 156 T ELT)) (-3161 (($ $) 155 T ELT)) (-3171 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3170 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3701 (((-85) $ $) 143 T ELT) (((-85) $ (-587 $)) 144 T ELT)) (-3186 ((|#4| $) 32 T ELT)) (-3165 (($ $ $) 128 T ELT)) (-3179 (((-85) $) 59 T ELT)) (-3185 (((-698) $) 35 T ELT)) (-3146 (($ $) 174 T ELT)) (-3147 (($ $) 171 T ELT)) (-3174 (((-587 $) $) 72 T ELT)) (-3177 (($ $) 62 T ELT)) (-3148 (($ $) 167 T ELT)) (-3175 (((-587 $) $) 69 T ELT)) (-3176 (($ $) 64 T ELT)) (-3180 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3164 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3487 (-698))) $ $) 130 T ELT)) (-3166 (((-2 (|:| -3961 $) (|:| |gap| (-698)) (|:| -1977 $) (|:| -2908 $)) $ $) 126 T ELT) (((-2 (|:| -3961 $) (|:| |gap| (-698)) (|:| -1977 $) (|:| -2908 $)) $ $ |#4|) 127 T ELT)) (-3167 (((-2 (|:| -3961 $) (|:| |gap| (-698)) (|:| -2908 $)) $ $) 121 T ELT) (((-2 (|:| -3961 $) (|:| |gap| (-698)) (|:| -2908 $)) $ $ |#4|) 123 T ELT)) (-3169 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3168 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3182 (((-587 $) $) 54 T ELT)) (-3697 (((-85) $ $) 140 T ELT) (((-85) $ (-587 $)) 141 T ELT)) (-3692 (($ $ $) 116 T ELT)) (-3452 (($ $) 37 T ELT)) (-3705 (((-85) $ $) 80 T ELT)) (-3698 (((-85) $ $) 136 T ELT) (((-85) $ (-587 $)) 138 T ELT)) (-3693 (($ $ $) 112 T ELT)) (-3184 (($ $) 41 T ELT)) (-3150 ((|#2| |#2| $) 164 T ELT) (($ (-587 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3158 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3159 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3183 (($ $) 49 T ELT)) (-3181 (($ $) 55 T ELT)) (-3978 (((-804 (-332)) $) NIL T ELT) (((-804 (-488)) $) NIL T ELT) (((-477) $) NIL T ELT) (($ (-861 (-352 (-488)))) 237 T ELT) (($ (-861 (-488))) 233 T ELT) (($ (-861 |#2|)) 248 T ELT) (((-1077) $) 278 T ELT) (((-861 |#2|) $) 184 T ELT)) (-3953 (((-776) $) 29 T ELT) (($ (-488)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-861 |#2|) $) 185 T ELT) (($ (-352 (-488))) NIL T ELT) (($ $) NIL T ELT)) (-3173 (((-3 (-85) #1#) $ $) 79 T ELT))) +(((-980 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3953 (|#1| |#1|)) (-15 -3150 (|#1| |#1| |#1|)) (-15 -3150 (|#1| (-587 |#1|))) (-15 -3953 (|#1| (-352 (-488)))) (-15 -3953 ((-861 |#2|) |#1|)) (-15 -3978 ((-861 |#2|) |#1|)) (-15 -3978 ((-1077) |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -3147 (|#1| |#1|)) (-15 -3148 (|#1| |#1|)) (-15 -3149 (|#1| |#1|)) (-15 -3150 (|#2| |#2| |#1|)) (-15 -3158 (|#1| |#1| |#1|)) (-15 -3159 (|#1| |#1| |#1|)) (-15 -3158 (|#1| |#1| |#2|)) (-15 -3159 (|#1| |#1| |#2|)) (-15 -3160 (|#1| |#1|)) (-15 -3161 (|#1| |#1|)) (-15 -3978 (|#1| (-861 |#2|))) (-15 -3162 (|#1| (-861 |#2|))) (-15 -3163 ((-3 |#1| #1="failed") (-861 |#2|))) (-15 -3978 (|#1| (-861 (-488)))) (-15 -3162 (|#1| (-861 (-488)))) (-15 -3163 ((-3 |#1| #1#) (-861 (-488)))) (-15 -3978 (|#1| (-861 (-352 (-488))))) (-15 -3162 (|#1| (-861 (-352 (-488))))) (-15 -3163 ((-3 |#1| #1#) (-861 (-352 (-488))))) (-15 -3692 (|#1| |#1| |#1|)) (-15 -3693 (|#1| |#1| |#1|)) (-15 -3164 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3487 (-698))) |#1| |#1|)) (-15 -3165 (|#1| |#1| |#1|)) (-15 -3758 ((-2 (|:| -1977 |#1|) (|:| -2908 |#1|)) |#1| |#1|)) (-15 -3166 ((-2 (|:| -3961 |#1|) (|:| |gap| (-698)) (|:| -1977 |#1|) (|:| -2908 |#1|)) |#1| |#1| |#4|)) (-15 -3166 ((-2 (|:| -3961 |#1|) (|:| |gap| (-698)) (|:| -1977 |#1|) (|:| -2908 |#1|)) |#1| |#1|)) (-15 -3167 ((-2 (|:| -3961 |#1|) (|:| |gap| (-698)) (|:| -2908 |#1|)) |#1| |#1| |#4|)) (-15 -3167 ((-2 (|:| -3961 |#1|) (|:| |gap| (-698)) (|:| -2908 |#1|)) |#1| |#1|)) (-15 -3168 (|#1| |#1| |#1| |#4|)) (-15 -3169 (|#1| |#1| |#1| |#4|)) (-15 -3168 (|#1| |#1| |#1|)) (-15 -3169 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#1| |#4|)) (-15 -3171 (|#1| |#1| |#1| |#4|)) (-15 -3170 (|#1| |#1| |#1|)) (-15 -3171 (|#1| |#1| |#1|)) (-15 -3701 ((-85) |#1| (-587 |#1|))) (-15 -3701 ((-85) |#1| |#1|)) (-15 -3697 ((-85) |#1| (-587 |#1|))) (-15 -3697 ((-85) |#1| |#1|)) (-15 -3698 ((-85) |#1| (-587 |#1|))) (-15 -3698 ((-85) |#1| |#1|)) (-15 -3700 ((-85) |#1| (-587 |#1|))) (-15 -3700 ((-85) |#1| |#1|)) (-15 -3172 ((-85) |#1| |#1|)) (-15 -3705 ((-85) |#1| |#1|)) (-15 -3173 ((-3 (-85) #1#) |#1| |#1|)) (-15 -3174 ((-587 |#1|) |#1|)) (-15 -3175 ((-587 |#1|) |#1|)) (-15 -3176 (|#1| |#1|)) (-15 -3177 (|#1| |#1|)) (-15 -3178 ((-85) |#1|)) (-15 -3179 ((-85) |#1|)) (-15 -3965 (|#1| |#1| |#4|)) (-15 -3180 (|#1| |#1| |#4|)) (-15 -3181 (|#1| |#1|)) (-15 -3182 ((-587 |#1|) |#1|)) (-15 -3183 (|#1| |#1|)) (-15 -3803 (|#1| |#1|)) (-15 -3184 (|#1| |#1|)) (-15 -3452 (|#1| |#1|)) (-15 -3185 ((-698) |#1|)) (-15 -3186 (|#4| |#1|)) (-15 -3978 ((-477) |#1|)) (-15 -3978 ((-804 (-488)) |#1|)) (-15 -3978 ((-804 (-332)) |#1|)) (-15 -3953 (|#1| |#4|)) (-15 -3163 ((-3 |#4| #1#) |#1|)) (-15 -3162 (|#4| |#1|)) (-15 -3180 (|#2| |#1|)) (-15 -3965 (|#1| |#1|)) (-15 -3163 ((-3 (-488) #1#) |#1|)) (-15 -3162 ((-488) |#1|)) (-15 -3163 ((-3 (-352 (-488)) #1#) |#1|)) (-15 -3162 ((-352 (-488)) |#1|)) (-15 -3162 (|#2| |#1|)) (-15 -3163 ((-3 |#2| #1#) |#1|)) (-15 -3953 (|#1| |#2|)) (-15 -3953 (|#1| (-488))) (-15 -3953 ((-776) |#1|))) (-981 |#2| |#3| |#4|) (-965) (-721) (-760)) (T -980)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3087 (((-587 |#3|) $) 124 T ELT)) (-3089 (((-1089 $) $ |#3|) 139 T ELT) (((-1089 |#1|) $) 138 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 101 (|has| |#1| (-499)) ELT)) (-2068 (($ $) 102 (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) 104 (|has| |#1| (-499)) ELT)) (-2825 (((-698) $) 126 T ELT) (((-698) $ (-587 |#3|)) 125 T ELT)) (-3803 (($ $) 294 T ELT)) (-3172 (((-85) $ $) 280 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3761 (($ $ $) 239 (|has| |#1| (-499)) ELT)) (-3154 (((-587 $) $ $) 234 (|has| |#1| (-499)) ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) 114 (|has| |#1| (-825)) ELT)) (-3781 (($ $) 112 (|has| |#1| (-395)) ELT)) (-3977 (((-350 $) $) 111 (|has| |#1| (-395)) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1="failed") (-587 (-1089 $)) (-1089 $)) 117 (|has| |#1| (-825)) ELT)) (-3730 (($) 23 T CONST)) (-3163 (((-3 |#1| #2="failed") $) 182 T ELT) (((-3 (-352 (-488)) #2#) $) 179 (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 (-488) #2#) $) 177 (|has| |#1| (-954 (-488))) ELT) (((-3 |#3| #2#) $) 154 T ELT) (((-3 $ "failed") (-861 (-352 (-488)))) 254 (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#3| (-557 (-1094)))) ELT) (((-3 $ "failed") (-861 (-488))) 251 (OR (-12 (-2566 (|has| |#1| (-38 (-352 (-488))))) (|has| |#1| (-38 (-488))) (|has| |#3| (-557 (-1094)))) (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#3| (-557 (-1094))))) ELT) (((-3 $ "failed") (-861 |#1|)) 248 (OR (-12 (-2566 (|has| |#1| (-38 (-352 (-488))))) (-2566 (|has| |#1| (-38 (-488)))) (|has| |#3| (-557 (-1094)))) (-12 (-2566 (|has| |#1| (-487))) (-2566 (|has| |#1| (-38 (-352 (-488))))) (|has| |#1| (-38 (-488))) (|has| |#3| (-557 (-1094)))) (-12 (-2566 (|has| |#1| (-908 (-488)))) (|has| |#1| (-38 (-352 (-488)))) (|has| |#3| (-557 (-1094))))) ELT)) (-3162 ((|#1| $) 181 T ELT) (((-352 (-488)) $) 180 (|has| |#1| (-954 (-352 (-488)))) ELT) (((-488) $) 178 (|has| |#1| (-954 (-488))) ELT) ((|#3| $) 155 T ELT) (($ (-861 (-352 (-488)))) 253 (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#3| (-557 (-1094)))) ELT) (($ (-861 (-488))) 250 (OR (-12 (-2566 (|has| |#1| (-38 (-352 (-488))))) (|has| |#1| (-38 (-488))) (|has| |#3| (-557 (-1094)))) (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#3| (-557 (-1094))))) ELT) (($ (-861 |#1|)) 247 (OR (-12 (-2566 (|has| |#1| (-38 (-352 (-488))))) (-2566 (|has| |#1| (-38 (-488)))) (|has| |#3| (-557 (-1094)))) (-12 (-2566 (|has| |#1| (-487))) (-2566 (|has| |#1| (-38 (-352 (-488))))) (|has| |#1| (-38 (-488))) (|has| |#3| (-557 (-1094)))) (-12 (-2566 (|has| |#1| (-908 (-488)))) (|has| |#1| (-38 (-352 (-488)))) (|has| |#3| (-557 (-1094))))) ELT)) (-3762 (($ $ $ |#3|) 122 (|has| |#1| (-148)) ELT) (($ $ $) 235 (|has| |#1| (-499)) ELT)) (-3965 (($ $) 172 T ELT) (($ $ |#3|) 289 T ELT)) (-2284 (((-634 (-488)) (-634 $)) 150 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) 149 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) 148 T ELT) (((-634 |#1|) (-634 $)) 147 T ELT)) (-3700 (((-85) $ $) 279 T ELT) (((-85) $ (-587 $)) 278 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3178 (((-85) $) 287 T ELT)) (-3758 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 259 T ELT)) (-3149 (($ $) 228 (|has| |#1| (-395)) ELT)) (-3509 (($ $) 194 (|has| |#1| (-395)) ELT) (($ $ |#3|) 119 (|has| |#1| (-395)) ELT)) (-2824 (((-587 $) $) 123 T ELT)) (-3729 (((-85) $) 110 (|has| |#1| (-825)) ELT)) (-3160 (($ $) 244 (|has| |#1| (-499)) ELT)) (-3161 (($ $) 245 (|has| |#1| (-499)) ELT)) (-3171 (($ $ $) 271 T ELT) (($ $ $ |#3|) 269 T ELT)) (-3170 (($ $ $) 270 T ELT) (($ $ $ |#3|) 268 T ELT)) (-1628 (($ $ |#1| |#2| $) 190 T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) 98 (-12 (|has| |#3| (-800 (-332))) (|has| |#1| (-800 (-332)))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) 97 (-12 (|has| |#3| (-800 (-488))) (|has| |#1| (-800 (-488)))) ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-2425 (((-698) $) 187 T ELT)) (-3701 (((-85) $ $) 273 T ELT) (((-85) $ (-587 $)) 272 T ELT)) (-3151 (($ $ $ $ $) 230 (|has| |#1| (-499)) ELT)) (-3186 ((|#3| $) 298 T ELT)) (-3090 (($ (-1089 |#1|) |#3|) 131 T ELT) (($ (-1089 $) |#3|) 130 T ELT)) (-2827 (((-587 $) $) 140 T ELT)) (-3944 (((-85) $) 170 T ELT)) (-2899 (($ |#1| |#2|) 171 T ELT) (($ $ |#3| (-698)) 133 T ELT) (($ $ (-587 |#3|) (-587 (-698))) 132 T ELT)) (-3165 (($ $ $) 258 T ELT)) (-3769 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $ |#3|) 134 T ELT)) (-3179 (((-85) $) 288 T ELT)) (-2826 ((|#2| $) 188 T ELT) (((-698) $ |#3|) 136 T ELT) (((-587 (-698)) $ (-587 |#3|)) 135 T ELT)) (-3185 (((-698) $) 297 T ELT)) (-1629 (($ (-1 |#2| |#2|) $) 189 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3088 (((-3 |#3| #3="failed") $) 137 T ELT)) (-3146 (($ $) 225 (|has| |#1| (-395)) ELT)) (-3147 (($ $) 226 (|has| |#1| (-395)) ELT)) (-3174 (((-587 $) $) 283 T ELT)) (-3177 (($ $) 286 T ELT)) (-3148 (($ $) 227 (|has| |#1| (-395)) ELT)) (-3175 (((-587 $) $) 284 T ELT)) (-2285 (((-634 (-488)) (-1183 $)) 152 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) 151 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) 146 T ELT) (((-634 |#1|) (-1183 $)) 145 T ELT)) (-3176 (($ $) 285 T ELT)) (-2900 (($ $) 168 T ELT)) (-3180 ((|#1| $) 167 T ELT) (($ $ |#3|) 290 T ELT)) (-1899 (($ (-587 $)) 108 (|has| |#1| (-395)) ELT) (($ $ $) 107 (|has| |#1| (-395)) ELT)) (-3164 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3487 (-698))) $ $) 257 T ELT)) (-3166 (((-2 (|:| -3961 $) (|:| |gap| (-698)) (|:| -1977 $) (|:| -2908 $)) $ $) 261 T ELT) (((-2 (|:| -3961 $) (|:| |gap| (-698)) (|:| -1977 $) (|:| -2908 $)) $ $ |#3|) 260 T ELT)) (-3167 (((-2 (|:| -3961 $) (|:| |gap| (-698)) (|:| -2908 $)) $ $) 263 T ELT) (((-2 (|:| -3961 $) (|:| |gap| (-698)) (|:| -2908 $)) $ $ |#3|) 262 T ELT)) (-3169 (($ $ $) 267 T ELT) (($ $ $ |#3|) 265 T ELT)) (-3168 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3196 (($ $ $) 233 (|has| |#1| (-499)) ELT)) (-3182 (((-587 $) $) 292 T ELT)) (-2829 (((-3 (-587 $) #3#) $) 128 T ELT)) (-2828 (((-3 (-587 $) #3#) $) 129 T ELT)) (-2830 (((-3 (-2 (|:| |var| |#3|) (|:| -2406 (-698))) #3#) $) 127 T ELT)) (-3697 (((-85) $ $) 275 T ELT) (((-85) $ (-587 $)) 274 T ELT)) (-3692 (($ $ $) 255 T ELT)) (-3452 (($ $) 296 T ELT)) (-3705 (((-85) $ $) 281 T ELT)) (-3698 (((-85) $ $) 277 T ELT) (((-85) $ (-587 $)) 276 T ELT)) (-3693 (($ $ $) 256 T ELT)) (-3184 (($ $) 295 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3155 (((-2 (|:| -3150 $) (|:| |coef2| $)) $ $) 236 (|has| |#1| (-499)) ELT)) (-3156 (((-2 (|:| -3150 $) (|:| |coef1| $)) $ $) 237 (|has| |#1| (-499)) ELT)) (-1805 (((-85) $) 184 T ELT)) (-1804 ((|#1| $) 185 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 109 (|has| |#1| (-395)) ELT)) (-3150 ((|#1| |#1| $) 229 (|has| |#1| (-395)) ELT) (($ (-587 $)) 106 (|has| |#1| (-395)) ELT) (($ $ $) 105 (|has| |#1| (-395)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) 116 (|has| |#1| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) 115 (|has| |#1| (-825)) ELT)) (-3738 (((-350 $) $) 113 (|has| |#1| (-825)) ELT)) (-3157 (((-2 (|:| -3150 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 238 (|has| |#1| (-499)) ELT)) (-3472 (((-3 $ "failed") $ |#1|) 192 (|has| |#1| (-499)) ELT) (((-3 $ "failed") $ $) 100 (|has| |#1| (-499)) ELT)) (-3158 (($ $ |#1|) 242 (|has| |#1| (-499)) ELT) (($ $ $) 240 (|has| |#1| (-499)) ELT)) (-3159 (($ $ |#1|) 243 (|has| |#1| (-499)) ELT) (($ $ $) 241 (|has| |#1| (-499)) ELT)) (-3774 (($ $ (-587 (-251 $))) 163 T ELT) (($ $ (-251 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-587 $) (-587 $)) 160 T ELT) (($ $ |#3| |#1|) 159 T ELT) (($ $ (-587 |#3|) (-587 |#1|)) 158 T ELT) (($ $ |#3| $) 157 T ELT) (($ $ (-587 |#3|) (-587 $)) 156 T ELT)) (-3763 (($ $ |#3|) 121 (|has| |#1| (-148)) ELT)) (-3764 (($ $ (-587 |#3|) (-587 (-698))) 52 T ELT) (($ $ |#3| (-698)) 51 T ELT) (($ $ (-587 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3955 ((|#2| $) 169 T ELT) (((-698) $ |#3|) 144 T ELT) (((-587 (-698)) $ (-587 |#3|)) 143 T ELT)) (-3183 (($ $) 293 T ELT)) (-3181 (($ $) 291 T ELT)) (-3978 (((-804 (-332)) $) 96 (-12 (|has| |#3| (-557 (-804 (-332)))) (|has| |#1| (-557 (-804 (-332))))) ELT) (((-804 (-488)) $) 95 (-12 (|has| |#3| (-557 (-804 (-488)))) (|has| |#1| (-557 (-804 (-488))))) ELT) (((-477) $) 94 (-12 (|has| |#3| (-557 (-477))) (|has| |#1| (-557 (-477)))) ELT) (($ (-861 (-352 (-488)))) 252 (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#3| (-557 (-1094)))) ELT) (($ (-861 (-488))) 249 (OR (-12 (-2566 (|has| |#1| (-38 (-352 (-488))))) (|has| |#1| (-38 (-488))) (|has| |#3| (-557 (-1094)))) (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#3| (-557 (-1094))))) ELT) (($ (-861 |#1|)) 246 (|has| |#3| (-557 (-1094))) ELT) (((-1077) $) 224 (-12 (|has| |#1| (-954 (-488))) (|has| |#3| (-557 (-1094)))) ELT) (((-861 |#1|) $) 223 (|has| |#3| (-557 (-1094))) ELT)) (-2823 ((|#1| $) 193 (|has| |#1| (-395)) ELT) (($ $ |#3|) 120 (|has| |#1| (-395)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) 118 (-2568 (|has| $ (-118)) (|has| |#1| (-825))) ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#1|) 183 T ELT) (($ |#3|) 153 T ELT) (((-861 |#1|) $) 222 (|has| |#3| (-557 (-1094))) ELT) (($ (-352 (-488))) 92 (OR (|has| |#1| (-954 (-352 (-488)))) (|has| |#1| (-38 (-352 (-488))))) ELT) (($ $) 99 (|has| |#1| (-499)) ELT)) (-3823 (((-587 |#1|) $) 186 T ELT)) (-3683 ((|#1| $ |#2|) 173 T ELT) (($ $ |#3| (-698)) 142 T ELT) (($ $ (-587 |#3|) (-587 (-698))) 141 T ELT)) (-2708 (((-636 $) $) 93 (OR (-2568 (|has| $ (-118)) (|has| |#1| (-825))) (|has| |#1| (-118))) ELT)) (-3132 (((-698)) 40 T CONST)) (-1627 (($ $ $ (-698)) 191 (|has| |#1| (-148)) ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 103 (|has| |#1| (-499)) ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-3173 (((-3 (-85) "failed") $ $) 282 T ELT)) (-2672 (($) 45 T CONST)) (-3152 (($ $ $ $ (-698)) 231 (|has| |#1| (-499)) ELT)) (-3153 (($ $ $ (-698)) 232 (|has| |#1| (-499)) ELT)) (-2675 (($ $ (-587 |#3|) (-587 (-698))) 55 T ELT) (($ $ |#3| (-698)) 54 T ELT) (($ $ (-587 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ |#1|) 174 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-352 (-488))) 176 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) 175 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ |#1| $) 165 T ELT) (($ $ |#1|) 164 T ELT))) +(((-981 |#1| |#2| |#3|) (-113) (-965) (-721) (-760)) (T -981)) +((-3186 (*1 *2 *1) (-12 (-4 *1 (-981 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)))) (-3185 (*1 *2 *1) (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-698)))) (-3452 (*1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)))) (-3184 (*1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)))) (-3803 (*1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)))) (-3183 (*1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)))) (-3182 (*1 *2 *1) (-12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-587 *1)) (-4 *1 (-981 *3 *4 *5)))) (-3181 (*1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)))) (-3180 (*1 *1 *1 *2) (-12 (-4 *1 (-981 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)))) (-3965 (*1 *1 *1 *2) (-12 (-4 *1 (-981 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)))) (-3179 (*1 *2 *1) (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)))) (-3178 (*1 *2 *1) (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)))) (-3177 (*1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)))) (-3176 (*1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)))) (-3175 (*1 *2 *1) (-12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-587 *1)) (-4 *1 (-981 *3 *4 *5)))) (-3174 (*1 *2 *1) (-12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-587 *1)) (-4 *1 (-981 *3 *4 *5)))) (-3173 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)))) (-3705 (*1 *2 *1 *1) (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)))) (-3172 (*1 *2 *1 *1) (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)))) (-3700 (*1 *2 *1 *1) (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)))) (-3700 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *1)) (-4 *1 (-981 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)))) (-3698 (*1 *2 *1 *1) (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)))) (-3698 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *1)) (-4 *1 (-981 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)))) (-3697 (*1 *2 *1 *1) (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)))) (-3697 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *1)) (-4 *1 (-981 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)))) (-3701 (*1 *2 *1 *1) (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)))) (-3701 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *1)) (-4 *1 (-981 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)))) (-3171 (*1 *1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)))) (-3170 (*1 *1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)))) (-3171 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-981 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)))) (-3170 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-981 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)))) (-3169 (*1 *1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)))) (-3168 (*1 *1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)))) (-3169 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-981 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)))) (-3168 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-981 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)))) (-3167 (*1 *2 *1 *1) (-12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-2 (|:| -3961 *1) (|:| |gap| (-698)) (|:| -2908 *1))) (-4 *1 (-981 *3 *4 *5)))) (-3167 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 (-760)) (-5 *2 (-2 (|:| -3961 *1) (|:| |gap| (-698)) (|:| -2908 *1))) (-4 *1 (-981 *4 *5 *3)))) (-3166 (*1 *2 *1 *1) (-12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-2 (|:| -3961 *1) (|:| |gap| (-698)) (|:| -1977 *1) (|:| -2908 *1))) (-4 *1 (-981 *3 *4 *5)))) (-3166 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 (-760)) (-5 *2 (-2 (|:| -3961 *1) (|:| |gap| (-698)) (|:| -1977 *1) (|:| -2908 *1))) (-4 *1 (-981 *4 *5 *3)))) (-3758 (*1 *2 *1 *1) (-12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-2 (|:| -1977 *1) (|:| -2908 *1))) (-4 *1 (-981 *3 *4 *5)))) (-3165 (*1 *1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)))) (-3164 (*1 *2 *1 *1) (-12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3487 (-698)))) (-4 *1 (-981 *3 *4 *5)))) (-3693 (*1 *1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)))) (-3692 (*1 *1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)))) (-3163 (*1 *1 *2) (|partial| -12 (-5 *2 (-861 (-352 (-488)))) (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-38 (-352 (-488)))) (-4 *5 (-557 (-1094))) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)))) (-3162 (*1 *1 *2) (-12 (-5 *2 (-861 (-352 (-488)))) (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-38 (-352 (-488)))) (-4 *5 (-557 (-1094))) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)))) (-3978 (*1 *1 *2) (-12 (-5 *2 (-861 (-352 (-488)))) (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-38 (-352 (-488)))) (-4 *5 (-557 (-1094))) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)))) (-3163 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-861 (-488))) (-4 *1 (-981 *3 *4 *5)) (-12 (-2566 (-4 *3 (-38 (-352 (-488))))) (-4 *3 (-38 (-488))) (-4 *5 (-557 (-1094)))) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760))) (-12 (-5 *2 (-861 (-488))) (-4 *1 (-981 *3 *4 *5)) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *5 (-557 (-1094)))) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760))))) (-3162 (*1 *1 *2) (OR (-12 (-5 *2 (-861 (-488))) (-4 *1 (-981 *3 *4 *5)) (-12 (-2566 (-4 *3 (-38 (-352 (-488))))) (-4 *3 (-38 (-488))) (-4 *5 (-557 (-1094)))) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760))) (-12 (-5 *2 (-861 (-488))) (-4 *1 (-981 *3 *4 *5)) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *5 (-557 (-1094)))) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760))))) (-3978 (*1 *1 *2) (OR (-12 (-5 *2 (-861 (-488))) (-4 *1 (-981 *3 *4 *5)) (-12 (-2566 (-4 *3 (-38 (-352 (-488))))) (-4 *3 (-38 (-488))) (-4 *5 (-557 (-1094)))) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760))) (-12 (-5 *2 (-861 (-488))) (-4 *1 (-981 *3 *4 *5)) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *5 (-557 (-1094)))) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760))))) (-3163 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-861 *3)) (-12 (-2566 (-4 *3 (-38 (-352 (-488))))) (-2566 (-4 *3 (-38 (-488)))) (-4 *5 (-557 (-1094)))) (-4 *3 (-965)) (-4 *1 (-981 *3 *4 *5)) (-4 *4 (-721)) (-4 *5 (-760))) (-12 (-5 *2 (-861 *3)) (-12 (-2566 (-4 *3 (-487))) (-2566 (-4 *3 (-38 (-352 (-488))))) (-4 *3 (-38 (-488))) (-4 *5 (-557 (-1094)))) (-4 *3 (-965)) (-4 *1 (-981 *3 *4 *5)) (-4 *4 (-721)) (-4 *5 (-760))) (-12 (-5 *2 (-861 *3)) (-12 (-2566 (-4 *3 (-908 (-488)))) (-4 *3 (-38 (-352 (-488)))) (-4 *5 (-557 (-1094)))) (-4 *3 (-965)) (-4 *1 (-981 *3 *4 *5)) (-4 *4 (-721)) (-4 *5 (-760))))) (-3162 (*1 *1 *2) (OR (-12 (-5 *2 (-861 *3)) (-12 (-2566 (-4 *3 (-38 (-352 (-488))))) (-2566 (-4 *3 (-38 (-488)))) (-4 *5 (-557 (-1094)))) (-4 *3 (-965)) (-4 *1 (-981 *3 *4 *5)) (-4 *4 (-721)) (-4 *5 (-760))) (-12 (-5 *2 (-861 *3)) (-12 (-2566 (-4 *3 (-487))) (-2566 (-4 *3 (-38 (-352 (-488))))) (-4 *3 (-38 (-488))) (-4 *5 (-557 (-1094)))) (-4 *3 (-965)) (-4 *1 (-981 *3 *4 *5)) (-4 *4 (-721)) (-4 *5 (-760))) (-12 (-5 *2 (-861 *3)) (-12 (-2566 (-4 *3 (-908 (-488)))) (-4 *3 (-38 (-352 (-488)))) (-4 *5 (-557 (-1094)))) (-4 *3 (-965)) (-4 *1 (-981 *3 *4 *5)) (-4 *4 (-721)) (-4 *5 (-760))))) (-3978 (*1 *1 *2) (-12 (-5 *2 (-861 *3)) (-4 *3 (-965)) (-4 *1 (-981 *3 *4 *5)) (-4 *5 (-557 (-1094))) (-4 *4 (-721)) (-4 *5 (-760)))) (-3161 (*1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-499)))) (-3160 (*1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-499)))) (-3159 (*1 *1 *1 *2) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-499)))) (-3158 (*1 *1 *1 *2) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-499)))) (-3159 (*1 *1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-499)))) (-3158 (*1 *1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-499)))) (-3761 (*1 *1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-499)))) (-3157 (*1 *2 *1 *1) (-12 (-4 *3 (-499)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-2 (|:| -3150 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-981 *3 *4 *5)))) (-3156 (*1 *2 *1 *1) (-12 (-4 *3 (-499)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-2 (|:| -3150 *1) (|:| |coef1| *1))) (-4 *1 (-981 *3 *4 *5)))) (-3155 (*1 *2 *1 *1) (-12 (-4 *3 (-499)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-2 (|:| -3150 *1) (|:| |coef2| *1))) (-4 *1 (-981 *3 *4 *5)))) (-3762 (*1 *1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-499)))) (-3154 (*1 *2 *1 *1) (-12 (-4 *3 (-499)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-587 *1)) (-4 *1 (-981 *3 *4 *5)))) (-3196 (*1 *1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-499)))) (-3153 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *3 (-499)))) (-3152 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *3 (-499)))) (-3151 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-499)))) (-3150 (*1 *2 *2 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-395)))) (-3149 (*1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-395)))) (-3148 (*1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-395)))) (-3147 (*1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-395)))) (-3146 (*1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-395))))) +(-13 (-865 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3186 (|t#3| $)) (-15 -3185 ((-698) $)) (-15 -3452 ($ $)) (-15 -3184 ($ $)) (-15 -3803 ($ $)) (-15 -3183 ($ $)) (-15 -3182 ((-587 $) $)) (-15 -3181 ($ $)) (-15 -3180 ($ $ |t#3|)) (-15 -3965 ($ $ |t#3|)) (-15 -3179 ((-85) $)) (-15 -3178 ((-85) $)) (-15 -3177 ($ $)) (-15 -3176 ($ $)) (-15 -3175 ((-587 $) $)) (-15 -3174 ((-587 $) $)) (-15 -3173 ((-3 (-85) "failed") $ $)) (-15 -3705 ((-85) $ $)) (-15 -3172 ((-85) $ $)) (-15 -3700 ((-85) $ $)) (-15 -3700 ((-85) $ (-587 $))) (-15 -3698 ((-85) $ $)) (-15 -3698 ((-85) $ (-587 $))) (-15 -3697 ((-85) $ $)) (-15 -3697 ((-85) $ (-587 $))) (-15 -3701 ((-85) $ $)) (-15 -3701 ((-85) $ (-587 $))) (-15 -3171 ($ $ $)) (-15 -3170 ($ $ $)) (-15 -3171 ($ $ $ |t#3|)) (-15 -3170 ($ $ $ |t#3|)) (-15 -3169 ($ $ $)) (-15 -3168 ($ $ $)) (-15 -3169 ($ $ $ |t#3|)) (-15 -3168 ($ $ $ |t#3|)) (-15 -3167 ((-2 (|:| -3961 $) (|:| |gap| (-698)) (|:| -2908 $)) $ $)) (-15 -3167 ((-2 (|:| -3961 $) (|:| |gap| (-698)) (|:| -2908 $)) $ $ |t#3|)) (-15 -3166 ((-2 (|:| -3961 $) (|:| |gap| (-698)) (|:| -1977 $) (|:| -2908 $)) $ $)) (-15 -3166 ((-2 (|:| -3961 $) (|:| |gap| (-698)) (|:| -1977 $) (|:| -2908 $)) $ $ |t#3|)) (-15 -3758 ((-2 (|:| -1977 $) (|:| -2908 $)) $ $)) (-15 -3165 ($ $ $)) (-15 -3164 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3487 (-698))) $ $)) (-15 -3693 ($ $ $)) (-15 -3692 ($ $ $)) (IF (|has| |t#3| (-557 (-1094))) (PROGN (-6 (-556 (-861 |t#1|))) (-6 (-557 (-861 |t#1|))) (IF (|has| |t#1| (-38 (-352 (-488)))) (PROGN (-15 -3163 ((-3 $ "failed") (-861 (-352 (-488))))) (-15 -3162 ($ (-861 (-352 (-488))))) (-15 -3978 ($ (-861 (-352 (-488))))) (-15 -3163 ((-3 $ "failed") (-861 (-488)))) (-15 -3162 ($ (-861 (-488)))) (-15 -3978 ($ (-861 (-488)))) (IF (|has| |t#1| (-908 (-488))) |%noBranch| (PROGN (-15 -3163 ((-3 $ "failed") (-861 |t#1|))) (-15 -3162 ($ (-861 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-488))) (IF (|has| |t#1| (-38 (-352 (-488)))) |%noBranch| (PROGN (-15 -3163 ((-3 $ "failed") (-861 (-488)))) (-15 -3162 ($ (-861 (-488)))) (-15 -3978 ($ (-861 (-488)))) (IF (|has| |t#1| (-487)) |%noBranch| (PROGN (-15 -3163 ((-3 $ "failed") (-861 |t#1|))) (-15 -3162 ($ (-861 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-488))) |%noBranch| (IF (|has| |t#1| (-38 (-352 (-488)))) |%noBranch| (PROGN (-15 -3163 ((-3 $ "failed") (-861 |t#1|))) (-15 -3162 ($ (-861 |t#1|)))))) (-15 -3978 ($ (-861 |t#1|))) (IF (|has| |t#1| (-954 (-488))) (-6 (-557 (-1077))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-499)) (PROGN (-15 -3161 ($ $)) (-15 -3160 ($ $)) (-15 -3159 ($ $ |t#1|)) (-15 -3158 ($ $ |t#1|)) (-15 -3159 ($ $ $)) (-15 -3158 ($ $ $)) (-15 -3761 ($ $ $)) (-15 -3157 ((-2 (|:| -3150 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3156 ((-2 (|:| -3150 $) (|:| |coef1| $)) $ $)) (-15 -3155 ((-2 (|:| -3150 $) (|:| |coef2| $)) $ $)) (-15 -3762 ($ $ $)) (-15 -3154 ((-587 $) $ $)) (-15 -3196 ($ $ $)) (-15 -3153 ($ $ $ (-698))) (-15 -3152 ($ $ $ $ (-698))) (-15 -3151 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-395)) (PROGN (-15 -3150 (|t#1| |t#1| $)) (-15 -3149 ($ $)) (-15 -3148 ($ $)) (-15 -3147 ($ $)) (-15 -3146 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-38 |#1|) |has| |#1| (-148)) ((-38 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395))) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-148))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) OR (|has| |#1| (-954 (-352 (-488)))) (|has| |#1| (-38 (-352 (-488))))) ((-559 (-488)) . T) ((-559 |#1|) . T) ((-559 |#3|) . T) ((-559 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395))) ((-556 (-776)) . T) ((-556 (-861 |#1|)) |has| |#3| (-557 (-1094))) ((-148) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-148))) ((-557 (-477)) -12 (|has| |#1| (-557 (-477))) (|has| |#3| (-557 (-477)))) ((-557 (-804 (-332))) -12 (|has| |#1| (-557 (-804 (-332)))) (|has| |#3| (-557 (-804 (-332))))) ((-557 (-804 (-488))) -12 (|has| |#1| (-557 (-804 (-488)))) (|has| |#3| (-557 (-804 (-488))))) ((-557 (-861 |#1|)) |has| |#3| (-557 (-1094))) ((-557 (-1077)) -12 (|has| |#1| (-954 (-488))) (|has| |#3| (-557 (-1094)))) ((-248) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395))) ((-262 $) . T) ((-279 |#1| |#2|) . T) ((-331 |#1|) . T) ((-357 |#1|) . T) ((-383 |#1|) . T) ((-395) OR (|has| |#1| (-825)) (|has| |#1| (-395))) ((-459 |#3| |#1|) . T) ((-459 |#3| $) . T) ((-459 $ $) . T) ((-499) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395))) ((-13) . T) ((-592 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-594 (-488)) |has| |#1| (-584 (-488))) ((-594 |#1|) . T) ((-594 $) . T) ((-586 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-586 |#1|) |has| |#1| (-148)) ((-586 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395))) ((-584 (-488)) |has| |#1| (-584 (-488))) ((-584 |#1|) . T) ((-658 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-658 |#1|) |has| |#1| (-148)) ((-658 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395))) ((-667) . T) ((-810 $ |#3|) . T) ((-813 |#3|) . T) ((-815 |#3|) . T) ((-800 (-332)) -12 (|has| |#1| (-800 (-332))) (|has| |#3| (-800 (-332)))) ((-800 (-488)) -12 (|has| |#1| (-800 (-488))) (|has| |#3| (-800 (-488)))) ((-865 |#1| |#2| |#3|) . T) ((-825) |has| |#1| (-825)) ((-954 (-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((-954 (-488)) |has| |#1| (-954 (-488))) ((-954 |#1|) . T) ((-954 |#3|) . T) ((-967 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-148))) ((-972 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-972 |#1|) . T) ((-972 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-148))) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T) ((-1138) |has| |#1| (-825))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3187 (((-587 (-1053)) $) 18 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 27 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-3239 (((-1053) $) 20 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-982) (-13 (-999) (-10 -8 (-15 -3187 ((-587 (-1053)) $)) (-15 -3239 ((-1053) $))))) (T -982)) +((-3187 (*1 *2 *1) (-12 (-5 *2 (-587 (-1053))) (-5 *1 (-982)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-982))))) +((-3194 (((-85) |#3| $) 15 T ELT)) (-3189 (((-3 $ #1="failed") |#3| (-834)) 29 T ELT)) (-3473 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3192 (((-85) |#3| $) 19 T ELT)) (-3193 (((-85) |#3| $) 17 T ELT))) +(((-983 |#1| |#2| |#3|) (-10 -7 (-15 -3189 ((-3 |#1| #1="failed") |#3| (-834))) (-15 -3473 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3192 ((-85) |#3| |#1|)) (-15 -3193 ((-85) |#3| |#1|)) (-15 -3194 ((-85) |#3| |#1|))) (-984 |#2| |#3|) (-13 (-759) (-314)) (-1159 |#2|)) (T -983)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) |#2| $) 25 T ELT)) (-3629 (((-488) |#2| $) 26 T ELT)) (-3189 (((-3 $ "failed") |#2| (-834)) 19 T ELT)) (-3188 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3473 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3192 (((-85) |#2| $) 23 T ELT)) (-3193 (((-85) |#2| $) 24 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3191 ((|#2| $) 21 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3776 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3190 (((-587 $) |#2|) 20 T ELT)) (-3062 (((-85) $ $) 8 T ELT))) +(((-984 |#1| |#2|) (-113) (-13 (-759) (-314)) (-1159 |t#1|)) (T -984)) +((-3629 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *3)) (-4 *4 (-13 (-759) (-314))) (-4 *3 (-1159 *4)) (-5 *2 (-488)))) (-3194 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *3)) (-4 *4 (-13 (-759) (-314))) (-4 *3 (-1159 *4)) (-5 *2 (-85)))) (-3193 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *3)) (-4 *4 (-13 (-759) (-314))) (-4 *3 (-1159 *4)) (-5 *2 (-85)))) (-3192 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *3)) (-4 *4 (-13 (-759) (-314))) (-4 *3 (-1159 *4)) (-5 *2 (-85)))) (-3473 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-984 *3 *2)) (-4 *3 (-13 (-759) (-314))) (-4 *2 (-1159 *3)))) (-3191 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *2)) (-4 *3 (-13 (-759) (-314))) (-4 *2 (-1159 *3)))) (-3190 (*1 *2 *3) (-12 (-4 *4 (-13 (-759) (-314))) (-4 *3 (-1159 *4)) (-5 *2 (-587 *1)) (-4 *1 (-984 *4 *3)))) (-3189 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-834)) (-4 *4 (-13 (-759) (-314))) (-4 *1 (-984 *4 *2)) (-4 *2 (-1159 *4)))) (-3776 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-984 *2 *3)) (-4 *2 (-13 (-759) (-314))) (-4 *3 (-1159 *2)))) (-3188 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-984 *2 *3)) (-4 *2 (-13 (-759) (-314))) (-4 *3 (-1159 *2))))) +(-13 (-1017) (-10 -8 (-15 -3629 ((-488) |t#2| $)) (-15 -3194 ((-85) |t#2| $)) (-15 -3193 ((-85) |t#2| $)) (-15 -3192 ((-85) |t#2| $)) (-15 -3473 ((-3 |t#2| "failed") |t#2| $)) (-15 -3191 (|t#2| $)) (-15 -3190 ((-587 $) |t#2|)) (-15 -3189 ((-3 $ "failed") |t#2| (-834))) (-15 -3776 (|t#1| |t#2| $ |t#1|)) (-15 -3188 (|t#1| |t#2| $ |t#1|)))) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-3442 (((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) (-587 |#4|) (-587 |#5|) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) (-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) (-698)) 114 T ELT)) (-3439 (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5| (-698)) 63 T ELT)) (-3443 (((-1189) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) (-698)) 99 T ELT)) (-3437 (((-698) (-587 |#4|) (-587 |#5|)) 30 T ELT)) (-3440 (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5| (-698)) 65 T ELT) (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5| (-698) (-85)) 67 T ELT)) (-3441 (((-587 |#5|) (-587 |#4|) (-587 |#5|) (-85) (-85) (-85) (-85) (-85)) 86 T ELT) (((-587 |#5|) (-587 |#4|) (-587 |#5|) (-85) (-85)) 87 T ELT)) (-3978 (((-1077) (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) 92 T ELT)) (-3438 (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5| (-85)) 62 T ELT)) (-3436 (((-698) (-587 |#4|) (-587 |#5|)) 21 T ELT))) +(((-985 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3436 ((-698) (-587 |#4|) (-587 |#5|))) (-15 -3437 ((-698) (-587 |#4|) (-587 |#5|))) (-15 -3438 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5| (-85))) (-15 -3439 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5| (-698))) (-15 -3439 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5|)) (-15 -3440 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5| (-698) (-85))) (-15 -3440 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5| (-698))) (-15 -3440 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5|)) (-15 -3441 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-85) (-85))) (-15 -3441 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3442 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) (-587 |#4|) (-587 |#5|) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) (-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) (-698))) (-15 -3978 ((-1077) (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|)))) (-15 -3443 ((-1189) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) (-698)))) (-395) (-721) (-760) (-981 |#1| |#2| |#3|) (-987 |#1| |#2| |#3| |#4|)) (T -985)) +((-3443 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1604 *9)))) (-5 *4 (-698)) (-4 *8 (-981 *5 *6 *7)) (-4 *9 (-987 *5 *6 *7 *8)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-1189)) (-5 *1 (-985 *5 *6 *7 *8 *9)))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1604 *8))) (-4 *7 (-981 *4 *5 *6)) (-4 *8 (-987 *4 *5 *6 *7)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-1077)) (-5 *1 (-985 *4 *5 *6 *7 *8)))) (-3442 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-587 *11)) (|:| |todo| (-587 (-2 (|:| |val| *3) (|:| -1604 *11)))))) (-5 *6 (-698)) (-5 *2 (-587 (-2 (|:| |val| (-587 *10)) (|:| -1604 *11)))) (-5 *3 (-587 *10)) (-5 *4 (-587 *11)) (-4 *10 (-981 *7 *8 *9)) (-4 *11 (-987 *7 *8 *9 *10)) (-4 *7 (-395)) (-4 *8 (-721)) (-4 *9 (-760)) (-5 *1 (-985 *7 *8 *9 *10 *11)))) (-3441 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *9 (-987 *5 *6 *7 *8)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *1 (-985 *5 *6 *7 *8 *9)))) (-3441 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *9 (-987 *5 *6 *7 *8)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *1 (-985 *5 *6 *7 *8 *9)))) (-3440 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3440 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-698)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) (-4 *3 (-981 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) (-3440 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-698)) (-5 *6 (-85)) (-4 *7 (-395)) (-4 *8 (-721)) (-4 *9 (-760)) (-4 *3 (-981 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) (-5 *1 (-985 *7 *8 *9 *3 *4)) (-4 *4 (-987 *7 *8 *9 *3)))) (-3439 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3439 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-698)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) (-4 *3 (-981 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) (-3438 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) (-4 *3 (-981 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) (-3437 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-981 *5 *6 *7)) (-4 *9 (-987 *5 *6 *7 *8)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-698)) (-5 *1 (-985 *5 *6 *7 *8 *9)))) (-3436 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-981 *5 *6 *7)) (-4 *9 (-987 *5 *6 *7 *8)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-698)) (-5 *1 (-985 *5 *6 *7 *8 *9))))) +((-3203 (((-85) |#5| $) 26 T ELT)) (-3201 (((-85) |#5| $) 29 T ELT)) (-3204 (((-85) |#5| $) 18 T ELT) (((-85) $) 52 T ELT)) (-3244 (((-587 $) |#5| $) NIL T ELT) (((-587 $) (-587 |#5|) $) 94 T ELT) (((-587 $) (-587 |#5|) (-587 $)) 92 T ELT) (((-587 $) |#5| (-587 $)) 95 T ELT)) (-3775 (($ $ |#5|) NIL T ELT) (((-587 $) |#5| $) NIL T ELT) (((-587 $) |#5| (-587 $)) 73 T ELT) (((-587 $) (-587 |#5|) $) 75 T ELT) (((-587 $) (-587 |#5|) (-587 $)) 77 T ELT)) (-3195 (((-587 $) |#5| $) NIL T ELT) (((-587 $) |#5| (-587 $)) 64 T ELT) (((-587 $) (-587 |#5|) $) 69 T ELT) (((-587 $) (-587 |#5|) (-587 $)) 71 T ELT)) (-3202 (((-85) |#5| $) 32 T ELT))) +(((-986 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3775 ((-587 |#1|) (-587 |#5|) (-587 |#1|))) (-15 -3775 ((-587 |#1|) (-587 |#5|) |#1|)) (-15 -3775 ((-587 |#1|) |#5| (-587 |#1|))) (-15 -3775 ((-587 |#1|) |#5| |#1|)) (-15 -3195 ((-587 |#1|) (-587 |#5|) (-587 |#1|))) (-15 -3195 ((-587 |#1|) (-587 |#5|) |#1|)) (-15 -3195 ((-587 |#1|) |#5| (-587 |#1|))) (-15 -3195 ((-587 |#1|) |#5| |#1|)) (-15 -3244 ((-587 |#1|) |#5| (-587 |#1|))) (-15 -3244 ((-587 |#1|) (-587 |#5|) (-587 |#1|))) (-15 -3244 ((-587 |#1|) (-587 |#5|) |#1|)) (-15 -3244 ((-587 |#1|) |#5| |#1|)) (-15 -3201 ((-85) |#5| |#1|)) (-15 -3204 ((-85) |#1|)) (-15 -3202 ((-85) |#5| |#1|)) (-15 -3203 ((-85) |#5| |#1|)) (-15 -3204 ((-85) |#5| |#1|)) (-15 -3775 (|#1| |#1| |#5|))) (-987 |#2| |#3| |#4| |#5|) (-395) (-721) (-760) (-981 |#2| |#3| |#4|)) (T -986)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3687 (((-587 (-2 (|:| -3868 $) (|:| -1706 (-587 |#4|)))) (-587 |#4|)) 91 T ELT)) (-3688 (((-587 $) (-587 |#4|)) 92 T ELT) (((-587 $) (-587 |#4|) (-85)) 120 T ELT)) (-3087 (((-587 |#3|) $) 39 T ELT)) (-2914 (((-85) $) 32 T ELT)) (-2905 (((-85) $) 23 (|has| |#1| (-499)) ELT)) (-3699 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3694 ((|#4| |#4| $) 98 T ELT)) (-3781 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 $))) |#4| $) 135 T ELT)) (-2915 (((-2 (|:| |under| $) (|:| -3136 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3716 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-320 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3730 (($) 59 T CONST)) (-2910 (((-85) $) 28 (|has| |#1| (-499)) ELT)) (-2912 (((-85) $ $) 30 (|has| |#1| (-499)) ELT)) (-2911 (((-85) $ $) 29 (|has| |#1| (-499)) ELT)) (-2913 (((-85) $) 31 (|has| |#1| (-499)) ELT)) (-3695 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2906 (((-587 |#4|) (-587 |#4|) $) 24 (|has| |#1| (-499)) ELT)) (-2907 (((-587 |#4|) (-587 |#4|) $) 25 (|has| |#1| (-499)) ELT)) (-3163 (((-3 $ "failed") (-587 |#4|)) 42 T ELT)) (-3162 (($ (-587 |#4|)) 41 T ELT)) (-3805 (((-3 $ #1#) $) 88 T ELT)) (-3691 ((|#4| |#4| $) 95 T ELT)) (-1357 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-320 |#4|))) ELT)) (-3412 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-320 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-320 |#4|)) ELT)) (-2908 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-499)) ELT)) (-3700 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3689 ((|#4| |#4| $) 93 T ELT)) (-3848 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3702 (((-2 (|:| -3868 (-587 |#4|)) (|:| -1706 (-587 |#4|))) $) 111 T ELT)) (-3203 (((-85) |#4| $) 145 T ELT)) (-3201 (((-85) |#4| $) 142 T ELT)) (-3204 (((-85) |#4| $) 146 T ELT) (((-85) $) 143 T ELT)) (-3701 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3186 ((|#3| $) 40 T ELT)) (-2614 (((-587 |#4|) $) 48 T ELT)) (-3251 (((-85) |#4| $) 53 (|has| |#4| (-72)) ELT)) (-3332 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3849 (($ (-1 |#4| |#4|) $) 60 T ELT)) (-2920 (((-587 |#3|) $) 38 T ELT)) (-2919 (((-85) |#3| $) 37 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3197 (((-3 |#4| (-587 $)) |#4| |#4| $) 137 T ELT)) (-3196 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 $))) |#4| |#4| $) 136 T ELT)) (-3804 (((-3 |#4| #1#) $) 89 T ELT)) (-3198 (((-587 $) |#4| $) 138 T ELT)) (-3200 (((-3 (-85) (-587 $)) |#4| $) 141 T ELT)) (-3199 (((-587 (-2 (|:| |val| (-85)) (|:| -1604 $))) |#4| $) 140 T ELT) (((-85) |#4| $) 139 T ELT)) (-3244 (((-587 $) |#4| $) 134 T ELT) (((-587 $) (-587 |#4|) $) 133 T ELT) (((-587 $) (-587 |#4|) (-587 $)) 132 T ELT) (((-587 $) |#4| (-587 $)) 131 T ELT)) (-3446 (($ |#4| $) 126 T ELT) (($ (-587 |#4|) $) 125 T ELT)) (-3703 (((-587 |#4|) $) 113 T ELT)) (-3697 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3692 ((|#4| |#4| $) 96 T ELT)) (-3705 (((-85) $ $) 116 T ELT)) (-2909 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-499)) ELT)) (-3698 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3693 ((|#4| |#4| $) 97 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3807 (((-3 |#4| #1#) $) 90 T ELT)) (-1734 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 51 T ELT)) (-3685 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3775 (($ $ |#4|) 83 T ELT) (((-587 $) |#4| $) 124 T ELT) (((-587 $) |#4| (-587 $)) 123 T ELT) (((-587 $) (-587 |#4|) $) 122 T ELT) (((-587 $) (-587 |#4|) (-587 $)) 121 T ELT)) (-1736 (((-85) (-1 (-85) |#4|) $) 46 T ELT)) (-3774 (($ $ (-587 |#4|) (-587 |#4|)) 64 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ |#4| |#4|) 63 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-251 |#4|)) 62 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-587 (-251 |#4|))) 61 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT)) (-1226 (((-85) $ $) 55 T ELT)) (-3409 (((-85) $) 58 T ELT)) (-3571 (($) 57 T ELT)) (-3955 (((-698) $) 112 T ELT)) (-1735 (((-698) |#4| $) 52 (|has| |#4| (-72)) ELT) (((-698) (-1 (-85) |#4|) $) 47 T ELT)) (-3406 (($ $) 56 T ELT)) (-3978 (((-477) $) 70 (|has| |#4| (-557 (-477))) ELT)) (-3536 (($ (-587 |#4|)) 65 T ELT)) (-2916 (($ $ |#3|) 34 T ELT)) (-2918 (($ $ |#3|) 36 T ELT)) (-3690 (($ $) 94 T ELT)) (-2917 (($ $ |#3|) 35 T ELT)) (-3953 (((-776) $) 13 T ELT) (((-587 |#4|) $) 43 T ELT)) (-3684 (((-698) $) 82 (|has| |#3| (-322)) ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3704 (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#4|))) #1#) (-587 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#4|))) #1#) (-587 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3696 (((-85) $ (-1 (-85) |#4| (-587 |#4|))) 104 T ELT)) (-3195 (((-587 $) |#4| $) 130 T ELT) (((-587 $) |#4| (-587 $)) 129 T ELT) (((-587 $) (-587 |#4|) $) 128 T ELT) (((-587 $) (-587 |#4|) (-587 $)) 127 T ELT)) (-1737 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3686 (((-587 |#3|) $) 87 T ELT)) (-3202 (((-85) |#4| $) 144 T ELT)) (-3940 (((-85) |#3| $) 86 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3964 (((-698) $) 44 T ELT))) +(((-987 |#1| |#2| |#3| |#4|) (-113) (-395) (-721) (-760) (-981 |t#1| |t#2| |t#3|)) (T -987)) +((-3204 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-85)))) (-3203 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-85)))) (-3202 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-85)))) (-3204 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-85)))) (-3201 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-85)))) (-3200 (*1 *2 *3 *1) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-3 (-85) (-587 *1))) (-4 *1 (-987 *4 *5 *6 *3)))) (-3199 (*1 *2 *3 *1) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-587 (-2 (|:| |val| (-85)) (|:| -1604 *1)))) (-4 *1 (-987 *4 *5 *6 *3)))) (-3199 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-85)))) (-3198 (*1 *2 *3 *1) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *3)))) (-3197 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-3 *3 (-587 *1))) (-4 *1 (-987 *4 *5 *6 *3)))) (-3196 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *1)))) (-4 *1 (-987 *4 *5 *6 *3)))) (-3781 (*1 *2 *3 *1) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *1)))) (-4 *1 (-987 *4 *5 *6 *3)))) (-3244 (*1 *2 *3 *1) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *3)))) (-3244 (*1 *2 *3 *1) (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *7)))) (-3244 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *1)) (-5 *3 (-587 *7)) (-4 *1 (-987 *4 *5 *6 *7)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)))) (-3244 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)))) (-3195 (*1 *2 *3 *1) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *3)))) (-3195 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)))) (-3195 (*1 *2 *3 *1) (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *7)))) (-3195 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *1)) (-5 *3 (-587 *7)) (-4 *1 (-987 *4 *5 *6 *7)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)))) (-3446 (*1 *1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *2)) (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *2 (-981 *3 *4 *5)))) (-3446 (*1 *1 *2 *1) (-12 (-5 *2 (-587 *6)) (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)))) (-3775 (*1 *2 *3 *1) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *3)))) (-3775 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)))) (-3775 (*1 *2 *3 *1) (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *7)))) (-3775 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *1)) (-5 *3 (-587 *7)) (-4 *1 (-987 *4 *5 *6 *7)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)))) (-3688 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-587 *1)) (-4 *1 (-987 *5 *6 *7 *8))))) +(-13 (-1128 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3204 ((-85) |t#4| $)) (-15 -3203 ((-85) |t#4| $)) (-15 -3202 ((-85) |t#4| $)) (-15 -3204 ((-85) $)) (-15 -3201 ((-85) |t#4| $)) (-15 -3200 ((-3 (-85) (-587 $)) |t#4| $)) (-15 -3199 ((-587 (-2 (|:| |val| (-85)) (|:| -1604 $))) |t#4| $)) (-15 -3199 ((-85) |t#4| $)) (-15 -3198 ((-587 $) |t#4| $)) (-15 -3197 ((-3 |t#4| (-587 $)) |t#4| |t#4| $)) (-15 -3196 ((-587 (-2 (|:| |val| |t#4|) (|:| -1604 $))) |t#4| |t#4| $)) (-15 -3781 ((-587 (-2 (|:| |val| |t#4|) (|:| -1604 $))) |t#4| $)) (-15 -3244 ((-587 $) |t#4| $)) (-15 -3244 ((-587 $) (-587 |t#4|) $)) (-15 -3244 ((-587 $) (-587 |t#4|) (-587 $))) (-15 -3244 ((-587 $) |t#4| (-587 $))) (-15 -3195 ((-587 $) |t#4| $)) (-15 -3195 ((-587 $) |t#4| (-587 $))) (-15 -3195 ((-587 $) (-587 |t#4|) $)) (-15 -3195 ((-587 $) (-587 |t#4|) (-587 $))) (-15 -3446 ($ |t#4| $)) (-15 -3446 ($ (-587 |t#4|) $)) (-15 -3775 ((-587 $) |t#4| $)) (-15 -3775 ((-587 $) |t#4| (-587 $))) (-15 -3775 ((-587 $) (-587 |t#4|) $)) (-15 -3775 ((-587 $) (-587 |t#4|) (-587 $))) (-15 -3688 ((-587 $) (-587 |t#4|) (-85))))) +(((-34) . T) ((-72) . T) ((-556 (-587 |#4|)) . T) ((-556 (-776)) . T) ((-124 |#4|) . T) ((-557 (-477)) |has| |#4| (-557 (-477))) ((-262 |#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ((-320 |#4|) . T) ((-383 |#4|) . T) ((-432 |#4|) . T) ((-459 |#4| |#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ((-13) . T) ((-893 |#1| |#2| |#3| |#4|) . T) ((-1017) . T) ((-1039 |#4|) . T) ((-1128 |#1| |#2| |#3| |#4|) . T) ((-1133) . T)) +((-3211 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) |#4| |#5|) 86 T ELT)) (-3208 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3210 (((-587 |#5|) |#4| |#5|) 74 T ELT)) (-3209 (((-587 (-2 (|:| |val| (-85)) (|:| -1604 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3292 (((-1189)) 36 T ELT)) (-3290 (((-1189)) 25 T ELT)) (-3291 (((-1189) (-1077) (-1077) (-1077)) 32 T ELT)) (-3289 (((-1189) (-1077) (-1077) (-1077)) 21 T ELT)) (-3205 (((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3206 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) |#3| (-85)) 117 T ELT) (((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3207 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) |#4| |#4| |#5|) 112 T ELT))) +(((-988 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3289 ((-1189) (-1077) (-1077) (-1077))) (-15 -3290 ((-1189))) (-15 -3291 ((-1189) (-1077) (-1077) (-1077))) (-15 -3292 ((-1189))) (-15 -3205 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) |#4| |#4| |#5|)) (-15 -3206 ((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3206 ((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) |#3| (-85))) (-15 -3207 ((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) |#4| |#4| |#5|)) (-15 -3208 ((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) |#4| |#4| |#5|)) (-15 -3209 ((-85) |#4| |#5|)) (-15 -3209 ((-587 (-2 (|:| |val| (-85)) (|:| -1604 |#5|))) |#4| |#5|)) (-15 -3210 ((-587 |#5|) |#4| |#5|)) (-15 -3211 ((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) |#4| |#5|))) (-395) (-721) (-760) (-981 |#1| |#2| |#3|) (-987 |#1| |#2| |#3| |#4|)) (T -988)) +((-3211 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3210 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-587 *4)) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3209 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-85)) (|:| -1604 *4)))) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3209 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3208 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3207 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3206 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1604 *9)))) (-5 *5 (-85)) (-4 *8 (-981 *6 *7 *4)) (-4 *9 (-987 *6 *7 *4 *8)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *4 (-760)) (-5 *2 (-587 (-2 (|:| |val| *8) (|:| -1604 *9)))) (-5 *1 (-988 *6 *7 *4 *8 *9)))) (-3206 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) (-4 *3 (-981 *6 *7 *8)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) (-5 *1 (-988 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) (-3205 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3292 (*1 *2) (-12 (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-1189)) (-5 *1 (-988 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6)))) (-3291 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-3290 (*1 *2) (-12 (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-1189)) (-5 *1 (-988 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6)))) (-3289 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3324 (((-1134) $) 14 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3212 (((-1053) $) 11 T ELT)) (-3953 (((-776) $) 21 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-989) (-13 (-999) (-10 -8 (-15 -3212 ((-1053) $)) (-15 -3324 ((-1134) $))))) (T -989)) +((-3212 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-989)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-989))))) +((-3272 (((-85) $ $) 7 T ELT))) +(((-990) (-13 (-1133) (-10 -8 (-15 -3272 ((-85) $ $))))) (T -990)) +((-3272 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-990))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3215 (($ $ (-587 (-1094)) (-1 (-85) (-587 |#3|))) 34 T ELT)) (-3216 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-587 (-1094))) 21 T ELT)) (-3534 ((|#3| $) 13 T ELT)) (-3163 (((-3 (-251 |#3|) "failed") $) 60 T ELT)) (-3162 (((-251 |#3|) $) NIL T ELT)) (-3213 (((-587 (-1094)) $) 16 T ELT)) (-3214 (((-804 |#1|) $) 11 T ELT)) (-3535 ((|#3| $) 12 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3806 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-834)) 41 T ELT)) (-3953 (((-776) $) 89 T ELT) (($ (-251 |#3|)) 22 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 38 T ELT))) +(((-991 |#1| |#2| |#3|) (-13 (-1017) (-243 |#3| |#3|) (-954 (-251 |#3|)) (-10 -8 (-15 -3216 ($ |#3| |#3|)) (-15 -3216 ($ |#3| |#3| (-587 (-1094)))) (-15 -3215 ($ $ (-587 (-1094)) (-1 (-85) (-587 |#3|)))) (-15 -3214 ((-804 |#1|) $)) (-15 -3535 (|#3| $)) (-15 -3534 (|#3| $)) (-15 -3806 (|#3| $ |#3| (-834))) (-15 -3213 ((-587 (-1094)) $)))) (-1017) (-13 (-965) (-800 |#1|) (-557 (-804 |#1|))) (-13 (-366 |#2|) (-800 |#1|) (-557 (-804 |#1|)))) (T -991)) +((-3216 (*1 *1 *2 *2) (-12 (-4 *3 (-1017)) (-4 *4 (-13 (-965) (-800 *3) (-557 (-804 *3)))) (-5 *1 (-991 *3 *4 *2)) (-4 *2 (-13 (-366 *4) (-800 *3) (-557 (-804 *3)))))) (-3216 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-587 (-1094))) (-4 *4 (-1017)) (-4 *5 (-13 (-965) (-800 *4) (-557 (-804 *4)))) (-5 *1 (-991 *4 *5 *2)) (-4 *2 (-13 (-366 *5) (-800 *4) (-557 (-804 *4)))))) (-3215 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-1094))) (-5 *3 (-1 (-85) (-587 *6))) (-4 *6 (-13 (-366 *5) (-800 *4) (-557 (-804 *4)))) (-4 *4 (-1017)) (-4 *5 (-13 (-965) (-800 *4) (-557 (-804 *4)))) (-5 *1 (-991 *4 *5 *6)))) (-3214 (*1 *2 *1) (-12 (-4 *3 (-1017)) (-4 *4 (-13 (-965) (-800 *3) (-557 *2))) (-5 *2 (-804 *3)) (-5 *1 (-991 *3 *4 *5)) (-4 *5 (-13 (-366 *4) (-800 *3) (-557 *2))))) (-3535 (*1 *2 *1) (-12 (-4 *3 (-1017)) (-4 *2 (-13 (-366 *4) (-800 *3) (-557 (-804 *3)))) (-5 *1 (-991 *3 *4 *2)) (-4 *4 (-13 (-965) (-800 *3) (-557 (-804 *3)))))) (-3534 (*1 *2 *1) (-12 (-4 *3 (-1017)) (-4 *2 (-13 (-366 *4) (-800 *3) (-557 (-804 *3)))) (-5 *1 (-991 *3 *4 *2)) (-4 *4 (-13 (-965) (-800 *3) (-557 (-804 *3)))))) (-3806 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-834)) (-4 *4 (-1017)) (-4 *5 (-13 (-965) (-800 *4) (-557 (-804 *4)))) (-5 *1 (-991 *4 *5 *2)) (-4 *2 (-13 (-366 *5) (-800 *4) (-557 (-804 *4)))))) (-3213 (*1 *2 *1) (-12 (-4 *3 (-1017)) (-4 *4 (-13 (-965) (-800 *3) (-557 (-804 *3)))) (-5 *2 (-587 (-1094))) (-5 *1 (-991 *3 *4 *5)) (-4 *5 (-13 (-366 *4) (-800 *3) (-557 (-804 *3))))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3548 (((-1094) $) 8 T ELT)) (-3248 (((-1077) $) 17 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 11 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 14 T ELT))) +(((-992 |#1|) (-13 (-1017) (-10 -8 (-15 -3548 ((-1094) $)))) (-1094)) (T -992)) +((-3548 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-992 *3)) (-14 *3 *2)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3218 (($ (-587 (-991 |#1| |#2| |#3|))) 15 T ELT)) (-3217 (((-587 (-991 |#1| |#2| |#3|)) $) 22 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3806 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-834)) 28 T ELT)) (-3953 (((-776) $) 18 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 21 T ELT))) +(((-993 |#1| |#2| |#3|) (-13 (-1017) (-243 |#3| |#3|) (-10 -8 (-15 -3218 ($ (-587 (-991 |#1| |#2| |#3|)))) (-15 -3217 ((-587 (-991 |#1| |#2| |#3|)) $)) (-15 -3806 (|#3| $ |#3| (-834))))) (-1017) (-13 (-965) (-800 |#1|) (-557 (-804 |#1|))) (-13 (-366 |#2|) (-800 |#1|) (-557 (-804 |#1|)))) (T -993)) +((-3218 (*1 *1 *2) (-12 (-5 *2 (-587 (-991 *3 *4 *5))) (-4 *3 (-1017)) (-4 *4 (-13 (-965) (-800 *3) (-557 (-804 *3)))) (-4 *5 (-13 (-366 *4) (-800 *3) (-557 (-804 *3)))) (-5 *1 (-993 *3 *4 *5)))) (-3217 (*1 *2 *1) (-12 (-4 *3 (-1017)) (-4 *4 (-13 (-965) (-800 *3) (-557 (-804 *3)))) (-5 *2 (-587 (-991 *3 *4 *5))) (-5 *1 (-993 *3 *4 *5)) (-4 *5 (-13 (-366 *4) (-800 *3) (-557 (-804 *3)))))) (-3806 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-834)) (-4 *4 (-1017)) (-4 *5 (-13 (-965) (-800 *4) (-557 (-804 *4)))) (-5 *1 (-993 *4 *5 *2)) (-4 *2 (-13 (-366 *5) (-800 *4) (-557 (-804 *4))))))) +((-3219 (((-587 (-2 (|:| -1755 (-1089 |#1|)) (|:| -3230 (-587 (-861 |#1|))))) (-587 (-861 |#1|)) (-85) (-85)) 88 T ELT) (((-587 (-2 (|:| -1755 (-1089 |#1|)) (|:| -3230 (-587 (-861 |#1|))))) (-587 (-861 |#1|))) 92 T ELT) (((-587 (-2 (|:| -1755 (-1089 |#1|)) (|:| -3230 (-587 (-861 |#1|))))) (-587 (-861 |#1|)) (-85)) 90 T ELT))) +(((-994 |#1| |#2|) (-10 -7 (-15 -3219 ((-587 (-2 (|:| -1755 (-1089 |#1|)) (|:| -3230 (-587 (-861 |#1|))))) (-587 (-861 |#1|)) (-85))) (-15 -3219 ((-587 (-2 (|:| -1755 (-1089 |#1|)) (|:| -3230 (-587 (-861 |#1|))))) (-587 (-861 |#1|)))) (-15 -3219 ((-587 (-2 (|:| -1755 (-1089 |#1|)) (|:| -3230 (-587 (-861 |#1|))))) (-587 (-861 |#1|)) (-85) (-85)))) (-13 (-260) (-120)) (-587 (-1094))) (T -994)) +((-3219 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-260) (-120))) (-5 *2 (-587 (-2 (|:| -1755 (-1089 *5)) (|:| -3230 (-587 (-861 *5)))))) (-5 *1 (-994 *5 *6)) (-5 *3 (-587 (-861 *5))) (-14 *6 (-587 (-1094))))) (-3219 (*1 *2 *3) (-12 (-4 *4 (-13 (-260) (-120))) (-5 *2 (-587 (-2 (|:| -1755 (-1089 *4)) (|:| -3230 (-587 (-861 *4)))))) (-5 *1 (-994 *4 *5)) (-5 *3 (-587 (-861 *4))) (-14 *5 (-587 (-1094))))) (-3219 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-260) (-120))) (-5 *2 (-587 (-2 (|:| -1755 (-1089 *5)) (|:| -3230 (-587 (-861 *5)))))) (-5 *1 (-994 *5 *6)) (-5 *3 (-587 (-861 *5))) (-14 *6 (-587 (-1094)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 132 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-314)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-314)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-314)) ELT)) (-1790 (((-634 |#1|) (-1183 $)) NIL T ELT) (((-634 |#1|)) 117 T ELT)) (-3336 ((|#1| $) 121 T ELT)) (-1679 (((-1106 (-834) (-698)) (-488)) NIL (|has| |#1| (-301)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-314)) ELT)) (-1612 (((-85) $ $) NIL (|has| |#1| (-314)) ELT)) (-3142 (((-698)) 43 (|has| |#1| (-322)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3162 (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) NIL T ELT)) (-1800 (($ (-1183 |#1|) (-1183 $)) NIL T ELT) (($ (-1183 |#1|)) 46 T ELT)) (-1677 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-301)) ELT)) (-2570 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-1789 (((-634 |#1|) $ (-1183 $)) NIL T ELT) (((-634 |#1|) $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) 109 T ELT) (((-634 |#1|) (-634 $)) 104 T ELT)) (-3848 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-352 |#2|)) NIL (|has| |#1| (-314)) ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3114 (((-834)) 80 T ELT)) (-3000 (($) 47 (|has| |#1| (-322)) ELT)) (-2569 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL (|has| |#1| (-314)) ELT)) (-2839 (($) NIL (|has| |#1| (-301)) ELT)) (-1684 (((-85) $) NIL (|has| |#1| (-301)) ELT)) (-1772 (($ $ (-698)) NIL (|has| |#1| (-301)) ELT) (($ $) NIL (|has| |#1| (-301)) ELT)) (-3729 (((-85) $) NIL (|has| |#1| (-314)) ELT)) (-3778 (((-834) $) NIL (|has| |#1| (-301)) ELT) (((-747 (-834)) $) NIL (|has| |#1| (-301)) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3138 ((|#1| $) NIL T ELT)) (-3451 (((-636 $) $) NIL (|has| |#1| (-301)) ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-2019 ((|#2| $) 87 (|has| |#1| (-314)) ELT)) (-2015 (((-834) $) 140 (|has| |#1| (-322)) ELT)) (-3085 ((|#2| $) 59 T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) NIL T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3452 (($) NIL (|has| |#1| (-301)) CONST)) (-2405 (($ (-834)) 131 (|has| |#1| (-322)) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2414 (($) 123 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#1| (-314)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-1680 (((-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488))))) NIL (|has| |#1| (-301)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#1| (-314)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3472 (((-3 $ #1#) $ $) NIL (|has| |#1| (-314)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-1611 (((-698) $) NIL (|has| |#1| (-314)) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3763 ((|#1| (-1183 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1773 (((-698) $) NIL (|has| |#1| (-301)) ELT) (((-3 (-698) #1#) $ $) NIL (|has| |#1| (-301)) ELT)) (-3764 (($ $ (-698)) NIL (OR (-12 (|has| |#1| (-191)) (|has| |#1| (-314))) (|has| |#1| (-301))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-191)) (|has| |#1| (-314))) (|has| |#1| (-301))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-1094)) NIL (-12 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-314)) ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL (|has| |#1| (-314)) ELT)) (-2413 (((-634 |#1|) (-1183 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-314)) ELT)) (-3191 ((|#2|) 77 T ELT)) (-1678 (($) NIL (|has| |#1| (-301)) ELT)) (-3230 (((-1183 |#1|) $ (-1183 $)) 92 T ELT) (((-634 |#1|) (-1183 $) (-1183 $)) NIL T ELT) (((-1183 |#1|) $) 72 T ELT) (((-634 |#1|) (-1183 $)) 88 T ELT)) (-3978 (((-1183 |#1|) $) NIL T ELT) (($ (-1183 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (|has| |#1| (-301)) ELT)) (-3953 (((-776) $) 58 T ELT) (($ (-488)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-314)) ELT) (($ (-352 (-488))) NIL (OR (|has| |#1| (-314)) (|has| |#1| (-954 (-352 (-488))))) ELT)) (-2708 (($ $) NIL (|has| |#1| (-301)) ELT) (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-2455 ((|#2| $) 85 T ELT)) (-3132 (((-698)) 79 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-2017 (((-1183 $)) 84 T ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-314)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 32 T CONST)) (-2672 (($) 19 T CONST)) (-2675 (($ $ (-698)) NIL (OR (-12 (|has| |#1| (-191)) (|has| |#1| (-314))) (|has| |#1| (-301))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-191)) (|has| |#1| (-314))) (|has| |#1| (-301))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-1094)) NIL (-12 (|has| |#1| (-314)) (|has| |#1| (-815 (-1094)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-314)) ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL (|has| |#1| (-314)) ELT)) (-3062 (((-85) $ $) 64 T ELT)) (-3956 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 66 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL (|has| |#1| (-314)) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-314)) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-314)) ELT))) +(((-995 |#1| |#2| |#3|) (-665 |#1| |#2|) (-148) (-1159 |#1|) |#2|) (T -995)) +NIL +((-3738 (((-350 |#3|) |#3|) 18 T ELT))) +(((-996 |#1| |#2| |#3|) (-10 -7 (-15 -3738 ((-350 |#3|) |#3|))) (-1159 (-352 (-488))) (-13 (-314) (-120) (-665 (-352 (-488)) |#1|)) (-1159 |#2|)) (T -996)) +((-3738 (*1 *2 *3) (-12 (-4 *4 (-1159 (-352 (-488)))) (-4 *5 (-13 (-314) (-120) (-665 (-352 (-488)) *4))) (-5 *2 (-350 *3)) (-5 *1 (-996 *4 *5 *3)) (-4 *3 (-1159 *5))))) +((-3738 (((-350 |#3|) |#3|) 19 T ELT))) +(((-997 |#1| |#2| |#3|) (-10 -7 (-15 -3738 ((-350 |#3|) |#3|))) (-1159 (-352 (-861 (-488)))) (-13 (-314) (-120) (-665 (-352 (-861 (-488))) |#1|)) (-1159 |#2|)) (T -997)) +((-3738 (*1 *2 *3) (-12 (-4 *4 (-1159 (-352 (-861 (-488))))) (-4 *5 (-13 (-314) (-120) (-665 (-352 (-861 (-488))) *4))) (-5 *2 (-350 *3)) (-5 *1 (-997 *4 *5 *3)) (-4 *3 (-1159 *5))))) +((-2574 (((-85) $ $) NIL T ELT)) (-2537 (($ $ $) 16 T ELT)) (-2863 (($ $ $) 17 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3220 (($) 6 T ELT)) (-3978 (((-1094) $) 20 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 15 T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 9 T ELT))) +(((-998) (-13 (-760) (-557 (-1094)) (-10 -8 (-15 -3220 ($))))) (T -998)) +((-3220 (*1 *1) (-5 *1 (-998)))) +((-2574 (((-85) $ $) 7 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-1099)) 20 T ELT) (((-1099) $) 19 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT))) +(((-999) (-113)) (T -999)) +NIL +(-13 (-64)) +(((-64) . T) ((-72) . T) ((-559 (-1099)) . T) ((-556 (-776)) . T) ((-556 (-1099)) . T) ((-433 (-1099)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-3223 ((|#1| |#1| (-1 (-488) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-85) |#1|)) 33 T ELT)) (-3221 (((-1189)) 21 T ELT)) (-3222 (((-587 |#1|)) 13 T ELT))) +(((-1000 |#1|) (-10 -7 (-15 -3221 ((-1189))) (-15 -3222 ((-587 |#1|))) (-15 -3223 (|#1| |#1| (-1 (-85) |#1|))) (-15 -3223 (|#1| |#1| (-1 (-488) |#1| |#1|)))) (-105)) (T -1000)) +((-3223 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-488) *2 *2)) (-4 *2 (-105)) (-5 *1 (-1000 *2)))) (-3223 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-1000 *2)))) (-3222 (*1 *2) (-12 (-5 *2 (-587 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-105)))) (-3221 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1000 *3)) (-4 *3 (-105))))) +((-3226 (($ (-78) $) 20 T ELT)) (-3227 (((-636 (-78)) (-450) $) 19 T ELT)) (-3571 (($) 7 T ELT)) (-3225 (($) 21 T ELT)) (-3224 (($) 22 T ELT)) (-3228 (((-587 (-151)) $) 10 T ELT)) (-3953 (((-776) $) 25 T ELT))) +(((-1001) (-13 (-556 (-776)) (-10 -8 (-15 -3571 ($)) (-15 -3228 ((-587 (-151)) $)) (-15 -3227 ((-636 (-78)) (-450) $)) (-15 -3226 ($ (-78) $)) (-15 -3225 ($)) (-15 -3224 ($))))) (T -1001)) +((-3571 (*1 *1) (-5 *1 (-1001))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-587 (-151))) (-5 *1 (-1001)))) (-3227 (*1 *2 *3 *1) (-12 (-5 *3 (-450)) (-5 *2 (-636 (-78))) (-5 *1 (-1001)))) (-3226 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-1001)))) (-3225 (*1 *1) (-5 *1 (-1001))) (-3224 (*1 *1) (-5 *1 (-1001)))) +((-3229 (((-1183 (-634 |#1|)) (-587 (-634 |#1|))) 45 T ELT) (((-1183 (-634 (-861 |#1|))) (-587 (-1094)) (-634 (-861 |#1|))) 75 T ELT) (((-1183 (-634 (-352 (-861 |#1|)))) (-587 (-1094)) (-634 (-352 (-861 |#1|)))) 92 T ELT)) (-3230 (((-1183 |#1|) (-634 |#1|) (-587 (-634 |#1|))) 39 T ELT))) +(((-1002 |#1|) (-10 -7 (-15 -3229 ((-1183 (-634 (-352 (-861 |#1|)))) (-587 (-1094)) (-634 (-352 (-861 |#1|))))) (-15 -3229 ((-1183 (-634 (-861 |#1|))) (-587 (-1094)) (-634 (-861 |#1|)))) (-15 -3229 ((-1183 (-634 |#1|)) (-587 (-634 |#1|)))) (-15 -3230 ((-1183 |#1|) (-634 |#1|) (-587 (-634 |#1|))))) (-314)) (T -1002)) +((-3230 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-634 *5))) (-5 *3 (-634 *5)) (-4 *5 (-314)) (-5 *2 (-1183 *5)) (-5 *1 (-1002 *5)))) (-3229 (*1 *2 *3) (-12 (-5 *3 (-587 (-634 *4))) (-4 *4 (-314)) (-5 *2 (-1183 (-634 *4))) (-5 *1 (-1002 *4)))) (-3229 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-1094))) (-4 *5 (-314)) (-5 *2 (-1183 (-634 (-861 *5)))) (-5 *1 (-1002 *5)) (-5 *4 (-634 (-861 *5))))) (-3229 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-1094))) (-4 *5 (-314)) (-5 *2 (-1183 (-634 (-352 (-861 *5))))) (-5 *1 (-1002 *5)) (-5 *4 (-634 (-352 (-861 *5))))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1492 (((-587 (-698)) $) NIL T ELT) (((-587 (-698)) $ (-1094)) NIL T ELT)) (-1526 (((-698) $) NIL T ELT) (((-698) $ (-1094)) NIL T ELT)) (-3087 (((-587 (-1004 (-1094))) $) NIL T ELT)) (-3089 (((-1089 $) $ (-1004 (-1094))) NIL T ELT) (((-1089 |#1|) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-2825 (((-698) $) NIL T ELT) (((-698) $ (-587 (-1004 (-1094)))) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3781 (($ $) NIL (|has| |#1| (-395)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-395)) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-1488 (($ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-1004 (-1094)) #1#) $) NIL T ELT) (((-3 (-1094) #1#) $) NIL T ELT) (((-3 (-1043 |#1| (-1094)) #1#) $) NIL T ELT)) (-3162 ((|#1| $) NIL T ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-1004 (-1094)) $) NIL T ELT) (((-1094) $) NIL T ELT) (((-1043 |#1| (-1094)) $) NIL T ELT)) (-3762 (($ $ $ (-1004 (-1094))) NIL (|has| |#1| (-148)) ELT)) (-3965 (($ $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#1|) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3509 (($ $) NIL (|has| |#1| (-395)) ELT) (($ $ (-1004 (-1094))) NIL (|has| |#1| (-395)) ELT)) (-2824 (((-587 $) $) NIL T ELT)) (-3729 (((-85) $) NIL (|has| |#1| (-825)) ELT)) (-1628 (($ $ |#1| (-473 (-1004 (-1094))) $) NIL T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (-12 (|has| (-1004 (-1094)) (-800 (-332))) (|has| |#1| (-800 (-332)))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (-12 (|has| (-1004 (-1094)) (-800 (-488))) (|has| |#1| (-800 (-488)))) ELT)) (-3778 (((-698) $ (-1094)) NIL T ELT) (((-698) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2425 (((-698) $) NIL T ELT)) (-3090 (($ (-1089 |#1|) (-1004 (-1094))) NIL T ELT) (($ (-1089 $) (-1004 (-1094))) NIL T ELT)) (-2827 (((-587 $) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-473 (-1004 (-1094)))) NIL T ELT) (($ $ (-1004 (-1094)) (-698)) NIL T ELT) (($ $ (-587 (-1004 (-1094))) (-587 (-698))) NIL T ELT)) (-3769 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $ (-1004 (-1094))) NIL T ELT)) (-2826 (((-473 (-1004 (-1094))) $) NIL T ELT) (((-698) $ (-1004 (-1094))) NIL T ELT) (((-587 (-698)) $ (-587 (-1004 (-1094)))) NIL T ELT)) (-1629 (($ (-1 (-473 (-1004 (-1094))) (-473 (-1004 (-1094)))) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1527 (((-1 $ (-698)) (-1094)) NIL T ELT) (((-1 $ (-698)) $) NIL (|has| |#1| (-192)) ELT)) (-3088 (((-3 (-1004 (-1094)) #1#) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) NIL T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-1490 (((-1004 (-1094)) $) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-395)) ELT) (($ $ $) NIL (|has| |#1| (-395)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1491 (((-85) $) NIL T ELT)) (-2829 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2828 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2830 (((-3 (-2 (|:| |var| (-1004 (-1094))) (|:| -2406 (-698))) #1#) $) NIL T ELT)) (-1489 (($ $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1805 (((-85) $) NIL T ELT)) (-1804 ((|#1| $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#1| (-395)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-395)) ELT) (($ $ $) NIL (|has| |#1| (-395)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#1| (-825)) ELT)) (-3472 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-499)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-499)) ELT)) (-3774 (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ (-1004 (-1094)) |#1|) NIL T ELT) (($ $ (-587 (-1004 (-1094))) (-587 |#1|)) NIL T ELT) (($ $ (-1004 (-1094)) $) NIL T ELT) (($ $ (-587 (-1004 (-1094))) (-587 $)) NIL T ELT) (($ $ (-1094) $) NIL (|has| |#1| (-192)) ELT) (($ $ (-587 (-1094)) (-587 $)) NIL (|has| |#1| (-192)) ELT) (($ $ (-1094) |#1|) NIL (|has| |#1| (-192)) ELT) (($ $ (-587 (-1094)) (-587 |#1|)) NIL (|has| |#1| (-192)) ELT)) (-3763 (($ $ (-1004 (-1094))) NIL (|has| |#1| (-148)) ELT)) (-3764 (($ $ (-587 (-1004 (-1094))) (-587 (-698))) NIL T ELT) (($ $ (-1004 (-1094)) (-698)) NIL T ELT) (($ $ (-587 (-1004 (-1094)))) NIL T ELT) (($ $ (-1004 (-1094))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $) NIL (|has| |#1| (-191)) ELT) (($ $ (-698)) NIL (|has| |#1| (-191)) ELT)) (-1493 (((-587 (-1094)) $) NIL T ELT)) (-3955 (((-473 (-1004 (-1094))) $) NIL T ELT) (((-698) $ (-1004 (-1094))) NIL T ELT) (((-587 (-698)) $ (-587 (-1004 (-1094)))) NIL T ELT) (((-698) $ (-1094)) NIL T ELT)) (-3978 (((-804 (-332)) $) NIL (-12 (|has| (-1004 (-1094)) (-557 (-804 (-332)))) (|has| |#1| (-557 (-804 (-332))))) ELT) (((-804 (-488)) $) NIL (-12 (|has| (-1004 (-1094)) (-557 (-804 (-488)))) (|has| |#1| (-557 (-804 (-488))))) ELT) (((-477) $) NIL (-12 (|has| (-1004 (-1094)) (-557 (-477))) (|has| |#1| (-557 (-477)))) ELT)) (-2823 ((|#1| $) NIL (|has| |#1| (-395)) ELT) (($ $ (-1004 (-1094))) NIL (|has| |#1| (-395)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-825))) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1004 (-1094))) NIL T ELT) (($ (-1094)) NIL T ELT) (($ (-1043 |#1| (-1094))) NIL T ELT) (($ (-352 (-488))) NIL (OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) ELT) (($ $) NIL (|has| |#1| (-499)) ELT)) (-3823 (((-587 |#1|) $) NIL T ELT)) (-3683 ((|#1| $ (-473 (-1004 (-1094)))) NIL T ELT) (($ $ (-1004 (-1094)) (-698)) NIL T ELT) (($ $ (-587 (-1004 (-1094))) (-587 (-698))) NIL T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-825))) (|has| |#1| (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1627 (($ $ $ (-698)) NIL (|has| |#1| (-148)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $ (-587 (-1004 (-1094))) (-587 (-698))) NIL T ELT) (($ $ (-1004 (-1094)) (-698)) NIL T ELT) (($ $ (-587 (-1004 (-1094)))) NIL T ELT) (($ $ (-1004 (-1094))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $) NIL (|has| |#1| (-191)) ELT) (($ $ (-698)) NIL (|has| |#1| (-191)) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1003 |#1|) (-13 (-215 |#1| (-1094) (-1004 (-1094)) (-473 (-1004 (-1094)))) (-954 (-1043 |#1| (-1094)))) (-965)) (T -1003)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-1526 (((-698) $) NIL T ELT)) (-3837 ((|#1| $) 10 T ELT)) (-3163 (((-3 |#1| "failed") $) NIL T ELT)) (-3162 ((|#1| $) NIL T ELT)) (-3778 (((-698) $) 11 T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-1527 (($ |#1| (-698)) 9 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3764 (($ $ (-698)) NIL T ELT) (($ $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2675 (($ $ (-698)) NIL T ELT) (($ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 16 T ELT))) +(((-1004 |#1|) (-230 |#1|) (-760)) (T -1004)) +NIL +((-2574 (((-85) $ $) NIL (|has| |#1| (-1017)) ELT)) (-3742 (($ |#1| |#1|) 16 T ELT)) (-3849 (((-587 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-759)) ELT)) (-3235 ((|#1| $) 12 T ELT)) (-3237 ((|#1| $) 11 T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-3233 (((-488) $) 15 T ELT)) (-3234 ((|#1| $) 14 T ELT)) (-3236 ((|#1| $) 13 T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-3969 (((-587 |#1|) $) 42 (|has| |#1| (-759)) ELT) (((-587 |#1|) (-587 $)) 41 (|has| |#1| (-759)) ELT)) (-3978 (($ |#1|) 29 T ELT)) (-3953 (((-776) $) 28 (|has| |#1| (-1017)) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-1017)) ELT)) (-3743 (($ |#1| |#1|) 10 T ELT)) (-3238 (($ $ (-488)) 17 T ELT)) (-3062 (((-85) $ $) 22 (|has| |#1| (-1017)) ELT))) +(((-1005 |#1|) (-13 (-1010 |#1|) (-10 -7 (IF (|has| |#1| (-1017)) (-6 (-1017)) |%noBranch|) (IF (|has| |#1| (-759)) (-6 (-1011 |#1| (-587 |#1|))) |%noBranch|))) (-1133)) (T -1005)) +NIL +((-3849 (((-587 |#2|) (-1 |#2| |#1|) (-1005 |#1|)) 27 (|has| |#1| (-759)) ELT) (((-1005 |#2|) (-1 |#2| |#1|) (-1005 |#1|)) 14 T ELT))) +(((-1006 |#1| |#2|) (-10 -7 (-15 -3849 ((-1005 |#2|) (-1 |#2| |#1|) (-1005 |#1|))) (IF (|has| |#1| (-759)) (-15 -3849 ((-587 |#2|) (-1 |#2| |#1|) (-1005 |#1|))) |%noBranch|)) (-1133) (-1133)) (T -1006)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1005 *5)) (-4 *5 (-759)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-587 *6)) (-5 *1 (-1006 *5 *6)))) (-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1005 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-1005 *6)) (-5 *1 (-1006 *5 *6))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 16 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-3231 (((-587 (-1053)) $) 10 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-1007) (-13 (-999) (-10 -8 (-15 -3231 ((-587 (-1053)) $))))) (T -1007)) +((-3231 (*1 *2 *1) (-12 (-5 *2 (-587 (-1053))) (-5 *1 (-1007))))) +((-2574 (((-85) $ $) NIL (|has| (-1005 |#1|) (-1017)) ELT)) (-3837 (((-1094) $) NIL T ELT)) (-3742 (((-1005 |#1|) $) NIL T ELT)) (-3248 (((-1077) $) NIL (|has| (-1005 |#1|) (-1017)) ELT)) (-3249 (((-1037) $) NIL (|has| (-1005 |#1|) (-1017)) ELT)) (-3232 (($ (-1094) (-1005 |#1|)) NIL T ELT)) (-3953 (((-776) $) NIL (|has| (-1005 |#1|) (-1017)) ELT)) (-1269 (((-85) $ $) NIL (|has| (-1005 |#1|) (-1017)) ELT)) (-3062 (((-85) $ $) NIL (|has| (-1005 |#1|) (-1017)) ELT))) +(((-1008 |#1|) (-13 (-1133) (-10 -8 (-15 -3232 ($ (-1094) (-1005 |#1|))) (-15 -3837 ((-1094) $)) (-15 -3742 ((-1005 |#1|) $)) (IF (|has| (-1005 |#1|) (-1017)) (-6 (-1017)) |%noBranch|))) (-1133)) (T -1008)) +((-3232 (*1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-1005 *4)) (-4 *4 (-1133)) (-5 *1 (-1008 *4)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1008 *3)) (-4 *3 (-1133)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-1008 *3)) (-4 *3 (-1133))))) +((-3849 (((-1008 |#2|) (-1 |#2| |#1|) (-1008 |#1|)) 19 T ELT))) +(((-1009 |#1| |#2|) (-10 -7 (-15 -3849 ((-1008 |#2|) (-1 |#2| |#1|) (-1008 |#1|)))) (-1133) (-1133)) (T -1009)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1008 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-1008 *6)) (-5 *1 (-1009 *5 *6))))) +((-3742 (($ |#1| |#1|) 8 T ELT)) (-3235 ((|#1| $) 11 T ELT)) (-3237 ((|#1| $) 13 T ELT)) (-3233 (((-488) $) 9 T ELT)) (-3234 ((|#1| $) 10 T ELT)) (-3236 ((|#1| $) 12 T ELT)) (-3978 (($ |#1|) 6 T ELT)) (-3743 (($ |#1| |#1|) 15 T ELT)) (-3238 (($ $ (-488)) 14 T ELT))) +(((-1010 |#1|) (-113) (-1133)) (T -1010)) +((-3743 (*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1133)))) (-3238 (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-1010 *3)) (-4 *3 (-1133)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1133)))) (-3236 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1133)))) (-3235 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1133)))) (-3234 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1133)))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1133)) (-5 *2 (-488)))) (-3742 (*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1133))))) +(-13 (-561 |t#1|) (-10 -8 (-15 -3743 ($ |t#1| |t#1|)) (-15 -3238 ($ $ (-488))) (-15 -3237 (|t#1| $)) (-15 -3236 (|t#1| $)) (-15 -3235 (|t#1| $)) (-15 -3234 (|t#1| $)) (-15 -3233 ((-488) $)) (-15 -3742 ($ |t#1| |t#1|)))) +(((-561 |#1|) . T)) +((-3742 (($ |#1| |#1|) 8 T ELT)) (-3849 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3235 ((|#1| $) 11 T ELT)) (-3237 ((|#1| $) 13 T ELT)) (-3233 (((-488) $) 9 T ELT)) (-3234 ((|#1| $) 10 T ELT)) (-3236 ((|#1| $) 12 T ELT)) (-3969 ((|#2| (-587 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3978 (($ |#1|) 6 T ELT)) (-3743 (($ |#1| |#1|) 15 T ELT)) (-3238 (($ $ (-488)) 14 T ELT))) +(((-1011 |#1| |#2|) (-113) (-759) (-1068 |t#1|)) (T -1011)) +((-3969 (*1 *2 *3) (-12 (-5 *3 (-587 *1)) (-4 *1 (-1011 *4 *2)) (-4 *4 (-759)) (-4 *2 (-1068 *4)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-1011 *3 *2)) (-4 *3 (-759)) (-4 *2 (-1068 *3)))) (-3849 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1011 *4 *2)) (-4 *4 (-759)) (-4 *2 (-1068 *4))))) +(-13 (-1010 |t#1|) (-10 -8 (-15 -3969 (|t#2| (-587 $))) (-15 -3969 (|t#2| $)) (-15 -3849 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-561 |#1|) . T) ((-1010 |#1|) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3804 (((-1053) $) 14 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 20 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-3239 (((-587 (-1053)) $) 12 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-1012) (-13 (-999) (-10 -8 (-15 -3239 ((-587 (-1053)) $)) (-15 -3804 ((-1053) $))))) (T -1012)) +((-3239 (*1 *2 *1) (-12 (-5 *2 (-587 (-1053))) (-5 *1 (-1012)))) (-3804 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1012))))) +((-2574 (((-85) $ $) NIL T ELT)) (-1810 (($) NIL (|has| |#1| (-322)) ELT)) (-3240 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3242 (($ $ $) 81 T ELT)) (-3241 (((-85) $ $) 83 T ELT)) (-3142 (((-698)) NIL (|has| |#1| (-322)) ELT)) (-3245 (($ (-587 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1574 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3730 (($) NIL T CONST)) (-1357 (($ $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-3411 (($ |#1| $) 75 (|has| $ (-320 |#1|)) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3412 (($ |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 T ELT)) (-3000 (($) NIL (|has| |#1| (-322)) ELT)) (-3247 (((-85) $ $) NIL T ELT)) (-2537 ((|#1| $) 56 (|has| |#1| (-760)) ELT)) (-2614 (((-587 |#1|) $) 20 T ELT)) (-3251 (((-85) |#1| $) 74 (|has| |#1| (-72)) ELT)) (-2863 ((|#1| $) 54 (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2015 (((-834) $) NIL (|has| |#1| (-322)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3244 (($ $ $) 79 T ELT)) (-1278 ((|#1| $) 26 T ELT)) (-3615 (($ |#1| $) 70 T ELT)) (-2405 (($ (-834)) NIL (|has| |#1| (-322)) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 32 T ELT)) (-1279 ((|#1| $) 28 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) 22 T ELT)) (-3571 (($) 12 T ELT)) (-3243 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1470 (($) NIL T ELT) (($ (-587 |#1|)) NIL T ELT)) (-1735 (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) NIL T ELT)) (-3406 (($ $) 17 T ELT)) (-3978 (((-477) $) 51 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 63 T ELT)) (-1811 (($ $) NIL (|has| |#1| (-322)) ELT)) (-3953 (((-776) $) NIL T ELT)) (-1812 (((-698) $) NIL T ELT)) (-3246 (($ (-587 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-1280 (($ (-587 |#1|)) NIL T ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3062 (((-85) $ $) 53 T ELT)) (-3964 (((-698) $) 11 T ELT))) +(((-1013 |#1|) (-371 |#1|) (-1017)) (T -1013)) +NIL +((-3240 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3242 (($ $ $) 10 T ELT)) (-3243 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) +(((-1014 |#1| |#2|) (-10 -7 (-15 -3240 (|#1| |#2| |#1|)) (-15 -3240 (|#1| |#1| |#2|)) (-15 -3240 (|#1| |#1| |#1|)) (-15 -3242 (|#1| |#1| |#1|)) (-15 -3243 (|#1| |#1| |#2|)) (-15 -3243 (|#1| |#1| |#1|))) (-1015 |#2|) (-1017)) (T -1014)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3240 (($ $ $) 23 T ELT) (($ $ |#1|) 22 T ELT) (($ |#1| $) 21 T ELT)) (-3242 (($ $ $) 25 T ELT)) (-3241 (((-85) $ $) 24 T ELT)) (-3245 (($) 30 T ELT) (($ (-587 |#1|)) 29 T ELT)) (-3716 (($ (-1 (-85) |#1|) $) 46 (|has| $ (-320 |#1|)) ELT)) (-3730 (($) 38 T CONST)) (-1357 (($ $) 48 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-3412 (($ |#1| $) 47 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 45 (|has| $ (-320 |#1|)) ELT)) (-3247 (((-85) $ $) 33 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3244 (($ $ $) 28 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3774 (($ $ (-587 |#1|) (-587 |#1|)) 43 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 42 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 41 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 (-251 |#1|))) 40 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 34 T ELT)) (-3409 (((-85) $) 37 T ELT)) (-3571 (($) 36 T ELT)) (-3243 (($ $ $) 27 T ELT) (($ $ |#1|) 26 T ELT)) (-3406 (($ $) 35 T ELT)) (-3978 (((-477) $) 49 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 44 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-3246 (($) 32 T ELT) (($ (-587 |#1|)) 31 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT))) +(((-1015 |#1|) (-113) (-1017)) (T -1015)) +((-3247 (*1 *2 *1 *1) (-12 (-4 *1 (-1015 *3)) (-4 *3 (-1017)) (-5 *2 (-85)))) (-3246 (*1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1017)))) (-3246 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-4 *1 (-1015 *3)))) (-3245 (*1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1017)))) (-3245 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-4 *1 (-1015 *3)))) (-3244 (*1 *1 *1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1017)))) (-3243 (*1 *1 *1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1017)))) (-3243 (*1 *1 *1 *2) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1017)))) (-3242 (*1 *1 *1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1017)))) (-3241 (*1 *2 *1 *1) (-12 (-4 *1 (-1015 *3)) (-4 *3 (-1017)) (-5 *2 (-85)))) (-3240 (*1 *1 *1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1017)))) (-3240 (*1 *1 *1 *2) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1017)))) (-3240 (*1 *1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1017))))) +(-13 (-1017) (-124 |t#1|) (-10 -8 (-6 -3991) (-15 -3247 ((-85) $ $)) (-15 -3246 ($)) (-15 -3246 ($ (-587 |t#1|))) (-15 -3245 ($)) (-15 -3245 ($ (-587 |t#1|))) (-15 -3244 ($ $ $)) (-15 -3243 ($ $ $)) (-15 -3243 ($ $ |t#1|)) (-15 -3242 ($ $ $)) (-15 -3241 ((-85) $ $)) (-15 -3240 ($ $ $)) (-15 -3240 ($ $ |t#1|)) (-15 -3240 ($ |t#1| $)))) +(((-34) . T) ((-72) . T) ((-556 (-776)) . T) ((-124 |#1|) . T) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-3248 (((-1077) $) 10 T ELT)) (-3249 (((-1037) $) 8 T ELT))) +(((-1016 |#1|) (-10 -7 (-15 -3248 ((-1077) |#1|)) (-15 -3249 ((-1037) |#1|))) (-1017)) (T -1016)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT))) +(((-1017) (-113)) (T -1017)) +((-3249 (*1 *2 *1) (-12 (-4 *1 (-1017)) (-5 *2 (-1037)))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-1017)) (-5 *2 (-1077))))) +(-13 (-72) (-556 (-776)) (-10 -8 (-15 -3249 ((-1037) $)) (-15 -3248 ((-1077) $)))) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) 36 T ELT)) (-3253 (($ (-587 (-834))) 70 T ELT)) (-3255 (((-3 $ #1="failed") $ (-834) (-834)) 81 T ELT)) (-3000 (($) 40 T ELT)) (-3251 (((-85) (-834) $) 42 T ELT)) (-2015 (((-834) $) 64 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2405 (($ (-834)) 39 T ELT)) (-3256 (((-3 $ #1#) $ (-834)) 77 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3252 (((-1183 $)) 47 T ELT)) (-3254 (((-587 (-834)) $) 27 T ELT)) (-3250 (((-698) $ (-834) (-834)) 78 T ELT)) (-3953 (((-776) $) 32 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 24 T ELT))) +(((-1018 |#1| |#2|) (-13 (-322) (-10 -8 (-15 -3256 ((-3 $ #1="failed") $ (-834))) (-15 -3255 ((-3 $ #1#) $ (-834) (-834))) (-15 -3254 ((-587 (-834)) $)) (-15 -3253 ($ (-587 (-834)))) (-15 -3252 ((-1183 $))) (-15 -3251 ((-85) (-834) $)) (-15 -3250 ((-698) $ (-834) (-834))))) (-834) (-834)) (T -1018)) +((-3256 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-834)) (-5 *1 (-1018 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3255 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-834)) (-5 *1 (-1018 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-587 (-834))) (-5 *1 (-1018 *3 *4)) (-14 *3 (-834)) (-14 *4 (-834)))) (-3253 (*1 *1 *2) (-12 (-5 *2 (-587 (-834))) (-5 *1 (-1018 *3 *4)) (-14 *3 (-834)) (-14 *4 (-834)))) (-3252 (*1 *2) (-12 (-5 *2 (-1183 (-1018 *3 *4))) (-5 *1 (-1018 *3 *4)) (-14 *3 (-834)) (-14 *4 (-834)))) (-3251 (*1 *2 *3 *1) (-12 (-5 *3 (-834)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3250 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-834)) (-5 *2 (-698)) (-5 *1 (-1018 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3266 (((-85) $) NIL T ELT)) (-3262 (((-1094) $) NIL T ELT)) (-3267 (((-85) $) NIL T ELT)) (-3541 (((-1077) $) NIL T ELT)) (-3269 (((-85) $) NIL T ELT)) (-3271 (((-85) $) NIL T ELT)) (-3268 (((-85) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3261 (((-488) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3260 (((-181) $) NIL T ELT)) (-3259 (((-776) $) NIL T ELT)) (-3272 (((-85) $ $) NIL T ELT)) (-3806 (($ $ (-488)) NIL T ELT) (($ $ (-587 (-488))) NIL T ELT)) (-3263 (((-587 $) $) NIL T ELT)) (-3978 (($ (-1077)) NIL T ELT) (($ (-1094)) NIL T ELT) (($ (-488)) NIL T ELT) (($ (-181)) NIL T ELT) (($ (-776)) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-3257 (($ $) NIL T ELT)) (-3258 (($ $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3270 (((-85) $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3964 (((-488) $) NIL T ELT))) +(((-1019) (-1020 (-1077) (-1094) (-488) (-181) (-776))) (T -1019)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3266 (((-85) $) 36 T ELT)) (-3262 ((|#2| $) 31 T ELT)) (-3267 (((-85) $) 37 T ELT)) (-3541 ((|#1| $) 32 T ELT)) (-3269 (((-85) $) 39 T ELT)) (-3271 (((-85) $) 41 T ELT)) (-3268 (((-85) $) 38 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3265 (((-85) $) 35 T ELT)) (-3261 ((|#3| $) 30 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3264 (((-85) $) 34 T ELT)) (-3260 ((|#4| $) 29 T ELT)) (-3259 ((|#5| $) 28 T ELT)) (-3272 (((-85) $ $) 42 T ELT)) (-3806 (($ $ (-488)) 44 T ELT) (($ $ (-587 (-488))) 43 T ELT)) (-3263 (((-587 $) $) 33 T ELT)) (-3978 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-587 $)) 45 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-3257 (($ $) 26 T ELT)) (-3258 (($ $) 27 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3270 (((-85) $) 40 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3964 (((-488) $) 25 T ELT))) +(((-1020 |#1| |#2| |#3| |#4| |#5|) (-113) (-1017) (-1017) (-1017) (-1017) (-1017)) (T -1020)) +((-3272 (*1 *2 *1 *1) (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-85)))) (-3271 (*1 *2 *1) (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-85)))) (-3270 (*1 *2 *1) (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-85)))) (-3269 (*1 *2 *1) (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-85)))) (-3268 (*1 *2 *1) (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-85)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-85)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-85)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-85)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-85)))) (-3263 (*1 *2 *1) (-12 (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-587 *1)) (-4 *1 (-1020 *3 *4 *5 *6 *7)))) (-3541 (*1 *2 *1) (-12 (-4 *1 (-1020 *2 *3 *4 *5 *6)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *2 (-1017)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-1020 *3 *2 *4 *5 *6)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *2 (-1017)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-1020 *3 *4 *2 *5 *6)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *2 (-1017)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-1020 *3 *4 *5 *2 *6)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *2 (-1017)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-1020 *3 *4 *5 *6 *2)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *2 (-1017)))) (-3258 (*1 *1 *1) (-12 (-4 *1 (-1020 *2 *3 *4 *5 *6)) (-4 *2 (-1017)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)))) (-3257 (*1 *1 *1) (-12 (-4 *1 (-1020 *2 *3 *4 *5 *6)) (-4 *2 (-1017)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)))) (-3964 (*1 *2 *1) (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-488))))) +(-13 (-1017) (-561 |t#1|) (-561 |t#2|) (-561 |t#3|) (-561 |t#4|) (-561 |t#4|) (-561 |t#5|) (-561 (-587 $)) (-243 (-488) $) (-243 (-587 (-488)) $) (-10 -8 (-15 -3272 ((-85) $ $)) (-15 -3271 ((-85) $)) (-15 -3270 ((-85) $)) (-15 -3269 ((-85) $)) (-15 -3268 ((-85) $)) (-15 -3267 ((-85) $)) (-15 -3266 ((-85) $)) (-15 -3265 ((-85) $)) (-15 -3264 ((-85) $)) (-15 -3263 ((-587 $) $)) (-15 -3541 (|t#1| $)) (-15 -3262 (|t#2| $)) (-15 -3261 (|t#3| $)) (-15 -3260 (|t#4| $)) (-15 -3259 (|t#5| $)) (-15 -3258 ($ $)) (-15 -3257 ($ $)) (-15 -3964 ((-488) $)))) +(((-72) . T) ((-556 (-776)) . T) ((-561 (-587 $)) . T) ((-561 |#1|) . T) ((-561 |#2|) . T) ((-561 |#3|) . T) ((-561 |#4|) . T) ((-561 |#5|) . T) ((-243 (-488) $) . T) ((-243 (-587 (-488)) $) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3266 (((-85) $) 45 T ELT)) (-3262 ((|#2| $) 48 T ELT)) (-3267 (((-85) $) 20 T ELT)) (-3541 ((|#1| $) 21 T ELT)) (-3269 (((-85) $) 42 T ELT)) (-3271 (((-85) $) 14 T ELT)) (-3268 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3265 (((-85) $) 46 T ELT)) (-3261 ((|#3| $) 50 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3264 (((-85) $) 47 T ELT)) (-3260 ((|#4| $) 49 T ELT)) (-3259 ((|#5| $) 51 T ELT)) (-3272 (((-85) $ $) 41 T ELT)) (-3806 (($ $ (-488)) 62 T ELT) (($ $ (-587 (-488))) 64 T ELT)) (-3263 (((-587 $) $) 27 T ELT)) (-3978 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-587 $)) 52 T ELT)) (-3953 (((-776) $) 28 T ELT)) (-3257 (($ $) 26 T ELT)) (-3258 (($ $) 58 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3270 (((-85) $) 23 T ELT)) (-3062 (((-85) $ $) 40 T ELT)) (-3964 (((-488) $) 60 T ELT))) +(((-1021 |#1| |#2| |#3| |#4| |#5|) (-1020 |#1| |#2| |#3| |#4| |#5|) (-1017) (-1017) (-1017) (-1017) (-1017)) (T -1021)) +NIL +((-3275 (((-85) |#5| |#5|) 44 T ELT)) (-3278 (((-85) |#5| |#5|) 59 T ELT)) (-3283 (((-85) |#5| (-587 |#5|)) 82 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3279 (((-85) (-587 |#4|) (-587 |#4|)) 65 T ELT)) (-3285 (((-85) (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|)) (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) 70 T ELT)) (-3274 (((-1189)) 32 T ELT)) (-3273 (((-1189) (-1077) (-1077) (-1077)) 28 T ELT)) (-3284 (((-587 |#5|) (-587 |#5|)) 101 T ELT)) (-3286 (((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|)))) 93 T ELT)) (-3287 (((-587 (-2 (|:| -3272 (-587 |#4|)) (|:| -1604 |#5|) (|:| |ineq| (-587 |#4|)))) (-587 |#4|) (-587 |#5|) (-85) (-85)) 123 T ELT)) (-3277 (((-85) |#5| |#5|) 53 T ELT)) (-3282 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3280 (((-85) (-587 |#4|) (-587 |#4|)) 64 T ELT)) (-3281 (((-85) (-587 |#4|) (-587 |#4|)) 66 T ELT)) (-3705 (((-85) (-587 |#4|) (-587 |#4|)) 67 T ELT)) (-3288 (((-3 (-2 (|:| -3272 (-587 |#4|)) (|:| -1604 |#5|) (|:| |ineq| (-587 |#4|))) #1#) (-587 |#4|) |#5| (-587 |#4|) (-85) (-85) (-85) (-85) (-85)) 118 T ELT)) (-3276 (((-587 |#5|) (-587 |#5|)) 49 T ELT))) +(((-1022 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3273 ((-1189) (-1077) (-1077) (-1077))) (-15 -3274 ((-1189))) (-15 -3275 ((-85) |#5| |#5|)) (-15 -3276 ((-587 |#5|) (-587 |#5|))) (-15 -3277 ((-85) |#5| |#5|)) (-15 -3278 ((-85) |#5| |#5|)) (-15 -3279 ((-85) (-587 |#4|) (-587 |#4|))) (-15 -3280 ((-85) (-587 |#4|) (-587 |#4|))) (-15 -3281 ((-85) (-587 |#4|) (-587 |#4|))) (-15 -3705 ((-85) (-587 |#4|) (-587 |#4|))) (-15 -3282 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3283 ((-85) |#5| |#5|)) (-15 -3283 ((-85) |#5| (-587 |#5|))) (-15 -3284 ((-587 |#5|) (-587 |#5|))) (-15 -3285 ((-85) (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|)) (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|)))) (-15 -3286 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) (-15 -3287 ((-587 (-2 (|:| -3272 (-587 |#4|)) (|:| -1604 |#5|) (|:| |ineq| (-587 |#4|)))) (-587 |#4|) (-587 |#5|) (-85) (-85))) (-15 -3288 ((-3 (-2 (|:| -3272 (-587 |#4|)) (|:| -1604 |#5|) (|:| |ineq| (-587 |#4|))) #1#) (-587 |#4|) |#5| (-587 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-395) (-721) (-760) (-981 |#1| |#2| |#3|) (-987 |#1| |#2| |#3| |#4|)) (T -1022)) +((-3288 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) (-4 *9 (-981 *6 *7 *8)) (-5 *2 (-2 (|:| -3272 (-587 *9)) (|:| -1604 *4) (|:| |ineq| (-587 *9)))) (-5 *1 (-1022 *6 *7 *8 *9 *4)) (-5 *3 (-587 *9)) (-4 *4 (-987 *6 *7 *8 *9)))) (-3287 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-587 *10)) (-5 *5 (-85)) (-4 *10 (-987 *6 *7 *8 *9)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) (-4 *9 (-981 *6 *7 *8)) (-5 *2 (-587 (-2 (|:| -3272 (-587 *9)) (|:| -1604 *10) (|:| |ineq| (-587 *9))))) (-5 *1 (-1022 *6 *7 *8 *9 *10)) (-5 *3 (-587 *9)))) (-3286 (*1 *2 *2) (-12 (-5 *2 (-587 (-2 (|:| |val| (-587 *6)) (|:| -1604 *7)))) (-4 *6 (-981 *3 *4 *5)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-1022 *3 *4 *5 *6 *7)))) (-3285 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1604 *8))) (-4 *7 (-981 *4 *5 *6)) (-4 *8 (-987 *4 *5 *6 *7)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *8)))) (-3284 (*1 *2 *2) (-12 (-5 *2 (-587 *7)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *1 (-1022 *3 *4 *5 *6 *7)))) (-3283 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-987 *5 *6 *7 *8)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *8 (-981 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1022 *5 *6 *7 *8 *3)))) (-3283 (*1 *2 *3 *3) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-3282 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-3705 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-3281 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-3280 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *3) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-587 *7)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *1 (-1022 *3 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-3274 (*1 *2) (-12 (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-1189)) (-5 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6)))) (-3273 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-1022 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7))))) +((-3303 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) |#4| |#5|) 106 T ELT)) (-3293 (((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3296 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3298 (((-587 |#5|) |#4| |#5|) 122 T ELT)) (-3300 (((-587 |#5|) |#4| |#5|) 129 T ELT)) (-3302 (((-587 |#5|) |#4| |#5|) 130 T ELT)) (-3297 (((-587 (-2 (|:| |val| (-85)) (|:| -1604 |#5|))) |#4| |#5|) 107 T ELT)) (-3299 (((-587 (-2 (|:| |val| (-85)) (|:| -1604 |#5|))) |#4| |#5|) 128 T ELT)) (-3301 (((-587 (-2 (|:| |val| (-85)) (|:| -1604 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3294 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) |#3| (-85)) 91 T ELT) (((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3295 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3292 (((-1189)) 36 T ELT)) (-3290 (((-1189)) 25 T ELT)) (-3291 (((-1189) (-1077) (-1077) (-1077)) 32 T ELT)) (-3289 (((-1189) (-1077) (-1077) (-1077)) 21 T ELT))) +(((-1023 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3289 ((-1189) (-1077) (-1077) (-1077))) (-15 -3290 ((-1189))) (-15 -3291 ((-1189) (-1077) (-1077) (-1077))) (-15 -3292 ((-1189))) (-15 -3293 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) |#4| |#4| |#5|)) (-15 -3294 ((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3294 ((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) |#3| (-85))) (-15 -3295 ((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) |#4| |#4| |#5|)) (-15 -3296 ((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) |#4| |#4| |#5|)) (-15 -3301 ((-85) |#4| |#5|)) (-15 -3297 ((-587 (-2 (|:| |val| (-85)) (|:| -1604 |#5|))) |#4| |#5|)) (-15 -3298 ((-587 |#5|) |#4| |#5|)) (-15 -3299 ((-587 (-2 (|:| |val| (-85)) (|:| -1604 |#5|))) |#4| |#5|)) (-15 -3300 ((-587 |#5|) |#4| |#5|)) (-15 -3301 ((-587 (-2 (|:| |val| (-85)) (|:| -1604 |#5|))) |#4| |#5|)) (-15 -3302 ((-587 |#5|) |#4| |#5|)) (-15 -3303 ((-587 (-2 (|:| |val| |#4|) (|:| -1604 |#5|))) |#4| |#5|))) (-395) (-721) (-760) (-981 |#1| |#2| |#3|) (-987 |#1| |#2| |#3| |#4|)) (T -1023)) +((-3303 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) (-5 *1 (-1023 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3302 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-587 *4)) (-5 *1 (-1023 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3301 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-85)) (|:| -1604 *4)))) (-5 *1 (-1023 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3300 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-587 *4)) (-5 *1 (-1023 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3299 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-85)) (|:| -1604 *4)))) (-5 *1 (-1023 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3298 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-587 *4)) (-5 *1 (-1023 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3297 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-85)) (|:| -1604 *4)))) (-5 *1 (-1023 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3301 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1023 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3296 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) (-5 *1 (-1023 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3295 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) (-5 *1 (-1023 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3294 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1604 *9)))) (-5 *5 (-85)) (-4 *8 (-981 *6 *7 *4)) (-4 *9 (-987 *6 *7 *4 *8)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *4 (-760)) (-5 *2 (-587 (-2 (|:| |val| *8) (|:| -1604 *9)))) (-5 *1 (-1023 *6 *7 *4 *8 *9)))) (-3294 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) (-4 *3 (-981 *6 *7 *8)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) (-5 *1 (-1023 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) (-3293 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))) (-5 *1 (-1023 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3292 (*1 *2) (-12 (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-1189)) (-5 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6)))) (-3291 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-3290 (*1 *2) (-12 (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-1189)) (-5 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6)))) (-3289 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3687 (((-587 (-2 (|:| -3868 $) (|:| -1706 (-587 |#4|)))) (-587 |#4|)) 91 T ELT)) (-3688 (((-587 $) (-587 |#4|)) 92 T ELT) (((-587 $) (-587 |#4|) (-85)) 120 T ELT)) (-3087 (((-587 |#3|) $) 39 T ELT)) (-2914 (((-85) $) 32 T ELT)) (-2905 (((-85) $) 23 (|has| |#1| (-499)) ELT)) (-3699 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3694 ((|#4| |#4| $) 98 T ELT)) (-3781 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 $))) |#4| $) 135 T ELT)) (-2915 (((-2 (|:| |under| $) (|:| -3136 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3716 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-320 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3730 (($) 59 T CONST)) (-2910 (((-85) $) 28 (|has| |#1| (-499)) ELT)) (-2912 (((-85) $ $) 30 (|has| |#1| (-499)) ELT)) (-2911 (((-85) $ $) 29 (|has| |#1| (-499)) ELT)) (-2913 (((-85) $) 31 (|has| |#1| (-499)) ELT)) (-3695 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2906 (((-587 |#4|) (-587 |#4|) $) 24 (|has| |#1| (-499)) ELT)) (-2907 (((-587 |#4|) (-587 |#4|) $) 25 (|has| |#1| (-499)) ELT)) (-3163 (((-3 $ "failed") (-587 |#4|)) 42 T ELT)) (-3162 (($ (-587 |#4|)) 41 T ELT)) (-3805 (((-3 $ #1#) $) 88 T ELT)) (-3691 ((|#4| |#4| $) 95 T ELT)) (-1357 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-320 |#4|))) ELT)) (-3412 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-320 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-320 |#4|)) ELT)) (-2908 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-499)) ELT)) (-3700 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3689 ((|#4| |#4| $) 93 T ELT)) (-3848 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3702 (((-2 (|:| -3868 (-587 |#4|)) (|:| -1706 (-587 |#4|))) $) 111 T ELT)) (-3203 (((-85) |#4| $) 145 T ELT)) (-3201 (((-85) |#4| $) 142 T ELT)) (-3204 (((-85) |#4| $) 146 T ELT) (((-85) $) 143 T ELT)) (-3701 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3186 ((|#3| $) 40 T ELT)) (-2614 (((-587 |#4|) $) 48 T ELT)) (-3251 (((-85) |#4| $) 53 (|has| |#4| (-72)) ELT)) (-3332 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3849 (($ (-1 |#4| |#4|) $) 60 T ELT)) (-2920 (((-587 |#3|) $) 38 T ELT)) (-2919 (((-85) |#3| $) 37 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3197 (((-3 |#4| (-587 $)) |#4| |#4| $) 137 T ELT)) (-3196 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 $))) |#4| |#4| $) 136 T ELT)) (-3804 (((-3 |#4| #1#) $) 89 T ELT)) (-3198 (((-587 $) |#4| $) 138 T ELT)) (-3200 (((-3 (-85) (-587 $)) |#4| $) 141 T ELT)) (-3199 (((-587 (-2 (|:| |val| (-85)) (|:| -1604 $))) |#4| $) 140 T ELT) (((-85) |#4| $) 139 T ELT)) (-3244 (((-587 $) |#4| $) 134 T ELT) (((-587 $) (-587 |#4|) $) 133 T ELT) (((-587 $) (-587 |#4|) (-587 $)) 132 T ELT) (((-587 $) |#4| (-587 $)) 131 T ELT)) (-3446 (($ |#4| $) 126 T ELT) (($ (-587 |#4|) $) 125 T ELT)) (-3703 (((-587 |#4|) $) 113 T ELT)) (-3697 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3692 ((|#4| |#4| $) 96 T ELT)) (-3705 (((-85) $ $) 116 T ELT)) (-2909 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-499)) ELT)) (-3698 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3693 ((|#4| |#4| $) 97 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3807 (((-3 |#4| #1#) $) 90 T ELT)) (-1734 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 51 T ELT)) (-3685 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3775 (($ $ |#4|) 83 T ELT) (((-587 $) |#4| $) 124 T ELT) (((-587 $) |#4| (-587 $)) 123 T ELT) (((-587 $) (-587 |#4|) $) 122 T ELT) (((-587 $) (-587 |#4|) (-587 $)) 121 T ELT)) (-1736 (((-85) (-1 (-85) |#4|) $) 46 T ELT)) (-3774 (($ $ (-587 |#4|) (-587 |#4|)) 64 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ |#4| |#4|) 63 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-251 |#4|)) 62 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-587 (-251 |#4|))) 61 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT)) (-1226 (((-85) $ $) 55 T ELT)) (-3409 (((-85) $) 58 T ELT)) (-3571 (($) 57 T ELT)) (-3955 (((-698) $) 112 T ELT)) (-1735 (((-698) |#4| $) 52 (|has| |#4| (-72)) ELT) (((-698) (-1 (-85) |#4|) $) 47 T ELT)) (-3406 (($ $) 56 T ELT)) (-3978 (((-477) $) 70 (|has| |#4| (-557 (-477))) ELT)) (-3536 (($ (-587 |#4|)) 65 T ELT)) (-2916 (($ $ |#3|) 34 T ELT)) (-2918 (($ $ |#3|) 36 T ELT)) (-3690 (($ $) 94 T ELT)) (-2917 (($ $ |#3|) 35 T ELT)) (-3953 (((-776) $) 13 T ELT) (((-587 |#4|) $) 43 T ELT)) (-3684 (((-698) $) 82 (|has| |#3| (-322)) ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3704 (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#4|))) #1#) (-587 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#4|))) #1#) (-587 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3696 (((-85) $ (-1 (-85) |#4| (-587 |#4|))) 104 T ELT)) (-3195 (((-587 $) |#4| $) 130 T ELT) (((-587 $) |#4| (-587 $)) 129 T ELT) (((-587 $) (-587 |#4|) $) 128 T ELT) (((-587 $) (-587 |#4|) (-587 $)) 127 T ELT)) (-1737 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3686 (((-587 |#3|) $) 87 T ELT)) (-3202 (((-85) |#4| $) 144 T ELT)) (-3940 (((-85) |#3| $) 86 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3964 (((-698) $) 44 T ELT))) +(((-1024 |#1| |#2| |#3| |#4|) (-113) (-395) (-721) (-760) (-981 |t#1| |t#2| |t#3|)) (T -1024)) +NIL +(-13 (-987 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-556 (-587 |#4|)) . T) ((-556 (-776)) . T) ((-124 |#4|) . T) ((-557 (-477)) |has| |#4| (-557 (-477))) ((-262 |#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ((-320 |#4|) . T) ((-383 |#4|) . T) ((-432 |#4|) . T) ((-459 |#4| |#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ((-13) . T) ((-893 |#1| |#2| |#3| |#4|) . T) ((-987 |#1| |#2| |#3| |#4|) . T) ((-1017) . T) ((-1039 |#4|) . T) ((-1128 |#1| |#2| |#3| |#4|) . T) ((-1133) . T)) +((-3314 (((-587 (-488)) (-488) (-488) (-488)) 40 T ELT)) (-3313 (((-587 (-488)) (-488) (-488) (-488)) 30 T ELT)) (-3312 (((-587 (-488)) (-488) (-488) (-488)) 35 T ELT)) (-3311 (((-488) (-488) (-488)) 22 T ELT)) (-3310 (((-1183 (-488)) (-587 (-488)) (-1183 (-488)) (-488)) 78 T ELT) (((-1183 (-488)) (-1183 (-488)) (-1183 (-488)) (-488)) 73 T ELT)) (-3309 (((-587 (-488)) (-587 (-834)) (-587 (-488)) (-85)) 56 T ELT)) (-3308 (((-634 (-488)) (-587 (-488)) (-587 (-488)) (-634 (-488))) 77 T ELT)) (-3307 (((-634 (-488)) (-587 (-834)) (-587 (-488))) 61 T ELT)) (-3306 (((-587 (-634 (-488))) (-587 (-834))) 66 T ELT)) (-3305 (((-587 (-488)) (-587 (-488)) (-587 (-488)) (-634 (-488))) 81 T ELT)) (-3304 (((-634 (-488)) (-587 (-488)) (-587 (-488)) (-587 (-488))) 91 T ELT))) +(((-1025) (-10 -7 (-15 -3304 ((-634 (-488)) (-587 (-488)) (-587 (-488)) (-587 (-488)))) (-15 -3305 ((-587 (-488)) (-587 (-488)) (-587 (-488)) (-634 (-488)))) (-15 -3306 ((-587 (-634 (-488))) (-587 (-834)))) (-15 -3307 ((-634 (-488)) (-587 (-834)) (-587 (-488)))) (-15 -3308 ((-634 (-488)) (-587 (-488)) (-587 (-488)) (-634 (-488)))) (-15 -3309 ((-587 (-488)) (-587 (-834)) (-587 (-488)) (-85))) (-15 -3310 ((-1183 (-488)) (-1183 (-488)) (-1183 (-488)) (-488))) (-15 -3310 ((-1183 (-488)) (-587 (-488)) (-1183 (-488)) (-488))) (-15 -3311 ((-488) (-488) (-488))) (-15 -3312 ((-587 (-488)) (-488) (-488) (-488))) (-15 -3313 ((-587 (-488)) (-488) (-488) (-488))) (-15 -3314 ((-587 (-488)) (-488) (-488) (-488))))) (T -1025)) +((-3314 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-1025)) (-5 *3 (-488)))) (-3313 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-1025)) (-5 *3 (-488)))) (-3312 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-1025)) (-5 *3 (-488)))) (-3311 (*1 *2 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-1025)))) (-3310 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1183 (-488))) (-5 *3 (-587 (-488))) (-5 *4 (-488)) (-5 *1 (-1025)))) (-3310 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1183 (-488))) (-5 *3 (-488)) (-5 *1 (-1025)))) (-3309 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-587 (-488))) (-5 *3 (-587 (-834))) (-5 *4 (-85)) (-5 *1 (-1025)))) (-3308 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-634 (-488))) (-5 *3 (-587 (-488))) (-5 *1 (-1025)))) (-3307 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-834))) (-5 *4 (-587 (-488))) (-5 *2 (-634 (-488))) (-5 *1 (-1025)))) (-3306 (*1 *2 *3) (-12 (-5 *3 (-587 (-834))) (-5 *2 (-587 (-634 (-488)))) (-5 *1 (-1025)))) (-3305 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-587 (-488))) (-5 *3 (-634 (-488))) (-5 *1 (-1025)))) (-3304 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-634 (-488))) (-5 *1 (-1025))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3315 (($ (-1 |#1| |#1| |#1|)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3806 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-1026 |#1|) (-13 (-1027 |#1|) (-1017) (-10 -8 (-15 -3315 ($ (-1 |#1| |#1| |#1|))))) (-72)) (T -1026)) +((-3315 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1026 *3))))) +((-3806 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-1027 |#1|) (-113) (-72)) (T -1027)) +NIL +(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|) (|:| |z| |t#1|)) (-3062 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|)))))))) +(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1133) . T)) +((** (($ $ (-834)) 10 T ELT))) +(((-1028 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-834)))) (-1029)) (T -1028)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (** (($ $ (-834)) 17 T ELT)) (* (($ $ $) 18 T ELT))) +(((-1029) (-113)) (T -1029)) +((* (*1 *1 *1 *1) (-4 *1 (-1029))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1029)) (-5 *2 (-834))))) +(-13 (-1017) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-834))))) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-3194 (((-85) $) NIL (|has| |#3| (-23)) ELT)) (-3713 (($ (-834)) NIL (|has| |#3| (-965)) ELT)) (-2203 (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 |#3|)) ELT)) (-2489 (($ $ $) NIL (|has| |#3| (-721)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-104)) ELT)) (-3142 (((-698)) NIL (|has| |#3| (-322)) ELT)) (-3794 ((|#3| $ (-488) |#3|) NIL (|has| $ (-1039 |#3|)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL (-12 (|has| |#3| (-954 (-488))) (|has| |#3| (-1017))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (-12 (|has| |#3| (-954 (-352 (-488)))) (|has| |#3| (-1017))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1017)) ELT)) (-3162 (((-488) $) NIL (-12 (|has| |#3| (-954 (-488))) (|has| |#3| (-1017))) ELT) (((-352 (-488)) $) NIL (-12 (|has| |#3| (-954 (-352 (-488)))) (|has| |#3| (-1017))) ELT) ((|#3| $) NIL (|has| |#3| (-1017)) ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (-12 (|has| |#3| (-584 (-488))) (|has| |#3| (-965))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (-12 (|has| |#3| (-584 (-488))) (|has| |#3| (-965))) ELT) (((-2 (|:| |mat| (-634 |#3|)) (|:| |vec| (-1183 |#3|))) (-634 $) (-1183 $)) NIL (|has| |#3| (-965)) ELT) (((-634 |#3|) (-634 $)) NIL (|has| |#3| (-965)) ELT)) (-3848 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL (|has| |#3| (-965)) ELT)) (-3000 (($) NIL (|has| |#3| (-322)) ELT)) (-1580 ((|#3| $ (-488) |#3|) NIL (|has| $ (-1039 |#3|)) ELT)) (-3118 ((|#3| $ (-488)) 12 T ELT)) (-3192 (((-85) $) NIL (|has| |#3| (-721)) ELT)) (-1218 (((-85) $ $) NIL (|has| |#3| (-23)) ELT)) (-2415 (((-85) $) NIL (|has| |#3| (-965)) ELT)) (-2205 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL (|has| |#3| (-760)) ELT)) (-2614 (((-587 |#3|) $) NIL T ELT)) (-3251 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-2206 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#3| (-760)) ELT)) (-3849 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2015 (((-834) $) NIL (|has| |#3| (-322)) ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (-12 (|has| |#3| (-584 (-488))) (|has| |#3| (-965))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (-12 (|has| |#3| (-584 (-488))) (|has| |#3| (-965))) ELT) (((-2 (|:| |mat| (-634 |#3|)) (|:| |vec| (-1183 |#3|))) (-1183 $) $) NIL (|has| |#3| (-965)) ELT) (((-634 |#3|) (-1183 $)) NIL (|has| |#3| (-965)) ELT)) (-3248 (((-1077) $) NIL (|has| |#3| (-1017)) ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) NIL T ELT)) (-2405 (($ (-834)) NIL (|has| |#3| (-322)) ELT)) (-3249 (((-1037) $) NIL (|has| |#3| (-1017)) ELT)) (-3807 ((|#3| $) NIL (|has| (-488) (-760)) ELT)) (-1734 (((-3 |#3| #1#) (-1 (-85) |#3|) $) NIL T ELT)) (-2204 (($ $ |#3|) NIL (|has| $ (-1039 |#3|)) ELT)) (-1736 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#3|))) NIL (-12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017))) ELT) (($ $ (-251 |#3|)) NIL (-12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017))) ELT) (($ $ (-587 |#3|) (-587 |#3|)) NIL (-12 (|has| |#3| (-262 |#3|)) (|has| |#3| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#3| $) NIL (-12 (|has| $ (-320 |#3|)) (|has| |#3| (-72))) ELT)) (-2210 (((-587 |#3|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#3| $ (-488) |#3|) NIL T ELT) ((|#3| $ (-488)) NIL T ELT)) (-3842 ((|#3| $ $) NIL (|has| |#3| (-965)) ELT)) (-1472 (($ (-1183 |#3|)) NIL T ELT)) (-3918 (((-107)) NIL (|has| |#3| (-314)) ELT)) (-3764 (($ $ (-698)) NIL (-12 (|has| |#3| (-191)) (|has| |#3| (-965))) ELT) (($ $) NIL (-12 (|has| |#3| (-191)) (|has| |#3| (-965))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965))) ELT) (($ $ (-1094)) NIL (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-965)) ELT) (($ $ (-1 |#3| |#3|) (-698)) NIL (|has| |#3| (-965)) ELT)) (-1735 (((-698) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-698) (-1 (-85) |#3|) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3953 (((-1183 |#3|) $) NIL T ELT) (($ (-488)) NIL (OR (-12 (|has| |#3| (-954 (-488))) (|has| |#3| (-1017))) (|has| |#3| (-965))) ELT) (($ (-352 (-488))) NIL (-12 (|has| |#3| (-954 (-352 (-488)))) (|has| |#3| (-1017))) ELT) (($ |#3|) NIL (|has| |#3| (-1017)) ELT) (((-776) $) NIL (|has| |#3| (-556 (-776))) ELT)) (-3132 (((-698)) NIL (|has| |#3| (-965)) CONST)) (-1269 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3131 (((-85) $ $) NIL (|has| |#3| (-965)) ELT)) (-2666 (($) NIL (|has| |#3| (-23)) CONST)) (-2672 (($) NIL (|has| |#3| (-965)) CONST)) (-2675 (($ $ (-698)) NIL (-12 (|has| |#3| (-191)) (|has| |#3| (-965))) ELT) (($ $) NIL (-12 (|has| |#3| (-191)) (|has| |#3| (-965))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965))) ELT) (($ $ (-1094)) NIL (-12 (|has| |#3| (-815 (-1094))) (|has| |#3| (-965))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-965)) ELT) (($ $ (-1 |#3| |#3|) (-698)) NIL (|has| |#3| (-965)) ELT)) (-2572 (((-85) $ $) NIL (|has| |#3| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#3| (-760)) ELT)) (-3062 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-2690 (((-85) $ $) NIL (|has| |#3| (-760)) ELT)) (-2691 (((-85) $ $) 24 (|has| |#3| (-760)) ELT)) (-3956 (($ $ |#3|) NIL (|has| |#3| (-314)) ELT)) (-3843 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3845 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-698)) NIL (|has| |#3| (-965)) ELT) (($ $ (-834)) NIL (|has| |#3| (-965)) ELT)) (* (($ $ $) NIL (|has| |#3| (-965)) ELT) (($ $ |#3|) NIL (|has| |#3| (-667)) ELT) (($ |#3| $) NIL (|has| |#3| (-667)) ELT) (($ (-488) $) NIL (|has| |#3| (-21)) ELT) (($ (-698) $) NIL (|has| |#3| (-23)) ELT) (($ (-834) $) NIL (|has| |#3| (-25)) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-1030 |#1| |#2| |#3|) (-198 |#1| |#3|) (-698) (-698) (-721)) (T -1030)) +NIL +((-3316 (((-587 (-1152 |#2| |#1|)) (-1152 |#2| |#1|) (-1152 |#2| |#1|)) 50 T ELT)) (-3322 (((-488) (-1152 |#2| |#1|)) 95 (|has| |#1| (-395)) ELT)) (-3320 (((-488) (-1152 |#2| |#1|)) 79 T ELT)) (-3317 (((-587 (-1152 |#2| |#1|)) (-1152 |#2| |#1|) (-1152 |#2| |#1|)) 58 T ELT)) (-3321 (((-488) (-1152 |#2| |#1|) (-1152 |#2| |#1|)) 81 (|has| |#1| (-395)) ELT)) (-3318 (((-587 |#1|) (-1152 |#2| |#1|) (-1152 |#2| |#1|)) 61 T ELT)) (-3319 (((-488) (-1152 |#2| |#1|) (-1152 |#2| |#1|)) 78 T ELT))) +(((-1031 |#1| |#2|) (-10 -7 (-15 -3316 ((-587 (-1152 |#2| |#1|)) (-1152 |#2| |#1|) (-1152 |#2| |#1|))) (-15 -3317 ((-587 (-1152 |#2| |#1|)) (-1152 |#2| |#1|) (-1152 |#2| |#1|))) (-15 -3318 ((-587 |#1|) (-1152 |#2| |#1|) (-1152 |#2| |#1|))) (-15 -3319 ((-488) (-1152 |#2| |#1|) (-1152 |#2| |#1|))) (-15 -3320 ((-488) (-1152 |#2| |#1|))) (IF (|has| |#1| (-395)) (PROGN (-15 -3321 ((-488) (-1152 |#2| |#1|) (-1152 |#2| |#1|))) (-15 -3322 ((-488) (-1152 |#2| |#1|)))) |%noBranch|)) (-744) (-1094)) (T -1031)) +((-3322 (*1 *2 *3) (-12 (-5 *3 (-1152 *5 *4)) (-4 *4 (-395)) (-4 *4 (-744)) (-14 *5 (-1094)) (-5 *2 (-488)) (-5 *1 (-1031 *4 *5)))) (-3321 (*1 *2 *3 *3) (-12 (-5 *3 (-1152 *5 *4)) (-4 *4 (-395)) (-4 *4 (-744)) (-14 *5 (-1094)) (-5 *2 (-488)) (-5 *1 (-1031 *4 *5)))) (-3320 (*1 *2 *3) (-12 (-5 *3 (-1152 *5 *4)) (-4 *4 (-744)) (-14 *5 (-1094)) (-5 *2 (-488)) (-5 *1 (-1031 *4 *5)))) (-3319 (*1 *2 *3 *3) (-12 (-5 *3 (-1152 *5 *4)) (-4 *4 (-744)) (-14 *5 (-1094)) (-5 *2 (-488)) (-5 *1 (-1031 *4 *5)))) (-3318 (*1 *2 *3 *3) (-12 (-5 *3 (-1152 *5 *4)) (-4 *4 (-744)) (-14 *5 (-1094)) (-5 *2 (-587 *4)) (-5 *1 (-1031 *4 *5)))) (-3317 (*1 *2 *3 *3) (-12 (-4 *4 (-744)) (-14 *5 (-1094)) (-5 *2 (-587 (-1152 *5 *4))) (-5 *1 (-1031 *4 *5)) (-5 *3 (-1152 *5 *4)))) (-3316 (*1 *2 *3 *3) (-12 (-4 *4 (-744)) (-14 *5 (-1094)) (-5 *2 (-587 (-1152 *5 *4))) (-5 *1 (-1031 *4 *5)) (-5 *3 (-1152 *5 *4))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3324 (((-1099) $) 12 T ELT)) (-3323 (((-587 (-1099)) $) 14 T ELT)) (-3325 (($ (-587 (-1099)) (-1099)) 10 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 29 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 17 T ELT))) +(((-1032) (-13 (-1017) (-10 -8 (-15 -3325 ($ (-587 (-1099)) (-1099))) (-15 -3324 ((-1099) $)) (-15 -3323 ((-587 (-1099)) $))))) (T -1032)) +((-3325 (*1 *1 *2 *3) (-12 (-5 *2 (-587 (-1099))) (-5 *3 (-1099)) (-5 *1 (-1032)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1032)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-587 (-1099))) (-5 *1 (-1032))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3326 (($ (-450) (-1032)) 14 T ELT)) (-3325 (((-1032) $) 20 T ELT)) (-3548 (((-450) $) 17 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 27 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-1033) (-13 (-999) (-10 -8 (-15 -3326 ($ (-450) (-1032))) (-15 -3548 ((-450) $)) (-15 -3325 ((-1032) $))))) (T -1033)) +((-3326 (*1 *1 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-1032)) (-5 *1 (-1033)))) (-3548 (*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-1033)))) (-3325 (*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-1033))))) +((-3629 (((-3 (-488) #1="failed") |#2| (-1094) |#2| (-1077)) 19 T ELT) (((-3 (-488) #1#) |#2| (-1094) (-754 |#2|)) 17 T ELT) (((-3 (-488) #1#) |#2|) 60 T ELT))) +(((-1034 |#1| |#2|) (-10 -7 (-15 -3629 ((-3 (-488) #1="failed") |#2|)) (-15 -3629 ((-3 (-488) #1#) |#2| (-1094) (-754 |#2|))) (-15 -3629 ((-3 (-488) #1#) |#2| (-1094) |#2| (-1077)))) (-13 (-499) (-954 (-488)) (-584 (-488)) (-395)) (-13 (-27) (-1119) (-366 |#1|))) (T -1034)) +((-3629 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1094)) (-5 *5 (-1077)) (-4 *6 (-13 (-499) (-954 *2) (-584 *2) (-395))) (-5 *2 (-488)) (-5 *1 (-1034 *6 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *6))))) (-3629 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1094)) (-5 *5 (-754 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *6))) (-4 *6 (-13 (-499) (-954 *2) (-584 *2) (-395))) (-5 *2 (-488)) (-5 *1 (-1034 *6 *3)))) (-3629 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-499) (-954 *2) (-584 *2) (-395))) (-5 *2 (-488)) (-5 *1 (-1034 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *4)))))) +((-3629 (((-3 (-488) #1="failed") (-352 (-861 |#1|)) (-1094) (-352 (-861 |#1|)) (-1077)) 38 T ELT) (((-3 (-488) #1#) (-352 (-861 |#1|)) (-1094) (-754 (-352 (-861 |#1|)))) 33 T ELT) (((-3 (-488) #1#) (-352 (-861 |#1|))) 14 T ELT))) +(((-1035 |#1|) (-10 -7 (-15 -3629 ((-3 (-488) #1="failed") (-352 (-861 |#1|)))) (-15 -3629 ((-3 (-488) #1#) (-352 (-861 |#1|)) (-1094) (-754 (-352 (-861 |#1|))))) (-15 -3629 ((-3 (-488) #1#) (-352 (-861 |#1|)) (-1094) (-352 (-861 |#1|)) (-1077)))) (-395)) (T -1035)) +((-3629 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-352 (-861 *6))) (-5 *4 (-1094)) (-5 *5 (-1077)) (-4 *6 (-395)) (-5 *2 (-488)) (-5 *1 (-1035 *6)))) (-3629 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1094)) (-5 *5 (-754 (-352 (-861 *6)))) (-5 *3 (-352 (-861 *6))) (-4 *6 (-395)) (-5 *2 (-488)) (-5 *1 (-1035 *6)))) (-3629 (*1 *2 *3) (|partial| -12 (-5 *3 (-352 (-861 *4))) (-4 *4 (-395)) (-5 *2 (-488)) (-5 *1 (-1035 *4))))) +((-3655 (((-267 (-488)) (-48)) 12 T ELT))) +(((-1036) (-10 -7 (-15 -3655 ((-267 (-488)) (-48))))) (T -1036)) +((-3655 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-267 (-488))) (-5 *1 (-1036))))) +((-2574 (((-85) $ $) NIL T ELT)) (-2318 (($ $) 22 T ELT)) (-3194 (((-85) $) 49 T ELT)) (-3327 (($ $ $) 28 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 75 T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-2052 (($ $ $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2047 (($ $ $ $) 59 T ELT)) (-3781 (($ $) NIL T ELT)) (-3977 (((-350 $) $) NIL T ELT)) (-1612 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) 61 T ELT)) (-3629 (((-488) $) NIL T ELT)) (-2447 (($ $ $) 56 T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL T ELT)) (-3162 (((-488) $) NIL T ELT)) (-2570 (($ $ $) 42 T ELT)) (-2284 (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) 70 T ELT) (((-634 (-488)) (-634 $)) 8 T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3030 (((-3 (-352 (-488)) #1#) $) NIL T ELT)) (-3029 (((-85) $) NIL T ELT)) (-3028 (((-352 (-488)) $) NIL T ELT)) (-3000 (($) 73 T ELT) (($ $) 72 T ELT)) (-2569 (($ $ $) 41 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL T ELT)) (-3729 (((-85) $) NIL T ELT)) (-2045 (($ $ $ $) NIL T ELT)) (-2053 (($ $ $) 71 T ELT)) (-3192 (((-85) $) 76 T ELT)) (-1372 (($ $ $) NIL T ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL T ELT)) (-2567 (($ $ $) 27 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) 50 T ELT)) (-2679 (((-85) $) 47 T ELT)) (-2566 (($ $) 23 T ELT)) (-3451 (((-636 $) $) NIL T ELT)) (-3193 (((-85) $) 60 T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL T ELT)) (-2046 (($ $ $ $) 57 T ELT)) (-2537 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2863 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2049 (($ $) NIL T ELT)) (-2015 (((-834) $) 66 T ELT)) (-3839 (($ $) 55 T ELT)) (-2285 (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL T ELT) (((-634 (-488)) (-1183 $)) NIL T ELT)) (-1899 (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2044 (($ $ $) NIL T ELT)) (-3452 (($) NIL T CONST)) (-2405 (($ (-834)) 65 T ELT)) (-2051 (($ $) 33 T ELT)) (-3249 (((-1037) $) 54 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL T ELT)) (-3150 (($ $ $) 45 T ELT) (($ (-587 $)) NIL T ELT)) (-1370 (($ $) NIL T ELT)) (-3738 (((-350 $) $) NIL T ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL T ELT)) (-2680 (((-85) $) 48 T ELT)) (-1611 (((-698) $) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 44 T ELT)) (-3764 (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-2050 (($ $) 34 T ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-488) $) 12 T ELT) (((-477) $) NIL T ELT) (((-804 (-488)) $) NIL T ELT) (((-332) $) NIL T ELT) (((-181) $) NIL T ELT)) (-3953 (((-776) $) 11 T ELT) (($ (-488)) 13 T ELT) (($ $) NIL T ELT) (($ (-488)) 13 T ELT)) (-3132 (((-698)) NIL T CONST)) (-2054 (((-85) $ $) NIL T ELT)) (-3107 (($ $ $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2700 (($) 17 T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2568 (($ $ $) 26 T ELT)) (-2048 (($ $ $ $) 58 T ELT)) (-3389 (($ $) 46 T ELT)) (-2316 (($ $ $) 25 T ELT)) (-2666 (($) 15 T CONST)) (-2672 (($) 16 T CONST)) (-2675 (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-2572 (((-85) $ $) 32 T ELT)) (-2573 (((-85) $ $) 30 T ELT)) (-3062 (((-85) $ $) 21 T ELT)) (-2690 (((-85) $ $) 31 T ELT)) (-2691 (((-85) $ $) 29 T ELT)) (-2317 (($ $ $) 24 T ELT)) (-3843 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3845 (($ $ $) 36 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 40 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-488) $) 14 T ELT))) +(((-1037) (-13 (-487) (-756) (-84) (-10 -8 (-6 -3988) (-6 -3993) (-6 -3989) (-15 -3327 ($ $ $))))) (T -1037)) +((-3327 (*1 *1 *1 *1) (-5 *1 (-1037)))) +((-488) (|%ismall?| |#1|)) +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3329 ((|#1| $) 42 T ELT)) (-3730 (($) 6 T CONST)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 55 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 51 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 50 T ELT)) (-3331 ((|#1| |#1| $) 44 T ELT)) (-3330 ((|#1| $) 43 T ELT)) (-2614 (((-587 |#1|) $) 49 T ELT)) (-3251 (((-85) |#1| $) 54 (|has| |#1| (-72)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-1278 ((|#1| $) 35 T ELT)) (-3615 (($ |#1| $) 36 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 52 T ELT)) (-1279 ((|#1| $) 37 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) 47 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3328 (((-698) $) 41 T ELT)) (-1735 (((-698) |#1| $) 53 (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) 48 T ELT)) (-3406 (($ $) 9 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1280 (($ (-587 |#1|)) 38 T ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) 46 T ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) 45 T ELT))) +(((-1038 |#1|) (-113) (-1133)) (T -1038)) +((-3331 (*1 *2 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1133)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1133)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1133)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-1133)) (-5 *2 (-698))))) +(-13 (-76 |t#1|) (-320 |t#1|) (-10 -8 (-15 -3331 (|t#1| |t#1| $)) (-15 -3330 (|t#1| $)) (-15 -3329 (|t#1| $)) (-15 -3328 ((-698) $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-320 |#1|) . T) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-1017) |has| |#1| (-1017)) ((-1039 |#1|) . T) ((-1133) . T)) +((-3730 (($) 6 T CONST)) (-3332 (($ (-1 |#1| |#1|) $) 12 T ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3406 (($ $) 9 T ELT))) +(((-1039 |#1|) (-113) (-1133)) (T -1039)) +((-3332 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1039 *3)) (-4 *3 (-1133))))) +(-13 (-34) (-10 -8 (-15 -3332 ($ (-1 |t#1| |t#1|) $)))) +(((-34) . T) ((-13) . T) ((-1133) . T)) +((-3336 ((|#3| $) 87 T ELT)) (-3163 (((-3 (-488) #1="failed") $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3162 (((-488) $) NIL T ELT) (((-352 (-488)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL T ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL T ELT) (((-2 (|:| |mat| (-634 |#3|)) (|:| |vec| (-1183 |#3|))) (-634 $) (-1183 $)) 84 T ELT) (((-634 |#3|) (-634 $)) 76 T ELT)) (-3764 (($ $ (-1 |#3| |#3|) (-698)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-1094)) NIL T ELT) (($ $ (-587 (-1094))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT)) (-3335 ((|#3| $) 89 T ELT)) (-3337 ((|#4| $) 43 T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 24 T ELT) (($ $ (-488)) 95 T ELT))) +(((-1040 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3764 (|#1| |#1| (-587 (-1094)) (-587 (-698)))) (-15 -3764 (|#1| |#1| (-1094) (-698))) (-15 -3764 (|#1| |#1| (-587 (-1094)))) (-15 -3764 (|#1| |#1| (-1094))) (-15 -3764 (|#1| |#1| (-698))) (-15 -3764 (|#1| |#1|)) (-15 ** (|#1| |#1| (-488))) (-15 -3335 (|#3| |#1|)) (-15 -3336 (|#3| |#1|)) (-15 -3337 (|#4| |#1|)) (-15 -2284 ((-634 |#3|) (-634 |#1|))) (-15 -2284 ((-2 (|:| |mat| (-634 |#3|)) (|:| |vec| (-1183 |#3|))) (-634 |#1|) (-1183 |#1|))) (-15 -2284 ((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 |#1|) (-1183 |#1|))) (-15 -2284 ((-634 (-488)) (-634 |#1|))) (-15 -3953 (|#1| |#3|)) (-15 -3163 ((-3 |#3| #1="failed") |#1|)) (-15 -3162 (|#3| |#1|)) (-15 -3162 ((-352 (-488)) |#1|)) (-15 -3163 ((-3 (-352 (-488)) #1#) |#1|)) (-15 -3953 (|#1| (-352 (-488)))) (-15 -3162 ((-488) |#1|)) (-15 -3163 ((-3 (-488) #1#) |#1|)) (-15 -3764 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3764 (|#1| |#1| (-1 |#3| |#3|) (-698))) (-15 -3953 (|#1| (-488))) (-15 ** (|#1| |#1| (-698))) (-15 ** (|#1| |#1| (-834))) (-15 -3953 ((-776) |#1|))) (-1041 |#2| |#3| |#4| |#5|) (-698) (-965) (-198 |#2| |#3|) (-198 |#2| |#3|)) (T -1040)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3336 ((|#2| $) 91 T ELT)) (-3126 (((-85) $) 134 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3128 (((-85) $) 132 T ELT)) (-3339 (($ |#2|) 94 T ELT)) (-3730 (($) 23 T CONST)) (-3115 (($ $) 151 (|has| |#2| (-260)) ELT)) (-3117 ((|#3| $ (-488)) 146 T ELT)) (-3163 (((-3 (-488) #1="failed") $) 110 (|has| |#2| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) 107 (|has| |#2| (-954 (-352 (-488)))) ELT) (((-3 |#2| #1#) $) 104 T ELT)) (-3162 (((-488) $) 109 (|has| |#2| (-954 (-488))) ELT) (((-352 (-488)) $) 106 (|has| |#2| (-954 (-352 (-488)))) ELT) ((|#2| $) 105 T ELT)) (-2284 (((-634 (-488)) (-634 $)) 100 (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) 99 (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 $) (-1183 $)) 98 T ELT) (((-634 |#2|) (-634 $)) 97 T ELT)) (-3848 ((|#2| (-1 |#2| |#2| |#2|) $) 116 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 115 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 111 (|has| |#2| (-72)) ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3114 (((-698) $) 152 (|has| |#2| (-499)) ELT)) (-3118 ((|#2| $ (-488) (-488)) 144 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3113 (((-698) $) 153 (|has| |#2| (-499)) ELT)) (-3112 (((-587 |#4|) $) 154 (|has| |#2| (-499)) ELT)) (-3120 (((-698) $) 140 T ELT)) (-3119 (((-698) $) 141 T ELT)) (-3333 ((|#2| $) 86 (|has| |#2| (-6 (-4003 #2="*"))) ELT)) (-3124 (((-488) $) 136 T ELT)) (-3122 (((-488) $) 138 T ELT)) (-2614 (((-587 |#2|) $) 117 T ELT)) (-3251 (((-85) |#2| $) 112 (|has| |#2| (-72)) ELT)) (-3123 (((-488) $) 137 T ELT)) (-3121 (((-488) $) 139 T ELT)) (-3129 (($ (-587 (-587 |#2|))) 131 T ELT)) (-3849 (($ (-1 |#2| |#2| |#2|) $ $) 148 T ELT) (($ (-1 |#2| |#2|) $) 126 T ELT)) (-3600 (((-587 (-587 |#2|)) $) 142 T ELT)) (-2285 (((-634 (-488)) (-1183 $)) 102 (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) 101 (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-1183 $) $) 96 T ELT) (((-634 |#2|) (-1183 $)) 95 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3596 (((-3 $ "failed") $) 85 (|has| |#2| (-314)) ELT)) (-3249 (((-1037) $) 12 T ELT)) (-1734 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 114 T ELT)) (-3472 (((-3 $ "failed") $ |#2|) 149 (|has| |#2| (-499)) ELT)) (-1736 (((-85) (-1 (-85) |#2|) $) 119 T ELT)) (-3774 (($ $ (-587 (-251 |#2|))) 125 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-251 |#2|)) 124 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ |#2| |#2|) 123 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) 122 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT)) (-1226 (((-85) $ $) 130 T ELT)) (-3409 (((-85) $) 127 T ELT)) (-3571 (($) 128 T ELT)) (-3806 ((|#2| $ (-488) (-488) |#2|) 145 T ELT) ((|#2| $ (-488) (-488)) 143 T ELT)) (-3764 (($ $ (-1 |#2| |#2|) (-698)) 65 T ELT) (($ $ (-1 |#2| |#2|)) 64 T ELT) (($ $) 55 (|has| |#2| (-191)) ELT) (($ $ (-698)) 53 (|has| |#2| (-191)) ELT) (($ $ (-1094)) 63 (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) 61 (|has| |#2| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) 60 (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 59 (|has| |#2| (-815 (-1094))) ELT)) (-3335 ((|#2| $) 90 T ELT)) (-3338 (($ (-587 |#2|)) 93 T ELT)) (-3127 (((-85) $) 133 T ELT)) (-3337 ((|#3| $) 92 T ELT)) (-3334 ((|#2| $) 87 (|has| |#2| (-6 (-4003 #2#))) ELT)) (-1735 (((-698) (-1 (-85) |#2|) $) 118 T ELT) (((-698) |#2| $) 113 (|has| |#2| (-72)) ELT)) (-3406 (($ $) 129 T ELT)) (-3116 ((|#4| $ (-488)) 147 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ (-352 (-488))) 108 (|has| |#2| (-954 (-352 (-488)))) ELT) (($ |#2|) 103 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-1737 (((-85) (-1 (-85) |#2|) $) 120 T ELT)) (-3125 (((-85) $) 135 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-1 |#2| |#2|) (-698)) 67 T ELT) (($ $ (-1 |#2| |#2|)) 66 T ELT) (($ $) 54 (|has| |#2| (-191)) ELT) (($ $ (-698)) 52 (|has| |#2| (-191)) ELT) (($ $ (-1094)) 62 (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) 58 (|has| |#2| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) 57 (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 56 (|has| |#2| (-815 (-1094))) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ |#2|) 150 (|has| |#2| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 84 (|has| |#2| (-314)) ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#2|) 156 T ELT) (($ |#2| $) 155 T ELT) ((|#4| $ |#4|) 89 T ELT) ((|#3| |#3| $) 88 T ELT)) (-3964 (((-698) $) 121 T ELT))) +(((-1041 |#1| |#2| |#3| |#4|) (-113) (-698) (-965) (-198 |t#1| |t#2|) (-198 |t#1| |t#2|)) (T -1041)) +((-3339 (*1 *1 *2) (-12 (-4 *2 (-965)) (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-198 *3 *2)) (-4 *5 (-198 *3 *2)))) (-3338 (*1 *1 *2) (-12 (-5 *2 (-587 *4)) (-4 *4 (-965)) (-4 *1 (-1041 *3 *4 *5 *6)) (-4 *5 (-198 *3 *4)) (-4 *6 (-198 *3 *4)))) (-3337 (*1 *2 *1) (-12 (-4 *1 (-1041 *3 *4 *2 *5)) (-4 *4 (-965)) (-4 *5 (-198 *3 *4)) (-4 *2 (-198 *3 *4)))) (-3336 (*1 *2 *1) (-12 (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-198 *3 *2)) (-4 *5 (-198 *3 *2)) (-4 *2 (-965)))) (-3335 (*1 *2 *1) (-12 (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-198 *3 *2)) (-4 *5 (-198 *3 *2)) (-4 *2 (-965)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1041 *3 *4 *5 *2)) (-4 *4 (-965)) (-4 *5 (-198 *3 *4)) (-4 *2 (-198 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1041 *3 *4 *2 *5)) (-4 *4 (-965)) (-4 *2 (-198 *3 *4)) (-4 *5 (-198 *3 *4)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-198 *3 *2)) (-4 *5 (-198 *3 *2)) (|has| *2 (-6 (-4003 #1="*"))) (-4 *2 (-965)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-198 *3 *2)) (-4 *5 (-198 *3 *2)) (|has| *2 (-6 (-4003 #1#))) (-4 *2 (-965)))) (-3596 (*1 *1 *1) (|partial| -12 (-4 *1 (-1041 *2 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-198 *2 *3)) (-4 *5 (-198 *2 *3)) (-4 *3 (-314)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-1041 *3 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-198 *3 *4)) (-4 *6 (-198 *3 *4)) (-4 *4 (-314))))) +(-13 (-186 |t#2|) (-82 |t#2| |t#2|) (-969 |t#1| |t#1| |t#2| |t#3| |t#4|) (-357 |t#2|) (-331 |t#2|) (-10 -8 (IF (|has| |t#2| (-148)) (-6 (-658 |t#2|)) |%noBranch|) (-15 -3339 ($ |t#2|)) (-15 -3338 ($ (-587 |t#2|))) (-15 -3337 (|t#3| $)) (-15 -3336 (|t#2| $)) (-15 -3335 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4003 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3334 (|t#2| $)) (-15 -3333 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-314)) (PROGN (-15 -3596 ((-3 $ "failed") $)) (-15 ** ($ $ (-488)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4003 #1="*"))) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-559 (-352 (-488))) |has| |#2| (-954 (-352 (-488)))) ((-559 (-488)) . T) ((-559 |#2|) . T) ((-556 (-776)) . T) ((-188 $) OR (|has| |#2| (-191)) (|has| |#2| (-192))) ((-186 |#2|) . T) ((-192) |has| |#2| (-192)) ((-191) OR (|has| |#2| (-191)) (|has| |#2| (-192))) ((-227 |#2|) . T) ((-262 |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ((-320 |#2|) . T) ((-331 |#2|) . T) ((-357 |#2|) . T) ((-383 |#2|) . T) ((-432 |#2|) . T) ((-459 |#2| |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ((-13) . T) ((-592 (-488)) . T) ((-592 |#2|) . T) ((-592 $) . T) ((-594 (-488)) |has| |#2| (-584 (-488))) ((-594 |#2|) . T) ((-594 $) . T) ((-586 |#2|) OR (|has| |#2| (-148)) (|has| |#2| (-6 (-4003 #1#)))) ((-584 (-488)) |has| |#2| (-584 (-488))) ((-584 |#2|) . T) ((-658 |#2|) OR (|has| |#2| (-148)) (|has| |#2| (-6 (-4003 #1#)))) ((-667) . T) ((-810 $ (-1094)) OR (|has| |#2| (-815 (-1094))) (|has| |#2| (-813 (-1094)))) ((-813 (-1094)) |has| |#2| (-813 (-1094))) ((-815 (-1094)) OR (|has| |#2| (-815 (-1094))) (|has| |#2| (-813 (-1094)))) ((-969 |#1| |#1| |#2| |#3| |#4|) . T) ((-954 (-352 (-488))) |has| |#2| (-954 (-352 (-488)))) ((-954 (-488)) |has| |#2| (-954 (-488))) ((-954 |#2|) . T) ((-967 |#2|) . T) ((-972 |#2|) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-3342 ((|#4| |#4|) 81 T ELT)) (-3340 ((|#4| |#4|) 76 T ELT)) (-3344 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2017 (-587 |#3|))) |#4| |#3|) 91 T ELT)) (-3343 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3341 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) +(((-1042 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3340 (|#4| |#4|)) (-15 -3341 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3342 (|#4| |#4|)) (-15 -3343 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3344 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2017 (-587 |#3|))) |#4| |#3|))) (-260) (-326 |#1|) (-326 |#1|) (-631 |#1| |#2| |#3|)) (T -1042)) +((-3344 (*1 *2 *3 *4) (-12 (-4 *5 (-260)) (-4 *6 (-326 *5)) (-4 *4 (-326 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2017 (-587 *4)))) (-5 *1 (-1042 *5 *6 *4 *3)) (-4 *3 (-631 *5 *6 *4)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-260)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1042 *4 *5 *6 *3)) (-4 *3 (-631 *4 *5 *6)))) (-3342 (*1 *2 *2) (-12 (-4 *3 (-260)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *1 (-1042 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5)))) (-3341 (*1 *2 *3) (-12 (-4 *4 (-260)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1042 *4 *5 *6 *3)) (-4 *3 (-631 *4 *5 *6)))) (-3340 (*1 *2 *2) (-12 (-4 *3 (-260)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *1 (-1042 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 18 T ELT)) (-3087 (((-587 |#2|) $) 174 T ELT)) (-3089 (((-1089 $) $ |#2|) 60 T ELT) (((-1089 |#1|) $) 49 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 116 (|has| |#1| (-499)) ELT)) (-2068 (($ $) 118 (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) 120 (|has| |#1| (-499)) ELT)) (-2825 (((-698) $) NIL T ELT) (((-698) $ (-587 |#2|)) 214 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3781 (($ $) NIL (|has| |#1| (-395)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-395)) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3162 ((|#1| $) 165 T ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) ((|#2| $) NIL T ELT)) (-3762 (($ $ $ |#2|) NIL (|has| |#1| (-148)) ELT)) (-3965 (($ $) 218 T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#1|) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) 90 T ELT)) (-3509 (($ $) NIL (|has| |#1| (-395)) ELT) (($ $ |#2|) NIL (|has| |#1| (-395)) ELT)) (-2824 (((-587 $) $) NIL T ELT)) (-3729 (((-85) $) NIL (|has| |#1| (-825)) ELT)) (-1628 (($ $ |#1| (-473 |#2|) $) NIL T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (-12 (|has| |#1| (-800 (-332))) (|has| |#2| (-800 (-332)))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (-12 (|has| |#1| (-800 (-488))) (|has| |#2| (-800 (-488)))) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) 20 T ELT)) (-2425 (((-698) $) 30 T ELT)) (-3090 (($ (-1089 |#1|) |#2|) 54 T ELT) (($ (-1089 $) |#2|) 71 T ELT)) (-2827 (((-587 $) $) NIL T ELT)) (-3944 (((-85) $) 38 T ELT)) (-2899 (($ |#1| (-473 |#2|)) 78 T ELT) (($ $ |#2| (-698)) 58 T ELT) (($ $ (-587 |#2|) (-587 (-698))) NIL T ELT)) (-3769 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $ |#2|) NIL T ELT)) (-2826 (((-473 |#2|) $) 205 T ELT) (((-698) $ |#2|) 206 T ELT) (((-587 (-698)) $ (-587 |#2|)) 207 T ELT)) (-1629 (($ (-1 (-473 |#2|) (-473 |#2|)) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3088 (((-3 |#2| #1#) $) 177 T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) NIL T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-2900 (($ $) 217 T ELT)) (-3180 ((|#1| $) 43 T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-395)) ELT) (($ $ $) NIL (|has| |#1| (-395)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2829 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2828 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2830 (((-3 (-2 (|:| |var| |#2|) (|:| -2406 (-698))) #1#) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1805 (((-85) $) 39 T ELT)) (-1804 ((|#1| $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 148 (|has| |#1| (-395)) ELT)) (-3150 (($ (-587 $)) 153 (|has| |#1| (-395)) ELT) (($ $ $) 138 (|has| |#1| (-395)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#1| (-825)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#1| (-825)) ELT)) (-3472 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-499)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-499)) ELT)) (-3774 (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-587 |#2|) (-587 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-587 |#2|) (-587 $)) 194 T ELT)) (-3763 (($ $ |#2|) NIL (|has| |#1| (-148)) ELT)) (-3764 (($ $ (-587 |#2|) (-587 (-698))) NIL T ELT) (($ $ |#2| (-698)) NIL T ELT) (($ $ (-587 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3955 (((-473 |#2|) $) 201 T ELT) (((-698) $ |#2|) 196 T ELT) (((-587 (-698)) $ (-587 |#2|)) 199 T ELT)) (-3978 (((-804 (-332)) $) NIL (-12 (|has| |#1| (-557 (-804 (-332)))) (|has| |#2| (-557 (-804 (-332))))) ELT) (((-804 (-488)) $) NIL (-12 (|has| |#1| (-557 (-804 (-488)))) (|has| |#2| (-557 (-804 (-488))))) ELT) (((-477) $) NIL (-12 (|has| |#1| (-557 (-477))) (|has| |#2| (-557 (-477)))) ELT)) (-2823 ((|#1| $) 134 (|has| |#1| (-395)) ELT) (($ $ |#2|) 137 (|has| |#1| (-395)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-825))) ELT)) (-3953 (((-776) $) 159 T ELT) (($ (-488)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-499)) ELT) (($ (-352 (-488))) NIL (OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) ELT)) (-3823 (((-587 |#1|) $) 162 T ELT)) (-3683 ((|#1| $ (-473 |#2|)) 80 T ELT) (($ $ |#2| (-698)) NIL T ELT) (($ $ (-587 |#2|) (-587 (-698))) NIL T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-825))) (|has| |#1| (-118))) ELT)) (-3132 (((-698)) 87 T CONST)) (-1627 (($ $ $ (-698)) NIL (|has| |#1| (-148)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) 123 (|has| |#1| (-499)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 12 T CONST)) (-2672 (($) 14 T CONST)) (-2675 (($ $ (-587 |#2|) (-587 (-698))) NIL T ELT) (($ $ |#2| (-698)) NIL T ELT) (($ $ (-587 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3062 (((-85) $ $) 106 T ELT)) (-3956 (($ $ |#1|) 132 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3845 (($ $ $) 55 T ELT)) (** (($ $ (-834)) 110 T ELT) (($ $ (-698)) 109 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1043 |#1| |#2|) (-865 |#1| (-473 |#2|) |#2|) (-965) (-760)) (T -1043)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3087 (((-587 |#2|) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3498 (($ $) 149 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3645 (($ $) 125 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3043 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3496 (($ $) 145 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3644 (($ $) 121 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3500 (($ $) 153 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3643 (($ $) 129 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3730 (($) NIL T CONST)) (-3965 (($ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3820 (((-861 |#1|) $ (-698)) NIL T ELT) (((-861 |#1|) $ (-698) (-698)) NIL T ELT)) (-2898 (((-85) $) NIL T ELT)) (-3633 (($) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3778 (((-698) $ |#2|) NIL T ELT) (((-698) $ |#2| (-698)) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3017 (($ $ (-488)) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ $ (-587 |#2|) (-587 (-473 |#2|))) NIL T ELT) (($ $ |#2| (-473 |#2|)) NIL T ELT) (($ |#1| (-473 |#2|)) NIL T ELT) (($ $ |#2| (-698)) 63 T ELT) (($ $ (-587 |#2|) (-587 (-698))) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3949 (($ $) 119 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3818 (($ $ |#2|) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3682 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3775 (($ $ (-698)) 17 T ELT)) (-3472 (((-3 $ #1#) $ $) NIL (|has| |#1| (-499)) ELT)) (-3950 (($ $) 117 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3774 (($ $ |#2| $) 104 T ELT) (($ $ (-587 |#2|) (-587 $)) 99 T ELT) (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT)) (-3764 (($ $ (-587 |#2|) (-587 (-698))) NIL T ELT) (($ $ |#2| (-698)) NIL T ELT) (($ $ (-587 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3955 (((-473 |#2|) $) NIL T ELT)) (-3345 (((-1 (-1073 |#3|) |#3|) (-587 |#2|) (-587 (-1073 |#3|))) 87 T ELT)) (-3501 (($ $) 155 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3642 (($ $) 131 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3499 (($ $) 151 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3641 (($ $) 127 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3497 (($ $) 147 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3640 (($ $) 123 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2897 (($ $) 19 T ELT)) (-3953 (((-776) $) 194 T ELT) (($ (-488)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-148)) ELT) (($ $) NIL (|has| |#1| (-499)) ELT) (($ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3683 ((|#1| $ (-473 |#2|)) NIL T ELT) (($ $ |#2| (-698)) NIL T ELT) (($ $ (-587 |#2|) (-587 (-698))) NIL T ELT) ((|#3| $ (-698)) 43 T ELT)) (-2708 (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3504 (($ $) 161 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3492 (($ $) 137 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3502 (($ $) 157 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3490 (($ $) 133 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3506 (($ $) 165 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3494 (($ $) 141 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3507 (($ $) 167 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3495 (($ $) 143 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3505 (($ $) 163 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3493 (($ $) 139 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3503 (($ $) 159 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3491 (($ $) 135 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2666 (($) 52 T CONST)) (-2672 (($) 62 T CONST)) (-2675 (($ $ (-587 |#2|) (-587 (-698))) NIL T ELT) (($ $ |#2| (-698)) NIL T ELT) (($ $ (-587 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#1|) 196 (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 66 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 109 (|has| |#1| (-38 (-352 (-488)))) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-352 (-488))) 114 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) 112 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) +(((-1044 |#1| |#2| |#3|) (-13 (-683 |#1| |#2|) (-10 -8 (-15 -3683 (|#3| $ (-698))) (-15 -3953 ($ |#2|)) (-15 -3953 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3345 ((-1 (-1073 |#3|) |#3|) (-587 |#2|) (-587 (-1073 |#3|)))) (IF (|has| |#1| (-38 (-352 (-488)))) (PROGN (-15 -3818 ($ $ |#2| |#1|)) (-15 -3682 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-965) (-760) (-865 |#1| (-473 |#2|) |#2|)) (T -1044)) +((-3683 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-4 *2 (-865 *4 (-473 *5) *5)) (-5 *1 (-1044 *4 *5 *2)) (-4 *4 (-965)) (-4 *5 (-760)))) (-3953 (*1 *1 *2) (-12 (-4 *3 (-965)) (-4 *2 (-760)) (-5 *1 (-1044 *3 *2 *4)) (-4 *4 (-865 *3 (-473 *2) *2)))) (-3953 (*1 *1 *2) (-12 (-4 *3 (-965)) (-4 *4 (-760)) (-5 *1 (-1044 *3 *4 *2)) (-4 *2 (-865 *3 (-473 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-965)) (-4 *4 (-760)) (-5 *1 (-1044 *3 *4 *2)) (-4 *2 (-865 *3 (-473 *4) *4)))) (-3345 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 (-1073 *7))) (-4 *6 (-760)) (-4 *7 (-865 *5 (-473 *6) *6)) (-4 *5 (-965)) (-5 *2 (-1 (-1073 *7) *7)) (-5 *1 (-1044 *5 *6 *7)))) (-3818 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)) (-4 *2 (-760)) (-5 *1 (-1044 *3 *2 *4)) (-4 *4 (-865 *3 (-473 *2) *2)))) (-3682 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1044 *4 *3 *5))) (-4 *4 (-38 (-352 (-488)))) (-4 *4 (-965)) (-4 *3 (-760)) (-5 *1 (-1044 *4 *3 *5)) (-4 *5 (-865 *4 (-473 *3) *3))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3687 (((-587 (-2 (|:| -3868 $) (|:| -1706 (-587 |#4|)))) (-587 |#4|)) 91 T ELT)) (-3688 (((-587 $) (-587 |#4|)) 92 T ELT) (((-587 $) (-587 |#4|) (-85)) 120 T ELT)) (-3087 (((-587 |#3|) $) 39 T ELT)) (-2914 (((-85) $) 32 T ELT)) (-2905 (((-85) $) 23 (|has| |#1| (-499)) ELT)) (-3699 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3694 ((|#4| |#4| $) 98 T ELT)) (-3781 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 $))) |#4| $) 135 T ELT)) (-2915 (((-2 (|:| |under| $) (|:| -3136 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3716 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-320 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3730 (($) 59 T CONST)) (-2910 (((-85) $) 28 (|has| |#1| (-499)) ELT)) (-2912 (((-85) $ $) 30 (|has| |#1| (-499)) ELT)) (-2911 (((-85) $ $) 29 (|has| |#1| (-499)) ELT)) (-2913 (((-85) $) 31 (|has| |#1| (-499)) ELT)) (-3695 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2906 (((-587 |#4|) (-587 |#4|) $) 24 (|has| |#1| (-499)) ELT)) (-2907 (((-587 |#4|) (-587 |#4|) $) 25 (|has| |#1| (-499)) ELT)) (-3163 (((-3 $ "failed") (-587 |#4|)) 42 T ELT)) (-3162 (($ (-587 |#4|)) 41 T ELT)) (-3805 (((-3 $ #1#) $) 88 T ELT)) (-3691 ((|#4| |#4| $) 95 T ELT)) (-1357 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-320 |#4|))) ELT)) (-3412 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-320 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-320 |#4|)) ELT)) (-2908 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-499)) ELT)) (-3700 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3689 ((|#4| |#4| $) 93 T ELT)) (-3848 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3702 (((-2 (|:| -3868 (-587 |#4|)) (|:| -1706 (-587 |#4|))) $) 111 T ELT)) (-3203 (((-85) |#4| $) 145 T ELT)) (-3201 (((-85) |#4| $) 142 T ELT)) (-3204 (((-85) |#4| $) 146 T ELT) (((-85) $) 143 T ELT)) (-3701 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3186 ((|#3| $) 40 T ELT)) (-2614 (((-587 |#4|) $) 48 T ELT)) (-3251 (((-85) |#4| $) 53 (|has| |#4| (-72)) ELT)) (-3332 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3849 (($ (-1 |#4| |#4|) $) 60 T ELT)) (-2920 (((-587 |#3|) $) 38 T ELT)) (-2919 (((-85) |#3| $) 37 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3197 (((-3 |#4| (-587 $)) |#4| |#4| $) 137 T ELT)) (-3196 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 $))) |#4| |#4| $) 136 T ELT)) (-3804 (((-3 |#4| #1#) $) 89 T ELT)) (-3198 (((-587 $) |#4| $) 138 T ELT)) (-3200 (((-3 (-85) (-587 $)) |#4| $) 141 T ELT)) (-3199 (((-587 (-2 (|:| |val| (-85)) (|:| -1604 $))) |#4| $) 140 T ELT) (((-85) |#4| $) 139 T ELT)) (-3244 (((-587 $) |#4| $) 134 T ELT) (((-587 $) (-587 |#4|) $) 133 T ELT) (((-587 $) (-587 |#4|) (-587 $)) 132 T ELT) (((-587 $) |#4| (-587 $)) 131 T ELT)) (-3446 (($ |#4| $) 126 T ELT) (($ (-587 |#4|) $) 125 T ELT)) (-3703 (((-587 |#4|) $) 113 T ELT)) (-3697 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3692 ((|#4| |#4| $) 96 T ELT)) (-3705 (((-85) $ $) 116 T ELT)) (-2909 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-499)) ELT)) (-3698 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3693 ((|#4| |#4| $) 97 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3807 (((-3 |#4| #1#) $) 90 T ELT)) (-1734 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 51 T ELT)) (-3685 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3775 (($ $ |#4|) 83 T ELT) (((-587 $) |#4| $) 124 T ELT) (((-587 $) |#4| (-587 $)) 123 T ELT) (((-587 $) (-587 |#4|) $) 122 T ELT) (((-587 $) (-587 |#4|) (-587 $)) 121 T ELT)) (-1736 (((-85) (-1 (-85) |#4|) $) 46 T ELT)) (-3774 (($ $ (-587 |#4|) (-587 |#4|)) 64 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ |#4| |#4|) 63 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-251 |#4|)) 62 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-587 (-251 |#4|))) 61 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT)) (-1226 (((-85) $ $) 55 T ELT)) (-3409 (((-85) $) 58 T ELT)) (-3571 (($) 57 T ELT)) (-3955 (((-698) $) 112 T ELT)) (-1735 (((-698) |#4| $) 52 (|has| |#4| (-72)) ELT) (((-698) (-1 (-85) |#4|) $) 47 T ELT)) (-3406 (($ $) 56 T ELT)) (-3978 (((-477) $) 70 (|has| |#4| (-557 (-477))) ELT)) (-3536 (($ (-587 |#4|)) 65 T ELT)) (-2916 (($ $ |#3|) 34 T ELT)) (-2918 (($ $ |#3|) 36 T ELT)) (-3690 (($ $) 94 T ELT)) (-2917 (($ $ |#3|) 35 T ELT)) (-3953 (((-776) $) 13 T ELT) (((-587 |#4|) $) 43 T ELT)) (-3684 (((-698) $) 82 (|has| |#3| (-322)) ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3704 (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#4|))) #1#) (-587 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#4|))) #1#) (-587 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3696 (((-85) $ (-1 (-85) |#4| (-587 |#4|))) 104 T ELT)) (-3195 (((-587 $) |#4| $) 130 T ELT) (((-587 $) |#4| (-587 $)) 129 T ELT) (((-587 $) (-587 |#4|) $) 128 T ELT) (((-587 $) (-587 |#4|) (-587 $)) 127 T ELT)) (-1737 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3686 (((-587 |#3|) $) 87 T ELT)) (-3202 (((-85) |#4| $) 144 T ELT)) (-3940 (((-85) |#3| $) 86 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3964 (((-698) $) 44 T ELT))) +(((-1045 |#1| |#2| |#3| |#4|) (-113) (-395) (-721) (-760) (-981 |t#1| |t#2| |t#3|)) (T -1045)) +NIL +(-13 (-1024 |t#1| |t#2| |t#3| |t#4|) (-711 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-556 (-587 |#4|)) . T) ((-556 (-776)) . T) ((-124 |#4|) . T) ((-557 (-477)) |has| |#4| (-557 (-477))) ((-262 |#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ((-320 |#4|) . T) ((-383 |#4|) . T) ((-432 |#4|) . T) ((-459 |#4| |#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ((-13) . T) ((-711 |#1| |#2| |#3| |#4|) . T) ((-893 |#1| |#2| |#3| |#4|) . T) ((-987 |#1| |#2| |#3| |#4|) . T) ((-1017) . T) ((-1039 |#4|) . T) ((-1024 |#1| |#2| |#3| |#4|) . T) ((-1128 |#1| |#2| |#3| |#4|) . T) ((-1133) . T)) +((-3579 (((-587 |#2|) |#1|) 15 T ELT)) (-3351 (((-587 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-587 |#2|) |#1|) 61 T ELT)) (-3349 (((-587 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-587 |#2|) |#1|) 59 T ELT)) (-3346 ((|#2| |#1|) 54 T ELT)) (-3347 (((-2 (|:| |solns| (-587 |#2|)) (|:| |maps| (-587 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3348 (((-587 |#2|) |#2| |#2|) 42 T ELT) (((-587 |#2|) |#1|) 58 T ELT)) (-3350 (((-587 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-587 |#2|) |#1|) 60 T ELT)) (-3355 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3353 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3352 ((|#2| |#2| |#2|) 50 T ELT)) (-3354 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) +(((-1046 |#1| |#2|) (-10 -7 (-15 -3579 ((-587 |#2|) |#1|)) (-15 -3346 (|#2| |#1|)) (-15 -3347 ((-2 (|:| |solns| (-587 |#2|)) (|:| |maps| (-587 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3348 ((-587 |#2|) |#1|)) (-15 -3349 ((-587 |#2|) |#1|)) (-15 -3350 ((-587 |#2|) |#1|)) (-15 -3351 ((-587 |#2|) |#1|)) (-15 -3348 ((-587 |#2|) |#2| |#2|)) (-15 -3349 ((-587 |#2|) |#2| |#2| |#2|)) (-15 -3350 ((-587 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3351 ((-587 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3352 (|#2| |#2| |#2|)) (-15 -3353 (|#2| |#2| |#2| |#2|)) (-15 -3354 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3355 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1159 |#2|) (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) (T -1046)) +((-3355 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) (-5 *1 (-1046 *3 *2)) (-4 *3 (-1159 *2)))) (-3354 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) (-5 *1 (-1046 *3 *2)) (-4 *3 (-1159 *2)))) (-3353 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) (-5 *1 (-1046 *3 *2)) (-4 *3 (-1159 *2)))) (-3352 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) (-5 *1 (-1046 *3 *2)) (-4 *3 (-1159 *2)))) (-3351 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) (-5 *2 (-587 *3)) (-5 *1 (-1046 *4 *3)) (-4 *4 (-1159 *3)))) (-3350 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) (-5 *2 (-587 *3)) (-5 *1 (-1046 *4 *3)) (-4 *4 (-1159 *3)))) (-3349 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) (-5 *2 (-587 *3)) (-5 *1 (-1046 *4 *3)) (-4 *4 (-1159 *3)))) (-3348 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) (-5 *2 (-587 *3)) (-5 *1 (-1046 *4 *3)) (-4 *4 (-1159 *3)))) (-3351 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) (-5 *2 (-587 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1159 *4)))) (-3350 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) (-5 *2 (-587 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1159 *4)))) (-3349 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) (-5 *2 (-587 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1159 *4)))) (-3348 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) (-5 *2 (-587 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1159 *4)))) (-3347 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) (-5 *2 (-2 (|:| |solns| (-587 *5)) (|:| |maps| (-587 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1046 *3 *5)) (-4 *3 (-1159 *5)))) (-3346 (*1 *2 *3) (-12 (-4 *2 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) (-5 *1 (-1046 *3 *2)) (-4 *3 (-1159 *2)))) (-3579 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) (-5 *2 (-587 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1159 *4))))) +((-3356 (((-587 (-587 (-251 (-267 |#1|)))) (-587 (-251 (-352 (-861 |#1|))))) 119 T ELT) (((-587 (-587 (-251 (-267 |#1|)))) (-587 (-251 (-352 (-861 |#1|)))) (-587 (-1094))) 118 T ELT) (((-587 (-587 (-251 (-267 |#1|)))) (-587 (-352 (-861 |#1|)))) 116 T ELT) (((-587 (-587 (-251 (-267 |#1|)))) (-587 (-352 (-861 |#1|))) (-587 (-1094))) 113 T ELT) (((-587 (-251 (-267 |#1|))) (-251 (-352 (-861 |#1|)))) 97 T ELT) (((-587 (-251 (-267 |#1|))) (-251 (-352 (-861 |#1|))) (-1094)) 98 T ELT) (((-587 (-251 (-267 |#1|))) (-352 (-861 |#1|))) 92 T ELT) (((-587 (-251 (-267 |#1|))) (-352 (-861 |#1|)) (-1094)) 82 T ELT)) (-3357 (((-587 (-587 (-267 |#1|))) (-587 (-352 (-861 |#1|))) (-587 (-1094))) 111 T ELT) (((-587 (-267 |#1|)) (-352 (-861 |#1|)) (-1094)) 54 T ELT)) (-3358 (((-1084 (-587 (-267 |#1|)) (-587 (-251 (-267 |#1|)))) (-352 (-861 |#1|)) (-1094)) 123 T ELT) (((-1084 (-587 (-267 |#1|)) (-587 (-251 (-267 |#1|)))) (-251 (-352 (-861 |#1|))) (-1094)) 122 T ELT))) +(((-1047 |#1|) (-10 -7 (-15 -3356 ((-587 (-251 (-267 |#1|))) (-352 (-861 |#1|)) (-1094))) (-15 -3356 ((-587 (-251 (-267 |#1|))) (-352 (-861 |#1|)))) (-15 -3356 ((-587 (-251 (-267 |#1|))) (-251 (-352 (-861 |#1|))) (-1094))) (-15 -3356 ((-587 (-251 (-267 |#1|))) (-251 (-352 (-861 |#1|))))) (-15 -3356 ((-587 (-587 (-251 (-267 |#1|)))) (-587 (-352 (-861 |#1|))) (-587 (-1094)))) (-15 -3356 ((-587 (-587 (-251 (-267 |#1|)))) (-587 (-352 (-861 |#1|))))) (-15 -3356 ((-587 (-587 (-251 (-267 |#1|)))) (-587 (-251 (-352 (-861 |#1|)))) (-587 (-1094)))) (-15 -3356 ((-587 (-587 (-251 (-267 |#1|)))) (-587 (-251 (-352 (-861 |#1|)))))) (-15 -3357 ((-587 (-267 |#1|)) (-352 (-861 |#1|)) (-1094))) (-15 -3357 ((-587 (-587 (-267 |#1|))) (-587 (-352 (-861 |#1|))) (-587 (-1094)))) (-15 -3358 ((-1084 (-587 (-267 |#1|)) (-587 (-251 (-267 |#1|)))) (-251 (-352 (-861 |#1|))) (-1094))) (-15 -3358 ((-1084 (-587 (-267 |#1|)) (-587 (-251 (-267 |#1|)))) (-352 (-861 |#1|)) (-1094)))) (-13 (-260) (-120))) (T -1047)) +((-3358 (*1 *2 *3 *4) (-12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-120))) (-5 *2 (-1084 (-587 (-267 *5)) (-587 (-251 (-267 *5))))) (-5 *1 (-1047 *5)))) (-3358 (*1 *2 *3 *4) (-12 (-5 *3 (-251 (-352 (-861 *5)))) (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-120))) (-5 *2 (-1084 (-587 (-267 *5)) (-587 (-251 (-267 *5))))) (-5 *1 (-1047 *5)))) (-3357 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-352 (-861 *5)))) (-5 *4 (-587 (-1094))) (-4 *5 (-13 (-260) (-120))) (-5 *2 (-587 (-587 (-267 *5)))) (-5 *1 (-1047 *5)))) (-3357 (*1 *2 *3 *4) (-12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-120))) (-5 *2 (-587 (-267 *5))) (-5 *1 (-1047 *5)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-587 (-251 (-352 (-861 *4))))) (-4 *4 (-13 (-260) (-120))) (-5 *2 (-587 (-587 (-251 (-267 *4))))) (-5 *1 (-1047 *4)))) (-3356 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-251 (-352 (-861 *5))))) (-5 *4 (-587 (-1094))) (-4 *5 (-13 (-260) (-120))) (-5 *2 (-587 (-587 (-251 (-267 *5))))) (-5 *1 (-1047 *5)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-587 (-352 (-861 *4)))) (-4 *4 (-13 (-260) (-120))) (-5 *2 (-587 (-587 (-251 (-267 *4))))) (-5 *1 (-1047 *4)))) (-3356 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-352 (-861 *5)))) (-5 *4 (-587 (-1094))) (-4 *5 (-13 (-260) (-120))) (-5 *2 (-587 (-587 (-251 (-267 *5))))) (-5 *1 (-1047 *5)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-251 (-352 (-861 *4)))) (-4 *4 (-13 (-260) (-120))) (-5 *2 (-587 (-251 (-267 *4)))) (-5 *1 (-1047 *4)))) (-3356 (*1 *2 *3 *4) (-12 (-5 *3 (-251 (-352 (-861 *5)))) (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-120))) (-5 *2 (-587 (-251 (-267 *5)))) (-5 *1 (-1047 *5)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-352 (-861 *4))) (-4 *4 (-13 (-260) (-120))) (-5 *2 (-587 (-251 (-267 *4)))) (-5 *1 (-1047 *4)))) (-3356 (*1 *2 *3 *4) (-12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-120))) (-5 *2 (-587 (-251 (-267 *5)))) (-5 *1 (-1047 *5))))) +((-3360 (((-352 (-1089 (-267 |#1|))) (-1183 (-267 |#1|)) (-352 (-1089 (-267 |#1|))) (-488)) 36 T ELT)) (-3359 (((-352 (-1089 (-267 |#1|))) (-352 (-1089 (-267 |#1|))) (-352 (-1089 (-267 |#1|))) (-352 (-1089 (-267 |#1|)))) 48 T ELT))) +(((-1048 |#1|) (-10 -7 (-15 -3359 ((-352 (-1089 (-267 |#1|))) (-352 (-1089 (-267 |#1|))) (-352 (-1089 (-267 |#1|))) (-352 (-1089 (-267 |#1|))))) (-15 -3360 ((-352 (-1089 (-267 |#1|))) (-1183 (-267 |#1|)) (-352 (-1089 (-267 |#1|))) (-488)))) (-499)) (T -1048)) +((-3360 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-352 (-1089 (-267 *5)))) (-5 *3 (-1183 (-267 *5))) (-5 *4 (-488)) (-4 *5 (-499)) (-5 *1 (-1048 *5)))) (-3359 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-352 (-1089 (-267 *3)))) (-4 *3 (-499)) (-5 *1 (-1048 *3))))) +((-3579 (((-587 (-587 (-251 (-267 |#1|)))) (-587 (-251 (-267 |#1|))) (-587 (-1094))) 244 T ELT) (((-587 (-251 (-267 |#1|))) (-267 |#1|) (-1094)) 23 T ELT) (((-587 (-251 (-267 |#1|))) (-251 (-267 |#1|)) (-1094)) 29 T ELT) (((-587 (-251 (-267 |#1|))) (-251 (-267 |#1|))) 28 T ELT) (((-587 (-251 (-267 |#1|))) (-267 |#1|)) 24 T ELT))) +(((-1049 |#1|) (-10 -7 (-15 -3579 ((-587 (-251 (-267 |#1|))) (-267 |#1|))) (-15 -3579 ((-587 (-251 (-267 |#1|))) (-251 (-267 |#1|)))) (-15 -3579 ((-587 (-251 (-267 |#1|))) (-251 (-267 |#1|)) (-1094))) (-15 -3579 ((-587 (-251 (-267 |#1|))) (-267 |#1|) (-1094))) (-15 -3579 ((-587 (-587 (-251 (-267 |#1|)))) (-587 (-251 (-267 |#1|))) (-587 (-1094))))) (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (T -1049)) +((-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-1094))) (-4 *5 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-5 *2 (-587 (-587 (-251 (-267 *5))))) (-5 *1 (-1049 *5)) (-5 *3 (-587 (-251 (-267 *5)))))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-5 *2 (-587 (-251 (-267 *5)))) (-5 *1 (-1049 *5)) (-5 *3 (-267 *5)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-5 *2 (-587 (-251 (-267 *5)))) (-5 *1 (-1049 *5)) (-5 *3 (-251 (-267 *5))))) (-3579 (*1 *2 *3) (-12 (-4 *4 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-5 *2 (-587 (-251 (-267 *4)))) (-5 *1 (-1049 *4)) (-5 *3 (-251 (-267 *4))))) (-3579 (*1 *2 *3) (-12 (-4 *4 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-5 *2 (-587 (-251 (-267 *4)))) (-5 *1 (-1049 *4)) (-5 *3 (-267 *4))))) +((-3362 ((|#2| |#2|) 28 (|has| |#1| (-760)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 25 T ELT)) (-3361 ((|#2| |#2|) 27 (|has| |#1| (-760)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 22 T ELT))) +(((-1050 |#1| |#2|) (-10 -7 (-15 -3361 (|#2| |#2| (-1 (-85) |#1| |#1|))) (-15 -3362 (|#2| |#2| (-1 (-85) |#1| |#1|))) (IF (|has| |#1| (-760)) (PROGN (-15 -3361 (|#2| |#2|)) (-15 -3362 (|#2| |#2|))) |%noBranch|)) (-1133) (-13 (-542 (-488) |#1|) (-320 |#1|) (-1039 |#1|))) (T -1050)) +((-3362 (*1 *2 *2) (-12 (-4 *3 (-760)) (-4 *3 (-1133)) (-5 *1 (-1050 *3 *2)) (-4 *2 (-13 (-542 (-488) *3) (-320 *3) (-1039 *3))))) (-3361 (*1 *2 *2) (-12 (-4 *3 (-760)) (-4 *3 (-1133)) (-5 *1 (-1050 *3 *2)) (-4 *2 (-13 (-542 (-488) *3) (-320 *3) (-1039 *3))))) (-3362 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1133)) (-5 *1 (-1050 *4 *2)) (-4 *2 (-13 (-542 (-488) *4) (-320 *4) (-1039 *4))))) (-3361 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1133)) (-5 *1 (-1050 *4 *2)) (-4 *2 (-13 (-542 (-488) *4) (-320 *4) (-1039 *4)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3895 (((-1083 3 |#1|) $) 141 T ELT)) (-3372 (((-85) $) 101 T ELT)) (-3373 (($ $ (-587 (-858 |#1|))) 44 T ELT) (($ $ (-587 (-587 |#1|))) 104 T ELT) (($ (-587 (-858 |#1|))) 103 T ELT) (((-587 (-858 |#1|)) $) 102 T ELT)) (-3378 (((-85) $) 72 T ELT)) (-3712 (($ $ (-858 |#1|)) 76 T ELT) (($ $ (-587 |#1|)) 81 T ELT) (($ $ (-698)) 83 T ELT) (($ (-858 |#1|)) 77 T ELT) (((-858 |#1|) $) 75 T ELT)) (-3364 (((-2 (|:| -3857 (-698)) (|:| |curves| (-698)) (|:| |polygons| (-698)) (|:| |constructs| (-698))) $) 139 T ELT)) (-3382 (((-698) $) 53 T ELT)) (-3383 (((-698) $) 52 T ELT)) (-3894 (($ $ (-698) (-858 |#1|)) 67 T ELT)) (-3370 (((-85) $) 111 T ELT)) (-3371 (($ $ (-587 (-587 (-858 |#1|))) (-587 (-147)) (-147)) 118 T ELT) (($ $ (-587 (-587 (-587 |#1|))) (-587 (-147)) (-147)) 120 T ELT) (($ $ (-587 (-587 (-858 |#1|))) (-85) (-85)) 115 T ELT) (($ $ (-587 (-587 (-587 |#1|))) (-85) (-85)) 127 T ELT) (($ (-587 (-587 (-858 |#1|)))) 116 T ELT) (($ (-587 (-587 (-858 |#1|))) (-85) (-85)) 117 T ELT) (((-587 (-587 (-858 |#1|))) $) 114 T ELT)) (-3524 (($ (-587 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3365 (((-587 (-147)) $) 133 T ELT)) (-3369 (((-587 (-858 |#1|)) $) 130 T ELT)) (-3366 (((-587 (-587 (-147))) $) 132 T ELT)) (-3367 (((-587 (-587 (-587 (-858 |#1|)))) $) NIL T ELT)) (-3368 (((-587 (-587 (-587 (-698)))) $) 131 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3379 (((-698) $ (-587 (-858 |#1|))) 65 T ELT)) (-3376 (((-85) $) 84 T ELT)) (-3377 (($ $ (-587 (-858 |#1|))) 86 T ELT) (($ $ (-587 (-587 |#1|))) 92 T ELT) (($ (-587 (-858 |#1|))) 87 T ELT) (((-587 (-858 |#1|)) $) 85 T ELT)) (-3384 (($) 48 T ELT) (($ (-1083 3 |#1|)) 49 T ELT)) (-3406 (($ $) 63 T ELT)) (-3380 (((-587 $) $) 62 T ELT)) (-3760 (($ (-587 $)) 59 T ELT)) (-3381 (((-587 $) $) 61 T ELT)) (-3953 (((-776) $) 146 T ELT)) (-3374 (((-85) $) 94 T ELT)) (-3375 (($ $ (-587 (-858 |#1|))) 96 T ELT) (($ $ (-587 (-587 |#1|))) 99 T ELT) (($ (-587 (-858 |#1|))) 97 T ELT) (((-587 (-858 |#1|)) $) 95 T ELT)) (-3363 (($ $) 140 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-1051 |#1|) (-1052 |#1|) (-965)) (T -1051)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3895 (((-1083 3 |#1|) $) 17 T ELT)) (-3372 (((-85) $) 33 T ELT)) (-3373 (($ $ (-587 (-858 |#1|))) 37 T ELT) (($ $ (-587 (-587 |#1|))) 36 T ELT) (($ (-587 (-858 |#1|))) 35 T ELT) (((-587 (-858 |#1|)) $) 34 T ELT)) (-3378 (((-85) $) 48 T ELT)) (-3712 (($ $ (-858 |#1|)) 53 T ELT) (($ $ (-587 |#1|)) 52 T ELT) (($ $ (-698)) 51 T ELT) (($ (-858 |#1|)) 50 T ELT) (((-858 |#1|) $) 49 T ELT)) (-3364 (((-2 (|:| -3857 (-698)) (|:| |curves| (-698)) (|:| |polygons| (-698)) (|:| |constructs| (-698))) $) 19 T ELT)) (-3382 (((-698) $) 62 T ELT)) (-3383 (((-698) $) 63 T ELT)) (-3894 (($ $ (-698) (-858 |#1|)) 54 T ELT)) (-3370 (((-85) $) 25 T ELT)) (-3371 (($ $ (-587 (-587 (-858 |#1|))) (-587 (-147)) (-147)) 32 T ELT) (($ $ (-587 (-587 (-587 |#1|))) (-587 (-147)) (-147)) 31 T ELT) (($ $ (-587 (-587 (-858 |#1|))) (-85) (-85)) 30 T ELT) (($ $ (-587 (-587 (-587 |#1|))) (-85) (-85)) 29 T ELT) (($ (-587 (-587 (-858 |#1|)))) 28 T ELT) (($ (-587 (-587 (-858 |#1|))) (-85) (-85)) 27 T ELT) (((-587 (-587 (-858 |#1|))) $) 26 T ELT)) (-3524 (($ (-587 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3365 (((-587 (-147)) $) 20 T ELT)) (-3369 (((-587 (-858 |#1|)) $) 24 T ELT)) (-3366 (((-587 (-587 (-147))) $) 21 T ELT)) (-3367 (((-587 (-587 (-587 (-858 |#1|)))) $) 22 T ELT)) (-3368 (((-587 (-587 (-587 (-698)))) $) 23 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3379 (((-698) $ (-587 (-858 |#1|))) 55 T ELT)) (-3376 (((-85) $) 43 T ELT)) (-3377 (($ $ (-587 (-858 |#1|))) 47 T ELT) (($ $ (-587 (-587 |#1|))) 46 T ELT) (($ (-587 (-858 |#1|))) 45 T ELT) (((-587 (-858 |#1|)) $) 44 T ELT)) (-3384 (($) 65 T ELT) (($ (-1083 3 |#1|)) 64 T ELT)) (-3406 (($ $) 56 T ELT)) (-3380 (((-587 $) $) 57 T ELT)) (-3760 (($ (-587 $)) 59 T ELT)) (-3381 (((-587 $) $) 58 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-3374 (((-85) $) 38 T ELT)) (-3375 (($ $ (-587 (-858 |#1|))) 42 T ELT) (($ $ (-587 (-587 |#1|))) 41 T ELT) (($ (-587 (-858 |#1|))) 40 T ELT) (((-587 (-858 |#1|)) $) 39 T ELT)) (-3363 (($ $) 18 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT))) +(((-1052 |#1|) (-113) (-965)) (T -1052)) +((-3953 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-776)))) (-3384 (*1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-965)))) (-3384 (*1 *1 *2) (-12 (-5 *2 (-1083 3 *3)) (-4 *3 (-965)) (-4 *1 (-1052 *3)))) (-3383 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-698)))) (-3382 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-698)))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-1052 *3)) (-4 *3 (-965)))) (-3524 (*1 *1 *1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-965)))) (-3760 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-1052 *3)) (-4 *3 (-965)))) (-3381 (*1 *2 *1) (-12 (-4 *3 (-965)) (-5 *2 (-587 *1)) (-4 *1 (-1052 *3)))) (-3380 (*1 *2 *1) (-12 (-4 *3 (-965)) (-5 *2 (-587 *1)) (-4 *1 (-1052 *3)))) (-3406 (*1 *1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-965)))) (-3379 (*1 *2 *1 *3) (-12 (-5 *3 (-587 (-858 *4))) (-4 *1 (-1052 *4)) (-4 *4 (-965)) (-5 *2 (-698)))) (-3894 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-698)) (-5 *3 (-858 *4)) (-4 *1 (-1052 *4)) (-4 *4 (-965)))) (-3712 (*1 *1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *1 (-1052 *3)) (-4 *3 (-965)))) (-3712 (*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *1 (-1052 *3)) (-4 *3 (-965)))) (-3712 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-1052 *3)) (-4 *3 (-965)))) (-3712 (*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-965)) (-4 *1 (-1052 *3)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-858 *3)))) (-3378 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-85)))) (-3377 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-858 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-965)))) (-3377 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-965)))) (-3377 (*1 *1 *2) (-12 (-5 *2 (-587 (-858 *3))) (-4 *3 (-965)) (-4 *1 (-1052 *3)))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-587 (-858 *3))))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-85)))) (-3375 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-858 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-965)))) (-3375 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-965)))) (-3375 (*1 *1 *2) (-12 (-5 *2 (-587 (-858 *3))) (-4 *3 (-965)) (-4 *1 (-1052 *3)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-587 (-858 *3))))) (-3374 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-85)))) (-3373 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-858 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-965)))) (-3373 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-965)))) (-3373 (*1 *1 *2) (-12 (-5 *2 (-587 (-858 *3))) (-4 *3 (-965)) (-4 *1 (-1052 *3)))) (-3373 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-587 (-858 *3))))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-85)))) (-3371 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-587 (-587 (-858 *5)))) (-5 *3 (-587 (-147))) (-5 *4 (-147)) (-4 *1 (-1052 *5)) (-4 *5 (-965)))) (-3371 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-587 (-587 (-587 *5)))) (-5 *3 (-587 (-147))) (-5 *4 (-147)) (-4 *1 (-1052 *5)) (-4 *5 (-965)))) (-3371 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-587 (-587 (-858 *4)))) (-5 *3 (-85)) (-4 *1 (-1052 *4)) (-4 *4 (-965)))) (-3371 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-587 (-587 (-587 *4)))) (-5 *3 (-85)) (-4 *1 (-1052 *4)) (-4 *4 (-965)))) (-3371 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-858 *3)))) (-4 *3 (-965)) (-4 *1 (-1052 *3)))) (-3371 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-587 (-587 (-858 *4)))) (-5 *3 (-85)) (-4 *4 (-965)) (-4 *1 (-1052 *4)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-587 (-587 (-858 *3)))))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-85)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-587 (-858 *3))))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-587 (-587 (-587 (-698))))))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-587 (-587 (-587 (-858 *3))))))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-587 (-587 (-147)))))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-587 (-147))))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-2 (|:| -3857 (-698)) (|:| |curves| (-698)) (|:| |polygons| (-698)) (|:| |constructs| (-698)))))) (-3363 (*1 *1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-965)))) (-3895 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-1083 3 *3))))) +(-13 (-1017) (-10 -8 (-15 -3384 ($)) (-15 -3384 ($ (-1083 3 |t#1|))) (-15 -3383 ((-698) $)) (-15 -3382 ((-698) $)) (-15 -3524 ($ (-587 $))) (-15 -3524 ($ $ $)) (-15 -3760 ($ (-587 $))) (-15 -3381 ((-587 $) $)) (-15 -3380 ((-587 $) $)) (-15 -3406 ($ $)) (-15 -3379 ((-698) $ (-587 (-858 |t#1|)))) (-15 -3894 ($ $ (-698) (-858 |t#1|))) (-15 -3712 ($ $ (-858 |t#1|))) (-15 -3712 ($ $ (-587 |t#1|))) (-15 -3712 ($ $ (-698))) (-15 -3712 ($ (-858 |t#1|))) (-15 -3712 ((-858 |t#1|) $)) (-15 -3378 ((-85) $)) (-15 -3377 ($ $ (-587 (-858 |t#1|)))) (-15 -3377 ($ $ (-587 (-587 |t#1|)))) (-15 -3377 ($ (-587 (-858 |t#1|)))) (-15 -3377 ((-587 (-858 |t#1|)) $)) (-15 -3376 ((-85) $)) (-15 -3375 ($ $ (-587 (-858 |t#1|)))) (-15 -3375 ($ $ (-587 (-587 |t#1|)))) (-15 -3375 ($ (-587 (-858 |t#1|)))) (-15 -3375 ((-587 (-858 |t#1|)) $)) (-15 -3374 ((-85) $)) (-15 -3373 ($ $ (-587 (-858 |t#1|)))) (-15 -3373 ($ $ (-587 (-587 |t#1|)))) (-15 -3373 ($ (-587 (-858 |t#1|)))) (-15 -3373 ((-587 (-858 |t#1|)) $)) (-15 -3372 ((-85) $)) (-15 -3371 ($ $ (-587 (-587 (-858 |t#1|))) (-587 (-147)) (-147))) (-15 -3371 ($ $ (-587 (-587 (-587 |t#1|))) (-587 (-147)) (-147))) (-15 -3371 ($ $ (-587 (-587 (-858 |t#1|))) (-85) (-85))) (-15 -3371 ($ $ (-587 (-587 (-587 |t#1|))) (-85) (-85))) (-15 -3371 ($ (-587 (-587 (-858 |t#1|))))) (-15 -3371 ($ (-587 (-587 (-858 |t#1|))) (-85) (-85))) (-15 -3371 ((-587 (-587 (-858 |t#1|))) $)) (-15 -3370 ((-85) $)) (-15 -3369 ((-587 (-858 |t#1|)) $)) (-15 -3368 ((-587 (-587 (-587 (-698)))) $)) (-15 -3367 ((-587 (-587 (-587 (-858 |t#1|)))) $)) (-15 -3366 ((-587 (-587 (-147))) $)) (-15 -3365 ((-587 (-147)) $)) (-15 -3364 ((-2 (|:| -3857 (-698)) (|:| |curves| (-698)) (|:| |polygons| (-698)) (|:| |constructs| (-698))) $)) (-15 -3363 ($ $)) (-15 -3895 ((-1083 3 |t#1|) $)) (-15 -3953 ((-776) $)))) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 185 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) 7 T ELT)) (-3572 (((-85) $ (|[\|\|]| (-466))) 19 T ELT) (((-85) $ (|[\|\|]| (-174))) 23 T ELT) (((-85) $ (|[\|\|]| (-621))) 27 T ELT) (((-85) $ (|[\|\|]| (-1194))) 31 T ELT) (((-85) $ (|[\|\|]| (-111))) 35 T ELT) (((-85) $ (|[\|\|]| (-543))) 39 T ELT) (((-85) $ (|[\|\|]| (-106))) 43 T ELT) (((-85) $ (|[\|\|]| (-1033))) 47 T ELT) (((-85) $ (|[\|\|]| (-67))) 51 T ELT) (((-85) $ (|[\|\|]| (-626))) 55 T ELT) (((-85) $ (|[\|\|]| (-462))) 59 T ELT) (((-85) $ (|[\|\|]| (-982))) 63 T ELT) (((-85) $ (|[\|\|]| (-1195))) 67 T ELT) (((-85) $ (|[\|\|]| (-467))) 71 T ELT) (((-85) $ (|[\|\|]| (-1071))) 75 T ELT) (((-85) $ (|[\|\|]| (-127))) 79 T ELT) (((-85) $ (|[\|\|]| (-617))) 83 T ELT) (((-85) $ (|[\|\|]| (-265))) 87 T ELT) (((-85) $ (|[\|\|]| (-952))) 91 T ELT) (((-85) $ (|[\|\|]| (-156))) 95 T ELT) (((-85) $ (|[\|\|]| (-887))) 99 T ELT) (((-85) $ (|[\|\|]| (-989))) 103 T ELT) (((-85) $ (|[\|\|]| (-1007))) 107 T ELT) (((-85) $ (|[\|\|]| (-1012))) 111 T ELT) (((-85) $ (|[\|\|]| (-569))) 116 T ELT) (((-85) $ (|[\|\|]| (-1085))) 120 T ELT) (((-85) $ (|[\|\|]| (-129))) 124 T ELT) (((-85) $ (|[\|\|]| (-110))) 128 T ELT) (((-85) $ (|[\|\|]| (-421))) 132 T ELT) (((-85) $ (|[\|\|]| (-532))) 136 T ELT) (((-85) $ (|[\|\|]| (-450))) 140 T ELT) (((-85) $ (|[\|\|]| (-1077))) 144 T ELT) (((-85) $ (|[\|\|]| (-488))) 148 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3578 (((-466) $) 20 T ELT) (((-174) $) 24 T ELT) (((-621) $) 28 T ELT) (((-1194) $) 32 T ELT) (((-111) $) 36 T ELT) (((-543) $) 40 T ELT) (((-106) $) 44 T ELT) (((-1033) $) 48 T ELT) (((-67) $) 52 T ELT) (((-626) $) 56 T ELT) (((-462) $) 60 T ELT) (((-982) $) 64 T ELT) (((-1195) $) 68 T ELT) (((-467) $) 72 T ELT) (((-1071) $) 76 T ELT) (((-127) $) 80 T ELT) (((-617) $) 84 T ELT) (((-265) $) 88 T ELT) (((-952) $) 92 T ELT) (((-156) $) 96 T ELT) (((-887) $) 100 T ELT) (((-989) $) 104 T ELT) (((-1007) $) 108 T ELT) (((-1012) $) 112 T ELT) (((-569) $) 117 T ELT) (((-1085) $) 121 T ELT) (((-129) $) 125 T ELT) (((-110) $) 129 T ELT) (((-421) $) 133 T ELT) (((-532) $) 137 T ELT) (((-450) $) 141 T ELT) (((-1077) $) 145 T ELT) (((-488) $) 149 T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-1053) (-1055)) (T -1053)) +NIL +((-3385 (((-587 (-1099)) (-1077)) 9 T ELT))) +(((-1054) (-10 -7 (-15 -3385 ((-587 (-1099)) (-1077))))) (T -1054)) +((-3385 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-587 (-1099))) (-5 *1 (-1054))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-1099)) 20 T ELT) (((-1099) $) 19 T ELT)) (-3572 (((-85) $ (|[\|\|]| (-466))) 88 T ELT) (((-85) $ (|[\|\|]| (-174))) 86 T ELT) (((-85) $ (|[\|\|]| (-621))) 84 T ELT) (((-85) $ (|[\|\|]| (-1194))) 82 T ELT) (((-85) $ (|[\|\|]| (-111))) 80 T ELT) (((-85) $ (|[\|\|]| (-543))) 78 T ELT) (((-85) $ (|[\|\|]| (-106))) 76 T ELT) (((-85) $ (|[\|\|]| (-1033))) 74 T ELT) (((-85) $ (|[\|\|]| (-67))) 72 T ELT) (((-85) $ (|[\|\|]| (-626))) 70 T ELT) (((-85) $ (|[\|\|]| (-462))) 68 T ELT) (((-85) $ (|[\|\|]| (-982))) 66 T ELT) (((-85) $ (|[\|\|]| (-1195))) 64 T ELT) (((-85) $ (|[\|\|]| (-467))) 62 T ELT) (((-85) $ (|[\|\|]| (-1071))) 60 T ELT) (((-85) $ (|[\|\|]| (-127))) 58 T ELT) (((-85) $ (|[\|\|]| (-617))) 56 T ELT) (((-85) $ (|[\|\|]| (-265))) 54 T ELT) (((-85) $ (|[\|\|]| (-952))) 52 T ELT) (((-85) $ (|[\|\|]| (-156))) 50 T ELT) (((-85) $ (|[\|\|]| (-887))) 48 T ELT) (((-85) $ (|[\|\|]| (-989))) 46 T ELT) (((-85) $ (|[\|\|]| (-1007))) 44 T ELT) (((-85) $ (|[\|\|]| (-1012))) 42 T ELT) (((-85) $ (|[\|\|]| (-569))) 40 T ELT) (((-85) $ (|[\|\|]| (-1085))) 38 T ELT) (((-85) $ (|[\|\|]| (-129))) 36 T ELT) (((-85) $ (|[\|\|]| (-110))) 34 T ELT) (((-85) $ (|[\|\|]| (-421))) 32 T ELT) (((-85) $ (|[\|\|]| (-532))) 30 T ELT) (((-85) $ (|[\|\|]| (-450))) 28 T ELT) (((-85) $ (|[\|\|]| (-1077))) 26 T ELT) (((-85) $ (|[\|\|]| (-488))) 24 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3578 (((-466) $) 87 T ELT) (((-174) $) 85 T ELT) (((-621) $) 83 T ELT) (((-1194) $) 81 T ELT) (((-111) $) 79 T ELT) (((-543) $) 77 T ELT) (((-106) $) 75 T ELT) (((-1033) $) 73 T ELT) (((-67) $) 71 T ELT) (((-626) $) 69 T ELT) (((-462) $) 67 T ELT) (((-982) $) 65 T ELT) (((-1195) $) 63 T ELT) (((-467) $) 61 T ELT) (((-1071) $) 59 T ELT) (((-127) $) 57 T ELT) (((-617) $) 55 T ELT) (((-265) $) 53 T ELT) (((-952) $) 51 T ELT) (((-156) $) 49 T ELT) (((-887) $) 47 T ELT) (((-989) $) 45 T ELT) (((-1007) $) 43 T ELT) (((-1012) $) 41 T ELT) (((-569) $) 39 T ELT) (((-1085) $) 37 T ELT) (((-129) $) 35 T ELT) (((-110) $) 33 T ELT) (((-421) $) 31 T ELT) (((-532) $) 29 T ELT) (((-450) $) 27 T ELT) (((-1077) $) 25 T ELT) (((-488) $) 23 T ELT)) (-3062 (((-85) $ $) 8 T ELT))) (((-1055) (-113)) (T -1055)) -((-3396 (*1 *1 *1) (-4 *1 (-1055))) (-3395 (*1 *1 *1) (-4 *1 (-1055))) (-3394 (*1 *1 *1 *1) (-4 *1 (-1055))) (-3393 (*1 *1 *1 *1) (-4 *1 (-1055))) (-3392 (*1 *1 *1 *1) (-4 *1 (-1055))) (-3391 (*1 *1 *1 *1) (-4 *1 (-1055))) (-3390 (*1 *1 *1 *1) (-4 *1 (-1055))) (-3389 (*1 *1 *1 *1) (-4 *1 (-1055))) (-3388 (*1 *1 *1) (-4 *1 (-1055))) (-3387 (*1 *1 *1 *1) (-4 *1 (-1055))) (-3390 (*1 *1 *1) (-4 *1 (-1055))) (-3386 (*1 *1 *1) (-4 *1 (-1055)))) -(-13 (-10 -8 (-15 -3386 ($ $)) (-15 -3390 ($ $)) (-15 -3387 ($ $ $)) (-15 -3388 ($ $)) (-15 -3389 ($ $ $)) (-15 -3390 ($ $ $)) (-15 -3391 ($ $ $)) (-15 -3392 ($ $ $)) (-15 -3393 ($ $ $)) (-15 -3394 ($ $ $)) (-15 -3395 ($ $)) (-15 -3396 ($ $)))) -((-2571 (((-85) $ $) 44 T ELT)) (-3405 ((|#1| $) 17 T ELT)) (-3397 (((-85) $ $ (-1 (-85) |#2| |#2|)) 39 T ELT)) (-3404 (((-85) $) 19 T ELT)) (-3402 (($ $ |#1|) 30 T ELT)) (-3400 (($ $ (-85)) 32 T ELT)) (-3399 (($ $) 33 T ELT)) (-3401 (($ $ |#2|) 31 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3398 (((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|)) 38 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3406 (((-85) $) 16 T ELT)) (-3568 (($) 13 T ELT)) (-3403 (($ $) 29 T ELT)) (-3533 (($ |#1| |#2| (-85)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1601 |#2|))) 23 T ELT) (((-585 $) (-585 (-2 (|:| |val| |#1|) (|:| -1601 |#2|)))) 26 T ELT) (((-585 $) |#1| (-585 |#2|)) 28 T ELT)) (-3926 ((|#2| $) 18 T ELT)) (-3950 (((-774) $) 53 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 42 T ELT))) -(((-1056 |#1| |#2|) (-13 (-1015) (-10 -8 (-15 -3568 ($)) (-15 -3406 ((-85) $)) (-15 -3405 (|#1| $)) (-15 -3926 (|#2| $)) (-15 -3404 ((-85) $)) (-15 -3533 ($ |#1| |#2| (-85))) (-15 -3533 ($ |#1| |#2|)) (-15 -3533 ($ (-2 (|:| |val| |#1|) (|:| -1601 |#2|)))) (-15 -3533 ((-585 $) (-585 (-2 (|:| |val| |#1|) (|:| -1601 |#2|))))) (-15 -3533 ((-585 $) |#1| (-585 |#2|))) (-15 -3403 ($ $)) (-15 -3402 ($ $ |#1|)) (-15 -3401 ($ $ |#2|)) (-15 -3400 ($ $ (-85))) (-15 -3399 ($ $)) (-15 -3398 ((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|))) (-15 -3397 ((-85) $ $ (-1 (-85) |#2| |#2|))))) (-13 (-1015) (-34)) (-13 (-1015) (-34))) (T -1056)) -((-3568 (*1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))))) (-3405 (*1 *2 *1) (-12 (-4 *2 (-13 (-1015) (-34))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-13 (-1015) (-34))))) (-3926 (*1 *2 *1) (-12 (-4 *2 (-13 (-1015) (-34))) (-5 *1 (-1056 *3 *2)) (-4 *3 (-13 (-1015) (-34))))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))))) (-3533 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3533 (*1 *1 *2 *3) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1601 *4))) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1056 *3 *4)))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| |val| *4) (|:| -1601 *5)))) (-4 *4 (-13 (-1015) (-34))) (-4 *5 (-13 (-1015) (-34))) (-5 *2 (-585 (-1056 *4 *5))) (-5 *1 (-1056 *4 *5)))) (-3533 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *5)) (-4 *5 (-13 (-1015) (-34))) (-5 *2 (-585 (-1056 *3 *5))) (-5 *1 (-1056 *3 *5)) (-4 *3 (-13 (-1015) (-34))))) (-3403 (*1 *1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3402 (*1 *1 *1 *2) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3401 (*1 *1 *1 *2) (-12 (-5 *1 (-1056 *3 *2)) (-4 *3 (-13 (-1015) (-34))) (-4 *2 (-13 (-1015) (-34))))) (-3400 (*1 *1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))))) (-3399 (*1 *1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3398 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1015) (-34))) (-4 *6 (-13 (-1015) (-34))) (-5 *2 (-85)) (-5 *1 (-1056 *5 *6)))) (-3397 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1015) (-34))) (-5 *2 (-85)) (-5 *1 (-1056 *4 *5)) (-4 *4 (-13 (-1015) (-34)))))) -((-2571 (((-85) $ $) NIL (|has| (-1056 |#1| |#2|) (-72)) ELT)) (-3405 (((-1056 |#1| |#2|) $) 27 T ELT)) (-3414 (($ $) 91 T ELT)) (-3410 (((-85) (-1056 |#1| |#2|) $ (-1 (-85) |#2| |#2|)) 100 T ELT)) (-3407 (($ $ $ (-585 (-1056 |#1| |#2|))) 108 T ELT) (($ $ $ (-585 (-1056 |#1| |#2|)) (-1 (-85) |#2| |#2|)) 109 T ELT)) (-3028 (((-1056 |#1| |#2|) $ (-1056 |#1| |#2|)) 46 (|has| $ (-1037 (-1056 |#1| |#2|))) ELT)) (-3791 (((-1056 |#1| |#2|) $ #1="value" (-1056 |#1| |#2|)) NIL (|has| $ (-1037 (-1056 |#1| |#2|))) ELT)) (-3029 (($ $ (-585 $)) 44 (|has| $ (-1037 (-1056 |#1| |#2|))) ELT)) (-3727 (($) NIL T CONST)) (-3412 (((-585 (-2 (|:| |val| |#1|) (|:| -1601 |#2|))) $) 95 T ELT)) (-3408 (($ (-1056 |#1| |#2|) $) 42 T ELT)) (-3409 (($ (-1056 |#1| |#2|) $) 34 T ELT)) (-3845 (((-1056 |#1| |#2|) (-1 (-1056 |#1| |#2|) (-1056 |#1| |#2|) (-1056 |#1| |#2|)) $ (-1056 |#1| |#2|) (-1056 |#1| |#2|)) NIL (|has| (-1056 |#1| |#2|) (-72)) ELT) (((-1056 |#1| |#2|) (-1 (-1056 |#1| |#2|) (-1056 |#1| |#2|) (-1056 |#1| |#2|)) $ (-1056 |#1| |#2|)) NIL T ELT) (((-1056 |#1| |#2|) (-1 (-1056 |#1| |#2|) (-1056 |#1| |#2|) (-1056 |#1| |#2|)) $) NIL T ELT)) (-3034 (((-585 $) $) 54 T ELT)) (-3411 (((-85) (-1056 |#1| |#2|) $) 97 T ELT)) (-3030 (((-85) $ $) NIL (|has| (-1056 |#1| |#2|) (-72)) ELT)) (-2611 (((-585 (-1056 |#1| |#2|)) $) 58 T ELT)) (-3248 (((-85) (-1056 |#1| |#2|) $) NIL (|has| (-1056 |#1| |#2|) (-72)) ELT)) (-3329 (($ (-1 (-1056 |#1| |#2|) (-1056 |#1| |#2|)) $) 50 T ELT)) (-3846 (($ (-1 (-1056 |#1| |#2|) (-1056 |#1| |#2|)) $) 49 T ELT)) (-3033 (((-585 (-1056 |#1| |#2|)) $) 56 T ELT)) (-3530 (((-85) $) 45 T ELT)) (-3245 (((-1075) $) NIL (|has| (-1056 |#1| |#2|) (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| (-1056 |#1| |#2|) (-1015)) ELT)) (-1731 (((-3 (-1056 |#1| |#2|) #2="failed") (-1 (-85) (-1056 |#1| |#2|)) $) NIL T ELT)) (-3415 (((-3 $ #2#) $) 89 T ELT)) (-1733 (((-85) (-1 (-85) (-1056 |#1| |#2|)) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-1056 |#1| |#2|)))) NIL (-12 (|has| (-1056 |#1| |#2|) (-260 (-1056 |#1| |#2|))) (|has| (-1056 |#1| |#2|) (-1015))) ELT) (($ $ (-249 (-1056 |#1| |#2|))) NIL (-12 (|has| (-1056 |#1| |#2|) (-260 (-1056 |#1| |#2|))) (|has| (-1056 |#1| |#2|) (-1015))) ELT) (($ $ (-1056 |#1| |#2|) (-1056 |#1| |#2|)) NIL (-12 (|has| (-1056 |#1| |#2|) (-260 (-1056 |#1| |#2|))) (|has| (-1056 |#1| |#2|) (-1015))) ELT) (($ $ (-585 (-1056 |#1| |#2|)) (-585 (-1056 |#1| |#2|))) NIL (-12 (|has| (-1056 |#1| |#2|) (-260 (-1056 |#1| |#2|))) (|has| (-1056 |#1| |#2|) (-1015))) ELT)) (-1224 (((-85) $ $) 53 T ELT)) (-3406 (((-85) $) 24 T ELT)) (-3568 (($) 26 T ELT)) (-3803 (((-1056 |#1| |#2|) $ #1#) NIL T ELT)) (-3032 (((-486) $ $) NIL T ELT)) (-3636 (((-85) $) 47 T ELT)) (-1732 (((-696) (-1056 |#1| |#2|) $) NIL (|has| (-1056 |#1| |#2|) (-72)) ELT) (((-696) (-1 (-85) (-1056 |#1| |#2|)) $) NIL T ELT)) (-3403 (($ $) 52 T ELT)) (-3533 (($ (-1056 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-585 $)) 13 T ELT) (($ |#1| |#2| (-585 (-1056 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-585 |#2|)) 18 T ELT)) (-3413 (((-585 |#2|) $) 96 T ELT)) (-3950 (((-774) $) 87 (|has| (-1056 |#1| |#2|) (-554 (-774))) ELT)) (-3525 (((-585 $) $) 31 T ELT)) (-3031 (((-85) $ $) NIL (|has| (-1056 |#1| |#2|) (-72)) ELT)) (-1267 (((-85) $ $) NIL (|has| (-1056 |#1| |#2|) (-72)) ELT)) (-1734 (((-85) (-1 (-85) (-1056 |#1| |#2|)) $) NIL T ELT)) (-3059 (((-85) $ $) 70 (|has| (-1056 |#1| |#2|) (-72)) ELT)) (-3961 (((-696) $) 64 T ELT))) -(((-1057 |#1| |#2|) (-13 (-925 (-1056 |#1| |#2|)) (-318 (-1056 |#1| |#2|)) (-1037 (-1056 |#1| |#2|)) (-10 -8 (-15 -3415 ((-3 $ "failed") $)) (-15 -3414 ($ $)) (-15 -3533 ($ (-1056 |#1| |#2|))) (-15 -3533 ($ |#1| |#2| (-585 $))) (-15 -3533 ($ |#1| |#2| (-585 (-1056 |#1| |#2|)))) (-15 -3533 ($ |#1| |#2| |#1| (-585 |#2|))) (-15 -3413 ((-585 |#2|) $)) (-15 -3412 ((-585 (-2 (|:| |val| |#1|) (|:| -1601 |#2|))) $)) (-15 -3411 ((-85) (-1056 |#1| |#2|) $)) (-15 -3410 ((-85) (-1056 |#1| |#2|) $ (-1 (-85) |#2| |#2|))) (-15 -3409 ($ (-1056 |#1| |#2|) $)) (-15 -3408 ($ (-1056 |#1| |#2|) $)) (-15 -3407 ($ $ $ (-585 (-1056 |#1| |#2|)))) (-15 -3407 ($ $ $ (-585 (-1056 |#1| |#2|)) (-1 (-85) |#2| |#2|))))) (-13 (-1015) (-34)) (-13 (-1015) (-34))) (T -1057)) -((-3415 (*1 *1 *1) (|partial| -12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3414 (*1 *1 *1) (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1057 *3 *4)))) (-3533 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-585 (-1057 *2 *3))) (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3533 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-585 (-1056 *2 *3))) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))) (-5 *1 (-1057 *2 *3)))) (-3533 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-13 (-1015) (-34))) (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1015) (-34))))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-585 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))))) (-3411 (*1 *2 *3 *1) (-12 (-5 *3 (-1056 *4 *5)) (-4 *4 (-13 (-1015) (-34))) (-4 *5 (-13 (-1015) (-34))) (-5 *2 (-85)) (-5 *1 (-1057 *4 *5)))) (-3410 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1056 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1015) (-34))) (-4 *6 (-13 (-1015) (-34))) (-5 *2 (-85)) (-5 *1 (-1057 *5 *6)))) (-3409 (*1 *1 *2 *1) (-12 (-5 *2 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1057 *3 *4)))) (-3408 (*1 *1 *2 *1) (-12 (-5 *2 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1057 *3 *4)))) (-3407 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-585 (-1056 *3 *4))) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1057 *3 *4)))) (-3407 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1056 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) (-4 *4 (-13 (-1015) (-34))) (-4 *5 (-13 (-1015) (-34))) (-5 *1 (-1057 *4 *5))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3417 (($ $) NIL T ELT)) (-3333 ((|#2| $) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3416 (($ (-632 |#2|)) 53 T ELT)) (-3125 (((-85) $) NIL T ELT)) (-3336 (($ |#2|) 14 T ELT)) (-3727 (($) NIL T CONST)) (-3112 (($ $) 66 (|has| |#2| (-258)) ELT)) (-3114 (((-197 |#1| |#2|) $ (-486)) 40 T ELT)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) ((|#2| $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT)) (-3470 (((-3 $ #1#) $) 80 T ELT)) (-3111 (((-696) $) 68 (|has| |#2| (-497)) ELT)) (-3115 ((|#2| $ (-486) (-486)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3110 (((-696) $) 70 (|has| |#2| (-497)) ELT)) (-3109 (((-585 (-197 |#1| |#2|)) $) 74 (|has| |#2| (-497)) ELT)) (-3117 (((-696) $) NIL T ELT)) (-3617 (($ |#2|) 23 T ELT)) (-3116 (((-696) $) NIL T ELT)) (-3330 ((|#2| $) 64 (|has| |#2| (-6 (-4000 #2="*"))) ELT)) (-3121 (((-486) $) NIL T ELT)) (-3119 (((-486) $) NIL T ELT)) (-2611 (((-585 |#2|) $) NIL T ELT)) (-3248 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3120 (((-486) $) NIL T ELT)) (-3118 (((-486) $) NIL T ELT)) (-3126 (($ (-585 (-585 |#2|))) 35 T ELT)) (-3846 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3597 (((-585 (-585 |#2|)) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3593 (((-3 $ #1#) $) 77 (|has| |#2| (-312)) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1731 (((-3 |#2| #1#) (-1 (-85) |#2|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-497)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ (-486) (-486) |#2|) NIL T ELT) ((|#2| $ (-486) (-486)) NIL T ELT)) (-3761 (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT)) (-3332 ((|#2| $) NIL T ELT)) (-3335 (($ (-585 |#2|)) 48 T ELT)) (-3124 (((-85) $) NIL T ELT)) (-3334 (((-197 |#1| |#2|) $) NIL T ELT)) (-3331 ((|#2| $) 62 (|has| |#2| (-6 (-4000 #2#))) ELT)) (-1732 (((-696) (-1 (-85) |#2|) $) NIL T ELT) (((-696) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) 87 (|has| |#2| (-555 (-475))) ELT)) (-3113 (((-197 |#1| |#2|) $ (-486)) 42 T ELT)) (-3950 (((-774) $) 45 T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (($ |#2|) NIL T ELT) (((-632 |#2|) $) 50 T ELT)) (-3129 (((-696)) 21 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 15 T CONST)) (-2669 (($) 19 T CONST)) (-2672 (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 60 T ELT) (($ $ (-486)) 79 (|has| |#2| (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) 56 T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) 58 T ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-1058 |#1| |#2|) (-13 (-1039 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-554 (-632 |#2|)) (-10 -8 (-15 -3617 ($ |#2|)) (-15 -3417 ($ $)) (-15 -3416 ($ (-632 |#2|))) (IF (|has| |#2| (-6 (-4000 #1="*"))) (-6 -3987) |%noBranch|) (IF (|has| |#2| (-6 (-4000 #1#))) (IF (|has| |#2| (-6 -3995)) (-6 -3995) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-555 (-475))) (-6 (-555 (-475))) |%noBranch|))) (-696) (-963)) (T -1058)) -((-3617 (*1 *1 *2) (-12 (-5 *1 (-1058 *3 *2)) (-14 *3 (-696)) (-4 *2 (-963)))) (-3417 (*1 *1 *1) (-12 (-5 *1 (-1058 *2 *3)) (-14 *2 (-696)) (-4 *3 (-963)))) (-3416 (*1 *1 *2) (-12 (-5 *2 (-632 *4)) (-4 *4 (-963)) (-5 *1 (-1058 *3 *4)) (-14 *3 (-696))))) -((-3430 (($ $) 19 T ELT)) (-3420 (($ $ (-117)) 10 T ELT) (($ $ (-114)) 14 T ELT)) (-3428 (((-85) $ $) 24 T ELT)) (-3432 (($ $) 17 T ELT)) (-3803 (((-117) $ (-486) (-117)) NIL T ELT) (((-117) $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT) (($ $ $) 31 T ELT)) (-3950 (($ (-117)) 29 T ELT) (((-774) $) NIL T ELT))) -(((-1059 |#1|) (-10 -7 (-15 -3950 ((-774) |#1|)) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3420 (|#1| |#1| (-114))) (-15 -3420 (|#1| |#1| (-117))) (-15 -3950 (|#1| (-117))) (-15 -3428 ((-85) |#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -3432 (|#1| |#1|)) (-15 -3803 (|#1| |#1| (-1148 (-486)))) (-15 -3803 ((-117) |#1| (-486))) (-15 -3803 ((-117) |#1| (-486) (-117)))) (-1060)) (T -1059)) -NIL -((-2571 (((-85) $ $) 18 (|has| (-117) (-72)) ELT)) (-3429 (($ $) 131 T ELT)) (-3430 (($ $) 132 T ELT)) (-3420 (($ $ (-117)) 119 T ELT) (($ $ (-114)) 118 T ELT)) (-2200 (((-1187) $ (-486) (-486)) 35 (|has| $ (-1037 (-117))) ELT)) (-3427 (((-85) $ $) 129 T ELT)) (-3426 (((-85) $ $ (-486)) 128 T ELT)) (-3421 (((-585 $) $ (-117)) 121 T ELT) (((-585 $) $ (-114)) 120 T ELT)) (-1737 (((-85) (-1 (-85) (-117) (-117)) $) 96 T ELT) (((-85) $) 90 (|has| (-117) (-758)) ELT)) (-1735 (($ (-1 (-85) (-117) (-117)) $) 87 (|has| $ (-1037 (-117))) ELT) (($ $) 86 (-12 (|has| (-117) (-758)) (|has| $ (-1037 (-117)))) ELT)) (-2912 (($ (-1 (-85) (-117) (-117)) $) 97 T ELT) (($ $) 91 (|has| (-117) (-758)) ELT)) (-3791 (((-117) $ (-486) (-117)) 47 (|has| $ (-1037 (-117))) ELT) (((-117) $ (-1148 (-486)) (-117)) 55 (|has| $ (-1037 (-117))) ELT)) (-3713 (($ (-1 (-85) (-117)) $) 69 (|has| $ (-318 (-117))) ELT)) (-3727 (($) 6 T CONST)) (-3418 (($ $ (-117)) 115 T ELT) (($ $ (-114)) 114 T ELT)) (-2299 (($ $) 88 (|has| $ (-1037 (-117))) ELT)) (-2300 (($ $) 98 T ELT)) (-3423 (($ $ (-1148 (-486)) $) 125 T ELT)) (-1355 (($ $) 71 (-12 (|has| (-117) (-72)) (|has| $ (-318 (-117)))) ELT)) (-3409 (($ (-117) $) 70 (-12 (|has| (-117) (-72)) (|has| $ (-318 (-117)))) ELT) (($ (-1 (-85) (-117)) $) 68 (|has| $ (-318 (-117))) ELT)) (-3845 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) 110 (|has| (-117) (-72)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) 106 T ELT) (((-117) (-1 (-117) (-117) (-117)) $) 105 T ELT)) (-1577 (((-117) $ (-486) (-117)) 48 (|has| $ (-1037 (-117))) ELT)) (-3115 (((-117) $ (-486)) 46 T ELT)) (-3428 (((-85) $ $) 130 T ELT)) (-3422 (((-486) (-1 (-85) (-117)) $) 95 T ELT) (((-486) (-117) $) 94 (|has| (-117) (-72)) ELT) (((-486) (-117) $ (-486)) 93 (|has| (-117) (-72)) ELT) (((-486) $ $ (-486)) 124 T ELT) (((-486) (-114) $ (-486)) 123 T ELT)) (-3617 (($ (-696) (-117)) 65 T ELT)) (-2202 (((-486) $) 38 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) 80 (|has| (-117) (-758)) ELT)) (-3521 (($ (-1 (-85) (-117) (-117)) $ $) 99 T ELT) (($ $ $) 92 (|has| (-117) (-758)) ELT)) (-2611 (((-585 (-117)) $) 104 T ELT)) (-3248 (((-85) (-117) $) 109 (|has| (-117) (-72)) ELT)) (-2203 (((-486) $) 39 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) 81 (|has| (-117) (-758)) ELT)) (-3424 (((-85) $ $ (-117)) 126 T ELT)) (-3425 (((-696) $ $ (-117)) 127 T ELT)) (-3329 (($ (-1 (-117) (-117)) $) 112 T ELT)) (-3846 (($ (-1 (-117) (-117)) $) 26 T ELT) (($ (-1 (-117) (-117) (-117)) $ $) 60 T ELT)) (-3431 (($ $) 133 T ELT)) (-3432 (($ $) 134 T ELT)) (-3419 (($ $ (-117)) 117 T ELT) (($ $ (-114)) 116 T ELT)) (-3245 (((-1075) $) 21 (|has| (-117) (-1015)) ELT)) (-2306 (($ (-117) $ (-486)) 57 T ELT) (($ $ $ (-486)) 56 T ELT)) (-2205 (((-585 (-486)) $) 41 T ELT)) (-2206 (((-85) (-486) $) 42 T ELT)) (-3246 (((-1035) $) 20 (|has| (-117) (-1015)) ELT)) (-3804 (((-117) $) 37 (|has| (-486) (-758)) ELT)) (-1731 (((-3 (-117) "failed") (-1 (-85) (-117)) $) 107 T ELT)) (-2201 (($ $ (-117)) 36 (|has| $ (-1037 (-117))) ELT)) (-1733 (((-85) (-1 (-85) (-117)) $) 102 T ELT)) (-3771 (($ $ (-585 (-249 (-117)))) 25 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-249 (-117))) 24 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-117) (-117)) 23 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-585 (-117)) (-585 (-117))) 22 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) (-117) $) 40 (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-2207 (((-585 (-117)) $) 43 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 (((-117) $ (-486) (-117)) 45 T ELT) (((-117) $ (-486)) 44 T ELT) (($ $ (-1148 (-486))) 66 T ELT) (($ $ $) 113 T ELT)) (-2307 (($ $ (-486)) 59 T ELT) (($ $ (-1148 (-486))) 58 T ELT)) (-1732 (((-696) (-117) $) 108 (|has| (-117) (-72)) ELT) (((-696) (-1 (-85) (-117)) $) 103 T ELT)) (-1736 (($ $ $ (-486)) 89 (|has| $ (-1037 (-117))) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 72 (|has| (-117) (-555 (-475))) ELT)) (-3533 (($ (-585 (-117))) 67 T ELT)) (-3805 (($ $ (-117)) 64 T ELT) (($ (-117) $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3950 (($ (-117)) 122 T ELT) (((-774) $) 16 (|has| (-117) (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| (-117) (-72)) ELT)) (-1734 (((-85) (-1 (-85) (-117)) $) 101 T ELT)) (-2569 (((-85) $ $) 82 (|has| (-117) (-758)) ELT)) (-2570 (((-85) $ $) 84 (|has| (-117) (-758)) ELT)) (-3059 (((-85) $ $) 17 (|has| (-117) (-72)) ELT)) (-2687 (((-85) $ $) 83 (|has| (-117) (-758)) ELT)) (-2688 (((-85) $ $) 85 (|has| (-117) (-758)) ELT)) (-3961 (((-696) $) 100 T ELT))) -(((-1060) (-113)) (T -1060)) -((-3432 (*1 *1 *1) (-4 *1 (-1060))) (-3431 (*1 *1 *1) (-4 *1 (-1060))) (-3430 (*1 *1 *1) (-4 *1 (-1060))) (-3429 (*1 *1 *1) (-4 *1 (-1060))) (-3428 (*1 *2 *1 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-85)))) (-3427 (*1 *2 *1 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-85)))) (-3426 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1060)) (-5 *3 (-486)) (-5 *2 (-85)))) (-3425 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1060)) (-5 *3 (-117)) (-5 *2 (-696)))) (-3424 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1060)) (-5 *3 (-117)) (-5 *2 (-85)))) (-3423 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-1148 (-486))))) (-3422 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-486)))) (-3422 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-486)) (-5 *3 (-114)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1060)))) (-3421 (*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-585 *1)) (-4 *1 (-1060)))) (-3421 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-585 *1)) (-4 *1 (-1060)))) (-3420 (*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-117)))) (-3420 (*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-114)))) (-3419 (*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-117)))) (-3419 (*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-114)))) (-3418 (*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-117)))) (-3418 (*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-114)))) (-3803 (*1 *1 *1 *1) (-4 *1 (-1060)))) -(-13 (-19 (-117)) (-10 -8 (-15 -3432 ($ $)) (-15 -3431 ($ $)) (-15 -3430 ($ $)) (-15 -3429 ($ $)) (-15 -3428 ((-85) $ $)) (-15 -3427 ((-85) $ $)) (-15 -3426 ((-85) $ $ (-486))) (-15 -3425 ((-696) $ $ (-117))) (-15 -3424 ((-85) $ $ (-117))) (-15 -3423 ($ $ (-1148 (-486)) $)) (-15 -3422 ((-486) $ $ (-486))) (-15 -3422 ((-486) (-114) $ (-486))) (-15 -3950 ($ (-117))) (-15 -3421 ((-585 $) $ (-117))) (-15 -3421 ((-585 $) $ (-114))) (-15 -3420 ($ $ (-117))) (-15 -3420 ($ $ (-114))) (-15 -3419 ($ $ (-117))) (-15 -3419 ($ $ (-114))) (-15 -3418 ($ $ (-117))) (-15 -3418 ($ $ (-114))) (-15 -3803 ($ $ $)))) -(((-34) . T) ((-72) OR (|has| (-117) (-1015)) (|has| (-117) (-758)) (|has| (-117) (-72))) ((-554 (-774)) OR (|has| (-117) (-1015)) (|has| (-117) (-758)) (|has| (-117) (-554 (-774)))) ((-124 (-117)) . T) ((-555 (-475)) |has| (-117) (-555 (-475))) ((-241 (-486) (-117)) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) (-117)) . T) ((-260 (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ((-318 (-117)) . T) ((-324 (-117)) . T) ((-381 (-117)) . T) ((-430 (-117)) . T) ((-540 (-486) (-117)) . T) ((-457 (-117) (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ((-13) . T) ((-595 (-117)) . T) ((-19 (-117)) . T) ((-758) |has| (-117) (-758)) ((-761) |has| (-117) (-758)) ((-1015) OR (|has| (-117) (-1015)) (|has| (-117) (-758))) ((-1037 (-117)) . T) ((-1131) . T)) -((-3439 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-585 |#4|) (-585 |#5|) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) (-696)) 112 T ELT)) (-3436 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696)) 61 T ELT)) (-3440 (((-1187) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-696)) 97 T ELT)) (-3434 (((-696) (-585 |#4|) (-585 |#5|)) 30 T ELT)) (-3437 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696)) 63 T ELT) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696) (-85)) 65 T ELT)) (-3438 (((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85) (-85) (-85) (-85)) 84 T ELT) (((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85)) 85 T ELT)) (-3975 (((-1075) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) 90 T ELT)) (-3435 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 60 T ELT)) (-3433 (((-696) (-585 |#4|) (-585 |#5|)) 21 T ELT))) -(((-1061 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3433 ((-696) (-585 |#4|) (-585 |#5|))) (-15 -3434 ((-696) (-585 |#4|) (-585 |#5|))) (-15 -3435 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3436 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696))) (-15 -3436 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3437 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696) (-85))) (-15 -3437 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696))) (-15 -3437 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3438 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85))) (-15 -3438 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3439 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-585 |#4|) (-585 |#5|) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) (-696))) (-15 -3975 ((-1075) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)))) (-15 -3440 ((-1187) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-696)))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|) (-1022 |#1| |#2| |#3| |#4|)) (T -1061)) -((-3440 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1601 *9)))) (-5 *4 (-696)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-1187)) (-5 *1 (-1061 *5 *6 *7 *8 *9)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1601 *8))) (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-1022 *4 *5 *6 *7)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1075)) (-5 *1 (-1061 *4 *5 *6 *7 *8)))) (-3439 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-585 *11)) (|:| |todo| (-585 (-2 (|:| |val| *3) (|:| -1601 *11)))))) (-5 *6 (-696)) (-5 *2 (-585 (-2 (|:| |val| (-585 *10)) (|:| -1601 *11)))) (-5 *3 (-585 *10)) (-5 *4 (-585 *11)) (-4 *10 (-979 *7 *8 *9)) (-4 *11 (-1022 *7 *8 *9 *10)) (-4 *7 (-393)) (-4 *8 (-719)) (-4 *9 (-758)) (-5 *1 (-1061 *7 *8 *9 *10 *11)))) (-3438 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-1061 *5 *6 *7 *8 *9)))) (-3438 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-1061 *5 *6 *7 *8 *9)))) (-3437 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-1061 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))) (-3437 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-696)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-1061 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3)))) (-3437 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-696)) (-5 *6 (-85)) (-4 *7 (-393)) (-4 *8 (-719)) (-4 *9 (-758)) (-4 *3 (-979 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-1061 *7 *8 *9 *3 *4)) (-4 *4 (-1022 *7 *8 *9 *3)))) (-3436 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-1061 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))) (-3436 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-696)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-1061 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3)))) (-3435 (*1 *2 *3 *4) (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-1061 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))) (-3434 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-696)) (-5 *1 (-1061 *5 *6 *7 *8 *9)))) (-3433 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-696)) (-5 *1 (-1061 *5 *6 *7 *8 *9))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3684 (((-585 (-2 (|:| -3865 $) (|:| -1703 (-585 |#4|)))) (-585 |#4|)) NIL T ELT)) (-3685 (((-585 $) (-585 |#4|)) 117 T ELT) (((-585 $) (-585 |#4|) (-85)) 118 T ELT) (((-585 $) (-585 |#4|) (-85) (-85)) 116 T ELT) (((-585 $) (-585 |#4|) (-85) (-85) (-85) (-85)) 119 T ELT)) (-3084 (((-585 |#3|) $) NIL T ELT)) (-2911 (((-85) $) NIL T ELT)) (-2902 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3691 ((|#4| |#4| $) NIL T ELT)) (-3778 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 90 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3713 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 69 T ELT)) (-3727 (($) NIL T CONST)) (-2907 (((-85) $) 28 (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3692 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ #1#) (-585 |#4|)) NIL T ELT)) (-3159 (($ (-585 |#4|)) NIL T ELT)) (-3802 (((-3 $ #1#) $) 44 T ELT)) (-3688 ((|#4| |#4| $) 72 T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3409 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 84 (|has| |#1| (-497)) ELT)) (-3697 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3699 (((-2 (|:| -3865 (-585 |#4|)) (|:| -1703 (-585 |#4|))) $) NIL T ELT)) (-3200 (((-85) |#4| $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT)) (-3201 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3441 (((-2 (|:| |val| (-585 |#4|)) (|:| |towers| (-585 $))) (-585 |#4|) (-85) (-85)) 132 T ELT)) (-3698 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3183 ((|#3| $) 37 T ELT)) (-2611 (((-585 |#4|) $) 18 T ELT)) (-3248 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3846 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2917 (((-585 |#3|) $) NIL T ELT)) (-2916 (((-85) |#3| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3194 (((-3 |#4| (-585 $)) |#4| |#4| $) NIL T ELT)) (-3193 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 110 T ELT)) (-3801 (((-3 |#4| #1#) $) 41 T ELT)) (-3195 (((-585 $) |#4| $) 95 T ELT)) (-3197 (((-3 (-85) (-585 $)) |#4| $) NIL T ELT)) (-3196 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 105 T ELT) (((-85) |#4| $) 61 T ELT)) (-3241 (((-585 $) |#4| $) 114 T ELT) (((-585 $) (-585 |#4|) $) NIL T ELT) (((-585 $) (-585 |#4|) (-585 $)) 115 T ELT) (((-585 $) |#4| (-585 $)) NIL T ELT)) (-3442 (((-585 $) (-585 |#4|) (-85) (-85) (-85)) 127 T ELT)) (-3443 (($ |#4| $) 81 T ELT) (($ (-585 |#4|) $) 82 T ELT) (((-585 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 80 T ELT)) (-3700 (((-585 |#4|) $) NIL T ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3702 (((-85) $ $) NIL T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-497)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 (((-3 |#4| #1#) $) 39 T ELT)) (-1731 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3772 (($ $ |#4|) NIL T ELT) (((-585 $) |#4| $) 97 T ELT) (((-585 $) |#4| (-585 $)) NIL T ELT) (((-585 $) (-585 |#4|) $) NIL T ELT) (((-585 $) (-585 |#4|) (-585 $)) 92 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 17 T ELT)) (-3568 (($) 14 T ELT)) (-3952 (((-696) $) NIL T ELT)) (-1732 (((-696) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) NIL T ELT)) (-3403 (($ $) 13 T ELT)) (-3975 (((-475) $) NIL (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) 21 T ELT)) (-2913 (($ $ |#3|) 48 T ELT)) (-2915 (($ $ |#3|) 50 T ELT)) (-3687 (($ $) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-3950 (((-774) $) 34 T ELT) (((-585 |#4|) $) 45 T ELT)) (-3681 (((-696) $) NIL (|has| |#3| (-320)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3693 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) NIL T ELT)) (-3192 (((-585 $) |#4| $) 62 T ELT) (((-585 $) |#4| (-585 $)) NIL T ELT) (((-585 $) (-585 |#4|) $) NIL T ELT) (((-585 $) (-585 |#4|) (-585 $)) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3683 (((-585 |#3|) $) NIL T ELT)) (-3199 (((-85) |#4| $) NIL T ELT)) (-3937 (((-85) |#3| $) 68 T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-1062 |#1| |#2| |#3| |#4|) (-13 (-1022 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3443 ((-585 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3685 ((-585 $) (-585 |#4|) (-85) (-85))) (-15 -3685 ((-585 $) (-585 |#4|) (-85) (-85) (-85) (-85))) (-15 -3442 ((-585 $) (-585 |#4|) (-85) (-85) (-85))) (-15 -3441 ((-2 (|:| |val| (-585 |#4|)) (|:| |towers| (-585 $))) (-585 |#4|) (-85) (-85))))) (-393) (-719) (-758) (-979 |#1| |#2| |#3|)) (T -1062)) -((-3443 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1062 *5 *6 *7 *3))) (-5 *1 (-1062 *5 *6 *7 *3)) (-4 *3 (-979 *5 *6 *7)))) (-3685 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1062 *5 *6 *7 *8))) (-5 *1 (-1062 *5 *6 *7 *8)))) (-3685 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1062 *5 *6 *7 *8))) (-5 *1 (-1062 *5 *6 *7 *8)))) (-3442 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1062 *5 *6 *7 *8))) (-5 *1 (-1062 *5 *6 *7 *8)))) (-3441 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-585 *8)) (|:| |towers| (-585 (-1062 *5 *6 *7 *8))))) (-5 *1 (-1062 *5 *6 *7 *8)) (-5 *3 (-585 *8))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 32 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 30 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 29 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-696)) 31 T ELT) (($ $ (-832)) 28 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ $ $) 27 T ELT))) -(((-1063) (-113)) (T -1063)) -NIL -(-13 (-23) (-665)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-665) . T) ((-1027) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3326 ((|#1| $) 38 T ELT)) (-3444 (($ (-585 |#1|)) 46 T ELT)) (-3727 (($) NIL T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3328 ((|#1| |#1| $) 41 T ELT)) (-3327 ((|#1| $) 36 T ELT)) (-2611 (((-585 |#1|) $) 19 T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 39 T ELT)) (-3612 (($ |#1| $) 42 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1277 ((|#1| $) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 33 T ELT)) (-3568 (($) 44 T ELT)) (-3325 (((-696) $) 31 T ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ $) 28 T ELT)) (-3950 (((-774) $) 15 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1278 (($ (-585 |#1|)) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3059 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) 32 T ELT))) -(((-1064 |#1|) (-13 (-1036 |#1|) (-10 -8 (-15 -3444 ($ (-585 |#1|))))) (-1131)) (T -1064)) -((-3444 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-1064 *3))))) -((-3791 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1148 (-486)) |#2|) 51 T ELT) ((|#2| $ (-486) |#2|) 48 T ELT)) (-3446 (((-85) $) 12 T ELT)) (-3804 ((|#2| $) NIL T ELT) (($ $ (-696)) 17 T ELT)) (-2201 (($ $ |#2|) 47 T ELT)) (-3447 (((-85) $) 11 T ELT)) (-3803 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1148 (-486))) 36 T ELT) ((|#2| $ (-486)) 25 T ELT) ((|#2| $ (-486) |#2|) NIL T ELT)) (-3794 (($ $ $) 54 T ELT) (($ $ |#2|) NIL T ELT)) (-3805 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-585 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) -(((-1065 |#1| |#2|) (-10 -7 (-15 -3446 ((-85) |#1|)) (-15 -3447 ((-85) |#1|)) (-15 -3791 (|#2| |#1| (-486) |#2|)) (-15 -3803 (|#2| |#1| (-486) |#2|)) (-15 -3803 (|#2| |#1| (-486))) (-15 -2201 (|#1| |#1| |#2|)) (-15 -3803 (|#1| |#1| (-1148 (-486)))) (-15 -3805 (|#1| |#1| |#2|)) (-15 -3805 (|#1| (-585 |#1|))) (-15 -3791 (|#2| |#1| (-1148 (-486)) |#2|)) (-15 -3791 (|#2| |#1| #1="last" |#2|)) (-15 -3791 (|#1| |#1| #2="rest" |#1|)) (-15 -3791 (|#2| |#1| #3="first" |#2|)) (-15 -3794 (|#1| |#1| |#2|)) (-15 -3794 (|#1| |#1| |#1|)) (-15 -3803 (|#2| |#1| #1#)) (-15 -3803 (|#1| |#1| #2#)) (-15 -3804 (|#1| |#1| (-696))) (-15 -3803 (|#2| |#1| #3#)) (-15 -3804 (|#2| |#1|)) (-15 -3805 (|#1| |#2| |#1|)) (-15 -3805 (|#1| |#1| |#1|)) (-15 -3791 (|#2| |#1| #4="value" |#2|)) (-15 -3803 (|#2| |#1| #4#))) (-1066 |#2|) (-1131)) (T -1065)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3798 ((|#1| $) 62 T ELT)) (-3800 (($ $) 64 T ELT)) (-2200 (((-1187) $ (-486) (-486)) 99 (|has| $ (-1037 |#1|)) ELT)) (-3788 (($ $ (-486)) 49 (|has| $ (-1037 |#1|)) ELT)) (-3445 (((-85) $ (-696)) 82 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1037 |#1|)) ELT)) (-3790 (($ $ $) 53 (|has| $ (-1037 |#1|)) ELT)) (-3789 ((|#1| $ |#1|) 51 (|has| $ (-1037 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 54 (|has| $ (-1037 |#1|)) ELT) (($ $ #3="rest" $) 52 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 50 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 115 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-486) |#1|) 88 (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) 36 (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 103 (|has| $ (-318 |#1|)) ELT)) (-3799 ((|#1| $) 63 T ELT)) (-3727 (($) 6 T CONST)) (-3802 (($ $) 70 T ELT) (($ $ (-696)) 68 T ELT)) (-1355 (($ $) 101 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3409 (($ (-1 (-85) |#1|) $) 104 (|has| $ (-318 |#1|)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-1577 ((|#1| $ (-486) |#1|) 87 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 89 T ELT)) (-3446 (((-85) $) 85 T ELT)) (-3034 (((-585 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3617 (($ (-696) |#1|) 107 T ELT)) (-3722 (((-85) $ (-696)) 83 T ELT)) (-2202 (((-486) $) 97 (|has| (-486) (-758)) ELT)) (-2203 (((-486) $) 96 (|has| (-486) (-758)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 110 T ELT)) (-3719 (((-85) $ (-696)) 84 T ELT)) (-3033 (((-585 |#1|) $) 40 T ELT)) (-3530 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3801 ((|#1| $) 67 T ELT) (($ $ (-696)) 65 T ELT)) (-2306 (($ $ $ (-486)) 114 T ELT) (($ |#1| $ (-486)) 113 T ELT)) (-2205 (((-585 (-486)) $) 94 T ELT)) (-2206 (((-85) (-486) $) 93 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 73 T ELT) (($ $ (-696)) 71 T ELT)) (-2201 (($ $ |#1|) 98 (|has| $ (-1037 |#1|)) ELT)) (-3447 (((-85) $) 86 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#1| $) 95 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) 92 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT) ((|#1| $ #2#) 72 T ELT) (($ $ #3#) 69 T ELT) ((|#1| $ #4#) 66 T ELT) (($ $ (-1148 (-486))) 106 T ELT) ((|#1| $ (-486)) 91 T ELT) ((|#1| $ (-486) |#1|) 90 T ELT)) (-3032 (((-486) $ $) 39 T ELT)) (-2307 (($ $ (-1148 (-486))) 112 T ELT) (($ $ (-486)) 111 T ELT)) (-3636 (((-85) $) 41 T ELT)) (-3795 (($ $) 59 T ELT)) (-3793 (($ $) 56 (|has| $ (-1037 |#1|)) ELT)) (-3796 (((-696) $) 60 T ELT)) (-3797 (($ $) 61 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 100 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 105 T ELT)) (-3794 (($ $ $) 58 (|has| $ (-1037 |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (-1037 |#1|)) ELT)) (-3805 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT) (($ (-585 $)) 109 T ELT) (($ $ |#1|) 108 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) 46 T ELT)) (-3031 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) -(((-1066 |#1|) (-113) (-1131)) (T -1066)) -((-3447 (*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1131)) (-5 *2 (-85)))) (-3446 (*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1131)) (-5 *2 (-85)))) (-3719 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-1066 *4)) (-4 *4 (-1131)) (-5 *2 (-85)))) (-3722 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-1066 *4)) (-4 *4 (-1131)) (-5 *2 (-85)))) (-3445 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-1066 *4)) (-4 *4 (-1131)) (-5 *2 (-85))))) -(-13 (-1170 |t#1|) (-595 |t#1|) (-10 -8 (-15 -3447 ((-85) $)) (-15 -3446 ((-85) $)) (-15 -3719 ((-85) $ (-696))) (-15 -3722 ((-85) $ (-696))) (-15 -3445 ((-85) $ (-696))))) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 (-486) |#1|) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-540 (-486) |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-925 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1131) . T) ((-1170 |#1|) . T)) -((-2571 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3602 (($) NIL T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1187) $ |#1| |#1|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3248 (((-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-2234 (((-585 |#1|) $) NIL T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT)) (-3246 (((-1035) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-758)) ELT)) (-1731 (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1277 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-696) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3950 (((-774) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-1267 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-1067 |#1| |#2| |#3|) (-1109 |#1| |#2|) (-1015) (-1015) |#2|) (T -1067)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3448 (((-634 $) $) 17 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3449 (($) 18 T CONST)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3059 (((-85) $ $) 8 T ELT))) -(((-1068) (-113)) (T -1068)) -((-3449 (*1 *1) (-4 *1 (-1068))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-634 *1)) (-4 *1 (-1068))))) -(-13 (-1015) (-10 -8 (-15 -3449 ($) -3956) (-15 -3448 ((-634 $) $)))) -(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3451 (((-634 (-1051)) $) 28 T ELT)) (-3450 (((-1051) $) 16 T ELT)) (-3452 (((-1051) $) 18 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3453 (((-448) $) 14 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 38 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-1069) (-13 (-997) (-10 -8 (-15 -3453 ((-448) $)) (-15 -3452 ((-1051) $)) (-15 -3451 ((-634 (-1051)) $)) (-15 -3450 ((-1051) $))))) (T -1069)) -((-3453 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-1069)))) (-3452 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1069)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-634 (-1051))) (-5 *1 (-1069)))) (-3450 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1069))))) -((-3456 (((-1071 |#1|) (-1071 |#1|)) 17 T ELT)) (-3454 (((-1071 |#1|) (-1071 |#1|)) 13 T ELT)) (-3457 (((-1071 |#1|) (-1071 |#1|) (-486) (-486)) 20 T ELT)) (-3455 (((-1071 |#1|) (-1071 |#1|)) 15 T ELT))) -(((-1070 |#1|) (-10 -7 (-15 -3454 ((-1071 |#1|) (-1071 |#1|))) (-15 -3455 ((-1071 |#1|) (-1071 |#1|))) (-15 -3456 ((-1071 |#1|) (-1071 |#1|))) (-15 -3457 ((-1071 |#1|) (-1071 |#1|) (-486) (-486)))) (-13 (-497) (-120))) (T -1070)) -((-3457 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-486)) (-4 *4 (-13 (-497) (-120))) (-5 *1 (-1070 *4)))) (-3456 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-497) (-120))) (-5 *1 (-1070 *3)))) (-3455 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-497) (-120))) (-5 *1 (-1070 *3)))) (-3454 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-497) (-120))) (-5 *1 (-1070 *3))))) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) NIL T ELT)) (-3798 ((|#1| $) NIL T ELT)) (-3800 (($ $) 60 T ELT)) (-2200 (((-1187) $ (-486) (-486)) 93 (|has| $ (-1037 |#1|)) ELT)) (-3788 (($ $ (-486)) 122 (|has| $ (-1037 |#1|)) ELT)) (-3445 (((-85) $ (-696)) NIL T ELT)) (-3462 (((-774) $) 46 (|has| |#1| (-1015)) ELT)) (-3461 (((-85)) 49 (|has| |#1| (-1015)) ELT)) (-3028 ((|#1| $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3790 (($ $ $) 109 (|has| $ (-1037 |#1|)) ELT) (($ $ (-486) $) 135 T ELT)) (-3789 ((|#1| $ |#1|) 119 (|has| $ (-1037 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 114 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-1037 |#1|)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 106 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-486) |#1|) 72 (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 75 T ELT)) (-3799 ((|#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2325 (($ $) 11 T ELT)) (-3802 (($ $) 35 T ELT) (($ $ (-696)) 105 T ELT)) (-3467 (((-85) (-585 |#1|) $) 128 (|has| |#1| (-1015)) ELT)) (-3468 (($ (-585 |#1|)) 124 T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) 74 T ELT)) (-1577 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) NIL T ELT)) (-3446 (((-85) $) NIL T ELT)) (-3463 (((-1187) (-486) $) 133 (|has| |#1| (-1015)) ELT)) (-2324 (((-696) $) 131 T ELT)) (-3034 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3617 (($ (-696) |#1|) NIL T ELT)) (-3722 (((-85) $ (-696)) NIL T ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2203 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 89 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3719 (((-85) $ (-696)) NIL T ELT)) (-3033 (((-585 |#1|) $) NIL T ELT)) (-3530 (((-85) $) NIL T ELT)) (-2327 (($ $) 107 T ELT)) (-2328 (((-85) $) 10 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3801 ((|#1| $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2306 (($ $ $ (-486)) NIL T ELT) (($ |#1| $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) 90 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3460 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2326 ((|#1| $) 7 T ELT)) (-3804 ((|#1| $) 34 T ELT) (($ $ (-696)) 58 T ELT)) (-3466 (((-2 (|:| |cycle?| (-85)) (|:| -2598 (-696)) (|:| |period| (-696))) (-696) $) 29 T ELT)) (-3459 (($ (-1 (-85) |#1|) $) 139 T ELT)) (-3458 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-2201 (($ $ |#1|) 85 (|has| $ (-1037 |#1|)) ELT)) (-3772 (($ $ (-486)) 40 T ELT)) (-3447 (((-85) $) 88 T ELT)) (-2329 (((-85) $) 9 T ELT)) (-2330 (((-85) $) 130 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 25 T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) 14 T ELT)) (-3568 (($) 53 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT) ((|#1| $ (-486)) 70 T ELT) ((|#1| $ (-486) |#1|) NIL T ELT)) (-3032 (((-486) $ $) 57 T ELT)) (-2307 (($ $ (-1148 (-486))) NIL T ELT) (($ $ (-486)) NIL T ELT)) (-3465 (($ (-1 $)) 56 T ELT)) (-3636 (((-85) $) 86 T ELT)) (-3795 (($ $) 87 T ELT)) (-3793 (($ $) 110 (|has| $ (-1037 |#1|)) ELT)) (-3796 (((-696) $) NIL T ELT)) (-3797 (($ $) NIL T ELT)) (-3403 (($ $) 52 T ELT)) (-3975 (((-475) $) NIL (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 68 T ELT)) (-3464 (($ |#1| $) 108 T ELT)) (-3794 (($ $ $) 112 (|has| $ (-1037 |#1|)) ELT) (($ $ |#1|) 113 (|has| $ (-1037 |#1|)) ELT)) (-3805 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-585 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2894 (($ $) 59 T ELT)) (-3950 (($ (-585 |#1|)) 123 T ELT) (((-774) $) 50 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) NIL T ELT)) (-3031 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 126 (|has| |#1| (-72)) ELT))) -(((-1071 |#1|) (-13 (-618 |#1|) (-557 (-585 |#1|)) (-1037 |#1|) (-10 -8 (-15 -3468 ($ (-585 |#1|))) (IF (|has| |#1| (-1015)) (-15 -3467 ((-85) (-585 |#1|) $)) |%noBranch|) (-15 -3466 ((-2 (|:| |cycle?| (-85)) (|:| -2598 (-696)) (|:| |period| (-696))) (-696) $)) (-15 -3465 ($ (-1 $))) (-15 -3464 ($ |#1| $)) (IF (|has| |#1| (-1015)) (PROGN (-15 -3463 ((-1187) (-486) $)) (-15 -3462 ((-774) $)) (-15 -3461 ((-85)))) |%noBranch|) (-15 -3790 ($ $ (-486) $)) (-15 -3460 ($ (-1 |#1|))) (-15 -3460 ($ (-1 |#1| |#1|) |#1|)) (-15 -3459 ($ (-1 (-85) |#1|) $)) (-15 -3458 ($ (-1 (-85) |#1|) $)))) (-1131)) (T -1071)) -((-3468 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3)))) (-3467 (*1 *2 *3 *1) (-12 (-5 *3 (-585 *4)) (-4 *4 (-1015)) (-4 *4 (-1131)) (-5 *2 (-85)) (-5 *1 (-1071 *4)))) (-3466 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2598 (-696)) (|:| |period| (-696)))) (-5 *1 (-1071 *4)) (-4 *4 (-1131)) (-5 *3 (-696)))) (-3465 (*1 *1 *2) (-12 (-5 *2 (-1 (-1071 *3))) (-5 *1 (-1071 *3)) (-4 *3 (-1131)))) (-3464 (*1 *1 *2 *1) (-12 (-5 *1 (-1071 *2)) (-4 *2 (-1131)))) (-3463 (*1 *2 *3 *1) (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-1071 *4)) (-4 *4 (-1015)) (-4 *4 (-1131)))) (-3462 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1071 *3)) (-4 *3 (-1015)) (-4 *3 (-1131)))) (-3461 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1071 *3)) (-4 *3 (-1015)) (-4 *3 (-1131)))) (-3790 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1071 *3)) (-4 *3 (-1131)))) (-3460 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3)))) (-3460 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3)))) (-3459 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3)))) (-3458 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3))))) -((-3805 (((-1071 |#1|) (-1071 (-1071 |#1|))) 15 T ELT))) -(((-1072 |#1|) (-10 -7 (-15 -3805 ((-1071 |#1|) (-1071 (-1071 |#1|))))) (-1131)) (T -1072)) -((-3805 (*1 *2 *3) (-12 (-5 *3 (-1071 (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1072 *4)) (-4 *4 (-1131))))) -((-3844 (((-1071 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|)) 25 T ELT)) (-3845 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|)) 26 T ELT)) (-3846 (((-1071 |#2|) (-1 |#2| |#1|) (-1071 |#1|)) 16 T ELT))) -(((-1073 |#1| |#2|) (-10 -7 (-15 -3846 ((-1071 |#2|) (-1 |#2| |#1|) (-1071 |#1|))) (-15 -3844 ((-1071 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|))) (-15 -3845 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|)))) (-1131) (-1131)) (T -1073)) -((-3845 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1071 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-1073 *5 *2)))) (-3844 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1071 *6)) (-4 *6 (-1131)) (-4 *3 (-1131)) (-5 *2 (-1071 *3)) (-5 *1 (-1073 *6 *3)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1071 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1071 *6)) (-5 *1 (-1073 *5 *6))))) -((-3846 (((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-1071 |#2|)) 21 T ELT))) -(((-1074 |#1| |#2| |#3|) (-10 -7 (-15 -3846 ((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-1071 |#2|)))) (-1131) (-1131) (-1131)) (T -1074)) -((-3846 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1071 *6)) (-5 *5 (-1071 *7)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-1071 *8)) (-5 *1 (-1074 *6 *7 *8))))) -((-2571 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-3429 (($ $) 42 T ELT)) (-3430 (($ $) NIL T ELT)) (-3420 (($ $ (-117)) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 (-117))) ELT)) (-3427 (((-85) $ $) 67 T ELT)) (-3426 (((-85) $ $ (-486)) 62 T ELT)) (-3538 (($ (-486)) 7 T ELT) (($ (-179)) 9 T ELT) (($ (-448)) 11 T ELT)) (-3421 (((-585 $) $ (-117)) 76 T ELT) (((-585 $) $ (-114)) 77 T ELT)) (-1737 (((-85) (-1 (-85) (-117) (-117)) $) NIL T ELT) (((-85) $) NIL (|has| (-117) (-758)) ELT)) (-1735 (($ (-1 (-85) (-117) (-117)) $) NIL (|has| $ (-1037 (-117))) ELT) (($ $) NIL (-12 (|has| $ (-1037 (-117))) (|has| (-117) (-758))) ELT)) (-2912 (($ (-1 (-85) (-117) (-117)) $) NIL T ELT) (($ $) NIL (|has| (-117) (-758)) ELT)) (-3791 (((-117) $ (-486) (-117)) 59 (|has| $ (-1037 (-117))) ELT) (((-117) $ (-1148 (-486)) (-117)) NIL (|has| $ (-1037 (-117))) ELT)) (-3713 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3727 (($) NIL T CONST)) (-3418 (($ $ (-117)) 80 T ELT) (($ $ (-114)) 81 T ELT)) (-2299 (($ $) NIL (|has| $ (-1037 (-117))) ELT)) (-2300 (($ $) NIL T ELT)) (-3423 (($ $ (-1148 (-486)) $) 57 T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-3409 (($ (-117) $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT) (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3845 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (|has| (-117) (-72)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL T ELT) (((-117) (-1 (-117) (-117) (-117)) $) NIL T ELT)) (-1577 (((-117) $ (-486) (-117)) NIL (|has| $ (-1037 (-117))) ELT)) (-3115 (((-117) $ (-486)) NIL T ELT)) (-3428 (((-85) $ $) 91 T ELT)) (-3422 (((-486) (-1 (-85) (-117)) $) NIL T ELT) (((-486) (-117) $) NIL (|has| (-117) (-72)) ELT) (((-486) (-117) $ (-486)) 64 (|has| (-117) (-72)) ELT) (((-486) $ $ (-486)) 63 T ELT) (((-486) (-114) $ (-486)) 66 T ELT)) (-3617 (($ (-696) (-117)) 14 T ELT)) (-2202 (((-486) $) 36 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| (-117) (-758)) ELT)) (-3521 (($ (-1 (-85) (-117) (-117)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-117) (-758)) ELT)) (-2611 (((-585 (-117)) $) NIL T ELT)) (-3248 (((-85) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-2203 (((-486) $) 50 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| (-117) (-758)) ELT)) (-3424 (((-85) $ $ (-117)) 92 T ELT)) (-3425 (((-696) $ $ (-117)) 88 T ELT)) (-3329 (($ (-1 (-117) (-117)) $) 41 T ELT)) (-3846 (($ (-1 (-117) (-117)) $) NIL T ELT) (($ (-1 (-117) (-117) (-117)) $ $) NIL T ELT)) (-3431 (($ $) 45 T ELT)) (-3432 (($ $) NIL T ELT)) (-3419 (($ $ (-117)) 78 T ELT) (($ $ (-114)) 79 T ELT)) (-3245 (((-1075) $) 46 (|has| (-117) (-1015)) ELT)) (-2306 (($ (-117) $ (-486)) NIL T ELT) (($ $ $ (-486)) 31 T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) 87 (|has| (-117) (-1015)) ELT)) (-3804 (((-117) $) NIL (|has| (-486) (-758)) ELT)) (-1731 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-2201 (($ $ (-117)) NIL (|has| $ (-1037 (-117))) ELT)) (-1733 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-585 (-117)) (-585 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) (-117) $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-2207 (((-585 (-117)) $) NIL T ELT)) (-3406 (((-85) $) 19 T ELT)) (-3568 (($) 16 T ELT)) (-3803 (((-117) $ (-486) (-117)) NIL T ELT) (((-117) $ (-486)) 69 T ELT) (($ $ (-1148 (-486))) 29 T ELT) (($ $ $) NIL T ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-1732 (((-696) (-117) $) NIL (|has| (-117) (-72)) ELT) (((-696) (-1 (-85) (-117)) $) NIL T ELT)) (-1736 (($ $ $ (-486)) 83 (|has| $ (-1037 (-117))) ELT)) (-3403 (($ $) 24 T ELT)) (-3975 (((-475) $) NIL (|has| (-117) (-555 (-475))) ELT)) (-3533 (($ (-585 (-117))) NIL T ELT)) (-3805 (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-585 $)) 84 T ELT)) (-3950 (($ (-117)) NIL T ELT) (((-774) $) 35 (|has| (-117) (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-1734 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| (-117) (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| (-117) (-758)) ELT)) (-3059 (((-85) $ $) 21 (|has| (-117) (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-117) (-758)) ELT)) (-2688 (((-85) $ $) 22 (|has| (-117) (-758)) ELT)) (-3961 (((-696) $) 20 T ELT))) -(((-1075) (-13 (-1060) (-10 -8 (-15 -3538 ($ (-486))) (-15 -3538 ($ (-179))) (-15 -3538 ($ (-448)))))) (T -1075)) -((-3538 (*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-1075)))) (-3538 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1075)))) (-3538 (*1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-1075))))) -((-2571 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3602 (($) NIL T ELT) (($ (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) NIL T ELT)) (-2200 (((-1187) $ (-1075) (-1075)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ (-1075) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) ELT)) (-2233 (((-3 |#1| #1="failed") (-1075) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-72))) ELT)) (-3408 (($ (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) $) NIL (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) ELT) (($ (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) ELT) (((-3 |#1| #1#) (-1075) $) NIL T ELT)) (-3409 (($ (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) ELT)) (-3845 (((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $ (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) NIL (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-72)) ELT) (((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $ (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) NIL T ELT) (((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-1577 ((|#1| $ (-1075) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-1075)) NIL T ELT)) (-2202 (((-1075) $) NIL (|has| (-1075) (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3248 (((-85) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-72)) ELT)) (-2203 (((-1075) $) NIL (|has| (-1075) (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (OR (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1015)) (|has| |#1| (-1015))) ELT)) (-2234 (((-585 (-1075)) $) NIL T ELT)) (-2235 (((-85) (-1075) $) NIL T ELT)) (-1276 (((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2205 (((-585 (-1075)) $) NIL T ELT)) (-2206 (((-85) (-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL (OR (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1015)) (|has| |#1| (-1015))) ELT)) (-3804 ((|#1| $) NIL (|has| (-1075) (-758)) ELT)) (-1731 (((-3 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1277 (((-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-1075)) NIL T ELT) ((|#1| $ (-1075) |#1|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) NIL T ELT)) (-1732 (((-696) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) NIL T ELT)) (-3950 (((-774) $) NIL (OR (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-554 (-774))) (|has| |#1| (-554 (-774)))) ELT)) (-1267 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 (-1075)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-1076 |#1|) (-1109 (-1075) |#1|) (-1015)) (T -1076)) -NIL -((-3808 (((-1071 |#1|) (-1071 |#1|)) 83 T ELT)) (-3470 (((-3 (-1071 |#1|) #1="failed") (-1071 |#1|)) 39 T ELT)) (-3481 (((-1071 |#1|) (-350 (-486)) (-1071 |#1|)) 131 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3484 (((-1071 |#1|) |#1| (-1071 |#1|)) 135 (|has| |#1| (-312)) ELT)) (-3811 (((-1071 |#1|) (-1071 |#1|)) 97 T ELT)) (-3472 (((-1071 (-486)) (-486)) 63 T ELT)) (-3480 (((-1071 |#1|) (-1071 (-1071 |#1|))) 116 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3807 (((-1071 |#1|) (-486) (-486) (-1071 |#1|)) 103 T ELT)) (-3942 (((-1071 |#1|) |#1| (-486)) 51 T ELT)) (-3474 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 66 T ELT)) (-3482 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 133 (|has| |#1| (-312)) ELT)) (-3479 (((-1071 |#1|) |#1| (-1 (-1071 |#1|))) 115 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3483 (((-1071 |#1|) (-1 |#1| (-486)) |#1| (-1 (-1071 |#1|))) 134 (|has| |#1| (-312)) ELT)) (-3812 (((-1071 |#1|) (-1071 |#1|)) 96 T ELT)) (-3813 (((-1071 |#1|) (-1071 |#1|)) 82 T ELT)) (-3806 (((-1071 |#1|) (-486) (-486) (-1071 |#1|)) 104 T ELT)) (-3815 (((-1071 |#1|) |#1| (-1071 |#1|)) 113 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3471 (((-1071 (-486)) (-486)) 62 T ELT)) (-3473 (((-1071 |#1|) |#1|) 65 T ELT)) (-3809 (((-1071 |#1|) (-1071 |#1|) (-486) (-486)) 100 T ELT)) (-3476 (((-1071 |#1|) (-1 |#1| (-486)) (-1071 |#1|)) 72 T ELT)) (-3469 (((-3 (-1071 |#1|) #1#) (-1071 |#1|) (-1071 |#1|)) 37 T ELT)) (-3810 (((-1071 |#1|) (-1071 |#1|)) 98 T ELT)) (-3771 (((-1071 |#1|) (-1071 |#1|) |#1|) 77 T ELT)) (-3475 (((-1071 |#1|) (-1071 |#1|)) 68 T ELT)) (-3477 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 78 T ELT)) (-3950 (((-1071 |#1|) |#1|) 73 T ELT)) (-3478 (((-1071 |#1|) (-1071 (-1071 |#1|))) 88 T ELT)) (-3953 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 38 T ELT)) (-3840 (((-1071 |#1|) (-1071 |#1|)) 21 T ELT) (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 23 T ELT)) (-3842 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 17 T ELT)) (* (((-1071 |#1|) (-1071 |#1|) |#1|) 29 T ELT) (((-1071 |#1|) |#1| (-1071 |#1|)) 26 T ELT) (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 27 T ELT))) -(((-1077 |#1|) (-10 -7 (-15 -3842 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3840 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3840 ((-1071 |#1|) (-1071 |#1|))) (-15 * ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 * ((-1071 |#1|) |#1| (-1071 |#1|))) (-15 * ((-1071 |#1|) (-1071 |#1|) |#1|)) (-15 -3469 ((-3 (-1071 |#1|) #1="failed") (-1071 |#1|) (-1071 |#1|))) (-15 -3953 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3470 ((-3 (-1071 |#1|) #1#) (-1071 |#1|))) (-15 -3942 ((-1071 |#1|) |#1| (-486))) (-15 -3471 ((-1071 (-486)) (-486))) (-15 -3472 ((-1071 (-486)) (-486))) (-15 -3473 ((-1071 |#1|) |#1|)) (-15 -3474 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3475 ((-1071 |#1|) (-1071 |#1|))) (-15 -3476 ((-1071 |#1|) (-1 |#1| (-486)) (-1071 |#1|))) (-15 -3950 ((-1071 |#1|) |#1|)) (-15 -3771 ((-1071 |#1|) (-1071 |#1|) |#1|)) (-15 -3477 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3813 ((-1071 |#1|) (-1071 |#1|))) (-15 -3808 ((-1071 |#1|) (-1071 |#1|))) (-15 -3478 ((-1071 |#1|) (-1071 (-1071 |#1|)))) (-15 -3812 ((-1071 |#1|) (-1071 |#1|))) (-15 -3811 ((-1071 |#1|) (-1071 |#1|))) (-15 -3810 ((-1071 |#1|) (-1071 |#1|))) (-15 -3809 ((-1071 |#1|) (-1071 |#1|) (-486) (-486))) (-15 -3807 ((-1071 |#1|) (-486) (-486) (-1071 |#1|))) (-15 -3806 ((-1071 |#1|) (-486) (-486) (-1071 |#1|))) (IF (|has| |#1| (-38 (-350 (-486)))) (PROGN (-15 -3815 ((-1071 |#1|) |#1| (-1071 |#1|))) (-15 -3479 ((-1071 |#1|) |#1| (-1 (-1071 |#1|)))) (-15 -3480 ((-1071 |#1|) (-1071 (-1071 |#1|)))) (-15 -3481 ((-1071 |#1|) (-350 (-486)) (-1071 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3482 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3483 ((-1071 |#1|) (-1 |#1| (-486)) |#1| (-1 (-1071 |#1|)))) (-15 -3484 ((-1071 |#1|) |#1| (-1071 |#1|)))) |%noBranch|)) (-963)) (T -1077)) -((-3484 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-312)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-486))) (-5 *5 (-1 (-1071 *4))) (-4 *4 (-312)) (-4 *4 (-963)) (-5 *2 (-1071 *4)) (-5 *1 (-1077 *4)))) (-3482 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-312)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3481 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *4)) (-4 *4 (-38 *3)) (-4 *4 (-963)) (-5 *3 (-350 (-486))) (-5 *1 (-1077 *4)))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-1071 (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1077 *4)) (-4 *4 (-38 (-350 (-486)))) (-4 *4 (-963)))) (-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1071 *3))) (-5 *2 (-1071 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)))) (-3815 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3806 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-486)) (-4 *4 (-963)) (-5 *1 (-1077 *4)))) (-3807 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-486)) (-4 *4 (-963)) (-5 *1 (-1077 *4)))) (-3809 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-486)) (-4 *4 (-963)) (-5 *1 (-1077 *4)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3812 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-1071 (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1077 *4)) (-4 *4 (-963)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3477 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3771 (*1 *2 *2 *3) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3950 (*1 *2 *3) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-963)))) (-3476 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-1 *4 (-486))) (-4 *4 (-963)) (-5 *1 (-1077 *4)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3474 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3473 (*1 *2 *3) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-963)))) (-3472 (*1 *2 *3) (-12 (-5 *2 (-1071 (-486))) (-5 *1 (-1077 *4)) (-4 *4 (-963)) (-5 *3 (-486)))) (-3471 (*1 *2 *3) (-12 (-5 *2 (-1071 (-486))) (-5 *1 (-1077 *4)) (-4 *4 (-963)) (-5 *3 (-486)))) (-3942 (*1 *2 *3 *4) (-12 (-5 *4 (-486)) (-5 *2 (-1071 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-963)))) (-3470 (*1 *2 *2) (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3953 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3469 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3840 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) (-3842 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3))))) -((-3495 (((-1071 |#1|) (-1071 |#1|)) 102 T ELT)) (-3642 (((-1071 |#1|) (-1071 |#1|)) 59 T ELT)) (-3486 (((-2 (|:| -3493 (-1071 |#1|)) (|:| -3494 (-1071 |#1|))) (-1071 |#1|)) 98 T ELT)) (-3493 (((-1071 |#1|) (-1071 |#1|)) 99 T ELT)) (-3485 (((-2 (|:| -3641 (-1071 |#1|)) (|:| -3637 (-1071 |#1|))) (-1071 |#1|)) 54 T ELT)) (-3641 (((-1071 |#1|) (-1071 |#1|)) 55 T ELT)) (-3497 (((-1071 |#1|) (-1071 |#1|)) 104 T ELT)) (-3640 (((-1071 |#1|) (-1071 |#1|)) 66 T ELT)) (-3946 (((-1071 |#1|) (-1071 |#1|)) 40 T ELT)) (-3947 (((-1071 |#1|) (-1071 |#1|)) 37 T ELT)) (-3498 (((-1071 |#1|) (-1071 |#1|)) 105 T ELT)) (-3639 (((-1071 |#1|) (-1071 |#1|)) 67 T ELT)) (-3496 (((-1071 |#1|) (-1071 |#1|)) 103 T ELT)) (-3638 (((-1071 |#1|) (-1071 |#1|)) 62 T ELT)) (-3494 (((-1071 |#1|) (-1071 |#1|)) 100 T ELT)) (-3637 (((-1071 |#1|) (-1071 |#1|)) 56 T ELT)) (-3501 (((-1071 |#1|) (-1071 |#1|)) 113 T ELT)) (-3489 (((-1071 |#1|) (-1071 |#1|)) 88 T ELT)) (-3499 (((-1071 |#1|) (-1071 |#1|)) 107 T ELT)) (-3487 (((-1071 |#1|) (-1071 |#1|)) 84 T ELT)) (-3503 (((-1071 |#1|) (-1071 |#1|)) 117 T ELT)) (-3491 (((-1071 |#1|) (-1071 |#1|)) 92 T ELT)) (-3504 (((-1071 |#1|) (-1071 |#1|)) 119 T ELT)) (-3492 (((-1071 |#1|) (-1071 |#1|)) 94 T ELT)) (-3502 (((-1071 |#1|) (-1071 |#1|)) 115 T ELT)) (-3490 (((-1071 |#1|) (-1071 |#1|)) 90 T ELT)) (-3500 (((-1071 |#1|) (-1071 |#1|)) 109 T ELT)) (-3488 (((-1071 |#1|) (-1071 |#1|)) 86 T ELT)) (** (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 41 T ELT))) -(((-1078 |#1|) (-10 -7 (-15 -3947 ((-1071 |#1|) (-1071 |#1|))) (-15 -3946 ((-1071 |#1|) (-1071 |#1|))) (-15 ** ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3485 ((-2 (|:| -3641 (-1071 |#1|)) (|:| -3637 (-1071 |#1|))) (-1071 |#1|))) (-15 -3641 ((-1071 |#1|) (-1071 |#1|))) (-15 -3637 ((-1071 |#1|) (-1071 |#1|))) (-15 -3642 ((-1071 |#1|) (-1071 |#1|))) (-15 -3638 ((-1071 |#1|) (-1071 |#1|))) (-15 -3640 ((-1071 |#1|) (-1071 |#1|))) (-15 -3639 ((-1071 |#1|) (-1071 |#1|))) (-15 -3487 ((-1071 |#1|) (-1071 |#1|))) (-15 -3488 ((-1071 |#1|) (-1071 |#1|))) (-15 -3489 ((-1071 |#1|) (-1071 |#1|))) (-15 -3490 ((-1071 |#1|) (-1071 |#1|))) (-15 -3491 ((-1071 |#1|) (-1071 |#1|))) (-15 -3492 ((-1071 |#1|) (-1071 |#1|))) (-15 -3486 ((-2 (|:| -3493 (-1071 |#1|)) (|:| -3494 (-1071 |#1|))) (-1071 |#1|))) (-15 -3493 ((-1071 |#1|) (-1071 |#1|))) (-15 -3494 ((-1071 |#1|) (-1071 |#1|))) (-15 -3495 ((-1071 |#1|) (-1071 |#1|))) (-15 -3496 ((-1071 |#1|) (-1071 |#1|))) (-15 -3497 ((-1071 |#1|) (-1071 |#1|))) (-15 -3498 ((-1071 |#1|) (-1071 |#1|))) (-15 -3499 ((-1071 |#1|) (-1071 |#1|))) (-15 -3500 ((-1071 |#1|) (-1071 |#1|))) (-15 -3501 ((-1071 |#1|) (-1071 |#1|))) (-15 -3502 ((-1071 |#1|) (-1071 |#1|))) (-15 -3503 ((-1071 |#1|) (-1071 |#1|))) (-15 -3504 ((-1071 |#1|) (-1071 |#1|)))) (-38 (-350 (-486)))) (T -1078)) -((-3504 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3503 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3486 (*1 *2 *3) (-12 (-4 *4 (-38 (-350 (-486)))) (-5 *2 (-2 (|:| -3493 (-1071 *4)) (|:| -3494 (-1071 *4)))) (-5 *1 (-1078 *4)) (-5 *3 (-1071 *4)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3642 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3641 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3485 (*1 *2 *3) (-12 (-4 *4 (-38 (-350 (-486)))) (-5 *2 (-2 (|:| -3641 (-1071 *4)) (|:| -3637 (-1071 *4)))) (-5 *1 (-1078 *4)) (-5 *3 (-1071 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3946 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) (-3947 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3))))) -((-3495 (((-1071 |#1|) (-1071 |#1|)) 60 T ELT)) (-3642 (((-1071 |#1|) (-1071 |#1|)) 42 T ELT)) (-3493 (((-1071 |#1|) (-1071 |#1|)) 56 T ELT)) (-3641 (((-1071 |#1|) (-1071 |#1|)) 38 T ELT)) (-3497 (((-1071 |#1|) (-1071 |#1|)) 63 T ELT)) (-3640 (((-1071 |#1|) (-1071 |#1|)) 45 T ELT)) (-3946 (((-1071 |#1|) (-1071 |#1|)) 34 T ELT)) (-3947 (((-1071 |#1|) (-1071 |#1|)) 29 T ELT)) (-3498 (((-1071 |#1|) (-1071 |#1|)) 64 T ELT)) (-3639 (((-1071 |#1|) (-1071 |#1|)) 46 T ELT)) (-3496 (((-1071 |#1|) (-1071 |#1|)) 61 T ELT)) (-3638 (((-1071 |#1|) (-1071 |#1|)) 43 T ELT)) (-3494 (((-1071 |#1|) (-1071 |#1|)) 58 T ELT)) (-3637 (((-1071 |#1|) (-1071 |#1|)) 40 T ELT)) (-3501 (((-1071 |#1|) (-1071 |#1|)) 68 T ELT)) (-3489 (((-1071 |#1|) (-1071 |#1|)) 50 T ELT)) (-3499 (((-1071 |#1|) (-1071 |#1|)) 66 T ELT)) (-3487 (((-1071 |#1|) (-1071 |#1|)) 48 T ELT)) (-3503 (((-1071 |#1|) (-1071 |#1|)) 71 T ELT)) (-3491 (((-1071 |#1|) (-1071 |#1|)) 53 T ELT)) (-3504 (((-1071 |#1|) (-1071 |#1|)) 72 T ELT)) (-3492 (((-1071 |#1|) (-1071 |#1|)) 54 T ELT)) (-3502 (((-1071 |#1|) (-1071 |#1|)) 70 T ELT)) (-3490 (((-1071 |#1|) (-1071 |#1|)) 52 T ELT)) (-3500 (((-1071 |#1|) (-1071 |#1|)) 69 T ELT)) (-3488 (((-1071 |#1|) (-1071 |#1|)) 51 T ELT)) (** (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 36 T ELT))) -(((-1079 |#1|) (-10 -7 (-15 -3947 ((-1071 |#1|) (-1071 |#1|))) (-15 -3946 ((-1071 |#1|) (-1071 |#1|))) (-15 ** ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3641 ((-1071 |#1|) (-1071 |#1|))) (-15 -3637 ((-1071 |#1|) (-1071 |#1|))) (-15 -3642 ((-1071 |#1|) (-1071 |#1|))) (-15 -3638 ((-1071 |#1|) (-1071 |#1|))) (-15 -3640 ((-1071 |#1|) (-1071 |#1|))) (-15 -3639 ((-1071 |#1|) (-1071 |#1|))) (-15 -3487 ((-1071 |#1|) (-1071 |#1|))) (-15 -3488 ((-1071 |#1|) (-1071 |#1|))) (-15 -3489 ((-1071 |#1|) (-1071 |#1|))) (-15 -3490 ((-1071 |#1|) (-1071 |#1|))) (-15 -3491 ((-1071 |#1|) (-1071 |#1|))) (-15 -3492 ((-1071 |#1|) (-1071 |#1|))) (-15 -3493 ((-1071 |#1|) (-1071 |#1|))) (-15 -3494 ((-1071 |#1|) (-1071 |#1|))) (-15 -3495 ((-1071 |#1|) (-1071 |#1|))) (-15 -3496 ((-1071 |#1|) (-1071 |#1|))) (-15 -3497 ((-1071 |#1|) (-1071 |#1|))) (-15 -3498 ((-1071 |#1|) (-1071 |#1|))) (-15 -3499 ((-1071 |#1|) (-1071 |#1|))) (-15 -3500 ((-1071 |#1|) (-1071 |#1|))) (-15 -3501 ((-1071 |#1|) (-1071 |#1|))) (-15 -3502 ((-1071 |#1|) (-1071 |#1|))) (-15 -3503 ((-1071 |#1|) (-1071 |#1|))) (-15 -3504 ((-1071 |#1|) (-1071 |#1|)))) (-38 (-350 (-486)))) (T -1079)) -((-3504 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3503 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3642 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3641 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3946 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) (-3947 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) -((-3505 (((-871 |#2|) |#2| |#2|) 51 T ELT)) (-3506 ((|#2| |#2| |#1|) 19 (|has| |#1| (-258)) ELT))) -(((-1080 |#1| |#2|) (-10 -7 (-15 -3505 ((-871 |#2|) |#2| |#2|)) (IF (|has| |#1| (-258)) (-15 -3506 (|#2| |#2| |#1|)) |%noBranch|)) (-497) (-1157 |#1|)) (T -1080)) -((-3506 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-4 *3 (-497)) (-5 *1 (-1080 *3 *2)) (-4 *2 (-1157 *3)))) (-3505 (*1 *2 *3 *3) (-12 (-4 *4 (-497)) (-5 *2 (-871 *3)) (-5 *1 (-1080 *4 *3)) (-4 *3 (-1157 *4))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3514 (($ $ (-585 (-696))) 79 T ELT)) (-3892 (($) 33 T ELT)) (-3523 (($ $) 51 T ELT)) (-3754 (((-585 $) $) 60 T ELT)) (-3529 (((-85) $) 19 T ELT)) (-3507 (((-585 (-856 |#2|)) $) 86 T ELT)) (-3508 (($ $) 80 T ELT)) (-3524 (((-696) $) 47 T ELT)) (-3617 (($) 32 T ELT)) (-3517 (($ $ (-585 (-696)) (-856 |#2|)) 72 T ELT) (($ $ (-585 (-696)) (-696)) 73 T ELT) (($ $ (-696) (-856 |#2|)) 75 T ELT)) (-3521 (($ $ $) 57 T ELT) (($ (-585 $)) 59 T ELT)) (-3509 (((-696) $) 87 T ELT)) (-3530 (((-85) $) 15 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3528 (((-85) $) 22 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3510 (((-145) $) 85 T ELT)) (-3513 (((-856 |#2|) $) 81 T ELT)) (-3512 (((-696) $) 82 T ELT)) (-3511 (((-85) $) 84 T ELT)) (-3515 (($ $ (-585 (-696)) (-145)) 78 T ELT)) (-3522 (($ $) 52 T ELT)) (-3950 (((-774) $) 99 T ELT)) (-3516 (($ $ (-585 (-696)) (-85)) 77 T ELT)) (-3525 (((-585 $) $) 11 T ELT)) (-3526 (($ $ (-696)) 46 T ELT)) (-3527 (($ $) 43 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3518 (($ $ $ (-856 |#2|) (-696)) 68 T ELT)) (-3519 (($ $ (-856 |#2|)) 67 T ELT)) (-3520 (($ $ (-585 (-696)) (-856 |#2|)) 66 T ELT) (($ $ (-585 (-696)) (-696)) 70 T ELT) (((-696) $ (-856 |#2|)) 71 T ELT)) (-3059 (((-85) $ $) 92 T ELT))) -(((-1081 |#1| |#2|) (-13 (-1015) (-10 -8 (-15 -3530 ((-85) $)) (-15 -3529 ((-85) $)) (-15 -3528 ((-85) $)) (-15 -3617 ($)) (-15 -3892 ($)) (-15 -3527 ($ $)) (-15 -3526 ($ $ (-696))) (-15 -3525 ((-585 $) $)) (-15 -3524 ((-696) $)) (-15 -3523 ($ $)) (-15 -3522 ($ $)) (-15 -3521 ($ $ $)) (-15 -3521 ($ (-585 $))) (-15 -3754 ((-585 $) $)) (-15 -3520 ($ $ (-585 (-696)) (-856 |#2|))) (-15 -3519 ($ $ (-856 |#2|))) (-15 -3518 ($ $ $ (-856 |#2|) (-696))) (-15 -3517 ($ $ (-585 (-696)) (-856 |#2|))) (-15 -3520 ($ $ (-585 (-696)) (-696))) (-15 -3517 ($ $ (-585 (-696)) (-696))) (-15 -3520 ((-696) $ (-856 |#2|))) (-15 -3517 ($ $ (-696) (-856 |#2|))) (-15 -3516 ($ $ (-585 (-696)) (-85))) (-15 -3515 ($ $ (-585 (-696)) (-145))) (-15 -3514 ($ $ (-585 (-696)))) (-15 -3513 ((-856 |#2|) $)) (-15 -3512 ((-696) $)) (-15 -3511 ((-85) $)) (-15 -3510 ((-145) $)) (-15 -3509 ((-696) $)) (-15 -3508 ($ $)) (-15 -3507 ((-585 (-856 |#2|)) $)))) (-832) (-963)) (T -1081)) -((-3530 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3617 (*1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3892 (*1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3527 (*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-585 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3523 (*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3522 (*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3521 (*1 *1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3521 (*1 *1 *2) (-12 (-5 *2 (-585 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3754 (*1 *2 *1) (-12 (-5 *2 (-585 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3520 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-696))) (-5 *3 (-856 *5)) (-4 *5 (-963)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-832)))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-856 *4)) (-4 *4 (-963)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)))) (-3518 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-856 *5)) (-5 *3 (-696)) (-4 *5 (-963)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-832)))) (-3517 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-696))) (-5 *3 (-856 *5)) (-4 *5 (-963)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-832)))) (-3520 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-696))) (-5 *3 (-696)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-832)) (-4 *5 (-963)))) (-3517 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-696))) (-5 *3 (-696)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-832)) (-4 *5 (-963)))) (-3520 (*1 *2 *1 *3) (-12 (-5 *3 (-856 *5)) (-4 *5 (-963)) (-5 *2 (-696)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-832)))) (-3517 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *3 (-856 *5)) (-4 *5 (-963)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-832)))) (-3516 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-696))) (-5 *3 (-85)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-832)) (-4 *5 (-963)))) (-3515 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-696))) (-5 *3 (-145)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-832)) (-4 *5 (-963)))) (-3514 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-696))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3513 (*1 *2 *1) (-12 (-5 *2 (-856 *4)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-145)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3508 (*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-585 (-856 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3531 ((|#2| $) 11 T ELT)) (-3532 ((|#1| $) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3533 (($ |#1| |#2|) 9 T ELT)) (-3950 (((-774) $) 16 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-1082 |#1| |#2|) (-13 (-1015) (-10 -8 (-15 -3533 ($ |#1| |#2|)) (-15 -3532 (|#1| $)) (-15 -3531 (|#2| $)))) (-1015) (-1015)) (T -1082)) -((-3533 (*1 *1 *2 *3) (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-3532 (*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1015)))) (-3531 (*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-1082 *3 *2)) (-4 *3 (-1015))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3534 (((-1051) $) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 16 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-1083) (-13 (-997) (-10 -8 (-15 -3534 ((-1051) $))))) (T -1083)) -((-3534 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1083))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 (((-1091 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) 11 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-2065 (($ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-2063 (((-85) $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-3774 (($ $ (-486)) NIL T ELT) (($ $ (-486) (-486)) 75 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) $) NIL T ELT)) (-3734 (((-1091 |#1| |#2| |#3|) $) 42 T ELT)) (-3731 (((-3 (-1091 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3732 (((-1091 |#1| |#2| |#3|) $) 33 T ELT)) (-3495 (($ $) 116 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 92 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1#) $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-3778 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3493 (($ $) 112 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 88 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3626 (((-486) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-3821 (($ (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|)))) NIL T ELT)) (-3497 (($ $) 120 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 96 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-1091 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1092) #1#) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-952 (-1092))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) ELT) (((-3 (-486) #1#) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) ELT)) (-3159 (((-1091 |#1| |#2| |#3|) $) 140 T ELT) (((-1092) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-952 (-1092))) (|has| |#1| (-312))) ELT) (((-350 (-486)) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) ELT) (((-486) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) ELT)) (-3733 (($ $) 37 T ELT) (($ (-486) $) 38 T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-1091 |#1| |#2| |#3|)) (-632 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-1091 |#1| |#2| |#3|))) (|:| |vec| (-1181 (-1091 |#1| |#2| |#3|)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-582 (-486))) (|has| |#1| (-312))) ELT) (((-632 (-486)) (-632 $)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-582 (-486))) (|has| |#1| (-312))) ELT)) (-3470 (((-3 $ #1#) $) 54 T ELT)) (-3730 (((-350 (-859 |#1|)) $ (-486)) 74 (|has| |#1| (-497)) ELT) (((-350 (-859 |#1|)) $ (-486) (-486)) 76 (|has| |#1| (-497)) ELT)) (-2997 (($) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-485)) (|has| |#1| (-312))) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3189 (((-85) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-2895 (((-85) $) 28 T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-798 (-330))) (|has| |#1| (-312))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-798 (-486))) (|has| |#1| (-312))) ELT)) (-3775 (((-486) $) NIL T ELT) (((-486) $ (-486)) 26 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3001 (((-1091 |#1| |#2| |#3|) $) 44 (|has| |#1| (-312)) ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3448 (((-634 $) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-1068)) (|has| |#1| (-312))) ELT)) (-3190 (((-85) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-3780 (($ $ (-832)) NIL T ELT)) (-3818 (($ (-1 |#1| (-486)) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-486)) 19 T ELT) (($ $ (-996) (-486)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-486))) NIL T ELT)) (-2534 (($ $ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-2860 (($ $ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3946 (($ $) 81 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2282 (((-632 (-1091 |#1| |#2| |#3|)) (-1181 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-1091 |#1| |#2| |#3|))) (|:| |vec| (-1181 (-1091 |#1| |#2| |#3|)))) (-1181 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-582 (-486))) (|has| |#1| (-312))) ELT) (((-632 (-486)) (-1181 $)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-582 (-486))) (|has| |#1| (-312))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3782 (($ (-486) (-1091 |#1| |#2| |#3|)) 36 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3815 (($ $) 79 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT) (($ $ (-1178 |#2|)) 80 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3449 (($) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-1068)) (|has| |#1| (-312))) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3131 (($ $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3133 (((-1091 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-485)) (|has| |#1| (-312))) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-486)) 158 T ELT)) (-3469 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3947 (($ $) 82 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-486)))) ELT) (($ $ (-1092) (-1091 |#1| |#2| |#3|)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-457 (-1092) (-1091 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1092)) (-585 (-1091 |#1| |#2| |#3|))) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-457 (-1092) (-1091 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-249 (-1091 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-260 (-1091 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1091 |#1| |#2| |#3|))) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-260 (-1091 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-260 (-1091 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1091 |#1| |#2| |#3|)) (-585 (-1091 |#1| |#2| |#3|))) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-260 (-1091 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-486)) NIL T ELT) (($ $ $) 61 (|has| (-486) (-1027)) ELT) (($ $ (-1091 |#1| |#2| |#3|)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-241 (-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1 (-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|)) (-696)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1178 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT)) (-2998 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3000 (((-1091 |#1| |#2| |#3|) $) 46 (|has| |#1| (-312)) ELT)) (-3952 (((-486) $) 43 T ELT)) (-3498 (($ $) 122 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 98 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 118 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 94 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 114 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 90 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3975 (((-475) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-555 (-475))) (|has| |#1| (-312))) ELT) (((-330) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-935)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-935)) (|has| |#1| (-312))) ELT) (((-802 (-330)) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-555 (-802 (-330)))) (|has| |#1| (-312))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-555 (-802 (-486)))) (|has| |#1| (-312))) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-2894 (($ $) NIL T ELT)) (-3950 (((-774) $) 162 T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1091 |#1| |#2| |#3|)) 30 T ELT) (($ (-1178 |#2|)) 25 T ELT) (($ (-1092)) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-952 (-1092))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT) (($ (-350 (-486))) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) (|has| |#1| (-38 (-350 (-486))))) ELT)) (-3680 ((|#1| $ (-486)) 77 T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-3776 ((|#1| $) 12 T ELT)) (-3134 (((-1091 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-485)) (|has| |#1| (-312))) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 128 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 104 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-3499 (($ $) 124 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 100 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 132 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 108 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-486)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-486)))) (|has| |#1| (-15 -3950 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) 134 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 110 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 130 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 106 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 126 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 102 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3386 (($ $) NIL (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-2663 (($) 21 T CONST)) (-2669 (($) 16 T CONST)) (-2672 (($ $ (-1 (-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|)) (-696)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1178 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT)) (-2569 (((-85) $ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-2570 (((-85) $ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-2688 (((-85) $ $) NIL (OR (-12 (|has| (-1091 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1091 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 49 (|has| |#1| (-312)) ELT) (($ (-1091 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3|)) 50 (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 23 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 60 T ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 137 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1091 |#1| |#2| |#3|)) 48 (|has| |#1| (-312)) ELT) (($ (-1091 |#1| |#2| |#3|) $) 47 (|has| |#1| (-312)) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-1084 |#1| |#2| |#3|) (-13 (-1145 |#1| (-1091 |#1| |#2| |#3|)) (-808 $ (-1178 |#2|)) (-10 -8 (-15 -3950 ($ (-1178 |#2|))) (IF (|has| |#1| (-38 (-350 (-486)))) (-15 -3815 ($ $ (-1178 |#2|))) |%noBranch|))) (-963) (-1092) |#1|) (T -1084)) -((-3950 (*1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1084 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1084 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3)))) -((-3535 ((|#2| |#2| (-1006 |#2|)) 26 T ELT) ((|#2| |#2| (-1092)) 28 T ELT))) -(((-1085 |#1| |#2|) (-10 -7 (-15 -3535 (|#2| |#2| (-1092))) (-15 -3535 (|#2| |#2| (-1006 |#2|)))) (-13 (-497) (-952 (-486)) (-582 (-486))) (-13 (-364 |#1|) (-133) (-27) (-1117))) (T -1085)) -((-3535 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1117))) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1085 *4 *2)))) (-3535 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1085 *4 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1117)))))) -((-3535 (((-3 (-350 (-859 |#1|)) (-265 |#1|)) (-350 (-859 |#1|)) (-1006 (-350 (-859 |#1|)))) 31 T ELT) (((-350 (-859 |#1|)) (-859 |#1|) (-1006 (-859 |#1|))) 44 T ELT) (((-3 (-350 (-859 |#1|)) (-265 |#1|)) (-350 (-859 |#1|)) (-1092)) 33 T ELT) (((-350 (-859 |#1|)) (-859 |#1|) (-1092)) 36 T ELT))) -(((-1086 |#1|) (-10 -7 (-15 -3535 ((-350 (-859 |#1|)) (-859 |#1|) (-1092))) (-15 -3535 ((-3 (-350 (-859 |#1|)) (-265 |#1|)) (-350 (-859 |#1|)) (-1092))) (-15 -3535 ((-350 (-859 |#1|)) (-859 |#1|) (-1006 (-859 |#1|)))) (-15 -3535 ((-3 (-350 (-859 |#1|)) (-265 |#1|)) (-350 (-859 |#1|)) (-1006 (-350 (-859 |#1|)))))) (-13 (-497) (-952 (-486)))) (T -1086)) -((-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-350 (-859 *5)))) (-5 *3 (-350 (-859 *5))) (-4 *5 (-13 (-497) (-952 (-486)))) (-5 *2 (-3 *3 (-265 *5))) (-5 *1 (-1086 *5)))) (-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-859 *5))) (-5 *3 (-859 *5)) (-4 *5 (-13 (-497) (-952 (-486)))) (-5 *2 (-350 *3)) (-5 *1 (-1086 *5)))) (-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)))) (-5 *2 (-3 (-350 (-859 *5)) (-265 *5))) (-5 *1 (-1086 *5)) (-5 *3 (-350 (-859 *5))))) (-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)))) (-5 *2 (-350 (-859 *5))) (-5 *1 (-1086 *5)) (-5 *3 (-859 *5))))) -((-2571 (((-85) $ $) 172 T ELT)) (-3191 (((-85) $) 44 T ELT)) (-3770 (((-1181 |#1|) $ (-696)) NIL T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3768 (($ (-1087 |#1|)) NIL T ELT)) (-3086 (((-1087 $) $ (-996)) 83 T ELT) (((-1087 |#1|) $) 72 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) 166 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-996))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $ $) 160 (|has| |#1| (-497)) ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 97 (|has| |#1| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) 117 (|has| |#1| (-823)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3764 (($ $ (-696)) 62 T ELT)) (-3763 (($ $ (-696)) 64 T ELT)) (-3754 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-393)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-996) #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-996) $) NIL T ELT)) (-3759 (($ $ $ (-996)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 162 (|has| |#1| (-146)) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) 81 T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3762 (($ $ $) 133 T ELT)) (-3756 (($ $ $) NIL (|has| |#1| (-497)) ELT)) (-3755 (((-2 (|:| -3958 |#1|) (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-497)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3506 (($ $) 167 (|has| |#1| (-393)) ELT) (($ $ (-996)) NIL (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| (-696) $) 70 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-996) (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-996) (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-3536 (((-774) $ (-774)) 150 T ELT)) (-3775 (((-696) $ $) NIL (|has| |#1| (-497)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 49 T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| |#1| (-1068)) ELT)) (-3087 (($ (-1087 |#1|) (-996)) 74 T ELT) (($ (-1087 $) (-996)) 91 T ELT)) (-3780 (($ $ (-696)) 52 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-696)) 89 T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-996)) NIL T ELT) (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 155 T ELT)) (-2823 (((-696) $) NIL T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-1626 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3769 (((-1087 |#1|) $) NIL T ELT)) (-3085 (((-3 (-996) #1#) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) NIL T ELT) (((-632 |#1|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) 77 T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) NIL (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3765 (((-2 (|:| -1974 $) (|:| -2905 $)) $ (-696)) 61 T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-996)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3815 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3449 (($) NIL (|has| |#1| (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) 51 T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 105 (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-393)) ELT) (($ $ $) 169 (|has| |#1| (-393)) ELT)) (-3741 (($ $ (-696) |#1| $) 125 T ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 103 (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 102 (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) 110 (|has| |#1| (-823)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-996) |#1|) NIL T ELT) (($ $ (-585 (-996)) (-585 |#1|)) NIL T ELT) (($ $ (-996) $) NIL T ELT) (($ $ (-585 (-996)) (-585 $)) NIL T ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-497)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-497)) ELT)) (-3767 (((-3 $ #1#) $ (-696)) 55 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 173 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-996)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) 158 (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-3952 (((-696) $) 79 T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-996) (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-996) (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-996) (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT)) (-2820 ((|#1| $) 164 (|has| |#1| (-393)) ELT) (($ $ (-996)) NIL (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3757 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-497)) ELT)) (-3950 (((-774) $) 151 T ELT) (($ (-486)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-996)) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-696)) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) 42 (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 18 T CONST)) (-2669 (($) 20 T CONST)) (-2672 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#1| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) 122 T ELT)) (-3953 (($ $ |#1|) 174 (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 92 T ELT)) (** (($ $ (-832)) 14 T ELT) (($ $ (-696)) 12 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1087 |#1|) (-13 (-1157 |#1|) (-10 -8 (-15 -3536 ((-774) $ (-774))) (-15 -3741 ($ $ (-696) |#1| $)))) (-963)) (T -1087)) -((-3536 (*1 *2 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-1087 *3)) (-4 *3 (-963)))) (-3741 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1087 *3)) (-4 *3 (-963))))) -((-3846 (((-1087 |#2|) (-1 |#2| |#1|) (-1087 |#1|)) 13 T ELT))) -(((-1088 |#1| |#2|) (-10 -7 (-15 -3846 ((-1087 |#2|) (-1 |#2| |#1|) (-1087 |#1|)))) (-963) (-963)) (T -1088)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1087 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-5 *2 (-1087 *6)) (-5 *1 (-1088 *5 *6))))) -((-3974 (((-348 (-1087 (-350 |#4|))) (-1087 (-350 |#4|))) 51 T ELT)) (-3735 (((-348 (-1087 (-350 |#4|))) (-1087 (-350 |#4|))) 52 T ELT))) -(((-1089 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3735 ((-348 (-1087 (-350 |#4|))) (-1087 (-350 |#4|)))) (-15 -3974 ((-348 (-1087 (-350 |#4|))) (-1087 (-350 |#4|))))) (-719) (-758) (-393) (-863 |#3| |#1| |#2|)) (T -1089)) -((-3974 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-393)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-348 (-1087 (-350 *7)))) (-5 *1 (-1089 *4 *5 *6 *7)) (-5 *3 (-1087 (-350 *7))))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-393)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-348 (-1087 (-350 *7)))) (-5 *1 (-1089 *4 *5 *6 *7)) (-5 *3 (-1087 (-350 *7)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) 11 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-350 (-486))) NIL T ELT) (($ $ (-350 (-486)) (-350 (-486))) NIL T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|))) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-696) (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|)))) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-1084 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1091 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3159 (((-1084 |#1| |#2| |#3|) $) NIL T ELT) (((-1091 |#1| |#2| |#3|) $) NIL T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3784 (((-350 (-486)) $) 59 T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3785 (($ (-350 (-486)) (-1084 |#1| |#2| |#3|)) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2895 (((-85) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-350 (-486)) $) NIL T ELT) (((-350 (-486)) $ (-350 (-486))) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-350 (-486))) 20 T ELT) (($ $ (-996) (-350 (-486))) NIL T ELT) (($ $ (-585 (-996)) (-585 (-350 (-486)))) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3946 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3783 (((-1084 |#1| |#2| |#3|) $) 41 T ELT)) (-3781 (((-3 (-1084 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3782 (((-1084 |#1| |#2| |#3|) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3815 (($ $) 39 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT) (($ $ (-1178 |#2|)) 40 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-350 (-486))) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3947 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-350 (-486))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-486)) (-1027)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-1178 |#2|)) 38 T ELT)) (-3952 (((-350 (-486)) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3950 (((-774) $) 62 T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1084 |#1| |#2| |#3|)) 30 T ELT) (($ (-1091 |#1| |#2| |#3|)) 31 T ELT) (($ (-1178 |#2|)) 26 T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-350 (-486))) NIL T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-3776 ((|#1| $) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-350 (-486))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) (|has| |#1| (-15 -3950 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 22 T CONST)) (-2669 (($) 16 T CONST)) (-2672 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-1178 |#2|)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 24 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-1090 |#1| |#2| |#3|) (-13 (-1166 |#1| (-1084 |#1| |#2| |#3|)) (-808 $ (-1178 |#2|)) (-952 (-1091 |#1| |#2| |#3|)) (-557 (-1178 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-486)))) (-15 -3815 ($ $ (-1178 |#2|))) |%noBranch|))) (-963) (-1092) |#1|) (T -1090)) -((-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 129 T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) 119 T ELT)) (-3814 (((-1150 |#2| |#1|) $ (-696)) 69 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-696)) 85 T ELT) (($ $ (-696) (-696)) 82 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-696)) (|:| |c| |#1|))) $) 105 T ELT)) (-3495 (($ $) 173 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 149 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3493 (($ $) 169 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 145 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-1071 (-2 (|:| |k| (-696)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1071 |#1|)) 113 T ELT)) (-3497 (($ $) 177 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 153 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 25 T ELT)) (-3819 (($ $) 28 T ELT)) (-3817 (((-859 |#1|) $ (-696)) 81 T ELT) (((-859 |#1|) $ (-696) (-696)) 83 T ELT)) (-2895 (((-85) $) 124 T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-696) $) 126 T ELT) (((-696) $ (-696)) 128 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) NIL T ELT)) (-3818 (($ (-1 |#1| (-486)) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-696)) 13 T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3946 (($ $) 135 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3815 (($ $) 133 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT) (($ $ (-1178 |#2|)) 134 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3772 (($ $ (-696)) 15 T ELT)) (-3469 (((-3 $ #1#) $ $) 26 (|has| |#1| (-497)) ELT)) (-3947 (($ $) 137 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-696)))) ELT)) (-3803 ((|#1| $ (-696)) 122 T ELT) (($ $ $) 132 (|has| (-696) (-1027)) ELT)) (-3761 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-1178 |#2|)) 31 T ELT)) (-3952 (((-696) $) NIL T ELT)) (-3498 (($ $) 179 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 155 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 175 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 151 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 171 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 147 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3950 (((-774) $) 206 T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ |#1|) 130 (|has| |#1| (-146)) ELT) (($ (-1150 |#2| |#1|)) 55 T ELT) (($ (-1178 |#2|)) 36 T ELT)) (-3820 (((-1071 |#1|) $) 101 T ELT)) (-3680 ((|#1| $ (-696)) 121 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-3776 ((|#1| $) 58 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 185 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 161 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) 181 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 189 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 165 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-696)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-696)))) (|has| |#1| (-15 -3950 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) 191 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 167 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 187 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 163 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 183 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 159 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 17 T CONST)) (-2669 (($) 20 T CONST)) (-2672 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-1178 |#2|)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3842 (($ $ $) 35 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-312)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 141 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-1091 |#1| |#2| |#3|) (-13 (-1174 |#1|) (-808 $ (-1178 |#2|)) (-10 -8 (-15 -3950 ($ (-1150 |#2| |#1|))) (-15 -3814 ((-1150 |#2| |#1|) $ (-696))) (-15 -3950 ($ (-1178 |#2|))) (IF (|has| |#1| (-38 (-350 (-486)))) (-15 -3815 ($ $ (-1178 |#2|))) |%noBranch|))) (-963) (-1092) |#1|) (T -1091)) -((-3950 (*1 *1 *2) (-12 (-5 *2 (-1150 *4 *3)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3) (-5 *1 (-1091 *3 *4 *5)))) (-3814 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1150 *5 *4)) (-5 *1 (-1091 *4 *5 *6)) (-4 *4 (-963)) (-14 *5 (-1092)) (-14 *6 *4))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1091 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1091 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3540 (($ $ (-585 (-774))) 48 T ELT)) (-3541 (($ $ (-585 (-774))) 46 T ELT)) (-3538 (((-1075) $) 88 T ELT)) (-3543 (((-2 (|:| -2587 (-585 (-774))) (|:| -2486 (-585 (-774))) (|:| |presup| (-585 (-774))) (|:| -2585 (-585 (-774))) (|:| |args| (-585 (-774)))) $) 95 T ELT)) (-3544 (((-85) $) 86 T ELT)) (-3542 (($ $ (-585 (-585 (-774)))) 45 T ELT) (($ $ (-2 (|:| -2587 (-585 (-774))) (|:| -2486 (-585 (-774))) (|:| |presup| (-585 (-774))) (|:| -2585 (-585 (-774))) (|:| |args| (-585 (-774))))) 85 T ELT)) (-3727 (($) 151 T CONST)) (-3160 (((-3 (-448) "failed") $) 155 T ELT)) (-3159 (((-448) $) NIL T ELT)) (-3546 (((-1187)) 123 T ELT)) (-2799 (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 55 T ELT) (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 62 T ELT)) (-3617 (($) 109 T ELT) (($ $) 118 T ELT)) (-3545 (($ $) 87 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3537 (((-585 $) $) 124 T ELT)) (-3245 (((-1075) $) 101 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3803 (($ $ (-585 (-774))) 47 T ELT)) (-3975 (((-475) $) 33 T ELT) (((-1092) $) 34 T ELT) (((-802 (-486)) $) 66 T ELT) (((-802 (-330)) $) 64 T ELT)) (-3950 (((-774) $) 41 T ELT) (($ (-1075)) 35 T ELT) (($ (-448)) 153 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3539 (($ $ (-585 (-774))) 49 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 37 T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) 38 T ELT))) -(((-1092) (-13 (-758) (-555 (-475)) (-555 (-1092)) (-557 (-1075)) (-952 (-448)) (-555 (-802 (-486))) (-555 (-802 (-330))) (-798 (-486)) (-798 (-330)) (-10 -8 (-15 -3617 ($)) (-15 -3617 ($ $)) (-15 -3546 ((-1187))) (-15 -3545 ($ $)) (-15 -3544 ((-85) $)) (-15 -3543 ((-2 (|:| -2587 (-585 (-774))) (|:| -2486 (-585 (-774))) (|:| |presup| (-585 (-774))) (|:| -2585 (-585 (-774))) (|:| |args| (-585 (-774)))) $)) (-15 -3542 ($ $ (-585 (-585 (-774))))) (-15 -3542 ($ $ (-2 (|:| -2587 (-585 (-774))) (|:| -2486 (-585 (-774))) (|:| |presup| (-585 (-774))) (|:| -2585 (-585 (-774))) (|:| |args| (-585 (-774)))))) (-15 -3541 ($ $ (-585 (-774)))) (-15 -3540 ($ $ (-585 (-774)))) (-15 -3539 ($ $ (-585 (-774)))) (-15 -3803 ($ $ (-585 (-774)))) (-15 -3538 ((-1075) $)) (-15 -3537 ((-585 $) $)) (-15 -3727 ($) -3956)))) (T -1092)) -((-3617 (*1 *1) (-5 *1 (-1092))) (-3617 (*1 *1 *1) (-5 *1 (-1092))) (-3546 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1092)))) (-3545 (*1 *1 *1) (-5 *1 (-1092))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1092)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2587 (-585 (-774))) (|:| -2486 (-585 (-774))) (|:| |presup| (-585 (-774))) (|:| -2585 (-585 (-774))) (|:| |args| (-585 (-774))))) (-5 *1 (-1092)))) (-3542 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 (-774)))) (-5 *1 (-1092)))) (-3542 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2587 (-585 (-774))) (|:| -2486 (-585 (-774))) (|:| |presup| (-585 (-774))) (|:| -2585 (-585 (-774))) (|:| |args| (-585 (-774))))) (-5 *1 (-1092)))) (-3541 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1092)))) (-3540 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1092)))) (-3539 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1092)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1092)))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1092)))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-1092)))) (-3727 (*1 *1) (-5 *1 (-1092)))) -((-3547 (((-1181 |#1|) |#1| (-832)) 18 T ELT) (((-1181 |#1|) (-585 |#1|)) 25 T ELT))) -(((-1093 |#1|) (-10 -7 (-15 -3547 ((-1181 |#1|) (-585 |#1|))) (-15 -3547 ((-1181 |#1|) |#1| (-832)))) (-963)) (T -1093)) -((-3547 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-5 *2 (-1181 *3)) (-5 *1 (-1093 *3)) (-4 *3 (-963)))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-963)) (-5 *2 (-1181 *4)) (-5 *1 (-1093 *4))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-486) $) NIL (|has| |#1| (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| |#1| (-952 (-350 (-486)))) ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-393)) ELT)) (-1625 (($ $ |#1| (-886) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 18 T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-886)) NIL T ELT)) (-2823 (((-886) $) NIL T ELT)) (-1626 (($ (-1 (-886) (-886)) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-3741 (($ $ (-886) |#1| $) NIL (-12 (|has| (-886) (-104)) (|has| |#1| (-497))) ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-497)) ELT)) (-3952 (((-886) $) NIL T ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-393)) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ |#1|) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-952 (-350 (-486))))) ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-886)) NIL T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 13 T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 22 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-1094 |#1|) (-13 (-277 |#1| (-886)) (-10 -8 (IF (|has| |#1| (-497)) (IF (|has| (-886) (-104)) (-15 -3741 ($ $ (-886) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3996)) (-6 -3996) |%noBranch|))) (-963)) (T -1094)) -((-3741 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-886)) (-4 *2 (-104)) (-5 *1 (-1094 *3)) (-4 *3 (-497)) (-4 *3 (-963))))) -((-3548 (((-1096) (-1092) $) 26 T ELT)) (-3558 (($) 30 T ELT)) (-3550 (((-3 (|:| |fst| (-377)) (|:| -3914 #1="void")) (-1092) $) 23 T ELT)) (-3552 (((-1187) (-1092) (-3 (|:| |fst| (-377)) (|:| -3914 #1#)) $) 42 T ELT) (((-1187) (-1092) (-3 (|:| |fst| (-377)) (|:| -3914 #1#))) 43 T ELT) (((-1187) (-3 (|:| |fst| (-377)) (|:| -3914 #1#))) 44 T ELT)) (-3560 (((-1187) (-1092)) 59 T ELT)) (-3551 (((-1187) (-1092) $) 56 T ELT) (((-1187) (-1092)) 57 T ELT) (((-1187)) 58 T ELT)) (-3556 (((-1187) (-1092)) 38 T ELT)) (-3554 (((-1092)) 37 T ELT)) (-3568 (($) 35 T ELT)) (-3567 (((-379) (-1092) (-379) (-1092) $) 46 T ELT) (((-379) (-585 (-1092)) (-379) (-1092) $) 50 T ELT) (((-379) (-1092) (-379)) 47 T ELT) (((-379) (-1092) (-379) (-1092)) 51 T ELT)) (-3555 (((-1092)) 36 T ELT)) (-3950 (((-774) $) 29 T ELT)) (-3557 (((-1187)) 31 T ELT) (((-1187) (-1092)) 34 T ELT)) (-3549 (((-585 (-1092)) (-1092) $) 25 T ELT)) (-3553 (((-1187) (-1092) (-585 (-1092)) $) 39 T ELT) (((-1187) (-1092) (-585 (-1092))) 40 T ELT) (((-1187) (-585 (-1092))) 41 T ELT))) -(((-1095) (-13 (-554 (-774)) (-10 -8 (-15 -3558 ($)) (-15 -3557 ((-1187))) (-15 -3557 ((-1187) (-1092))) (-15 -3567 ((-379) (-1092) (-379) (-1092) $)) (-15 -3567 ((-379) (-585 (-1092)) (-379) (-1092) $)) (-15 -3567 ((-379) (-1092) (-379))) (-15 -3567 ((-379) (-1092) (-379) (-1092))) (-15 -3556 ((-1187) (-1092))) (-15 -3555 ((-1092))) (-15 -3554 ((-1092))) (-15 -3553 ((-1187) (-1092) (-585 (-1092)) $)) (-15 -3553 ((-1187) (-1092) (-585 (-1092)))) (-15 -3553 ((-1187) (-585 (-1092)))) (-15 -3552 ((-1187) (-1092) (-3 (|:| |fst| (-377)) (|:| -3914 #1="void")) $)) (-15 -3552 ((-1187) (-1092) (-3 (|:| |fst| (-377)) (|:| -3914 #1#)))) (-15 -3552 ((-1187) (-3 (|:| |fst| (-377)) (|:| -3914 #1#)))) (-15 -3551 ((-1187) (-1092) $)) (-15 -3551 ((-1187) (-1092))) (-15 -3551 ((-1187))) (-15 -3560 ((-1187) (-1092))) (-15 -3568 ($)) (-15 -3550 ((-3 (|:| |fst| (-377)) (|:| -3914 #1#)) (-1092) $)) (-15 -3549 ((-585 (-1092)) (-1092) $)) (-15 -3548 ((-1096) (-1092) $))))) (T -1095)) -((-3558 (*1 *1) (-5 *1 (-1095))) (-3557 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3567 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1092)) (-5 *1 (-1095)))) (-3567 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-379)) (-5 *3 (-585 (-1092))) (-5 *4 (-1092)) (-5 *1 (-1095)))) (-3567 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1092)) (-5 *1 (-1095)))) (-3567 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-379)) (-5 *3 (-1092)) (-5 *1 (-1095)))) (-3556 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3555 (*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1095)))) (-3554 (*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1095)))) (-3553 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-585 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3553 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-585 (-1092))) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3552 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1092)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3914 #1="void"))) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3552 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3914 #1#))) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-377)) (|:| -3914 #1#))) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3551 (*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3551 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3560 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) (-3568 (*1 *1) (-5 *1 (-1095))) (-3550 (*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3914 #1#))) (-5 *1 (-1095)))) (-3549 (*1 *2 *3 *1) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-1095)) (-5 *3 (-1092)))) (-3548 (*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-1096)) (-5 *1 (-1095))))) -((-3562 (((-585 (-585 (-3 (|:| -3545 (-1092)) (|:| -3228 (-585 (-3 (|:| S (-1092)) (|:| P (-859 (-486))))))))) $) 66 T ELT)) (-3564 (((-585 (-3 (|:| -3545 (-1092)) (|:| -3228 (-585 (-3 (|:| S (-1092)) (|:| P (-859 (-486)))))))) (-377) $) 47 T ELT)) (-3559 (($ (-585 (-2 (|:| -3864 (-1092)) (|:| |entry| (-379))))) 17 T ELT)) (-3560 (((-1187) $) 73 T ELT)) (-3565 (((-585 (-1092)) $) 22 T ELT)) (-3561 (((-1017) $) 60 T ELT)) (-3566 (((-379) (-1092) $) 27 T ELT)) (-3563 (((-585 (-1092)) $) 30 T ELT)) (-3568 (($) 19 T ELT)) (-3567 (((-379) (-585 (-1092)) (-379) $) 25 T ELT) (((-379) (-1092) (-379) $) 24 T ELT)) (-3950 (((-774) $) 12 T ELT) (((-1104 (-1092) (-379)) $) 13 T ELT))) -(((-1096) (-13 (-554 (-774)) (-10 -8 (-15 -3950 ((-1104 (-1092) (-379)) $)) (-15 -3568 ($)) (-15 -3567 ((-379) (-585 (-1092)) (-379) $)) (-15 -3567 ((-379) (-1092) (-379) $)) (-15 -3566 ((-379) (-1092) $)) (-15 -3565 ((-585 (-1092)) $)) (-15 -3564 ((-585 (-3 (|:| -3545 (-1092)) (|:| -3228 (-585 (-3 (|:| S (-1092)) (|:| P (-859 (-486)))))))) (-377) $)) (-15 -3563 ((-585 (-1092)) $)) (-15 -3562 ((-585 (-585 (-3 (|:| -3545 (-1092)) (|:| -3228 (-585 (-3 (|:| S (-1092)) (|:| P (-859 (-486))))))))) $)) (-15 -3561 ((-1017) $)) (-15 -3560 ((-1187) $)) (-15 -3559 ($ (-585 (-2 (|:| -3864 (-1092)) (|:| |entry| (-379))))))))) (T -1096)) -((-3950 (*1 *2 *1) (-12 (-5 *2 (-1104 (-1092) (-379))) (-5 *1 (-1096)))) (-3568 (*1 *1) (-5 *1 (-1096))) (-3567 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-585 (-1092))) (-5 *1 (-1096)))) (-3567 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1092)) (-5 *1 (-1096)))) (-3566 (*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-379)) (-5 *1 (-1096)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-1096)))) (-3564 (*1 *2 *3 *1) (-12 (-5 *3 (-377)) (-5 *2 (-585 (-3 (|:| -3545 (-1092)) (|:| -3228 (-585 (-3 (|:| S (-1092)) (|:| P (-859 (-486))))))))) (-5 *1 (-1096)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-1096)))) (-3562 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-3 (|:| -3545 (-1092)) (|:| -3228 (-585 (-3 (|:| S (-1092)) (|:| P (-859 (-486)))))))))) (-5 *1 (-1096)))) (-3561 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1096)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1096)))) (-3559 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -3864 (-1092)) (|:| |entry| (-379))))) (-5 *1 (-1096))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3160 (((-3 (-486) #1="failed") $) 29 T ELT) (((-3 (-179) #1#) $) 35 T ELT) (((-3 (-448) #1#) $) 43 T ELT) (((-3 (-1075) #1#) $) 47 T ELT)) (-3159 (((-486) $) 30 T ELT) (((-179) $) 36 T ELT) (((-448) $) 40 T ELT) (((-1075) $) 48 T ELT)) (-3573 (((-85) $) 53 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3572 (((-3 (-486) (-179) (-448) (-1075) $) $) 56 T ELT)) (-3571 (((-585 $) $) 58 T ELT)) (-3975 (((-1017) $) 24 T ELT) (($ (-1017)) 25 T ELT)) (-3570 (((-85) $) 57 T ELT)) (-3950 (((-774) $) 23 T ELT) (($ (-486)) 26 T ELT) (($ (-179)) 32 T ELT) (($ (-448)) 38 T ELT) (($ (-1075)) 44 T ELT) (((-475) $) 60 T ELT) (((-486) $) 31 T ELT) (((-179) $) 37 T ELT) (((-448) $) 41 T ELT) (((-1075) $) 49 T ELT)) (-3569 (((-85) $ (|[\|\|]| (-486))) 10 T ELT) (((-85) $ (|[\|\|]| (-179))) 13 T ELT) (((-85) $ (|[\|\|]| (-448))) 19 T ELT) (((-85) $ (|[\|\|]| (-1075))) 16 T ELT)) (-3574 (($ (-448) (-585 $)) 51 T ELT) (($ $ (-585 $)) 52 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3575 (((-486) $) 27 T ELT) (((-179) $) 33 T ELT) (((-448) $) 39 T ELT) (((-1075) $) 45 T ELT)) (-3059 (((-85) $ $) 7 T ELT))) -(((-1097) (-13 (-1177) (-1015) (-952 (-486)) (-952 (-179)) (-952 (-448)) (-952 (-1075)) (-554 (-475)) (-10 -8 (-15 -3975 ((-1017) $)) (-15 -3975 ($ (-1017))) (-15 -3950 ((-486) $)) (-15 -3575 ((-486) $)) (-15 -3950 ((-179) $)) (-15 -3575 ((-179) $)) (-15 -3950 ((-448) $)) (-15 -3575 ((-448) $)) (-15 -3950 ((-1075) $)) (-15 -3575 ((-1075) $)) (-15 -3574 ($ (-448) (-585 $))) (-15 -3574 ($ $ (-585 $))) (-15 -3573 ((-85) $)) (-15 -3572 ((-3 (-486) (-179) (-448) (-1075) $) $)) (-15 -3571 ((-585 $) $)) (-15 -3570 ((-85) $)) (-15 -3569 ((-85) $ (|[\|\|]| (-486)))) (-15 -3569 ((-85) $ (|[\|\|]| (-179)))) (-15 -3569 ((-85) $ (|[\|\|]| (-448)))) (-15 -3569 ((-85) $ (|[\|\|]| (-1075))))))) (T -1097)) -((-3975 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1097)))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-1097)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1097)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1097)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1097)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1097)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-1097)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-1097)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1097)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1097)))) (-3574 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-585 (-1097))) (-5 *1 (-1097)))) (-3574 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1097))) (-5 *1 (-1097)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1097)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-3 (-486) (-179) (-448) (-1075) (-1097))) (-5 *1 (-1097)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-585 (-1097))) (-5 *1 (-1097)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1097)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-486))) (-5 *2 (-85)) (-5 *1 (-1097)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1097)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-448))) (-5 *2 (-85)) (-5 *1 (-1097)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-85)) (-5 *1 (-1097))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3139 (((-696)) 21 T ELT)) (-3727 (($) 10 T CONST)) (-2997 (($) 25 T ELT)) (-2534 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2860 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2012 (((-832) $) 23 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) 22 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT))) -(((-1098 |#1|) (-13 (-754) (-10 -8 (-15 -3727 ($) -3956))) (-832)) (T -1098)) -((-3727 (*1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-832))))) -((-486) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) 24 T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) 18 T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2860 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-3728 (($ $ $) 20 T ELT)) (-3729 (($ $ $) 19 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) 22 T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) 21 T ELT))) -(((-1099 |#1|) (-13 (-754) (-606) (-10 -8 (-15 -3729 ($ $ $)) (-15 -3728 ($ $ $)) (-15 -3727 ($) -3956))) (-832)) (T -1099)) -((-3729 (*1 *1 *1 *1) (-12 (-5 *1 (-1099 *2)) (-14 *2 (-832)))) (-3728 (*1 *1 *1 *1) (-12 (-5 *1 (-1099 *2)) (-14 *2 (-832)))) (-3727 (*1 *1) (-12 (-5 *1 (-1099 *2)) (-14 *2 (-832))))) -((-696) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 9 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 7 T ELT))) -(((-1100) (-1015)) (T -1100)) -NIL -((-3577 (((-585 (-585 (-859 |#1|))) (-585 (-350 (-859 |#1|))) (-585 (-1092))) 69 T ELT)) (-3576 (((-585 (-249 (-350 (-859 |#1|)))) (-249 (-350 (-859 |#1|)))) 81 T ELT) (((-585 (-249 (-350 (-859 |#1|)))) (-350 (-859 |#1|))) 77 T ELT) (((-585 (-249 (-350 (-859 |#1|)))) (-249 (-350 (-859 |#1|))) (-1092)) 82 T ELT) (((-585 (-249 (-350 (-859 |#1|)))) (-350 (-859 |#1|)) (-1092)) 76 T ELT) (((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-249 (-350 (-859 |#1|))))) 108 T ELT) (((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-350 (-859 |#1|)))) 107 T ELT) (((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-249 (-350 (-859 |#1|)))) (-585 (-1092))) 109 T ELT) (((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-350 (-859 |#1|))) (-585 (-1092))) 106 T ELT))) -(((-1101 |#1|) (-10 -7 (-15 -3576 ((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-350 (-859 |#1|))) (-585 (-1092)))) (-15 -3576 ((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-249 (-350 (-859 |#1|)))) (-585 (-1092)))) (-15 -3576 ((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-350 (-859 |#1|))))) (-15 -3576 ((-585 (-585 (-249 (-350 (-859 |#1|))))) (-585 (-249 (-350 (-859 |#1|)))))) (-15 -3576 ((-585 (-249 (-350 (-859 |#1|)))) (-350 (-859 |#1|)) (-1092))) (-15 -3576 ((-585 (-249 (-350 (-859 |#1|)))) (-249 (-350 (-859 |#1|))) (-1092))) (-15 -3576 ((-585 (-249 (-350 (-859 |#1|)))) (-350 (-859 |#1|)))) (-15 -3576 ((-585 (-249 (-350 (-859 |#1|)))) (-249 (-350 (-859 |#1|))))) (-15 -3577 ((-585 (-585 (-859 |#1|))) (-585 (-350 (-859 |#1|))) (-585 (-1092))))) (-497)) (T -1101)) -((-3577 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-350 (-859 *5)))) (-5 *4 (-585 (-1092))) (-4 *5 (-497)) (-5 *2 (-585 (-585 (-859 *5)))) (-5 *1 (-1101 *5)))) (-3576 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-585 (-249 (-350 (-859 *4))))) (-5 *1 (-1101 *4)) (-5 *3 (-249 (-350 (-859 *4)))))) (-3576 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-585 (-249 (-350 (-859 *4))))) (-5 *1 (-1101 *4)) (-5 *3 (-350 (-859 *4))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-497)) (-5 *2 (-585 (-249 (-350 (-859 *5))))) (-5 *1 (-1101 *5)) (-5 *3 (-249 (-350 (-859 *5)))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-497)) (-5 *2 (-585 (-249 (-350 (-859 *5))))) (-5 *1 (-1101 *5)) (-5 *3 (-350 (-859 *5))))) (-3576 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *4)))))) (-5 *1 (-1101 *4)) (-5 *3 (-585 (-249 (-350 (-859 *4))))))) (-3576 (*1 *2 *3) (-12 (-5 *3 (-585 (-350 (-859 *4)))) (-4 *4 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *4)))))) (-5 *1 (-1101 *4)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-1092))) (-4 *5 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *5)))))) (-5 *1 (-1101 *5)) (-5 *3 (-585 (-249 (-350 (-859 *5))))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-350 (-859 *5)))) (-5 *4 (-585 (-1092))) (-4 *5 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *5)))))) (-5 *1 (-1101 *5))))) -((-3582 (((-1075)) 7 T ELT)) (-3579 (((-1075)) 11 T CONST)) (-3578 (((-1187) (-1075)) 13 T ELT)) (-3581 (((-1075)) 8 T CONST)) (-3580 (((-103)) 10 T CONST))) -(((-1102) (-13 (-1131) (-10 -7 (-15 -3582 ((-1075))) (-15 -3581 ((-1075)) -3956) (-15 -3580 ((-103)) -3956) (-15 -3579 ((-1075)) -3956) (-15 -3578 ((-1187) (-1075)))))) (T -1102)) -((-3582 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1102)))) (-3581 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1102)))) (-3580 (*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1102)))) (-3579 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1102)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1102))))) -((-3586 (((-585 (-585 |#1|)) (-585 (-585 |#1|)) (-585 (-585 (-585 |#1|)))) 56 T ELT)) (-3589 (((-585 (-585 (-585 |#1|))) (-585 (-585 |#1|))) 38 T ELT)) (-3590 (((-1105 (-585 |#1|)) (-585 |#1|)) 49 T ELT)) (-3592 (((-585 (-585 |#1|)) (-585 |#1|)) 45 T ELT)) (-3595 (((-2 (|:| |f1| (-585 |#1|)) (|:| |f2| (-585 (-585 (-585 |#1|)))) (|:| |f3| (-585 (-585 |#1|))) (|:| |f4| (-585 (-585 (-585 |#1|))))) (-585 (-585 (-585 |#1|)))) 53 T ELT)) (-3594 (((-2 (|:| |f1| (-585 |#1|)) (|:| |f2| (-585 (-585 (-585 |#1|)))) (|:| |f3| (-585 (-585 |#1|))) (|:| |f4| (-585 (-585 (-585 |#1|))))) (-585 |#1|) (-585 (-585 (-585 |#1|))) (-585 (-585 |#1|)) (-585 (-585 (-585 |#1|))) (-585 (-585 (-585 |#1|))) (-585 (-585 (-585 |#1|)))) 52 T ELT)) (-3591 (((-585 (-585 |#1|)) (-585 (-585 |#1|))) 43 T ELT)) (-3593 (((-585 |#1|) (-585 |#1|)) 46 T ELT)) (-3585 (((-585 (-585 (-585 |#1|))) (-585 |#1|) (-585 (-585 (-585 |#1|)))) 32 T ELT)) (-3584 (((-585 (-585 (-585 |#1|))) (-1 (-85) |#1| |#1|) (-585 |#1|) (-585 (-585 (-585 |#1|)))) 29 T ELT)) (-3583 (((-2 (|:| |fs| (-85)) (|:| |sd| (-585 |#1|)) (|:| |td| (-585 (-585 |#1|)))) (-1 (-85) |#1| |#1|) (-585 |#1|) (-585 (-585 |#1|))) 24 T ELT)) (-3587 (((-585 (-585 |#1|)) (-585 (-585 (-585 |#1|)))) 58 T ELT)) (-3588 (((-585 (-585 |#1|)) (-1105 (-585 |#1|))) 60 T ELT))) -(((-1103 |#1|) (-10 -7 (-15 -3583 ((-2 (|:| |fs| (-85)) (|:| |sd| (-585 |#1|)) (|:| |td| (-585 (-585 |#1|)))) (-1 (-85) |#1| |#1|) (-585 |#1|) (-585 (-585 |#1|)))) (-15 -3584 ((-585 (-585 (-585 |#1|))) (-1 (-85) |#1| |#1|) (-585 |#1|) (-585 (-585 (-585 |#1|))))) (-15 -3585 ((-585 (-585 (-585 |#1|))) (-585 |#1|) (-585 (-585 (-585 |#1|))))) (-15 -3586 ((-585 (-585 |#1|)) (-585 (-585 |#1|)) (-585 (-585 (-585 |#1|))))) (-15 -3587 ((-585 (-585 |#1|)) (-585 (-585 (-585 |#1|))))) (-15 -3588 ((-585 (-585 |#1|)) (-1105 (-585 |#1|)))) (-15 -3589 ((-585 (-585 (-585 |#1|))) (-585 (-585 |#1|)))) (-15 -3590 ((-1105 (-585 |#1|)) (-585 |#1|))) (-15 -3591 ((-585 (-585 |#1|)) (-585 (-585 |#1|)))) (-15 -3592 ((-585 (-585 |#1|)) (-585 |#1|))) (-15 -3593 ((-585 |#1|) (-585 |#1|))) (-15 -3594 ((-2 (|:| |f1| (-585 |#1|)) (|:| |f2| (-585 (-585 (-585 |#1|)))) (|:| |f3| (-585 (-585 |#1|))) (|:| |f4| (-585 (-585 (-585 |#1|))))) (-585 |#1|) (-585 (-585 (-585 |#1|))) (-585 (-585 |#1|)) (-585 (-585 (-585 |#1|))) (-585 (-585 (-585 |#1|))) (-585 (-585 (-585 |#1|))))) (-15 -3595 ((-2 (|:| |f1| (-585 |#1|)) (|:| |f2| (-585 (-585 (-585 |#1|)))) (|:| |f3| (-585 (-585 |#1|))) (|:| |f4| (-585 (-585 (-585 |#1|))))) (-585 (-585 (-585 |#1|)))))) (-758)) (T -1103)) -((-3595 (*1 *2 *3) (-12 (-4 *4 (-758)) (-5 *2 (-2 (|:| |f1| (-585 *4)) (|:| |f2| (-585 (-585 (-585 *4)))) (|:| |f3| (-585 (-585 *4))) (|:| |f4| (-585 (-585 (-585 *4)))))) (-5 *1 (-1103 *4)) (-5 *3 (-585 (-585 (-585 *4)))))) (-3594 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-758)) (-5 *3 (-585 *6)) (-5 *5 (-585 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-585 *5)) (|:| |f3| *5) (|:| |f4| (-585 *5)))) (-5 *1 (-1103 *6)) (-5 *4 (-585 *5)))) (-3593 (*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-1103 *3)))) (-3592 (*1 *2 *3) (-12 (-4 *4 (-758)) (-5 *2 (-585 (-585 *4))) (-5 *1 (-1103 *4)) (-5 *3 (-585 *4)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-758)) (-5 *1 (-1103 *3)))) (-3590 (*1 *2 *3) (-12 (-4 *4 (-758)) (-5 *2 (-1105 (-585 *4))) (-5 *1 (-1103 *4)) (-5 *3 (-585 *4)))) (-3589 (*1 *2 *3) (-12 (-4 *4 (-758)) (-5 *2 (-585 (-585 (-585 *4)))) (-5 *1 (-1103 *4)) (-5 *3 (-585 (-585 *4))))) (-3588 (*1 *2 *3) (-12 (-5 *3 (-1105 (-585 *4))) (-4 *4 (-758)) (-5 *2 (-585 (-585 *4))) (-5 *1 (-1103 *4)))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-585 *4)))) (-5 *2 (-585 (-585 *4))) (-5 *1 (-1103 *4)) (-4 *4 (-758)))) (-3586 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-585 (-585 *4)))) (-5 *2 (-585 (-585 *4))) (-4 *4 (-758)) (-5 *1 (-1103 *4)))) (-3585 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-585 (-585 *4)))) (-5 *3 (-585 *4)) (-4 *4 (-758)) (-5 *1 (-1103 *4)))) (-3584 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-585 (-585 (-585 *5)))) (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-585 *5)) (-4 *5 (-758)) (-5 *1 (-1103 *5)))) (-3583 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-758)) (-5 *4 (-585 *6)) (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-585 *4)))) (-5 *1 (-1103 *6)) (-5 *5 (-585 *4))))) -((-2571 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3602 (($) NIL T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1187) $ |#1| |#1|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1355 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3248 (((-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-2234 (((-585 |#1|) $) NIL T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT)) (-3246 (((-1035) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-758)) ELT)) (-1731 (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1037 |#2|)) ELT)) (-1277 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-696) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3950 (((-774) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-1267 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3059 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-1104 |#1| |#2|) (-1109 |#1| |#2|) (-1015) (-1015)) (T -1104)) -NIL -((-3596 (($ (-585 (-585 |#1|))) 10 T ELT)) (-3597 (((-585 (-585 |#1|)) $) 11 T ELT)) (-3950 (((-774) $) 33 T ELT))) -(((-1105 |#1|) (-10 -8 (-15 -3596 ($ (-585 (-585 |#1|)))) (-15 -3597 ((-585 (-585 |#1|)) $)) (-15 -3950 ((-774) $))) (-1015)) (T -1105)) -((-3950 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1105 *3)) (-4 *3 (-1015)))) (-3597 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 *3))) (-5 *1 (-1105 *3)) (-4 *3 (-1015)))) (-3596 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-1105 *3))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3598 (($ |#1| (-55)) 11 T ELT)) (-3545 ((|#1| $) 13 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2636 (((-85) $ |#1|) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2524 (((-55) $) 15 T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-1106 |#1|) (-13 (-749 |#1|) (-10 -8 (-15 -3598 ($ |#1| (-55))))) (-1015)) (T -1106)) -((-3598 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1106 *2)) (-4 *2 (-1015))))) -((-3599 ((|#1| (-585 |#1|)) 46 T ELT)) (-3601 ((|#1| |#1| (-486)) 24 T ELT)) (-3600 (((-1087 |#1|) |#1| (-832)) 20 T ELT))) -(((-1107 |#1|) (-10 -7 (-15 -3599 (|#1| (-585 |#1|))) (-15 -3600 ((-1087 |#1|) |#1| (-832))) (-15 -3601 (|#1| |#1| (-486)))) (-312)) (T -1107)) -((-3601 (*1 *2 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-1107 *2)) (-4 *2 (-312)))) (-3600 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-5 *2 (-1087 *3)) (-5 *1 (-1107 *3)) (-4 *3 (-312)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-1107 *2)) (-4 *2 (-312))))) -((-3602 (($) 10 T ELT) (($ (-585 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3408 (($ (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) $) 63 T ELT) (($ (-1 (-85) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2611 (((-585 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) $) 35 T ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) 29 T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) $) 49 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) $) 49 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 34 T ELT)) (-1276 (((-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) $) 56 T ELT)) (-3612 (($ (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2205 (((-585 |#2|) $) 19 T ELT)) (-2206 (((-85) |#2| $) 61 T ELT)) (-1731 (((-3 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) $) 60 T ELT)) (-1277 (((-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) $) 65 T ELT)) (-2207 (((-585 |#3|) $) 37 T ELT)) (-3950 (((-774) $) 27 T ELT)) (-3059 (((-85) $ $) 47 T ELT))) -(((-1108 |#1| |#2| |#3|) (-10 -7 (-15 -3059 ((-85) |#1| |#1|)) (-15 -3950 ((-774) |#1|)) (-15 -3846 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3602 (|#1| (-585 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))))) (-15 -3602 (|#1|)) (-15 -3846 (|#1| (-1 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -2611 ((-585 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1731 ((-3 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) #1="failed") (-1 (-85) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3408 ((-3 |#3| #1#) |#2| |#1|)) (-15 -3329 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3846 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2207 ((-585 |#3|) |#1|)) (-15 -2206 ((-85) |#2| |#1|)) (-15 -2205 ((-585 |#2|) |#1|)) (-15 -3408 (|#1| (-1 (-85) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3408 (|#1| (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1276 ((-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3612 (|#1| (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1277 ((-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3329 (|#1| (-1 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3846 (|#1| (-1 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) |#1|))) (-1109 |#2| |#3|) (-1015) (-1015)) (T -1108)) -NIL -((-2571 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3602 (($) 95 T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 94 T ELT)) (-2200 (((-1187) $ |#1| |#1|) 82 (|has| $ (-1037 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) 70 (|has| $ (-1037 |#2|)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 42 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) 59 T ELT)) (-3727 (($) 6 T CONST)) (-1355 (($ $) 51 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 44 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 43 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 60 T ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 50 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 111 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 107 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 106 T ELT)) (-1577 ((|#2| $ |#1| |#2|) 69 (|has| $ (-1037 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) 71 T ELT)) (-2202 ((|#1| $) 79 (|has| |#1| (-758)) ELT)) (-2611 (((-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 105 T ELT)) (-3248 (((-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 110 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2203 ((|#1| $) 78 (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 39 T ELT) (($ (-1 |#2| |#2|) $) 63 T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 26 T ELT) (($ (-1 |#2| |#2|) $) 64 T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 96 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 93 T ELT)) (-3245 (((-1075) $) 21 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-2234 (((-585 |#1|) $) 61 T ELT)) (-2235 (((-85) |#1| $) 62 T ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 35 T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 36 T ELT)) (-2205 (((-585 |#1|) $) 76 T ELT)) (-2206 (((-85) |#1| $) 75 T ELT)) (-3246 (((-1035) $) 20 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-3804 ((|#2| $) 80 (|has| |#1| (-758)) ELT)) (-1731 (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 108 T ELT)) (-2201 (($ $ |#2|) 81 (|has| $ (-1037 |#2|)) ELT)) (-1277 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 37 T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 103 T ELT)) (-3771 (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) 25 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 24 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 23 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 22 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 68 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) 67 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) 66 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) 65 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 100 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 99 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 98 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) 97 (-12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#2| $) 77 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2207 (((-585 |#2|) $) 74 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#2| $ |#1|) 73 T ELT) ((|#2| $ |#1| |#2|) 72 T ELT)) (-1467 (($) 46 T ELT) (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 45 T ELT)) (-1732 (((-696) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 109 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-696) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 104 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 52 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ELT)) (-3533 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 47 T ELT)) (-3950 (((-774) $) 16 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-774)))) ELT)) (-1267 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1278 (($ (-585 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 38 T ELT)) (-1734 (((-85) (-1 (-85) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 102 T ELT)) (-3059 (((-85) $ $) 17 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3961 (((-696) $) 101 T ELT))) -(((-1109 |#1| |#2|) (-113) (-1015) (-1015)) (T -1109)) -((-3602 (*1 *1) (-12 (-4 *1 (-1109 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-3602 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -3864 *3) (|:| |entry| *4)))) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *1 (-1109 *3 *4)))) (-3846 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1109 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) -(-13 (-551 |t#1| |t#2|) (-318 (-2 (|:| -3864 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -3602 ($)) (-15 -3602 ($ (-585 (-2 (|:| -3864 |t#1|) (|:| |entry| |t#2|))))) (-15 -3846 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-76 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1015)) (|has| |#2| (-72))) ((-554 (-774)) OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-1015)) (|has| |#2| (-554 (-774)))) ((-124 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-555 (-475)) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-555 (-475))) ((-183 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-318 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-381 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-381 |#2|) . T) ((-430 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-430 |#2|) . T) ((-540 |#1| |#2|) . T) ((-457 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015))) ((-457 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-13) . T) ((-551 |#1| |#2|) . T) ((-1015) OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ((-1037 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-1037 |#2|) . T) ((-1131) . T)) -((-3608 (((-85)) 29 T ELT)) (-3605 (((-1187) (-1075)) 31 T ELT)) (-3609 (((-85)) 41 T ELT)) (-3606 (((-1187)) 39 T ELT)) (-3604 (((-1187) (-1075) (-1075)) 30 T ELT)) (-3610 (((-85)) 42 T ELT)) (-3612 (((-1187) |#1| |#2|) 53 T ELT)) (-3603 (((-1187)) 26 T ELT)) (-3611 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3607 (((-1187)) 40 T ELT))) -(((-1110 |#1| |#2|) (-10 -7 (-15 -3603 ((-1187))) (-15 -3604 ((-1187) (-1075) (-1075))) (-15 -3605 ((-1187) (-1075))) (-15 -3606 ((-1187))) (-15 -3607 ((-1187))) (-15 -3608 ((-85))) (-15 -3609 ((-85))) (-15 -3610 ((-85))) (-15 -3611 ((-3 |#2| "failed") |#1|)) (-15 -3612 ((-1187) |#1| |#2|))) (-1015) (-1015)) (T -1110)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *2 (-1187)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3611 (*1 *2 *3) (|partial| -12 (-4 *2 (-1015)) (-5 *1 (-1110 *3 *2)) (-4 *3 (-1015)))) (-3610 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3609 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3608 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3607 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3606 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3605 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1110 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1015)))) (-3604 (*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1110 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1015)))) (-3603 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3618 (((-585 (-1075)) $) 37 T ELT)) (-3614 (((-585 (-1075)) $ (-585 (-1075))) 40 T ELT)) (-3613 (((-585 (-1075)) $ (-585 (-1075))) 39 T ELT)) (-3615 (((-585 (-1075)) $ (-585 (-1075))) 41 T ELT)) (-3616 (((-585 (-1075)) $) 36 T ELT)) (-3617 (($) 26 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3619 (((-585 (-1075)) $) 38 T ELT)) (-3620 (((-1187) $ (-486)) 33 T ELT) (((-1187) $) 34 T ELT)) (-3975 (($ (-774) (-486)) 31 T ELT) (($ (-774) (-486) (-774)) NIL T ELT)) (-3950 (((-774) $) 47 T ELT) (($ (-774)) 30 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-1111) (-13 (-1015) (-557 (-774)) (-10 -8 (-15 -3975 ($ (-774) (-486))) (-15 -3975 ($ (-774) (-486) (-774))) (-15 -3620 ((-1187) $ (-486))) (-15 -3620 ((-1187) $)) (-15 -3619 ((-585 (-1075)) $)) (-15 -3618 ((-585 (-1075)) $)) (-15 -3617 ($)) (-15 -3616 ((-585 (-1075)) $)) (-15 -3615 ((-585 (-1075)) $ (-585 (-1075)))) (-15 -3614 ((-585 (-1075)) $ (-585 (-1075)))) (-15 -3613 ((-585 (-1075)) $ (-585 (-1075))))))) (T -1111)) -((-3975 (*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-5 *3 (-486)) (-5 *1 (-1111)))) (-3975 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-774)) (-5 *3 (-486)) (-5 *1 (-1111)))) (-3620 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-1111)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1111)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111)))) (-3617 (*1 *1) (-5 *1 (-1111))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111)))) (-3615 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111)))) (-3614 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111)))) (-3613 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111))))) -((-3950 (((-1111) |#1|) 11 T ELT))) -(((-1112 |#1|) (-10 -7 (-15 -3950 ((-1111) |#1|))) (-1015)) (T -1112)) -((-3950 (*1 *2 *3) (-12 (-5 *2 (-1111)) (-5 *1 (-1112 *3)) (-4 *3 (-1015))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3625 (((-1075) $ (-1075)) 21 T ELT) (((-1075) $) 20 T ELT)) (-1698 (((-1075) $ (-1075)) 19 T ELT)) (-1702 (($ $ (-1075)) NIL T ELT)) (-3623 (((-3 (-1075) #1="failed") $) 11 T ELT)) (-3624 (((-1075) $) 8 T ELT)) (-3622 (((-3 (-1075) #1#) $) 12 T ELT)) (-1699 (((-1075) $) 9 T ELT)) (-1703 (($ (-338)) NIL T ELT) (($ (-338) (-1075)) NIL T ELT)) (-3545 (((-338) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-1700 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3621 (((-85) $) 25 T ELT)) (-3950 (((-774) $) NIL T ELT)) (-1701 (($ $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-1113) (-13 (-314 (-338) (-1075)) (-10 -8 (-15 -3625 ((-1075) $ (-1075))) (-15 -3625 ((-1075) $)) (-15 -3624 ((-1075) $)) (-15 -3623 ((-3 (-1075) #1="failed") $)) (-15 -3622 ((-3 (-1075) #1#) $)) (-15 -3621 ((-85) $))))) (T -1113)) -((-3625 (*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1113)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1113)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1113)))) (-3623 (*1 *2 *1) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-1113)))) (-3622 (*1 *2 *1) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-1113)))) (-3621 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1113))))) -((-3626 (((-3 (-486) #1="failed") |#1|) 19 T ELT)) (-3627 (((-3 (-486) #1#) |#1|) 14 T ELT)) (-3628 (((-486) (-1075)) 33 T ELT))) -(((-1114 |#1|) (-10 -7 (-15 -3626 ((-3 (-486) #1="failed") |#1|)) (-15 -3627 ((-3 (-486) #1#) |#1|)) (-15 -3628 ((-486) (-1075)))) (-963)) (T -1114)) -((-3628 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-486)) (-5 *1 (-1114 *4)) (-4 *4 (-963)))) (-3627 (*1 *2 *3) (|partial| -12 (-5 *2 (-486)) (-5 *1 (-1114 *3)) (-4 *3 (-963)))) (-3626 (*1 *2 *3) (|partial| -12 (-5 *2 (-486)) (-5 *1 (-1114 *3)) (-4 *3 (-963))))) -((-3629 (((-1049 (-179))) 9 T ELT))) -(((-1115) (-10 -7 (-15 -3629 ((-1049 (-179)))))) (T -1115)) -((-3629 (*1 *2) (-12 (-5 *2 (-1049 (-179))) (-5 *1 (-1115))))) -((-3630 (($) 12 T ELT)) (-3501 (($ $) 36 T ELT)) (-3499 (($ $) 34 T ELT)) (-3487 (($ $) 26 T ELT)) (-3503 (($ $) 18 T ELT)) (-3504 (($ $) 16 T ELT)) (-3502 (($ $) 20 T ELT)) (-3490 (($ $) 31 T ELT)) (-3500 (($ $) 35 T ELT)) (-3488 (($ $) 30 T ELT))) -(((-1116 |#1|) (-10 -7 (-15 -3630 (|#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3503 (|#1| |#1|)) (-15 -3504 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3488 (|#1| |#1|))) (-1117)) (T -1116)) -NIL -((-3495 (($ $) 26 T ELT)) (-3642 (($ $) 11 T ELT)) (-3493 (($ $) 27 T ELT)) (-3641 (($ $) 10 T ELT)) (-3497 (($ $) 28 T ELT)) (-3640 (($ $) 9 T ELT)) (-3630 (($) 16 T ELT)) (-3946 (($ $) 19 T ELT)) (-3947 (($ $) 18 T ELT)) (-3498 (($ $) 29 T ELT)) (-3639 (($ $) 8 T ELT)) (-3496 (($ $) 30 T ELT)) (-3638 (($ $) 7 T ELT)) (-3494 (($ $) 31 T ELT)) (-3637 (($ $) 6 T ELT)) (-3501 (($ $) 20 T ELT)) (-3489 (($ $) 32 T ELT)) (-3499 (($ $) 21 T ELT)) (-3487 (($ $) 33 T ELT)) (-3503 (($ $) 22 T ELT)) (-3491 (($ $) 34 T ELT)) (-3504 (($ $) 23 T ELT)) (-3492 (($ $) 35 T ELT)) (-3502 (($ $) 24 T ELT)) (-3490 (($ $) 36 T ELT)) (-3500 (($ $) 25 T ELT)) (-3488 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) -(((-1117) (-113)) (T -1117)) -((-3630 (*1 *1) (-4 *1 (-1117)))) -(-13 (-1120) (-66) (-434) (-35) (-239) (-10 -8 (-15 -3630 ($)))) -(((-35) . T) ((-66) . T) ((-239) . T) ((-434) . T) ((-1120) . T)) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 19 T ELT)) (-3635 (($ |#1| (-585 $)) 28 T ELT) (($ (-585 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3028 ((|#1| $ |#1|) 14 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) 13 (|has| $ (-1037 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3034 (((-585 $) $) 59 T ELT)) (-3030 (((-85) $ $) 50 (|has| |#1| (-72)) ELT)) (-2611 (((-585 |#1|) $) 70 T ELT)) (-3248 (((-85) |#1| $) 69 (|has| |#1| (-72)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3033 (((-585 |#1|) $) 55 T ELT)) (-3530 (((-85) $) 53 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 67 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 101 T ELT)) (-3406 (((-85) $) 9 T ELT)) (-3568 (($) 10 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT)) (-3032 (((-486) $ $) 48 T ELT)) (-3631 (((-585 $) $) 83 T ELT)) (-3632 (((-85) $ $) 104 T ELT)) (-3633 (((-585 $) $) 99 T ELT)) (-3634 (($ $) 100 T ELT)) (-3636 (((-85) $) 76 T ELT)) (-1732 (((-696) |#1| $) 17 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 25 T ELT)) (-3403 (($ $) 82 T ELT)) (-3950 (((-774) $) 85 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) 12 T ELT)) (-3031 (((-85) $ $) 39 (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 66 T ELT)) (-3059 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3961 (((-696) $) 80 T ELT))) -(((-1118 |#1|) (-13 (-925 |#1|) (-318 |#1|) (-1037 |#1|) (-10 -8 (-15 -3635 ($ |#1| (-585 $))) (-15 -3635 ($ (-585 |#1|))) (-15 -3635 ($ |#1|)) (-15 -3636 ((-85) $)) (-15 -3634 ($ $)) (-15 -3633 ((-585 $) $)) (-15 -3632 ((-85) $ $)) (-15 -3631 ((-585 $) $)))) (-1015)) (T -1118)) -((-3636 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1118 *3)) (-4 *3 (-1015)))) (-3635 (*1 *1 *2 *3) (-12 (-5 *3 (-585 (-1118 *2))) (-5 *1 (-1118 *2)) (-4 *2 (-1015)))) (-3635 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-1118 *3)))) (-3635 (*1 *1 *2) (-12 (-5 *1 (-1118 *2)) (-4 *2 (-1015)))) (-3634 (*1 *1 *1) (-12 (-5 *1 (-1118 *2)) (-4 *2 (-1015)))) (-3633 (*1 *2 *1) (-12 (-5 *2 (-585 (-1118 *3))) (-5 *1 (-1118 *3)) (-4 *3 (-1015)))) (-3632 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1118 *3)) (-4 *3 (-1015)))) (-3631 (*1 *2 *1) (-12 (-5 *2 (-585 (-1118 *3))) (-5 *1 (-1118 *3)) (-4 *3 (-1015))))) -((-3642 (($ $) 15 T ELT)) (-3640 (($ $) 12 T ELT)) (-3639 (($ $) 10 T ELT)) (-3638 (($ $) 17 T ELT))) -(((-1119 |#1|) (-10 -7 (-15 -3638 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -3642 (|#1| |#1|))) (-1120)) (T -1119)) -NIL -((-3642 (($ $) 11 T ELT)) (-3641 (($ $) 10 T ELT)) (-3640 (($ $) 9 T ELT)) (-3639 (($ $) 8 T ELT)) (-3638 (($ $) 7 T ELT)) (-3637 (($ $) 6 T ELT))) -(((-1120) (-113)) (T -1120)) -((-3642 (*1 *1 *1) (-4 *1 (-1120))) (-3641 (*1 *1 *1) (-4 *1 (-1120))) (-3640 (*1 *1 *1) (-4 *1 (-1120))) (-3639 (*1 *1 *1) (-4 *1 (-1120))) (-3638 (*1 *1 *1) (-4 *1 (-1120))) (-3637 (*1 *1 *1) (-4 *1 (-1120)))) -(-13 (-10 -8 (-15 -3637 ($ $)) (-15 -3638 ($ $)) (-15 -3639 ($ $)) (-15 -3640 ($ $)) (-15 -3641 ($ $)) (-15 -3642 ($ $)))) -((-3645 ((|#2| |#2|) 95 T ELT)) (-3648 (((-85) |#2|) 29 T ELT)) (-3646 ((|#2| |#2|) 33 T ELT)) (-3647 ((|#2| |#2|) 35 T ELT)) (-3643 ((|#2| |#2| (-1092)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3649 (((-142 |#2|) |#2|) 31 T ELT)) (-3644 ((|#2| |#2| (-1092)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) -(((-1121 |#1| |#2|) (-10 -7 (-15 -3643 (|#2| |#2|)) (-15 -3643 (|#2| |#2| (-1092))) (-15 -3644 (|#2| |#2|)) (-15 -3644 (|#2| |#2| (-1092))) (-15 -3645 (|#2| |#2|)) (-15 -3646 (|#2| |#2|)) (-15 -3647 (|#2| |#2|)) (-15 -3648 ((-85) |#2|)) (-15 -3649 ((-142 |#2|) |#2|))) (-13 (-393) (-952 (-486)) (-582 (-486))) (-13 (-27) (-1117) (-364 |#1|))) (T -1121)) -((-3649 (*1 *2 *3) (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-142 *3)) (-5 *1 (-1121 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) (-3648 (*1 *2 *3) (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-85)) (-5 *1 (-1121 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) (-3647 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *3))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *3))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *3))))) (-3644 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *3))))) (-3643 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *3)))))) -((-3650 ((|#4| |#4| |#1|) 31 T ELT)) (-3651 ((|#4| |#4| |#1|) 32 T ELT))) -(((-1122 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3650 (|#4| |#4| |#1|)) (-15 -3651 (|#4| |#4| |#1|))) (-497) (-324 |#1|) (-324 |#1|) (-629 |#1| |#2| |#3|)) (T -1122)) -((-3651 (*1 *2 *2 *3) (-12 (-4 *3 (-497)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1122 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-3650 (*1 *2 *2 *3) (-12 (-4 *3 (-497)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1122 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) -((-3669 ((|#2| |#2|) 148 T ELT)) (-3671 ((|#2| |#2|) 145 T ELT)) (-3668 ((|#2| |#2|) 136 T ELT)) (-3670 ((|#2| |#2|) 133 T ELT)) (-3667 ((|#2| |#2|) 141 T ELT)) (-3666 ((|#2| |#2|) 129 T ELT)) (-3655 ((|#2| |#2|) 44 T ELT)) (-3654 ((|#2| |#2|) 105 T ELT)) (-3652 ((|#2| |#2|) 88 T ELT)) (-3665 ((|#2| |#2|) 143 T ELT)) (-3664 ((|#2| |#2|) 131 T ELT)) (-3677 ((|#2| |#2|) 153 T ELT)) (-3675 ((|#2| |#2|) 151 T ELT)) (-3676 ((|#2| |#2|) 152 T ELT)) (-3674 ((|#2| |#2|) 150 T ELT)) (-3653 ((|#2| |#2|) 163 T ELT)) (-3678 ((|#2| |#2|) 30 (-12 (|has| |#2| (-555 (-802 |#1|))) (|has| |#2| (-798 |#1|)) (|has| |#1| (-555 (-802 |#1|))) (|has| |#1| (-798 |#1|))) ELT)) (-3656 ((|#2| |#2|) 89 T ELT)) (-3657 ((|#2| |#2|) 154 T ELT)) (-3966 ((|#2| |#2|) 155 T ELT)) (-3663 ((|#2| |#2|) 142 T ELT)) (-3662 ((|#2| |#2|) 130 T ELT)) (-3661 ((|#2| |#2|) 149 T ELT)) (-3673 ((|#2| |#2|) 147 T ELT)) (-3660 ((|#2| |#2|) 137 T ELT)) (-3672 ((|#2| |#2|) 135 T ELT)) (-3659 ((|#2| |#2|) 139 T ELT)) (-3658 ((|#2| |#2|) 127 T ELT))) -(((-1123 |#1| |#2|) (-10 -7 (-15 -3966 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -3667 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3671 (|#2| |#2|)) (-15 -3672 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (-15 -3674 (|#2| |#2|)) (-15 -3675 (|#2| |#2|)) (-15 -3676 (|#2| |#2|)) (-15 -3677 (|#2| |#2|)) (IF (|has| |#1| (-798 |#1|)) (IF (|has| |#1| (-555 (-802 |#1|))) (IF (|has| |#2| (-555 (-802 |#1|))) (IF (|has| |#2| (-798 |#1|)) (-15 -3678 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-393) (-13 (-364 |#1|) (-1117))) (T -1123)) -((-3678 (*1 *2 *2) (-12 (-4 *3 (-555 (-802 *3))) (-4 *3 (-798 *3)) (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-555 (-802 *3))) (-4 *2 (-798 *3)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3677 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3676 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3675 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3674 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3673 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3672 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3671 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3669 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3667 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3665 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) (-3966 (*1 *2 *2) (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-1092)) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3817 (((-859 |#1|) $ (-696)) 18 T ELT) (((-859 |#1|) $ (-696) (-696)) NIL T ELT)) (-2895 (((-85) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-696) $ (-1092)) NIL T ELT) (((-696) $ (-1092) (-696)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ $ (-585 (-1092)) (-585 (-471 (-1092)))) NIL T ELT) (($ $ (-1092) (-471 (-1092))) NIL T ELT) (($ |#1| (-471 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3946 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3815 (($ $ (-1092)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092) |#1|) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3679 (($ (-1 $) (-1092) |#1|) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3772 (($ $ (-696)) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-3947 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (($ $ (-1092) $) NIL T ELT) (($ $ (-585 (-1092)) (-585 $)) NIL T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT)) (-3761 (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) NIL T ELT)) (-3952 (((-471 (-1092)) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-1092)) NIL T ELT) (($ (-859 |#1|)) NIL T ELT)) (-3680 ((|#1| $ (-471 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (((-859 |#1|) $ (-696)) NIL T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1124 |#1|) (-13 (-681 |#1| (-1092)) (-10 -8 (-15 -3680 ((-859 |#1|) $ (-696))) (-15 -3950 ($ (-1092))) (-15 -3950 ($ (-859 |#1|))) (IF (|has| |#1| (-38 (-350 (-486)))) (PROGN (-15 -3815 ($ $ (-1092) |#1|)) (-15 -3679 ($ (-1 $) (-1092) |#1|))) |%noBranch|))) (-963)) (T -1124)) -((-3680 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-859 *4)) (-5 *1 (-1124 *4)) (-4 *4 (-963)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1124 *3)) (-4 *3 (-963)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-859 *3)) (-4 *3 (-963)) (-5 *1 (-1124 *3)))) (-3815 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *1 (-1124 *3)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)))) (-3679 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1124 *4))) (-5 *3 (-1092)) (-5 *1 (-1124 *4)) (-4 *4 (-38 (-350 (-486)))) (-4 *4 (-963))))) -((-3696 (((-85) |#5| $) 68 T ELT) (((-85) $) 109 T ELT)) (-3691 ((|#5| |#5| $) 83 T ELT)) (-3713 (($ (-1 (-85) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3692 (((-585 |#5|) (-585 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 81 T ELT)) (-3160 (((-3 $ #1#) (-585 |#5|)) 134 T ELT)) (-3802 (((-3 $ #1#) $) 119 T ELT)) (-3688 ((|#5| |#5| $) 101 T ELT)) (-3697 (((-85) |#5| $ (-1 (-85) |#5| |#5|)) 36 T ELT)) (-3686 ((|#5| |#5| $) 105 T ELT)) (-3845 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 77 T ELT)) (-3699 (((-2 (|:| -3865 (-585 |#5|)) (|:| -1703 (-585 |#5|))) $) 63 T ELT)) (-3698 (((-85) |#5| $) 66 T ELT) (((-85) $) 110 T ELT)) (-3183 ((|#4| $) 115 T ELT)) (-3801 (((-3 |#5| #1#) $) 117 T ELT)) (-3700 (((-585 |#5|) $) 55 T ELT)) (-3694 (((-85) |#5| $) 75 T ELT) (((-85) $) 114 T ELT)) (-3689 ((|#5| |#5| $) 89 T ELT)) (-3702 (((-85) $ $) 29 T ELT)) (-3695 (((-85) |#5| $) 71 T ELT) (((-85) $) 112 T ELT)) (-3690 ((|#5| |#5| $) 86 T ELT)) (-3804 (((-3 |#5| #1#) $) 116 T ELT)) (-3772 (($ $ |#5|) 135 T ELT)) (-3952 (((-696) $) 60 T ELT)) (-3533 (($ (-585 |#5|)) 132 T ELT)) (-2913 (($ $ |#4|) 130 T ELT)) (-2915 (($ $ |#4|) 128 T ELT)) (-3687 (($ $) 127 T ELT)) (-3950 (((-774) $) NIL T ELT) (((-585 |#5|) $) 120 T ELT)) (-3681 (((-696) $) 139 T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#5|))) #1#) (-585 |#5|) (-1 (-85) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#5|))) #1#) (-585 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|)) 51 T ELT)) (-3693 (((-85) $ (-1 (-85) |#5| (-585 |#5|))) 107 T ELT)) (-3683 (((-585 |#4|) $) 122 T ELT)) (-3937 (((-85) |#4| $) 125 T ELT)) (-3059 (((-85) $ $) 20 T ELT))) -(((-1125 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3681 ((-696) |#1|)) (-15 -3772 (|#1| |#1| |#5|)) (-15 -3713 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3937 ((-85) |#4| |#1|)) (-15 -3683 ((-585 |#4|) |#1|)) (-15 -3802 ((-3 |#1| #1#) |#1|)) (-15 -3801 ((-3 |#5| #1#) |#1|)) (-15 -3804 ((-3 |#5| #1#) |#1|)) (-15 -3686 (|#5| |#5| |#1|)) (-15 -3687 (|#1| |#1|)) (-15 -3688 (|#5| |#5| |#1|)) (-15 -3689 (|#5| |#5| |#1|)) (-15 -3690 (|#5| |#5| |#1|)) (-15 -3691 (|#5| |#5| |#1|)) (-15 -3692 ((-585 |#5|) (-585 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3845 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3694 ((-85) |#1|)) (-15 -3695 ((-85) |#1|)) (-15 -3696 ((-85) |#1|)) (-15 -3693 ((-85) |#1| (-1 (-85) |#5| (-585 |#5|)))) (-15 -3694 ((-85) |#5| |#1|)) (-15 -3695 ((-85) |#5| |#1|)) (-15 -3696 ((-85) |#5| |#1|)) (-15 -3697 ((-85) |#5| |#1| (-1 (-85) |#5| |#5|))) (-15 -3698 ((-85) |#1|)) (-15 -3698 ((-85) |#5| |#1|)) (-15 -3699 ((-2 (|:| -3865 (-585 |#5|)) (|:| -1703 (-585 |#5|))) |#1|)) (-15 -3952 ((-696) |#1|)) (-15 -3700 ((-585 |#5|) |#1|)) (-15 -3701 ((-3 (-2 (|:| |bas| |#1|) (|:| -3326 (-585 |#5|))) #1#) (-585 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|))) (-15 -3701 ((-3 (-2 (|:| |bas| |#1|) (|:| -3326 (-585 |#5|))) #1#) (-585 |#5|) (-1 (-85) |#5| |#5|))) (-15 -3702 ((-85) |#1| |#1|)) (-15 -2913 (|#1| |#1| |#4|)) (-15 -2915 (|#1| |#1| |#4|)) (-15 -3183 (|#4| |#1|)) (-15 -3160 ((-3 |#1| #1#) (-585 |#5|))) (-15 -3950 ((-585 |#5|) |#1|)) (-15 -3845 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3845 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3845 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3533 (|#1| (-585 |#5|))) (-15 -3713 (|#1| (-1 (-85) |#5|) |#1|)) (-15 -3950 ((-774) |#1|)) (-15 -3059 ((-85) |#1| |#1|))) (-1126 |#2| |#3| |#4| |#5|) (-497) (-719) (-758) (-979 |#2| |#3| |#4|)) (T -1125)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3684 (((-585 (-2 (|:| -3865 $) (|:| -1703 (-585 |#4|)))) (-585 |#4|)) 91 T ELT)) (-3685 (((-585 $) (-585 |#4|)) 92 T ELT)) (-3084 (((-585 |#3|) $) 39 T ELT)) (-2911 (((-85) $) 32 T ELT)) (-2902 (((-85) $) 23 (|has| |#1| (-497)) ELT)) (-3696 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3691 ((|#4| |#4| $) 98 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3713 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| "failed") $ |#3|) 85 T ELT)) (-3727 (($) 59 T CONST)) (-2907 (((-85) $) 28 (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) 30 (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) 31 (|has| |#1| (-497)) ELT)) (-3692 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 24 (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) 25 (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ "failed") (-585 |#4|)) 42 T ELT)) (-3159 (($ (-585 |#4|)) 41 T ELT)) (-3802 (((-3 $ "failed") $) 88 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-1355 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3409 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-497)) ELT)) (-3697 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3686 ((|#4| |#4| $) 93 T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3699 (((-2 (|:| -3865 (-585 |#4|)) (|:| -1703 (-585 |#4|))) $) 111 T ELT)) (-3698 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3183 ((|#3| $) 40 T ELT)) (-2611 (((-585 |#4|) $) 48 T ELT)) (-3248 (((-85) |#4| $) 53 (|has| |#4| (-72)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3846 (($ (-1 |#4| |#4|) $) 60 T ELT)) (-2917 (((-585 |#3|) $) 38 T ELT)) (-2916 (((-85) |#3| $) 37 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3801 (((-3 |#4| "failed") $) 89 T ELT)) (-3700 (((-585 |#4|) $) 113 T ELT)) (-3694 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3702 (((-85) $ $) 116 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-497)) ELT)) (-3695 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3804 (((-3 |#4| "failed") $) 90 T ELT)) (-1731 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 51 T ELT)) (-3682 (((-3 $ "failed") $ |#4|) 84 T ELT)) (-3772 (($ $ |#4|) 83 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 46 T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) 64 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) 55 T ELT)) (-3406 (((-85) $) 58 T ELT)) (-3568 (($) 57 T ELT)) (-3952 (((-696) $) 112 T ELT)) (-1732 (((-696) |#4| $) 52 (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) 47 T ELT)) (-3403 (($ $) 56 T ELT)) (-3975 (((-475) $) 70 (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) 65 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-2915 (($ $ |#3|) 36 T ELT)) (-3687 (($ $) 94 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3950 (((-774) $) 13 T ELT) (((-585 |#4|) $) 43 T ELT)) (-3681 (((-696) $) 82 (|has| |#3| (-320)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3693 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) 104 T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3683 (((-585 |#3|) $) 87 T ELT)) (-3937 (((-85) |#3| $) 86 T ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3961 (((-696) $) 44 T ELT))) -(((-1126 |#1| |#2| |#3| |#4|) (-113) (-497) (-719) (-758) (-979 |t#1| |t#2| |t#3|)) (T -1126)) -((-3702 (*1 *2 *1 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-3701 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3326 (-585 *8)))) (-5 *3 (-585 *8)) (-4 *1 (-1126 *5 *6 *7 *8)))) (-3701 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) (-4 *9 (-979 *6 *7 *8)) (-4 *6 (-497)) (-4 *7 (-719)) (-4 *8 (-758)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3326 (-585 *9)))) (-5 *3 (-585 *9)) (-4 *1 (-1126 *6 *7 *8 *9)))) (-3700 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *6)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-696)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-2 (|:| -3865 (-585 *6)) (|:| -1703 (-585 *6)))))) (-3698 (*1 *2 *3 *1) (-12 (-4 *1 (-1126 *4 *5 *6 *3)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-3697 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1126 *5 *6 *7 *3)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-85)))) (-3696 (*1 *2 *3 *1) (-12 (-4 *1 (-1126 *4 *5 *6 *3)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3695 (*1 *2 *3 *1) (-12 (-4 *1 (-1126 *4 *5 *6 *3)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3694 (*1 *2 *3 *1) (-12 (-4 *1 (-1126 *4 *5 *6 *3)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-85) *7 (-585 *7))) (-4 *1 (-1126 *4 *5 *6 *7)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3696 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-3845 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) (-4 *1 (-1126 *5 *6 *7 *2)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *2 (-979 *5 *6 *7)))) (-3692 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-585 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) (-4 *1 (-1126 *5 *6 *7 *8)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)))) (-3691 (*1 *2 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3690 (*1 *2 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3689 (*1 *2 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3688 (*1 *2 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3687 (*1 *1 *1) (-12 (-4 *1 (-1126 *2 *3 *4 *5)) (-4 *2 (-497)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-979 *2 *3 *4)))) (-3686 (*1 *2 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-1126 *4 *5 *6 *7)))) (-3684 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-585 (-2 (|:| -3865 *1) (|:| -1703 (-585 *7))))) (-5 *3 (-585 *7)) (-4 *1 (-1126 *4 *5 *6 *7)))) (-3804 (*1 *2 *1) (|partial| -12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3801 (*1 *2 *1) (|partial| -12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3802 (*1 *1 *1) (|partial| -12 (-4 *1 (-1126 *2 *3 *4 *5)) (-4 *2 (-497)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-979 *2 *3 *4)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *5)))) (-3937 (*1 *2 *3 *1) (-12 (-4 *1 (-1126 *4 *5 *3 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *3 (-758)) (-4 *6 (-979 *4 *5 *3)) (-5 *2 (-85)))) (-3713 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1126 *4 *5 *3 *2)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *3 (-758)) (-4 *2 (-979 *4 *5 *3)))) (-3682 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3772 (*1 *1 *1 *2) (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *5 (-320)) (-5 *2 (-696))))) -(-13 (-891 |t#1| |t#2| |t#3| |t#4|) (-1037 |t#4|) (-10 -8 (-15 -3702 ((-85) $ $)) (-15 -3701 ((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |t#4|))) "failed") (-585 |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3701 ((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |t#4|))) "failed") (-585 |t#4|) (-1 (-85) |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3700 ((-585 |t#4|) $)) (-15 -3952 ((-696) $)) (-15 -3699 ((-2 (|:| -3865 (-585 |t#4|)) (|:| -1703 (-585 |t#4|))) $)) (-15 -3698 ((-85) |t#4| $)) (-15 -3698 ((-85) $)) (-15 -3697 ((-85) |t#4| $ (-1 (-85) |t#4| |t#4|))) (-15 -3696 ((-85) |t#4| $)) (-15 -3695 ((-85) |t#4| $)) (-15 -3694 ((-85) |t#4| $)) (-15 -3693 ((-85) $ (-1 (-85) |t#4| (-585 |t#4|)))) (-15 -3696 ((-85) $)) (-15 -3695 ((-85) $)) (-15 -3694 ((-85) $)) (-15 -3845 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3692 ((-585 |t#4|) (-585 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3691 (|t#4| |t#4| $)) (-15 -3690 (|t#4| |t#4| $)) (-15 -3689 (|t#4| |t#4| $)) (-15 -3688 (|t#4| |t#4| $)) (-15 -3687 ($ $)) (-15 -3686 (|t#4| |t#4| $)) (-15 -3685 ((-585 $) (-585 |t#4|))) (-15 -3684 ((-585 (-2 (|:| -3865 $) (|:| -1703 (-585 |t#4|)))) (-585 |t#4|))) (-15 -3804 ((-3 |t#4| "failed") $)) (-15 -3801 ((-3 |t#4| "failed") $)) (-15 -3802 ((-3 $ "failed") $)) (-15 -3683 ((-585 |t#3|) $)) (-15 -3937 ((-85) |t#3| $)) (-15 -3713 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3682 ((-3 $ "failed") $ |t#4|)) (-15 -3772 ($ $ |t#4|)) (IF (|has| |t#3| (-320)) (-15 -3681 ((-696) $)) |%noBranch|))) -(((-34) . T) ((-72) . T) ((-554 (-585 |#4|)) . T) ((-554 (-774)) . T) ((-124 |#4|) . T) ((-555 (-475)) |has| |#4| (-555 (-475))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-318 |#4|) . T) ((-381 |#4|) . T) ((-430 |#4|) . T) ((-457 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-13) . T) ((-891 |#1| |#2| |#3| |#4|) . T) ((-1015) . T) ((-1037 |#4|) . T) ((-1131) . T)) -((-3708 (($ |#1| (-585 (-585 (-856 (-179)))) (-85)) 19 T ELT)) (-3707 (((-85) $ (-85)) 18 T ELT)) (-3706 (((-85) $) 17 T ELT)) (-3704 (((-585 (-585 (-856 (-179)))) $) 13 T ELT)) (-3703 ((|#1| $) 8 T ELT)) (-3705 (((-85) $) 15 T ELT))) -(((-1127 |#1|) (-10 -8 (-15 -3703 (|#1| $)) (-15 -3704 ((-585 (-585 (-856 (-179)))) $)) (-15 -3705 ((-85) $)) (-15 -3706 ((-85) $)) (-15 -3707 ((-85) $ (-85))) (-15 -3708 ($ |#1| (-585 (-585 (-856 (-179)))) (-85)))) (-889)) (T -1127)) -((-3708 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-85)) (-5 *1 (-1127 *2)) (-4 *2 (-889)))) (-3707 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1127 *3)) (-4 *3 (-889)))) (-3706 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1127 *3)) (-4 *3 (-889)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1127 *3)) (-4 *3 (-889)))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-1127 *3)) (-4 *3 (-889)))) (-3703 (*1 *2 *1) (-12 (-5 *1 (-1127 *2)) (-4 *2 (-889))))) -((-3710 (((-856 (-179)) (-856 (-179))) 31 T ELT)) (-3709 (((-856 (-179)) (-179) (-179) (-179) (-179)) 10 T ELT)) (-3712 (((-585 (-856 (-179))) (-856 (-179)) (-856 (-179)) (-856 (-179)) (-179) (-585 (-585 (-179)))) 57 T ELT)) (-3839 (((-179) (-856 (-179)) (-856 (-179))) 27 T ELT)) (-3837 (((-856 (-179)) (-856 (-179)) (-856 (-179))) 28 T ELT)) (-3711 (((-585 (-585 (-179))) (-486)) 45 T ELT)) (-3840 (((-856 (-179)) (-856 (-179)) (-856 (-179))) 26 T ELT)) (-3842 (((-856 (-179)) (-856 (-179)) (-856 (-179))) 24 T ELT)) (* (((-856 (-179)) (-179) (-856 (-179))) 22 T ELT))) -(((-1128) (-10 -7 (-15 -3709 ((-856 (-179)) (-179) (-179) (-179) (-179))) (-15 * ((-856 (-179)) (-179) (-856 (-179)))) (-15 -3842 ((-856 (-179)) (-856 (-179)) (-856 (-179)))) (-15 -3840 ((-856 (-179)) (-856 (-179)) (-856 (-179)))) (-15 -3839 ((-179) (-856 (-179)) (-856 (-179)))) (-15 -3837 ((-856 (-179)) (-856 (-179)) (-856 (-179)))) (-15 -3710 ((-856 (-179)) (-856 (-179)))) (-15 -3711 ((-585 (-585 (-179))) (-486))) (-15 -3712 ((-585 (-856 (-179))) (-856 (-179)) (-856 (-179)) (-856 (-179)) (-179) (-585 (-585 (-179))))))) (T -1128)) -((-3712 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-585 (-585 (-179)))) (-5 *4 (-179)) (-5 *2 (-585 (-856 *4))) (-5 *1 (-1128)) (-5 *3 (-856 *4)))) (-3711 (*1 *2 *3) (-12 (-5 *3 (-486)) (-5 *2 (-585 (-585 (-179)))) (-5 *1 (-1128)))) (-3710 (*1 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128)))) (-3837 (*1 *2 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128)))) (-3839 (*1 *2 *3 *3) (-12 (-5 *3 (-856 (-179))) (-5 *2 (-179)) (-5 *1 (-1128)))) (-3840 (*1 *2 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128)))) (-3842 (*1 *2 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-856 (-179))) (-5 *3 (-179)) (-5 *1 (-1128)))) (-3709 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128)) (-5 *3 (-179))))) -((-2571 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3713 ((|#1| $ (-696)) 18 T ELT)) (-3836 (((-696) $) 13 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3950 (((-871 |#1|) $) 12 T ELT) (($ (-871 |#1|)) 11 T ELT) (((-774) $) 29 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3059 (((-85) $ $) 22 (|has| |#1| (-1015)) ELT))) -(((-1129 |#1|) (-13 (-431 (-871 |#1|)) (-10 -8 (-15 -3713 (|#1| $ (-696))) (-15 -3836 ((-696) $)) (IF (|has| |#1| (-554 (-774))) (-6 (-554 (-774))) |%noBranch|) (IF (|has| |#1| (-1015)) (-6 (-1015)) |%noBranch|))) (-1131)) (T -1129)) -((-3713 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-1129 *2)) (-4 *2 (-1131)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1129 *3)) (-4 *3 (-1131))))) -((-3716 (((-348 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|)) (-486)) 92 T ELT)) (-3714 (((-348 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|))) 84 T ELT)) (-3715 (((-348 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|))) 68 T ELT))) -(((-1130 |#1|) (-10 -7 (-15 -3714 ((-348 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|)))) (-15 -3715 ((-348 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|)))) (-15 -3716 ((-348 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|)) (-486)))) (-299)) (T -1130)) -((-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-486)) (-4 *5 (-299)) (-5 *2 (-348 (-1087 (-1087 *5)))) (-5 *1 (-1130 *5)) (-5 *3 (-1087 (-1087 *5))))) (-3715 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1087 (-1087 *4)))) (-5 *1 (-1130 *4)) (-5 *3 (-1087 (-1087 *4))))) (-3714 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1087 (-1087 *4)))) (-5 *1 (-1130 *4)) (-5 *3 (-1087 (-1087 *4)))))) -NIL -(((-1131) (-113)) (T -1131)) +((-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-466))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-466)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-174))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-174)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-621))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-621)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-1194))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-1194)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-111)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-543))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-543)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-106)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-1033))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-1033)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-67)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-626))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-626)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-462)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-982))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-982)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-1195))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-1195)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-467))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-467)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-1071)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-127)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-617)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-265))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-265)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-952))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-952)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-156)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-887))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-887)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-989))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-989)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-1007))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-1007)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-1012))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-1012)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-569))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-569)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-1085)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-129)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-110)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-421))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-421)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-532))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-532)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-450))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-450)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-1077)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-488))) (-5 *2 (-85)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-488))))) +(-13 (-999) (-1179) (-10 -8 (-15 -3572 ((-85) $ (|[\|\|]| (-466)))) (-15 -3578 ((-466) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-174)))) (-15 -3578 ((-174) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-621)))) (-15 -3578 ((-621) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-1194)))) (-15 -3578 ((-1194) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-111)))) (-15 -3578 ((-111) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-543)))) (-15 -3578 ((-543) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-106)))) (-15 -3578 ((-106) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-1033)))) (-15 -3578 ((-1033) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-67)))) (-15 -3578 ((-67) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-626)))) (-15 -3578 ((-626) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-462)))) (-15 -3578 ((-462) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-982)))) (-15 -3578 ((-982) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-1195)))) (-15 -3578 ((-1195) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-467)))) (-15 -3578 ((-467) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-1071)))) (-15 -3578 ((-1071) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-127)))) (-15 -3578 ((-127) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-617)))) (-15 -3578 ((-617) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-265)))) (-15 -3578 ((-265) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-952)))) (-15 -3578 ((-952) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-156)))) (-15 -3578 ((-156) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-887)))) (-15 -3578 ((-887) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-989)))) (-15 -3578 ((-989) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-1007)))) (-15 -3578 ((-1007) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-1012)))) (-15 -3578 ((-1012) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-569)))) (-15 -3578 ((-569) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-1085)))) (-15 -3578 ((-1085) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-129)))) (-15 -3578 ((-129) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-110)))) (-15 -3578 ((-110) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-421)))) (-15 -3578 ((-421) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-532)))) (-15 -3578 ((-532) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-450)))) (-15 -3578 ((-450) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-1077)))) (-15 -3578 ((-1077) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-488)))) (-15 -3578 ((-488) $)))) +(((-64) . T) ((-72) . T) ((-559 (-1099)) . T) ((-556 (-776)) . T) ((-556 (-1099)) . T) ((-433 (-1099)) . T) ((-13) . T) ((-1017) . T) ((-999) . T) ((-1133) . T) ((-1179) . T)) +((-3388 (((-1189) (-587 (-776))) 22 T ELT) (((-1189) (-776)) 21 T ELT)) (-3387 (((-1189) (-587 (-776))) 20 T ELT) (((-1189) (-776)) 19 T ELT)) (-3386 (((-1189) (-587 (-776))) 18 T ELT) (((-1189) (-776)) 10 T ELT) (((-1189) (-1077) (-776)) 16 T ELT))) +(((-1056) (-10 -7 (-15 -3386 ((-1189) (-1077) (-776))) (-15 -3386 ((-1189) (-776))) (-15 -3387 ((-1189) (-776))) (-15 -3388 ((-1189) (-776))) (-15 -3386 ((-1189) (-587 (-776)))) (-15 -3387 ((-1189) (-587 (-776)))) (-15 -3388 ((-1189) (-587 (-776)))))) (T -1056)) +((-3388 (*1 *2 *3) (-12 (-5 *3 (-587 (-776))) (-5 *2 (-1189)) (-5 *1 (-1056)))) (-3387 (*1 *2 *3) (-12 (-5 *3 (-587 (-776))) (-5 *2 (-1189)) (-5 *1 (-1056)))) (-3386 (*1 *2 *3) (-12 (-5 *3 (-587 (-776))) (-5 *2 (-1189)) (-5 *1 (-1056)))) (-3388 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1189)) (-5 *1 (-1056)))) (-3387 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1189)) (-5 *1 (-1056)))) (-3386 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1189)) (-5 *1 (-1056)))) (-3386 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-776)) (-5 *2 (-1189)) (-5 *1 (-1056))))) +((-3392 (($ $ $) 10 T ELT)) (-3391 (($ $) 9 T ELT)) (-3395 (($ $ $) 13 T ELT)) (-3397 (($ $ $) 15 T ELT)) (-3394 (($ $ $) 12 T ELT)) (-3396 (($ $ $) 14 T ELT)) (-3399 (($ $) 17 T ELT)) (-3398 (($ $) 16 T ELT)) (-3389 (($ $) 6 T ELT)) (-3393 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3390 (($ $ $) 8 T ELT))) +(((-1057) (-113)) (T -1057)) +((-3399 (*1 *1 *1) (-4 *1 (-1057))) (-3398 (*1 *1 *1) (-4 *1 (-1057))) (-3397 (*1 *1 *1 *1) (-4 *1 (-1057))) (-3396 (*1 *1 *1 *1) (-4 *1 (-1057))) (-3395 (*1 *1 *1 *1) (-4 *1 (-1057))) (-3394 (*1 *1 *1 *1) (-4 *1 (-1057))) (-3393 (*1 *1 *1 *1) (-4 *1 (-1057))) (-3392 (*1 *1 *1 *1) (-4 *1 (-1057))) (-3391 (*1 *1 *1) (-4 *1 (-1057))) (-3390 (*1 *1 *1 *1) (-4 *1 (-1057))) (-3393 (*1 *1 *1) (-4 *1 (-1057))) (-3389 (*1 *1 *1) (-4 *1 (-1057)))) +(-13 (-10 -8 (-15 -3389 ($ $)) (-15 -3393 ($ $)) (-15 -3390 ($ $ $)) (-15 -3391 ($ $)) (-15 -3392 ($ $ $)) (-15 -3393 ($ $ $)) (-15 -3394 ($ $ $)) (-15 -3395 ($ $ $)) (-15 -3396 ($ $ $)) (-15 -3397 ($ $ $)) (-15 -3398 ($ $)) (-15 -3399 ($ $)))) +((-2574 (((-85) $ $) 44 T ELT)) (-3408 ((|#1| $) 17 T ELT)) (-3400 (((-85) $ $ (-1 (-85) |#2| |#2|)) 39 T ELT)) (-3407 (((-85) $) 19 T ELT)) (-3405 (($ $ |#1|) 30 T ELT)) (-3403 (($ $ (-85)) 32 T ELT)) (-3402 (($ $) 33 T ELT)) (-3404 (($ $ |#2|) 31 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3401 (((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|)) 38 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3409 (((-85) $) 16 T ELT)) (-3571 (($) 13 T ELT)) (-3406 (($ $) 29 T ELT)) (-3536 (($ |#1| |#2| (-85)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1604 |#2|))) 23 T ELT) (((-587 $) (-587 (-2 (|:| |val| |#1|) (|:| -1604 |#2|)))) 26 T ELT) (((-587 $) |#1| (-587 |#2|)) 28 T ELT)) (-3929 ((|#2| $) 18 T ELT)) (-3953 (((-776) $) 53 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 42 T ELT))) +(((-1058 |#1| |#2|) (-13 (-1017) (-10 -8 (-15 -3571 ($)) (-15 -3409 ((-85) $)) (-15 -3408 (|#1| $)) (-15 -3929 (|#2| $)) (-15 -3407 ((-85) $)) (-15 -3536 ($ |#1| |#2| (-85))) (-15 -3536 ($ |#1| |#2|)) (-15 -3536 ($ (-2 (|:| |val| |#1|) (|:| -1604 |#2|)))) (-15 -3536 ((-587 $) (-587 (-2 (|:| |val| |#1|) (|:| -1604 |#2|))))) (-15 -3536 ((-587 $) |#1| (-587 |#2|))) (-15 -3406 ($ $)) (-15 -3405 ($ $ |#1|)) (-15 -3404 ($ $ |#2|)) (-15 -3403 ($ $ (-85))) (-15 -3402 ($ $)) (-15 -3401 ((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|))) (-15 -3400 ((-85) $ $ (-1 (-85) |#2| |#2|))))) (-13 (-1017) (-34)) (-13 (-1017) (-34))) (T -1058)) +((-3571 (*1 *1) (-12 (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1017) (-34))) (-4 *3 (-13 (-1017) (-34))))) (-3409 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1058 *3 *4)) (-4 *3 (-13 (-1017) (-34))) (-4 *4 (-13 (-1017) (-34))))) (-3408 (*1 *2 *1) (-12 (-4 *2 (-13 (-1017) (-34))) (-5 *1 (-1058 *2 *3)) (-4 *3 (-13 (-1017) (-34))))) (-3929 (*1 *2 *1) (-12 (-4 *2 (-13 (-1017) (-34))) (-5 *1 (-1058 *3 *2)) (-4 *3 (-13 (-1017) (-34))))) (-3407 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1058 *3 *4)) (-4 *3 (-13 (-1017) (-34))) (-4 *4 (-13 (-1017) (-34))))) (-3536 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1017) (-34))) (-4 *3 (-13 (-1017) (-34))))) (-3536 (*1 *1 *2 *3) (-12 (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1017) (-34))) (-4 *3 (-13 (-1017) (-34))))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1604 *4))) (-4 *3 (-13 (-1017) (-34))) (-4 *4 (-13 (-1017) (-34))) (-5 *1 (-1058 *3 *4)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| |val| *4) (|:| -1604 *5)))) (-4 *4 (-13 (-1017) (-34))) (-4 *5 (-13 (-1017) (-34))) (-5 *2 (-587 (-1058 *4 *5))) (-5 *1 (-1058 *4 *5)))) (-3536 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *5)) (-4 *5 (-13 (-1017) (-34))) (-5 *2 (-587 (-1058 *3 *5))) (-5 *1 (-1058 *3 *5)) (-4 *3 (-13 (-1017) (-34))))) (-3406 (*1 *1 *1) (-12 (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1017) (-34))) (-4 *3 (-13 (-1017) (-34))))) (-3405 (*1 *1 *1 *2) (-12 (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1017) (-34))) (-4 *3 (-13 (-1017) (-34))))) (-3404 (*1 *1 *1 *2) (-12 (-5 *1 (-1058 *3 *2)) (-4 *3 (-13 (-1017) (-34))) (-4 *2 (-13 (-1017) (-34))))) (-3403 (*1 *1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1058 *3 *4)) (-4 *3 (-13 (-1017) (-34))) (-4 *4 (-13 (-1017) (-34))))) (-3402 (*1 *1 *1) (-12 (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1017) (-34))) (-4 *3 (-13 (-1017) (-34))))) (-3401 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1017) (-34))) (-4 *6 (-13 (-1017) (-34))) (-5 *2 (-85)) (-5 *1 (-1058 *5 *6)))) (-3400 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1017) (-34))) (-5 *2 (-85)) (-5 *1 (-1058 *4 *5)) (-4 *4 (-13 (-1017) (-34)))))) +((-2574 (((-85) $ $) NIL (|has| (-1058 |#1| |#2|) (-72)) ELT)) (-3408 (((-1058 |#1| |#2|) $) 27 T ELT)) (-3417 (($ $) 91 T ELT)) (-3413 (((-85) (-1058 |#1| |#2|) $ (-1 (-85) |#2| |#2|)) 100 T ELT)) (-3410 (($ $ $ (-587 (-1058 |#1| |#2|))) 108 T ELT) (($ $ $ (-587 (-1058 |#1| |#2|)) (-1 (-85) |#2| |#2|)) 109 T ELT)) (-3031 (((-1058 |#1| |#2|) $ (-1058 |#1| |#2|)) 46 (|has| $ (-1039 (-1058 |#1| |#2|))) ELT)) (-3794 (((-1058 |#1| |#2|) $ #1="value" (-1058 |#1| |#2|)) NIL (|has| $ (-1039 (-1058 |#1| |#2|))) ELT)) (-3032 (($ $ (-587 $)) 44 (|has| $ (-1039 (-1058 |#1| |#2|))) ELT)) (-3730 (($) NIL T CONST)) (-3415 (((-587 (-2 (|:| |val| |#1|) (|:| -1604 |#2|))) $) 95 T ELT)) (-3411 (($ (-1058 |#1| |#2|) $) 42 T ELT)) (-3412 (($ (-1058 |#1| |#2|) $) 34 T ELT)) (-3848 (((-1058 |#1| |#2|) (-1 (-1058 |#1| |#2|) (-1058 |#1| |#2|) (-1058 |#1| |#2|)) $ (-1058 |#1| |#2|) (-1058 |#1| |#2|)) NIL (|has| (-1058 |#1| |#2|) (-72)) ELT) (((-1058 |#1| |#2|) (-1 (-1058 |#1| |#2|) (-1058 |#1| |#2|) (-1058 |#1| |#2|)) $ (-1058 |#1| |#2|)) NIL T ELT) (((-1058 |#1| |#2|) (-1 (-1058 |#1| |#2|) (-1058 |#1| |#2|) (-1058 |#1| |#2|)) $) NIL T ELT)) (-3037 (((-587 $) $) 54 T ELT)) (-3414 (((-85) (-1058 |#1| |#2|) $) 97 T ELT)) (-3033 (((-85) $ $) NIL (|has| (-1058 |#1| |#2|) (-72)) ELT)) (-2614 (((-587 (-1058 |#1| |#2|)) $) 58 T ELT)) (-3251 (((-85) (-1058 |#1| |#2|) $) NIL (|has| (-1058 |#1| |#2|) (-72)) ELT)) (-3332 (($ (-1 (-1058 |#1| |#2|) (-1058 |#1| |#2|)) $) 50 T ELT)) (-3849 (($ (-1 (-1058 |#1| |#2|) (-1058 |#1| |#2|)) $) 49 T ELT)) (-3036 (((-587 (-1058 |#1| |#2|)) $) 56 T ELT)) (-3533 (((-85) $) 45 T ELT)) (-3248 (((-1077) $) NIL (|has| (-1058 |#1| |#2|) (-1017)) ELT)) (-3249 (((-1037) $) NIL (|has| (-1058 |#1| |#2|) (-1017)) ELT)) (-1734 (((-3 (-1058 |#1| |#2|) #2="failed") (-1 (-85) (-1058 |#1| |#2|)) $) NIL T ELT)) (-3418 (((-3 $ #2#) $) 89 T ELT)) (-1736 (((-85) (-1 (-85) (-1058 |#1| |#2|)) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 (-1058 |#1| |#2|)))) NIL (-12 (|has| (-1058 |#1| |#2|) (-262 (-1058 |#1| |#2|))) (|has| (-1058 |#1| |#2|) (-1017))) ELT) (($ $ (-251 (-1058 |#1| |#2|))) NIL (-12 (|has| (-1058 |#1| |#2|) (-262 (-1058 |#1| |#2|))) (|has| (-1058 |#1| |#2|) (-1017))) ELT) (($ $ (-1058 |#1| |#2|) (-1058 |#1| |#2|)) NIL (-12 (|has| (-1058 |#1| |#2|) (-262 (-1058 |#1| |#2|))) (|has| (-1058 |#1| |#2|) (-1017))) ELT) (($ $ (-587 (-1058 |#1| |#2|)) (-587 (-1058 |#1| |#2|))) NIL (-12 (|has| (-1058 |#1| |#2|) (-262 (-1058 |#1| |#2|))) (|has| (-1058 |#1| |#2|) (-1017))) ELT)) (-1226 (((-85) $ $) 53 T ELT)) (-3409 (((-85) $) 24 T ELT)) (-3571 (($) 26 T ELT)) (-3806 (((-1058 |#1| |#2|) $ #1#) NIL T ELT)) (-3035 (((-488) $ $) NIL T ELT)) (-3639 (((-85) $) 47 T ELT)) (-1735 (((-698) (-1058 |#1| |#2|) $) NIL (|has| (-1058 |#1| |#2|) (-72)) ELT) (((-698) (-1 (-85) (-1058 |#1| |#2|)) $) NIL T ELT)) (-3406 (($ $) 52 T ELT)) (-3536 (($ (-1058 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-587 $)) 13 T ELT) (($ |#1| |#2| (-587 (-1058 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-587 |#2|)) 18 T ELT)) (-3416 (((-587 |#2|) $) 96 T ELT)) (-3953 (((-776) $) 87 (|has| (-1058 |#1| |#2|) (-556 (-776))) ELT)) (-3528 (((-587 $) $) 31 T ELT)) (-3034 (((-85) $ $) NIL (|has| (-1058 |#1| |#2|) (-72)) ELT)) (-1269 (((-85) $ $) NIL (|has| (-1058 |#1| |#2|) (-72)) ELT)) (-1737 (((-85) (-1 (-85) (-1058 |#1| |#2|)) $) NIL T ELT)) (-3062 (((-85) $ $) 70 (|has| (-1058 |#1| |#2|) (-72)) ELT)) (-3964 (((-698) $) 64 T ELT))) +(((-1059 |#1| |#2|) (-13 (-927 (-1058 |#1| |#2|)) (-320 (-1058 |#1| |#2|)) (-1039 (-1058 |#1| |#2|)) (-10 -8 (-15 -3418 ((-3 $ "failed") $)) (-15 -3417 ($ $)) (-15 -3536 ($ (-1058 |#1| |#2|))) (-15 -3536 ($ |#1| |#2| (-587 $))) (-15 -3536 ($ |#1| |#2| (-587 (-1058 |#1| |#2|)))) (-15 -3536 ($ |#1| |#2| |#1| (-587 |#2|))) (-15 -3416 ((-587 |#2|) $)) (-15 -3415 ((-587 (-2 (|:| |val| |#1|) (|:| -1604 |#2|))) $)) (-15 -3414 ((-85) (-1058 |#1| |#2|) $)) (-15 -3413 ((-85) (-1058 |#1| |#2|) $ (-1 (-85) |#2| |#2|))) (-15 -3412 ($ (-1058 |#1| |#2|) $)) (-15 -3411 ($ (-1058 |#1| |#2|) $)) (-15 -3410 ($ $ $ (-587 (-1058 |#1| |#2|)))) (-15 -3410 ($ $ $ (-587 (-1058 |#1| |#2|)) (-1 (-85) |#2| |#2|))))) (-13 (-1017) (-34)) (-13 (-1017) (-34))) (T -1059)) +((-3418 (*1 *1 *1) (|partial| -12 (-5 *1 (-1059 *2 *3)) (-4 *2 (-13 (-1017) (-34))) (-4 *3 (-13 (-1017) (-34))))) (-3417 (*1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-4 *2 (-13 (-1017) (-34))) (-4 *3 (-13 (-1017) (-34))))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-1058 *3 *4)) (-4 *3 (-13 (-1017) (-34))) (-4 *4 (-13 (-1017) (-34))) (-5 *1 (-1059 *3 *4)))) (-3536 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-587 (-1059 *2 *3))) (-5 *1 (-1059 *2 *3)) (-4 *2 (-13 (-1017) (-34))) (-4 *3 (-13 (-1017) (-34))))) (-3536 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-587 (-1058 *2 *3))) (-4 *2 (-13 (-1017) (-34))) (-4 *3 (-13 (-1017) (-34))) (-5 *1 (-1059 *2 *3)))) (-3536 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-13 (-1017) (-34))) (-5 *1 (-1059 *2 *3)) (-4 *2 (-13 (-1017) (-34))))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-587 *4)) (-5 *1 (-1059 *3 *4)) (-4 *3 (-13 (-1017) (-34))) (-4 *4 (-13 (-1017) (-34))))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) (-5 *1 (-1059 *3 *4)) (-4 *3 (-13 (-1017) (-34))) (-4 *4 (-13 (-1017) (-34))))) (-3414 (*1 *2 *3 *1) (-12 (-5 *3 (-1058 *4 *5)) (-4 *4 (-13 (-1017) (-34))) (-4 *5 (-13 (-1017) (-34))) (-5 *2 (-85)) (-5 *1 (-1059 *4 *5)))) (-3413 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1058 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1017) (-34))) (-4 *6 (-13 (-1017) (-34))) (-5 *2 (-85)) (-5 *1 (-1059 *5 *6)))) (-3412 (*1 *1 *2 *1) (-12 (-5 *2 (-1058 *3 *4)) (-4 *3 (-13 (-1017) (-34))) (-4 *4 (-13 (-1017) (-34))) (-5 *1 (-1059 *3 *4)))) (-3411 (*1 *1 *2 *1) (-12 (-5 *2 (-1058 *3 *4)) (-4 *3 (-13 (-1017) (-34))) (-4 *4 (-13 (-1017) (-34))) (-5 *1 (-1059 *3 *4)))) (-3410 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-587 (-1058 *3 *4))) (-4 *3 (-13 (-1017) (-34))) (-4 *4 (-13 (-1017) (-34))) (-5 *1 (-1059 *3 *4)))) (-3410 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-1058 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) (-4 *4 (-13 (-1017) (-34))) (-4 *5 (-13 (-1017) (-34))) (-5 *1 (-1059 *4 *5))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3420 (($ $) NIL T ELT)) (-3336 ((|#2| $) NIL T ELT)) (-3126 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3419 (($ (-634 |#2|)) 53 T ELT)) (-3128 (((-85) $) NIL T ELT)) (-3339 (($ |#2|) 14 T ELT)) (-3730 (($) NIL T CONST)) (-3115 (($ $) 66 (|has| |#2| (-260)) ELT)) (-3117 (((-199 |#1| |#2|) $ (-488)) 40 T ELT)) (-3163 (((-3 (-488) #1#) $) NIL (|has| |#2| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#2| (-954 (-352 (-488)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3162 (((-488) $) NIL (|has| |#2| (-954 (-488))) ELT) (((-352 (-488)) $) NIL (|has| |#2| (-954 (-352 (-488)))) ELT) ((|#2| $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#2|) (-634 $)) NIL T ELT)) (-3848 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT)) (-3473 (((-3 $ #1#) $) 80 T ELT)) (-3114 (((-698) $) 68 (|has| |#2| (-499)) ELT)) (-3118 ((|#2| $ (-488) (-488)) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3113 (((-698) $) 70 (|has| |#2| (-499)) ELT)) (-3112 (((-587 (-199 |#1| |#2|)) $) 74 (|has| |#2| (-499)) ELT)) (-3120 (((-698) $) NIL T ELT)) (-3620 (($ |#2|) 23 T ELT)) (-3119 (((-698) $) NIL T ELT)) (-3333 ((|#2| $) 64 (|has| |#2| (-6 (-4003 #2="*"))) ELT)) (-3124 (((-488) $) NIL T ELT)) (-3122 (((-488) $) NIL T ELT)) (-2614 (((-587 |#2|) $) NIL T ELT)) (-3251 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3123 (((-488) $) NIL T ELT)) (-3121 (((-488) $) NIL T ELT)) (-3129 (($ (-587 (-587 |#2|))) 35 T ELT)) (-3849 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3600 (((-587 (-587 |#2|)) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-1183 $) $) NIL T ELT) (((-634 |#2|) (-1183 $)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3596 (((-3 $ #1#) $) 77 (|has| |#2| (-314)) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1734 (((-3 |#2| #1#) (-1 (-85) |#2|) $) NIL T ELT)) (-3472 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-499)) ELT)) (-1736 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#2|))) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-251 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#2| $ (-488) (-488) |#2|) NIL T ELT) ((|#2| $ (-488) (-488)) NIL T ELT)) (-3764 (($ $ (-1 |#2| |#2|) (-698)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-191)) ELT) (($ $ (-698)) NIL (|has| |#2| (-191)) ELT) (($ $ (-1094)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#2| (-815 (-1094))) ELT)) (-3335 ((|#2| $) NIL T ELT)) (-3338 (($ (-587 |#2|)) 48 T ELT)) (-3127 (((-85) $) NIL T ELT)) (-3337 (((-199 |#1| |#2|) $) NIL T ELT)) (-3334 ((|#2| $) 62 (|has| |#2| (-6 (-4003 #2#))) ELT)) (-1735 (((-698) (-1 (-85) |#2|) $) NIL T ELT) (((-698) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) 87 (|has| |#2| (-557 (-477))) ELT)) (-3116 (((-199 |#1| |#2|) $ (-488)) 42 T ELT)) (-3953 (((-776) $) 45 T ELT) (($ (-488)) NIL T ELT) (($ (-352 (-488))) NIL (|has| |#2| (-954 (-352 (-488)))) ELT) (($ |#2|) NIL T ELT) (((-634 |#2|) $) 50 T ELT)) (-3132 (((-698)) 21 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-1737 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3125 (((-85) $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 15 T CONST)) (-2672 (($) 19 T CONST)) (-2675 (($ $ (-1 |#2| |#2|) (-698)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-191)) ELT) (($ $ (-698)) NIL (|has| |#2| (-191)) ELT) (($ $ (-1094)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#2| (-815 (-1094))) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#2|) NIL (|has| |#2| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 60 T ELT) (($ $ (-488)) 79 (|has| |#2| (-314)) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-199 |#1| |#2|) $ (-199 |#1| |#2|)) 56 T ELT) (((-199 |#1| |#2|) (-199 |#1| |#2|) $) 58 T ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-1060 |#1| |#2|) (-13 (-1041 |#1| |#2| (-199 |#1| |#2|) (-199 |#1| |#2|)) (-556 (-634 |#2|)) (-10 -8 (-15 -3620 ($ |#2|)) (-15 -3420 ($ $)) (-15 -3419 ($ (-634 |#2|))) (IF (|has| |#2| (-6 (-4003 #1="*"))) (-6 -3990) |%noBranch|) (IF (|has| |#2| (-6 (-4003 #1#))) (IF (|has| |#2| (-6 -3998)) (-6 -3998) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-557 (-477))) (-6 (-557 (-477))) |%noBranch|))) (-698) (-965)) (T -1060)) +((-3620 (*1 *1 *2) (-12 (-5 *1 (-1060 *3 *2)) (-14 *3 (-698)) (-4 *2 (-965)))) (-3420 (*1 *1 *1) (-12 (-5 *1 (-1060 *2 *3)) (-14 *2 (-698)) (-4 *3 (-965)))) (-3419 (*1 *1 *2) (-12 (-5 *2 (-634 *4)) (-4 *4 (-965)) (-5 *1 (-1060 *3 *4)) (-14 *3 (-698))))) +((-3433 (($ $) 19 T ELT)) (-3423 (($ $ (-117)) 10 T ELT) (($ $ (-114)) 14 T ELT)) (-3431 (((-85) $ $) 24 T ELT)) (-3435 (($ $) 17 T ELT)) (-3806 (((-117) $ (-488) (-117)) NIL T ELT) (((-117) $ (-488)) NIL T ELT) (($ $ (-1150 (-488))) NIL T ELT) (($ $ $) 31 T ELT)) (-3953 (($ (-117)) 29 T ELT) (((-776) $) NIL T ELT))) +(((-1061 |#1|) (-10 -7 (-15 -3953 ((-776) |#1|)) (-15 -3806 (|#1| |#1| |#1|)) (-15 -3423 (|#1| |#1| (-114))) (-15 -3423 (|#1| |#1| (-117))) (-15 -3953 (|#1| (-117))) (-15 -3431 ((-85) |#1| |#1|)) (-15 -3433 (|#1| |#1|)) (-15 -3435 (|#1| |#1|)) (-15 -3806 (|#1| |#1| (-1150 (-488)))) (-15 -3806 ((-117) |#1| (-488))) (-15 -3806 ((-117) |#1| (-488) (-117)))) (-1062)) (T -1061)) +NIL +((-2574 (((-85) $ $) 18 (|has| (-117) (-72)) ELT)) (-3432 (($ $) 131 T ELT)) (-3433 (($ $) 132 T ELT)) (-3423 (($ $ (-117)) 119 T ELT) (($ $ (-114)) 118 T ELT)) (-2203 (((-1189) $ (-488) (-488)) 35 (|has| $ (-1039 (-117))) ELT)) (-3430 (((-85) $ $) 129 T ELT)) (-3429 (((-85) $ $ (-488)) 128 T ELT)) (-3424 (((-587 $) $ (-117)) 121 T ELT) (((-587 $) $ (-114)) 120 T ELT)) (-1740 (((-85) (-1 (-85) (-117) (-117)) $) 96 T ELT) (((-85) $) 90 (|has| (-117) (-760)) ELT)) (-1738 (($ (-1 (-85) (-117) (-117)) $) 87 (|has| $ (-1039 (-117))) ELT) (($ $) 86 (-12 (|has| (-117) (-760)) (|has| $ (-1039 (-117)))) ELT)) (-2915 (($ (-1 (-85) (-117) (-117)) $) 97 T ELT) (($ $) 91 (|has| (-117) (-760)) ELT)) (-3794 (((-117) $ (-488) (-117)) 47 (|has| $ (-1039 (-117))) ELT) (((-117) $ (-1150 (-488)) (-117)) 55 (|has| $ (-1039 (-117))) ELT)) (-3716 (($ (-1 (-85) (-117)) $) 69 (|has| $ (-320 (-117))) ELT)) (-3730 (($) 6 T CONST)) (-3421 (($ $ (-117)) 115 T ELT) (($ $ (-114)) 114 T ELT)) (-2302 (($ $) 88 (|has| $ (-1039 (-117))) ELT)) (-2303 (($ $) 98 T ELT)) (-3426 (($ $ (-1150 (-488)) $) 125 T ELT)) (-1357 (($ $) 71 (-12 (|has| (-117) (-72)) (|has| $ (-320 (-117)))) ELT)) (-3412 (($ (-117) $) 70 (-12 (|has| (-117) (-72)) (|has| $ (-320 (-117)))) ELT) (($ (-1 (-85) (-117)) $) 68 (|has| $ (-320 (-117))) ELT)) (-3848 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) 110 (|has| (-117) (-72)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) 106 T ELT) (((-117) (-1 (-117) (-117) (-117)) $) 105 T ELT)) (-1580 (((-117) $ (-488) (-117)) 48 (|has| $ (-1039 (-117))) ELT)) (-3118 (((-117) $ (-488)) 46 T ELT)) (-3431 (((-85) $ $) 130 T ELT)) (-3425 (((-488) (-1 (-85) (-117)) $) 95 T ELT) (((-488) (-117) $) 94 (|has| (-117) (-72)) ELT) (((-488) (-117) $ (-488)) 93 (|has| (-117) (-72)) ELT) (((-488) $ $ (-488)) 124 T ELT) (((-488) (-114) $ (-488)) 123 T ELT)) (-3620 (($ (-698) (-117)) 65 T ELT)) (-2205 (((-488) $) 38 (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) 80 (|has| (-117) (-760)) ELT)) (-3524 (($ (-1 (-85) (-117) (-117)) $ $) 99 T ELT) (($ $ $) 92 (|has| (-117) (-760)) ELT)) (-2614 (((-587 (-117)) $) 104 T ELT)) (-3251 (((-85) (-117) $) 109 (|has| (-117) (-72)) ELT)) (-2206 (((-488) $) 39 (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) 81 (|has| (-117) (-760)) ELT)) (-3427 (((-85) $ $ (-117)) 126 T ELT)) (-3428 (((-698) $ $ (-117)) 127 T ELT)) (-3332 (($ (-1 (-117) (-117)) $) 112 T ELT)) (-3849 (($ (-1 (-117) (-117)) $) 26 T ELT) (($ (-1 (-117) (-117) (-117)) $ $) 60 T ELT)) (-3434 (($ $) 133 T ELT)) (-3435 (($ $) 134 T ELT)) (-3422 (($ $ (-117)) 117 T ELT) (($ $ (-114)) 116 T ELT)) (-3248 (((-1077) $) 21 (|has| (-117) (-1017)) ELT)) (-2309 (($ (-117) $ (-488)) 57 T ELT) (($ $ $ (-488)) 56 T ELT)) (-2208 (((-587 (-488)) $) 41 T ELT)) (-2209 (((-85) (-488) $) 42 T ELT)) (-3249 (((-1037) $) 20 (|has| (-117) (-1017)) ELT)) (-3807 (((-117) $) 37 (|has| (-488) (-760)) ELT)) (-1734 (((-3 (-117) "failed") (-1 (-85) (-117)) $) 107 T ELT)) (-2204 (($ $ (-117)) 36 (|has| $ (-1039 (-117))) ELT)) (-1736 (((-85) (-1 (-85) (-117)) $) 102 T ELT)) (-3774 (($ $ (-587 (-251 (-117)))) 25 (-12 (|has| (-117) (-262 (-117))) (|has| (-117) (-1017))) ELT) (($ $ (-251 (-117))) 24 (-12 (|has| (-117) (-262 (-117))) (|has| (-117) (-1017))) ELT) (($ $ (-117) (-117)) 23 (-12 (|has| (-117) (-262 (-117))) (|has| (-117) (-1017))) ELT) (($ $ (-587 (-117)) (-587 (-117))) 22 (-12 (|has| (-117) (-262 (-117))) (|has| (-117) (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-2207 (((-85) (-117) $) 40 (-12 (|has| $ (-320 (-117))) (|has| (-117) (-72))) ELT)) (-2210 (((-587 (-117)) $) 43 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 (((-117) $ (-488) (-117)) 45 T ELT) (((-117) $ (-488)) 44 T ELT) (($ $ (-1150 (-488))) 66 T ELT) (($ $ $) 113 T ELT)) (-2310 (($ $ (-488)) 59 T ELT) (($ $ (-1150 (-488))) 58 T ELT)) (-1735 (((-698) (-117) $) 108 (|has| (-117) (-72)) ELT) (((-698) (-1 (-85) (-117)) $) 103 T ELT)) (-1739 (($ $ $ (-488)) 89 (|has| $ (-1039 (-117))) ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 72 (|has| (-117) (-557 (-477))) ELT)) (-3536 (($ (-587 (-117))) 67 T ELT)) (-3808 (($ $ (-117)) 64 T ELT) (($ (-117) $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-3953 (($ (-117)) 122 T ELT) (((-776) $) 16 (|has| (-117) (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| (-117) (-72)) ELT)) (-1737 (((-85) (-1 (-85) (-117)) $) 101 T ELT)) (-2572 (((-85) $ $) 82 (|has| (-117) (-760)) ELT)) (-2573 (((-85) $ $) 84 (|has| (-117) (-760)) ELT)) (-3062 (((-85) $ $) 17 (|has| (-117) (-72)) ELT)) (-2690 (((-85) $ $) 83 (|has| (-117) (-760)) ELT)) (-2691 (((-85) $ $) 85 (|has| (-117) (-760)) ELT)) (-3964 (((-698) $) 100 T ELT))) +(((-1062) (-113)) (T -1062)) +((-3435 (*1 *1 *1) (-4 *1 (-1062))) (-3434 (*1 *1 *1) (-4 *1 (-1062))) (-3433 (*1 *1 *1) (-4 *1 (-1062))) (-3432 (*1 *1 *1) (-4 *1 (-1062))) (-3431 (*1 *2 *1 *1) (-12 (-4 *1 (-1062)) (-5 *2 (-85)))) (-3430 (*1 *2 *1 *1) (-12 (-4 *1 (-1062)) (-5 *2 (-85)))) (-3429 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1062)) (-5 *3 (-488)) (-5 *2 (-85)))) (-3428 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1062)) (-5 *3 (-117)) (-5 *2 (-698)))) (-3427 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1062)) (-5 *3 (-117)) (-5 *2 (-85)))) (-3426 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1062)) (-5 *2 (-1150 (-488))))) (-3425 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-488)))) (-3425 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-488)) (-5 *3 (-114)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1062)))) (-3424 (*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-587 *1)) (-4 *1 (-1062)))) (-3424 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-587 *1)) (-4 *1 (-1062)))) (-3423 (*1 *1 *1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-117)))) (-3423 (*1 *1 *1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-114)))) (-3422 (*1 *1 *1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-117)))) (-3422 (*1 *1 *1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-114)))) (-3421 (*1 *1 *1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-117)))) (-3421 (*1 *1 *1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-114)))) (-3806 (*1 *1 *1 *1) (-4 *1 (-1062)))) +(-13 (-19 (-117)) (-10 -8 (-15 -3435 ($ $)) (-15 -3434 ($ $)) (-15 -3433 ($ $)) (-15 -3432 ($ $)) (-15 -3431 ((-85) $ $)) (-15 -3430 ((-85) $ $)) (-15 -3429 ((-85) $ $ (-488))) (-15 -3428 ((-698) $ $ (-117))) (-15 -3427 ((-85) $ $ (-117))) (-15 -3426 ($ $ (-1150 (-488)) $)) (-15 -3425 ((-488) $ $ (-488))) (-15 -3425 ((-488) (-114) $ (-488))) (-15 -3953 ($ (-117))) (-15 -3424 ((-587 $) $ (-117))) (-15 -3424 ((-587 $) $ (-114))) (-15 -3423 ($ $ (-117))) (-15 -3423 ($ $ (-114))) (-15 -3422 ($ $ (-117))) (-15 -3422 ($ $ (-114))) (-15 -3421 ($ $ (-117))) (-15 -3421 ($ $ (-114))) (-15 -3806 ($ $ $)))) +(((-34) . T) ((-72) OR (|has| (-117) (-1017)) (|has| (-117) (-760)) (|has| (-117) (-72))) ((-556 (-776)) OR (|has| (-117) (-1017)) (|has| (-117) (-760)) (|has| (-117) (-556 (-776)))) ((-124 (-117)) . T) ((-557 (-477)) |has| (-117) (-557 (-477))) ((-243 (-488) (-117)) . T) ((-243 (-1150 (-488)) $) . T) ((-245 (-488) (-117)) . T) ((-262 (-117)) -12 (|has| (-117) (-262 (-117))) (|has| (-117) (-1017))) ((-320 (-117)) . T) ((-326 (-117)) . T) ((-383 (-117)) . T) ((-432 (-117)) . T) ((-542 (-488) (-117)) . T) ((-459 (-117) (-117)) -12 (|has| (-117) (-262 (-117))) (|has| (-117) (-1017))) ((-13) . T) ((-597 (-117)) . T) ((-19 (-117)) . T) ((-760) |has| (-117) (-760)) ((-763) |has| (-117) (-760)) ((-1017) OR (|has| (-117) (-1017)) (|has| (-117) (-760))) ((-1039 (-117)) . T) ((-1133) . T)) +((-3442 (((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) (-587 |#4|) (-587 |#5|) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) (-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) (-698)) 112 T ELT)) (-3439 (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5| (-698)) 61 T ELT)) (-3443 (((-1189) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) (-698)) 97 T ELT)) (-3437 (((-698) (-587 |#4|) (-587 |#5|)) 30 T ELT)) (-3440 (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5| (-698)) 63 T ELT) (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5| (-698) (-85)) 65 T ELT)) (-3441 (((-587 |#5|) (-587 |#4|) (-587 |#5|) (-85) (-85) (-85) (-85) (-85)) 84 T ELT) (((-587 |#5|) (-587 |#4|) (-587 |#5|) (-85) (-85)) 85 T ELT)) (-3978 (((-1077) (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) 90 T ELT)) (-3438 (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5|) 60 T ELT)) (-3436 (((-698) (-587 |#4|) (-587 |#5|)) 21 T ELT))) +(((-1063 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3436 ((-698) (-587 |#4|) (-587 |#5|))) (-15 -3437 ((-698) (-587 |#4|) (-587 |#5|))) (-15 -3438 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5|)) (-15 -3439 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5| (-698))) (-15 -3439 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5|)) (-15 -3440 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5| (-698) (-85))) (-15 -3440 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5| (-698))) (-15 -3440 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) |#4| |#5|)) (-15 -3441 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-85) (-85))) (-15 -3441 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3442 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) (-587 |#4|) (-587 |#5|) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) (-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))))) (-698))) (-15 -3978 ((-1077) (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|)))) (-15 -3443 ((-1189) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1604 |#5|))) (-698)))) (-395) (-721) (-760) (-981 |#1| |#2| |#3|) (-1024 |#1| |#2| |#3| |#4|)) (T -1063)) +((-3443 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1604 *9)))) (-5 *4 (-698)) (-4 *8 (-981 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-1189)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1604 *8))) (-4 *7 (-981 *4 *5 *6)) (-4 *8 (-1024 *4 *5 *6 *7)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-1077)) (-5 *1 (-1063 *4 *5 *6 *7 *8)))) (-3442 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-587 *11)) (|:| |todo| (-587 (-2 (|:| |val| *3) (|:| -1604 *11)))))) (-5 *6 (-698)) (-5 *2 (-587 (-2 (|:| |val| (-587 *10)) (|:| -1604 *11)))) (-5 *3 (-587 *10)) (-5 *4 (-587 *11)) (-4 *10 (-981 *7 *8 *9)) (-4 *11 (-1024 *7 *8 *9 *10)) (-4 *7 (-395)) (-4 *8 (-721)) (-4 *9 (-760)) (-5 *1 (-1063 *7 *8 *9 *10 *11)))) (-3441 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-3441 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-3440 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3440 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-698)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) (-4 *3 (-981 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) (-3440 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-698)) (-5 *6 (-85)) (-4 *7 (-395)) (-4 *8 (-721)) (-4 *9 (-760)) (-4 *3 (-981 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) (-5 *1 (-1063 *7 *8 *9 *3 *4)) (-4 *4 (-1024 *7 *8 *9 *3)))) (-3439 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3439 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-698)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) (-4 *3 (-981 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) (-3438 (*1 *2 *3 *4) (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3437 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-981 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-698)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-3436 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-981 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-698)) (-5 *1 (-1063 *5 *6 *7 *8 *9))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3687 (((-587 (-2 (|:| -3868 $) (|:| -1706 (-587 |#4|)))) (-587 |#4|)) NIL T ELT)) (-3688 (((-587 $) (-587 |#4|)) 117 T ELT) (((-587 $) (-587 |#4|) (-85)) 118 T ELT) (((-587 $) (-587 |#4|) (-85) (-85)) 116 T ELT) (((-587 $) (-587 |#4|) (-85) (-85) (-85) (-85)) 119 T ELT)) (-3087 (((-587 |#3|) $) NIL T ELT)) (-2914 (((-85) $) NIL T ELT)) (-2905 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3699 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3694 ((|#4| |#4| $) NIL T ELT)) (-3781 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 $))) |#4| $) 90 T ELT)) (-2915 (((-2 (|:| |under| $) (|:| -3136 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3716 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-320 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 69 T ELT)) (-3730 (($) NIL T CONST)) (-2910 (((-85) $) 28 (|has| |#1| (-499)) ELT)) (-2912 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-2911 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-2913 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3695 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2906 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-499)) ELT)) (-2907 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-499)) ELT)) (-3163 (((-3 $ #1#) (-587 |#4|)) NIL T ELT)) (-3162 (($ (-587 |#4|)) NIL T ELT)) (-3805 (((-3 $ #1#) $) 44 T ELT)) (-3691 ((|#4| |#4| $) 72 T ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 |#4|)) (|has| |#4| (-72))) ELT)) (-3412 (($ |#4| $) NIL (-12 (|has| $ (-320 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-320 |#4|)) ELT)) (-2908 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 84 (|has| |#1| (-499)) ELT)) (-3700 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3848 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3702 (((-2 (|:| -3868 (-587 |#4|)) (|:| -1706 (-587 |#4|))) $) NIL T ELT)) (-3203 (((-85) |#4| $) NIL T ELT)) (-3201 (((-85) |#4| $) NIL T ELT)) (-3204 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3444 (((-2 (|:| |val| (-587 |#4|)) (|:| |towers| (-587 $))) (-587 |#4|) (-85) (-85)) 132 T ELT)) (-3701 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3186 ((|#3| $) 37 T ELT)) (-2614 (((-587 |#4|) $) 18 T ELT)) (-3251 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3332 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3849 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2920 (((-587 |#3|) $) NIL T ELT)) (-2919 (((-85) |#3| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3197 (((-3 |#4| (-587 $)) |#4| |#4| $) NIL T ELT)) (-3196 (((-587 (-2 (|:| |val| |#4|) (|:| -1604 $))) |#4| |#4| $) 110 T ELT)) (-3804 (((-3 |#4| #1#) $) 41 T ELT)) (-3198 (((-587 $) |#4| $) 95 T ELT)) (-3200 (((-3 (-85) (-587 $)) |#4| $) NIL T ELT)) (-3199 (((-587 (-2 (|:| |val| (-85)) (|:| -1604 $))) |#4| $) 105 T ELT) (((-85) |#4| $) 61 T ELT)) (-3244 (((-587 $) |#4| $) 114 T ELT) (((-587 $) (-587 |#4|) $) NIL T ELT) (((-587 $) (-587 |#4|) (-587 $)) 115 T ELT) (((-587 $) |#4| (-587 $)) NIL T ELT)) (-3445 (((-587 $) (-587 |#4|) (-85) (-85) (-85)) 127 T ELT)) (-3446 (($ |#4| $) 81 T ELT) (($ (-587 |#4|) $) 82 T ELT) (((-587 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 80 T ELT)) (-3703 (((-587 |#4|) $) NIL T ELT)) (-3697 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3692 ((|#4| |#4| $) NIL T ELT)) (-3705 (((-85) $ $) NIL T ELT)) (-2909 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-499)) ELT)) (-3698 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3693 ((|#4| |#4| $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3807 (((-3 |#4| #1#) $) 39 T ELT)) (-1734 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3685 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3775 (($ $ |#4|) NIL T ELT) (((-587 $) |#4| $) 97 T ELT) (((-587 $) |#4| (-587 $)) NIL T ELT) (((-587 $) (-587 |#4|) $) NIL T ELT) (((-587 $) (-587 |#4|) (-587 $)) 92 T ELT)) (-1736 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3774 (($ $ (-587 |#4|) (-587 |#4|)) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-251 |#4|)) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-587 (-251 |#4|))) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) 17 T ELT)) (-3571 (($) 14 T ELT)) (-3955 (((-698) $) NIL T ELT)) (-1735 (((-698) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-698) (-1 (-85) |#4|) $) NIL T ELT)) (-3406 (($ $) 13 T ELT)) (-3978 (((-477) $) NIL (|has| |#4| (-557 (-477))) ELT)) (-3536 (($ (-587 |#4|)) 21 T ELT)) (-2916 (($ $ |#3|) 48 T ELT)) (-2918 (($ $ |#3|) 50 T ELT)) (-3690 (($ $) NIL T ELT)) (-2917 (($ $ |#3|) NIL T ELT)) (-3953 (((-776) $) 34 T ELT) (((-587 |#4|) $) 45 T ELT)) (-3684 (((-698) $) NIL (|has| |#3| (-322)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3704 (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#4|))) #1#) (-587 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#4|))) #1#) (-587 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3696 (((-85) $ (-1 (-85) |#4| (-587 |#4|))) NIL T ELT)) (-3195 (((-587 $) |#4| $) 62 T ELT) (((-587 $) |#4| (-587 $)) NIL T ELT) (((-587 $) (-587 |#4|) $) NIL T ELT) (((-587 $) (-587 |#4|) (-587 $)) NIL T ELT)) (-1737 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3686 (((-587 |#3|) $) NIL T ELT)) (-3202 (((-85) |#4| $) NIL T ELT)) (-3940 (((-85) |#3| $) 68 T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-1064 |#1| |#2| |#3| |#4|) (-13 (-1024 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3446 ((-587 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3688 ((-587 $) (-587 |#4|) (-85) (-85))) (-15 -3688 ((-587 $) (-587 |#4|) (-85) (-85) (-85) (-85))) (-15 -3445 ((-587 $) (-587 |#4|) (-85) (-85) (-85))) (-15 -3444 ((-2 (|:| |val| (-587 |#4|)) (|:| |towers| (-587 $))) (-587 |#4|) (-85) (-85))))) (-395) (-721) (-760) (-981 |#1| |#2| |#3|)) (T -1064)) +((-3446 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-587 (-1064 *5 *6 *7 *3))) (-5 *1 (-1064 *5 *6 *7 *3)) (-4 *3 (-981 *5 *6 *7)))) (-3688 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-587 (-1064 *5 *6 *7 *8))) (-5 *1 (-1064 *5 *6 *7 *8)))) (-3688 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-587 (-1064 *5 *6 *7 *8))) (-5 *1 (-1064 *5 *6 *7 *8)))) (-3445 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-587 (-1064 *5 *6 *7 *8))) (-5 *1 (-1064 *5 *6 *7 *8)))) (-3444 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *8 (-981 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-587 *8)) (|:| |towers| (-587 (-1064 *5 *6 *7 *8))))) (-5 *1 (-1064 *5 *6 *7 *8)) (-5 *3 (-587 *8))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 32 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 30 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 29 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-698)) 31 T ELT) (($ $ (-834)) 28 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ $ $) 27 T ELT))) +(((-1065) (-113)) (T -1065)) +NIL +(-13 (-23) (-667)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-667) . T) ((-1029) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3329 ((|#1| $) 38 T ELT)) (-3447 (($ (-587 |#1|)) 46 T ELT)) (-3730 (($) NIL T CONST)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3331 ((|#1| |#1| $) 41 T ELT)) (-3330 ((|#1| $) 36 T ELT)) (-2614 (((-587 |#1|) $) 19 T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-1278 ((|#1| $) 39 T ELT)) (-3615 (($ |#1| $) 42 T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1279 ((|#1| $) 37 T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) 33 T ELT)) (-3571 (($) 44 T ELT)) (-3328 (((-698) $) 31 T ELT)) (-1735 (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) NIL T ELT)) (-3406 (($ $) 28 T ELT)) (-3953 (((-776) $) 15 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1280 (($ (-587 |#1|)) NIL T ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3062 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) 32 T ELT))) +(((-1066 |#1|) (-13 (-1038 |#1|) (-10 -8 (-15 -3447 ($ (-587 |#1|))))) (-1133)) (T -1066)) +((-3447 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1133)) (-5 *1 (-1066 *3))))) +((-3794 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1150 (-488)) |#2|) 51 T ELT) ((|#2| $ (-488) |#2|) 48 T ELT)) (-3449 (((-85) $) 12 T ELT)) (-3807 ((|#2| $) NIL T ELT) (($ $ (-698)) 17 T ELT)) (-2204 (($ $ |#2|) 47 T ELT)) (-3450 (((-85) $) 11 T ELT)) (-3806 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1150 (-488))) 36 T ELT) ((|#2| $ (-488)) 25 T ELT) ((|#2| $ (-488) |#2|) NIL T ELT)) (-3797 (($ $ $) 54 T ELT) (($ $ |#2|) NIL T ELT)) (-3808 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-587 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) +(((-1067 |#1| |#2|) (-10 -7 (-15 -3449 ((-85) |#1|)) (-15 -3450 ((-85) |#1|)) (-15 -3794 (|#2| |#1| (-488) |#2|)) (-15 -3806 (|#2| |#1| (-488) |#2|)) (-15 -3806 (|#2| |#1| (-488))) (-15 -2204 (|#1| |#1| |#2|)) (-15 -3806 (|#1| |#1| (-1150 (-488)))) (-15 -3808 (|#1| |#1| |#2|)) (-15 -3808 (|#1| (-587 |#1|))) (-15 -3794 (|#2| |#1| (-1150 (-488)) |#2|)) (-15 -3794 (|#2| |#1| #1="last" |#2|)) (-15 -3794 (|#1| |#1| #2="rest" |#1|)) (-15 -3794 (|#2| |#1| #3="first" |#2|)) (-15 -3797 (|#1| |#1| |#2|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3806 (|#2| |#1| #1#)) (-15 -3806 (|#1| |#1| #2#)) (-15 -3807 (|#1| |#1| (-698))) (-15 -3806 (|#2| |#1| #3#)) (-15 -3807 (|#2| |#1|)) (-15 -3808 (|#1| |#2| |#1|)) (-15 -3808 (|#1| |#1| |#1|)) (-15 -3794 (|#2| |#1| #4="value" |#2|)) (-15 -3806 (|#2| |#1| #4#))) (-1068 |#2|) (-1133)) (T -1067)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3408 ((|#1| $) 43 T ELT)) (-3801 ((|#1| $) 62 T ELT)) (-3803 (($ $) 64 T ELT)) (-2203 (((-1189) $ (-488) (-488)) 99 (|has| $ (-1039 |#1|)) ELT)) (-3791 (($ $ (-488)) 49 (|has| $ (-1039 |#1|)) ELT)) (-3448 (((-85) $ (-698)) 82 T ELT)) (-3031 ((|#1| $ |#1|) 34 (|has| $ (-1039 |#1|)) ELT)) (-3793 (($ $ $) 53 (|has| $ (-1039 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 51 (|has| $ (-1039 |#1|)) ELT)) (-3795 ((|#1| $ |#1|) 55 (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 54 (|has| $ (-1039 |#1|)) ELT) (($ $ #3="rest" $) 52 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 50 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-1150 (-488)) |#1|) 115 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-488) |#1|) 88 (|has| $ (-1039 |#1|)) ELT)) (-3032 (($ $ (-587 $)) 36 (|has| $ (-1039 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) 103 (|has| $ (-320 |#1|)) ELT)) (-3802 ((|#1| $) 63 T ELT)) (-3730 (($) 6 T CONST)) (-3805 (($ $) 70 T ELT) (($ $ (-698)) 68 T ELT)) (-1357 (($ $) 101 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-3412 (($ (-1 (-85) |#1|) $) 104 (|has| $ (-320 |#1|)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-1580 ((|#1| $ (-488) |#1|) 87 (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-488)) 89 T ELT)) (-3449 (((-85) $) 85 T ELT)) (-3037 (((-587 $) $) 45 T ELT)) (-3033 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3620 (($ (-698) |#1|) 107 T ELT)) (-3725 (((-85) $ (-698)) 83 T ELT)) (-2205 (((-488) $) 97 (|has| (-488) (-760)) ELT)) (-2206 (((-488) $) 96 (|has| (-488) (-760)) ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 110 T ELT)) (-3722 (((-85) $ (-698)) 84 T ELT)) (-3036 (((-587 |#1|) $) 40 T ELT)) (-3533 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-3804 ((|#1| $) 67 T ELT) (($ $ (-698)) 65 T ELT)) (-2309 (($ $ $ (-488)) 114 T ELT) (($ |#1| $ (-488)) 113 T ELT)) (-2208 (((-587 (-488)) $) 94 T ELT)) (-2209 (((-85) (-488) $) 93 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-3807 ((|#1| $) 73 T ELT) (($ $ (-698)) 71 T ELT)) (-2204 (($ $ |#1|) 98 (|has| $ (-1039 |#1|)) ELT)) (-3450 (((-85) $) 86 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-2207 (((-85) |#1| $) 95 (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) 92 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#1| $ #1#) 42 T ELT) ((|#1| $ #2#) 72 T ELT) (($ $ #3#) 69 T ELT) ((|#1| $ #4#) 66 T ELT) (($ $ (-1150 (-488))) 106 T ELT) ((|#1| $ (-488)) 91 T ELT) ((|#1| $ (-488) |#1|) 90 T ELT)) (-3035 (((-488) $ $) 39 T ELT)) (-2310 (($ $ (-1150 (-488))) 112 T ELT) (($ $ (-488)) 111 T ELT)) (-3639 (((-85) $) 41 T ELT)) (-3798 (($ $) 59 T ELT)) (-3796 (($ $) 56 (|has| $ (-1039 |#1|)) ELT)) (-3799 (((-698) $) 60 T ELT)) (-3800 (($ $) 61 T ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 100 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 105 T ELT)) (-3797 (($ $ $) 58 (|has| $ (-1039 |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (-1039 |#1|)) ELT)) (-3808 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT) (($ (-587 $)) 109 T ELT) (($ $ |#1|) 108 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-3528 (((-587 $) $) 46 T ELT)) (-3034 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-1068 |#1|) (-113) (-1133)) (T -1068)) +((-3450 (*1 *2 *1) (-12 (-4 *1 (-1068 *3)) (-4 *3 (-1133)) (-5 *2 (-85)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-1068 *3)) (-4 *3 (-1133)) (-5 *2 (-85)))) (-3722 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-4 *1 (-1068 *4)) (-4 *4 (-1133)) (-5 *2 (-85)))) (-3725 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-4 *1 (-1068 *4)) (-4 *4 (-1133)) (-5 *2 (-85)))) (-3448 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-4 *1 (-1068 *4)) (-4 *4 (-1133)) (-5 *2 (-85))))) +(-13 (-1172 |t#1|) (-597 |t#1|) (-10 -8 (-15 -3450 ((-85) $)) (-15 -3449 ((-85) $)) (-15 -3722 ((-85) $ (-698))) (-15 -3725 ((-85) $ (-698))) (-15 -3448 ((-85) $ (-698))))) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-124 |#1|) . T) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-243 (-488) |#1|) . T) ((-243 (-1150 (-488)) $) . T) ((-245 (-488) |#1|) . T) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-542 (-488) |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-597 |#1|) . T) ((-927 |#1|) . T) ((-1017) |has| |#1| (-1017)) ((-1133) . T) ((-1172 |#1|) . T)) +((-2574 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3605 (($) NIL T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2203 (((-1189) $ |#1| |#1|) NIL (|has| $ (-1039 |#2|)) ELT)) (-3794 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-1574 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3716 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-2236 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-1357 (($ $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3411 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3412 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3848 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1580 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-3118 ((|#2| $ |#1|) NIL T ELT)) (-2205 ((|#1| $) NIL (|has| |#1| (-760)) ELT)) (-2614 (((-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3251 (((-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2206 ((|#1| $) NIL (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3849 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017))) ELT)) (-2237 (((-587 |#1|) $) NIL T ELT)) (-2238 (((-85) |#1| $) NIL T ELT)) (-1278 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3615 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2208 (((-587 |#1|) $) NIL T ELT)) (-2209 (((-85) |#1| $) NIL T ELT)) (-3249 (((-1037) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017))) ELT)) (-3807 ((|#2| $) NIL (|has| |#1| (-760)) ELT)) (-1734 (((-3 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2204 (($ $ |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-1279 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1736 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-251 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 (-251 |#2|))) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#2| $) NIL (-12 (|has| $ (-320 |#2|)) (|has| |#2| (-72))) ELT)) (-2210 (((-587 |#2|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1470 (($) NIL T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1735 (((-698) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-698) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-557 (-477))) ELT)) (-3536 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3953 (((-776) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-556 (-776))) (|has| |#2| (-556 (-776)))) ELT)) (-1269 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1280 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1737 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3062 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-1069 |#1| |#2| |#3|) (-1111 |#1| |#2|) (-1017) (-1017) |#2|) (T -1069)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3451 (((-636 $) $) 17 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3452 (($) 18 T CONST)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3062 (((-85) $ $) 8 T ELT))) +(((-1070) (-113)) (T -1070)) +((-3452 (*1 *1) (-4 *1 (-1070))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-636 *1)) (-4 *1 (-1070))))) +(-13 (-1017) (-10 -8 (-15 -3452 ($) -3959) (-15 -3451 ((-636 $) $)))) +(((-72) . T) ((-556 (-776)) . T) ((-13) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3454 (((-636 (-1053)) $) 28 T ELT)) (-3453 (((-1053) $) 16 T ELT)) (-3455 (((-1053) $) 18 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3456 (((-450) $) 14 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 38 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-1071) (-13 (-999) (-10 -8 (-15 -3456 ((-450) $)) (-15 -3455 ((-1053) $)) (-15 -3454 ((-636 (-1053)) $)) (-15 -3453 ((-1053) $))))) (T -1071)) +((-3456 (*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-1071)))) (-3455 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1071)))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-636 (-1053))) (-5 *1 (-1071)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1071))))) +((-3459 (((-1073 |#1|) (-1073 |#1|)) 17 T ELT)) (-3457 (((-1073 |#1|) (-1073 |#1|)) 13 T ELT)) (-3460 (((-1073 |#1|) (-1073 |#1|) (-488) (-488)) 20 T ELT)) (-3458 (((-1073 |#1|) (-1073 |#1|)) 15 T ELT))) +(((-1072 |#1|) (-10 -7 (-15 -3457 ((-1073 |#1|) (-1073 |#1|))) (-15 -3458 ((-1073 |#1|) (-1073 |#1|))) (-15 -3459 ((-1073 |#1|) (-1073 |#1|))) (-15 -3460 ((-1073 |#1|) (-1073 |#1|) (-488) (-488)))) (-13 (-499) (-120))) (T -1072)) +((-3460 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1073 *4)) (-5 *3 (-488)) (-4 *4 (-13 (-499) (-120))) (-5 *1 (-1072 *4)))) (-3459 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-499) (-120))) (-5 *1 (-1072 *3)))) (-3458 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-499) (-120))) (-5 *1 (-1072 *3)))) (-3457 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-499) (-120))) (-5 *1 (-1072 *3))))) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3408 ((|#1| $) NIL T ELT)) (-3801 ((|#1| $) NIL T ELT)) (-3803 (($ $) 60 T ELT)) (-2203 (((-1189) $ (-488) (-488)) 93 (|has| $ (-1039 |#1|)) ELT)) (-3791 (($ $ (-488)) 122 (|has| $ (-1039 |#1|)) ELT)) (-3448 (((-85) $ (-698)) NIL T ELT)) (-3465 (((-776) $) 46 (|has| |#1| (-1017)) ELT)) (-3464 (((-85)) 49 (|has| |#1| (-1017)) ELT)) (-3031 ((|#1| $ |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3793 (($ $ $) 109 (|has| $ (-1039 |#1|)) ELT) (($ $ (-488) $) 135 T ELT)) (-3792 ((|#1| $ |#1|) 119 (|has| $ (-1039 |#1|)) ELT)) (-3795 ((|#1| $ |#1|) 114 (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1039 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-1039 |#1|)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-1150 (-488)) |#1|) 106 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-488) |#1|) 72 (|has| $ (-1039 |#1|)) ELT)) (-3032 (($ $ (-587 $)) NIL (|has| $ (-1039 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) 75 T ELT)) (-3802 ((|#1| $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2328 (($ $) 11 T ELT)) (-3805 (($ $) 35 T ELT) (($ $ (-698)) 105 T ELT)) (-3470 (((-85) (-587 |#1|) $) 128 (|has| |#1| (-1017)) ELT)) (-3471 (($ (-587 |#1|)) 124 T ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-3412 (($ |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) 74 T ELT)) (-1580 ((|#1| $ (-488) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-488)) NIL T ELT)) (-3449 (((-85) $) NIL T ELT)) (-3466 (((-1189) (-488) $) 133 (|has| |#1| (-1017)) ELT)) (-2327 (((-698) $) 131 T ELT)) (-3037 (((-587 $) $) NIL T ELT)) (-3033 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3620 (($ (-698) |#1|) NIL T ELT)) (-3725 (((-85) $ (-698)) NIL T ELT)) (-2205 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2206 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 89 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3722 (((-85) $ (-698)) NIL T ELT)) (-3036 (((-587 |#1|) $) NIL T ELT)) (-3533 (((-85) $) NIL T ELT)) (-2330 (($ $) 107 T ELT)) (-2331 (((-85) $) 10 T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-3804 ((|#1| $) NIL T ELT) (($ $ (-698)) NIL T ELT)) (-2309 (($ $ $ (-488)) NIL T ELT) (($ |#1| $ (-488)) NIL T ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) 90 T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-3463 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2329 ((|#1| $) 7 T ELT)) (-3807 ((|#1| $) 34 T ELT) (($ $ (-698)) 58 T ELT)) (-3469 (((-2 (|:| |cycle?| (-85)) (|:| -2601 (-698)) (|:| |period| (-698))) (-698) $) 29 T ELT)) (-3462 (($ (-1 (-85) |#1|) $) 139 T ELT)) (-3461 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-2204 (($ $ |#1|) 85 (|has| $ (-1039 |#1|)) ELT)) (-3775 (($ $ (-488)) 40 T ELT)) (-3450 (((-85) $) 88 T ELT)) (-2332 (((-85) $) 9 T ELT)) (-2333 (((-85) $) 130 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 25 T ELT)) (-2207 (((-85) |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) NIL T ELT)) (-3409 (((-85) $) 14 T ELT)) (-3571 (($) 53 T ELT)) (-3806 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1150 (-488))) NIL T ELT) ((|#1| $ (-488)) 70 T ELT) ((|#1| $ (-488) |#1|) NIL T ELT)) (-3035 (((-488) $ $) 57 T ELT)) (-2310 (($ $ (-1150 (-488))) NIL T ELT) (($ $ (-488)) NIL T ELT)) (-3468 (($ (-1 $)) 56 T ELT)) (-3639 (((-85) $) 86 T ELT)) (-3798 (($ $) 87 T ELT)) (-3796 (($ $) 110 (|has| $ (-1039 |#1|)) ELT)) (-3799 (((-698) $) NIL T ELT)) (-3800 (($ $) NIL T ELT)) (-3406 (($ $) 52 T ELT)) (-3978 (((-477) $) NIL (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 68 T ELT)) (-3467 (($ |#1| $) 108 T ELT)) (-3797 (($ $ $) 112 (|has| $ (-1039 |#1|)) ELT) (($ $ |#1|) 113 (|has| $ (-1039 |#1|)) ELT)) (-3808 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-587 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2897 (($ $) 59 T ELT)) (-3953 (($ (-587 |#1|)) 123 T ELT) (((-776) $) 50 (|has| |#1| (-556 (-776))) ELT)) (-3528 (((-587 $) $) NIL T ELT)) (-3034 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3062 (((-85) $ $) 126 (|has| |#1| (-72)) ELT))) +(((-1073 |#1|) (-13 (-620 |#1|) (-559 (-587 |#1|)) (-1039 |#1|) (-10 -8 (-15 -3471 ($ (-587 |#1|))) (IF (|has| |#1| (-1017)) (-15 -3470 ((-85) (-587 |#1|) $)) |%noBranch|) (-15 -3469 ((-2 (|:| |cycle?| (-85)) (|:| -2601 (-698)) (|:| |period| (-698))) (-698) $)) (-15 -3468 ($ (-1 $))) (-15 -3467 ($ |#1| $)) (IF (|has| |#1| (-1017)) (PROGN (-15 -3466 ((-1189) (-488) $)) (-15 -3465 ((-776) $)) (-15 -3464 ((-85)))) |%noBranch|) (-15 -3793 ($ $ (-488) $)) (-15 -3463 ($ (-1 |#1|))) (-15 -3463 ($ (-1 |#1| |#1|) |#1|)) (-15 -3462 ($ (-1 (-85) |#1|) $)) (-15 -3461 ($ (-1 (-85) |#1|) $)))) (-1133)) (T -1073)) +((-3471 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1133)) (-5 *1 (-1073 *3)))) (-3470 (*1 *2 *3 *1) (-12 (-5 *3 (-587 *4)) (-4 *4 (-1017)) (-4 *4 (-1133)) (-5 *2 (-85)) (-5 *1 (-1073 *4)))) (-3469 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2601 (-698)) (|:| |period| (-698)))) (-5 *1 (-1073 *4)) (-4 *4 (-1133)) (-5 *3 (-698)))) (-3468 (*1 *1 *2) (-12 (-5 *2 (-1 (-1073 *3))) (-5 *1 (-1073 *3)) (-4 *3 (-1133)))) (-3467 (*1 *1 *2 *1) (-12 (-5 *1 (-1073 *2)) (-4 *2 (-1133)))) (-3466 (*1 *2 *3 *1) (-12 (-5 *3 (-488)) (-5 *2 (-1189)) (-5 *1 (-1073 *4)) (-4 *4 (-1017)) (-4 *4 (-1133)))) (-3465 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1073 *3)) (-4 *3 (-1017)) (-4 *3 (-1133)))) (-3464 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1073 *3)) (-4 *3 (-1017)) (-4 *3 (-1133)))) (-3793 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-1073 *3)) (-4 *3 (-1133)))) (-3463 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1133)) (-5 *1 (-1073 *3)))) (-3463 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1133)) (-5 *1 (-1073 *3)))) (-3462 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1133)) (-5 *1 (-1073 *3)))) (-3461 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1133)) (-5 *1 (-1073 *3))))) +((-3808 (((-1073 |#1|) (-1073 (-1073 |#1|))) 15 T ELT))) +(((-1074 |#1|) (-10 -7 (-15 -3808 ((-1073 |#1|) (-1073 (-1073 |#1|))))) (-1133)) (T -1074)) +((-3808 (*1 *2 *3) (-12 (-5 *3 (-1073 (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1074 *4)) (-4 *4 (-1133))))) +((-3847 (((-1073 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1073 |#1|)) 25 T ELT)) (-3848 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1073 |#1|)) 26 T ELT)) (-3849 (((-1073 |#2|) (-1 |#2| |#1|) (-1073 |#1|)) 16 T ELT))) +(((-1075 |#1| |#2|) (-10 -7 (-15 -3849 ((-1073 |#2|) (-1 |#2| |#1|) (-1073 |#1|))) (-15 -3847 ((-1073 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1073 |#1|))) (-15 -3848 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1073 |#1|)))) (-1133) (-1133)) (T -1075)) +((-3848 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1073 *5)) (-4 *5 (-1133)) (-4 *2 (-1133)) (-5 *1 (-1075 *5 *2)))) (-3847 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1073 *6)) (-4 *6 (-1133)) (-4 *3 (-1133)) (-5 *2 (-1073 *3)) (-5 *1 (-1075 *6 *3)))) (-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1073 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-1073 *6)) (-5 *1 (-1075 *5 *6))))) +((-3849 (((-1073 |#3|) (-1 |#3| |#1| |#2|) (-1073 |#1|) (-1073 |#2|)) 21 T ELT))) +(((-1076 |#1| |#2| |#3|) (-10 -7 (-15 -3849 ((-1073 |#3|) (-1 |#3| |#1| |#2|) (-1073 |#1|) (-1073 |#2|)))) (-1133) (-1133) (-1133)) (T -1076)) +((-3849 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1073 *6)) (-5 *5 (-1073 *7)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-4 *8 (-1133)) (-5 *2 (-1073 *8)) (-5 *1 (-1076 *6 *7 *8))))) +((-2574 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-3432 (($ $) 42 T ELT)) (-3433 (($ $) NIL T ELT)) (-3423 (($ $ (-117)) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-2203 (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 (-117))) ELT)) (-3430 (((-85) $ $) 67 T ELT)) (-3429 (((-85) $ $ (-488)) 62 T ELT)) (-3541 (($ (-488)) 7 T ELT) (($ (-181)) 9 T ELT) (($ (-450)) 11 T ELT)) (-3424 (((-587 $) $ (-117)) 76 T ELT) (((-587 $) $ (-114)) 77 T ELT)) (-1740 (((-85) (-1 (-85) (-117) (-117)) $) NIL T ELT) (((-85) $) NIL (|has| (-117) (-760)) ELT)) (-1738 (($ (-1 (-85) (-117) (-117)) $) NIL (|has| $ (-1039 (-117))) ELT) (($ $) NIL (-12 (|has| $ (-1039 (-117))) (|has| (-117) (-760))) ELT)) (-2915 (($ (-1 (-85) (-117) (-117)) $) NIL T ELT) (($ $) NIL (|has| (-117) (-760)) ELT)) (-3794 (((-117) $ (-488) (-117)) 59 (|has| $ (-1039 (-117))) ELT) (((-117) $ (-1150 (-488)) (-117)) NIL (|has| $ (-1039 (-117))) ELT)) (-3716 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-320 (-117))) ELT)) (-3730 (($) NIL T CONST)) (-3421 (($ $ (-117)) 80 T ELT) (($ $ (-114)) 81 T ELT)) (-2302 (($ $) NIL (|has| $ (-1039 (-117))) ELT)) (-2303 (($ $) NIL T ELT)) (-3426 (($ $ (-1150 (-488)) $) 57 T ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 (-117))) (|has| (-117) (-72))) ELT)) (-3412 (($ (-117) $) NIL (-12 (|has| $ (-320 (-117))) (|has| (-117) (-72))) ELT) (($ (-1 (-85) (-117)) $) NIL (|has| $ (-320 (-117))) ELT)) (-3848 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (|has| (-117) (-72)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL T ELT) (((-117) (-1 (-117) (-117) (-117)) $) NIL T ELT)) (-1580 (((-117) $ (-488) (-117)) NIL (|has| $ (-1039 (-117))) ELT)) (-3118 (((-117) $ (-488)) NIL T ELT)) (-3431 (((-85) $ $) 91 T ELT)) (-3425 (((-488) (-1 (-85) (-117)) $) NIL T ELT) (((-488) (-117) $) NIL (|has| (-117) (-72)) ELT) (((-488) (-117) $ (-488)) 64 (|has| (-117) (-72)) ELT) (((-488) $ $ (-488)) 63 T ELT) (((-488) (-114) $ (-488)) 66 T ELT)) (-3620 (($ (-698) (-117)) 14 T ELT)) (-2205 (((-488) $) 36 (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL (|has| (-117) (-760)) ELT)) (-3524 (($ (-1 (-85) (-117) (-117)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-117) (-760)) ELT)) (-2614 (((-587 (-117)) $) NIL T ELT)) (-3251 (((-85) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-2206 (((-488) $) 50 (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| (-117) (-760)) ELT)) (-3427 (((-85) $ $ (-117)) 92 T ELT)) (-3428 (((-698) $ $ (-117)) 88 T ELT)) (-3332 (($ (-1 (-117) (-117)) $) 41 T ELT)) (-3849 (($ (-1 (-117) (-117)) $) NIL T ELT) (($ (-1 (-117) (-117) (-117)) $ $) NIL T ELT)) (-3434 (($ $) 45 T ELT)) (-3435 (($ $) NIL T ELT)) (-3422 (($ $ (-117)) 78 T ELT) (($ $ (-114)) 79 T ELT)) (-3248 (((-1077) $) 46 (|has| (-117) (-1017)) ELT)) (-2309 (($ (-117) $ (-488)) NIL T ELT) (($ $ $ (-488)) 31 T ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) NIL T ELT)) (-3249 (((-1037) $) 87 (|has| (-117) (-1017)) ELT)) (-3807 (((-117) $) NIL (|has| (-488) (-760)) ELT)) (-1734 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-2204 (($ $ (-117)) NIL (|has| $ (-1039 (-117))) ELT)) (-1736 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 (-117)))) NIL (-12 (|has| (-117) (-262 (-117))) (|has| (-117) (-1017))) ELT) (($ $ (-251 (-117))) NIL (-12 (|has| (-117) (-262 (-117))) (|has| (-117) (-1017))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-262 (-117))) (|has| (-117) (-1017))) ELT) (($ $ (-587 (-117)) (-587 (-117))) NIL (-12 (|has| (-117) (-262 (-117))) (|has| (-117) (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) (-117) $) NIL (-12 (|has| $ (-320 (-117))) (|has| (-117) (-72))) ELT)) (-2210 (((-587 (-117)) $) NIL T ELT)) (-3409 (((-85) $) 19 T ELT)) (-3571 (($) 16 T ELT)) (-3806 (((-117) $ (-488) (-117)) NIL T ELT) (((-117) $ (-488)) 69 T ELT) (($ $ (-1150 (-488))) 29 T ELT) (($ $ $) NIL T ELT)) (-2310 (($ $ (-488)) NIL T ELT) (($ $ (-1150 (-488))) NIL T ELT)) (-1735 (((-698) (-117) $) NIL (|has| (-117) (-72)) ELT) (((-698) (-1 (-85) (-117)) $) NIL T ELT)) (-1739 (($ $ $ (-488)) 83 (|has| $ (-1039 (-117))) ELT)) (-3406 (($ $) 24 T ELT)) (-3978 (((-477) $) NIL (|has| (-117) (-557 (-477))) ELT)) (-3536 (($ (-587 (-117))) NIL T ELT)) (-3808 (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-587 $)) 84 T ELT)) (-3953 (($ (-117)) NIL T ELT) (((-776) $) 35 (|has| (-117) (-556 (-776))) ELT)) (-1269 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-1737 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-2572 (((-85) $ $) NIL (|has| (-117) (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| (-117) (-760)) ELT)) (-3062 (((-85) $ $) 21 (|has| (-117) (-72)) ELT)) (-2690 (((-85) $ $) NIL (|has| (-117) (-760)) ELT)) (-2691 (((-85) $ $) 22 (|has| (-117) (-760)) ELT)) (-3964 (((-698) $) 20 T ELT))) +(((-1077) (-13 (-1062) (-10 -8 (-15 -3541 ($ (-488))) (-15 -3541 ($ (-181))) (-15 -3541 ($ (-450)))))) (T -1077)) +((-3541 (*1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-1077)))) (-3541 (*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-1077)))) (-3541 (*1 *1 *2) (-12 (-5 *2 (-450)) (-5 *1 (-1077))))) +((-2574 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3605 (($) NIL T ELT) (($ (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) NIL T ELT)) (-2203 (((-1189) $ (-1077) (-1077)) NIL (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ (-1077) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-1574 (($ (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) ELT)) (-3716 (($ (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) ELT)) (-2236 (((-3 |#1| #1="failed") (-1077) $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-1357 (($ $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-72))) ELT)) (-3411 (($ (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) $) NIL (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) ELT) (($ (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) ELT) (((-3 |#1| #1#) (-1077) $) NIL T ELT)) (-3412 (($ (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) ELT)) (-3848 (((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $ (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) NIL (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-72)) ELT) (((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $ (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) NIL T ELT) (((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL T ELT)) (-1580 ((|#1| $ (-1077) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-1077)) NIL T ELT)) (-2205 (((-1077) $) NIL (|has| (-1077) (-760)) ELT)) (-2614 (((-587 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3251 (((-85) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-72)) ELT)) (-2206 (((-1077) $) NIL (|has| (-1077) (-760)) ELT)) (-3332 (($ (-1 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL (OR (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1017)) (|has| |#1| (-1017))) ELT)) (-2237 (((-587 (-1077)) $) NIL T ELT)) (-2238 (((-85) (-1077) $) NIL T ELT)) (-1278 (((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3615 (($ (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2208 (((-587 (-1077)) $) NIL T ELT)) (-2209 (((-85) (-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL (OR (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1017)) (|has| |#1| (-1017))) ELT)) (-3807 ((|#1| $) NIL (|has| (-1077) (-760)) ELT)) (-1734 (((-3 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2204 (($ $ |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-1279 (((-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1736 (((-85) (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1017))) ELT) (($ $ (-587 (-251 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-262 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#1| $ (-1077)) NIL T ELT) ((|#1| $ (-1077) |#1|) NIL T ELT)) (-1470 (($) NIL T ELT) (($ (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) NIL T ELT)) (-1735 (((-698) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-72)) ELT) (((-698) (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) NIL (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-557 (-477))) ELT)) (-3536 (($ (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) NIL T ELT)) (-3953 (((-776) $) NIL (OR (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-556 (-776))) (|has| |#1| (-556 (-776)))) ELT)) (-1269 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1280 (($ (-587 (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)))) NIL T ELT)) (-1737 (((-85) (-1 (-85) (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3062 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 (-1077)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-1078 |#1|) (-1111 (-1077) |#1|) (-1017)) (T -1078)) +NIL +((-3811 (((-1073 |#1|) (-1073 |#1|)) 83 T ELT)) (-3473 (((-3 (-1073 |#1|) #1="failed") (-1073 |#1|)) 39 T ELT)) (-3484 (((-1073 |#1|) (-352 (-488)) (-1073 |#1|)) 131 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3487 (((-1073 |#1|) |#1| (-1073 |#1|)) 135 (|has| |#1| (-314)) ELT)) (-3814 (((-1073 |#1|) (-1073 |#1|)) 97 T ELT)) (-3475 (((-1073 (-488)) (-488)) 63 T ELT)) (-3483 (((-1073 |#1|) (-1073 (-1073 |#1|))) 116 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3810 (((-1073 |#1|) (-488) (-488) (-1073 |#1|)) 103 T ELT)) (-3945 (((-1073 |#1|) |#1| (-488)) 51 T ELT)) (-3477 (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 66 T ELT)) (-3485 (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 133 (|has| |#1| (-314)) ELT)) (-3482 (((-1073 |#1|) |#1| (-1 (-1073 |#1|))) 115 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3486 (((-1073 |#1|) (-1 |#1| (-488)) |#1| (-1 (-1073 |#1|))) 134 (|has| |#1| (-314)) ELT)) (-3815 (((-1073 |#1|) (-1073 |#1|)) 96 T ELT)) (-3816 (((-1073 |#1|) (-1073 |#1|)) 82 T ELT)) (-3809 (((-1073 |#1|) (-488) (-488) (-1073 |#1|)) 104 T ELT)) (-3818 (((-1073 |#1|) |#1| (-1073 |#1|)) 113 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3474 (((-1073 (-488)) (-488)) 62 T ELT)) (-3476 (((-1073 |#1|) |#1|) 65 T ELT)) (-3812 (((-1073 |#1|) (-1073 |#1|) (-488) (-488)) 100 T ELT)) (-3479 (((-1073 |#1|) (-1 |#1| (-488)) (-1073 |#1|)) 72 T ELT)) (-3472 (((-3 (-1073 |#1|) #1#) (-1073 |#1|) (-1073 |#1|)) 37 T ELT)) (-3813 (((-1073 |#1|) (-1073 |#1|)) 98 T ELT)) (-3774 (((-1073 |#1|) (-1073 |#1|) |#1|) 77 T ELT)) (-3478 (((-1073 |#1|) (-1073 |#1|)) 68 T ELT)) (-3480 (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 78 T ELT)) (-3953 (((-1073 |#1|) |#1|) 73 T ELT)) (-3481 (((-1073 |#1|) (-1073 (-1073 |#1|))) 88 T ELT)) (-3956 (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 38 T ELT)) (-3843 (((-1073 |#1|) (-1073 |#1|)) 21 T ELT) (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 23 T ELT)) (-3845 (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 17 T ELT)) (* (((-1073 |#1|) (-1073 |#1|) |#1|) 29 T ELT) (((-1073 |#1|) |#1| (-1073 |#1|)) 26 T ELT) (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 27 T ELT))) +(((-1079 |#1|) (-10 -7 (-15 -3845 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3843 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3843 ((-1073 |#1|) (-1073 |#1|))) (-15 * ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 * ((-1073 |#1|) |#1| (-1073 |#1|))) (-15 * ((-1073 |#1|) (-1073 |#1|) |#1|)) (-15 -3472 ((-3 (-1073 |#1|) #1="failed") (-1073 |#1|) (-1073 |#1|))) (-15 -3956 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3473 ((-3 (-1073 |#1|) #1#) (-1073 |#1|))) (-15 -3945 ((-1073 |#1|) |#1| (-488))) (-15 -3474 ((-1073 (-488)) (-488))) (-15 -3475 ((-1073 (-488)) (-488))) (-15 -3476 ((-1073 |#1|) |#1|)) (-15 -3477 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3478 ((-1073 |#1|) (-1073 |#1|))) (-15 -3479 ((-1073 |#1|) (-1 |#1| (-488)) (-1073 |#1|))) (-15 -3953 ((-1073 |#1|) |#1|)) (-15 -3774 ((-1073 |#1|) (-1073 |#1|) |#1|)) (-15 -3480 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3816 ((-1073 |#1|) (-1073 |#1|))) (-15 -3811 ((-1073 |#1|) (-1073 |#1|))) (-15 -3481 ((-1073 |#1|) (-1073 (-1073 |#1|)))) (-15 -3815 ((-1073 |#1|) (-1073 |#1|))) (-15 -3814 ((-1073 |#1|) (-1073 |#1|))) (-15 -3813 ((-1073 |#1|) (-1073 |#1|))) (-15 -3812 ((-1073 |#1|) (-1073 |#1|) (-488) (-488))) (-15 -3810 ((-1073 |#1|) (-488) (-488) (-1073 |#1|))) (-15 -3809 ((-1073 |#1|) (-488) (-488) (-1073 |#1|))) (IF (|has| |#1| (-38 (-352 (-488)))) (PROGN (-15 -3818 ((-1073 |#1|) |#1| (-1073 |#1|))) (-15 -3482 ((-1073 |#1|) |#1| (-1 (-1073 |#1|)))) (-15 -3483 ((-1073 |#1|) (-1073 (-1073 |#1|)))) (-15 -3484 ((-1073 |#1|) (-352 (-488)) (-1073 |#1|)))) |%noBranch|) (IF (|has| |#1| (-314)) (PROGN (-15 -3485 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3486 ((-1073 |#1|) (-1 |#1| (-488)) |#1| (-1 (-1073 |#1|)))) (-15 -3487 ((-1073 |#1|) |#1| (-1073 |#1|)))) |%noBranch|)) (-965)) (T -1079)) +((-3487 (*1 *2 *3 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-314)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (-3486 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-488))) (-5 *5 (-1 (-1073 *4))) (-4 *4 (-314)) (-4 *4 (-965)) (-5 *2 (-1073 *4)) (-5 *1 (-1079 *4)))) (-3485 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-314)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (-3484 (*1 *2 *3 *2) (-12 (-5 *2 (-1073 *4)) (-4 *4 (-38 *3)) (-4 *4 (-965)) (-5 *3 (-352 (-488))) (-5 *1 (-1079 *4)))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-1073 (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1079 *4)) (-4 *4 (-38 (-352 (-488)))) (-4 *4 (-965)))) (-3482 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1073 *3))) (-5 *2 (-1073 *3)) (-5 *1 (-1079 *3)) (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)))) (-3818 (*1 *2 *3 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (-3809 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1073 *4)) (-5 *3 (-488)) (-4 *4 (-965)) (-5 *1 (-1079 *4)))) (-3810 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1073 *4)) (-5 *3 (-488)) (-4 *4 (-965)) (-5 *1 (-1079 *4)))) (-3812 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1073 *4)) (-5 *3 (-488)) (-4 *4 (-965)) (-5 *1 (-1079 *4)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (-3814 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (-3815 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (-3481 (*1 *2 *3) (-12 (-5 *3 (-1073 (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1079 *4)) (-4 *4 (-965)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (-3480 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (-3774 (*1 *2 *2 *3) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (-3953 (*1 *2 *3) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-1079 *3)) (-4 *3 (-965)))) (-3479 (*1 *2 *3 *2) (-12 (-5 *2 (-1073 *4)) (-5 *3 (-1 *4 (-488))) (-4 *4 (-965)) (-5 *1 (-1079 *4)))) (-3478 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (-3477 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (-3476 (*1 *2 *3) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-1079 *3)) (-4 *3 (-965)))) (-3475 (*1 *2 *3) (-12 (-5 *2 (-1073 (-488))) (-5 *1 (-1079 *4)) (-4 *4 (-965)) (-5 *3 (-488)))) (-3474 (*1 *2 *3) (-12 (-5 *2 (-1073 (-488))) (-5 *1 (-1079 *4)) (-4 *4 (-965)) (-5 *3 (-488)))) (-3945 (*1 *2 *3 *4) (-12 (-5 *4 (-488)) (-5 *2 (-1073 *3)) (-5 *1 (-1079 *3)) (-4 *3 (-965)))) (-3473 (*1 *2 *2) (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (-3956 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (-3472 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (-3843 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) (-3845 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3))))) +((-3498 (((-1073 |#1|) (-1073 |#1|)) 102 T ELT)) (-3645 (((-1073 |#1|) (-1073 |#1|)) 59 T ELT)) (-3489 (((-2 (|:| -3496 (-1073 |#1|)) (|:| -3497 (-1073 |#1|))) (-1073 |#1|)) 98 T ELT)) (-3496 (((-1073 |#1|) (-1073 |#1|)) 99 T ELT)) (-3488 (((-2 (|:| -3644 (-1073 |#1|)) (|:| -3640 (-1073 |#1|))) (-1073 |#1|)) 54 T ELT)) (-3644 (((-1073 |#1|) (-1073 |#1|)) 55 T ELT)) (-3500 (((-1073 |#1|) (-1073 |#1|)) 104 T ELT)) (-3643 (((-1073 |#1|) (-1073 |#1|)) 66 T ELT)) (-3949 (((-1073 |#1|) (-1073 |#1|)) 40 T ELT)) (-3950 (((-1073 |#1|) (-1073 |#1|)) 37 T ELT)) (-3501 (((-1073 |#1|) (-1073 |#1|)) 105 T ELT)) (-3642 (((-1073 |#1|) (-1073 |#1|)) 67 T ELT)) (-3499 (((-1073 |#1|) (-1073 |#1|)) 103 T ELT)) (-3641 (((-1073 |#1|) (-1073 |#1|)) 62 T ELT)) (-3497 (((-1073 |#1|) (-1073 |#1|)) 100 T ELT)) (-3640 (((-1073 |#1|) (-1073 |#1|)) 56 T ELT)) (-3504 (((-1073 |#1|) (-1073 |#1|)) 113 T ELT)) (-3492 (((-1073 |#1|) (-1073 |#1|)) 88 T ELT)) (-3502 (((-1073 |#1|) (-1073 |#1|)) 107 T ELT)) (-3490 (((-1073 |#1|) (-1073 |#1|)) 84 T ELT)) (-3506 (((-1073 |#1|) (-1073 |#1|)) 117 T ELT)) (-3494 (((-1073 |#1|) (-1073 |#1|)) 92 T ELT)) (-3507 (((-1073 |#1|) (-1073 |#1|)) 119 T ELT)) (-3495 (((-1073 |#1|) (-1073 |#1|)) 94 T ELT)) (-3505 (((-1073 |#1|) (-1073 |#1|)) 115 T ELT)) (-3493 (((-1073 |#1|) (-1073 |#1|)) 90 T ELT)) (-3503 (((-1073 |#1|) (-1073 |#1|)) 109 T ELT)) (-3491 (((-1073 |#1|) (-1073 |#1|)) 86 T ELT)) (** (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 41 T ELT))) +(((-1080 |#1|) (-10 -7 (-15 -3950 ((-1073 |#1|) (-1073 |#1|))) (-15 -3949 ((-1073 |#1|) (-1073 |#1|))) (-15 ** ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3488 ((-2 (|:| -3644 (-1073 |#1|)) (|:| -3640 (-1073 |#1|))) (-1073 |#1|))) (-15 -3644 ((-1073 |#1|) (-1073 |#1|))) (-15 -3640 ((-1073 |#1|) (-1073 |#1|))) (-15 -3645 ((-1073 |#1|) (-1073 |#1|))) (-15 -3641 ((-1073 |#1|) (-1073 |#1|))) (-15 -3643 ((-1073 |#1|) (-1073 |#1|))) (-15 -3642 ((-1073 |#1|) (-1073 |#1|))) (-15 -3490 ((-1073 |#1|) (-1073 |#1|))) (-15 -3491 ((-1073 |#1|) (-1073 |#1|))) (-15 -3492 ((-1073 |#1|) (-1073 |#1|))) (-15 -3493 ((-1073 |#1|) (-1073 |#1|))) (-15 -3494 ((-1073 |#1|) (-1073 |#1|))) (-15 -3495 ((-1073 |#1|) (-1073 |#1|))) (-15 -3489 ((-2 (|:| -3496 (-1073 |#1|)) (|:| -3497 (-1073 |#1|))) (-1073 |#1|))) (-15 -3496 ((-1073 |#1|) (-1073 |#1|))) (-15 -3497 ((-1073 |#1|) (-1073 |#1|))) (-15 -3498 ((-1073 |#1|) (-1073 |#1|))) (-15 -3499 ((-1073 |#1|) (-1073 |#1|))) (-15 -3500 ((-1073 |#1|) (-1073 |#1|))) (-15 -3501 ((-1073 |#1|) (-1073 |#1|))) (-15 -3502 ((-1073 |#1|) (-1073 |#1|))) (-15 -3503 ((-1073 |#1|) (-1073 |#1|))) (-15 -3504 ((-1073 |#1|) (-1073 |#1|))) (-15 -3505 ((-1073 |#1|) (-1073 |#1|))) (-15 -3506 ((-1073 |#1|) (-1073 |#1|))) (-15 -3507 ((-1073 |#1|) (-1073 |#1|)))) (-38 (-352 (-488)))) (T -1080)) +((-3507 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3506 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3505 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3504 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3503 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3489 (*1 *2 *3) (-12 (-4 *4 (-38 (-352 (-488)))) (-5 *2 (-2 (|:| -3496 (-1073 *4)) (|:| -3497 (-1073 *4)))) (-5 *1 (-1080 *4)) (-5 *3 (-1073 *4)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3642 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3643 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3641 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3645 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3644 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3488 (*1 *2 *3) (-12 (-4 *4 (-38 (-352 (-488)))) (-5 *2 (-2 (|:| -3644 (-1073 *4)) (|:| -3640 (-1073 *4)))) (-5 *1 (-1080 *4)) (-5 *3 (-1073 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3949 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) (-3950 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3))))) +((-3498 (((-1073 |#1|) (-1073 |#1|)) 60 T ELT)) (-3645 (((-1073 |#1|) (-1073 |#1|)) 42 T ELT)) (-3496 (((-1073 |#1|) (-1073 |#1|)) 56 T ELT)) (-3644 (((-1073 |#1|) (-1073 |#1|)) 38 T ELT)) (-3500 (((-1073 |#1|) (-1073 |#1|)) 63 T ELT)) (-3643 (((-1073 |#1|) (-1073 |#1|)) 45 T ELT)) (-3949 (((-1073 |#1|) (-1073 |#1|)) 34 T ELT)) (-3950 (((-1073 |#1|) (-1073 |#1|)) 29 T ELT)) (-3501 (((-1073 |#1|) (-1073 |#1|)) 64 T ELT)) (-3642 (((-1073 |#1|) (-1073 |#1|)) 46 T ELT)) (-3499 (((-1073 |#1|) (-1073 |#1|)) 61 T ELT)) (-3641 (((-1073 |#1|) (-1073 |#1|)) 43 T ELT)) (-3497 (((-1073 |#1|) (-1073 |#1|)) 58 T ELT)) (-3640 (((-1073 |#1|) (-1073 |#1|)) 40 T ELT)) (-3504 (((-1073 |#1|) (-1073 |#1|)) 68 T ELT)) (-3492 (((-1073 |#1|) (-1073 |#1|)) 50 T ELT)) (-3502 (((-1073 |#1|) (-1073 |#1|)) 66 T ELT)) (-3490 (((-1073 |#1|) (-1073 |#1|)) 48 T ELT)) (-3506 (((-1073 |#1|) (-1073 |#1|)) 71 T ELT)) (-3494 (((-1073 |#1|) (-1073 |#1|)) 53 T ELT)) (-3507 (((-1073 |#1|) (-1073 |#1|)) 72 T ELT)) (-3495 (((-1073 |#1|) (-1073 |#1|)) 54 T ELT)) (-3505 (((-1073 |#1|) (-1073 |#1|)) 70 T ELT)) (-3493 (((-1073 |#1|) (-1073 |#1|)) 52 T ELT)) (-3503 (((-1073 |#1|) (-1073 |#1|)) 69 T ELT)) (-3491 (((-1073 |#1|) (-1073 |#1|)) 51 T ELT)) (** (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 36 T ELT))) +(((-1081 |#1|) (-10 -7 (-15 -3950 ((-1073 |#1|) (-1073 |#1|))) (-15 -3949 ((-1073 |#1|) (-1073 |#1|))) (-15 ** ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3644 ((-1073 |#1|) (-1073 |#1|))) (-15 -3640 ((-1073 |#1|) (-1073 |#1|))) (-15 -3645 ((-1073 |#1|) (-1073 |#1|))) (-15 -3641 ((-1073 |#1|) (-1073 |#1|))) (-15 -3643 ((-1073 |#1|) (-1073 |#1|))) (-15 -3642 ((-1073 |#1|) (-1073 |#1|))) (-15 -3490 ((-1073 |#1|) (-1073 |#1|))) (-15 -3491 ((-1073 |#1|) (-1073 |#1|))) (-15 -3492 ((-1073 |#1|) (-1073 |#1|))) (-15 -3493 ((-1073 |#1|) (-1073 |#1|))) (-15 -3494 ((-1073 |#1|) (-1073 |#1|))) (-15 -3495 ((-1073 |#1|) (-1073 |#1|))) (-15 -3496 ((-1073 |#1|) (-1073 |#1|))) (-15 -3497 ((-1073 |#1|) (-1073 |#1|))) (-15 -3498 ((-1073 |#1|) (-1073 |#1|))) (-15 -3499 ((-1073 |#1|) (-1073 |#1|))) (-15 -3500 ((-1073 |#1|) (-1073 |#1|))) (-15 -3501 ((-1073 |#1|) (-1073 |#1|))) (-15 -3502 ((-1073 |#1|) (-1073 |#1|))) (-15 -3503 ((-1073 |#1|) (-1073 |#1|))) (-15 -3504 ((-1073 |#1|) (-1073 |#1|))) (-15 -3505 ((-1073 |#1|) (-1073 |#1|))) (-15 -3506 ((-1073 |#1|) (-1073 |#1|))) (-15 -3507 ((-1073 |#1|) (-1073 |#1|)))) (-38 (-352 (-488)))) (T -1081)) +((-3507 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3506 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3505 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3504 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3503 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3642 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3643 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3641 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3645 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3644 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3949 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) (-3950 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3))))) +((-3508 (((-873 |#2|) |#2| |#2|) 51 T ELT)) (-3509 ((|#2| |#2| |#1|) 19 (|has| |#1| (-260)) ELT))) +(((-1082 |#1| |#2|) (-10 -7 (-15 -3508 ((-873 |#2|) |#2| |#2|)) (IF (|has| |#1| (-260)) (-15 -3509 (|#2| |#2| |#1|)) |%noBranch|)) (-499) (-1159 |#1|)) (T -1082)) +((-3509 (*1 *2 *2 *3) (-12 (-4 *3 (-260)) (-4 *3 (-499)) (-5 *1 (-1082 *3 *2)) (-4 *2 (-1159 *3)))) (-3508 (*1 *2 *3 *3) (-12 (-4 *4 (-499)) (-5 *2 (-873 *3)) (-5 *1 (-1082 *4 *3)) (-4 *3 (-1159 *4))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3517 (($ $ (-587 (-698))) 79 T ELT)) (-3895 (($) 33 T ELT)) (-3526 (($ $) 51 T ELT)) (-3757 (((-587 $) $) 60 T ELT)) (-3532 (((-85) $) 19 T ELT)) (-3510 (((-587 (-858 |#2|)) $) 86 T ELT)) (-3511 (($ $) 80 T ELT)) (-3527 (((-698) $) 47 T ELT)) (-3620 (($) 32 T ELT)) (-3520 (($ $ (-587 (-698)) (-858 |#2|)) 72 T ELT) (($ $ (-587 (-698)) (-698)) 73 T ELT) (($ $ (-698) (-858 |#2|)) 75 T ELT)) (-3524 (($ $ $) 57 T ELT) (($ (-587 $)) 59 T ELT)) (-3512 (((-698) $) 87 T ELT)) (-3533 (((-85) $) 15 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3531 (((-85) $) 22 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3513 (((-147) $) 85 T ELT)) (-3516 (((-858 |#2|) $) 81 T ELT)) (-3515 (((-698) $) 82 T ELT)) (-3514 (((-85) $) 84 T ELT)) (-3518 (($ $ (-587 (-698)) (-147)) 78 T ELT)) (-3525 (($ $) 52 T ELT)) (-3953 (((-776) $) 99 T ELT)) (-3519 (($ $ (-587 (-698)) (-85)) 77 T ELT)) (-3528 (((-587 $) $) 11 T ELT)) (-3529 (($ $ (-698)) 46 T ELT)) (-3530 (($ $) 43 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3521 (($ $ $ (-858 |#2|) (-698)) 68 T ELT)) (-3522 (($ $ (-858 |#2|)) 67 T ELT)) (-3523 (($ $ (-587 (-698)) (-858 |#2|)) 66 T ELT) (($ $ (-587 (-698)) (-698)) 70 T ELT) (((-698) $ (-858 |#2|)) 71 T ELT)) (-3062 (((-85) $ $) 92 T ELT))) +(((-1083 |#1| |#2|) (-13 (-1017) (-10 -8 (-15 -3533 ((-85) $)) (-15 -3532 ((-85) $)) (-15 -3531 ((-85) $)) (-15 -3620 ($)) (-15 -3895 ($)) (-15 -3530 ($ $)) (-15 -3529 ($ $ (-698))) (-15 -3528 ((-587 $) $)) (-15 -3527 ((-698) $)) (-15 -3526 ($ $)) (-15 -3525 ($ $)) (-15 -3524 ($ $ $)) (-15 -3524 ($ (-587 $))) (-15 -3757 ((-587 $) $)) (-15 -3523 ($ $ (-587 (-698)) (-858 |#2|))) (-15 -3522 ($ $ (-858 |#2|))) (-15 -3521 ($ $ $ (-858 |#2|) (-698))) (-15 -3520 ($ $ (-587 (-698)) (-858 |#2|))) (-15 -3523 ($ $ (-587 (-698)) (-698))) (-15 -3520 ($ $ (-587 (-698)) (-698))) (-15 -3523 ((-698) $ (-858 |#2|))) (-15 -3520 ($ $ (-698) (-858 |#2|))) (-15 -3519 ($ $ (-587 (-698)) (-85))) (-15 -3518 ($ $ (-587 (-698)) (-147))) (-15 -3517 ($ $ (-587 (-698)))) (-15 -3516 ((-858 |#2|) $)) (-15 -3515 ((-698) $)) (-15 -3514 ((-85) $)) (-15 -3513 ((-147) $)) (-15 -3512 ((-698) $)) (-15 -3511 ($ $)) (-15 -3510 ((-587 (-858 |#2|)) $)))) (-834) (-965)) (T -1083)) +((-3533 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965)))) (-3532 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965)))) (-3620 (*1 *1) (-12 (-5 *1 (-1083 *2 *3)) (-14 *2 (-834)) (-4 *3 (-965)))) (-3895 (*1 *1) (-12 (-5 *1 (-1083 *2 *3)) (-14 *2 (-834)) (-4 *3 (-965)))) (-3530 (*1 *1 *1) (-12 (-5 *1 (-1083 *2 *3)) (-14 *2 (-834)) (-4 *3 (-965)))) (-3529 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-587 (-1083 *3 *4))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965)))) (-3526 (*1 *1 *1) (-12 (-5 *1 (-1083 *2 *3)) (-14 *2 (-834)) (-4 *3 (-965)))) (-3525 (*1 *1 *1) (-12 (-5 *1 (-1083 *2 *3)) (-14 *2 (-834)) (-4 *3 (-965)))) (-3524 (*1 *1 *1 *1) (-12 (-5 *1 (-1083 *2 *3)) (-14 *2 (-834)) (-4 *3 (-965)))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-587 (-1083 *3 *4))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-587 (-1083 *3 *4))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965)))) (-3523 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-698))) (-5 *3 (-858 *5)) (-4 *5 (-965)) (-5 *1 (-1083 *4 *5)) (-14 *4 (-834)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-858 *4)) (-4 *4 (-965)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)))) (-3521 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-858 *5)) (-5 *3 (-698)) (-4 *5 (-965)) (-5 *1 (-1083 *4 *5)) (-14 *4 (-834)))) (-3520 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-698))) (-5 *3 (-858 *5)) (-4 *5 (-965)) (-5 *1 (-1083 *4 *5)) (-14 *4 (-834)))) (-3523 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-698))) (-5 *3 (-698)) (-5 *1 (-1083 *4 *5)) (-14 *4 (-834)) (-4 *5 (-965)))) (-3520 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-698))) (-5 *3 (-698)) (-5 *1 (-1083 *4 *5)) (-14 *4 (-834)) (-4 *5 (-965)))) (-3523 (*1 *2 *1 *3) (-12 (-5 *3 (-858 *5)) (-4 *5 (-965)) (-5 *2 (-698)) (-5 *1 (-1083 *4 *5)) (-14 *4 (-834)))) (-3520 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-698)) (-5 *3 (-858 *5)) (-4 *5 (-965)) (-5 *1 (-1083 *4 *5)) (-14 *4 (-834)))) (-3519 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-698))) (-5 *3 (-85)) (-5 *1 (-1083 *4 *5)) (-14 *4 (-834)) (-4 *5 (-965)))) (-3518 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-698))) (-5 *3 (-147)) (-5 *1 (-1083 *4 *5)) (-14 *4 (-834)) (-4 *5 (-965)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-698))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-858 *4)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965)))) (-3513 (*1 *2 *1) (-12 (-5 *2 (-147)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965)))) (-3511 (*1 *1 *1) (-12 (-5 *1 (-1083 *2 *3)) (-14 *2 (-834)) (-4 *3 (-965)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-587 (-858 *4))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3534 ((|#2| $) 11 T ELT)) (-3535 ((|#1| $) 10 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3536 (($ |#1| |#2|) 9 T ELT)) (-3953 (((-776) $) 16 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-1084 |#1| |#2|) (-13 (-1017) (-10 -8 (-15 -3536 ($ |#1| |#2|)) (-15 -3535 (|#1| $)) (-15 -3534 (|#2| $)))) (-1017) (-1017)) (T -1084)) +((-3536 (*1 *1 *2 *3) (-12 (-5 *1 (-1084 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1017)))) (-3535 (*1 *2 *1) (-12 (-4 *2 (-1017)) (-5 *1 (-1084 *2 *3)) (-4 *3 (-1017)))) (-3534 (*1 *2 *1) (-12 (-4 *2 (-1017)) (-5 *1 (-1084 *3 *2)) (-4 *3 (-1017))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3537 (((-1053) $) 10 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 16 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-1085) (-13 (-999) (-10 -8 (-15 -3537 ((-1053) $))))) (T -1085)) +((-3537 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1085))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3135 (((-1093 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-260)) (|has| |#1| (-314))) ELT)) (-3087 (((-587 (-998)) $) NIL T ELT)) (-3837 (((-1094) $) 11 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (|has| |#1| (-499))) ELT)) (-2068 (($ $) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (|has| |#1| (-499))) ELT)) (-2066 (((-85) $) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (|has| |#1| (-499))) ELT)) (-3777 (($ $ (-488)) NIL T ELT) (($ $ (-488) (-488)) 75 T ELT)) (-3780 (((-1073 (-2 (|:| |k| (-488)) (|:| |c| |#1|))) $) NIL T ELT)) (-3737 (((-1093 |#1| |#2| |#3|) $) 42 T ELT)) (-3734 (((-3 (-1093 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3735 (((-1093 |#1| |#2| |#3|) $) 33 T ELT)) (-3498 (($ $) 116 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3645 (($ $) 92 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1316 (((-3 $ #1#) $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) ELT)) (-3781 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-314)) ELT)) (-3043 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) ELT)) (-1612 (((-85) $ $) NIL (|has| |#1| (-314)) ELT)) (-3496 (($ $) 112 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3644 (($ $) 88 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3629 (((-488) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) ELT)) (-3824 (($ (-1073 (-2 (|:| |k| (-488)) (|:| |c| |#1|)))) NIL T ELT)) (-3500 (($ $) 120 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3643 (($ $) 96 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-1093 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1094) #1#) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-954 (-1094))) (|has| |#1| (-314))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-954 (-488))) (|has| |#1| (-314))) ELT) (((-3 (-488) #1#) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-954 (-488))) (|has| |#1| (-314))) ELT)) (-3162 (((-1093 |#1| |#2| |#3|) $) 140 T ELT) (((-1094) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-954 (-1094))) (|has| |#1| (-314))) ELT) (((-352 (-488)) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-954 (-488))) (|has| |#1| (-314))) ELT) (((-488) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-954 (-488))) (|has| |#1| (-314))) ELT)) (-3736 (($ $) 37 T ELT) (($ (-488) $) 38 T ELT)) (-2570 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3965 (($ $) NIL T ELT)) (-2284 (((-634 (-1093 |#1| |#2| |#3|)) (-634 $)) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |mat| (-634 (-1093 |#1| |#2| |#3|))) (|:| |vec| (-1183 (-1093 |#1| |#2| |#3|)))) (-634 $) (-1183 $)) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-584 (-488))) (|has| |#1| (-314))) ELT) (((-634 (-488)) (-634 $)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-584 (-488))) (|has| |#1| (-314))) ELT)) (-3473 (((-3 $ #1#) $) 54 T ELT)) (-3733 (((-352 (-861 |#1|)) $ (-488)) 74 (|has| |#1| (-499)) ELT) (((-352 (-861 |#1|)) $ (-488) (-488)) 76 (|has| |#1| (-499)) ELT)) (-3000 (($) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-487)) (|has| |#1| (-314))) ELT)) (-2569 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL (|has| |#1| (-314)) ELT)) (-3729 (((-85) $) NIL (|has| |#1| (-314)) ELT)) (-3192 (((-85) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) ELT)) (-2898 (((-85) $) 28 T ELT)) (-3633 (($) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-800 (-332))) (|has| |#1| (-314))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-800 (-488))) (|has| |#1| (-314))) ELT)) (-3778 (((-488) $) NIL T ELT) (((-488) $ (-488)) 26 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3002 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3004 (((-1093 |#1| |#2| |#3|) $) 44 (|has| |#1| (-314)) ELT)) (-3017 (($ $ (-488)) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3451 (((-636 $) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-1070)) (|has| |#1| (-314))) ELT)) (-3193 (((-85) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) ELT)) (-3783 (($ $ (-834)) NIL T ELT)) (-3821 (($ (-1 |#1| (-488)) $) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-488)) 19 T ELT) (($ $ (-998) (-488)) NIL T ELT) (($ $ (-587 (-998)) (-587 (-488))) NIL T ELT)) (-2537 (($ $ $) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-760)) (|has| |#1| (-314)))) ELT)) (-2863 (($ $ $) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-760)) (|has| |#1| (-314)))) ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-314)) ELT)) (-3949 (($ $) 81 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2285 (((-634 (-1093 |#1| |#2| |#3|)) (-1183 $)) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |mat| (-634 (-1093 |#1| |#2| |#3|))) (|:| |vec| (-1183 (-1093 |#1| |#2| |#3|)))) (-1183 $) $) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-584 (-488))) (|has| |#1| (-314))) ELT) (((-634 (-488)) (-1183 $)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-584 (-488))) (|has| |#1| (-314))) ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3785 (($ (-488) (-1093 |#1| |#2| |#3|)) 36 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3818 (($ $) 79 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-29 (-488))) (|has| |#1| (-875)) (|has| |#1| (-1119))) (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-15 -3818 (|#1| |#1| (-1094)))) (|has| |#1| (-15 -3087 ((-587 (-1094)) |#1|))))) ELT) (($ $ (-1180 |#2|)) 80 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3452 (($) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-1070)) (|has| |#1| (-314))) CONST)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#1| (-314)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3134 (($ $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-260)) (|has| |#1| (-314))) ELT)) (-3136 (((-1093 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-487)) (|has| |#1| (-314))) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) ELT)) (-3738 (((-350 $) $) NIL (|has| |#1| (-314)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3775 (($ $ (-488)) 158 T ELT)) (-3472 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (|has| |#1| (-499))) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-3950 (($ $) 82 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3774 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-488)))) ELT) (($ $ (-1094) (-1093 |#1| |#2| |#3|)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-459 (-1094) (-1093 |#1| |#2| |#3|))) (|has| |#1| (-314))) ELT) (($ $ (-587 (-1094)) (-587 (-1093 |#1| |#2| |#3|))) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-459 (-1094) (-1093 |#1| |#2| |#3|))) (|has| |#1| (-314))) ELT) (($ $ (-587 (-251 (-1093 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-262 (-1093 |#1| |#2| |#3|))) (|has| |#1| (-314))) ELT) (($ $ (-251 (-1093 |#1| |#2| |#3|))) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-262 (-1093 |#1| |#2| |#3|))) (|has| |#1| (-314))) ELT) (($ $ (-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-262 (-1093 |#1| |#2| |#3|))) (|has| |#1| (-314))) ELT) (($ $ (-587 (-1093 |#1| |#2| |#3|)) (-587 (-1093 |#1| |#2| |#3|))) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-262 (-1093 |#1| |#2| |#3|))) (|has| |#1| (-314))) ELT)) (-1611 (((-698) $) NIL (|has| |#1| (-314)) ELT)) (-3806 ((|#1| $ (-488)) NIL T ELT) (($ $ $) 61 (|has| (-488) (-1029)) ELT) (($ $ (-1093 |#1| |#2| |#3|)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-243 (-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|))) (|has| |#1| (-314))) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3764 (($ $ (-1 (-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|)) (-698)) NIL (|has| |#1| (-314)) ELT) (($ $ (-1 (-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|))) NIL (|has| |#1| (-314)) ELT) (($ $ (-1180 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-192)) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-191)) (|has| |#1| (-314))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-698)) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-192)) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-191)) (|has| |#1| (-314))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-813 (-1094))) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT) (($ $ (-587 (-1094))) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-813 (-1094))) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT) (($ $ (-1094) (-698)) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-813 (-1094))) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-813 (-1094))) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT)) (-3001 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3003 (((-1093 |#1| |#2| |#3|) $) 46 (|has| |#1| (-314)) ELT)) (-3955 (((-488) $) 43 T ELT)) (-3501 (($ $) 122 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3642 (($ $) 98 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3499 (($ $) 118 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3641 (($ $) 94 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3497 (($ $) 114 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3640 (($ $) 90 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3978 (((-477) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-557 (-477))) (|has| |#1| (-314))) ELT) (((-332) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-937)) (|has| |#1| (-314))) ELT) (((-181) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-937)) (|has| |#1| (-314))) ELT) (((-804 (-332)) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-557 (-804 (-332)))) (|has| |#1| (-314))) ELT) (((-804 (-488)) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-557 (-804 (-488)))) (|has| |#1| (-314))) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| (-1093 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) ELT)) (-2897 (($ $) NIL T ELT)) (-3953 (((-776) $) 162 T ELT) (($ (-488)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-148)) ELT) (($ (-1093 |#1| |#2| |#3|)) 30 T ELT) (($ (-1180 |#2|)) 25 T ELT) (($ (-1094)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-954 (-1094))) (|has| |#1| (-314))) ELT) (($ $) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (|has| |#1| (-499))) ELT) (($ (-352 (-488))) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-954 (-488))) (|has| |#1| (-314))) (|has| |#1| (-38 (-352 (-488))))) ELT)) (-3683 ((|#1| $ (-488)) 77 T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1093 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-118)) (|has| |#1| (-314))) (|has| |#1| (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-3779 ((|#1| $) 12 T ELT)) (-3137 (((-1093 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-487)) (|has| |#1| (-314))) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3504 (($ $) 128 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3492 (($ $) 104 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2067 (((-85) $ $) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (|has| |#1| (-499))) ELT)) (-3502 (($ $) 124 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3490 (($ $) 100 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3506 (($ $) 132 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3494 (($ $) 108 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3776 ((|#1| $ (-488)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-488)))) (|has| |#1| (-15 -3953 (|#1| (-1094))))) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3507 (($ $) 134 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3495 (($ $) 110 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3505 (($ $) 130 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3493 (($ $) 106 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3503 (($ $) 126 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3491 (($ $) 102 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3389 (($ $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) ELT)) (-2666 (($) 21 T CONST)) (-2672 (($) 16 T CONST)) (-2675 (($ $ (-1 (-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|)) (-698)) NIL (|has| |#1| (-314)) ELT) (($ $ (-1 (-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|))) NIL (|has| |#1| (-314)) ELT) (($ $ (-1180 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-192)) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-191)) (|has| |#1| (-314))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-698)) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-192)) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-191)) (|has| |#1| (-314))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-813 (-1094))) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT) (($ $ (-587 (-1094))) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-813 (-1094))) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT) (($ $ (-1094) (-698)) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-813 (-1094))) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-813 (-1094))) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT)) (-2572 (((-85) $ $) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-760)) (|has| |#1| (-314)))) ELT)) (-2573 (((-85) $ $) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-760)) (|has| |#1| (-314)))) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-760)) (|has| |#1| (-314)))) ELT)) (-2691 (((-85) $ $) NIL (OR (-12 (|has| (-1093 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-760)) (|has| |#1| (-314)))) ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT) (($ $ $) 49 (|has| |#1| (-314)) ELT) (($ (-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|)) 50 (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 23 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 60 T ELT) (($ $ (-488)) NIL (|has| |#1| (-314)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 137 (|has| |#1| (-38 (-352 (-488)))) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1093 |#1| |#2| |#3|)) 48 (|has| |#1| (-314)) ELT) (($ (-1093 |#1| |#2| |#3|) $) 47 (|has| |#1| (-314)) ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-1086 |#1| |#2| |#3|) (-13 (-1147 |#1| (-1093 |#1| |#2| |#3|)) (-810 $ (-1180 |#2|)) (-10 -8 (-15 -3953 ($ (-1180 |#2|))) (IF (|has| |#1| (-38 (-352 (-488)))) (-15 -3818 ($ $ (-1180 |#2|))) |%noBranch|))) (-965) (-1094) |#1|) (T -1086)) +((-3953 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1086 *3 *4 *5)) (-4 *3 (-965)) (-14 *5 *3))) (-3818 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)) (-14 *5 *3)))) +((-3538 ((|#2| |#2| (-1008 |#2|)) 26 T ELT) ((|#2| |#2| (-1094)) 28 T ELT))) +(((-1087 |#1| |#2|) (-10 -7 (-15 -3538 (|#2| |#2| (-1094))) (-15 -3538 (|#2| |#2| (-1008 |#2|)))) (-13 (-499) (-954 (-488)) (-584 (-488))) (-13 (-366 |#1|) (-133) (-27) (-1119))) (T -1087)) +((-3538 (*1 *2 *2 *3) (-12 (-5 *3 (-1008 *2)) (-4 *2 (-13 (-366 *4) (-133) (-27) (-1119))) (-4 *4 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *1 (-1087 *4 *2)))) (-3538 (*1 *2 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *1 (-1087 *4 *2)) (-4 *2 (-13 (-366 *4) (-133) (-27) (-1119)))))) +((-3538 (((-3 (-352 (-861 |#1|)) (-267 |#1|)) (-352 (-861 |#1|)) (-1008 (-352 (-861 |#1|)))) 31 T ELT) (((-352 (-861 |#1|)) (-861 |#1|) (-1008 (-861 |#1|))) 44 T ELT) (((-3 (-352 (-861 |#1|)) (-267 |#1|)) (-352 (-861 |#1|)) (-1094)) 33 T ELT) (((-352 (-861 |#1|)) (-861 |#1|) (-1094)) 36 T ELT))) +(((-1088 |#1|) (-10 -7 (-15 -3538 ((-352 (-861 |#1|)) (-861 |#1|) (-1094))) (-15 -3538 ((-3 (-352 (-861 |#1|)) (-267 |#1|)) (-352 (-861 |#1|)) (-1094))) (-15 -3538 ((-352 (-861 |#1|)) (-861 |#1|) (-1008 (-861 |#1|)))) (-15 -3538 ((-3 (-352 (-861 |#1|)) (-267 |#1|)) (-352 (-861 |#1|)) (-1008 (-352 (-861 |#1|)))))) (-13 (-499) (-954 (-488)))) (T -1088)) +((-3538 (*1 *2 *3 *4) (-12 (-5 *4 (-1008 (-352 (-861 *5)))) (-5 *3 (-352 (-861 *5))) (-4 *5 (-13 (-499) (-954 (-488)))) (-5 *2 (-3 *3 (-267 *5))) (-5 *1 (-1088 *5)))) (-3538 (*1 *2 *3 *4) (-12 (-5 *4 (-1008 (-861 *5))) (-5 *3 (-861 *5)) (-4 *5 (-13 (-499) (-954 (-488)))) (-5 *2 (-352 *3)) (-5 *1 (-1088 *5)))) (-3538 (*1 *2 *3 *4) (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-499) (-954 (-488)))) (-5 *2 (-3 (-352 (-861 *5)) (-267 *5))) (-5 *1 (-1088 *5)) (-5 *3 (-352 (-861 *5))))) (-3538 (*1 *2 *3 *4) (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-499) (-954 (-488)))) (-5 *2 (-352 (-861 *5))) (-5 *1 (-1088 *5)) (-5 *3 (-861 *5))))) +((-2574 (((-85) $ $) 172 T ELT)) (-3194 (((-85) $) 44 T ELT)) (-3773 (((-1183 |#1|) $ (-698)) NIL T ELT)) (-3087 (((-587 (-998)) $) NIL T ELT)) (-3771 (($ (-1089 |#1|)) NIL T ELT)) (-3089 (((-1089 $) $ (-998)) 83 T ELT) (((-1089 |#1|) $) 72 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) 166 (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-2825 (((-698) $) NIL T ELT) (((-698) $ (-587 (-998))) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3761 (($ $ $) 160 (|has| |#1| (-499)) ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) 97 (|has| |#1| (-825)) ELT)) (-3781 (($ $) NIL (|has| |#1| (-395)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-395)) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) 117 (|has| |#1| (-825)) ELT)) (-1612 (((-85) $ $) NIL (|has| |#1| (-314)) ELT)) (-3767 (($ $ (-698)) 62 T ELT)) (-3766 (($ $ (-698)) 64 T ELT)) (-3757 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-395)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-998) #1#) $) NIL T ELT)) (-3162 ((|#1| $) NIL T ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-998) $) NIL T ELT)) (-3762 (($ $ $ (-998)) NIL (|has| |#1| (-148)) ELT) ((|#1| $ $) 162 (|has| |#1| (-148)) ELT)) (-2570 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3965 (($ $) 81 T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#1|) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-2569 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3765 (($ $ $) 133 T ELT)) (-3759 (($ $ $) NIL (|has| |#1| (-499)) ELT)) (-3758 (((-2 (|:| -3961 |#1|) (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-499)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL (|has| |#1| (-314)) ELT)) (-3509 (($ $) 167 (|has| |#1| (-395)) ELT) (($ $ (-998)) NIL (|has| |#1| (-395)) ELT)) (-2824 (((-587 $) $) NIL T ELT)) (-3729 (((-85) $) NIL (|has| |#1| (-825)) ELT)) (-1628 (($ $ |#1| (-698) $) 70 T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (-12 (|has| (-998) (-800 (-332))) (|has| |#1| (-800 (-332)))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (-12 (|has| (-998) (-800 (-488))) (|has| |#1| (-800 (-488)))) ELT)) (-3539 (((-776) $ (-776)) 150 T ELT)) (-3778 (((-698) $ $) NIL (|has| |#1| (-499)) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) 49 T ELT)) (-2425 (((-698) $) NIL T ELT)) (-3451 (((-636 $) $) NIL (|has| |#1| (-1070)) ELT)) (-3090 (($ (-1089 |#1|) (-998)) 74 T ELT) (($ (-1089 $) (-998)) 91 T ELT)) (-3783 (($ $ (-698)) 52 T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-2827 (((-587 $) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-698)) 89 T ELT) (($ $ (-998) (-698)) NIL T ELT) (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT)) (-3769 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $ (-998)) NIL T ELT) (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 155 T ELT)) (-2826 (((-698) $) NIL T ELT) (((-698) $ (-998)) NIL T ELT) (((-587 (-698)) $ (-587 (-998))) NIL T ELT)) (-1629 (($ (-1 (-698) (-698)) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3772 (((-1089 |#1|) $) NIL T ELT)) (-3088 (((-3 (-998) #1#) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) NIL T ELT) (((-634 |#1|) (-1183 $)) NIL T ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) 77 T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-395)) ELT) (($ $ $) NIL (|has| |#1| (-395)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3768 (((-2 (|:| -1977 $) (|:| -2908 $)) $ (-698)) 61 T ELT)) (-2829 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2828 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2830 (((-3 (-2 (|:| |var| (-998)) (|:| -2406 (-698))) #1#) $) NIL T ELT)) (-3818 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3452 (($) NIL (|has| |#1| (-1070)) CONST)) (-3249 (((-1037) $) NIL T ELT)) (-1805 (((-85) $) 51 T ELT)) (-1804 ((|#1| $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 105 (|has| |#1| (-395)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-395)) ELT) (($ $ $) 169 (|has| |#1| (-395)) ELT)) (-3744 (($ $ (-698) |#1| $) 125 T ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) 103 (|has| |#1| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) 102 (|has| |#1| (-825)) ELT)) (-3738 (((-350 $) $) 110 (|has| |#1| (-825)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3472 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-499)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-499)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-3774 (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ (-998) |#1|) NIL T ELT) (($ $ (-587 (-998)) (-587 |#1|)) NIL T ELT) (($ $ (-998) $) NIL T ELT) (($ $ (-587 (-998)) (-587 $)) NIL T ELT)) (-1611 (((-698) $) NIL (|has| |#1| (-314)) ELT)) (-3806 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-352 $) (-352 $) (-352 $)) NIL (|has| |#1| (-499)) ELT) ((|#1| (-352 $) |#1|) NIL (|has| |#1| (-314)) ELT) (((-352 $) $ (-352 $)) NIL (|has| |#1| (-499)) ELT)) (-3770 (((-3 $ #1#) $ (-698)) 55 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 173 (|has| |#1| (-314)) ELT)) (-3763 (($ $ (-998)) NIL (|has| |#1| (-148)) ELT) ((|#1| $) 158 (|has| |#1| (-148)) ELT)) (-3764 (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT) (($ $ (-998) (-698)) NIL T ELT) (($ $ (-587 (-998))) NIL T ELT) (($ $ (-998)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1094)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-815 (-1094))) ELT)) (-3955 (((-698) $) 79 T ELT) (((-698) $ (-998)) NIL T ELT) (((-587 (-698)) $ (-587 (-998))) NIL T ELT)) (-3978 (((-804 (-332)) $) NIL (-12 (|has| (-998) (-557 (-804 (-332)))) (|has| |#1| (-557 (-804 (-332))))) ELT) (((-804 (-488)) $) NIL (-12 (|has| (-998) (-557 (-804 (-488)))) (|has| |#1| (-557 (-804 (-488))))) ELT) (((-477) $) NIL (-12 (|has| (-998) (-557 (-477))) (|has| |#1| (-557 (-477)))) ELT)) (-2823 ((|#1| $) 164 (|has| |#1| (-395)) ELT) (($ $ (-998)) NIL (|has| |#1| (-395)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-825))) ELT)) (-3760 (((-3 $ #1#) $ $) NIL (|has| |#1| (-499)) ELT) (((-3 (-352 $) #1#) (-352 $) $) NIL (|has| |#1| (-499)) ELT)) (-3953 (((-776) $) 151 T ELT) (($ (-488)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-998)) NIL T ELT) (($ (-352 (-488))) NIL (OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) ELT) (($ $) NIL (|has| |#1| (-499)) ELT)) (-3823 (((-587 |#1|) $) NIL T ELT)) (-3683 ((|#1| $ (-698)) NIL T ELT) (($ $ (-998) (-698)) NIL T ELT) (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-825))) (|has| |#1| (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1627 (($ $ $ (-698)) 42 (|has| |#1| (-148)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 18 T CONST)) (-2672 (($) 20 T CONST)) (-2675 (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT) (($ $ (-998) (-698)) NIL T ELT) (($ $ (-587 (-998))) NIL T ELT) (($ $ (-998)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#1| (-815 (-1094))) ELT)) (-3062 (((-85) $ $) 122 T ELT)) (-3956 (($ $ |#1|) 174 (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 92 T ELT)) (** (($ $ (-834)) 14 T ELT) (($ $ (-698)) 12 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1089 |#1|) (-13 (-1159 |#1|) (-10 -8 (-15 -3539 ((-776) $ (-776))) (-15 -3744 ($ $ (-698) |#1| $)))) (-965)) (T -1089)) +((-3539 (*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1089 *3)) (-4 *3 (-965)))) (-3744 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-698)) (-5 *1 (-1089 *3)) (-4 *3 (-965))))) +((-3849 (((-1089 |#2|) (-1 |#2| |#1|) (-1089 |#1|)) 13 T ELT))) +(((-1090 |#1| |#2|) (-10 -7 (-15 -3849 ((-1089 |#2|) (-1 |#2| |#1|) (-1089 |#1|)))) (-965) (-965)) (T -1090)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1089 *5)) (-4 *5 (-965)) (-4 *6 (-965)) (-5 *2 (-1089 *6)) (-5 *1 (-1090 *5 *6))))) +((-3977 (((-350 (-1089 (-352 |#4|))) (-1089 (-352 |#4|))) 51 T ELT)) (-3738 (((-350 (-1089 (-352 |#4|))) (-1089 (-352 |#4|))) 52 T ELT))) +(((-1091 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3738 ((-350 (-1089 (-352 |#4|))) (-1089 (-352 |#4|)))) (-15 -3977 ((-350 (-1089 (-352 |#4|))) (-1089 (-352 |#4|))))) (-721) (-760) (-395) (-865 |#3| |#1| |#2|)) (T -1091)) +((-3977 (*1 *2 *3) (-12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-395)) (-4 *7 (-865 *6 *4 *5)) (-5 *2 (-350 (-1089 (-352 *7)))) (-5 *1 (-1091 *4 *5 *6 *7)) (-5 *3 (-1089 (-352 *7))))) (-3738 (*1 *2 *3) (-12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-395)) (-4 *7 (-865 *6 *4 *5)) (-5 *2 (-350 (-1089 (-352 *7)))) (-5 *1 (-1091 *4 *5 *6 *7)) (-5 *3 (-1089 (-352 *7)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3087 (((-587 (-998)) $) NIL T ELT)) (-3837 (((-1094) $) 11 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3777 (($ $ (-352 (-488))) NIL T ELT) (($ $ (-352 (-488)) (-352 (-488))) NIL T ELT)) (-3780 (((-1073 (-2 (|:| |k| (-352 (-488))) (|:| |c| |#1|))) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3645 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-314)) ELT)) (-3043 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1612 (((-85) $ $) NIL (|has| |#1| (-314)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3644 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3824 (($ (-698) (-1073 (-2 (|:| |k| (-352 (-488))) (|:| |c| |#1|)))) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3643 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-1086 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1093 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3162 (((-1086 |#1| |#2| |#3|) $) NIL T ELT) (((-1093 |#1| |#2| |#3|) $) NIL T ELT)) (-2570 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3965 (($ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3787 (((-352 (-488)) $) 59 T ELT)) (-2569 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3788 (($ (-352 (-488)) (-1086 |#1| |#2| |#3|)) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL (|has| |#1| (-314)) ELT)) (-3729 (((-85) $) NIL (|has| |#1| (-314)) ELT)) (-2898 (((-85) $) NIL T ELT)) (-3633 (($) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3778 (((-352 (-488)) $) NIL T ELT) (((-352 (-488)) $ (-352 (-488))) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3017 (($ $ (-488)) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3783 (($ $ (-834)) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-352 (-488))) 20 T ELT) (($ $ (-998) (-352 (-488))) NIL T ELT) (($ $ (-587 (-998)) (-587 (-352 (-488)))) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3949 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3786 (((-1086 |#1| |#2| |#3|) $) 41 T ELT)) (-3784 (((-3 (-1086 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3785 (((-1086 |#1| |#2| |#3|) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3818 (($ $) 39 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-29 (-488))) (|has| |#1| (-875)) (|has| |#1| (-1119))) (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-15 -3818 (|#1| |#1| (-1094)))) (|has| |#1| (-15 -3087 ((-587 (-1094)) |#1|))))) ELT) (($ $ (-1180 |#2|)) 40 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#1| (-314)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#1| (-314)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3775 (($ $ (-352 (-488))) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL (|has| |#1| (-499)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-3950 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3774 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-352 (-488))))) ELT)) (-1611 (((-698) $) NIL (|has| |#1| (-314)) ELT)) (-3806 ((|#1| $ (-352 (-488))) NIL T ELT) (($ $ $) NIL (|has| (-352 (-488)) (-1029)) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3764 (($ $ (-1094)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-698)) NIL (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-1180 |#2|)) 38 T ELT)) (-3955 (((-352 (-488)) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3953 (((-776) $) 62 T ELT) (($ (-488)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-148)) ELT) (($ (-1086 |#1| |#2| |#3|)) 30 T ELT) (($ (-1093 |#1| |#2| |#3|)) 31 T ELT) (($ (-1180 |#2|)) 26 T ELT) (($ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $) NIL (|has| |#1| (-499)) ELT)) (-3683 ((|#1| $ (-352 (-488))) NIL T ELT)) (-2708 (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-3132 (((-698)) NIL T CONST)) (-3779 ((|#1| $) 12 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3506 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3776 ((|#1| $ (-352 (-488))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-352 (-488))))) (|has| |#1| (-15 -3953 (|#1| (-1094))))) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3507 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3505 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2666 (($) 22 T CONST)) (-2672 (($) 16 T CONST)) (-2675 (($ $ (-1094)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-698)) NIL (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-1180 |#2|)) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 24 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-1092 |#1| |#2| |#3|) (-13 (-1168 |#1| (-1086 |#1| |#2| |#3|)) (-810 $ (-1180 |#2|)) (-954 (-1093 |#1| |#2| |#3|)) (-559 (-1180 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-352 (-488)))) (-15 -3818 ($ $ (-1180 |#2|))) |%noBranch|))) (-965) (-1094) |#1|) (T -1092)) +((-3818 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1092 *3 *4 *5)) (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)) (-14 *5 *3)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 129 T ELT)) (-3087 (((-587 (-998)) $) NIL T ELT)) (-3837 (((-1094) $) 119 T ELT)) (-3817 (((-1152 |#2| |#1|) $ (-698)) 69 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3777 (($ $ (-698)) 85 T ELT) (($ $ (-698) (-698)) 82 T ELT)) (-3780 (((-1073 (-2 (|:| |k| (-698)) (|:| |c| |#1|))) $) 105 T ELT)) (-3498 (($ $) 173 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3645 (($ $) 149 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3043 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3496 (($ $) 169 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3644 (($ $) 145 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3824 (($ (-1073 (-2 (|:| |k| (-698)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1073 |#1|)) 113 T ELT)) (-3500 (($ $) 177 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3643 (($ $) 153 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3730 (($) NIL T CONST)) (-3965 (($ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) 25 T ELT)) (-3822 (($ $) 28 T ELT)) (-3820 (((-861 |#1|) $ (-698)) 81 T ELT) (((-861 |#1|) $ (-698) (-698)) 83 T ELT)) (-2898 (((-85) $) 124 T ELT)) (-3633 (($) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3778 (((-698) $) 126 T ELT) (((-698) $ (-698)) 128 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3017 (($ $ (-488)) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3783 (($ $ (-834)) NIL T ELT)) (-3821 (($ (-1 |#1| (-488)) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-698)) 13 T ELT) (($ $ (-998) (-698)) NIL T ELT) (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3949 (($ $) 135 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3818 (($ $) 133 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-29 (-488))) (|has| |#1| (-875)) (|has| |#1| (-1119))) (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-15 -3818 (|#1| |#1| (-1094)))) (|has| |#1| (-15 -3087 ((-587 (-1094)) |#1|))))) ELT) (($ $ (-1180 |#2|)) 134 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3775 (($ $ (-698)) 15 T ELT)) (-3472 (((-3 $ #1#) $ $) 26 (|has| |#1| (-499)) ELT)) (-3950 (($ $) 137 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3774 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-698)))) ELT)) (-3806 ((|#1| $ (-698)) 122 T ELT) (($ $ $) 132 (|has| (-698) (-1029)) ELT)) (-3764 (($ $ (-1094)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-698) |#1|))) ELT) (($ $ (-698)) NIL (|has| |#1| (-15 * (|#1| (-698) |#1|))) ELT) (($ $ (-1180 |#2|)) 31 T ELT)) (-3955 (((-698) $) NIL T ELT)) (-3501 (($ $) 179 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3642 (($ $) 155 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3499 (($ $) 175 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3641 (($ $) 151 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3497 (($ $) 171 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3640 (($ $) 147 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3953 (((-776) $) 206 T ELT) (($ (-488)) NIL T ELT) (($ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $) NIL (|has| |#1| (-499)) ELT) (($ |#1|) 130 (|has| |#1| (-148)) ELT) (($ (-1152 |#2| |#1|)) 55 T ELT) (($ (-1180 |#2|)) 36 T ELT)) (-3823 (((-1073 |#1|) $) 101 T ELT)) (-3683 ((|#1| $ (-698)) 121 T ELT)) (-2708 (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-3132 (((-698)) NIL T CONST)) (-3779 ((|#1| $) 58 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3504 (($ $) 185 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3492 (($ $) 161 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3502 (($ $) 181 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3490 (($ $) 157 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3506 (($ $) 189 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3494 (($ $) 165 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3776 ((|#1| $ (-698)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-698)))) (|has| |#1| (-15 -3953 (|#1| (-1094))))) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3507 (($ $) 191 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3495 (($ $) 167 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3505 (($ $) 187 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3503 (($ $) 183 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3491 (($ $) 159 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2666 (($) 17 T CONST)) (-2672 (($) 20 T CONST)) (-2675 (($ $ (-1094)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-698) |#1|))) ELT) (($ $ (-698)) NIL (|has| |#1| (-15 * (|#1| (-698) |#1|))) ELT) (($ $ (-1180 |#2|)) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3845 (($ $ $) 35 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-314)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 141 (|has| |#1| (-38 (-352 (-488)))) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-1093 |#1| |#2| |#3|) (-13 (-1176 |#1|) (-810 $ (-1180 |#2|)) (-10 -8 (-15 -3953 ($ (-1152 |#2| |#1|))) (-15 -3817 ((-1152 |#2| |#1|) $ (-698))) (-15 -3953 ($ (-1180 |#2|))) (IF (|has| |#1| (-38 (-352 (-488)))) (-15 -3818 ($ $ (-1180 |#2|))) |%noBranch|))) (-965) (-1094) |#1|) (T -1093)) +((-3953 (*1 *1 *2) (-12 (-5 *2 (-1152 *4 *3)) (-4 *3 (-965)) (-14 *4 (-1094)) (-14 *5 *3) (-5 *1 (-1093 *3 *4 *5)))) (-3817 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1152 *5 *4)) (-5 *1 (-1093 *4 *5 *6)) (-4 *4 (-965)) (-14 *5 (-1094)) (-14 *6 *4))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1093 *3 *4 *5)) (-4 *3 (-965)) (-14 *5 *3))) (-3818 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1093 *3 *4 *5)) (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)) (-14 *5 *3)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3543 (($ $ (-587 (-776))) 48 T ELT)) (-3544 (($ $ (-587 (-776))) 46 T ELT)) (-3541 (((-1077) $) 88 T ELT)) (-3546 (((-2 (|:| -2590 (-587 (-776))) (|:| -2489 (-587 (-776))) (|:| |presup| (-587 (-776))) (|:| -2588 (-587 (-776))) (|:| |args| (-587 (-776)))) $) 95 T ELT)) (-3547 (((-85) $) 86 T ELT)) (-3545 (($ $ (-587 (-587 (-776)))) 45 T ELT) (($ $ (-2 (|:| -2590 (-587 (-776))) (|:| -2489 (-587 (-776))) (|:| |presup| (-587 (-776))) (|:| -2588 (-587 (-776))) (|:| |args| (-587 (-776))))) 85 T ELT)) (-3730 (($) 151 T CONST)) (-3163 (((-3 (-450) "failed") $) 155 T ELT)) (-3162 (((-450) $) NIL T ELT)) (-3549 (((-1189)) 123 T ELT)) (-2802 (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) 55 T ELT) (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) 62 T ELT)) (-3620 (($) 109 T ELT) (($ $) 118 T ELT)) (-3548 (($ $) 87 T ELT)) (-2537 (($ $ $) NIL T ELT)) (-2863 (($ $ $) NIL T ELT)) (-3540 (((-587 $) $) 124 T ELT)) (-3248 (((-1077) $) 101 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3806 (($ $ (-587 (-776))) 47 T ELT)) (-3978 (((-477) $) 33 T ELT) (((-1094) $) 34 T ELT) (((-804 (-488)) $) 66 T ELT) (((-804 (-332)) $) 64 T ELT)) (-3953 (((-776) $) 41 T ELT) (($ (-1077)) 35 T ELT) (($ (-450)) 153 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3542 (($ $ (-587 (-776))) 49 T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 37 T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) 38 T ELT))) +(((-1094) (-13 (-760) (-557 (-477)) (-557 (-1094)) (-559 (-1077)) (-954 (-450)) (-557 (-804 (-488))) (-557 (-804 (-332))) (-800 (-488)) (-800 (-332)) (-10 -8 (-15 -3620 ($)) (-15 -3620 ($ $)) (-15 -3549 ((-1189))) (-15 -3548 ($ $)) (-15 -3547 ((-85) $)) (-15 -3546 ((-2 (|:| -2590 (-587 (-776))) (|:| -2489 (-587 (-776))) (|:| |presup| (-587 (-776))) (|:| -2588 (-587 (-776))) (|:| |args| (-587 (-776)))) $)) (-15 -3545 ($ $ (-587 (-587 (-776))))) (-15 -3545 ($ $ (-2 (|:| -2590 (-587 (-776))) (|:| -2489 (-587 (-776))) (|:| |presup| (-587 (-776))) (|:| -2588 (-587 (-776))) (|:| |args| (-587 (-776)))))) (-15 -3544 ($ $ (-587 (-776)))) (-15 -3543 ($ $ (-587 (-776)))) (-15 -3542 ($ $ (-587 (-776)))) (-15 -3806 ($ $ (-587 (-776)))) (-15 -3541 ((-1077) $)) (-15 -3540 ((-587 $) $)) (-15 -3730 ($) -3959)))) (T -1094)) +((-3620 (*1 *1) (-5 *1 (-1094))) (-3620 (*1 *1 *1) (-5 *1 (-1094))) (-3549 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1094)))) (-3548 (*1 *1 *1) (-5 *1 (-1094))) (-3547 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1094)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2590 (-587 (-776))) (|:| -2489 (-587 (-776))) (|:| |presup| (-587 (-776))) (|:| -2588 (-587 (-776))) (|:| |args| (-587 (-776))))) (-5 *1 (-1094)))) (-3545 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-587 (-776)))) (-5 *1 (-1094)))) (-3545 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2590 (-587 (-776))) (|:| -2489 (-587 (-776))) (|:| |presup| (-587 (-776))) (|:| -2588 (-587 (-776))) (|:| |args| (-587 (-776))))) (-5 *1 (-1094)))) (-3544 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-1094)))) (-3543 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-1094)))) (-3542 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-1094)))) (-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-1094)))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1094)))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-587 (-1094))) (-5 *1 (-1094)))) (-3730 (*1 *1) (-5 *1 (-1094)))) +((-3550 (((-1183 |#1|) |#1| (-834)) 18 T ELT) (((-1183 |#1|) (-587 |#1|)) 25 T ELT))) +(((-1095 |#1|) (-10 -7 (-15 -3550 ((-1183 |#1|) (-587 |#1|))) (-15 -3550 ((-1183 |#1|) |#1| (-834)))) (-965)) (T -1095)) +((-3550 (*1 *2 *3 *4) (-12 (-5 *4 (-834)) (-5 *2 (-1183 *3)) (-5 *1 (-1095 *3)) (-4 *3 (-965)))) (-3550 (*1 *2 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-965)) (-5 *2 (-1183 *4)) (-5 *1 (-1095 *4))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3162 (((-488) $) NIL (|has| |#1| (-954 (-488))) ELT) (((-352 (-488)) $) NIL (|has| |#1| (-954 (-352 (-488)))) ELT) ((|#1| $) NIL T ELT)) (-3965 (($ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3509 (($ $) NIL (|has| |#1| (-395)) ELT)) (-1628 (($ $ |#1| (-888) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) 18 T ELT)) (-2425 (((-698) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-888)) NIL T ELT)) (-2826 (((-888) $) NIL T ELT)) (-1629 (($ (-1 (-888) (-888)) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1805 (((-85) $) NIL T ELT)) (-1804 ((|#1| $) NIL T ELT)) (-3744 (($ $ (-888) |#1| $) NIL (-12 (|has| (-888) (-104)) (|has| |#1| (-499))) ELT)) (-3472 (((-3 $ #1#) $ $) NIL (|has| |#1| (-499)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-499)) ELT)) (-3955 (((-888) $) NIL T ELT)) (-2823 ((|#1| $) NIL (|has| |#1| (-395)) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ $) NIL (|has| |#1| (-499)) ELT) (($ |#1|) NIL T ELT) (($ (-352 (-488))) NIL (OR (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-954 (-352 (-488))))) ELT)) (-3823 (((-587 |#1|) $) NIL T ELT)) (-3683 ((|#1| $ (-888)) NIL T ELT)) (-2708 (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-3132 (((-698)) NIL T CONST)) (-1627 (($ $ $ (-698)) NIL (|has| |#1| (-148)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 13 T CONST)) (-2672 (($) NIL T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 22 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-1096 |#1|) (-13 (-279 |#1| (-888)) (-10 -8 (IF (|has| |#1| (-499)) (IF (|has| (-888) (-104)) (-15 -3744 ($ $ (-888) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3999)) (-6 -3999) |%noBranch|))) (-965)) (T -1096)) +((-3744 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-888)) (-4 *2 (-104)) (-5 *1 (-1096 *3)) (-4 *3 (-499)) (-4 *3 (-965))))) +((-3551 (((-1098) (-1094) $) 26 T ELT)) (-3561 (($) 30 T ELT)) (-3553 (((-3 (|:| |fst| (-379)) (|:| -3917 #1="void")) (-1094) $) 23 T ELT)) (-3555 (((-1189) (-1094) (-3 (|:| |fst| (-379)) (|:| -3917 #1#)) $) 42 T ELT) (((-1189) (-1094) (-3 (|:| |fst| (-379)) (|:| -3917 #1#))) 43 T ELT) (((-1189) (-3 (|:| |fst| (-379)) (|:| -3917 #1#))) 44 T ELT)) (-3563 (((-1189) (-1094)) 59 T ELT)) (-3554 (((-1189) (-1094) $) 56 T ELT) (((-1189) (-1094)) 57 T ELT) (((-1189)) 58 T ELT)) (-3559 (((-1189) (-1094)) 38 T ELT)) (-3557 (((-1094)) 37 T ELT)) (-3571 (($) 35 T ELT)) (-3570 (((-381) (-1094) (-381) (-1094) $) 46 T ELT) (((-381) (-587 (-1094)) (-381) (-1094) $) 50 T ELT) (((-381) (-1094) (-381)) 47 T ELT) (((-381) (-1094) (-381) (-1094)) 51 T ELT)) (-3558 (((-1094)) 36 T ELT)) (-3953 (((-776) $) 29 T ELT)) (-3560 (((-1189)) 31 T ELT) (((-1189) (-1094)) 34 T ELT)) (-3552 (((-587 (-1094)) (-1094) $) 25 T ELT)) (-3556 (((-1189) (-1094) (-587 (-1094)) $) 39 T ELT) (((-1189) (-1094) (-587 (-1094))) 40 T ELT) (((-1189) (-587 (-1094))) 41 T ELT))) +(((-1097) (-13 (-556 (-776)) (-10 -8 (-15 -3561 ($)) (-15 -3560 ((-1189))) (-15 -3560 ((-1189) (-1094))) (-15 -3570 ((-381) (-1094) (-381) (-1094) $)) (-15 -3570 ((-381) (-587 (-1094)) (-381) (-1094) $)) (-15 -3570 ((-381) (-1094) (-381))) (-15 -3570 ((-381) (-1094) (-381) (-1094))) (-15 -3559 ((-1189) (-1094))) (-15 -3558 ((-1094))) (-15 -3557 ((-1094))) (-15 -3556 ((-1189) (-1094) (-587 (-1094)) $)) (-15 -3556 ((-1189) (-1094) (-587 (-1094)))) (-15 -3556 ((-1189) (-587 (-1094)))) (-15 -3555 ((-1189) (-1094) (-3 (|:| |fst| (-379)) (|:| -3917 #1="void")) $)) (-15 -3555 ((-1189) (-1094) (-3 (|:| |fst| (-379)) (|:| -3917 #1#)))) (-15 -3555 ((-1189) (-3 (|:| |fst| (-379)) (|:| -3917 #1#)))) (-15 -3554 ((-1189) (-1094) $)) (-15 -3554 ((-1189) (-1094))) (-15 -3554 ((-1189))) (-15 -3563 ((-1189) (-1094))) (-15 -3571 ($)) (-15 -3553 ((-3 (|:| |fst| (-379)) (|:| -3917 #1#)) (-1094) $)) (-15 -3552 ((-587 (-1094)) (-1094) $)) (-15 -3551 ((-1098) (-1094) $))))) (T -1097)) +((-3561 (*1 *1) (-5 *1 (-1097))) (-3560 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1097)))) (-3560 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-1189)) (-5 *1 (-1097)))) (-3570 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-381)) (-5 *3 (-1094)) (-5 *1 (-1097)))) (-3570 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-381)) (-5 *3 (-587 (-1094))) (-5 *4 (-1094)) (-5 *1 (-1097)))) (-3570 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1094)) (-5 *1 (-1097)))) (-3570 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-381)) (-5 *3 (-1094)) (-5 *1 (-1097)))) (-3559 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-1189)) (-5 *1 (-1097)))) (-3558 (*1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-1097)))) (-3557 (*1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-1097)))) (-3556 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-587 (-1094))) (-5 *3 (-1094)) (-5 *2 (-1189)) (-5 *1 (-1097)))) (-3556 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-1094))) (-5 *3 (-1094)) (-5 *2 (-1189)) (-5 *1 (-1097)))) (-3556 (*1 *2 *3) (-12 (-5 *3 (-587 (-1094))) (-5 *2 (-1189)) (-5 *1 (-1097)))) (-3555 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1094)) (-5 *4 (-3 (|:| |fst| (-379)) (|:| -3917 #1="void"))) (-5 *2 (-1189)) (-5 *1 (-1097)))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-1094)) (-5 *4 (-3 (|:| |fst| (-379)) (|:| -3917 #1#))) (-5 *2 (-1189)) (-5 *1 (-1097)))) (-3555 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-379)) (|:| -3917 #1#))) (-5 *2 (-1189)) (-5 *1 (-1097)))) (-3554 (*1 *2 *3 *1) (-12 (-5 *3 (-1094)) (-5 *2 (-1189)) (-5 *1 (-1097)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-1189)) (-5 *1 (-1097)))) (-3554 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1097)))) (-3563 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-1189)) (-5 *1 (-1097)))) (-3571 (*1 *1) (-5 *1 (-1097))) (-3553 (*1 *2 *3 *1) (-12 (-5 *3 (-1094)) (-5 *2 (-3 (|:| |fst| (-379)) (|:| -3917 #1#))) (-5 *1 (-1097)))) (-3552 (*1 *2 *3 *1) (-12 (-5 *2 (-587 (-1094))) (-5 *1 (-1097)) (-5 *3 (-1094)))) (-3551 (*1 *2 *3 *1) (-12 (-5 *3 (-1094)) (-5 *2 (-1098)) (-5 *1 (-1097))))) +((-3565 (((-587 (-587 (-3 (|:| -3548 (-1094)) (|:| -3231 (-587 (-3 (|:| S (-1094)) (|:| P (-861 (-488))))))))) $) 66 T ELT)) (-3567 (((-587 (-3 (|:| -3548 (-1094)) (|:| -3231 (-587 (-3 (|:| S (-1094)) (|:| P (-861 (-488)))))))) (-379) $) 47 T ELT)) (-3562 (($ (-587 (-2 (|:| -3867 (-1094)) (|:| |entry| (-381))))) 17 T ELT)) (-3563 (((-1189) $) 73 T ELT)) (-3568 (((-587 (-1094)) $) 22 T ELT)) (-3564 (((-1019) $) 60 T ELT)) (-3569 (((-381) (-1094) $) 27 T ELT)) (-3566 (((-587 (-1094)) $) 30 T ELT)) (-3571 (($) 19 T ELT)) (-3570 (((-381) (-587 (-1094)) (-381) $) 25 T ELT) (((-381) (-1094) (-381) $) 24 T ELT)) (-3953 (((-776) $) 12 T ELT) (((-1106 (-1094) (-381)) $) 13 T ELT))) +(((-1098) (-13 (-556 (-776)) (-10 -8 (-15 -3953 ((-1106 (-1094) (-381)) $)) (-15 -3571 ($)) (-15 -3570 ((-381) (-587 (-1094)) (-381) $)) (-15 -3570 ((-381) (-1094) (-381) $)) (-15 -3569 ((-381) (-1094) $)) (-15 -3568 ((-587 (-1094)) $)) (-15 -3567 ((-587 (-3 (|:| -3548 (-1094)) (|:| -3231 (-587 (-3 (|:| S (-1094)) (|:| P (-861 (-488)))))))) (-379) $)) (-15 -3566 ((-587 (-1094)) $)) (-15 -3565 ((-587 (-587 (-3 (|:| -3548 (-1094)) (|:| -3231 (-587 (-3 (|:| S (-1094)) (|:| P (-861 (-488))))))))) $)) (-15 -3564 ((-1019) $)) (-15 -3563 ((-1189) $)) (-15 -3562 ($ (-587 (-2 (|:| -3867 (-1094)) (|:| |entry| (-381))))))))) (T -1098)) +((-3953 (*1 *2 *1) (-12 (-5 *2 (-1106 (-1094) (-381))) (-5 *1 (-1098)))) (-3571 (*1 *1) (-5 *1 (-1098))) (-3570 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-381)) (-5 *3 (-587 (-1094))) (-5 *1 (-1098)))) (-3570 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-381)) (-5 *3 (-1094)) (-5 *1 (-1098)))) (-3569 (*1 *2 *3 *1) (-12 (-5 *3 (-1094)) (-5 *2 (-381)) (-5 *1 (-1098)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-587 (-1094))) (-5 *1 (-1098)))) (-3567 (*1 *2 *3 *1) (-12 (-5 *3 (-379)) (-5 *2 (-587 (-3 (|:| -3548 (-1094)) (|:| -3231 (-587 (-3 (|:| S (-1094)) (|:| P (-861 (-488))))))))) (-5 *1 (-1098)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-587 (-1094))) (-5 *1 (-1098)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-3 (|:| -3548 (-1094)) (|:| -3231 (-587 (-3 (|:| S (-1094)) (|:| P (-861 (-488)))))))))) (-5 *1 (-1098)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-1019)) (-5 *1 (-1098)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1098)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| -3867 (-1094)) (|:| |entry| (-381))))) (-5 *1 (-1098))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3163 (((-3 (-488) #1="failed") $) 29 T ELT) (((-3 (-181) #1#) $) 35 T ELT) (((-3 (-450) #1#) $) 43 T ELT) (((-3 (-1077) #1#) $) 47 T ELT)) (-3162 (((-488) $) 30 T ELT) (((-181) $) 36 T ELT) (((-450) $) 40 T ELT) (((-1077) $) 48 T ELT)) (-3576 (((-85) $) 53 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3575 (((-3 (-488) (-181) (-450) (-1077) $) $) 56 T ELT)) (-3574 (((-587 $) $) 58 T ELT)) (-3978 (((-1019) $) 24 T ELT) (($ (-1019)) 25 T ELT)) (-3573 (((-85) $) 57 T ELT)) (-3953 (((-776) $) 23 T ELT) (($ (-488)) 26 T ELT) (($ (-181)) 32 T ELT) (($ (-450)) 38 T ELT) (($ (-1077)) 44 T ELT) (((-477) $) 60 T ELT) (((-488) $) 31 T ELT) (((-181) $) 37 T ELT) (((-450) $) 41 T ELT) (((-1077) $) 49 T ELT)) (-3572 (((-85) $ (|[\|\|]| (-488))) 10 T ELT) (((-85) $ (|[\|\|]| (-181))) 13 T ELT) (((-85) $ (|[\|\|]| (-450))) 19 T ELT) (((-85) $ (|[\|\|]| (-1077))) 16 T ELT)) (-3577 (($ (-450) (-587 $)) 51 T ELT) (($ $ (-587 $)) 52 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3578 (((-488) $) 27 T ELT) (((-181) $) 33 T ELT) (((-450) $) 39 T ELT) (((-1077) $) 45 T ELT)) (-3062 (((-85) $ $) 7 T ELT))) +(((-1099) (-13 (-1179) (-1017) (-954 (-488)) (-954 (-181)) (-954 (-450)) (-954 (-1077)) (-556 (-477)) (-10 -8 (-15 -3978 ((-1019) $)) (-15 -3978 ($ (-1019))) (-15 -3953 ((-488) $)) (-15 -3578 ((-488) $)) (-15 -3953 ((-181) $)) (-15 -3578 ((-181) $)) (-15 -3953 ((-450) $)) (-15 -3578 ((-450) $)) (-15 -3953 ((-1077) $)) (-15 -3578 ((-1077) $)) (-15 -3577 ($ (-450) (-587 $))) (-15 -3577 ($ $ (-587 $))) (-15 -3576 ((-85) $)) (-15 -3575 ((-3 (-488) (-181) (-450) (-1077) $) $)) (-15 -3574 ((-587 $) $)) (-15 -3573 ((-85) $)) (-15 -3572 ((-85) $ (|[\|\|]| (-488)))) (-15 -3572 ((-85) $ (|[\|\|]| (-181)))) (-15 -3572 ((-85) $ (|[\|\|]| (-450)))) (-15 -3572 ((-85) $ (|[\|\|]| (-1077))))))) (T -1099)) +((-3978 (*1 *2 *1) (-12 (-5 *2 (-1019)) (-5 *1 (-1099)))) (-3978 (*1 *1 *2) (-12 (-5 *2 (-1019)) (-5 *1 (-1099)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-1099)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-1099)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-1099)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-1099)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-1099)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-1099)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1099)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1099)))) (-3577 (*1 *1 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-587 (-1099))) (-5 *1 (-1099)))) (-3577 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-1099))) (-5 *1 (-1099)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1099)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-3 (-488) (-181) (-450) (-1077) (-1099))) (-5 *1 (-1099)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-587 (-1099))) (-5 *1 (-1099)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1099)))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-488))) (-5 *2 (-85)) (-5 *1 (-1099)))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-181))) (-5 *2 (-85)) (-5 *1 (-1099)))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-450))) (-5 *2 (-85)) (-5 *1 (-1099)))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-85)) (-5 *1 (-1099))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3142 (((-698)) 21 T ELT)) (-3730 (($) 10 T CONST)) (-3000 (($) 25 T ELT)) (-2537 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2863 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2015 (((-834) $) 23 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2405 (($ (-834)) 22 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) NIL T ELT))) +(((-1100 |#1|) (-13 (-756) (-10 -8 (-15 -3730 ($) -3959))) (-834)) (T -1100)) +((-3730 (*1 *1) (-12 (-5 *1 (-1100 *2)) (-14 *2 (-834))))) +((-488) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) +((-2574 (((-85) $ $) NIL T ELT)) (-2318 (($ $) 24 T ELT)) (-3142 (((-698)) NIL T ELT)) (-3730 (($) 18 T CONST)) (-3000 (($) NIL T ELT)) (-2537 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2863 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2015 (((-834) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2405 (($ (-834)) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-3731 (($ $ $) 20 T ELT)) (-3732 (($ $ $) 19 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2316 (($ $ $) 22 T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) NIL T ELT)) (-2317 (($ $ $) 21 T ELT))) +(((-1101 |#1|) (-13 (-756) (-608) (-10 -8 (-15 -3732 ($ $ $)) (-15 -3731 ($ $ $)) (-15 -3730 ($) -3959))) (-834)) (T -1101)) +((-3732 (*1 *1 *1 *1) (-12 (-5 *1 (-1101 *2)) (-14 *2 (-834)))) (-3731 (*1 *1 *1 *1) (-12 (-5 *1 (-1101 *2)) (-14 *2 (-834)))) (-3730 (*1 *1) (-12 (-5 *1 (-1101 *2)) (-14 *2 (-834))))) +((-698) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 9 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 7 T ELT))) +(((-1102) (-1017)) (T -1102)) +NIL +((-3580 (((-587 (-587 (-861 |#1|))) (-587 (-352 (-861 |#1|))) (-587 (-1094))) 69 T ELT)) (-3579 (((-587 (-251 (-352 (-861 |#1|)))) (-251 (-352 (-861 |#1|)))) 81 T ELT) (((-587 (-251 (-352 (-861 |#1|)))) (-352 (-861 |#1|))) 77 T ELT) (((-587 (-251 (-352 (-861 |#1|)))) (-251 (-352 (-861 |#1|))) (-1094)) 82 T ELT) (((-587 (-251 (-352 (-861 |#1|)))) (-352 (-861 |#1|)) (-1094)) 76 T ELT) (((-587 (-587 (-251 (-352 (-861 |#1|))))) (-587 (-251 (-352 (-861 |#1|))))) 108 T ELT) (((-587 (-587 (-251 (-352 (-861 |#1|))))) (-587 (-352 (-861 |#1|)))) 107 T ELT) (((-587 (-587 (-251 (-352 (-861 |#1|))))) (-587 (-251 (-352 (-861 |#1|)))) (-587 (-1094))) 109 T ELT) (((-587 (-587 (-251 (-352 (-861 |#1|))))) (-587 (-352 (-861 |#1|))) (-587 (-1094))) 106 T ELT))) +(((-1103 |#1|) (-10 -7 (-15 -3579 ((-587 (-587 (-251 (-352 (-861 |#1|))))) (-587 (-352 (-861 |#1|))) (-587 (-1094)))) (-15 -3579 ((-587 (-587 (-251 (-352 (-861 |#1|))))) (-587 (-251 (-352 (-861 |#1|)))) (-587 (-1094)))) (-15 -3579 ((-587 (-587 (-251 (-352 (-861 |#1|))))) (-587 (-352 (-861 |#1|))))) (-15 -3579 ((-587 (-587 (-251 (-352 (-861 |#1|))))) (-587 (-251 (-352 (-861 |#1|)))))) (-15 -3579 ((-587 (-251 (-352 (-861 |#1|)))) (-352 (-861 |#1|)) (-1094))) (-15 -3579 ((-587 (-251 (-352 (-861 |#1|)))) (-251 (-352 (-861 |#1|))) (-1094))) (-15 -3579 ((-587 (-251 (-352 (-861 |#1|)))) (-352 (-861 |#1|)))) (-15 -3579 ((-587 (-251 (-352 (-861 |#1|)))) (-251 (-352 (-861 |#1|))))) (-15 -3580 ((-587 (-587 (-861 |#1|))) (-587 (-352 (-861 |#1|))) (-587 (-1094))))) (-499)) (T -1103)) +((-3580 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-352 (-861 *5)))) (-5 *4 (-587 (-1094))) (-4 *5 (-499)) (-5 *2 (-587 (-587 (-861 *5)))) (-5 *1 (-1103 *5)))) (-3579 (*1 *2 *3) (-12 (-4 *4 (-499)) (-5 *2 (-587 (-251 (-352 (-861 *4))))) (-5 *1 (-1103 *4)) (-5 *3 (-251 (-352 (-861 *4)))))) (-3579 (*1 *2 *3) (-12 (-4 *4 (-499)) (-5 *2 (-587 (-251 (-352 (-861 *4))))) (-5 *1 (-1103 *4)) (-5 *3 (-352 (-861 *4))))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1094)) (-4 *5 (-499)) (-5 *2 (-587 (-251 (-352 (-861 *5))))) (-5 *1 (-1103 *5)) (-5 *3 (-251 (-352 (-861 *5)))))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1094)) (-4 *5 (-499)) (-5 *2 (-587 (-251 (-352 (-861 *5))))) (-5 *1 (-1103 *5)) (-5 *3 (-352 (-861 *5))))) (-3579 (*1 *2 *3) (-12 (-4 *4 (-499)) (-5 *2 (-587 (-587 (-251 (-352 (-861 *4)))))) (-5 *1 (-1103 *4)) (-5 *3 (-587 (-251 (-352 (-861 *4))))))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-587 (-352 (-861 *4)))) (-4 *4 (-499)) (-5 *2 (-587 (-587 (-251 (-352 (-861 *4)))))) (-5 *1 (-1103 *4)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-1094))) (-4 *5 (-499)) (-5 *2 (-587 (-587 (-251 (-352 (-861 *5)))))) (-5 *1 (-1103 *5)) (-5 *3 (-587 (-251 (-352 (-861 *5))))))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-352 (-861 *5)))) (-5 *4 (-587 (-1094))) (-4 *5 (-499)) (-5 *2 (-587 (-587 (-251 (-352 (-861 *5)))))) (-5 *1 (-1103 *5))))) +((-3585 (((-1077)) 7 T ELT)) (-3582 (((-1077)) 11 T CONST)) (-3581 (((-1189) (-1077)) 13 T ELT)) (-3584 (((-1077)) 8 T CONST)) (-3583 (((-103)) 10 T CONST))) +(((-1104) (-13 (-1133) (-10 -7 (-15 -3585 ((-1077))) (-15 -3584 ((-1077)) -3959) (-15 -3583 ((-103)) -3959) (-15 -3582 ((-1077)) -3959) (-15 -3581 ((-1189) (-1077)))))) (T -1104)) +((-3585 (*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1104)))) (-3584 (*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1104)))) (-3583 (*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1104)))) (-3582 (*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1104)))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1104))))) +((-3589 (((-587 (-587 |#1|)) (-587 (-587 |#1|)) (-587 (-587 (-587 |#1|)))) 56 T ELT)) (-3592 (((-587 (-587 (-587 |#1|))) (-587 (-587 |#1|))) 38 T ELT)) (-3593 (((-1107 (-587 |#1|)) (-587 |#1|)) 49 T ELT)) (-3595 (((-587 (-587 |#1|)) (-587 |#1|)) 45 T ELT)) (-3598 (((-2 (|:| |f1| (-587 |#1|)) (|:| |f2| (-587 (-587 (-587 |#1|)))) (|:| |f3| (-587 (-587 |#1|))) (|:| |f4| (-587 (-587 (-587 |#1|))))) (-587 (-587 (-587 |#1|)))) 53 T ELT)) (-3597 (((-2 (|:| |f1| (-587 |#1|)) (|:| |f2| (-587 (-587 (-587 |#1|)))) (|:| |f3| (-587 (-587 |#1|))) (|:| |f4| (-587 (-587 (-587 |#1|))))) (-587 |#1|) (-587 (-587 (-587 |#1|))) (-587 (-587 |#1|)) (-587 (-587 (-587 |#1|))) (-587 (-587 (-587 |#1|))) (-587 (-587 (-587 |#1|)))) 52 T ELT)) (-3594 (((-587 (-587 |#1|)) (-587 (-587 |#1|))) 43 T ELT)) (-3596 (((-587 |#1|) (-587 |#1|)) 46 T ELT)) (-3588 (((-587 (-587 (-587 |#1|))) (-587 |#1|) (-587 (-587 (-587 |#1|)))) 32 T ELT)) (-3587 (((-587 (-587 (-587 |#1|))) (-1 (-85) |#1| |#1|) (-587 |#1|) (-587 (-587 (-587 |#1|)))) 29 T ELT)) (-3586 (((-2 (|:| |fs| (-85)) (|:| |sd| (-587 |#1|)) (|:| |td| (-587 (-587 |#1|)))) (-1 (-85) |#1| |#1|) (-587 |#1|) (-587 (-587 |#1|))) 24 T ELT)) (-3590 (((-587 (-587 |#1|)) (-587 (-587 (-587 |#1|)))) 58 T ELT)) (-3591 (((-587 (-587 |#1|)) (-1107 (-587 |#1|))) 60 T ELT))) +(((-1105 |#1|) (-10 -7 (-15 -3586 ((-2 (|:| |fs| (-85)) (|:| |sd| (-587 |#1|)) (|:| |td| (-587 (-587 |#1|)))) (-1 (-85) |#1| |#1|) (-587 |#1|) (-587 (-587 |#1|)))) (-15 -3587 ((-587 (-587 (-587 |#1|))) (-1 (-85) |#1| |#1|) (-587 |#1|) (-587 (-587 (-587 |#1|))))) (-15 -3588 ((-587 (-587 (-587 |#1|))) (-587 |#1|) (-587 (-587 (-587 |#1|))))) (-15 -3589 ((-587 (-587 |#1|)) (-587 (-587 |#1|)) (-587 (-587 (-587 |#1|))))) (-15 -3590 ((-587 (-587 |#1|)) (-587 (-587 (-587 |#1|))))) (-15 -3591 ((-587 (-587 |#1|)) (-1107 (-587 |#1|)))) (-15 -3592 ((-587 (-587 (-587 |#1|))) (-587 (-587 |#1|)))) (-15 -3593 ((-1107 (-587 |#1|)) (-587 |#1|))) (-15 -3594 ((-587 (-587 |#1|)) (-587 (-587 |#1|)))) (-15 -3595 ((-587 (-587 |#1|)) (-587 |#1|))) (-15 -3596 ((-587 |#1|) (-587 |#1|))) (-15 -3597 ((-2 (|:| |f1| (-587 |#1|)) (|:| |f2| (-587 (-587 (-587 |#1|)))) (|:| |f3| (-587 (-587 |#1|))) (|:| |f4| (-587 (-587 (-587 |#1|))))) (-587 |#1|) (-587 (-587 (-587 |#1|))) (-587 (-587 |#1|)) (-587 (-587 (-587 |#1|))) (-587 (-587 (-587 |#1|))) (-587 (-587 (-587 |#1|))))) (-15 -3598 ((-2 (|:| |f1| (-587 |#1|)) (|:| |f2| (-587 (-587 (-587 |#1|)))) (|:| |f3| (-587 (-587 |#1|))) (|:| |f4| (-587 (-587 (-587 |#1|))))) (-587 (-587 (-587 |#1|)))))) (-760)) (T -1105)) +((-3598 (*1 *2 *3) (-12 (-4 *4 (-760)) (-5 *2 (-2 (|:| |f1| (-587 *4)) (|:| |f2| (-587 (-587 (-587 *4)))) (|:| |f3| (-587 (-587 *4))) (|:| |f4| (-587 (-587 (-587 *4)))))) (-5 *1 (-1105 *4)) (-5 *3 (-587 (-587 (-587 *4)))))) (-3597 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-760)) (-5 *3 (-587 *6)) (-5 *5 (-587 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-587 *5)) (|:| |f3| *5) (|:| |f4| (-587 *5)))) (-5 *1 (-1105 *6)) (-5 *4 (-587 *5)))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-760)) (-5 *1 (-1105 *3)))) (-3595 (*1 *2 *3) (-12 (-4 *4 (-760)) (-5 *2 (-587 (-587 *4))) (-5 *1 (-1105 *4)) (-5 *3 (-587 *4)))) (-3594 (*1 *2 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-760)) (-5 *1 (-1105 *3)))) (-3593 (*1 *2 *3) (-12 (-4 *4 (-760)) (-5 *2 (-1107 (-587 *4))) (-5 *1 (-1105 *4)) (-5 *3 (-587 *4)))) (-3592 (*1 *2 *3) (-12 (-4 *4 (-760)) (-5 *2 (-587 (-587 (-587 *4)))) (-5 *1 (-1105 *4)) (-5 *3 (-587 (-587 *4))))) (-3591 (*1 *2 *3) (-12 (-5 *3 (-1107 (-587 *4))) (-4 *4 (-760)) (-5 *2 (-587 (-587 *4))) (-5 *1 (-1105 *4)))) (-3590 (*1 *2 *3) (-12 (-5 *3 (-587 (-587 (-587 *4)))) (-5 *2 (-587 (-587 *4))) (-5 *1 (-1105 *4)) (-4 *4 (-760)))) (-3589 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-587 (-587 *4)))) (-5 *2 (-587 (-587 *4))) (-4 *4 (-760)) (-5 *1 (-1105 *4)))) (-3588 (*1 *2 *3 *2) (-12 (-5 *2 (-587 (-587 (-587 *4)))) (-5 *3 (-587 *4)) (-4 *4 (-760)) (-5 *1 (-1105 *4)))) (-3587 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-587 (-587 (-587 *5)))) (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-587 *5)) (-4 *5 (-760)) (-5 *1 (-1105 *5)))) (-3586 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-760)) (-5 *4 (-587 *6)) (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-587 *4)))) (-5 *1 (-1105 *6)) (-5 *5 (-587 *4))))) +((-2574 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3605 (($) NIL T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2203 (((-1189) $ |#1| |#1|) NIL (|has| $ (-1039 |#2|)) ELT)) (-3794 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-1574 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3716 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-2236 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-1357 (($ $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3411 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3412 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3848 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1580 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-3118 ((|#2| $ |#1|) NIL T ELT)) (-2205 ((|#1| $) NIL (|has| |#1| (-760)) ELT)) (-2614 (((-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3251 (((-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2206 ((|#1| $) NIL (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3849 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017))) ELT)) (-2237 (((-587 |#1|) $) NIL T ELT)) (-2238 (((-85) |#1| $) NIL T ELT)) (-1278 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3615 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2208 (((-587 |#1|) $) NIL T ELT)) (-2209 (((-85) |#1| $) NIL T ELT)) (-3249 (((-1037) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017))) ELT)) (-3807 ((|#2| $) NIL (|has| |#1| (-760)) ELT)) (-1734 (((-3 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2204 (($ $ |#2|) NIL (|has| $ (-1039 |#2|)) ELT)) (-1279 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1736 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-251 |#2|)) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 (-251 |#2|))) NIL (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#2| $) NIL (-12 (|has| $ (-320 |#2|)) (|has| |#2| (-72))) ELT)) (-2210 (((-587 |#2|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1470 (($) NIL T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1735 (((-698) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-698) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) NIL (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-557 (-477))) ELT)) (-3536 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3953 (((-776) $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-556 (-776))) (|has| |#2| (-556 (-776)))) ELT)) (-1269 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1280 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1737 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3062 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-1106 |#1| |#2|) (-1111 |#1| |#2|) (-1017) (-1017)) (T -1106)) +NIL +((-3599 (($ (-587 (-587 |#1|))) 10 T ELT)) (-3600 (((-587 (-587 |#1|)) $) 11 T ELT)) (-3953 (((-776) $) 33 T ELT))) +(((-1107 |#1|) (-10 -8 (-15 -3599 ($ (-587 (-587 |#1|)))) (-15 -3600 ((-587 (-587 |#1|)) $)) (-15 -3953 ((-776) $))) (-1017)) (T -1107)) +((-3953 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1107 *3)) (-4 *3 (-1017)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-587 (-587 *3))) (-5 *1 (-1107 *3)) (-4 *3 (-1017)))) (-3599 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1017)) (-5 *1 (-1107 *3))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3601 (($ |#1| (-55)) 11 T ELT)) (-3548 ((|#1| $) 13 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2639 (((-85) $ |#1|) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2527 (((-55) $) 15 T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-1108 |#1|) (-13 (-751 |#1|) (-10 -8 (-15 -3601 ($ |#1| (-55))))) (-1017)) (T -1108)) +((-3601 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1108 *2)) (-4 *2 (-1017))))) +((-3602 ((|#1| (-587 |#1|)) 46 T ELT)) (-3604 ((|#1| |#1| (-488)) 24 T ELT)) (-3603 (((-1089 |#1|) |#1| (-834)) 20 T ELT))) +(((-1109 |#1|) (-10 -7 (-15 -3602 (|#1| (-587 |#1|))) (-15 -3603 ((-1089 |#1|) |#1| (-834))) (-15 -3604 (|#1| |#1| (-488)))) (-314)) (T -1109)) +((-3604 (*1 *2 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-1109 *2)) (-4 *2 (-314)))) (-3603 (*1 *2 *3 *4) (-12 (-5 *4 (-834)) (-5 *2 (-1089 *3)) (-5 *1 (-1109 *3)) (-4 *3 (-314)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-5 *1 (-1109 *2)) (-4 *2 (-314))))) +((-3605 (($) 10 T ELT) (($ (-587 (-2 (|:| -3867 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3411 (($ (-2 (|:| -3867 |#2|) (|:| |entry| |#3|)) $) 63 T ELT) (($ (-1 (-85) (-2 (|:| -3867 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2614 (((-587 (-2 (|:| -3867 |#2|) (|:| |entry| |#3|))) $) 35 T ELT)) (-3332 (($ (-1 (-2 (|:| -3867 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3867 |#2|) (|:| |entry| |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) 29 T ELT)) (-3849 (($ (-1 (-2 (|:| -3867 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3867 |#2|) (|:| |entry| |#3|))) $) 49 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 (-2 (|:| -3867 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3867 |#2|) (|:| |entry| |#3|))) $) 49 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 34 T ELT)) (-1278 (((-2 (|:| -3867 |#2|) (|:| |entry| |#3|)) $) 56 T ELT)) (-3615 (($ (-2 (|:| -3867 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2208 (((-587 |#2|) $) 19 T ELT)) (-2209 (((-85) |#2| $) 61 T ELT)) (-1734 (((-3 (-2 (|:| -3867 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3867 |#2|) (|:| |entry| |#3|))) $) 60 T ELT)) (-1279 (((-2 (|:| -3867 |#2|) (|:| |entry| |#3|)) $) 65 T ELT)) (-2210 (((-587 |#3|) $) 37 T ELT)) (-3953 (((-776) $) 27 T ELT)) (-3062 (((-85) $ $) 47 T ELT))) +(((-1110 |#1| |#2| |#3|) (-10 -7 (-15 -3062 ((-85) |#1| |#1|)) (-15 -3953 ((-776) |#1|)) (-15 -3849 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3605 (|#1| (-587 (-2 (|:| -3867 |#2|) (|:| |entry| |#3|))))) (-15 -3605 (|#1|)) (-15 -3849 (|#1| (-1 (-2 (|:| -3867 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3867 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -2614 ((-587 (-2 (|:| -3867 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1734 ((-3 (-2 (|:| -3867 |#2|) (|:| |entry| |#3|)) #1="failed") (-1 (-85) (-2 (|:| -3867 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3411 ((-3 |#3| #1#) |#2| |#1|)) (-15 -3332 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3849 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2210 ((-587 |#3|) |#1|)) (-15 -2209 ((-85) |#2| |#1|)) (-15 -2208 ((-587 |#2|) |#1|)) (-15 -3411 (|#1| (-1 (-85) (-2 (|:| -3867 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3411 (|#1| (-2 (|:| -3867 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1278 ((-2 (|:| -3867 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3615 (|#1| (-2 (|:| -3867 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1279 ((-2 (|:| -3867 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3332 (|#1| (-1 (-2 (|:| -3867 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3867 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3849 (|#1| (-1 (-2 (|:| -3867 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3867 |#2|) (|:| |entry| |#3|))) |#1|))) (-1111 |#2| |#3|) (-1017) (-1017)) (T -1110)) +NIL +((-2574 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3605 (($) 95 T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 94 T ELT)) (-2203 (((-1189) $ |#1| |#1|) 82 (|has| $ (-1039 |#2|)) ELT)) (-3794 ((|#2| $ |#1| |#2|) 70 (|has| $ (-1039 |#2|)) ELT)) (-1574 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 42 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3716 (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-2236 (((-3 |#2| #1="failed") |#1| $) 59 T ELT)) (-3730 (($) 6 T CONST)) (-1357 (($ $) 51 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) ELT)) (-3411 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 44 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 43 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 60 T ELT)) (-3412 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 50 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) ELT)) (-3848 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 111 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 107 T ELT) (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 106 T ELT)) (-1580 ((|#2| $ |#1| |#2|) 69 (|has| $ (-1039 |#2|)) ELT)) (-3118 ((|#2| $ |#1|) 71 T ELT)) (-2205 ((|#1| $) 79 (|has| |#1| (-760)) ELT)) (-2614 (((-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 105 T ELT)) (-3251 (((-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 110 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2206 ((|#1| $) 78 (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 39 T ELT) (($ (-1 |#2| |#2|) $) 63 T ELT)) (-3849 (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 26 T ELT) (($ (-1 |#2| |#2|) $) 64 T ELT) (($ (-1 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 96 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 93 T ELT)) (-3248 (((-1077) $) 21 (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT)) (-2237 (((-587 |#1|) $) 61 T ELT)) (-2238 (((-85) |#1| $) 62 T ELT)) (-1278 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 35 T ELT)) (-3615 (($ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 36 T ELT)) (-2208 (((-587 |#1|) $) 76 T ELT)) (-2209 (((-85) |#1| $) 75 T ELT)) (-3249 (((-1037) $) 20 (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT)) (-3807 ((|#2| $) 80 (|has| |#1| (-760)) ELT)) (-1734 (((-3 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 108 T ELT)) (-2204 (($ $ |#2|) 81 (|has| $ (-1039 |#2|)) ELT)) (-1279 (((-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 37 T ELT)) (-1736 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 103 T ELT)) (-3774 (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) 25 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 24 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 23 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 22 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) 68 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ |#2| |#2|) 67 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-251 |#2|)) 66 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 (-251 |#2|))) 65 (-12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ELT) (($ $ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 100 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) 99 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 98 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT) (($ $ (-587 (-251 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))))) 97 (-12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-2207 (((-85) |#2| $) 77 (-12 (|has| $ (-320 |#2|)) (|has| |#2| (-72))) ELT)) (-2210 (((-587 |#2|) $) 74 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#2| $ |#1|) 73 T ELT) ((|#2| $ |#1| |#2|) 72 T ELT)) (-1470 (($) 46 T ELT) (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 45 T ELT)) (-1735 (((-698) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) $) 109 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-698) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 104 T ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 52 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-557 (-477))) ELT)) (-3536 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 47 T ELT)) (-3953 (((-776) $) 16 (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-556 (-776))) (|has| |#2| (-556 (-776))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-556 (-776)))) ELT)) (-1269 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1280 (($ (-587 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) 38 T ELT)) (-1737 (((-85) (-1 (-85) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) $) 102 T ELT)) (-3062 (((-85) $ $) 17 (OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3964 (((-698) $) 101 T ELT))) +(((-1111 |#1| |#2|) (-113) (-1017) (-1017)) (T -1111)) +((-3605 (*1 *1) (-12 (-4 *1 (-1111 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1017)))) (-3605 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| -3867 *3) (|:| |entry| *4)))) (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *1 (-1111 *3 *4)))) (-3849 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1111 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017))))) +(-13 (-553 |t#1| |t#2|) (-320 (-2 (|:| -3867 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -3605 ($)) (-15 -3605 ($ (-587 (-2 (|:| -3867 |t#1|) (|:| |entry| |t#2|))))) (-15 -3849 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-76 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1017)) (|has| |#2| (-72))) ((-556 (-776)) OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-556 (-776))) (|has| |#2| (-1017)) (|has| |#2| (-556 (-776)))) ((-124 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-557 (-477)) |has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-557 (-477))) ((-185 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-195 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-243 |#1| |#2|) . T) ((-245 |#1| |#2|) . T) ((-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ((-262 |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ((-320 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-383 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-383 |#2|) . T) ((-432 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-432 |#2|) . T) ((-542 |#1| |#2|) . T) ((-459 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-262 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017))) ((-459 |#2| |#2|) -12 (|has| |#2| (-262 |#2|)) (|has| |#2| (-1017))) ((-13) . T) ((-553 |#1| |#2|) . T) ((-1017) OR (|has| (-2 (|:| -3867 |#1|) (|:| |entry| |#2|)) (-1017)) (|has| |#2| (-1017))) ((-1039 (-2 (|:| -3867 |#1|) (|:| |entry| |#2|))) . T) ((-1039 |#2|) . T) ((-1133) . T)) +((-3611 (((-85)) 29 T ELT)) (-3608 (((-1189) (-1077)) 31 T ELT)) (-3612 (((-85)) 41 T ELT)) (-3609 (((-1189)) 39 T ELT)) (-3607 (((-1189) (-1077) (-1077)) 30 T ELT)) (-3613 (((-85)) 42 T ELT)) (-3615 (((-1189) |#1| |#2|) 53 T ELT)) (-3606 (((-1189)) 26 T ELT)) (-3614 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3610 (((-1189)) 40 T ELT))) +(((-1112 |#1| |#2|) (-10 -7 (-15 -3606 ((-1189))) (-15 -3607 ((-1189) (-1077) (-1077))) (-15 -3608 ((-1189) (-1077))) (-15 -3609 ((-1189))) (-15 -3610 ((-1189))) (-15 -3611 ((-85))) (-15 -3612 ((-85))) (-15 -3613 ((-85))) (-15 -3614 ((-3 |#2| "failed") |#1|)) (-15 -3615 ((-1189) |#1| |#2|))) (-1017) (-1017)) (T -1112)) +((-3615 (*1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017)))) (-3614 (*1 *2 *3) (|partial| -12 (-4 *2 (-1017)) (-5 *1 (-1112 *3 *2)) (-4 *3 (-1017)))) (-3613 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017)))) (-3612 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017)))) (-3611 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017)))) (-3610 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017)))) (-3609 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017)))) (-3608 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1112 *4 *5)) (-4 *4 (-1017)) (-4 *5 (-1017)))) (-3607 (*1 *2 *3 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1112 *4 *5)) (-4 *4 (-1017)) (-4 *5 (-1017)))) (-3606 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3621 (((-587 (-1077)) $) 37 T ELT)) (-3617 (((-587 (-1077)) $ (-587 (-1077))) 40 T ELT)) (-3616 (((-587 (-1077)) $ (-587 (-1077))) 39 T ELT)) (-3618 (((-587 (-1077)) $ (-587 (-1077))) 41 T ELT)) (-3619 (((-587 (-1077)) $) 36 T ELT)) (-3620 (($) 26 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3622 (((-587 (-1077)) $) 38 T ELT)) (-3623 (((-1189) $ (-488)) 33 T ELT) (((-1189) $) 34 T ELT)) (-3978 (($ (-776) (-488)) 31 T ELT) (($ (-776) (-488) (-776)) NIL T ELT)) (-3953 (((-776) $) 47 T ELT) (($ (-776)) 30 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-1113) (-13 (-1017) (-559 (-776)) (-10 -8 (-15 -3978 ($ (-776) (-488))) (-15 -3978 ($ (-776) (-488) (-776))) (-15 -3623 ((-1189) $ (-488))) (-15 -3623 ((-1189) $)) (-15 -3622 ((-587 (-1077)) $)) (-15 -3621 ((-587 (-1077)) $)) (-15 -3620 ($)) (-15 -3619 ((-587 (-1077)) $)) (-15 -3618 ((-587 (-1077)) $ (-587 (-1077)))) (-15 -3617 ((-587 (-1077)) $ (-587 (-1077)))) (-15 -3616 ((-587 (-1077)) $ (-587 (-1077))))))) (T -1113)) +((-3978 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-488)) (-5 *1 (-1113)))) (-3978 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-776)) (-5 *3 (-488)) (-5 *1 (-1113)))) (-3623 (*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-5 *2 (-1189)) (-5 *1 (-1113)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1113)))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-1113)))) (-3621 (*1 *2 *1) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-1113)))) (-3620 (*1 *1) (-5 *1 (-1113))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-1113)))) (-3618 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-1113)))) (-3617 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-1113)))) (-3616 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-1113))))) +((-3953 (((-1113) |#1|) 11 T ELT))) +(((-1114 |#1|) (-10 -7 (-15 -3953 ((-1113) |#1|))) (-1017)) (T -1114)) +((-3953 (*1 *2 *3) (-12 (-5 *2 (-1113)) (-5 *1 (-1114 *3)) (-4 *3 (-1017))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3628 (((-1077) $ (-1077)) 21 T ELT) (((-1077) $) 20 T ELT)) (-1701 (((-1077) $ (-1077)) 19 T ELT)) (-1705 (($ $ (-1077)) NIL T ELT)) (-3626 (((-3 (-1077) #1="failed") $) 11 T ELT)) (-3627 (((-1077) $) 8 T ELT)) (-3625 (((-3 (-1077) #1#) $) 12 T ELT)) (-1702 (((-1077) $) 9 T ELT)) (-1706 (($ (-340)) NIL T ELT) (($ (-340) (-1077)) NIL T ELT)) (-3548 (((-340) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-1703 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3624 (((-85) $) 25 T ELT)) (-3953 (((-776) $) NIL T ELT)) (-1704 (($ $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-1115) (-13 (-316 (-340) (-1077)) (-10 -8 (-15 -3628 ((-1077) $ (-1077))) (-15 -3628 ((-1077) $)) (-15 -3627 ((-1077) $)) (-15 -3626 ((-3 (-1077) #1="failed") $)) (-15 -3625 ((-3 (-1077) #1#) $)) (-15 -3624 ((-85) $))))) (T -1115)) +((-3628 (*1 *2 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1115)))) (-3628 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1115)))) (-3627 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1115)))) (-3626 (*1 *2 *1) (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-1115)))) (-3625 (*1 *2 *1) (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-1115)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1115))))) +((-3629 (((-3 (-488) #1="failed") |#1|) 19 T ELT)) (-3630 (((-3 (-488) #1#) |#1|) 14 T ELT)) (-3631 (((-488) (-1077)) 33 T ELT))) +(((-1116 |#1|) (-10 -7 (-15 -3629 ((-3 (-488) #1="failed") |#1|)) (-15 -3630 ((-3 (-488) #1#) |#1|)) (-15 -3631 ((-488) (-1077)))) (-965)) (T -1116)) +((-3631 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-488)) (-5 *1 (-1116 *4)) (-4 *4 (-965)))) (-3630 (*1 *2 *3) (|partial| -12 (-5 *2 (-488)) (-5 *1 (-1116 *3)) (-4 *3 (-965)))) (-3629 (*1 *2 *3) (|partial| -12 (-5 *2 (-488)) (-5 *1 (-1116 *3)) (-4 *3 (-965))))) +((-3632 (((-1051 (-181))) 9 T ELT))) +(((-1117) (-10 -7 (-15 -3632 ((-1051 (-181)))))) (T -1117)) +((-3632 (*1 *2) (-12 (-5 *2 (-1051 (-181))) (-5 *1 (-1117))))) +((-3633 (($) 12 T ELT)) (-3504 (($ $) 36 T ELT)) (-3502 (($ $) 34 T ELT)) (-3490 (($ $) 26 T ELT)) (-3506 (($ $) 18 T ELT)) (-3507 (($ $) 16 T ELT)) (-3505 (($ $) 20 T ELT)) (-3493 (($ $) 31 T ELT)) (-3503 (($ $) 35 T ELT)) (-3491 (($ $) 30 T ELT))) +(((-1118 |#1|) (-10 -7 (-15 -3633 (|#1|)) (-15 -3504 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -3506 (|#1| |#1|)) (-15 -3507 (|#1| |#1|)) (-15 -3505 (|#1| |#1|)) (-15 -3503 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3491 (|#1| |#1|))) (-1119)) (T -1118)) +NIL +((-3498 (($ $) 26 T ELT)) (-3645 (($ $) 11 T ELT)) (-3496 (($ $) 27 T ELT)) (-3644 (($ $) 10 T ELT)) (-3500 (($ $) 28 T ELT)) (-3643 (($ $) 9 T ELT)) (-3633 (($) 16 T ELT)) (-3949 (($ $) 19 T ELT)) (-3950 (($ $) 18 T ELT)) (-3501 (($ $) 29 T ELT)) (-3642 (($ $) 8 T ELT)) (-3499 (($ $) 30 T ELT)) (-3641 (($ $) 7 T ELT)) (-3497 (($ $) 31 T ELT)) (-3640 (($ $) 6 T ELT)) (-3504 (($ $) 20 T ELT)) (-3492 (($ $) 32 T ELT)) (-3502 (($ $) 21 T ELT)) (-3490 (($ $) 33 T ELT)) (-3506 (($ $) 22 T ELT)) (-3494 (($ $) 34 T ELT)) (-3507 (($ $) 23 T ELT)) (-3495 (($ $) 35 T ELT)) (-3505 (($ $) 24 T ELT)) (-3493 (($ $) 36 T ELT)) (-3503 (($ $) 25 T ELT)) (-3491 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) +(((-1119) (-113)) (T -1119)) +((-3633 (*1 *1) (-4 *1 (-1119)))) +(-13 (-1122) (-66) (-436) (-35) (-241) (-10 -8 (-15 -3633 ($)))) +(((-35) . T) ((-66) . T) ((-241) . T) ((-436) . T) ((-1122) . T)) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3408 ((|#1| $) 19 T ELT)) (-3638 (($ |#1| (-587 $)) 28 T ELT) (($ (-587 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3031 ((|#1| $ |#1|) 14 (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3032 (($ $ (-587 $)) 13 (|has| $ (-1039 |#1|)) ELT)) (-3730 (($) NIL T CONST)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3037 (((-587 $) $) 59 T ELT)) (-3033 (((-85) $ $) 50 (|has| |#1| (-72)) ELT)) (-2614 (((-587 |#1|) $) 70 T ELT)) (-3251 (((-85) |#1| $) 69 (|has| |#1| (-72)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3036 (((-587 |#1|) $) 55 T ELT)) (-3533 (((-85) $) 53 T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) 67 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 101 T ELT)) (-3409 (((-85) $) 9 T ELT)) (-3571 (($) 10 T ELT)) (-3806 ((|#1| $ #1#) NIL T ELT)) (-3035 (((-488) $ $) 48 T ELT)) (-3634 (((-587 $) $) 83 T ELT)) (-3635 (((-85) $ $) 104 T ELT)) (-3636 (((-587 $) $) 99 T ELT)) (-3637 (($ $) 100 T ELT)) (-3639 (((-85) $) 76 T ELT)) (-1735 (((-698) |#1| $) 17 (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) 25 T ELT)) (-3406 (($ $) 82 T ELT)) (-3953 (((-776) $) 85 (|has| |#1| (-556 (-776))) ELT)) (-3528 (((-587 $) $) 12 T ELT)) (-3034 (((-85) $ $) 39 (|has| |#1| (-72)) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) 66 T ELT)) (-3062 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3964 (((-698) $) 80 T ELT))) +(((-1120 |#1|) (-13 (-927 |#1|) (-320 |#1|) (-1039 |#1|) (-10 -8 (-15 -3638 ($ |#1| (-587 $))) (-15 -3638 ($ (-587 |#1|))) (-15 -3638 ($ |#1|)) (-15 -3639 ((-85) $)) (-15 -3637 ($ $)) (-15 -3636 ((-587 $) $)) (-15 -3635 ((-85) $ $)) (-15 -3634 ((-587 $) $)))) (-1017)) (T -1120)) +((-3639 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1120 *3)) (-4 *3 (-1017)))) (-3638 (*1 *1 *2 *3) (-12 (-5 *3 (-587 (-1120 *2))) (-5 *1 (-1120 *2)) (-4 *2 (-1017)))) (-3638 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-5 *1 (-1120 *3)))) (-3638 (*1 *1 *2) (-12 (-5 *1 (-1120 *2)) (-4 *2 (-1017)))) (-3637 (*1 *1 *1) (-12 (-5 *1 (-1120 *2)) (-4 *2 (-1017)))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-587 (-1120 *3))) (-5 *1 (-1120 *3)) (-4 *3 (-1017)))) (-3635 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1120 *3)) (-4 *3 (-1017)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-587 (-1120 *3))) (-5 *1 (-1120 *3)) (-4 *3 (-1017))))) +((-3645 (($ $) 15 T ELT)) (-3643 (($ $) 12 T ELT)) (-3642 (($ $) 10 T ELT)) (-3641 (($ $) 17 T ELT))) +(((-1121 |#1|) (-10 -7 (-15 -3641 (|#1| |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3643 (|#1| |#1|)) (-15 -3645 (|#1| |#1|))) (-1122)) (T -1121)) +NIL +((-3645 (($ $) 11 T ELT)) (-3644 (($ $) 10 T ELT)) (-3643 (($ $) 9 T ELT)) (-3642 (($ $) 8 T ELT)) (-3641 (($ $) 7 T ELT)) (-3640 (($ $) 6 T ELT))) +(((-1122) (-113)) (T -1122)) +((-3645 (*1 *1 *1) (-4 *1 (-1122))) (-3644 (*1 *1 *1) (-4 *1 (-1122))) (-3643 (*1 *1 *1) (-4 *1 (-1122))) (-3642 (*1 *1 *1) (-4 *1 (-1122))) (-3641 (*1 *1 *1) (-4 *1 (-1122))) (-3640 (*1 *1 *1) (-4 *1 (-1122)))) +(-13 (-10 -8 (-15 -3640 ($ $)) (-15 -3641 ($ $)) (-15 -3642 ($ $)) (-15 -3643 ($ $)) (-15 -3644 ($ $)) (-15 -3645 ($ $)))) +((-3648 ((|#2| |#2|) 95 T ELT)) (-3651 (((-85) |#2|) 29 T ELT)) (-3649 ((|#2| |#2|) 33 T ELT)) (-3650 ((|#2| |#2|) 35 T ELT)) (-3646 ((|#2| |#2| (-1094)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3652 (((-144 |#2|) |#2|) 31 T ELT)) (-3647 ((|#2| |#2| (-1094)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) +(((-1123 |#1| |#2|) (-10 -7 (-15 -3646 (|#2| |#2|)) (-15 -3646 (|#2| |#2| (-1094))) (-15 -3647 (|#2| |#2|)) (-15 -3647 (|#2| |#2| (-1094))) (-15 -3648 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3651 ((-85) |#2|)) (-15 -3652 ((-144 |#2|) |#2|))) (-13 (-395) (-954 (-488)) (-584 (-488))) (-13 (-27) (-1119) (-366 |#1|))) (T -1123)) +((-3652 (*1 *2 *3) (-12 (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-144 *3)) (-5 *1 (-1123 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *4))))) (-3651 (*1 *2 *3) (-12 (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-85)) (-5 *1 (-1123 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *4))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *3))))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *3))))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *3))))) (-3647 (*1 *2 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-1123 *4 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *4))))) (-3647 (*1 *2 *2) (-12 (-4 *3 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *3))))) (-3646 (*1 *2 *2 *3) (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-1123 *4 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *4))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *3)))))) +((-3653 ((|#4| |#4| |#1|) 31 T ELT)) (-3654 ((|#4| |#4| |#1|) 32 T ELT))) +(((-1124 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3653 (|#4| |#4| |#1|)) (-15 -3654 (|#4| |#4| |#1|))) (-499) (-326 |#1|) (-326 |#1|) (-631 |#1| |#2| |#3|)) (T -1124)) +((-3654 (*1 *2 *2 *3) (-12 (-4 *3 (-499)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *1 (-1124 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5)))) (-3653 (*1 *2 *2 *3) (-12 (-4 *3 (-499)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) (-5 *1 (-1124 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5))))) +((-3672 ((|#2| |#2|) 148 T ELT)) (-3674 ((|#2| |#2|) 145 T ELT)) (-3671 ((|#2| |#2|) 136 T ELT)) (-3673 ((|#2| |#2|) 133 T ELT)) (-3670 ((|#2| |#2|) 141 T ELT)) (-3669 ((|#2| |#2|) 129 T ELT)) (-3658 ((|#2| |#2|) 44 T ELT)) (-3657 ((|#2| |#2|) 105 T ELT)) (-3655 ((|#2| |#2|) 88 T ELT)) (-3668 ((|#2| |#2|) 143 T ELT)) (-3667 ((|#2| |#2|) 131 T ELT)) (-3680 ((|#2| |#2|) 153 T ELT)) (-3678 ((|#2| |#2|) 151 T ELT)) (-3679 ((|#2| |#2|) 152 T ELT)) (-3677 ((|#2| |#2|) 150 T ELT)) (-3656 ((|#2| |#2|) 163 T ELT)) (-3681 ((|#2| |#2|) 30 (-12 (|has| |#2| (-557 (-804 |#1|))) (|has| |#2| (-800 |#1|)) (|has| |#1| (-557 (-804 |#1|))) (|has| |#1| (-800 |#1|))) ELT)) (-3659 ((|#2| |#2|) 89 T ELT)) (-3660 ((|#2| |#2|) 154 T ELT)) (-3969 ((|#2| |#2|) 155 T ELT)) (-3666 ((|#2| |#2|) 142 T ELT)) (-3665 ((|#2| |#2|) 130 T ELT)) (-3664 ((|#2| |#2|) 149 T ELT)) (-3676 ((|#2| |#2|) 147 T ELT)) (-3663 ((|#2| |#2|) 137 T ELT)) (-3675 ((|#2| |#2|) 135 T ELT)) (-3662 ((|#2| |#2|) 139 T ELT)) (-3661 ((|#2| |#2|) 127 T ELT))) +(((-1125 |#1| |#2|) (-10 -7 (-15 -3969 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -3667 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3671 (|#2| |#2|)) (-15 -3672 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (-15 -3674 (|#2| |#2|)) (-15 -3675 (|#2| |#2|)) (-15 -3676 (|#2| |#2|)) (-15 -3677 (|#2| |#2|)) (-15 -3678 (|#2| |#2|)) (-15 -3679 (|#2| |#2|)) (-15 -3680 (|#2| |#2|)) (IF (|has| |#1| (-800 |#1|)) (IF (|has| |#1| (-557 (-804 |#1|))) (IF (|has| |#2| (-557 (-804 |#1|))) (IF (|has| |#2| (-800 |#1|)) (-15 -3681 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-395) (-13 (-366 |#1|) (-1119))) (T -1125)) +((-3681 (*1 *2 *2) (-12 (-4 *3 (-557 (-804 *3))) (-4 *3 (-800 *3)) (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-557 (-804 *3))) (-4 *2 (-800 *3)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3680 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3679 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3678 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3677 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3676 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3675 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3674 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3673 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3672 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3671 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3669 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3667 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3665 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) (-3969 (*1 *2 *2) (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3087 (((-587 (-1094)) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3645 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3043 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3644 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3643 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3730 (($) NIL T CONST)) (-3965 (($ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3820 (((-861 |#1|) $ (-698)) 18 T ELT) (((-861 |#1|) $ (-698) (-698)) NIL T ELT)) (-2898 (((-85) $) NIL T ELT)) (-3633 (($) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3778 (((-698) $ (-1094)) NIL T ELT) (((-698) $ (-1094) (-698)) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3017 (($ $ (-488)) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ $ (-587 (-1094)) (-587 (-473 (-1094)))) NIL T ELT) (($ $ (-1094) (-473 (-1094))) NIL T ELT) (($ |#1| (-473 (-1094))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3949 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3818 (($ $ (-1094)) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-1094) |#1|) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3682 (($ (-1 $) (-1094) |#1|) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3775 (($ $ (-698)) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL (|has| |#1| (-499)) ELT)) (-3950 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3774 (($ $ (-1094) $) NIL T ELT) (($ $ (-587 (-1094)) (-587 $)) NIL T ELT) (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT)) (-3764 (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094))) NIL T ELT) (($ $ (-1094)) NIL T ELT)) (-3955 (((-473 (-1094)) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-148)) ELT) (($ $) NIL (|has| |#1| (-499)) ELT) (($ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ (-1094)) NIL T ELT) (($ (-861 |#1|)) NIL T ELT)) (-3683 ((|#1| $ (-473 (-1094))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT) (((-861 |#1|) $ (-698)) NIL T ELT)) (-2708 (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3506 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3507 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3505 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-2675 (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094))) NIL T ELT) (($ $ (-1094)) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1126 |#1|) (-13 (-683 |#1| (-1094)) (-10 -8 (-15 -3683 ((-861 |#1|) $ (-698))) (-15 -3953 ($ (-1094))) (-15 -3953 ($ (-861 |#1|))) (IF (|has| |#1| (-38 (-352 (-488)))) (PROGN (-15 -3818 ($ $ (-1094) |#1|)) (-15 -3682 ($ (-1 $) (-1094) |#1|))) |%noBranch|))) (-965)) (T -1126)) +((-3683 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-5 *2 (-861 *4)) (-5 *1 (-1126 *4)) (-4 *4 (-965)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-1126 *3)) (-4 *3 (-965)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-861 *3)) (-4 *3 (-965)) (-5 *1 (-1126 *3)))) (-3818 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *1 (-1126 *3)) (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)))) (-3682 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1126 *4))) (-5 *3 (-1094)) (-5 *1 (-1126 *4)) (-4 *4 (-38 (-352 (-488)))) (-4 *4 (-965))))) +((-3699 (((-85) |#5| $) 68 T ELT) (((-85) $) 109 T ELT)) (-3694 ((|#5| |#5| $) 83 T ELT)) (-3716 (($ (-1 (-85) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3695 (((-587 |#5|) (-587 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 81 T ELT)) (-3163 (((-3 $ #1#) (-587 |#5|)) 134 T ELT)) (-3805 (((-3 $ #1#) $) 119 T ELT)) (-3691 ((|#5| |#5| $) 101 T ELT)) (-3700 (((-85) |#5| $ (-1 (-85) |#5| |#5|)) 36 T ELT)) (-3689 ((|#5| |#5| $) 105 T ELT)) (-3848 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 77 T ELT)) (-3702 (((-2 (|:| -3868 (-587 |#5|)) (|:| -1706 (-587 |#5|))) $) 63 T ELT)) (-3701 (((-85) |#5| $) 66 T ELT) (((-85) $) 110 T ELT)) (-3186 ((|#4| $) 115 T ELT)) (-3804 (((-3 |#5| #1#) $) 117 T ELT)) (-3703 (((-587 |#5|) $) 55 T ELT)) (-3697 (((-85) |#5| $) 75 T ELT) (((-85) $) 114 T ELT)) (-3692 ((|#5| |#5| $) 89 T ELT)) (-3705 (((-85) $ $) 29 T ELT)) (-3698 (((-85) |#5| $) 71 T ELT) (((-85) $) 112 T ELT)) (-3693 ((|#5| |#5| $) 86 T ELT)) (-3807 (((-3 |#5| #1#) $) 116 T ELT)) (-3775 (($ $ |#5|) 135 T ELT)) (-3955 (((-698) $) 60 T ELT)) (-3536 (($ (-587 |#5|)) 132 T ELT)) (-2916 (($ $ |#4|) 130 T ELT)) (-2918 (($ $ |#4|) 128 T ELT)) (-3690 (($ $) 127 T ELT)) (-3953 (((-776) $) NIL T ELT) (((-587 |#5|) $) 120 T ELT)) (-3684 (((-698) $) 139 T ELT)) (-3704 (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#5|))) #1#) (-587 |#5|) (-1 (-85) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#5|))) #1#) (-587 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|)) 51 T ELT)) (-3696 (((-85) $ (-1 (-85) |#5| (-587 |#5|))) 107 T ELT)) (-3686 (((-587 |#4|) $) 122 T ELT)) (-3940 (((-85) |#4| $) 125 T ELT)) (-3062 (((-85) $ $) 20 T ELT))) +(((-1127 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3684 ((-698) |#1|)) (-15 -3775 (|#1| |#1| |#5|)) (-15 -3716 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3940 ((-85) |#4| |#1|)) (-15 -3686 ((-587 |#4|) |#1|)) (-15 -3805 ((-3 |#1| #1#) |#1|)) (-15 -3804 ((-3 |#5| #1#) |#1|)) (-15 -3807 ((-3 |#5| #1#) |#1|)) (-15 -3689 (|#5| |#5| |#1|)) (-15 -3690 (|#1| |#1|)) (-15 -3691 (|#5| |#5| |#1|)) (-15 -3692 (|#5| |#5| |#1|)) (-15 -3693 (|#5| |#5| |#1|)) (-15 -3694 (|#5| |#5| |#1|)) (-15 -3695 ((-587 |#5|) (-587 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3848 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3697 ((-85) |#1|)) (-15 -3698 ((-85) |#1|)) (-15 -3699 ((-85) |#1|)) (-15 -3696 ((-85) |#1| (-1 (-85) |#5| (-587 |#5|)))) (-15 -3697 ((-85) |#5| |#1|)) (-15 -3698 ((-85) |#5| |#1|)) (-15 -3699 ((-85) |#5| |#1|)) (-15 -3700 ((-85) |#5| |#1| (-1 (-85) |#5| |#5|))) (-15 -3701 ((-85) |#1|)) (-15 -3701 ((-85) |#5| |#1|)) (-15 -3702 ((-2 (|:| -3868 (-587 |#5|)) (|:| -1706 (-587 |#5|))) |#1|)) (-15 -3955 ((-698) |#1|)) (-15 -3703 ((-587 |#5|) |#1|)) (-15 -3704 ((-3 (-2 (|:| |bas| |#1|) (|:| -3329 (-587 |#5|))) #1#) (-587 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|))) (-15 -3704 ((-3 (-2 (|:| |bas| |#1|) (|:| -3329 (-587 |#5|))) #1#) (-587 |#5|) (-1 (-85) |#5| |#5|))) (-15 -3705 ((-85) |#1| |#1|)) (-15 -2916 (|#1| |#1| |#4|)) (-15 -2918 (|#1| |#1| |#4|)) (-15 -3186 (|#4| |#1|)) (-15 -3163 ((-3 |#1| #1#) (-587 |#5|))) (-15 -3953 ((-587 |#5|) |#1|)) (-15 -3848 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3848 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3848 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3536 (|#1| (-587 |#5|))) (-15 -3716 (|#1| (-1 (-85) |#5|) |#1|)) (-15 -3953 ((-776) |#1|)) (-15 -3062 ((-85) |#1| |#1|))) (-1128 |#2| |#3| |#4| |#5|) (-499) (-721) (-760) (-981 |#2| |#3| |#4|)) (T -1127)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3687 (((-587 (-2 (|:| -3868 $) (|:| -1706 (-587 |#4|)))) (-587 |#4|)) 91 T ELT)) (-3688 (((-587 $) (-587 |#4|)) 92 T ELT)) (-3087 (((-587 |#3|) $) 39 T ELT)) (-2914 (((-85) $) 32 T ELT)) (-2905 (((-85) $) 23 (|has| |#1| (-499)) ELT)) (-3699 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3694 ((|#4| |#4| $) 98 T ELT)) (-2915 (((-2 (|:| |under| $) (|:| -3136 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3716 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-320 |#4|)) ELT) (((-3 |#4| "failed") $ |#3|) 85 T ELT)) (-3730 (($) 59 T CONST)) (-2910 (((-85) $) 28 (|has| |#1| (-499)) ELT)) (-2912 (((-85) $ $) 30 (|has| |#1| (-499)) ELT)) (-2911 (((-85) $ $) 29 (|has| |#1| (-499)) ELT)) (-2913 (((-85) $) 31 (|has| |#1| (-499)) ELT)) (-3695 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2906 (((-587 |#4|) (-587 |#4|) $) 24 (|has| |#1| (-499)) ELT)) (-2907 (((-587 |#4|) (-587 |#4|) $) 25 (|has| |#1| (-499)) ELT)) (-3163 (((-3 $ "failed") (-587 |#4|)) 42 T ELT)) (-3162 (($ (-587 |#4|)) 41 T ELT)) (-3805 (((-3 $ "failed") $) 88 T ELT)) (-3691 ((|#4| |#4| $) 95 T ELT)) (-1357 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-320 |#4|))) ELT)) (-3412 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-320 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-320 |#4|)) ELT)) (-2908 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-499)) ELT)) (-3700 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3689 ((|#4| |#4| $) 93 T ELT)) (-3848 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3702 (((-2 (|:| -3868 (-587 |#4|)) (|:| -1706 (-587 |#4|))) $) 111 T ELT)) (-3701 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3186 ((|#3| $) 40 T ELT)) (-2614 (((-587 |#4|) $) 48 T ELT)) (-3251 (((-85) |#4| $) 53 (|has| |#4| (-72)) ELT)) (-3332 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3849 (($ (-1 |#4| |#4|) $) 60 T ELT)) (-2920 (((-587 |#3|) $) 38 T ELT)) (-2919 (((-85) |#3| $) 37 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3804 (((-3 |#4| "failed") $) 89 T ELT)) (-3703 (((-587 |#4|) $) 113 T ELT)) (-3697 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3692 ((|#4| |#4| $) 96 T ELT)) (-3705 (((-85) $ $) 116 T ELT)) (-2909 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-499)) ELT)) (-3698 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3693 ((|#4| |#4| $) 97 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3807 (((-3 |#4| "failed") $) 90 T ELT)) (-1734 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 51 T ELT)) (-3685 (((-3 $ "failed") $ |#4|) 84 T ELT)) (-3775 (($ $ |#4|) 83 T ELT)) (-1736 (((-85) (-1 (-85) |#4|) $) 46 T ELT)) (-3774 (($ $ (-587 |#4|) (-587 |#4|)) 64 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ |#4| |#4|) 63 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-251 |#4|)) 62 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-587 (-251 |#4|))) 61 (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT)) (-1226 (((-85) $ $) 55 T ELT)) (-3409 (((-85) $) 58 T ELT)) (-3571 (($) 57 T ELT)) (-3955 (((-698) $) 112 T ELT)) (-1735 (((-698) |#4| $) 52 (|has| |#4| (-72)) ELT) (((-698) (-1 (-85) |#4|) $) 47 T ELT)) (-3406 (($ $) 56 T ELT)) (-3978 (((-477) $) 70 (|has| |#4| (-557 (-477))) ELT)) (-3536 (($ (-587 |#4|)) 65 T ELT)) (-2916 (($ $ |#3|) 34 T ELT)) (-2918 (($ $ |#3|) 36 T ELT)) (-3690 (($ $) 94 T ELT)) (-2917 (($ $ |#3|) 35 T ELT)) (-3953 (((-776) $) 13 T ELT) (((-587 |#4|) $) 43 T ELT)) (-3684 (((-698) $) 82 (|has| |#3| (-322)) ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3704 (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3696 (((-85) $ (-1 (-85) |#4| (-587 |#4|))) 104 T ELT)) (-1737 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3686 (((-587 |#3|) $) 87 T ELT)) (-3940 (((-85) |#3| $) 86 T ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3964 (((-698) $) 44 T ELT))) +(((-1128 |#1| |#2| |#3| |#4|) (-113) (-499) (-721) (-760) (-981 |t#1| |t#2| |t#3|)) (T -1128)) +((-3705 (*1 *2 *1 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-85)))) (-3704 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-499)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3329 (-587 *8)))) (-5 *3 (-587 *8)) (-4 *1 (-1128 *5 *6 *7 *8)))) (-3704 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) (-4 *9 (-981 *6 *7 *8)) (-4 *6 (-499)) (-4 *7 (-721)) (-4 *8 (-760)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3329 (-587 *9)))) (-5 *3 (-587 *9)) (-4 *1 (-1128 *6 *7 *8 *9)))) (-3703 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-587 *6)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-698)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-2 (|:| -3868 (-587 *6)) (|:| -1706 (-587 *6)))))) (-3701 (*1 *2 *3 *1) (-12 (-4 *1 (-1128 *4 *5 *6 *3)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-85)))) (-3701 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-85)))) (-3700 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1128 *5 *6 *7 *3)) (-4 *5 (-499)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-85)))) (-3699 (*1 *2 *3 *1) (-12 (-4 *1 (-1128 *4 *5 *6 *3)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-85)))) (-3698 (*1 *2 *3 *1) (-12 (-4 *1 (-1128 *4 *5 *6 *3)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-85)))) (-3697 (*1 *2 *3 *1) (-12 (-4 *1 (-1128 *4 *5 *6 *3)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-85)))) (-3696 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-85) *7 (-587 *7))) (-4 *1 (-1128 *4 *5 *6 *7)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-85)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-85)))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-85)))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-85)))) (-3848 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) (-4 *1 (-1128 *5 *6 *7 *2)) (-4 *5 (-499)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *2 (-981 *5 *6 *7)))) (-3695 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-587 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) (-4 *1 (-1128 *5 *6 *7 *8)) (-4 *5 (-499)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *8 (-981 *5 *6 *7)))) (-3694 (*1 *2 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *2)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *2 (-981 *3 *4 *5)))) (-3693 (*1 *2 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *2)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *2 (-981 *3 *4 *5)))) (-3692 (*1 *2 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *2)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *2 (-981 *3 *4 *5)))) (-3691 (*1 *2 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *2)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *2 (-981 *3 *4 *5)))) (-3690 (*1 *1 *1) (-12 (-4 *1 (-1128 *2 *3 *4 *5)) (-4 *2 (-499)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *5 (-981 *2 *3 *4)))) (-3689 (*1 *2 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *2)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *2 (-981 *3 *4 *5)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-587 *1)) (-4 *1 (-1128 *4 *5 *6 *7)))) (-3687 (*1 *2 *3) (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-587 (-2 (|:| -3868 *1) (|:| -1706 (-587 *7))))) (-5 *3 (-587 *7)) (-4 *1 (-1128 *4 *5 *6 *7)))) (-3807 (*1 *2 *1) (|partial| -12 (-4 *1 (-1128 *3 *4 *5 *2)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *2 (-981 *3 *4 *5)))) (-3804 (*1 *2 *1) (|partial| -12 (-4 *1 (-1128 *3 *4 *5 *2)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *2 (-981 *3 *4 *5)))) (-3805 (*1 *1 *1) (|partial| -12 (-4 *1 (-1128 *2 *3 *4 *5)) (-4 *2 (-499)) (-4 *3 (-721)) (-4 *4 (-760)) (-4 *5 (-981 *2 *3 *4)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-587 *5)))) (-3940 (*1 *2 *3 *1) (-12 (-4 *1 (-1128 *4 *5 *3 *6)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *3 (-760)) (-4 *6 (-981 *4 *5 *3)) (-5 *2 (-85)))) (-3716 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1128 *4 *5 *3 *2)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *3 (-760)) (-4 *2 (-981 *4 *5 *3)))) (-3685 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1128 *3 *4 *5 *2)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *2 (-981 *3 *4 *5)))) (-3775 (*1 *1 *1 *2) (-12 (-4 *1 (-1128 *3 *4 *5 *2)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *2 (-981 *3 *4 *5)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-4 *5 (-322)) (-5 *2 (-698))))) +(-13 (-893 |t#1| |t#2| |t#3| |t#4|) (-1039 |t#4|) (-10 -8 (-15 -3705 ((-85) $ $)) (-15 -3704 ((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |t#4|))) "failed") (-587 |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3704 ((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |t#4|))) "failed") (-587 |t#4|) (-1 (-85) |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3703 ((-587 |t#4|) $)) (-15 -3955 ((-698) $)) (-15 -3702 ((-2 (|:| -3868 (-587 |t#4|)) (|:| -1706 (-587 |t#4|))) $)) (-15 -3701 ((-85) |t#4| $)) (-15 -3701 ((-85) $)) (-15 -3700 ((-85) |t#4| $ (-1 (-85) |t#4| |t#4|))) (-15 -3699 ((-85) |t#4| $)) (-15 -3698 ((-85) |t#4| $)) (-15 -3697 ((-85) |t#4| $)) (-15 -3696 ((-85) $ (-1 (-85) |t#4| (-587 |t#4|)))) (-15 -3699 ((-85) $)) (-15 -3698 ((-85) $)) (-15 -3697 ((-85) $)) (-15 -3848 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3695 ((-587 |t#4|) (-587 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3694 (|t#4| |t#4| $)) (-15 -3693 (|t#4| |t#4| $)) (-15 -3692 (|t#4| |t#4| $)) (-15 -3691 (|t#4| |t#4| $)) (-15 -3690 ($ $)) (-15 -3689 (|t#4| |t#4| $)) (-15 -3688 ((-587 $) (-587 |t#4|))) (-15 -3687 ((-587 (-2 (|:| -3868 $) (|:| -1706 (-587 |t#4|)))) (-587 |t#4|))) (-15 -3807 ((-3 |t#4| "failed") $)) (-15 -3804 ((-3 |t#4| "failed") $)) (-15 -3805 ((-3 $ "failed") $)) (-15 -3686 ((-587 |t#3|) $)) (-15 -3940 ((-85) |t#3| $)) (-15 -3716 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3685 ((-3 $ "failed") $ |t#4|)) (-15 -3775 ($ $ |t#4|)) (IF (|has| |t#3| (-322)) (-15 -3684 ((-698) $)) |%noBranch|))) +(((-34) . T) ((-72) . T) ((-556 (-587 |#4|)) . T) ((-556 (-776)) . T) ((-124 |#4|) . T) ((-557 (-477)) |has| |#4| (-557 (-477))) ((-262 |#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ((-320 |#4|) . T) ((-383 |#4|) . T) ((-432 |#4|) . T) ((-459 |#4| |#4|) -12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ((-13) . T) ((-893 |#1| |#2| |#3| |#4|) . T) ((-1017) . T) ((-1039 |#4|) . T) ((-1133) . T)) +((-3711 (($ |#1| (-587 (-587 (-858 (-181)))) (-85)) 19 T ELT)) (-3710 (((-85) $ (-85)) 18 T ELT)) (-3709 (((-85) $) 17 T ELT)) (-3707 (((-587 (-587 (-858 (-181)))) $) 13 T ELT)) (-3706 ((|#1| $) 8 T ELT)) (-3708 (((-85) $) 15 T ELT))) +(((-1129 |#1|) (-10 -8 (-15 -3706 (|#1| $)) (-15 -3707 ((-587 (-587 (-858 (-181)))) $)) (-15 -3708 ((-85) $)) (-15 -3709 ((-85) $)) (-15 -3710 ((-85) $ (-85))) (-15 -3711 ($ |#1| (-587 (-587 (-858 (-181)))) (-85)))) (-891)) (T -1129)) +((-3711 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-587 (-587 (-858 (-181))))) (-5 *4 (-85)) (-5 *1 (-1129 *2)) (-4 *2 (-891)))) (-3710 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-891)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-891)))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-891)))) (-3707 (*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-858 (-181))))) (-5 *1 (-1129 *3)) (-4 *3 (-891)))) (-3706 (*1 *2 *1) (-12 (-5 *1 (-1129 *2)) (-4 *2 (-891))))) +((-3713 (((-858 (-181)) (-858 (-181))) 31 T ELT)) (-3712 (((-858 (-181)) (-181) (-181) (-181) (-181)) 10 T ELT)) (-3715 (((-587 (-858 (-181))) (-858 (-181)) (-858 (-181)) (-858 (-181)) (-181) (-587 (-587 (-181)))) 57 T ELT)) (-3842 (((-181) (-858 (-181)) (-858 (-181))) 27 T ELT)) (-3840 (((-858 (-181)) (-858 (-181)) (-858 (-181))) 28 T ELT)) (-3714 (((-587 (-587 (-181))) (-488)) 45 T ELT)) (-3843 (((-858 (-181)) (-858 (-181)) (-858 (-181))) 26 T ELT)) (-3845 (((-858 (-181)) (-858 (-181)) (-858 (-181))) 24 T ELT)) (* (((-858 (-181)) (-181) (-858 (-181))) 22 T ELT))) +(((-1130) (-10 -7 (-15 -3712 ((-858 (-181)) (-181) (-181) (-181) (-181))) (-15 * ((-858 (-181)) (-181) (-858 (-181)))) (-15 -3845 ((-858 (-181)) (-858 (-181)) (-858 (-181)))) (-15 -3843 ((-858 (-181)) (-858 (-181)) (-858 (-181)))) (-15 -3842 ((-181) (-858 (-181)) (-858 (-181)))) (-15 -3840 ((-858 (-181)) (-858 (-181)) (-858 (-181)))) (-15 -3713 ((-858 (-181)) (-858 (-181)))) (-15 -3714 ((-587 (-587 (-181))) (-488))) (-15 -3715 ((-587 (-858 (-181))) (-858 (-181)) (-858 (-181)) (-858 (-181)) (-181) (-587 (-587 (-181))))))) (T -1130)) +((-3715 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-587 (-587 (-181)))) (-5 *4 (-181)) (-5 *2 (-587 (-858 *4))) (-5 *1 (-1130)) (-5 *3 (-858 *4)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-488)) (-5 *2 (-587 (-587 (-181)))) (-5 *1 (-1130)))) (-3713 (*1 *2 *2) (-12 (-5 *2 (-858 (-181))) (-5 *1 (-1130)))) (-3840 (*1 *2 *2 *2) (-12 (-5 *2 (-858 (-181))) (-5 *1 (-1130)))) (-3842 (*1 *2 *3 *3) (-12 (-5 *3 (-858 (-181))) (-5 *2 (-181)) (-5 *1 (-1130)))) (-3843 (*1 *2 *2 *2) (-12 (-5 *2 (-858 (-181))) (-5 *1 (-1130)))) (-3845 (*1 *2 *2 *2) (-12 (-5 *2 (-858 (-181))) (-5 *1 (-1130)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-858 (-181))) (-5 *3 (-181)) (-5 *1 (-1130)))) (-3712 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-858 (-181))) (-5 *1 (-1130)) (-5 *3 (-181))))) +((-2574 (((-85) $ $) NIL (|has| |#1| (-1017)) ELT)) (-3716 ((|#1| $ (-698)) 18 T ELT)) (-3839 (((-698) $) 13 T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-3953 (((-873 |#1|) $) 12 T ELT) (($ (-873 |#1|)) 11 T ELT) (((-776) $) 29 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-1017)) ELT)) (-3062 (((-85) $ $) 22 (|has| |#1| (-1017)) ELT))) +(((-1131 |#1|) (-13 (-433 (-873 |#1|)) (-10 -8 (-15 -3716 (|#1| $ (-698))) (-15 -3839 ((-698) $)) (IF (|has| |#1| (-556 (-776))) (-6 (-556 (-776))) |%noBranch|) (IF (|has| |#1| (-1017)) (-6 (-1017)) |%noBranch|))) (-1133)) (T -1131)) +((-3716 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-5 *1 (-1131 *2)) (-4 *2 (-1133)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-1131 *3)) (-4 *3 (-1133))))) +((-3719 (((-350 (-1089 (-1089 |#1|))) (-1089 (-1089 |#1|)) (-488)) 92 T ELT)) (-3717 (((-350 (-1089 (-1089 |#1|))) (-1089 (-1089 |#1|))) 84 T ELT)) (-3718 (((-350 (-1089 (-1089 |#1|))) (-1089 (-1089 |#1|))) 68 T ELT))) +(((-1132 |#1|) (-10 -7 (-15 -3717 ((-350 (-1089 (-1089 |#1|))) (-1089 (-1089 |#1|)))) (-15 -3718 ((-350 (-1089 (-1089 |#1|))) (-1089 (-1089 |#1|)))) (-15 -3719 ((-350 (-1089 (-1089 |#1|))) (-1089 (-1089 |#1|)) (-488)))) (-301)) (T -1132)) +((-3719 (*1 *2 *3 *4) (-12 (-5 *4 (-488)) (-4 *5 (-301)) (-5 *2 (-350 (-1089 (-1089 *5)))) (-5 *1 (-1132 *5)) (-5 *3 (-1089 (-1089 *5))))) (-3718 (*1 *2 *3) (-12 (-4 *4 (-301)) (-5 *2 (-350 (-1089 (-1089 *4)))) (-5 *1 (-1132 *4)) (-5 *3 (-1089 (-1089 *4))))) (-3717 (*1 *2 *3) (-12 (-4 *4 (-301)) (-5 *2 (-350 (-1089 (-1089 *4)))) (-5 *1 (-1132 *4)) (-5 *3 (-1089 (-1089 *4)))))) +NIL +(((-1133) (-113)) (T -1133)) NIL (-13) (((-13) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 9 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-1132) (-997)) (T -1132)) -NIL -((-3720 (((-85)) 18 T ELT)) (-3717 (((-1187) (-585 |#1|) (-585 |#1|)) 22 T ELT) (((-1187) (-585 |#1|)) 23 T ELT)) (-3722 (((-85) |#1| |#1|) 37 (|has| |#1| (-758)) ELT)) (-3719 (((-85) |#1| |#1| (-1 (-85) |#1| |#1|)) 29 T ELT) (((-3 (-85) "failed") |#1| |#1|) 27 T ELT)) (-3721 ((|#1| (-585 |#1|)) 38 (|has| |#1| (-758)) ELT) ((|#1| (-585 |#1|) (-1 (-85) |#1| |#1|)) 32 T ELT)) (-3718 (((-2 (|:| -3232 (-585 |#1|)) (|:| -3231 (-585 |#1|)))) 20 T ELT))) -(((-1133 |#1|) (-10 -7 (-15 -3717 ((-1187) (-585 |#1|))) (-15 -3717 ((-1187) (-585 |#1|) (-585 |#1|))) (-15 -3718 ((-2 (|:| -3232 (-585 |#1|)) (|:| -3231 (-585 |#1|))))) (-15 -3719 ((-3 (-85) "failed") |#1| |#1|)) (-15 -3719 ((-85) |#1| |#1| (-1 (-85) |#1| |#1|))) (-15 -3721 (|#1| (-585 |#1|) (-1 (-85) |#1| |#1|))) (-15 -3720 ((-85))) (IF (|has| |#1| (-758)) (PROGN (-15 -3721 (|#1| (-585 |#1|))) (-15 -3722 ((-85) |#1| |#1|))) |%noBranch|)) (-1015)) (T -1133)) -((-3722 (*1 *2 *3 *3) (-12 (-5 *2 (-85)) (-5 *1 (-1133 *3)) (-4 *3 (-758)) (-4 *3 (-1015)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-758)) (-5 *1 (-1133 *2)))) (-3720 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1133 *3)) (-4 *3 (-1015)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1133 *2)) (-4 *2 (-1015)))) (-3719 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1015)) (-5 *2 (-85)) (-5 *1 (-1133 *3)))) (-3719 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1133 *3)) (-4 *3 (-1015)))) (-3718 (*1 *2) (-12 (-5 *2 (-2 (|:| -3232 (-585 *3)) (|:| -3231 (-585 *3)))) (-5 *1 (-1133 *3)) (-4 *3 (-1015)))) (-3717 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-1015)) (-5 *2 (-1187)) (-5 *1 (-1133 *4)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-1015)) (-5 *2 (-1187)) (-5 *1 (-1133 *4))))) -((-3723 (((-1187) (-585 (-1092)) (-585 (-1092))) 14 T ELT) (((-1187) (-585 (-1092))) 12 T ELT)) (-3725 (((-1187)) 16 T ELT)) (-3724 (((-2 (|:| -3231 (-585 (-1092))) (|:| -3232 (-585 (-1092))))) 20 T ELT))) -(((-1134) (-10 -7 (-15 -3723 ((-1187) (-585 (-1092)))) (-15 -3723 ((-1187) (-585 (-1092)) (-585 (-1092)))) (-15 -3724 ((-2 (|:| -3231 (-585 (-1092))) (|:| -3232 (-585 (-1092)))))) (-15 -3725 ((-1187))))) (T -1134)) -((-3725 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1134)))) (-3724 (*1 *2) (-12 (-5 *2 (-2 (|:| -3231 (-585 (-1092))) (|:| -3232 (-585 (-1092))))) (-5 *1 (-1134)))) (-3723 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-1092))) (-5 *2 (-1187)) (-5 *1 (-1134)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-585 (-1092))) (-5 *2 (-1187)) (-5 *1 (-1134))))) -((-3778 (($ $) 17 T ELT)) (-3726 (((-85) $) 27 T ELT))) -(((-1135 |#1|) (-10 -7 (-15 -3778 (|#1| |#1|)) (-15 -3726 ((-85) |#1|))) (-1136)) (T -1135)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 66 T ELT)) (-3974 (((-348 $) $) 67 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3726 (((-85) $) 68 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3735 (((-348 $) $) 65 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-1136) (-113)) (T -1136)) -((-3726 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-85)))) (-3974 (*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1136)))) (-3778 (*1 *1 *1) (-4 *1 (-1136))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1136))))) -(-13 (-393) (-10 -8 (-15 -3726 ((-85) $)) (-15 -3974 ((-348 $) $)) (-15 -3778 ($ $)) (-15 -3735 ((-348 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-3729 (($ $ $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) -(((-1137) (-13 (-754) (-606) (-10 -8 (-15 -3729 ($ $ $)) (-15 -3728 ($ $ $)) (-15 -3727 ($) -3956)))) (T -1137)) -((-3729 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3728 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3727 (*1 *1) (-5 *1 (-1137)))) -((-696) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-3729 (($ $ $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) -(((-1138) (-13 (-754) (-606) (-10 -8 (-15 -3729 ($ $ $)) (-15 -3728 ($ $ $)) (-15 -3727 ($) -3956)))) (T -1138)) -((-3729 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3728 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3727 (*1 *1) (-5 *1 (-1138)))) -((-696) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-3729 (($ $ $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) -(((-1139) (-13 (-754) (-606) (-10 -8 (-15 -3729 ($ $ $)) (-15 -3728 ($ $ $)) (-15 -3727 ($) -3956)))) (T -1139)) -((-3729 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3728 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3727 (*1 *1) (-5 *1 (-1139)))) -((-696) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2571 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3139 (((-696)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-3729 (($ $ $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-2570 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2688 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) -(((-1140) (-13 (-754) (-606) (-10 -8 (-15 -3729 ($ $ $)) (-15 -3728 ($ $ $)) (-15 -3727 ($) -3956)))) (T -1140)) -((-3729 (*1 *1 *1 *1) (-5 *1 (-1140))) (-3728 (*1 *1 *1 *1) (-5 *1 (-1140))) (-3727 (*1 *1) (-5 *1 (-1140)))) -((-696) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3132 (((-1171 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) 10 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-2065 (($ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-2063 (((-85) $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-3774 (($ $ (-486)) NIL T ELT) (($ $ (-486) (-486)) NIL T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) $) NIL T ELT)) (-3734 (((-1171 |#1| |#2| |#3|) $) NIL T ELT)) (-3731 (((-3 (-1171 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3732 (((-1171 |#1| |#2| |#3|) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1#) $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-3778 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3626 (((-486) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-3821 (($ (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|)))) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-1171 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1092) #1#) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-952 (-1092))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) ELT) (((-3 (-486) #1#) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) ELT)) (-3159 (((-1171 |#1| |#2| |#3|) $) NIL T ELT) (((-1092) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-952 (-1092))) (|has| |#1| (-312))) ELT) (((-350 (-486)) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) ELT) (((-486) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) ELT)) (-3733 (($ $) NIL T ELT) (($ (-486) $) NIL T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-1171 |#1| |#2| |#3|)) (-632 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-1171 |#1| |#2| |#3|))) (|:| |vec| (-1181 (-1171 |#1| |#2| |#3|)))) (-632 $) (-1181 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-582 (-486))) (|has| |#1| (-312))) ELT) (((-632 (-486)) (-632 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-582 (-486))) (|has| |#1| (-312))) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3730 (((-350 (-859 |#1|)) $ (-486)) NIL (|has| |#1| (-497)) ELT) (((-350 (-859 |#1|)) $ (-486) (-486)) NIL (|has| |#1| (-497)) ELT)) (-2997 (($) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-485)) (|has| |#1| (-312))) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3189 (((-85) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-2895 (((-85) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-798 (-330))) (|has| |#1| (-312))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-798 (-486))) (|has| |#1| (-312))) ELT)) (-3775 (((-486) $) NIL T ELT) (((-486) $ (-486)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3001 (((-1171 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3448 (((-634 $) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1068)) (|has| |#1| (-312))) ELT)) (-3190 (((-85) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-3780 (($ $ (-832)) NIL T ELT)) (-3818 (($ (-1 |#1| (-486)) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-486)) 18 T ELT) (($ $ (-996) (-486)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-486))) NIL T ELT)) (-2534 (($ $ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-2860 (($ $ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3946 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2282 (((-632 (-1171 |#1| |#2| |#3|)) (-1181 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-1171 |#1| |#2| |#3|))) (|:| |vec| (-1181 (-1171 |#1| |#2| |#3|)))) (-1181 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-582 (-486))) (|has| |#1| (-312))) ELT) (((-632 (-486)) (-1181 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-582 (-486))) (|has| |#1| (-312))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3782 (($ (-486) (-1171 |#1| |#2| |#3|)) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3815 (($ $) 27 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT) (($ $ (-1178 |#2|)) 28 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3449 (($) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1068)) (|has| |#1| (-312))) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3131 (($ $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3133 (((-1171 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-485)) (|has| |#1| (-312))) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-486)) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3947 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-486)))) ELT) (($ $ (-1092) (-1171 |#1| |#2| |#3|)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-457 (-1092) (-1171 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1092)) (-585 (-1171 |#1| |#2| |#3|))) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-457 (-1092) (-1171 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-249 (-1171 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-260 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1171 |#1| |#2| |#3|))) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-260 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-260 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1171 |#1| |#2| |#3|)) (-585 (-1171 |#1| |#2| |#3|))) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-260 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-486)) NIL T ELT) (($ $ $) NIL (|has| (-486) (-1027)) ELT) (($ $ (-1171 |#1| |#2| |#3|)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-241 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) (-696)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1178 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT)) (-2998 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3000 (((-1171 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3952 (((-486) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3975 (((-475) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-555 (-475))) (|has| |#1| (-312))) ELT) (((-330) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-935)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-935)) (|has| |#1| (-312))) ELT) (((-802 (-330)) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-555 (-802 (-330)))) (|has| |#1| (-312))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-555 (-802 (-486)))) (|has| |#1| (-312))) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-2894 (($ $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1171 |#1| |#2| |#3|)) NIL T ELT) (($ (-1178 |#2|)) 24 T ELT) (($ (-1092)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-952 (-1092))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT) (($ (-350 (-486))) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-952 (-486))) (|has| |#1| (-312))) (|has| |#1| (-38 (-350 (-486))))) ELT)) (-3680 ((|#1| $ (-486)) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-3776 ((|#1| $) 11 T ELT)) (-3134 (((-1171 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-485)) (|has| |#1| (-312))) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (|has| |#1| (-497))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-486)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-486)))) (|has| |#1| (-15 -3950 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3386 (($ $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-2663 (($) 20 T CONST)) (-2669 (($) 15 T CONST)) (-2672 (($ $ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) (-696)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1178 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-811 (-1092))) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT)) (-2569 (((-85) $ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-2570 (((-85) $ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-2688 (((-85) $ $) NIL (OR (-12 (|has| (-1171 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT) (($ (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 22 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1171 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT) (($ (-1171 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-1141 |#1| |#2| |#3|) (-13 (-1145 |#1| (-1171 |#1| |#2| |#3|)) (-808 $ (-1178 |#2|)) (-10 -8 (-15 -3950 ($ (-1178 |#2|))) (IF (|has| |#1| (-38 (-350 (-486)))) (-15 -3815 ($ $ (-1178 |#2|))) |%noBranch|))) (-963) (-1092) |#1|) (T -1141)) -((-3950 (*1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1141 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1141 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3)))) -((-3846 (((-1141 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1141 |#1| |#3| |#5|)) 23 T ELT))) -(((-1142 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3846 ((-1141 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1141 |#1| |#3| |#5|)))) (-963) (-963) (-1092) (-1092) |#1| |#2|) (T -1142)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5 *7 *9)) (-4 *5 (-963)) (-4 *6 (-963)) (-14 *7 (-1092)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1141 *6 *8 *10)) (-5 *1 (-1142 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1092))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 (-996)) $) 96 T ELT)) (-3834 (((-1092) $) 130 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 72 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 73 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 75 (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-486)) 125 T ELT) (($ $ (-486) (-486)) 124 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) $) 131 T ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 147 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 191 (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) 192 (|has| |#1| (-312)) ELT)) (-3040 (($ $) 146 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1609 (((-85) $ $) 182 (|has| |#1| (-312)) ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 148 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|)))) 202 T ELT)) (-3497 (($ $) 162 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 149 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) 23 T CONST)) (-2567 (($ $ $) 186 (|has| |#1| (-312)) ELT)) (-3962 (($ $) 81 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3730 (((-350 (-859 |#1|)) $ (-486)) 200 (|has| |#1| (-497)) ELT) (((-350 (-859 |#1|)) $ (-486) (-486)) 199 (|has| |#1| (-497)) ELT)) (-2566 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 180 (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) 193 (|has| |#1| (-312)) ELT)) (-2895 (((-85) $) 95 T ELT)) (-3630 (($) 174 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-486) $) 127 T ELT) (((-486) $ (-486)) 126 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 145 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) 128 T ELT)) (-3818 (($ (-1 |#1| (-486)) $) 201 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 189 (|has| |#1| (-312)) ELT)) (-3941 (((-85) $) 83 T ELT)) (-2896 (($ |#1| (-486)) 82 T ELT) (($ $ (-996) (-486)) 98 T ELT) (($ $ (-585 (-996)) (-585 (-486))) 97 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-3946 (($ $) 171 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-1896 (($ (-585 $)) 178 (|has| |#1| (-312)) ELT) (($ $ $) 177 (|has| |#1| (-312)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 194 (|has| |#1| (-312)) ELT)) (-3815 (($ $) 198 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) 197 (OR (-12 (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117)) (|has| |#1| (-38 (-350 (-486))))) (-12 (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-38 (-350 (-486)))))) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 179 (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) 176 (|has| |#1| (-312)) ELT) (($ $ $) 175 (|has| |#1| (-312)) ELT)) (-3735 (((-348 $) $) 190 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 188 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 187 (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-486)) 122 T ELT)) (-3469 (((-3 $ "failed") $ $) 71 (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 181 (|has| |#1| (-312)) ELT)) (-3947 (($ $) 172 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) 121 (|has| |#1| (-15 ** (|#1| |#1| (-486)))) ELT)) (-1608 (((-696) $) 183 (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-486)) 132 T ELT) (($ $ $) 108 (|has| (-486) (-1027)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 184 (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1092)) 120 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-585 (-1092))) 118 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092) (-696)) 117 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 116 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $) 112 (|has| |#1| (-15 * (|#1| (-486) |#1|))) ELT) (($ $ (-696)) 110 (|has| |#1| (-15 * (|#1| (-486) |#1|))) ELT)) (-3952 (((-486) $) 84 T ELT)) (-3498 (($ $) 161 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 150 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 151 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 152 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) 94 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 68 (|has| |#1| (-146)) ELT) (($ (-350 (-486))) 78 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) 70 (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-486)) 80 T ELT)) (-2705 (((-634 $) $) 69 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-3776 ((|#1| $) 129 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3501 (($ $) 170 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) 74 (|has| |#1| (-497)) ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 168 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 156 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-486)) 123 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-486)))) (|has| |#1| (-15 -3950 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3504 (($ $) 167 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 155 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1092)) 119 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-585 (-1092))) 115 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092) (-696)) 114 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 113 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-486) |#1|))) ELT) (($ $ (-696)) 109 (|has| |#1| (-15 * (|#1| (-486) |#1|))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 79 (|has| |#1| (-312)) ELT) (($ $ $) 196 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 195 (|has| |#1| (-312)) ELT) (($ $ $) 173 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 144 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-350 (-486)) $) 77 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 76 (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-1143 |#1|) (-113) (-963)) (T -1143)) -((-3821 (*1 *1 *2) (-12 (-5 *2 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *3)))) (-4 *3 (-963)) (-4 *1 (-1143 *3)))) (-3818 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-486))) (-4 *1 (-1143 *3)) (-4 *3 (-963)))) (-3730 (*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-1143 *4)) (-4 *4 (-963)) (-4 *4 (-497)) (-5 *2 (-350 (-859 *4))))) (-3730 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-486)) (-4 *1 (-1143 *4)) (-4 *4 (-963)) (-4 *4 (-497)) (-5 *2 (-350 (-859 *4))))) (-3815 (*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-350 (-486)))))) (-3815 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1092)) (-4 *1 (-1143 *3)) (-4 *3 (-963)) (-12 (-4 *3 (-29 (-486))) (-4 *3 (-873)) (-4 *3 (-1117)) (-4 *3 (-38 (-350 (-486)))))) (-12 (-5 *2 (-1092)) (-4 *1 (-1143 *3)) (-4 *3 (-963)) (-12 (|has| *3 (-15 -3084 ((-585 *2) *3))) (|has| *3 (-15 -3815 (*3 *3 *2))) (-4 *3 (-38 (-350 (-486))))))))) -(-13 (-1160 |t#1| (-486)) (-10 -8 (-15 -3821 ($ (-1071 (-2 (|:| |k| (-486)) (|:| |c| |t#1|))))) (-15 -3818 ($ (-1 |t#1| (-486)) $)) (IF (|has| |t#1| (-497)) (PROGN (-15 -3730 ((-350 (-859 |t#1|)) $ (-486))) (-15 -3730 ((-350 (-859 |t#1|)) $ (-486) (-486)))) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-486)))) (PROGN (-15 -3815 ($ $)) (IF (|has| |t#1| (-15 -3815 (|t#1| |t#1| (-1092)))) (IF (|has| |t#1| (-15 -3084 ((-585 (-1092)) |t#1|))) (-15 -3815 ($ $ (-1092))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1117)) (IF (|has| |t#1| (-873)) (IF (|has| |t#1| (-29 (-486))) (-15 -3815 ($ $ (-1092))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-917)) (-6 (-1117))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-486)) . T) ((-25) . T) ((-38 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-486)))) ((-66) |has| |#1| (-38 (-350 (-486)))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-557 (-486)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-486) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-486) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-486) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-486)))) ((-241 (-486) |#1|) . T) ((-241 $ $) |has| (-486) (-1027)) ((-246) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-381 |#1|) . T) ((-393) |has| |#1| (-312)) ((-434) |has| |#1| (-38 (-350 (-486)))) ((-497) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-13) . T) ((-590 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-656 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-665) . T) ((-808 $ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ((-811 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ((-813 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ((-888 |#1| (-486) (-996)) . T) ((-834) |has| |#1| (-312)) ((-917) |has| |#1| (-38 (-350 (-486)))) ((-965 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-970 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1117) |has| |#1| (-38 (-350 (-486)))) ((-1120) |has| |#1| (-38 (-350 (-486)))) ((-1131) . T) ((-1136) |has| |#1| (-312)) ((-1160 |#1| (-486)) . T)) -((-3191 (((-85) $) 12 T ELT)) (-3160 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1092) #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 (-486) #1#) $) NIL T ELT)) (-3159 ((|#3| $) 14 T ELT) (((-1092) $) NIL T ELT) (((-350 (-486)) $) NIL T ELT) (((-486) $) NIL T ELT))) -(((-1144 |#1| |#2| |#3|) (-10 -7 (-15 -3160 ((-3 (-486) #1="failed") |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3160 ((-3 (-1092) #1#) |#1|)) (-15 -3159 ((-1092) |#1|)) (-15 -3160 ((-3 |#3| #1#) |#1|)) (-15 -3159 (|#3| |#1|)) (-15 -3191 ((-85) |#1|))) (-1145 |#2| |#3|) (-963) (-1174 |#2|)) (T -1144)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3132 ((|#2| $) 267 (-2565 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3084 (((-585 (-996)) $) 96 T ELT)) (-3834 (((-1092) $) 130 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 72 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 73 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 75 (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-486)) 125 T ELT) (($ $ (-486) (-486)) 124 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) $) 131 T ELT)) (-3734 ((|#2| $) 303 T ELT)) (-3731 (((-3 |#2| "failed") $) 299 T ELT)) (-3732 ((|#2| $) 300 T ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 147 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 276 (-2565 (|has| |#2| (-823)) (|has| |#1| (-312))) ELT)) (-3778 (($ $) 191 (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) 192 (|has| |#1| (-312)) ELT)) (-3040 (($ $) 146 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1="failed") (-585 (-1087 $)) (-1087 $)) 273 (-2565 (|has| |#2| (-823)) (|has| |#1| (-312))) ELT)) (-1609 (((-85) $ $) 182 (|has| |#1| (-312)) ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 148 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3626 (((-486) $) 285 (-2565 (|has| |#2| (-742)) (|has| |#1| (-312))) ELT)) (-3821 (($ (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|)))) 202 T ELT)) (-3497 (($ $) 162 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 149 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#2| #2="failed") $) 306 T ELT) (((-3 (-486) #2#) $) 296 (-2565 (|has| |#2| (-952 (-486))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-486)) #2#) $) 294 (-2565 (|has| |#2| (-952 (-486))) (|has| |#1| (-312))) ELT) (((-3 (-1092) #2#) $) 278 (-2565 (|has| |#2| (-952 (-1092))) (|has| |#1| (-312))) ELT)) (-3159 ((|#2| $) 307 T ELT) (((-486) $) 295 (-2565 (|has| |#2| (-952 (-486))) (|has| |#1| (-312))) ELT) (((-350 (-486)) $) 293 (-2565 (|has| |#2| (-952 (-486))) (|has| |#1| (-312))) ELT) (((-1092) $) 277 (-2565 (|has| |#2| (-952 (-1092))) (|has| |#1| (-312))) ELT)) (-3733 (($ $) 302 T ELT) (($ (-486) $) 301 T ELT)) (-2567 (($ $ $) 186 (|has| |#1| (-312)) ELT)) (-3962 (($ $) 81 T ELT)) (-2281 (((-632 |#2|) (-632 $)) 255 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) 254 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 253 (-2565 (|has| |#2| (-582 (-486))) (|has| |#1| (-312))) ELT) (((-632 (-486)) (-632 $)) 252 (-2565 (|has| |#2| (-582 (-486))) (|has| |#1| (-312))) ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3730 (((-350 (-859 |#1|)) $ (-486)) 200 (|has| |#1| (-497)) ELT) (((-350 (-859 |#1|)) $ (-486) (-486)) 199 (|has| |#1| (-497)) ELT)) (-2997 (($) 269 (-2565 (|has| |#2| (-485)) (|has| |#1| (-312))) ELT)) (-2566 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 180 (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) 193 (|has| |#1| (-312)) ELT)) (-3189 (((-85) $) 283 (-2565 (|has| |#2| (-742)) (|has| |#1| (-312))) ELT)) (-2895 (((-85) $) 95 T ELT)) (-3630 (($) 174 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 261 (-2565 (|has| |#2| (-798 (-330))) (|has| |#1| (-312))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 260 (-2565 (|has| |#2| (-798 (-486))) (|has| |#1| (-312))) ELT)) (-3775 (((-486) $) 127 T ELT) (((-486) $ (-486)) 126 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2999 (($ $) 265 (|has| |#1| (-312)) ELT)) (-3001 ((|#2| $) 263 (|has| |#1| (-312)) ELT)) (-3014 (($ $ (-486)) 145 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3448 (((-634 $) $) 297 (-2565 (|has| |#2| (-1068)) (|has| |#1| (-312))) ELT)) (-3190 (((-85) $) 284 (-2565 (|has| |#2| (-742)) (|has| |#1| (-312))) ELT)) (-3780 (($ $ (-832)) 128 T ELT)) (-3818 (($ (-1 |#1| (-486)) $) 201 T ELT)) (-1606 (((-3 (-585 $) #3="failed") (-585 $) $) 189 (|has| |#1| (-312)) ELT)) (-3941 (((-85) $) 83 T ELT)) (-2896 (($ |#1| (-486)) 82 T ELT) (($ $ (-996) (-486)) 98 T ELT) (($ $ (-585 (-996)) (-585 (-486))) 97 T ELT)) (-2534 (($ $ $) 292 (-2565 (|has| |#2| (-758)) (|has| |#1| (-312))) ELT)) (-2860 (($ $ $) 291 (-2565 (|has| |#2| (-758)) (|has| |#1| (-312))) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 87 T ELT) (($ (-1 |#2| |#2|) $) 245 (|has| |#1| (-312)) ELT)) (-3946 (($ $) 171 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2282 (((-632 |#2|) (-1181 $)) 257 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) 256 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 251 (-2565 (|has| |#2| (-582 (-486))) (|has| |#1| (-312))) ELT) (((-632 (-486)) (-1181 $)) 250 (-2565 (|has| |#2| (-582 (-486))) (|has| |#1| (-312))) ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-1896 (($ (-585 $)) 178 (|has| |#1| (-312)) ELT) (($ $ $) 177 (|has| |#1| (-312)) ELT)) (-3782 (($ (-486) |#2|) 304 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 194 (|has| |#1| (-312)) ELT)) (-3815 (($ $) 198 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) 197 (OR (-12 (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117)) (|has| |#1| (-38 (-350 (-486))))) (-12 (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-38 (-350 (-486)))))) ELT)) (-3449 (($) 298 (-2565 (|has| |#2| (-1068)) (|has| |#1| (-312))) CONST)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 179 (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) 176 (|has| |#1| (-312)) ELT) (($ $ $) 175 (|has| |#1| (-312)) ELT)) (-3131 (($ $) 268 (-2565 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3133 ((|#2| $) 271 (-2565 (|has| |#2| (-485)) (|has| |#1| (-312))) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 274 (-2565 (|has| |#2| (-823)) (|has| |#1| (-312))) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 275 (-2565 (|has| |#2| (-823)) (|has| |#1| (-312))) ELT)) (-3735 (((-348 $) $) 190 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 188 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 187 (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-486)) 122 T ELT)) (-3469 (((-3 $ "failed") $ $) 71 (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 181 (|has| |#1| (-312)) ELT)) (-3947 (($ $) 172 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) 121 (|has| |#1| (-15 ** (|#1| |#1| (-486)))) ELT) (($ $ (-1092) |#2|) 244 (-2565 (|has| |#2| (-457 (-1092) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1092)) (-585 |#2|)) 243 (-2565 (|has| |#2| (-457 (-1092) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-585 (-249 |#2|))) 242 (-2565 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-249 |#2|)) 241 (-2565 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ |#2| |#2|) 240 (-2565 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 239 (-2565 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT)) (-1608 (((-696) $) 183 (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-486)) 132 T ELT) (($ $ $) 108 (|has| (-486) (-1027)) ELT) (($ $ |#2|) 238 (-2565 (|has| |#2| (-241 |#2| |#2|)) (|has| |#1| (-312))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 184 (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1 |#2| |#2|) (-696)) 247 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 246 (|has| |#1| (-312)) ELT) (($ $) 112 (OR (-2565 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-696)) 110 (OR (-2565 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092)) 120 (OR (-2565 (|has| |#2| (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092))) 118 (OR (-2565 (|has| |#2| (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-1092) (-696)) 117 (OR (-2565 (|has| |#2| (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 116 (OR (-2565 (|has| |#2| (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT)) (-2998 (($ $) 266 (|has| |#1| (-312)) ELT)) (-3000 ((|#2| $) 264 (|has| |#1| (-312)) ELT)) (-3952 (((-486) $) 84 T ELT)) (-3498 (($ $) 161 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 150 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 151 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 152 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3975 (((-179) $) 282 (-2565 (|has| |#2| (-935)) (|has| |#1| (-312))) ELT) (((-330) $) 281 (-2565 (|has| |#2| (-935)) (|has| |#1| (-312))) ELT) (((-475) $) 280 (-2565 (|has| |#2| (-555 (-475))) (|has| |#1| (-312))) ELT) (((-802 (-330)) $) 259 (-2565 (|has| |#2| (-555 (-802 (-330)))) (|has| |#1| (-312))) ELT) (((-802 (-486)) $) 258 (-2565 (|has| |#2| (-555 (-802 (-486)))) (|has| |#1| (-312))) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) 272 (-2565 (-2565 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#1| (-312))) ELT)) (-2894 (($ $) 94 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 68 (|has| |#1| (-146)) ELT) (($ |#2|) 305 T ELT) (($ (-1092)) 279 (-2565 (|has| |#2| (-952 (-1092))) (|has| |#1| (-312))) ELT) (($ (-350 (-486))) 78 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) 70 (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-486)) 80 T ELT)) (-2705 (((-634 $) $) 69 (OR (-2565 (OR (|has| |#2| (-118)) (-2565 (|has| $ (-118)) (|has| |#2| (-823)))) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) 40 T CONST)) (-3776 ((|#1| $) 129 T ELT)) (-3134 ((|#2| $) 270 (-2565 (|has| |#2| (-485)) (|has| |#1| (-312))) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3501 (($ $) 170 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) 74 (|has| |#1| (-497)) ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 168 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 156 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-486)) 123 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-486)))) (|has| |#1| (-15 -3950 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3504 (($ $) 167 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 155 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3386 (($ $) 286 (-2565 (|has| |#2| (-742)) (|has| |#1| (-312))) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 |#2| |#2|) (-696)) 249 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 248 (|has| |#1| (-312)) ELT) (($ $) 111 (OR (-2565 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-696)) 109 (OR (-2565 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092)) 119 (OR (-2565 (|has| |#2| (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092))) 115 (OR (-2565 (|has| |#2| (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-1092) (-696)) 114 (OR (-2565 (|has| |#2| (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 113 (OR (-2565 (|has| |#2| (-813 (-1092))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|))))) ELT)) (-2569 (((-85) $ $) 290 (-2565 (|has| |#2| (-758)) (|has| |#1| (-312))) ELT)) (-2570 (((-85) $ $) 288 (-2565 (|has| |#2| (-758)) (|has| |#1| (-312))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-2687 (((-85) $ $) 289 (-2565 (|has| |#2| (-758)) (|has| |#1| (-312))) ELT)) (-2688 (((-85) $ $) 287 (-2565 (|has| |#2| (-758)) (|has| |#1| (-312))) ELT)) (-3953 (($ $ |#1|) 79 (|has| |#1| (-312)) ELT) (($ $ $) 196 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 262 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 195 (|has| |#1| (-312)) ELT) (($ $ $) 173 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 144 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ $ |#2|) 237 (|has| |#1| (-312)) ELT) (($ |#2| $) 236 (|has| |#1| (-312)) ELT) (($ (-350 (-486)) $) 77 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 76 (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-1145 |#1| |#2|) (-113) (-963) (-1174 |t#1|)) (T -1145)) -((-3952 (*1 *2 *1) (-12 (-4 *1 (-1145 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1174 *3)) (-5 *2 (-486)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-486)) (-4 *4 (-963)) (-4 *1 (-1145 *4 *3)) (-4 *3 (-1174 *4)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-1145 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1174 *3)))) (-3733 (*1 *1 *1) (-12 (-4 *1 (-1145 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1174 *2)))) (-3733 (*1 *1 *2 *1) (-12 (-5 *2 (-486)) (-4 *1 (-1145 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1174 *3)))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-1145 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1174 *3)))) (-3731 (*1 *2 *1) (|partial| -12 (-4 *1 (-1145 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1174 *3))))) -(-13 (-1143 |t#1|) (-952 |t#2|) (-557 |t#2|) (-10 -8 (-15 -3782 ($ (-486) |t#2|)) (-15 -3952 ((-486) $)) (-15 -3734 (|t#2| $)) (-15 -3733 ($ $)) (-15 -3733 ($ (-486) $)) (-15 -3732 (|t#2| $)) (-15 -3731 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-312)) (-6 (-906 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-486)) . T) ((-25) . T) ((-38 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 |#2|) |has| |#1| (-312)) ((-38 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-486)))) ((-66) |has| |#1| (-38 (-350 (-486)))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-82 |#1| |#1|) . T) ((-82 |#2| |#2|) |has| |#1| (-312)) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-120) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (|has| |#1| (-120))) ((-557 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-557 (-486)) . T) ((-557 (-1092)) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1092)))) ((-557 |#1|) |has| |#1| (-146)) ((-557 |#2|) . T) ((-557 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-555 (-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-935))) ((-555 (-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-935))) ((-555 (-475)) -12 (|has| |#1| (-312)) (|has| |#2| (-555 (-475)))) ((-555 (-802 (-330))) -12 (|has| |#1| (-312)) (|has| |#2| (-555 (-802 (-330))))) ((-555 (-802 (-486))) -12 (|has| |#1| (-312)) (|has| |#2| (-555 (-802 (-486))))) ((-186 $) OR (|has| |#1| (-15 * (|#1| (-486) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-184 |#2|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-15 * (|#1| (-486) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-189) OR (|has| |#1| (-15 * (|#1| (-486) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-225 |#2|) |has| |#1| (-312)) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-486)))) ((-241 (-486) |#1|) . T) ((-241 |#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ((-241 $ $) |has| (-486) (-1027)) ((-246) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-312) |has| |#1| (-312)) ((-288 |#2|) |has| |#1| (-312)) ((-329 |#2|) |has| |#1| (-312)) ((-343 |#2|) |has| |#1| (-312)) ((-381 |#1|) . T) ((-381 |#2|) |has| |#1| (-312)) ((-393) |has| |#1| (-312)) ((-434) |has| |#1| (-38 (-350 (-486)))) ((-457 (-1092) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-457 (-1092) |#2|))) ((-457 |#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-497) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-13) . T) ((-590 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 |#2|) |has| |#1| (-312)) ((-590 $) . T) ((-592 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-592 (-486)) -12 (|has| |#1| (-312)) (|has| |#2| (-582 (-486)))) ((-592 |#1|) . T) ((-592 |#2|) |has| |#1| (-312)) ((-592 $) . T) ((-584 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-584 |#1|) |has| |#1| (-146)) ((-584 |#2|) |has| |#1| (-312)) ((-584 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-582 (-486)) -12 (|has| |#1| (-312)) (|has| |#2| (-582 (-486)))) ((-582 |#2|) |has| |#1| (-312)) ((-656 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-656 |#1|) |has| |#1| (-146)) ((-656 |#2|) |has| |#1| (-312)) ((-656 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-665) . T) ((-716) -12 (|has| |#1| (-312)) (|has| |#2| (-742))) ((-718) -12 (|has| |#1| (-312)) (|has| |#2| (-742))) ((-720) -12 (|has| |#1| (-312)) (|has| |#2| (-742))) ((-723) -12 (|has| |#1| (-312)) (|has| |#2| (-742))) ((-742) -12 (|has| |#1| (-312)) (|has| |#2| (-742))) ((-757) -12 (|has| |#1| (-312)) (|has| |#2| (-742))) ((-758) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) (-12 (|has| |#1| (-312)) (|has| |#2| (-742)))) ((-761) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) (-12 (|has| |#1| (-312)) (|has| |#2| (-742)))) ((-808 $ (-1092)) OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1092))))) ((-811 (-1092)) OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1092))))) ((-813 (-1092)) OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1092))))) ((-798 (-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-798 (-330)))) ((-798 (-486)) -12 (|has| |#1| (-312)) (|has| |#2| (-798 (-486)))) ((-796 |#2|) |has| |#1| (-312)) ((-823) -12 (|has| |#1| (-312)) (|has| |#2| (-823))) ((-888 |#1| (-486) (-996)) . T) ((-834) |has| |#1| (-312)) ((-906 |#2|) |has| |#1| (-312)) ((-917) |has| |#1| (-38 (-350 (-486)))) ((-935) -12 (|has| |#1| (-312)) (|has| |#2| (-935))) ((-952 (-350 (-486))) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-486)))) ((-952 (-486)) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-486)))) ((-952 (-1092)) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1092)))) ((-952 |#2|) . T) ((-965 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-965 |#1|) . T) ((-965 |#2|) |has| |#1| (-312)) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-970 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-970 |#1|) . T) ((-970 |#2|) |has| |#1| (-312)) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1068) -12 (|has| |#1| (-312)) (|has| |#2| (-1068))) ((-1117) |has| |#1| (-38 (-350 (-486)))) ((-1120) |has| |#1| (-38 (-350 (-486)))) ((-1131) . T) ((-1136) |has| |#1| (-312)) ((-1143 |#1|) . T) ((-1160 |#1| (-486)) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 83 T ELT)) (-3132 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) 102 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-486)) 111 T ELT) (($ $ (-486) (-486)) 114 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|))) $) 51 T ELT)) (-3734 ((|#2| $) 11 T ELT)) (-3731 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3732 ((|#2| $) 36 T ELT)) (-3495 (($ $) 208 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 184 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1#) $ $) NIL T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-823))) ELT)) (-3778 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-823))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3493 (($ $) 204 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 180 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3626 (((-486) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) ELT)) (-3821 (($ (-1071 (-2 (|:| |k| (-486)) (|:| |c| |#1|)))) 59 T ELT)) (-3497 (($ $) 212 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 188 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-486) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-486)))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-486)))) ELT) (((-3 (-1092) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1092)))) ELT)) (-3159 ((|#2| $) 158 T ELT) (((-486) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-486)))) ELT) (((-350 (-486)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-486)))) ELT) (((-1092) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1092)))) ELT)) (-3733 (($ $) 65 T ELT) (($ (-486) $) 28 T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 |#2|) (-632 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-582 (-486)))) ELT) (((-632 (-486)) (-632 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-582 (-486)))) ELT)) (-3470 (((-3 $ #1#) $) 90 T ELT)) (-3730 (((-350 (-859 |#1|)) $ (-486)) 126 (|has| |#1| (-497)) ELT) (((-350 (-859 |#1|)) $ (-486) (-486)) 128 (|has| |#1| (-497)) ELT)) (-2997 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-485))) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3189 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) ELT)) (-2895 (((-85) $) 76 T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-798 (-486)))) ELT)) (-3775 (((-486) $) 107 T ELT) (((-486) $ (-486)) 109 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2999 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3001 ((|#2| $) 167 (|has| |#1| (-312)) ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3448 (((-634 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1068))) ELT)) (-3190 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) ELT)) (-3780 (($ $ (-832)) 150 T ELT)) (-3818 (($ (-1 |#1| (-486)) $) 146 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-486)) 20 T ELT) (($ $ (-996) (-486)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-486))) NIL T ELT)) (-2534 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) ELT)) (-2860 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-312)) ELT)) (-3946 (($ $) 178 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2282 (((-632 |#2|) (-1181 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-582 (-486)))) ELT) (((-632 (-486)) (-1181 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-582 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3782 (($ (-486) |#2|) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 161 (|has| |#1| (-312)) ELT)) (-3815 (($ $) 230 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) 235 (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT)) (-3449 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1068))) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3131 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3133 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-485))) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-823))) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-823))) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-486)) 140 T ELT)) (-3469 (((-3 $ #1#) $ $) 130 (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3947 (($ $) 176 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-486)))) ELT) (($ $ (-1092) |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-457 (-1092) |#2|))) ELT) (($ $ (-585 (-1092)) (-585 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-457 (-1092) |#2|))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-486)) 105 T ELT) (($ $ $) 92 (|has| (-486) (-1027)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092)) 155 (OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092))))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092))))) ELT)) (-2998 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3000 ((|#2| $) 168 (|has| |#1| (-312)) ELT)) (-3952 (((-486) $) 12 T ELT)) (-3498 (($ $) 214 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 190 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 210 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 186 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 206 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 182 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3975 (((-179) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-935))) ELT) (((-330) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-935))) ELT) (((-475) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-555 (-475)))) ELT) (((-802 (-330)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-555 (-802 (-486))))) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-823))) ELT)) (-2894 (($ $) 138 T ELT)) (-3950 (((-774) $) 268 T ELT) (($ (-486)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-146)) ELT) (($ |#2|) 21 T ELT) (($ (-1092)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1092)))) ELT) (($ (-350 (-486))) 171 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-486)) 87 T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-823))) (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| |#2| (-118)))) ELT)) (-3129 (((-696)) 157 T CONST)) (-3776 ((|#1| $) 104 T ELT)) (-3134 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-485))) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 220 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 196 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) 216 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 192 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 224 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 200 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-486)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-486)))) (|has| |#1| (-15 -3950 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) 226 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 202 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 222 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 198 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 218 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 194 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3386 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) ELT)) (-2663 (($) 13 T CONST)) (-2669 (($) 18 T CONST)) (-2672 (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092))))) ELT) (($ $ (-585 (-1092))) NIL (OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092))))) ELT) (($ $ (-1092) (-696)) NIL (OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092))))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (OR (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-486) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1092))))) ELT)) (-2569 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) ELT)) (-2570 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) ELT)) (-3059 (((-85) $ $) 74 T ELT)) (-2687 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) ELT)) (-2688 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 165 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3842 (($ $ $) 78 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 86 T ELT) (($ $ (-486)) 162 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 174 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-312)) ELT) (($ |#2| $) 163 (|has| |#1| (-312)) ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-1146 |#1| |#2|) (-1145 |#1| |#2|) (-963) (-1174 |#1|)) (T -1146)) -NIL -((-3737 (((-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-486)))))) |#1| (-85)) 13 T ELT)) (-3736 (((-348 |#1|) |#1|) 26 T ELT)) (-3735 (((-348 |#1|) |#1|) 24 T ELT))) -(((-1147 |#1|) (-10 -7 (-15 -3735 ((-348 |#1|) |#1|)) (-15 -3736 ((-348 |#1|) |#1|)) (-15 -3737 ((-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-486)))))) |#1| (-85)))) (-1157 (-486))) (T -1147)) -((-3737 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-486)) (|:| -1784 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-486))))))) (-5 *1 (-1147 *3)) (-4 *3 (-1157 (-486))))) (-3736 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-1157 (-486))))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-1157 (-486)))))) -((-2571 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3739 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3846 (((-1071 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-757)) ELT)) (-3232 ((|#1| $) 15 T ELT)) (-3234 ((|#1| $) 12 T ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-3230 (((-486) $) 19 T ELT)) (-3231 ((|#1| $) 18 T ELT)) (-3233 ((|#1| $) 13 T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3738 (((-85) $) 17 T ELT)) (-3966 (((-1071 |#1|) $) 41 (|has| |#1| (-757)) ELT) (((-1071 |#1|) (-585 $)) 40 (|has| |#1| (-757)) ELT)) (-3975 (($ |#1|) 26 T ELT)) (-3950 (($ (-1003 |#1|)) 25 T ELT) (((-774) $) 37 (|has| |#1| (-1015)) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3740 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3235 (($ $ (-486)) 14 T ELT)) (-3059 (((-85) $ $) 30 (|has| |#1| (-1015)) ELT))) -(((-1148 |#1|) (-13 (-1008 |#1|) (-10 -8 (-15 -3740 ($ |#1|)) (-15 -3739 ($ |#1|)) (-15 -3950 ($ (-1003 |#1|))) (-15 -3738 ((-85) $)) (IF (|has| |#1| (-1015)) (-6 (-1015)) |%noBranch|) (IF (|has| |#1| (-757)) (-6 (-1009 |#1| (-1071 |#1|))) |%noBranch|))) (-1131)) (T -1148)) -((-3740 (*1 *1 *2) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1131)))) (-3739 (*1 *1 *2) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1131)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-1003 *3)) (-4 *3 (-1131)) (-5 *1 (-1148 *3)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1148 *3)) (-4 *3 (-1131))))) -((-3846 (((-1071 |#2|) (-1 |#2| |#1|) (-1148 |#1|)) 23 (|has| |#1| (-757)) ELT) (((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|)) 17 T ELT))) -(((-1149 |#1| |#2|) (-10 -7 (-15 -3846 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) (IF (|has| |#1| (-757)) (-15 -3846 ((-1071 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) |%noBranch|)) (-1131) (-1131)) (T -1149)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-757)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1071 *6)) (-5 *1 (-1149 *5 *6)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1148 *6)) (-5 *1 (-1149 *5 *6))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3770 (((-1181 |#2|) $ (-696)) NIL T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3768 (($ (-1087 |#2|)) NIL T ELT)) (-3086 (((-1087 $) $ (-996)) NIL T ELT) (((-1087 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#2| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#2| (-497)) ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-996))) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $ $) NIL (|has| |#2| (-497)) ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3778 (($ $) NIL (|has| |#2| (-393)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#2| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1#) (-585 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3764 (($ $ (-696)) NIL T ELT)) (-3763 (($ $ (-696)) NIL T ELT)) (-3754 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-393)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-3 (-486) #1#) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-3 (-996) #1#) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-350 (-486)) $) NIL (|has| |#2| (-952 (-350 (-486)))) ELT) (((-486) $) NIL (|has| |#2| (-952 (-486))) ELT) (((-996) $) NIL T ELT)) (-3759 (($ $ $ (-996)) NIL (|has| |#2| (-146)) ELT) ((|#2| $ $) NIL (|has| |#2| (-146)) ELT)) (-2567 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-632 (-486)) (-632 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-632 $) (-1181 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3762 (($ $ $) NIL T ELT)) (-3756 (($ $ $) NIL (|has| |#2| (-497)) ELT)) (-3755 (((-2 (|:| -3958 |#2|) (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-497)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#2| (-312)) ELT)) (-3506 (($ $) NIL (|has| |#2| (-393)) ELT) (($ $ (-996)) NIL (|has| |#2| (-393)) ELT)) (-2821 (((-585 $) $) NIL T ELT)) (-3726 (((-85) $) NIL (|has| |#2| (-823)) ELT)) (-1625 (($ $ |#2| (-696) $) NIL T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) NIL (-12 (|has| (-996) (-798 (-330))) (|has| |#2| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) NIL (-12 (|has| (-996) (-798 (-486))) (|has| |#2| (-798 (-486)))) ELT)) (-3775 (((-696) $ $) NIL (|has| |#2| (-497)) ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3448 (((-634 $) $) NIL (|has| |#2| (-1068)) ELT)) (-3087 (($ (-1087 |#2|) (-996)) NIL T ELT) (($ (-1087 $) (-996)) NIL T ELT)) (-3780 (($ $ (-696)) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#2| (-312)) ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#2| (-696)) 18 T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-996)) NIL T ELT) (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2823 (((-696) $) NIL T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-1626 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3769 (((-1087 |#2|) $) NIL T ELT)) (-3085 (((-3 (-996) #1#) $) NIL T ELT)) (-2282 (((-632 (-486)) (-1181 $)) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) NIL (|has| |#2| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1181 |#2|))) (-1181 $) $) NIL T ELT) (((-632 |#2|) (-1181 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) NIL (|has| |#2| (-393)) ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3765 (((-2 (|:| -1974 $) (|:| -2905 $)) $ (-696)) NIL T ELT)) (-2826 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-996)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3815 (($ $) NIL (|has| |#2| (-38 (-350 (-486)))) ELT)) (-3449 (($) NIL (|has| |#2| (-1068)) CONST)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 ((|#2| $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#2| (-393)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#2| (-393)) ELT) (($ $ $) NIL (|has| |#2| (-393)) ELT)) (-3741 (($ $ (-696) |#2| $) NIL T ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-823)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#2| (-823)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-497)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#2| (-312)) ELT)) (-3771 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-996) |#2|) NIL T ELT) (($ $ (-585 (-996)) (-585 |#2|)) NIL T ELT) (($ $ (-996) $) NIL T ELT) (($ $ (-585 (-996)) (-585 $)) NIL T ELT)) (-1608 (((-696) $) NIL (|has| |#2| (-312)) ELT)) (-3803 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#2| (-497)) ELT) ((|#2| (-350 $) |#2|) NIL (|has| |#2| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#2| (-497)) ELT)) (-3767 (((-3 $ #1#) $ (-696)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3760 (($ $ (-996)) NIL (|has| |#2| (-146)) ELT) ((|#2| $) NIL (|has| |#2| (-146)) ELT)) (-3761 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT)) (-3952 (((-696) $) NIL T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-3975 (((-802 (-330)) $) NIL (-12 (|has| (-996) (-555 (-802 (-330)))) (|has| |#2| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) NIL (-12 (|has| (-996) (-555 (-802 (-486)))) (|has| |#2| (-555 (-802 (-486))))) ELT) (((-475) $) NIL (-12 (|has| (-996) (-555 (-475))) (|has| |#2| (-555 (-475)))) ELT)) (-2820 ((|#2| $) NIL (|has| |#2| (-393)) ELT) (($ $ (-996)) NIL (|has| |#2| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-823))) ELT)) (-3757 (((-3 $ #1#) $ $) NIL (|has| |#2| (-497)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#2| (-497)) ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-996)) NIL T ELT) (($ (-1178 |#1|)) 20 T ELT) (($ (-350 (-486))) NIL (OR (|has| |#2| (-38 (-350 (-486)))) (|has| |#2| (-952 (-350 (-486))))) ELT) (($ $) NIL (|has| |#2| (-497)) ELT)) (-3820 (((-585 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-696)) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-2705 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#2| (-118))) ELT)) (-3129 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#2| (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#2| (-497)) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) 14 T CONST)) (-2672 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1092)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) NIL (|has| |#2| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (|has| |#2| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-486))) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) NIL (|has| |#2| (-38 (-350 (-486)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-1150 |#1| |#2|) (-13 (-1157 |#2|) (-557 (-1178 |#1|)) (-10 -8 (-15 -3741 ($ $ (-696) |#2| $)))) (-1092) (-963)) (T -1150)) -((-3741 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1150 *4 *3)) (-14 *4 (-1092)) (-4 *3 (-963))))) -((-3846 (((-1150 |#3| |#4|) (-1 |#4| |#2|) (-1150 |#1| |#2|)) 15 T ELT))) -(((-1151 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3846 ((-1150 |#3| |#4|) (-1 |#4| |#2|) (-1150 |#1| |#2|)))) (-1092) (-963) (-1092) (-963)) (T -1151)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1150 *5 *6)) (-14 *5 (-1092)) (-4 *6 (-963)) (-4 *8 (-963)) (-5 *2 (-1150 *7 *8)) (-5 *1 (-1151 *5 *6 *7 *8)) (-14 *7 (-1092))))) -((-3744 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3742 ((|#1| |#3|) 13 T ELT)) (-3743 ((|#3| |#3|) 19 T ELT))) -(((-1152 |#1| |#2| |#3|) (-10 -7 (-15 -3742 (|#1| |#3|)) (-15 -3743 (|#3| |#3|)) (-15 -3744 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-497) (-906 |#1|) (-1157 |#2|)) (T -1152)) -((-3744 (*1 *2 *3) (-12 (-4 *4 (-497)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1152 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-3743 (*1 *2 *2) (-12 (-4 *3 (-497)) (-4 *4 (-906 *3)) (-5 *1 (-1152 *3 *4 *2)) (-4 *2 (-1157 *4)))) (-3742 (*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-497)) (-5 *1 (-1152 *2 *4 *3)) (-4 *3 (-1157 *4))))) -((-3746 (((-3 |#2| #1="failed") |#2| (-696) |#1|) 35 T ELT)) (-3745 (((-3 |#2| #1#) |#2| (-696)) 36 T ELT)) (-3748 (((-3 (-2 (|:| -3141 |#2|) (|:| -3140 |#2|)) #1#) |#2|) 50 T ELT)) (-3749 (((-585 |#2|) |#2|) 52 T ELT)) (-3747 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) -(((-1153 |#1| |#2|) (-10 -7 (-15 -3745 ((-3 |#2| #1="failed") |#2| (-696))) (-15 -3746 ((-3 |#2| #1#) |#2| (-696) |#1|)) (-15 -3747 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3748 ((-3 (-2 (|:| -3141 |#2|) (|:| -3140 |#2|)) #1#) |#2|)) (-15 -3749 ((-585 |#2|) |#2|))) (-13 (-497) (-120)) (-1157 |#1|)) (T -1153)) -((-3749 (*1 *2 *3) (-12 (-4 *4 (-13 (-497) (-120))) (-5 *2 (-585 *3)) (-5 *1 (-1153 *4 *3)) (-4 *3 (-1157 *4)))) (-3748 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-497) (-120))) (-5 *2 (-2 (|:| -3141 *3) (|:| -3140 *3))) (-5 *1 (-1153 *4 *3)) (-4 *3 (-1157 *4)))) (-3747 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-497) (-120))) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1157 *3)))) (-3746 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-696)) (-4 *4 (-13 (-497) (-120))) (-5 *1 (-1153 *4 *2)) (-4 *2 (-1157 *4)))) (-3745 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-696)) (-4 *4 (-13 (-497) (-120))) (-5 *1 (-1153 *4 *2)) (-4 *2 (-1157 *4))))) -((-3750 (((-3 (-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) "failed") |#2| |#2|) 30 T ELT))) -(((-1154 |#1| |#2|) (-10 -7 (-15 -3750 ((-3 (-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) "failed") |#2| |#2|))) (-497) (-1157 |#1|)) (T -1154)) -((-3750 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-497)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-1154 *4 *3)) (-4 *3 (-1157 *4))))) -((-3751 ((|#2| |#2| |#2|) 22 T ELT)) (-3752 ((|#2| |#2| |#2|) 36 T ELT)) (-3753 ((|#2| |#2| |#2| (-696) (-696)) 44 T ELT))) -(((-1155 |#1| |#2|) (-10 -7 (-15 -3751 (|#2| |#2| |#2|)) (-15 -3752 (|#2| |#2| |#2|)) (-15 -3753 (|#2| |#2| |#2| (-696) (-696)))) (-963) (-1157 |#1|)) (T -1155)) -((-3753 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-696)) (-4 *4 (-963)) (-5 *1 (-1155 *4 *2)) (-4 *2 (-1157 *4)))) (-3752 (*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-1155 *3 *2)) (-4 *2 (-1157 *3)))) (-3751 (*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-1155 *3 *2)) (-4 *2 (-1157 *3))))) -((-3770 (((-1181 |#2|) $ (-696)) 129 T ELT)) (-3084 (((-585 (-996)) $) 16 T ELT)) (-3768 (($ (-1087 |#2|)) 80 T ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-585 (-996))) 21 T ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 217 T ELT)) (-3778 (($ $) 207 T ELT)) (-3974 (((-348 $) $) 205 T ELT)) (-2707 (((-3 (-585 (-1087 $)) #1="failed") (-585 (-1087 $)) (-1087 $)) 95 T ELT)) (-3764 (($ $ (-696)) 84 T ELT)) (-3763 (($ $ (-696)) 86 T ELT)) (-3754 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3160 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-350 (-486)) #1#) $) NIL T ELT) (((-3 (-486) #1#) $) NIL T ELT) (((-3 (-996) #1#) $) NIL T ELT)) (-3159 ((|#2| $) 130 T ELT) (((-350 (-486)) $) NIL T ELT) (((-486) $) NIL T ELT) (((-996) $) NIL T ELT)) (-3756 (($ $ $) 182 T ELT)) (-3755 (((-2 (|:| -3958 |#2|) (|:| -1974 $) (|:| -2905 $)) $ $) 185 T ELT)) (-3775 (((-696) $ $) 202 T ELT)) (-3448 (((-634 $) $) 149 T ELT)) (-2896 (($ |#2| (-696)) NIL T ELT) (($ $ (-996) (-696)) 59 T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-2823 (((-696) $) NIL T ELT) (((-696) $ (-996)) 54 T ELT) (((-585 (-696)) $ (-585 (-996))) 55 T ELT)) (-3769 (((-1087 |#2|) $) 72 T ELT)) (-3085 (((-3 (-996) #1#) $) 52 T ELT)) (-3765 (((-2 (|:| -1974 $) (|:| -2905 $)) $ (-696)) 83 T ELT)) (-3815 (($ $) 232 T ELT)) (-3449 (($) 134 T CONST)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 214 T ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 101 T ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 99 T ELT)) (-3735 (((-348 $) $) 120 T ELT)) (-3771 (($ $ (-585 (-249 $))) 51 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-996) |#2|) 39 T ELT) (($ $ (-585 (-996)) (-585 |#2|)) 36 T ELT) (($ $ (-996) $) 32 T ELT) (($ $ (-585 (-996)) (-585 $)) 30 T ELT)) (-1608 (((-696) $) 220 T ELT)) (-3803 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) 176 T ELT) ((|#2| (-350 $) |#2|) 219 T ELT) (((-350 $) $ (-350 $)) 201 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 225 T ELT)) (-3761 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1092)) NIL T ELT) (($ $ (-585 (-1092))) NIL T ELT) (($ $ (-1092) (-696)) NIL T ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL T ELT)) (-3952 (((-696) $) NIL T ELT) (((-696) $ (-996)) 17 T ELT) (((-585 (-696)) $ (-585 (-996))) 23 T ELT)) (-2820 ((|#2| $) NIL T ELT) (($ $ (-996)) 151 T ELT)) (-3757 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-350 $) #1#) (-350 $) $) 189 T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-996)) 64 T ELT) (($ (-350 (-486))) NIL T ELT) (($ $) NIL T ELT))) -(((-1156 |#1| |#2|) (-10 -7 (-15 -3950 (|#1| |#1|)) (-15 -2711 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|))) (-15 -3761 (|#1| |#1| (-585 (-1092)) (-585 (-696)))) (-15 -3761 (|#1| |#1| (-1092) (-696))) (-15 -3761 (|#1| |#1| (-585 (-1092)))) (-15 -3761 (|#1| |#1| (-1092))) (-15 -3974 ((-348 |#1|) |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3950 (|#1| (-350 (-486)))) (-15 -3449 (|#1|) -3956) (-15 -3448 ((-634 |#1|) |#1|)) (-15 -3803 ((-350 |#1|) |#1| (-350 |#1|))) (-15 -1608 ((-696) |#1|)) (-15 -2882 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-15 -3815 (|#1| |#1|)) (-15 -3803 (|#2| (-350 |#1|) |#2|)) (-15 -3754 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3755 ((-2 (|:| -3958 |#2|) (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-15 -3756 (|#1| |#1| |#1|)) (-15 -3757 ((-3 (-350 |#1|) #1="failed") (-350 |#1|) |#1|)) (-15 -3757 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3775 ((-696) |#1| |#1|)) (-15 -3803 ((-350 |#1|) (-350 |#1|) (-350 |#1|))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3763 (|#1| |#1| (-696))) (-15 -3764 (|#1| |#1| (-696))) (-15 -3765 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| (-696))) (-15 -3768 (|#1| (-1087 |#2|))) (-15 -3769 ((-1087 |#2|) |#1|)) (-15 -3770 ((-1181 |#2|) |#1| (-696))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3761 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3761 (|#1| |#1| (-696))) (-15 -3761 (|#1| |#1|)) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3803 (|#2| |#1| |#2|)) (-15 -3735 ((-348 |#1|) |#1|)) (-15 -2710 ((-348 (-1087 |#1|)) (-1087 |#1|))) (-15 -2709 ((-348 (-1087 |#1|)) (-1087 |#1|))) (-15 -2708 ((-348 (-1087 |#1|)) (-1087 |#1|))) (-15 -2707 ((-3 (-585 (-1087 |#1|)) #1#) (-585 (-1087 |#1|)) (-1087 |#1|))) (-15 -2820 (|#1| |#1| (-996))) (-15 -3084 ((-585 (-996)) |#1|)) (-15 -2822 ((-696) |#1| (-585 (-996)))) (-15 -2822 ((-696) |#1|)) (-15 -2896 (|#1| |#1| (-585 (-996)) (-585 (-696)))) (-15 -2896 (|#1| |#1| (-996) (-696))) (-15 -2823 ((-585 (-696)) |#1| (-585 (-996)))) (-15 -2823 ((-696) |#1| (-996))) (-15 -3085 ((-3 (-996) #1#) |#1|)) (-15 -3952 ((-585 (-696)) |#1| (-585 (-996)))) (-15 -3952 ((-696) |#1| (-996))) (-15 -3950 (|#1| (-996))) (-15 -3160 ((-3 (-996) #1#) |#1|)) (-15 -3159 ((-996) |#1|)) (-15 -3771 (|#1| |#1| (-585 (-996)) (-585 |#1|))) (-15 -3771 (|#1| |#1| (-996) |#1|)) (-15 -3771 (|#1| |#1| (-585 (-996)) (-585 |#2|))) (-15 -3771 (|#1| |#1| (-996) |#2|)) (-15 -3771 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -3771 (|#1| |#1| |#1| |#1|)) (-15 -3771 (|#1| |#1| (-249 |#1|))) (-15 -3771 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -3952 ((-696) |#1|)) (-15 -2896 (|#1| |#2| (-696))) (-15 -3160 ((-3 (-486) #1#) |#1|)) (-15 -3159 ((-486) |#1|)) (-15 -3160 ((-3 (-350 (-486)) #1#) |#1|)) (-15 -3159 ((-350 (-486)) |#1|)) (-15 -3159 (|#2| |#1|)) (-15 -3160 ((-3 |#2| #1#) |#1|)) (-15 -3950 (|#1| |#2|)) (-15 -2823 ((-696) |#1|)) (-15 -2820 (|#2| |#1|)) (-15 -3761 (|#1| |#1| (-996))) (-15 -3761 (|#1| |#1| (-585 (-996)))) (-15 -3761 (|#1| |#1| (-996) (-696))) (-15 -3761 (|#1| |#1| (-585 (-996)) (-585 (-696)))) (-15 -3950 (|#1| (-486))) (-15 -3950 ((-774) |#1|))) (-1157 |#2|) (-963)) (T -1156)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3770 (((-1181 |#1|) $ (-696)) 272 T ELT)) (-3084 (((-585 (-996)) $) 124 T ELT)) (-3768 (($ (-1087 |#1|)) 270 T ELT)) (-3086 (((-1087 $) $ (-996)) 139 T ELT) (((-1087 |#1|) $) 138 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 101 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 102 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 104 (|has| |#1| (-497)) ELT)) (-2822 (((-696) $) 126 T ELT) (((-696) $ (-585 (-996))) 125 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3758 (($ $ $) 257 (|has| |#1| (-497)) ELT)) (-2710 (((-348 (-1087 $)) (-1087 $)) 114 (|has| |#1| (-823)) ELT)) (-3778 (($ $) 112 (|has| |#1| (-393)) ELT)) (-3974 (((-348 $) $) 111 (|has| |#1| (-393)) ELT)) (-2707 (((-3 (-585 (-1087 $)) #1="failed") (-585 (-1087 $)) (-1087 $)) 117 (|has| |#1| (-823)) ELT)) (-1609 (((-85) $ $) 242 (|has| |#1| (-312)) ELT)) (-3764 (($ $ (-696)) 265 T ELT)) (-3763 (($ $ (-696)) 264 T ELT)) (-3754 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 252 (|has| |#1| (-393)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| #2="failed") $) 182 T ELT) (((-3 (-350 (-486)) #2#) $) 179 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-3 (-486) #2#) $) 177 (|has| |#1| (-952 (-486))) ELT) (((-3 (-996) #2#) $) 154 T ELT)) (-3159 ((|#1| $) 181 T ELT) (((-350 (-486)) $) 180 (|has| |#1| (-952 (-350 (-486)))) ELT) (((-486) $) 178 (|has| |#1| (-952 (-486))) ELT) (((-996) $) 155 T ELT)) (-3759 (($ $ $ (-996)) 122 (|has| |#1| (-146)) ELT) ((|#1| $ $) 260 (|has| |#1| (-146)) ELT)) (-2567 (($ $ $) 246 (|has| |#1| (-312)) ELT)) (-3962 (($ $) 172 T ELT)) (-2281 (((-632 (-486)) (-632 $)) 150 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-632 $) (-1181 $)) 149 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-632 $) (-1181 $)) 148 T ELT) (((-632 |#1|) (-632 $)) 147 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 245 (|has| |#1| (-312)) ELT)) (-3762 (($ $ $) 263 T ELT)) (-3756 (($ $ $) 254 (|has| |#1| (-497)) ELT)) (-3755 (((-2 (|:| -3958 |#1|) (|:| -1974 $) (|:| -2905 $)) $ $) 253 (|has| |#1| (-497)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 240 (|has| |#1| (-312)) ELT)) (-3506 (($ $) 194 (|has| |#1| (-393)) ELT) (($ $ (-996)) 119 (|has| |#1| (-393)) ELT)) (-2821 (((-585 $) $) 123 T ELT)) (-3726 (((-85) $) 110 (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| (-696) $) 190 T ELT)) (-2799 (((-800 (-330) $) $ (-802 (-330)) (-800 (-330) $)) 98 (-12 (|has| (-996) (-798 (-330))) (|has| |#1| (-798 (-330)))) ELT) (((-800 (-486) $) $ (-802 (-486)) (-800 (-486) $)) 97 (-12 (|has| (-996) (-798 (-486))) (|has| |#1| (-798 (-486)))) ELT)) (-3775 (((-696) $ $) 258 (|has| |#1| (-497)) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2422 (((-696) $) 187 T ELT)) (-3448 (((-634 $) $) 238 (|has| |#1| (-1068)) ELT)) (-3087 (($ (-1087 |#1|) (-996)) 131 T ELT) (($ (-1087 $) (-996)) 130 T ELT)) (-3780 (($ $ (-696)) 269 T ELT)) (-1606 (((-3 (-585 $) #3="failed") (-585 $) $) 249 (|has| |#1| (-312)) ELT)) (-2824 (((-585 $) $) 140 T ELT)) (-3941 (((-85) $) 170 T ELT)) (-2896 (($ |#1| (-696)) 171 T ELT) (($ $ (-996) (-696)) 133 T ELT) (($ $ (-585 (-996)) (-585 (-696))) 132 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-996)) 134 T ELT) (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 267 T ELT)) (-2823 (((-696) $) 188 T ELT) (((-696) $ (-996)) 136 T ELT) (((-585 (-696)) $ (-585 (-996))) 135 T ELT)) (-1626 (($ (-1 (-696) (-696)) $) 189 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3769 (((-1087 |#1|) $) 271 T ELT)) (-3085 (((-3 (-996) #4="failed") $) 137 T ELT)) (-2282 (((-632 (-486)) (-1181 $)) 152 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 (-486))) (|:| |vec| (-1181 (-486)))) (-1181 $) $) 151 (|has| |#1| (-582 (-486))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1181 |#1|))) (-1181 $) $) 146 T ELT) (((-632 |#1|) (-1181 $)) 145 T ELT)) (-2897 (($ $) 168 T ELT)) (-3177 ((|#1| $) 167 T ELT)) (-1896 (($ (-585 $)) 108 (|has| |#1| (-393)) ELT) (($ $ $) 107 (|has| |#1| (-393)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3765 (((-2 (|:| -1974 $) (|:| -2905 $)) $ (-696)) 266 T ELT)) (-2826 (((-3 (-585 $) #4#) $) 128 T ELT)) (-2825 (((-3 (-585 $) #4#) $) 129 T ELT)) (-2827 (((-3 (-2 (|:| |var| (-996)) (|:| -2403 (-696))) #4#) $) 127 T ELT)) (-3815 (($ $) 250 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3449 (($) 237 (|has| |#1| (-1068)) CONST)) (-3246 (((-1035) $) 12 T ELT)) (-1802 (((-85) $) 184 T ELT)) (-1801 ((|#1| $) 185 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 109 (|has| |#1| (-393)) ELT)) (-3147 (($ (-585 $)) 106 (|has| |#1| (-393)) ELT) (($ $ $) 105 (|has| |#1| (-393)) ELT)) (-2708 (((-348 (-1087 $)) (-1087 $)) 116 (|has| |#1| (-823)) ELT)) (-2709 (((-348 (-1087 $)) (-1087 $)) 115 (|has| |#1| (-823)) ELT)) (-3735 (((-348 $) $) 113 (|has| |#1| (-823)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 248 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 247 (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ "failed") $ |#1|) 192 (|has| |#1| (-497)) ELT) (((-3 $ "failed") $ $) 100 (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 241 (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-585 (-249 $))) 163 T ELT) (($ $ (-249 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-585 $) (-585 $)) 160 T ELT) (($ $ (-996) |#1|) 159 T ELT) (($ $ (-585 (-996)) (-585 |#1|)) 158 T ELT) (($ $ (-996) $) 157 T ELT) (($ $ (-585 (-996)) (-585 $)) 156 T ELT)) (-1608 (((-696) $) 243 (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ |#1|) 282 T ELT) (($ $ $) 281 T ELT) (((-350 $) (-350 $) (-350 $)) 259 (|has| |#1| (-497)) ELT) ((|#1| (-350 $) |#1|) 251 (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) 239 (|has| |#1| (-497)) ELT)) (-3767 (((-3 $ "failed") $ (-696)) 268 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 244 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-996)) 121 (|has| |#1| (-146)) ELT) ((|#1| $) 261 (|has| |#1| (-146)) ELT)) (-3761 (($ $ (-585 (-996)) (-585 (-696))) 52 T ELT) (($ $ (-996) (-696)) 51 T ELT) (($ $ (-585 (-996))) 50 T ELT) (($ $ (-996)) 48 T ELT) (($ $) 280 T ELT) (($ $ (-696)) 278 T ELT) (($ $ (-1 |#1| |#1|)) 276 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 275 T ELT) (($ $ (-1 |#1| |#1|) $) 262 T ELT) (($ $ (-1092)) 236 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 234 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 233 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 232 (|has| |#1| (-813 (-1092))) ELT)) (-3952 (((-696) $) 169 T ELT) (((-696) $ (-996)) 144 T ELT) (((-585 (-696)) $ (-585 (-996))) 143 T ELT)) (-3975 (((-802 (-330)) $) 96 (-12 (|has| (-996) (-555 (-802 (-330)))) (|has| |#1| (-555 (-802 (-330))))) ELT) (((-802 (-486)) $) 95 (-12 (|has| (-996) (-555 (-802 (-486)))) (|has| |#1| (-555 (-802 (-486))))) ELT) (((-475) $) 94 (-12 (|has| (-996) (-555 (-475))) (|has| |#1| (-555 (-475)))) ELT)) (-2820 ((|#1| $) 193 (|has| |#1| (-393)) ELT) (($ $ (-996)) 120 (|has| |#1| (-393)) ELT)) (-2706 (((-3 (-1181 $) #1#) (-632 $)) 118 (-2565 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3757 (((-3 $ "failed") $ $) 256 (|has| |#1| (-497)) ELT) (((-3 (-350 $) "failed") (-350 $) $) 255 (|has| |#1| (-497)) ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 183 T ELT) (($ (-996)) 153 T ELT) (($ (-350 (-486))) 92 (OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ELT) (($ $) 99 (|has| |#1| (-497)) ELT)) (-3820 (((-585 |#1|) $) 186 T ELT)) (-3680 ((|#1| $ (-696)) 173 T ELT) (($ $ (-996) (-696)) 142 T ELT) (($ $ (-585 (-996)) (-585 (-696))) 141 T ELT)) (-2705 (((-634 $) $) 93 (OR (-2565 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3129 (((-696)) 40 T CONST)) (-1624 (($ $ $ (-696)) 191 (|has| |#1| (-146)) ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 103 (|has| |#1| (-497)) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-585 (-996)) (-585 (-696))) 55 T ELT) (($ $ (-996) (-696)) 54 T ELT) (($ $ (-585 (-996))) 53 T ELT) (($ $ (-996)) 49 T ELT) (($ $) 279 T ELT) (($ $ (-696)) 277 T ELT) (($ $ (-1 |#1| |#1|)) 274 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 273 T ELT) (($ $ (-1092)) 235 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092))) 231 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-1092) (-696)) 230 (|has| |#1| (-813 (-1092))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 229 (|has| |#1| (-813 (-1092))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 174 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 176 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ (-350 (-486)) $) 175 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ |#1| $) 165 T ELT) (($ $ |#1|) 164 T ELT))) -(((-1157 |#1|) (-113) (-963)) (T -1157)) -((-3770 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-1157 *4)) (-4 *4 (-963)) (-5 *2 (-1181 *4)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-963)) (-5 *2 (-1087 *3)))) (-3768 (*1 *1 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-963)) (-4 *1 (-1157 *3)))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1157 *3)) (-4 *3 (-963)))) (-3767 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-696)) (-4 *1 (-1157 *3)) (-4 *3 (-963)))) (-3766 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-1157 *3)))) (-3765 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *4 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-1157 *4)))) (-3764 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1157 *3)) (-4 *3 (-963)))) (-3763 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1157 *3)) (-4 *3 (-963)))) (-3762 (*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)))) (-3761 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1157 *3)) (-4 *3 (-963)))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-146)))) (-3759 (*1 *2 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-146)))) (-3803 (*1 *2 *2 *2) (-12 (-5 *2 (-350 *1)) (-4 *1 (-1157 *3)) (-4 *3 (-963)) (-4 *3 (-497)))) (-3775 (*1 *2 *1 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-963)) (-4 *3 (-497)) (-5 *2 (-696)))) (-3758 (*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-497)))) (-3757 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-497)))) (-3757 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-350 *1)) (-4 *1 (-1157 *3)) (-4 *3 (-963)) (-4 *3 (-497)))) (-3756 (*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-497)))) (-3755 (*1 *2 *1 *1) (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -3958 *3) (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-1157 *3)))) (-3754 (*1 *2 *1 *1) (-12 (-4 *3 (-393)) (-4 *3 (-963)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1157 *3)))) (-3803 (*1 *2 *3 *2) (-12 (-5 *3 (-350 *1)) (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-3815 (*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-350 (-486))))))) -(-13 (-863 |t#1| (-696) (-996)) (-241 |t#1| |t#1|) (-241 $ $) (-190) (-184 |t#1|) (-10 -8 (-15 -3770 ((-1181 |t#1|) $ (-696))) (-15 -3769 ((-1087 |t#1|) $)) (-15 -3768 ($ (-1087 |t#1|))) (-15 -3780 ($ $ (-696))) (-15 -3767 ((-3 $ "failed") $ (-696))) (-15 -3766 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-15 -3765 ((-2 (|:| -1974 $) (|:| -2905 $)) $ (-696))) (-15 -3764 ($ $ (-696))) (-15 -3763 ($ $ (-696))) (-15 -3762 ($ $ $)) (-15 -3761 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1068)) (-6 (-1068)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3760 (|t#1| $)) (-15 -3759 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-497)) (PROGN (-6 (-241 (-350 $) (-350 $))) (-15 -3803 ((-350 $) (-350 $) (-350 $))) (-15 -3775 ((-696) $ $)) (-15 -3758 ($ $ $)) (-15 -3757 ((-3 $ "failed") $ $)) (-15 -3757 ((-3 (-350 $) "failed") (-350 $) $)) (-15 -3756 ($ $ $)) (-15 -3755 ((-2 (|:| -3958 |t#1|) (|:| -1974 $) (|:| -2905 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-393)) (-15 -3754 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-258)) (-6 -3994) (-15 -3803 (|t#1| (-350 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-486)))) (-15 -3815 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-696)) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-952 (-350 (-486)))) (|has| |#1| (-38 (-350 (-486))))) ((-557 (-486)) . T) ((-557 (-996)) . T) ((-557 |#1|) . T) ((-557 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-555 (-475)) -12 (|has| |#1| (-555 (-475))) (|has| (-996) (-555 (-475)))) ((-555 (-802 (-330))) -12 (|has| |#1| (-555 (-802 (-330)))) (|has| (-996) (-555 (-802 (-330))))) ((-555 (-802 (-486))) -12 (|has| |#1| (-555 (-802 (-486)))) (|has| (-996) (-555 (-802 (-486))))) ((-186 $) . T) ((-184 |#1|) . T) ((-190) . T) ((-189) . T) ((-225 |#1|) . T) ((-241 (-350 $) (-350 $)) |has| |#1| (-497)) ((-241 |#1| |#1|) . T) ((-241 $ $) . T) ((-246) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 $) . T) ((-277 |#1| (-696)) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-381 |#1|) . T) ((-393) OR (|has| |#1| (-823)) (|has| |#1| (-393)) (|has| |#1| (-312))) ((-457 (-996) |#1|) . T) ((-457 (-996) $) . T) ((-457 $ $) . T) ((-497) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312))) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 (-486)) |has| |#1| (-582 (-486))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312))) ((-582 (-486)) |has| |#1| (-582 (-486))) ((-582 |#1|) . T) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312))) ((-665) . T) ((-808 $ (-996)) . T) ((-808 $ (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-811 (-996)) . T) ((-811 (-1092)) |has| |#1| (-811 (-1092))) ((-813 (-996)) . T) ((-813 (-1092)) OR (|has| |#1| (-813 (-1092))) (|has| |#1| (-811 (-1092)))) ((-798 (-330)) -12 (|has| |#1| (-798 (-330))) (|has| (-996) (-798 (-330)))) ((-798 (-486)) -12 (|has| |#1| (-798 (-486))) (|has| (-996) (-798 (-486)))) ((-863 |#1| (-696) (-996)) . T) ((-823) |has| |#1| (-823)) ((-834) |has| |#1| (-312)) ((-952 (-350 (-486))) |has| |#1| (-952 (-350 (-486)))) ((-952 (-486)) |has| |#1| (-952 (-486))) ((-952 (-996)) . T) ((-952 |#1|) . T) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-823)) (|has| |#1| (-497)) (|has| |#1| (-393)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1068) |has| |#1| (-1068)) ((-1131) . T) ((-1136) |has| |#1| (-823))) -((-3846 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) -(((-1158 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3846 (|#4| (-1 |#3| |#1|) |#2|))) (-963) (-1157 |#1|) (-963) (-1157 |#3|)) (T -1158)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-1157 *6)) (-5 *1 (-1158 *5 *4 *6 *2)) (-4 *4 (-1157 *5))))) -((-3084 (((-585 (-996)) $) 34 T ELT)) (-3962 (($ $) 31 T ELT)) (-2896 (($ |#2| |#3|) NIL T ELT) (($ $ (-996) |#3|) 28 T ELT) (($ $ (-585 (-996)) (-585 |#3|)) 27 T ELT)) (-2897 (($ $) 14 T ELT)) (-3177 ((|#2| $) 12 T ELT)) (-3952 ((|#3| $) 10 T ELT))) -(((-1159 |#1| |#2| |#3|) (-10 -7 (-15 -3084 ((-585 (-996)) |#1|)) (-15 -2896 (|#1| |#1| (-585 (-996)) (-585 |#3|))) (-15 -2896 (|#1| |#1| (-996) |#3|)) (-15 -3962 (|#1| |#1|)) (-15 -2896 (|#1| |#2| |#3|)) (-15 -3952 (|#3| |#1|)) (-15 -2897 (|#1| |#1|)) (-15 -3177 (|#2| |#1|))) (-1160 |#2| |#3|) (-963) (-718)) (T -1159)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 (-996)) $) 96 T ELT)) (-3834 (((-1092) $) 130 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 72 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 73 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 75 (|has| |#1| (-497)) ELT)) (-3774 (($ $ |#2|) 125 T ELT) (($ $ |#2| |#2|) 124 T ELT)) (-3777 (((-1071 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 131 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3962 (($ $) 81 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2895 (((-85) $) 95 T ELT)) (-3775 ((|#2| $) 127 T ELT) ((|#2| $ |#2|) 126 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3780 (($ $ (-832)) 128 T ELT)) (-3941 (((-85) $) 83 T ELT)) (-2896 (($ |#1| |#2|) 82 T ELT) (($ $ (-996) |#2|) 98 T ELT) (($ $ (-585 (-996)) (-585 |#2|)) 97 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3772 (($ $ |#2|) 122 T ELT)) (-3469 (((-3 $ "failed") $ $) 71 (|has| |#1| (-497)) ELT)) (-3771 (((-1071 |#1|) $ |#1|) 121 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3803 ((|#1| $ |#2|) 132 T ELT) (($ $ $) 108 (|has| |#2| (-1027)) ELT)) (-3761 (($ $ (-1092)) 120 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-585 (-1092))) 118 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1092) (-696)) 117 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 116 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 112 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-696)) 110 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3952 ((|#2| $) 84 T ELT)) (-2894 (($ $) 94 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 (-486))) 78 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) 70 (|has| |#1| (-497)) ELT) (($ |#1|) 68 (|has| |#1| (-146)) ELT)) (-3680 ((|#1| $ |#2|) 80 T ELT)) (-2705 (((-634 $) $) 69 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-3776 ((|#1| $) 129 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 74 (|has| |#1| (-497)) ELT)) (-3773 ((|#1| $ |#2|) 123 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3950 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1092)) 119 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-585 (-1092))) 115 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1092) (-696)) 114 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 113 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-696)) 109 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 79 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-350 (-486)) $) 77 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 76 (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-1160 |#1| |#2|) (-113) (-963) (-718)) (T -1160)) -((-3777 (*1 *2 *1) (-12 (-4 *1 (-1160 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-1071 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-1160 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-1092)))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-1160 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-1160 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-3775 (*1 *2 *1 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-3774 (*1 *1 *1 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-3774 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-3773 (*1 *2 *1 *3) (-12 (-4 *1 (-1160 *2 *3)) (-4 *3 (-718)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3950 (*2 (-1092)))) (-4 *2 (-963)))) (-3772 (*1 *1 *1 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-3771 (*1 *2 *1 *3) (-12 (-4 *1 (-1160 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1071 *3))))) -(-13 (-888 |t#1| |t#2| (-996)) (-241 |t#2| |t#1|) (-10 -8 (-15 -3777 ((-1071 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3834 ((-1092) $)) (-15 -3776 (|t#1| $)) (-15 -3780 ($ $ (-832))) (-15 -3775 (|t#2| $)) (-15 -3775 (|t#2| $ |t#2|)) (-15 -3774 ($ $ |t#2|)) (-15 -3774 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3950 (|t#1| (-1092)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3773 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3772 ($ $ |t#2|)) (IF (|has| |t#2| (-1027)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-190)) (IF (|has| |t#1| (-811 (-1092))) (-6 (-811 (-1092))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3771 ((-1071 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-497)) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-557 (-486)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) |has| |#1| (-497)) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-190) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-189) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-241 |#2| |#1|) . T) ((-241 $ $) |has| |#2| (-1027)) ((-246) |has| |#1| (-497)) ((-381 |#1|) . T) ((-497) |has| |#1| (-497)) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-497)) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-497)) ((-665) . T) ((-808 $ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-811 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-813 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-888 |#1| |#2| (-996)) . T) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-3778 ((|#2| |#2|) 12 T ELT)) (-3974 (((-348 |#2|) |#2|) 14 T ELT)) (-3779 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-486))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-486)))) 30 T ELT))) -(((-1161 |#1| |#2|) (-10 -7 (-15 -3974 ((-348 |#2|) |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3779 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-486))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-486)))))) (-497) (-13 (-1157 |#1|) (-497) (-10 -8 (-15 -3147 ($ $ $))))) (T -1161)) -((-3779 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-486)))) (-4 *4 (-13 (-1157 *3) (-497) (-10 -8 (-15 -3147 ($ $ $))))) (-4 *3 (-497)) (-5 *1 (-1161 *3 *4)))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-1157 *3) (-497) (-10 -8 (-15 -3147 ($ $ $))))))) (-3974 (*1 *2 *3) (-12 (-4 *4 (-497)) (-5 *2 (-348 *3)) (-5 *1 (-1161 *4 *3)) (-4 *3 (-13 (-1157 *4) (-497) (-10 -8 (-15 -3147 ($ $ $)))))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) 11 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-350 (-486))) NIL T ELT) (($ $ (-350 (-486)) (-350 (-486))) NIL T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|))) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-696) (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|)))) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-1141 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1171 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3159 (((-1141 |#1| |#2| |#3|) $) NIL T ELT) (((-1171 |#1| |#2| |#3|) $) NIL T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3784 (((-350 (-486)) $) 68 T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3785 (($ (-350 (-486)) (-1141 |#1| |#2| |#3|)) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2895 (((-85) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-350 (-486)) $) NIL T ELT) (((-350 (-486)) $ (-350 (-486))) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) NIL T ELT) (($ $ (-350 (-486))) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-350 (-486))) 30 T ELT) (($ $ (-996) (-350 (-486))) NIL T ELT) (($ $ (-585 (-996)) (-585 (-350 (-486)))) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3946 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3783 (((-1141 |#1| |#2| |#3|) $) 71 T ELT)) (-3781 (((-3 (-1141 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3782 (((-1141 |#1| |#2| |#3|) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3815 (($ $) 39 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT) (($ $ (-1178 |#2|)) 40 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-350 (-486))) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3947 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-350 (-486))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-486)) (-1027)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-1178 |#2|)) 38 T ELT)) (-3952 (((-350 (-486)) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3950 (((-774) $) 107 T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1141 |#1| |#2| |#3|)) 16 T ELT) (($ (-1171 |#1| |#2| |#3|)) 17 T ELT) (($ (-1178 |#2|)) 36 T ELT) (($ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-350 (-486))) NIL T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-3776 ((|#1| $) 12 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-350 (-486))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) (|has| |#1| (-15 -3950 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 32 T CONST)) (-2669 (($) 26 T CONST)) (-2672 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-1178 |#2|)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 34 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-486)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-1162 |#1| |#2| |#3|) (-13 (-1166 |#1| (-1141 |#1| |#2| |#3|)) (-808 $ (-1178 |#2|)) (-952 (-1171 |#1| |#2| |#3|)) (-557 (-1178 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-486)))) (-15 -3815 ($ $ (-1178 |#2|))) |%noBranch|))) (-963) (-1092) |#1|) (T -1162)) -((-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1162 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3)))) -((-3846 (((-1162 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1162 |#1| |#3| |#5|)) 24 T ELT))) -(((-1163 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3846 ((-1162 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1162 |#1| |#3| |#5|)))) (-963) (-963) (-1092) (-1092) |#1| |#2|) (T -1163)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1162 *5 *7 *9)) (-4 *5 (-963)) (-4 *6 (-963)) (-14 *7 (-1092)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1162 *6 *8 *10)) (-5 *1 (-1163 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1092))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 (-996)) $) 96 T ELT)) (-3834 (((-1092) $) 130 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 72 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 73 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 75 (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-350 (-486))) 125 T ELT) (($ $ (-350 (-486)) (-350 (-486))) 124 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|))) $) 131 T ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 147 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 191 (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) 192 (|has| |#1| (-312)) ELT)) (-3040 (($ $) 146 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1609 (((-85) $ $) 182 (|has| |#1| (-312)) ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 148 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-696) (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|)))) 200 T ELT)) (-3497 (($ $) 162 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 149 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) 23 T CONST)) (-2567 (($ $ $) 186 (|has| |#1| (-312)) ELT)) (-3962 (($ $) 81 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 180 (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) 193 (|has| |#1| (-312)) ELT)) (-2895 (((-85) $) 95 T ELT)) (-3630 (($) 174 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-350 (-486)) $) 127 T ELT) (((-350 (-486)) $ (-350 (-486))) 126 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 145 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) 128 T ELT) (($ $ (-350 (-486))) 199 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 189 (|has| |#1| (-312)) ELT)) (-3941 (((-85) $) 83 T ELT)) (-2896 (($ |#1| (-350 (-486))) 82 T ELT) (($ $ (-996) (-350 (-486))) 98 T ELT) (($ $ (-585 (-996)) (-585 (-350 (-486)))) 97 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-3946 (($ $) 171 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-1896 (($ (-585 $)) 178 (|has| |#1| (-312)) ELT) (($ $ $) 177 (|has| |#1| (-312)) ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 194 (|has| |#1| (-312)) ELT)) (-3815 (($ $) 198 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) 197 (OR (-12 (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117)) (|has| |#1| (-38 (-350 (-486))))) (-12 (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-38 (-350 (-486)))))) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 179 (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) 176 (|has| |#1| (-312)) ELT) (($ $ $) 175 (|has| |#1| (-312)) ELT)) (-3735 (((-348 $) $) 190 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 188 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 187 (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-350 (-486))) 122 T ELT)) (-3469 (((-3 $ "failed") $ $) 71 (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 181 (|has| |#1| (-312)) ELT)) (-3947 (($ $) 172 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) 121 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) ELT)) (-1608 (((-696) $) 183 (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-350 (-486))) 132 T ELT) (($ $ $) 108 (|has| (-350 (-486)) (-1027)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 184 (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1092)) 120 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) 118 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) 117 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 116 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) 112 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) 110 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT)) (-3952 (((-350 (-486)) $) 84 T ELT)) (-3498 (($ $) 161 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 150 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 151 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 152 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) 94 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 68 (|has| |#1| (-146)) ELT) (($ (-350 (-486))) 78 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) 70 (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-350 (-486))) 80 T ELT)) (-2705 (((-634 $) $) 69 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-3776 ((|#1| $) 129 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3501 (($ $) 170 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) 74 (|has| |#1| (-497)) ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 168 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 156 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-350 (-486))) 123 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) (|has| |#1| (-15 -3950 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3504 (($ $) 167 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 155 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1092)) 119 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) 115 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) 114 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 113 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) 109 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 79 (|has| |#1| (-312)) ELT) (($ $ $) 196 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 195 (|has| |#1| (-312)) ELT) (($ $ $) 173 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 144 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-350 (-486)) $) 77 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 76 (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-1164 |#1|) (-113) (-963)) (T -1164)) -((-3821 (*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *3 (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| *4)))) (-4 *4 (-963)) (-4 *1 (-1164 *4)))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-4 *1 (-1164 *3)) (-4 *3 (-963)))) (-3815 (*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-350 (-486)))))) (-3815 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1092)) (-4 *1 (-1164 *3)) (-4 *3 (-963)) (-12 (-4 *3 (-29 (-486))) (-4 *3 (-873)) (-4 *3 (-1117)) (-4 *3 (-38 (-350 (-486)))))) (-12 (-5 *2 (-1092)) (-4 *1 (-1164 *3)) (-4 *3 (-963)) (-12 (|has| *3 (-15 -3084 ((-585 *2) *3))) (|has| *3 (-15 -3815 (*3 *3 *2))) (-4 *3 (-38 (-350 (-486))))))))) -(-13 (-1160 |t#1| (-350 (-486))) (-10 -8 (-15 -3821 ($ (-696) (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |t#1|))))) (-15 -3780 ($ $ (-350 (-486)))) (IF (|has| |t#1| (-38 (-350 (-486)))) (PROGN (-15 -3815 ($ $)) (IF (|has| |t#1| (-15 -3815 (|t#1| |t#1| (-1092)))) (IF (|has| |t#1| (-15 -3084 ((-585 (-1092)) |t#1|))) (-15 -3815 ($ $ (-1092))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1117)) (IF (|has| |t#1| (-873)) (IF (|has| |t#1| (-29 (-486))) (-15 -3815 ($ $ (-1092))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-917)) (-6 (-1117))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-350 (-486))) . T) ((-25) . T) ((-38 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-486)))) ((-66) |has| |#1| (-38 (-350 (-486)))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-557 (-486)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-486)))) ((-241 (-350 (-486)) |#1|) . T) ((-241 $ $) |has| (-350 (-486)) (-1027)) ((-246) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-381 |#1|) . T) ((-393) |has| |#1| (-312)) ((-434) |has| |#1| (-38 (-350 (-486)))) ((-497) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-13) . T) ((-590 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-656 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-665) . T) ((-808 $ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ((-811 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ((-813 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ((-888 |#1| (-350 (-486)) (-996)) . T) ((-834) |has| |#1| (-312)) ((-917) |has| |#1| (-38 (-350 (-486)))) ((-965 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-970 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1117) |has| |#1| (-38 (-350 (-486)))) ((-1120) |has| |#1| (-38 (-350 (-486)))) ((-1131) . T) ((-1136) |has| |#1| (-312)) ((-1160 |#1| (-350 (-486))) . T)) -((-3191 (((-85) $) 12 T ELT)) (-3160 (((-3 |#3| "failed") $) 17 T ELT)) (-3159 ((|#3| $) 14 T ELT))) -(((-1165 |#1| |#2| |#3|) (-10 -7 (-15 -3160 ((-3 |#3| "failed") |#1|)) (-15 -3159 (|#3| |#1|)) (-15 -3191 ((-85) |#1|))) (-1166 |#2| |#3|) (-963) (-1143 |#2|)) (T -1165)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 (-996)) $) 96 T ELT)) (-3834 (((-1092) $) 130 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 72 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 73 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 75 (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-350 (-486))) 125 T ELT) (($ $ (-350 (-486)) (-350 (-486))) 124 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|))) $) 131 T ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 147 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 191 (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) 192 (|has| |#1| (-312)) ELT)) (-3040 (($ $) 146 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1609 (((-85) $ $) 182 (|has| |#1| (-312)) ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 148 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-696) (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|)))) 200 T ELT)) (-3497 (($ $) 162 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 149 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#2| "failed") $) 213 T ELT)) (-3159 ((|#2| $) 214 T ELT)) (-2567 (($ $ $) 186 (|has| |#1| (-312)) ELT)) (-3962 (($ $) 81 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3784 (((-350 (-486)) $) 210 T ELT)) (-2566 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3785 (($ (-350 (-486)) |#2|) 211 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 180 (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) 193 (|has| |#1| (-312)) ELT)) (-2895 (((-85) $) 95 T ELT)) (-3630 (($) 174 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-350 (-486)) $) 127 T ELT) (((-350 (-486)) $ (-350 (-486))) 126 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 145 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) 128 T ELT) (($ $ (-350 (-486))) 199 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 189 (|has| |#1| (-312)) ELT)) (-3941 (((-85) $) 83 T ELT)) (-2896 (($ |#1| (-350 (-486))) 82 T ELT) (($ $ (-996) (-350 (-486))) 98 T ELT) (($ $ (-585 (-996)) (-585 (-350 (-486)))) 97 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-3946 (($ $) 171 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-1896 (($ (-585 $)) 178 (|has| |#1| (-312)) ELT) (($ $ $) 177 (|has| |#1| (-312)) ELT)) (-3783 ((|#2| $) 209 T ELT)) (-3781 (((-3 |#2| "failed") $) 207 T ELT)) (-3782 ((|#2| $) 208 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 194 (|has| |#1| (-312)) ELT)) (-3815 (($ $) 198 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) 197 (OR (-12 (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117)) (|has| |#1| (-38 (-350 (-486))))) (-12 (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-38 (-350 (-486)))))) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 179 (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) 176 (|has| |#1| (-312)) ELT) (($ $ $) 175 (|has| |#1| (-312)) ELT)) (-3735 (((-348 $) $) 190 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 188 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 187 (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-350 (-486))) 122 T ELT)) (-3469 (((-3 $ "failed") $ $) 71 (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 181 (|has| |#1| (-312)) ELT)) (-3947 (($ $) 172 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) 121 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) ELT)) (-1608 (((-696) $) 183 (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-350 (-486))) 132 T ELT) (($ $ $) 108 (|has| (-350 (-486)) (-1027)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 184 (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1092)) 120 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) 118 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) 117 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 116 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) 112 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) 110 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT)) (-3952 (((-350 (-486)) $) 84 T ELT)) (-3498 (($ $) 161 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 150 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 151 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 152 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) 94 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 68 (|has| |#1| (-146)) ELT) (($ |#2|) 212 T ELT) (($ (-350 (-486))) 78 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) 70 (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-350 (-486))) 80 T ELT)) (-2705 (((-634 $) $) 69 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-3776 ((|#1| $) 129 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3501 (($ $) 170 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) 74 (|has| |#1| (-497)) ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 168 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 156 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-350 (-486))) 123 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) (|has| |#1| (-15 -3950 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3504 (($ $) 167 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 155 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1092)) 119 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) 115 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) 114 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 113 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) 109 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 79 (|has| |#1| (-312)) ELT) (($ $ $) 196 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 195 (|has| |#1| (-312)) ELT) (($ $ $) 173 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 144 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-350 (-486)) $) 77 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 76 (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-1166 |#1| |#2|) (-113) (-963) (-1143 |t#1|)) (T -1166)) -((-3952 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1143 *3)) (-5 *2 (-350 (-486))))) (-3785 (*1 *1 *2 *3) (-12 (-5 *2 (-350 (-486))) (-4 *4 (-963)) (-4 *1 (-1166 *4 *3)) (-4 *3 (-1143 *4)))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1143 *3)) (-5 *2 (-350 (-486))))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1143 *3)))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1143 *3)))) (-3781 (*1 *2 *1) (|partial| -12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1143 *3))))) -(-13 (-1164 |t#1|) (-952 |t#2|) (-557 |t#2|) (-10 -8 (-15 -3785 ($ (-350 (-486)) |t#2|)) (-15 -3784 ((-350 (-486)) $)) (-15 -3783 (|t#2| $)) (-15 -3952 ((-350 (-486)) $)) (-15 -3782 (|t#2| $)) (-15 -3781 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-350 (-486))) . T) ((-25) . T) ((-38 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-486)))) ((-66) |has| |#1| (-38 (-350 (-486)))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-557 (-486)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 |#2|) . T) ((-557 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-486)))) ((-241 (-350 (-486)) |#1|) . T) ((-241 $ $) |has| (-350 (-486)) (-1027)) ((-246) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-381 |#1|) . T) ((-393) |has| |#1| (-312)) ((-434) |has| |#1| (-38 (-350 (-486)))) ((-497) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-13) . T) ((-590 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-656 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-497)) (|has| |#1| (-312))) ((-665) . T) ((-808 $ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ((-811 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ((-813 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ((-888 |#1| (-350 (-486)) (-996)) . T) ((-834) |has| |#1| (-312)) ((-917) |has| |#1| (-38 (-350 (-486)))) ((-952 |#2|) . T) ((-965 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-970 (-350 (-486))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-486))))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1117) |has| |#1| (-38 (-350 (-486)))) ((-1120) |has| |#1| (-38 (-350 (-486)))) ((-1131) . T) ((-1136) |has| |#1| (-312)) ((-1160 |#1| (-350 (-486))) . T) ((-1164 |#1|) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) 104 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-350 (-486))) 116 T ELT) (($ $ (-350 (-486)) (-350 (-486))) 118 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|))) $) 54 T ELT)) (-3495 (($ $) 192 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 168 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3974 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3493 (($ $) 188 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 164 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-696) (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#1|)))) 65 T ELT)) (-3497 (($ $) 196 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 172 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 85 T ELT)) (-3784 (((-350 (-486)) $) 13 T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3785 (($ (-350 (-486)) |#2|) 11 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3726 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2895 (((-85) $) 74 T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-350 (-486)) $) 113 T ELT) (((-350 (-486)) $ (-350 (-486))) 114 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) 130 T ELT) (($ $ (-350 (-486))) 128 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-350 (-486))) 33 T ELT) (($ $ (-996) (-350 (-486))) NIL T ELT) (($ $ (-585 (-996)) (-585 (-350 (-486)))) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3946 (($ $) 162 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3783 ((|#2| $) 12 T ELT)) (-3781 (((-3 |#2| #1#) $) 44 T ELT)) (-3782 ((|#2| $) 45 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-2487 (($ $) 101 (|has| |#1| (-312)) ELT)) (-3815 (($ $) 146 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) 151 (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-312)) ELT)) (-3147 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3735 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3772 (($ $ (-350 (-486))) 122 T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3947 (($ $) 160 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3803 ((|#1| $ (-350 (-486))) 108 T ELT) (($ $ $) 94 (|has| (-350 (-486)) (-1027)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-1092)) 138 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT)) (-3952 (((-350 (-486)) $) 16 T ELT)) (-3498 (($ $) 198 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 174 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 194 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 170 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 190 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 166 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) 120 T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-146)) ELT) (($ |#2|) 34 T ELT) (($ (-350 (-486))) 139 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT)) (-3680 ((|#1| $ (-350 (-486))) 107 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 127 T CONST)) (-3776 ((|#1| $) 106 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 204 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 180 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) 200 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 176 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 208 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 184 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-350 (-486))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-486))))) (|has| |#1| (-15 -3950 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) 210 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 186 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 206 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 182 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 202 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 178 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 21 T CONST)) (-2669 (($) 17 T CONST)) (-2672 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-350 (-486)) |#1|))) ELT)) (-3059 (((-85) $ $) 72 T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 100 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3842 (($ $ $) 76 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 82 T ELT) (($ $ (-486)) 157 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 158 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-1167 |#1| |#2|) (-1166 |#1| |#2|) (-963) (-1143 |#1|)) (T -1167)) -NIL -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 37 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-486) #1#) $) NIL (|has| (-1162 |#2| |#3| |#4|) (-952 (-486))) ELT) (((-3 (-350 (-486)) #1#) $) NIL (|has| (-1162 |#2| |#3| |#4|) (-952 (-350 (-486)))) ELT) (((-3 (-1162 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3159 (((-486) $) NIL (|has| (-1162 |#2| |#3| |#4|) (-952 (-486))) ELT) (((-350 (-486)) $) NIL (|has| (-1162 |#2| |#3| |#4|) (-952 (-350 (-486)))) ELT) (((-1162 |#2| |#3| |#4|) $) NIL T ELT)) (-3962 (($ $) 41 T ELT)) (-3470 (((-3 $ #1#) $) 27 T ELT)) (-3506 (($ $) NIL (|has| (-1162 |#2| |#3| |#4|) (-393)) ELT)) (-1625 (($ $ (-1162 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) 11 T ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ (-1162 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) 25 T ELT)) (-2823 (((-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1626 (($ (-1 (-270 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) $) NIL T ELT)) (-3846 (($ (-1 (-1162 |#2| |#3| |#4|) (-1162 |#2| |#3| |#4|)) $) NIL T ELT)) (-3787 (((-3 (-752 |#2|) #1#) $) 91 T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 (((-1162 |#2| |#3| |#4|) $) 20 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-1802 (((-85) $) NIL T ELT)) (-1801 (((-1162 |#2| |#3| |#4|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ (-1162 |#2| |#3| |#4|)) NIL (|has| (-1162 |#2| |#3| |#4|) (-497)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3786 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1162 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-585 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#2|)))))) (|:| |%type| (-1075))) #1#) $) 74 T ELT)) (-3952 (((-270 |#2| |#3| |#4|) $) 17 T ELT)) (-2820 (((-1162 |#2| |#3| |#4|) $) NIL (|has| (-1162 |#2| |#3| |#4|) (-393)) ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ (-1162 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-486))) NIL (OR (|has| (-1162 |#2| |#3| |#4|) (-952 (-350 (-486)))) (|has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486))))) ELT)) (-3820 (((-585 (-1162 |#2| |#3| |#4|)) $) NIL T ELT)) (-3680 (((-1162 |#2| |#3| |#4|) $ (-270 |#2| |#3| |#4|)) NIL T ELT)) (-2705 (((-634 $) $) NIL (|has| (-1162 |#2| |#3| |#4|) (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| (-1162 |#2| |#3| |#4|) (-146)) ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ (-1162 |#2| |#3| |#4|)) NIL (|has| (-1162 |#2| |#3| |#4|) (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1162 |#2| |#3| |#4|)) NIL T ELT) (($ (-1162 |#2| |#3| |#4|) $) NIL T ELT) (($ (-350 (-486)) $) NIL (|has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| (-1162 |#2| |#3| |#4|) (-38 (-350 (-486)))) ELT))) -(((-1168 |#1| |#2| |#3| |#4|) (-13 (-277 (-1162 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) (-497) (-10 -8 (-15 -3787 ((-3 (-752 |#2|) #1="failed") $)) (-15 -3786 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1162 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-585 (-2 (|:| |k| (-350 (-486))) (|:| |c| |#2|)))))) (|:| |%type| (-1075))) #1#) $)))) (-13 (-952 (-486)) (-582 (-486)) (-393)) (-13 (-27) (-1117) (-364 |#1|)) (-1092) |#2|) (T -1168)) -((-3787 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-952 (-486)) (-582 (-486)) (-393))) (-5 *2 (-752 *4)) (-5 *1 (-1168 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1117) (-364 *3))) (-14 *5 (-1092)) (-14 *6 *4))) (-3786 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-952 (-486)) (-582 (-486)) (-393))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1162 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) (|:| |%expTerms| (-585 (-2 (|:| |k| (-350 (-486))) (|:| |c| *4)))))) (|:| |%type| (-1075)))) (-5 *1 (-1168 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1117) (-364 *3))) (-14 *5 (-1092)) (-14 *6 *4)))) -((-3405 ((|#2| $) 34 T ELT)) (-3798 ((|#2| $) 18 T ELT)) (-3800 (($ $) 43 T ELT)) (-3788 (($ $ (-486)) 78 T ELT)) (-3028 ((|#2| $ |#2|) 75 T ELT)) (-3789 ((|#2| $ |#2|) 71 T ELT)) (-3791 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 64 T ELT) (($ $ #3="rest" $) 68 T ELT) ((|#2| $ #4="last" |#2|) 66 T ELT)) (-3029 (($ $ (-585 $)) 74 T ELT)) (-3799 ((|#2| $) 17 T ELT)) (-3802 (($ $) NIL T ELT) (($ $ (-696)) 51 T ELT)) (-3034 (((-585 $) $) 31 T ELT)) (-3030 (((-85) $ $) 62 T ELT)) (-3530 (((-85) $) 33 T ELT)) (-3801 ((|#2| $) 25 T ELT) (($ $ (-696)) 57 T ELT)) (-3803 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3636 (((-85) $) 23 T ELT)) (-3795 (($ $) 46 T ELT)) (-3793 (($ $) 79 T ELT)) (-3796 (((-696) $) 50 T ELT)) (-3797 (($ $) 49 T ELT)) (-3805 (($ $ $) 70 T ELT) (($ |#2| $) NIL T ELT)) (-3525 (((-585 $) $) 32 T ELT)) (-3059 (((-85) $ $) 60 T ELT))) -(((-1169 |#1| |#2|) (-10 -7 (-15 -3059 ((-85) |#1| |#1|)) (-15 -3788 (|#1| |#1| (-486))) (-15 -3791 (|#2| |#1| #1="last" |#2|)) (-15 -3789 (|#2| |#1| |#2|)) (-15 -3791 (|#1| |#1| #2="rest" |#1|)) (-15 -3791 (|#2| |#1| #3="first" |#2|)) (-15 -3793 (|#1| |#1|)) (-15 -3795 (|#1| |#1|)) (-15 -3796 ((-696) |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3798 (|#2| |#1|)) (-15 -3799 (|#2| |#1|)) (-15 -3800 (|#1| |#1|)) (-15 -3801 (|#1| |#1| (-696))) (-15 -3803 (|#2| |#1| #1#)) (-15 -3801 (|#2| |#1|)) (-15 -3802 (|#1| |#1| (-696))) (-15 -3803 (|#1| |#1| #2#)) (-15 -3802 (|#1| |#1|)) (-15 -3803 (|#2| |#1| #3#)) (-15 -3805 (|#1| |#2| |#1|)) (-15 -3805 (|#1| |#1| |#1|)) (-15 -3028 (|#2| |#1| |#2|)) (-15 -3791 (|#2| |#1| #4="value" |#2|)) (-15 -3029 (|#1| |#1| (-585 |#1|))) (-15 -3030 ((-85) |#1| |#1|)) (-15 -3636 ((-85) |#1|)) (-15 -3803 (|#2| |#1| #4#)) (-15 -3405 (|#2| |#1|)) (-15 -3530 ((-85) |#1|)) (-15 -3034 ((-585 |#1|) |#1|)) (-15 -3525 ((-585 |#1|) |#1|))) (-1170 |#2|) (-1131)) (T -1169)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3798 ((|#1| $) 62 T ELT)) (-3800 (($ $) 64 T ELT)) (-3788 (($ $ (-486)) 49 (|has| $ (-1037 |#1|)) ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1037 |#1|)) ELT)) (-3790 (($ $ $) 53 (|has| $ (-1037 |#1|)) ELT)) (-3789 ((|#1| $ |#1|) 51 (|has| $ (-1037 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ "first" |#1|) 54 (|has| $ (-1037 |#1|)) ELT) (($ $ "rest" $) 52 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ "last" |#1|) 50 (|has| $ (-1037 |#1|)) ELT)) (-3029 (($ $ (-585 $)) 36 (|has| $ (-1037 |#1|)) ELT)) (-3799 ((|#1| $) 63 T ELT)) (-3727 (($) 6 T CONST)) (-3802 (($ $) 70 T ELT) (($ $ (-696)) 68 T ELT)) (-3034 (((-585 $) $) 45 T ELT)) (-3030 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3033 (((-585 |#1|) $) 40 T ELT)) (-3530 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-3801 ((|#1| $) 67 T ELT) (($ $ (-696)) 65 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 73 T ELT) (($ $ (-696)) 71 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT) ((|#1| $ "first") 72 T ELT) (($ $ "rest") 69 T ELT) ((|#1| $ "last") 66 T ELT)) (-3032 (((-486) $ $) 39 T ELT)) (-3636 (((-85) $) 41 T ELT)) (-3795 (($ $) 59 T ELT)) (-3793 (($ $) 56 (|has| $ (-1037 |#1|)) ELT)) (-3796 (((-696) $) 60 T ELT)) (-3797 (($ $) 61 T ELT)) (-3403 (($ $) 9 T ELT)) (-3794 (($ $ $) 58 (|has| $ (-1037 |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (-1037 |#1|)) ELT)) (-3805 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-3525 (((-585 $) $) 46 T ELT)) (-3031 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) -(((-1170 |#1|) (-113) (-1131)) (T -1170)) -((-3805 (*1 *1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3805 (*1 *1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3804 (*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3803 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3804 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) (-3802 (*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3803 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) (-3800 (*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3797 (*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1131)) (-5 *2 (-696)))) (-3795 (*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3794 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3794 (*1 *1 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3793 (*1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3792 (*1 *2 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3791 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3790 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3791 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (-4 *1 (-1037 *3)) (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) (-3789 (*1 *2 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3791 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) (-3788 (*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-1037 *3)) (-4 *1 (-1170 *3)) (-4 *3 (-1131))))) -(-13 (-925 |t#1|) (-10 -8 (-15 -3805 ($ $ $)) (-15 -3805 ($ |t#1| $)) (-15 -3804 (|t#1| $)) (-15 -3803 (|t#1| $ "first")) (-15 -3804 ($ $ (-696))) (-15 -3802 ($ $)) (-15 -3803 ($ $ "rest")) (-15 -3802 ($ $ (-696))) (-15 -3801 (|t#1| $)) (-15 -3803 (|t#1| $ "last")) (-15 -3801 ($ $ (-696))) (-15 -3800 ($ $)) (-15 -3799 (|t#1| $)) (-15 -3798 (|t#1| $)) (-15 -3797 ($ $)) (-15 -3796 ((-696) $)) (-15 -3795 ($ $)) (IF (|has| $ (-1037 |t#1|)) (PROGN (-15 -3794 ($ $ $)) (-15 -3794 ($ $ |t#1|)) (-15 -3793 ($ $)) (-15 -3792 (|t#1| $ |t#1|)) (-15 -3791 (|t#1| $ "first" |t#1|)) (-15 -3790 ($ $ $)) (-15 -3791 ($ $ "rest" $)) (-15 -3789 (|t#1| $ |t#1|)) (-15 -3791 (|t#1| $ "last" |t#1|)) (-15 -3788 ($ $ (-486)))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-925 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1131) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3084 (((-585 (-996)) $) NIL T ELT)) (-3834 (((-1092) $) 87 T ELT)) (-3814 (((-1150 |#2| |#1|) $ (-696)) 70 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) NIL (|has| |#1| (-497)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 139 (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-696)) 125 T ELT) (($ $ (-696) (-696)) 127 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-696)) (|:| |c| |#1|))) $) 42 T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-1071 (-2 (|:| |k| (-696)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1071 |#1|)) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) NIL T CONST)) (-3808 (($ $) 131 T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3819 (($ $) 137 T ELT)) (-3817 (((-859 |#1|) $ (-696)) 60 T ELT) (((-859 |#1|) $ (-696) (-696)) 62 T ELT)) (-2895 (((-85) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-696) $) NIL T ELT) (((-696) $ (-696)) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3811 (($ $) 115 T ELT)) (-3014 (($ $ (-486)) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3807 (($ (-486) (-486) $) 133 T ELT)) (-3780 (($ $ (-832)) 136 T ELT)) (-3818 (($ (-1 |#1| (-486)) $) 109 T ELT)) (-3941 (((-85) $) NIL T ELT)) (-2896 (($ |#1| (-696)) 16 T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3946 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3812 (($ $) 113 T ELT)) (-3813 (($ $) 111 T ELT)) (-3806 (($ (-486) (-486) $) 135 T ELT)) (-3815 (($ $) 147 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) 153 (OR (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117))) (-12 (|has| |#1| (-38 (-350 (-486)))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))))) ELT) (($ $ (-1178 |#2|)) 148 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3809 (($ $ (-486) (-486)) 119 T ELT)) (-3772 (($ $ (-696)) 121 T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-497)) ELT)) (-3947 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3810 (($ $) 117 T ELT)) (-3771 (((-1071 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-696)))) ELT)) (-3803 ((|#1| $ (-696)) 93 T ELT) (($ $ $) 129 (|has| (-696) (-1027)) ELT)) (-3761 (($ $ (-1092)) 106 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-1178 |#2|)) 101 T ELT)) (-3952 (((-696) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) 123 T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) 26 T ELT) (($ (-350 (-486))) 145 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) NIL (|has| |#1| (-497)) ELT) (($ |#1|) 25 (|has| |#1| (-146)) ELT) (($ (-1150 |#2| |#1|)) 78 T ELT) (($ (-1178 |#2|)) 22 T ELT)) (-3820 (((-1071 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-696)) 92 T ELT)) (-2705 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3129 (((-696)) NIL T CONST)) (-3776 ((|#1| $) 88 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-696)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-696)))) (|has| |#1| (-15 -3950 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 18 T CONST)) (-2669 (($) 13 T CONST)) (-2672 (($ $ (-1092)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-1092) (-696)) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-1178 |#2|)) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3842 (($ $ $) 20 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-350 (-486)) $) NIL (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) NIL (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-1171 |#1| |#2| |#3|) (-13 (-1174 |#1|) (-808 $ (-1178 |#2|)) (-10 -8 (-15 -3950 ($ (-1150 |#2| |#1|))) (-15 -3814 ((-1150 |#2| |#1|) $ (-696))) (-15 -3950 ($ (-1178 |#2|))) (-15 -3813 ($ $)) (-15 -3812 ($ $)) (-15 -3811 ($ $)) (-15 -3810 ($ $)) (-15 -3809 ($ $ (-486) (-486))) (-15 -3808 ($ $)) (-15 -3807 ($ (-486) (-486) $)) (-15 -3806 ($ (-486) (-486) $)) (IF (|has| |#1| (-38 (-350 (-486)))) (-15 -3815 ($ $ (-1178 |#2|))) |%noBranch|))) (-963) (-1092) |#1|) (T -1171)) -((-3950 (*1 *1 *2) (-12 (-5 *2 (-1150 *4 *3)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3) (-5 *1 (-1171 *3 *4 *5)))) (-3814 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1150 *5 *4)) (-5 *1 (-1171 *4 *5 *6)) (-4 *4 (-963)) (-14 *5 (-1092)) (-14 *6 *4))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-3813 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2))) (-3812 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2))) (-3811 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2))) (-3809 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3))) (-3808 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2))) (-3807 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3))) (-3806 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3))) (-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3)))) -((-3846 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) -(((-1172 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3846 (|#4| (-1 |#2| |#1|) |#3|))) (-963) (-963) (-1174 |#1|) (-1174 |#2|)) (T -1172)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-1174 *6)) (-5 *1 (-1172 *5 *6 *4 *2)) (-4 *4 (-1174 *5))))) -((-3191 (((-85) $) 17 T ELT)) (-3495 (($ $) 105 T ELT)) (-3642 (($ $) 81 T ELT)) (-3493 (($ $) 101 T ELT)) (-3641 (($ $) 77 T ELT)) (-3497 (($ $) 109 T ELT)) (-3640 (($ $) 85 T ELT)) (-3946 (($ $) 75 T ELT)) (-3947 (($ $) 73 T ELT)) (-3498 (($ $) 111 T ELT)) (-3639 (($ $) 87 T ELT)) (-3496 (($ $) 107 T ELT)) (-3638 (($ $) 83 T ELT)) (-3494 (($ $) 103 T ELT)) (-3637 (($ $) 79 T ELT)) (-3950 (((-774) $) 61 T ELT) (($ (-486)) NIL T ELT) (($ (-350 (-486))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3501 (($ $) 117 T ELT)) (-3489 (($ $) 93 T ELT)) (-3499 (($ $) 113 T ELT)) (-3487 (($ $) 89 T ELT)) (-3503 (($ $) 121 T ELT)) (-3491 (($ $) 97 T ELT)) (-3504 (($ $) 123 T ELT)) (-3492 (($ $) 99 T ELT)) (-3502 (($ $) 119 T ELT)) (-3490 (($ $) 95 T ELT)) (-3500 (($ $) 115 T ELT)) (-3488 (($ $) 91 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-350 (-486))) 71 T ELT))) -(((-1173 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-350 (-486)))) (-15 -3642 (|#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -3504 (|#1| |#1|)) (-15 -3503 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3946 (|#1| |#1|)) (-15 -3947 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3950 (|#1| |#2|)) (-15 -3950 (|#1| |#1|)) (-15 -3950 (|#1| (-350 (-486)))) (-15 -3950 (|#1| (-486))) (-15 ** (|#1| |#1| (-696))) (-15 ** (|#1| |#1| (-832))) (-15 -3191 ((-85) |#1|)) (-15 -3950 ((-774) |#1|))) (-1174 |#2|) (-963)) (T -1173)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3084 (((-585 (-996)) $) 96 T ELT)) (-3834 (((-1092) $) 130 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 72 (|has| |#1| (-497)) ELT)) (-2065 (($ $) 73 (|has| |#1| (-497)) ELT)) (-2063 (((-85) $) 75 (|has| |#1| (-497)) ELT)) (-3774 (($ $ (-696)) 125 T ELT) (($ $ (-696) (-696)) 124 T ELT)) (-3777 (((-1071 (-2 (|:| |k| (-696)) (|:| |c| |#1|))) $) 131 T ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3642 (($ $) 147 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3040 (($ $) 146 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3641 (($ $) 148 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3821 (($ (-1071 (-2 (|:| |k| (-696)) (|:| |c| |#1|)))) 184 T ELT) (($ (-1071 |#1|)) 182 T ELT)) (-3497 (($ $) 162 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3640 (($ $) 149 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3727 (($) 23 T CONST)) (-3962 (($ $) 81 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3819 (($ $) 181 T ELT)) (-3817 (((-859 |#1|) $ (-696)) 179 T ELT) (((-859 |#1|) $ (-696) (-696)) 178 T ELT)) (-2895 (((-85) $) 95 T ELT)) (-3630 (($) 174 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3775 (((-696) $) 127 T ELT) (((-696) $ (-696)) 126 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3014 (($ $ (-486)) 145 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3780 (($ $ (-832)) 128 T ELT)) (-3818 (($ (-1 |#1| (-486)) $) 180 T ELT)) (-3941 (((-85) $) 83 T ELT)) (-2896 (($ |#1| (-696)) 82 T ELT) (($ $ (-996) (-696)) 98 T ELT) (($ $ (-585 (-996)) (-585 (-696))) 97 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-3946 (($ $) 171 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3815 (($ $) 176 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-1092)) 175 (OR (-12 (|has| |#1| (-29 (-486))) (|has| |#1| (-873)) (|has| |#1| (-1117)) (|has| |#1| (-38 (-350 (-486))))) (-12 (|has| |#1| (-15 -3084 ((-585 (-1092)) |#1|))) (|has| |#1| (-15 -3815 (|#1| |#1| (-1092)))) (|has| |#1| (-38 (-350 (-486)))))) ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3772 (($ $ (-696)) 122 T ELT)) (-3469 (((-3 $ "failed") $ $) 71 (|has| |#1| (-497)) ELT)) (-3947 (($ $) 172 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3771 (((-1071 |#1|) $ |#1|) 121 (|has| |#1| (-15 ** (|#1| |#1| (-696)))) ELT)) (-3803 ((|#1| $ (-696)) 132 T ELT) (($ $ $) 108 (|has| (-696) (-1027)) ELT)) (-3761 (($ $ (-1092)) 120 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092))) 118 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-1092) (-696)) 117 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 116 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $) 112 (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-696)) 110 (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT)) (-3952 (((-696) $) 84 T ELT)) (-3498 (($ $) 161 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3639 (($ $) 150 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3638 (($ $) 151 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3637 (($ $) 152 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2894 (($ $) 94 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ (-350 (-486))) 78 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $) 70 (|has| |#1| (-497)) ELT) (($ |#1|) 68 (|has| |#1| (-146)) ELT)) (-3820 (((-1071 |#1|) $) 183 T ELT)) (-3680 ((|#1| $ (-696)) 80 T ELT)) (-2705 (((-634 $) $) 69 (|has| |#1| (-118)) ELT)) (-3129 (((-696)) 40 T CONST)) (-3776 ((|#1| $) 129 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-3501 (($ $) 170 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2064 (((-85) $ $) 74 (|has| |#1| (-497)) ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3503 (($ $) 168 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3491 (($ $) 156 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3773 ((|#1| $ (-696)) 123 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-696)))) (|has| |#1| (-15 -3950 (|#1| (-1092))))) ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3504 (($ $) 167 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3492 (($ $) 155 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-350 (-486)))) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1092)) 119 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092))) 115 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-1092) (-696)) 114 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1092)) (-585 (-696))) 113 (-12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-696)) 109 (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 79 (|has| |#1| (-312)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ |#1|) 177 (|has| |#1| (-312)) ELT) (($ $ $) 173 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 144 (|has| |#1| (-38 (-350 (-486)))) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-350 (-486)) $) 77 (|has| |#1| (-38 (-350 (-486)))) ELT) (($ $ (-350 (-486))) 76 (|has| |#1| (-38 (-350 (-486)))) ELT))) -(((-1174 |#1|) (-113) (-963)) (T -1174)) -((-3821 (*1 *1 *2) (-12 (-5 *2 (-1071 (-2 (|:| |k| (-696)) (|:| |c| *3)))) (-4 *3 (-963)) (-4 *1 (-1174 *3)))) (-3820 (*1 *2 *1) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-963)) (-5 *2 (-1071 *3)))) (-3821 (*1 *1 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-4 *1 (-1174 *3)))) (-3819 (*1 *1 *1) (-12 (-4 *1 (-1174 *2)) (-4 *2 (-963)))) (-3818 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-486))) (-4 *1 (-1174 *3)) (-4 *3 (-963)))) (-3817 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-1174 *4)) (-4 *4 (-963)) (-5 *2 (-859 *4)))) (-3817 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-4 *1 (-1174 *4)) (-4 *4 (-963)) (-5 *2 (-859 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1174 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-3815 (*1 *1 *1) (-12 (-4 *1 (-1174 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-350 (-486)))))) (-3815 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1092)) (-4 *1 (-1174 *3)) (-4 *3 (-963)) (-12 (-4 *3 (-29 (-486))) (-4 *3 (-873)) (-4 *3 (-1117)) (-4 *3 (-38 (-350 (-486)))))) (-12 (-5 *2 (-1092)) (-4 *1 (-1174 *3)) (-4 *3 (-963)) (-12 (|has| *3 (-15 -3084 ((-585 *2) *3))) (|has| *3 (-15 -3815 (*3 *3 *2))) (-4 *3 (-38 (-350 (-486))))))))) -(-13 (-1160 |t#1| (-696)) (-10 -8 (-15 -3821 ($ (-1071 (-2 (|:| |k| (-696)) (|:| |c| |t#1|))))) (-15 -3820 ((-1071 |t#1|) $)) (-15 -3821 ($ (-1071 |t#1|))) (-15 -3819 ($ $)) (-15 -3818 ($ (-1 |t#1| (-486)) $)) (-15 -3817 ((-859 |t#1|) $ (-696))) (-15 -3817 ((-859 |t#1|) $ (-696) (-696))) (IF (|has| |t#1| (-312)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-486)))) (PROGN (-15 -3815 ($ $)) (IF (|has| |t#1| (-15 -3815 (|t#1| |t#1| (-1092)))) (IF (|has| |t#1| (-15 -3084 ((-585 (-1092)) |t#1|))) (-15 -3815 ($ $ (-1092))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1117)) (IF (|has| |t#1| (-873)) (IF (|has| |t#1| (-29 (-486))) (-15 -3815 ($ $ (-1092))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-917)) (-6 (-1117))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-696)) . T) ((-25) . T) ((-38 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-497)) ((-35) |has| |#1| (-38 (-350 (-486)))) ((-66) |has| |#1| (-38 (-350 (-486)))) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-557 (-486)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) |has| |#1| (-497)) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-696) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-696) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-696) |#1|))) ((-239) |has| |#1| (-38 (-350 (-486)))) ((-241 (-696) |#1|) . T) ((-241 $ $) |has| (-696) (-1027)) ((-246) |has| |#1| (-497)) ((-381 |#1|) . T) ((-434) |has| |#1| (-38 (-350 (-486)))) ((-497) |has| |#1| (-497)) ((-13) . T) ((-590 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-497)) ((-656 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-497)) ((-665) . T) ((-808 $ (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ((-811 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ((-813 (-1092)) -12 (|has| |#1| (-811 (-1092))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ((-888 |#1| (-696) (-996)) . T) ((-917) |has| |#1| (-38 (-350 (-486)))) ((-965 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-970 (-350 (-486))) |has| |#1| (-38 (-350 (-486)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-497)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1117) |has| |#1| (-38 (-350 (-486)))) ((-1120) |has| |#1| (-38 (-350 (-486)))) ((-1131) . T) ((-1160 |#1| (-696)) . T)) -((-3824 (((-1 (-1071 |#1|) (-585 (-1071 |#1|))) (-1 |#2| (-585 |#2|))) 24 T ELT)) (-3823 (((-1 (-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3822 (((-1 (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3827 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3826 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3828 ((|#2| (-1 |#2| (-585 |#2|)) (-585 |#1|)) 60 T ELT)) (-3829 (((-585 |#2|) (-585 |#1|) (-585 (-1 |#2| (-585 |#2|)))) 66 T ELT)) (-3825 ((|#2| |#2| |#2|) 43 T ELT))) -(((-1175 |#1| |#2|) (-10 -7 (-15 -3822 ((-1 (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2|))) (-15 -3823 ((-1 (-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3824 ((-1 (-1071 |#1|) (-585 (-1071 |#1|))) (-1 |#2| (-585 |#2|)))) (-15 -3825 (|#2| |#2| |#2|)) (-15 -3826 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3827 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3828 (|#2| (-1 |#2| (-585 |#2|)) (-585 |#1|))) (-15 -3829 ((-585 |#2|) (-585 |#1|) (-585 (-1 |#2| (-585 |#2|)))))) (-38 (-350 (-486))) (-1174 |#1|)) (T -1175)) -((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 (-1 *6 (-585 *6)))) (-4 *5 (-38 (-350 (-486)))) (-4 *6 (-1174 *5)) (-5 *2 (-585 *6)) (-5 *1 (-1175 *5 *6)))) (-3828 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-585 *2))) (-5 *4 (-585 *5)) (-4 *5 (-38 (-350 (-486)))) (-4 *2 (-1174 *5)) (-5 *1 (-1175 *5 *2)))) (-3827 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1174 *4)) (-5 *1 (-1175 *4 *2)) (-4 *4 (-38 (-350 (-486)))))) (-3826 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1174 *4)) (-5 *1 (-1175 *4 *2)) (-4 *4 (-38 (-350 (-486)))))) (-3825 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-1174 *3)))) (-3824 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-585 *5))) (-4 *5 (-1174 *4)) (-4 *4 (-38 (-350 (-486)))) (-5 *2 (-1 (-1071 *4) (-585 (-1071 *4)))) (-5 *1 (-1175 *4 *5)))) (-3823 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1174 *4)) (-4 *4 (-38 (-350 (-486)))) (-5 *2 (-1 (-1071 *4) (-1071 *4) (-1071 *4))) (-5 *1 (-1175 *4 *5)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1174 *4)) (-4 *4 (-38 (-350 (-486)))) (-5 *2 (-1 (-1071 *4) (-1071 *4))) (-5 *1 (-1175 *4 *5))))) -((-3831 ((|#2| |#4| (-696)) 31 T ELT)) (-3830 ((|#4| |#2|) 26 T ELT)) (-3833 ((|#4| (-350 |#2|)) 49 (|has| |#1| (-497)) ELT)) (-3832 (((-1 |#4| (-585 |#4|)) |#3|) 43 T ELT))) -(((-1176 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3830 (|#4| |#2|)) (-15 -3831 (|#2| |#4| (-696))) (-15 -3832 ((-1 |#4| (-585 |#4|)) |#3|)) (IF (|has| |#1| (-497)) (-15 -3833 (|#4| (-350 |#2|))) |%noBranch|)) (-963) (-1157 |#1|) (-602 |#2|) (-1174 |#1|)) (T -1176)) -((-3833 (*1 *2 *3) (-12 (-5 *3 (-350 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-497)) (-4 *4 (-963)) (-4 *2 (-1174 *4)) (-5 *1 (-1176 *4 *5 *6 *2)) (-4 *6 (-602 *5)))) (-3832 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *5 (-1157 *4)) (-5 *2 (-1 *6 (-585 *6))) (-5 *1 (-1176 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-1174 *4)))) (-3831 (*1 *2 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-963)) (-4 *2 (-1157 *5)) (-5 *1 (-1176 *5 *2 *6 *3)) (-4 *6 (-602 *2)) (-4 *3 (-1174 *5)))) (-3830 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *3 (-1157 *4)) (-4 *2 (-1174 *4)) (-5 *1 (-1176 *4 *3 *5 *2)) (-4 *5 (-602 *3))))) -NIL -(((-1177) (-113)) (T -1177)) -NIL -(-13 (-10 -7 (-6 -2289))) -((-2571 (((-85) $ $) NIL T ELT)) (-3834 (((-1092)) 12 T ELT)) (-3245 (((-1075) $) 18 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 11 T ELT) (((-1092) $) 8 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 15 T ELT))) -(((-1178 |#1|) (-13 (-1015) (-554 (-1092)) (-10 -8 (-15 -3950 ((-1092) $)) (-15 -3834 ((-1092))))) (-1092)) (T -1178)) -((-3950 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1178 *3)) (-14 *3 *2))) (-3834 (*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1178 *3)) (-14 *3 *2)))) -((-3841 (($ (-696)) 19 T ELT)) (-3838 (((-632 |#2|) $ $) 41 T ELT)) (-3835 ((|#2| $) 51 T ELT)) (-3836 ((|#2| $) 50 T ELT)) (-3839 ((|#2| $ $) 36 T ELT)) (-3837 (($ $ $) 47 T ELT)) (-3840 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3842 (($ $ $) 15 T ELT)) (* (($ (-486) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) -(((-1179 |#1| |#2|) (-10 -7 (-15 -3835 (|#2| |#1|)) (-15 -3836 (|#2| |#1|)) (-15 -3837 (|#1| |#1| |#1|)) (-15 -3838 ((-632 |#2|) |#1| |#1|)) (-15 -3839 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-486) |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3841 (|#1| (-696))) (-15 -3842 (|#1| |#1| |#1|))) (-1180 |#2|) (-1131)) (T -1179)) -NIL -((-2571 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3841 (($ (-696)) 123 (|has| |#1| (-23)) ELT)) (-2200 (((-1187) $ (-486) (-486)) 35 (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) 96 T ELT) (((-85) $) 90 (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) 87 (|has| $ (-1037 |#1|)) ELT) (($ $) 86 (-12 (|has| |#1| (-758)) (|has| $ (-1037 |#1|))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) 97 T ELT) (($ $) 91 (|has| |#1| (-758)) ELT)) (-3791 ((|#1| $ (-486) |#1|) 47 (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) 55 (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2299 (($ $) 88 (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) 98 T ELT)) (-1355 (($ $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3409 (($ |#1| $) 70 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 68 (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 105 T ELT)) (-1577 ((|#1| $ (-486) |#1|) 48 (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) 46 T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) 95 T ELT) (((-486) |#1| $) 94 (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) 93 (|has| |#1| (-72)) ELT)) (-3838 (((-632 |#1|) $ $) 116 (|has| |#1| (-963)) ELT)) (-3617 (($ (-696) |#1|) 65 T ELT)) (-2202 (((-486) $) 38 (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) 80 (|has| |#1| (-758)) ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) 104 T ELT)) (-3248 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) 39 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) 81 (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 112 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3835 ((|#1| $) 113 (-12 (|has| |#1| (-963)) (|has| |#1| (-917))) ELT)) (-3836 ((|#1| $) 114 (-12 (|has| |#1| (-963)) (|has| |#1| (-917))) ELT)) (-3245 (((-1075) $) 21 (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) 57 T ELT) (($ $ $ (-486)) 56 T ELT)) (-2205 (((-585 (-486)) $) 41 T ELT)) (-2206 (((-85) (-486) $) 42 T ELT)) (-3246 (((-1035) $) 20 (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) 37 (|has| (-486) (-758)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 107 T ELT)) (-2201 (($ $ |#1|) 36 (|has| $ (-1037 |#1|)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) 10 T ELT)) (-2204 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) 43 T ELT)) (-3406 (((-85) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-486) |#1|) 45 T ELT) ((|#1| $ (-486)) 44 T ELT) (($ $ (-1148 (-486))) 66 T ELT)) (-3839 ((|#1| $ $) 117 (|has| |#1| (-963)) ELT)) (-2307 (($ $ (-486)) 59 T ELT) (($ $ (-1148 (-486))) 58 T ELT)) (-3837 (($ $ $) 115 (|has| |#1| (-963)) ELT)) (-1732 (((-696) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) 103 T ELT)) (-1736 (($ $ $ (-486)) 89 (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-475) $) 72 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 67 T ELT)) (-3805 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3950 (((-774) $) 16 (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) 101 T ELT)) (-2569 (((-85) $ $) 82 (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) 84 (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) 83 (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) 85 (|has| |#1| (-758)) ELT)) (-3840 (($ $) 122 (|has| |#1| (-21)) ELT) (($ $ $) 121 (|has| |#1| (-21)) ELT)) (-3842 (($ $ $) 124 (|has| |#1| (-25)) ELT)) (* (($ (-486) $) 120 (|has| |#1| (-21)) ELT) (($ |#1| $) 119 (|has| |#1| (-665)) ELT) (($ $ |#1|) 118 (|has| |#1| (-665)) ELT)) (-3961 (((-696) $) 100 T ELT))) -(((-1180 |#1|) (-113) (-1131)) (T -1180)) -((-3842 (*1 *1 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-25)))) (-3841 (*1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1180 *3)) (-4 *3 (-23)) (-4 *3 (-1131)))) (-3840 (*1 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-21)))) (-3840 (*1 *1 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-486)) (-4 *1 (-1180 *3)) (-4 *3 (-1131)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-665)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-665)))) (-3839 (*1 *2 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-963)))) (-3838 (*1 *2 *1 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1131)) (-4 *3 (-963)) (-5 *2 (-632 *3)))) (-3837 (*1 *1 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-963)))) (-3836 (*1 *2 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-917)) (-4 *2 (-963)))) (-3835 (*1 *2 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-917)) (-4 *2 (-963))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3842 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3841 ($ (-696))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3840 ($ $)) (-15 -3840 ($ $ $)) (-15 * ($ (-486) $))) |%noBranch|) (IF (|has| |t#1| (-665)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-963)) (PROGN (-15 -3839 (|t#1| $ $)) (-15 -3838 ((-632 |t#1|) $ $)) (-15 -3837 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-917)) (IF (|has| |t#1| (-963)) (PROGN (-15 -3836 (|t#1| $)) (-15 -3835 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-475)) |has| |#1| (-555 (-475))) ((-241 (-486) |#1|) . T) ((-241 (-1148 (-486)) $) . T) ((-243 (-486) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-381 |#1|) . T) ((-430 |#1|) . T) ((-540 (-486) |#1|) . T) ((-457 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-19 |#1|) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-1015) OR (|has| |#1| (-1015)) (|has| |#1| (-758))) ((-1037 |#1|) . T) ((-1131) . T)) -((-2571 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3841 (($ (-696)) NIL (|has| |#1| (-23)) ELT)) (-3843 (($ (-585 |#1|)) 9 T ELT)) (-2200 (((-1187) $ (-486) (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-1737 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1735 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1037 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1037 |#1|)) (|has| |#1| (-758))) ELT)) (-2912 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-3791 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT) ((|#1| $ (-1148 (-486)) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3713 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1037 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3409 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-486) |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-3115 ((|#1| $ (-486)) NIL T ELT)) (-3422 (((-486) (-1 (-85) |#1|) $) NIL T ELT) (((-486) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-486) |#1| $ (-486)) NIL (|has| |#1| (-72)) ELT)) (-3838 (((-632 |#1|) $ $) NIL (|has| |#1| (-963)) ELT)) (-3617 (($ (-696) |#1|) NIL T ELT)) (-2202 (((-486) $) NIL (|has| (-486) (-758)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3521 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2611 (((-585 |#1|) $) 15 T ELT)) (-3248 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2203 (((-486) $) 11 (|has| (-486) (-758)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3835 ((|#1| $) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-963))) ELT)) (-3836 ((|#1| $) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-963))) ELT)) (-3245 (((-1075) $) NIL (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-486)) NIL T ELT) (($ $ $ (-486)) NIL T ELT)) (-2205 (((-585 (-486)) $) NIL T ELT)) (-2206 (((-85) (-486) $) NIL T ELT)) (-3246 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3804 ((|#1| $) NIL (|has| (-486) (-758)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1037 |#1|)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3771 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3406 (((-85) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-486) |#1|) NIL T ELT) ((|#1| $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-3839 ((|#1| $ $) NIL (|has| |#1| (-963)) ELT)) (-2307 (($ $ (-486)) NIL T ELT) (($ $ (-1148 (-486))) NIL T ELT)) (-3837 (($ $ $) NIL (|has| |#1| (-963)) ELT)) (-1732 (((-696) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-696) (-1 (-85) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-486)) NIL (|has| $ (-1037 |#1|)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) 19 (|has| |#1| (-555 (-475))) ELT)) (-3533 (($ (-585 |#1|)) 8 T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3950 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1267 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1734 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2570 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3059 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2688 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3840 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3842 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-486) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-665)) ELT) (($ $ |#1|) NIL (|has| |#1| (-665)) ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-1181 |#1|) (-13 (-1180 |#1|) (-10 -8 (-15 -3843 ($ (-585 |#1|))))) (-1131)) (T -1181)) -((-3843 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-1181 *3))))) -((-3844 (((-1181 |#2|) (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|) 13 T ELT)) (-3845 ((|#2| (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|) 15 T ELT)) (-3846 (((-3 (-1181 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1181 |#1|)) 30 T ELT) (((-1181 |#2|) (-1 |#2| |#1|) (-1181 |#1|)) 18 T ELT))) -(((-1182 |#1| |#2|) (-10 -7 (-15 -3844 ((-1181 |#2|) (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|)) (-15 -3845 (|#2| (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|)) (-15 -3846 ((-1181 |#2|) (-1 |#2| |#1|) (-1181 |#1|))) (-15 -3846 ((-3 (-1181 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1181 |#1|)))) (-1131) (-1131)) (T -1182)) -((-3846 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1181 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1181 *6)) (-5 *1 (-1182 *5 *6)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1181 *6)) (-5 *1 (-1182 *5 *6)))) (-3845 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1181 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-1182 *5 *2)))) (-3844 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1181 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-5 *2 (-1181 *5)) (-5 *1 (-1182 *6 *5))))) -((-3847 (((-409) (-585 (-585 (-856 (-179)))) (-585 (-221))) 22 T ELT) (((-409) (-585 (-585 (-856 (-179))))) 21 T ELT) (((-409) (-585 (-585 (-856 (-179)))) (-785) (-785) (-832) (-585 (-221))) 20 T ELT)) (-3848 (((-1184) (-585 (-585 (-856 (-179)))) (-585 (-221))) 30 T ELT) (((-1184) (-585 (-585 (-856 (-179)))) (-785) (-785) (-832) (-585 (-221))) 29 T ELT)) (-3950 (((-1184) (-409)) 46 T ELT))) -(((-1183) (-10 -7 (-15 -3847 ((-409) (-585 (-585 (-856 (-179)))) (-785) (-785) (-832) (-585 (-221)))) (-15 -3847 ((-409) (-585 (-585 (-856 (-179)))))) (-15 -3847 ((-409) (-585 (-585 (-856 (-179)))) (-585 (-221)))) (-15 -3848 ((-1184) (-585 (-585 (-856 (-179)))) (-785) (-785) (-832) (-585 (-221)))) (-15 -3848 ((-1184) (-585 (-585 (-856 (-179)))) (-585 (-221)))) (-15 -3950 ((-1184) (-409))))) (T -1183)) -((-3950 (*1 *2 *3) (-12 (-5 *3 (-409)) (-5 *2 (-1184)) (-5 *1 (-1183)))) (-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-1183)))) (-3848 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-785)) (-5 *5 (-832)) (-5 *6 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-1183)))) (-3847 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-585 (-221))) (-5 *2 (-409)) (-5 *1 (-1183)))) (-3847 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *2 (-409)) (-5 *1 (-1183)))) (-3847 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-785)) (-5 *5 (-832)) (-5 *6 (-585 (-221))) (-5 *2 (-409)) (-5 *1 (-1183))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3866 (((-1075) $ (-1075)) 107 T ELT) (((-1075) $ (-1075) (-1075)) 105 T ELT) (((-1075) $ (-1075) (-585 (-1075))) 104 T ELT)) (-3862 (($) 69 T ELT)) (-3849 (((-1187) $ (-409) (-832)) 54 T ELT)) (-3855 (((-1187) $ (-832) (-1075)) 89 T ELT) (((-1187) $ (-832) (-785)) 90 T ELT)) (-3877 (((-1187) $ (-832) (-330) (-330)) 57 T ELT)) (-3887 (((-1187) $ (-1075)) 84 T ELT)) (-3850 (((-1187) $ (-832) (-1075)) 94 T ELT)) (-3851 (((-1187) $ (-832) (-330) (-330)) 58 T ELT)) (-3888 (((-1187) $ (-832) (-832)) 55 T ELT)) (-3868 (((-1187) $) 85 T ELT)) (-3853 (((-1187) $ (-832) (-1075)) 93 T ELT)) (-3857 (((-1187) $ (-409) (-832)) 41 T ELT)) (-3854 (((-1187) $ (-832) (-1075)) 92 T ELT)) (-3890 (((-585 (-221)) $) 29 T ELT) (($ $ (-585 (-221))) 30 T ELT)) (-3889 (((-1187) $ (-696) (-696)) 52 T ELT)) (-3861 (($ $) 70 T ELT) (($ (-409) (-585 (-221))) 71 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3864 (((-486) $) 48 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3858 (((-1181 (-3 (-409) "undefined")) $) 47 T ELT)) (-3859 (((-1181 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3854 (-486)) (|:| -3852 (-486)) (|:| |spline| (-486)) (|:| -3883 (-486)) (|:| |axesColor| (-785)) (|:| -3855 (-486)) (|:| |unitsColor| (-785)) (|:| |showing| (-486)))) $) 46 T ELT)) (-3860 (((-1187) $ (-832) (-179) (-179) (-179) (-179) (-486) (-486) (-486) (-486) (-785) (-486) (-785) (-486)) 83 T ELT)) (-3863 (((-585 (-856 (-179))) $) NIL T ELT)) (-3856 (((-409) $ (-832)) 43 T ELT)) (-3886 (((-1187) $ (-696) (-696) (-832) (-832)) 50 T ELT)) (-3884 (((-1187) $ (-1075)) 95 T ELT)) (-3852 (((-1187) $ (-832) (-1075)) 91 T ELT)) (-3950 (((-774) $) 102 T ELT)) (-3865 (((-1187) $) 96 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3883 (((-1187) $ (-832) (-1075)) 87 T ELT) (((-1187) $ (-832) (-785)) 88 T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-1184) (-13 (-1015) (-10 -8 (-15 -3863 ((-585 (-856 (-179))) $)) (-15 -3862 ($)) (-15 -3861 ($ $)) (-15 -3890 ((-585 (-221)) $)) (-15 -3890 ($ $ (-585 (-221)))) (-15 -3861 ($ (-409) (-585 (-221)))) (-15 -3860 ((-1187) $ (-832) (-179) (-179) (-179) (-179) (-486) (-486) (-486) (-486) (-785) (-486) (-785) (-486))) (-15 -3859 ((-1181 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3854 (-486)) (|:| -3852 (-486)) (|:| |spline| (-486)) (|:| -3883 (-486)) (|:| |axesColor| (-785)) (|:| -3855 (-486)) (|:| |unitsColor| (-785)) (|:| |showing| (-486)))) $)) (-15 -3858 ((-1181 (-3 (-409) "undefined")) $)) (-15 -3887 ((-1187) $ (-1075))) (-15 -3857 ((-1187) $ (-409) (-832))) (-15 -3856 ((-409) $ (-832))) (-15 -3883 ((-1187) $ (-832) (-1075))) (-15 -3883 ((-1187) $ (-832) (-785))) (-15 -3855 ((-1187) $ (-832) (-1075))) (-15 -3855 ((-1187) $ (-832) (-785))) (-15 -3854 ((-1187) $ (-832) (-1075))) (-15 -3853 ((-1187) $ (-832) (-1075))) (-15 -3852 ((-1187) $ (-832) (-1075))) (-15 -3884 ((-1187) $ (-1075))) (-15 -3865 ((-1187) $)) (-15 -3886 ((-1187) $ (-696) (-696) (-832) (-832))) (-15 -3851 ((-1187) $ (-832) (-330) (-330))) (-15 -3877 ((-1187) $ (-832) (-330) (-330))) (-15 -3850 ((-1187) $ (-832) (-1075))) (-15 -3889 ((-1187) $ (-696) (-696))) (-15 -3849 ((-1187) $ (-409) (-832))) (-15 -3888 ((-1187) $ (-832) (-832))) (-15 -3866 ((-1075) $ (-1075))) (-15 -3866 ((-1075) $ (-1075) (-1075))) (-15 -3866 ((-1075) $ (-1075) (-585 (-1075)))) (-15 -3868 ((-1187) $)) (-15 -3864 ((-486) $)) (-15 -3950 ((-774) $))))) (T -1184)) -((-3950 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1184)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-585 (-856 (-179)))) (-5 *1 (-1184)))) (-3862 (*1 *1) (-5 *1 (-1184))) (-3861 (*1 *1 *1) (-5 *1 (-1184))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1184)))) (-3890 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1184)))) (-3861 (*1 *1 *2 *3) (-12 (-5 *2 (-409)) (-5 *3 (-585 (-221))) (-5 *1 (-1184)))) (-3860 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-832)) (-5 *4 (-179)) (-5 *5 (-486)) (-5 *6 (-785)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-1181 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3854 (-486)) (|:| -3852 (-486)) (|:| |spline| (-486)) (|:| -3883 (-486)) (|:| |axesColor| (-785)) (|:| -3855 (-486)) (|:| |unitsColor| (-785)) (|:| |showing| (-486))))) (-5 *1 (-1184)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-1181 (-3 (-409) "undefined"))) (-5 *1 (-1184)))) (-3887 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3857 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-409)) (-5 *4 (-832)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3856 (*1 *2 *1 *3) (-12 (-5 *3 (-832)) (-5 *2 (-409)) (-5 *1 (-1184)))) (-3883 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3883 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-785)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3855 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3855 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-785)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3854 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3853 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3852 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3886 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-696)) (-5 *4 (-832)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3851 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-832)) (-5 *4 (-330)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3877 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-832)) (-5 *4 (-330)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3850 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3889 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3849 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-409)) (-5 *4 (-832)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3888 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3866 (*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1184)))) (-3866 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1184)))) (-3866 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-1075)) (-5 *1 (-1184)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1184)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1184))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3878 (((-1187) $ (-330)) 168 T ELT) (((-1187) $ (-330) (-330) (-330)) 169 T ELT)) (-3866 (((-1075) $ (-1075)) 177 T ELT) (((-1075) $ (-1075) (-1075)) 175 T ELT) (((-1075) $ (-1075) (-585 (-1075))) 174 T ELT)) (-3894 (($) 67 T ELT)) (-3885 (((-1187) $ (-330) (-330) (-330) (-330) (-330)) 140 T ELT) (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3851 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $) 138 T ELT) (((-1187) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3851 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 139 T ELT) (((-1187) $ (-486) (-486) (-330) (-330) (-330)) 143 T ELT) (((-1187) $ (-330) (-330)) 144 T ELT) (((-1187) $ (-330) (-330) (-330)) 151 T ELT)) (-3897 (((-330)) 121 T ELT) (((-330) (-330)) 122 T ELT)) (-3899 (((-330)) 116 T ELT) (((-330) (-330)) 118 T ELT)) (-3898 (((-330)) 119 T ELT) (((-330) (-330)) 120 T ELT)) (-3895 (((-330)) 125 T ELT) (((-330) (-330)) 126 T ELT)) (-3896 (((-330)) 123 T ELT) (((-330) (-330)) 124 T ELT)) (-3877 (((-1187) $ (-330) (-330)) 170 T ELT)) (-3887 (((-1187) $ (-1075)) 152 T ELT)) (-3892 (((-1049 (-179)) $) 68 T ELT) (($ $ (-1049 (-179))) 69 T ELT)) (-3873 (((-1187) $ (-1075)) 186 T ELT)) (-3872 (((-1187) $ (-1075)) 187 T ELT)) (-3879 (((-1187) $ (-330) (-330)) 150 T ELT) (((-1187) $ (-486) (-486)) 167 T ELT)) (-3888 (((-1187) $ (-832) (-832)) 159 T ELT)) (-3868 (((-1187) $) 136 T ELT)) (-3876 (((-1187) $ (-1075)) 185 T ELT)) (-3881 (((-1187) $ (-1075)) 133 T ELT)) (-3890 (((-585 (-221)) $) 70 T ELT) (($ $ (-585 (-221))) 71 T ELT)) (-3889 (((-1187) $ (-696) (-696)) 158 T ELT)) (-3891 (((-1187) $ (-696) (-856 (-179))) 192 T ELT)) (-3893 (($ $) 73 T ELT) (($ (-1049 (-179)) (-1075)) 74 T ELT) (($ (-1049 (-179)) (-585 (-221))) 75 T ELT)) (-3870 (((-1187) $ (-330) (-330) (-330)) 130 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3864 (((-486) $) 127 T ELT)) (-3869 (((-1187) $ (-330)) 172 T ELT)) (-3874 (((-1187) $ (-330)) 190 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3875 (((-1187) $ (-330)) 189 T ELT)) (-3880 (((-1187) $ (-1075)) 135 T ELT)) (-3886 (((-1187) $ (-696) (-696) (-832) (-832)) 157 T ELT)) (-3882 (((-1187) $ (-1075)) 132 T ELT)) (-3884 (((-1187) $ (-1075)) 134 T ELT)) (-3867 (((-1187) $ (-130) (-130)) 156 T ELT)) (-3950 (((-774) $) 165 T ELT)) (-3865 (((-1187) $) 137 T ELT)) (-3871 (((-1187) $ (-1075)) 188 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3883 (((-1187) $ (-1075)) 131 T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-1185) (-13 (-1015) (-10 -8 (-15 -3899 ((-330))) (-15 -3899 ((-330) (-330))) (-15 -3898 ((-330))) (-15 -3898 ((-330) (-330))) (-15 -3897 ((-330))) (-15 -3897 ((-330) (-330))) (-15 -3896 ((-330))) (-15 -3896 ((-330) (-330))) (-15 -3895 ((-330))) (-15 -3895 ((-330) (-330))) (-15 -3894 ($)) (-15 -3893 ($ $)) (-15 -3893 ($ (-1049 (-179)) (-1075))) (-15 -3893 ($ (-1049 (-179)) (-585 (-221)))) (-15 -3892 ((-1049 (-179)) $)) (-15 -3892 ($ $ (-1049 (-179)))) (-15 -3891 ((-1187) $ (-696) (-856 (-179)))) (-15 -3890 ((-585 (-221)) $)) (-15 -3890 ($ $ (-585 (-221)))) (-15 -3889 ((-1187) $ (-696) (-696))) (-15 -3888 ((-1187) $ (-832) (-832))) (-15 -3887 ((-1187) $ (-1075))) (-15 -3886 ((-1187) $ (-696) (-696) (-832) (-832))) (-15 -3885 ((-1187) $ (-330) (-330) (-330) (-330) (-330))) (-15 -3885 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3851 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $)) (-15 -3885 ((-1187) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3851 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3885 ((-1187) $ (-486) (-486) (-330) (-330) (-330))) (-15 -3885 ((-1187) $ (-330) (-330))) (-15 -3885 ((-1187) $ (-330) (-330) (-330))) (-15 -3884 ((-1187) $ (-1075))) (-15 -3883 ((-1187) $ (-1075))) (-15 -3882 ((-1187) $ (-1075))) (-15 -3881 ((-1187) $ (-1075))) (-15 -3880 ((-1187) $ (-1075))) (-15 -3879 ((-1187) $ (-330) (-330))) (-15 -3879 ((-1187) $ (-486) (-486))) (-15 -3878 ((-1187) $ (-330))) (-15 -3878 ((-1187) $ (-330) (-330) (-330))) (-15 -3877 ((-1187) $ (-330) (-330))) (-15 -3876 ((-1187) $ (-1075))) (-15 -3875 ((-1187) $ (-330))) (-15 -3874 ((-1187) $ (-330))) (-15 -3873 ((-1187) $ (-1075))) (-15 -3872 ((-1187) $ (-1075))) (-15 -3871 ((-1187) $ (-1075))) (-15 -3870 ((-1187) $ (-330) (-330) (-330))) (-15 -3869 ((-1187) $ (-330))) (-15 -3868 ((-1187) $)) (-15 -3867 ((-1187) $ (-130) (-130))) (-15 -3866 ((-1075) $ (-1075))) (-15 -3866 ((-1075) $ (-1075) (-1075))) (-15 -3866 ((-1075) $ (-1075) (-585 (-1075)))) (-15 -3865 ((-1187) $)) (-15 -3864 ((-486) $))))) (T -1185)) -((-3899 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3898 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3897 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3896 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3895 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) (-3894 (*1 *1) (-5 *1 (-1185))) (-3893 (*1 *1 *1) (-5 *1 (-1185))) (-3893 (*1 *1 *2 *3) (-12 (-5 *2 (-1049 (-179))) (-5 *3 (-1075)) (-5 *1 (-1185)))) (-3893 (*1 *1 *2 *3) (-12 (-5 *2 (-1049 (-179))) (-5 *3 (-585 (-221))) (-5 *1 (-1185)))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-1049 (-179))) (-5 *1 (-1185)))) (-3892 (*1 *1 *1 *2) (-12 (-5 *2 (-1049 (-179))) (-5 *1 (-1185)))) (-3891 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-696)) (-5 *4 (-856 (-179))) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1185)))) (-3890 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1185)))) (-3889 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3888 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3887 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3886 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-696)) (-5 *4 (-832)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3885 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3851 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-1185)))) (-3885 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3851 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3885 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-486)) (-5 *4 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3885 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3885 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3883 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3881 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3879 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3879 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3878 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3878 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3877 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3875 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3874 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3873 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3872 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3871 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3870 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3869 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3867 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3866 (*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1185)))) (-3866 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1185)))) (-3866 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-1075)) (-5 *1 (-1185)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1185)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1185))))) -((-3908 (((-585 (-1075)) (-585 (-1075))) 103 T ELT) (((-585 (-1075))) 96 T ELT)) (-3909 (((-585 (-1075))) 94 T ELT)) (-3906 (((-585 (-832)) (-585 (-832))) 69 T ELT) (((-585 (-832))) 64 T ELT)) (-3905 (((-585 (-696)) (-585 (-696))) 61 T ELT) (((-585 (-696))) 55 T ELT)) (-3907 (((-1187)) 71 T ELT)) (-3911 (((-832) (-832)) 87 T ELT) (((-832)) 86 T ELT)) (-3910 (((-832) (-832)) 85 T ELT) (((-832)) 84 T ELT)) (-3903 (((-785) (-785)) 81 T ELT) (((-785)) 80 T ELT)) (-3913 (((-179)) 91 T ELT) (((-179) (-330)) 93 T ELT)) (-3912 (((-832)) 88 T ELT) (((-832) (-832)) 89 T ELT)) (-3904 (((-832) (-832)) 83 T ELT) (((-832)) 82 T ELT)) (-3900 (((-785) (-785)) 75 T ELT) (((-785)) 73 T ELT)) (-3901 (((-785) (-785)) 77 T ELT) (((-785)) 76 T ELT)) (-3902 (((-785) (-785)) 79 T ELT) (((-785)) 78 T ELT))) -(((-1186) (-10 -7 (-15 -3900 ((-785))) (-15 -3900 ((-785) (-785))) (-15 -3901 ((-785))) (-15 -3901 ((-785) (-785))) (-15 -3902 ((-785))) (-15 -3902 ((-785) (-785))) (-15 -3903 ((-785))) (-15 -3903 ((-785) (-785))) (-15 -3904 ((-832))) (-15 -3904 ((-832) (-832))) (-15 -3905 ((-585 (-696)))) (-15 -3905 ((-585 (-696)) (-585 (-696)))) (-15 -3906 ((-585 (-832)))) (-15 -3906 ((-585 (-832)) (-585 (-832)))) (-15 -3907 ((-1187))) (-15 -3908 ((-585 (-1075)))) (-15 -3908 ((-585 (-1075)) (-585 (-1075)))) (-15 -3909 ((-585 (-1075)))) (-15 -3910 ((-832))) (-15 -3911 ((-832))) (-15 -3910 ((-832) (-832))) (-15 -3911 ((-832) (-832))) (-15 -3912 ((-832) (-832))) (-15 -3912 ((-832))) (-15 -3913 ((-179) (-330))) (-15 -3913 ((-179))))) (T -1186)) -((-3913 (*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1186)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-330)) (-5 *2 (-179)) (-5 *1 (-1186)))) (-3912 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) (-3912 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) (-3911 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) (-3910 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) (-3909 (*1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1186)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1186)))) (-3908 (*1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1186)))) (-3907 (*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1186)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1186)))) (-3906 (*1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1186)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-585 (-696))) (-5 *1 (-1186)))) (-3905 (*1 *2) (-12 (-5 *2 (-585 (-696))) (-5 *1 (-1186)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) (-3904 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) (-3903 (*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) (-3902 (*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) (-3901 (*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) (-3900 (*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186))))) -((-3914 (($) 6 T ELT)) (-3950 (((-774) $) 9 T ELT))) -(((-1187) (-13 (-554 (-774)) (-10 -8 (-15 -3914 ($))))) (T -1187)) -((-3914 (*1 *1) (-5 *1 (-1187)))) -((-3953 (($ $ |#2|) 10 T ELT))) -(((-1188 |#1| |#2|) (-10 -7 (-15 -3953 (|#1| |#1| |#2|))) (-1189 |#2|) (-312)) (T -1188)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1216 (((-85) $ $) 20 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3915 (((-107)) 39 T ELT)) (-3950 (((-774) $) 13 T ELT)) (-1267 (((-85) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 40 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-1189 |#1|) (-113) (-312)) (T -1189)) -((-3953 (*1 *1 *1 *2) (-12 (-4 *1 (-1189 *2)) (-4 *2 (-312)))) (-3915 (*1 *2) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-312)) (-5 *2 (-107))))) -(-13 (-656 |t#1|) (-10 -8 (-15 -3953 ($ $ |t#1|)) (-15 -3915 ((-107))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1131) . T)) -((-3920 (((-585 (-1124 |#1|)) (-1092) (-1124 |#1|)) 83 T ELT)) (-3918 (((-1071 (-1071 (-859 |#1|))) (-1092) (-1071 (-859 |#1|))) 63 T ELT)) (-3921 (((-1 (-1071 (-1124 |#1|)) (-1071 (-1124 |#1|))) (-696) (-1124 |#1|) (-1071 (-1124 |#1|))) 74 T ELT)) (-3916 (((-1 (-1071 (-859 |#1|)) (-1071 (-859 |#1|))) (-696)) 65 T ELT)) (-3919 (((-1 (-1087 (-859 |#1|)) (-859 |#1|)) (-1092)) 32 T ELT)) (-3917 (((-1 (-1071 (-859 |#1|)) (-1071 (-859 |#1|))) (-696)) 64 T ELT))) -(((-1190 |#1|) (-10 -7 (-15 -3916 ((-1 (-1071 (-859 |#1|)) (-1071 (-859 |#1|))) (-696))) (-15 -3917 ((-1 (-1071 (-859 |#1|)) (-1071 (-859 |#1|))) (-696))) (-15 -3918 ((-1071 (-1071 (-859 |#1|))) (-1092) (-1071 (-859 |#1|)))) (-15 -3919 ((-1 (-1087 (-859 |#1|)) (-859 |#1|)) (-1092))) (-15 -3920 ((-585 (-1124 |#1|)) (-1092) (-1124 |#1|))) (-15 -3921 ((-1 (-1071 (-1124 |#1|)) (-1071 (-1124 |#1|))) (-696) (-1124 |#1|) (-1071 (-1124 |#1|))))) (-312)) (T -1190)) -((-3921 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-696)) (-4 *6 (-312)) (-5 *4 (-1124 *6)) (-5 *2 (-1 (-1071 *4) (-1071 *4))) (-5 *1 (-1190 *6)) (-5 *5 (-1071 *4)))) (-3920 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-4 *5 (-312)) (-5 *2 (-585 (-1124 *5))) (-5 *1 (-1190 *5)) (-5 *4 (-1124 *5)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1 (-1087 (-859 *4)) (-859 *4))) (-5 *1 (-1190 *4)) (-4 *4 (-312)))) (-3918 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-4 *5 (-312)) (-5 *2 (-1071 (-1071 (-859 *5)))) (-5 *1 (-1190 *5)) (-5 *4 (-1071 (-859 *5))))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-1071 (-859 *4)) (-1071 (-859 *4)))) (-5 *1 (-1190 *4)) (-4 *4 (-312)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-1071 (-859 *4)) (-1071 (-859 *4)))) (-5 *1 (-1190 *4)) (-4 *4 (-312))))) -((-3923 (((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|) 80 T ELT)) (-3922 (((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) 79 T ELT))) -(((-1191 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3922 ((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -3923 ((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|))) (-299) (-1157 |#1|) (-1157 |#2|) (-353 |#2| |#3|)) (T -1191)) -((-3923 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3)) (-5 *2 (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-1191 *4 *3 *5 *6)) (-4 *6 (-353 *3 *5)))) (-3922 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -2014 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) (-5 *1 (-1191 *3 *4 *5 *6)) (-4 *6 (-353 *4 *5))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3924 (((-1051) $) 12 T ELT)) (-3925 (((-1051) $) 10 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 18 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-1192) (-13 (-997) (-10 -8 (-15 -3925 ((-1051) $)) (-15 -3924 ((-1051) $))))) (T -1192)) -((-3925 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1192)))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1192))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3926 (((-1051) $) 11 T ELT)) (-3950 (((-774) $) 17 T ELT) (($ (-1097)) NIL T ELT) (((-1097) $) NIL T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT))) -(((-1193) (-13 (-997) (-10 -8 (-15 -3926 ((-1051) $))))) (T -1193)) -((-3926 (*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1193))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 59 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 82 T ELT) (($ (-486)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3129 (((-696)) NIL T CONST)) (-3927 (((-1187) (-696)) 16 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 36 T CONST)) (-2669 (($) 85 T CONST)) (-3059 (((-85) $ $) 88 T ELT)) (-3953 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3840 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 64 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-1194 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-963) (-431 |#4|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3953 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3927 ((-1187) (-696))))) (-963) (-758) (-719) (-863 |#1| |#3| |#2|) (-585 |#2|) (-585 (-696)) (-696)) (T -1194)) -((-3953 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-312)) (-4 *2 (-963)) (-4 *3 (-758)) (-4 *4 (-719)) (-14 *6 (-585 *3)) (-5 *1 (-1194 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-863 *2 *4 *3)) (-14 *7 (-585 (-696))) (-14 *8 (-696)))) (-3927 (*1 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-963)) (-4 *5 (-758)) (-4 *6 (-719)) (-14 *8 (-585 *5)) (-5 *2 (-1187)) (-5 *1 (-1194 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-863 *4 *6 *5)) (-14 *9 (-585 *3)) (-14 *10 *3)))) -((-2571 (((-85) $ $) NIL T ELT)) (-3684 (((-585 (-2 (|:| -3865 $) (|:| -1703 (-585 |#4|)))) (-585 |#4|)) NIL T ELT)) (-3685 (((-585 $) (-585 |#4|)) 95 T ELT)) (-3084 (((-585 |#3|) $) NIL T ELT)) (-2911 (((-85) $) NIL T ELT)) (-2902 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3691 ((|#4| |#4| $) NIL T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3713 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2907 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-2909 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-497)) ELT)) (-2910 (((-85) $) NIL (|has| |#1| (-497)) ELT)) (-3692 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 31 T ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 28 (|has| |#1| (-497)) ELT)) (-2904 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-497)) ELT)) (-3160 (((-3 $ #1#) (-585 |#4|)) NIL T ELT)) (-3159 (($ (-585 |#4|)) NIL T ELT)) (-3802 (((-3 $ #1#) $) 77 T ELT)) (-3688 ((|#4| |#4| $) 82 T ELT)) (-1355 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3409 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-497)) ELT)) (-3697 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3699 (((-2 (|:| -3865 (-585 |#4|)) (|:| -1703 (-585 |#4|))) $) NIL T ELT)) (-3698 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3183 ((|#3| $) 83 T ELT)) (-2611 (((-585 |#4|) $) 32 T ELT)) (-3248 (((-85) |#4| $) NIL (|has| |#4| (-72)) ELT)) (-3930 (((-3 $ #1#) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-585 |#4|)) 38 T ELT)) (-3329 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-3846 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2917 (((-585 |#3|) $) NIL T ELT)) (-2916 (((-85) |#3| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3801 (((-3 |#4| #1#) $) NIL T ELT)) (-3700 (((-585 |#4|) $) 53 T ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) 81 T ELT)) (-3702 (((-85) $ $) 92 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-497)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3804 (((-3 |#4| #1#) $) 76 T ELT)) (-1731 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3682 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3772 (($ $ |#4|) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3771 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1224 (((-85) $ $) NIL T ELT)) (-3406 (((-85) $) 74 T ELT)) (-3568 (($) 45 T ELT)) (-3952 (((-696) $) NIL T ELT)) (-1732 (((-696) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-696) (-1 (-85) |#4|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-475) $) NIL (|has| |#4| (-555 (-475))) ELT)) (-3533 (($ (-585 |#4|)) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-2915 (($ $ |#3|) NIL T ELT)) (-3687 (($ $) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (((-585 |#4|) $) 62 T ELT)) (-3681 (((-696) $) NIL (|has| |#3| (-320)) ELT)) (-3929 (((-3 $ #1#) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-585 |#4|)) 44 T ELT)) (-3928 (((-585 $) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-585 $) (-585 |#4|)) 73 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3693 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) NIL T ELT)) (-1734 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3683 (((-585 |#3|) $) NIL T ELT)) (-3937 (((-85) |#3| $) NIL T ELT)) (-3059 (((-85) $ $) NIL T ELT)) (-3961 (((-696) $) NIL T ELT))) -(((-1195 |#1| |#2| |#3| |#4|) (-13 (-1126 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3930 ((-3 $ #1="failed") (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3930 ((-3 $ #1#) (-585 |#4|))) (-15 -3929 ((-3 $ #1#) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3929 ((-3 $ #1#) (-585 |#4|))) (-15 -3928 ((-585 $) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3928 ((-585 $) (-585 |#4|))))) (-497) (-719) (-758) (-979 |#1| |#2| |#3|)) (T -1195)) -((-3930 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-1195 *5 *6 *7 *8)))) (-3930 (*1 *1 *2) (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-1195 *3 *4 *5 *6)))) (-3929 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-1195 *5 *6 *7 *8)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-1195 *3 *4 *5 *6)))) (-3928 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-979 *6 *7 *8)) (-4 *6 (-497)) (-4 *7 (-719)) (-4 *8 (-758)) (-5 *2 (-585 (-1195 *6 *7 *8 *9))) (-5 *1 (-1195 *6 *7 *8 *9)))) (-3928 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 (-1195 *4 *5 *6 *7))) (-5 *1 (-1195 *4 *5 *6 *7))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#1|) 53 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 55 T ELT) (($ |#1| $) 54 T ELT))) -(((-1196 |#1|) (-113) (-963)) (T -1196)) -NIL -(-13 (-963) (-82 |t#1| |t#1|) (-557 |t#1|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-665) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T)) -((-2571 (((-85) $ $) 69 T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3938 (((-585 |#1|) $) 54 T ELT)) (-3951 (($ $ (-696)) 47 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3939 (($ $ (-696)) 25 (|has| |#2| (-146)) ELT) (($ $ $) 26 (|has| |#2| (-146)) ELT)) (-3727 (($) NIL T CONST)) (-3943 (($ $ $) 72 T ELT) (($ $ (-741 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3160 (((-3 (-741 |#1|) #1#) $) NIL T ELT)) (-3159 (((-741 |#1|) $) NIL T ELT)) (-3962 (($ $) 40 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3955 (((-85) $) NIL T ELT)) (-3954 (($ $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-3942 (($ (-741 |#1|) |#2|) 39 T ELT)) (-3940 (($ $) 41 T ELT)) (-3945 (((-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3959 (((-741 |#1|) $) NIL T ELT)) (-3960 (((-741 |#1|) $) 42 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3944 (($ $ $) 71 T ELT) (($ $ (-741 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1754 (((-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2897 (((-741 |#1|) $) 36 T ELT)) (-3177 ((|#2| $) 38 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3952 (((-696) $) 44 T ELT)) (-3957 (((-85) $) 48 T ELT)) (-3956 ((|#2| $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-741 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-486)) NIL T ELT)) (-3820 (((-585 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-741 |#1|)) NIL T ELT)) (-3958 ((|#2| $ $) 78 T ELT) ((|#2| $ (-741 |#1|)) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 14 T CONST)) (-2669 (($) 20 T CONST)) (-2668 (((-585 (-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3059 (((-85) $ $) 45 T ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) 29 T ELT)) (** (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT)) (* (($ $ |#2|) 70 T ELT) (($ |#2| $) 28 T ELT) (($ (-486) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-832) $) NIL T ELT) (($ |#2| (-741 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT))) -(((-1197 |#1| |#2|) (-13 (-335 |#2| (-741 |#1|)) (-1204 |#1| |#2|)) (-758) (-963)) (T -1197)) -NIL -((-3946 ((|#3| |#3| (-696)) 28 T ELT)) (-3947 ((|#3| |#3| (-696)) 34 T ELT)) (-3931 ((|#3| |#3| |#3| (-696)) 35 T ELT))) -(((-1198 |#1| |#2| |#3|) (-10 -7 (-15 -3947 (|#3| |#3| (-696))) (-15 -3946 (|#3| |#3| (-696))) (-15 -3931 (|#3| |#3| |#3| (-696)))) (-13 (-963) (-656 (-350 (-486)))) (-758) (-1204 |#2| |#1|)) (T -1198)) -((-3931 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-13 (-963) (-656 (-350 (-486))))) (-4 *5 (-758)) (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1204 *5 *4)))) (-3946 (*1 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-13 (-963) (-656 (-350 (-486))))) (-4 *5 (-758)) (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1204 *5 *4)))) (-3947 (*1 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-13 (-963) (-656 (-350 (-486))))) (-4 *5 (-758)) (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1204 *5 *4))))) -((-3936 (((-85) $) 15 T ELT)) (-3937 (((-85) $) 14 T ELT)) (-3932 (($ $) 19 T ELT) (($ $ (-696)) 21 T ELT))) -(((-1199 |#1| |#2|) (-10 -7 (-15 -3932 (|#1| |#1| (-696))) (-15 -3932 (|#1| |#1|)) (-15 -3936 ((-85) |#1|)) (-15 -3937 ((-85) |#1|))) (-1200 |#2|) (-312)) (T -1199)) -NIL -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3985 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-3936 (((-85) $) 114 T ELT)) (-3933 (((-696)) 110 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| "failed") $) 121 T ELT)) (-3159 ((|#1| $) 122 T ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-1769 (($ $ (-696)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3726 (((-85) $) 89 T ELT)) (-3775 (((-745 (-832)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3935 (((-85) $) 113 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-2711 (((-1087 $) (-1087 $) (-1087 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3735 (((-348 $) $) 92 T ELT)) (-3934 (((-745 (-832))) 111 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-1770 (((-3 (-696) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3915 (((-107)) 119 T ELT)) (-3952 (((-745 (-832)) $) 112 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-486))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2705 (((-634 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-3937 (((-85) $) 115 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3932 (($ $) 109 (|has| |#1| (-320)) ELT) (($ $ (-696)) 108 (|has| |#1| (-320)) ELT)) (-3059 (((-85) $ $) 8 T ELT)) (-3953 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-486)) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-486))) 86 T ELT) (($ (-350 (-486)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT))) -(((-1200 |#1|) (-113) (-312)) (T -1200)) -((-3937 (*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-745 (-832))))) (-3934 (*1 *2) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-745 (-832))))) (-3933 (*1 *2) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-696)))) (-3932 (*1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-312)) (-4 *2 (-320)))) (-3932 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-4 *3 (-320))))) -(-13 (-312) (-952 |t#1|) (-1189 |t#1|) (-10 -8 (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-345)) |%noBranch|) (-15 -3937 ((-85) $)) (-15 -3936 ((-85) $)) (-15 -3935 ((-85) $)) (-15 -3952 ((-745 (-832)) $)) (-15 -3934 ((-745 (-832)))) (-15 -3933 ((-696))) (IF (|has| |t#1| (-320)) (PROGN (-6 (-345)) (-15 -3932 ($ $)) (-15 -3932 ($ $ (-696)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-486))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-486)) (-350 (-486))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-557 (-350 (-486))) . T) ((-557 (-486)) . T) ((-557 |#1|) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-345) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-393) . T) ((-497) . T) ((-13) . T) ((-590 (-350 (-486))) . T) ((-590 (-486)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-350 (-486))) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-350 (-486))) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-656 (-350 (-486))) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-952 |#1|) . T) ((-965 (-350 (-486))) . T) ((-965 |#1|) . T) ((-965 $) . T) ((-970 (-350 (-486))) . T) ((-970 |#1|) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1136) . T) ((-1189 |#1|) . T)) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3938 (((-585 |#1|) $) 56 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3939 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-696)) 57 (|has| |#2| (-146)) ELT)) (-3727 (($) 23 T CONST)) (-3943 (($ $ |#1|) 69 T ELT) (($ $ (-741 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3160 (((-3 (-741 |#1|) "failed") $) 79 T ELT)) (-3159 (((-741 |#1|) $) 80 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3955 (((-85) $) 60 T ELT)) (-3954 (($ $) 59 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3941 (((-85) $) 65 T ELT)) (-3942 (($ (-741 |#1|) |#2|) 66 T ELT)) (-3940 (($ $) 64 T ELT)) (-3945 (((-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3959 (((-741 |#1|) $) 76 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) 81 T ELT)) (-3944 (($ $ |#1|) 72 T ELT) (($ $ (-741 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3957 (((-85) $) 62 T ELT)) (-3956 ((|#2| $) 61 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#2|) 84 T ELT) (($ (-741 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3958 ((|#2| $ (-741 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 83 T ELT) (($ $ |#2|) 82 T ELT) (($ |#1| $) 77 T ELT))) -(((-1201 |#1| |#2|) (-113) (-758) (-963)) (T -1201)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-758)) (-4 *2 (-963)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3959 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-741 *3)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-2 (|:| |k| (-741 *3)) (|:| |c| *4))))) (-3958 (*1 *2 *1 *3) (-12 (-5 *3 (-741 *4)) (-4 *1 (-1201 *4 *2)) (-4 *4 (-758)) (-4 *2 (-963)))) (-3958 (*1 *2 *1 *1) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-758)) (-4 *2 (-963)))) (-3944 (*1 *1 *1 *2) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3944 (*1 *1 *1 *2) (-12 (-5 *2 (-741 *3)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)))) (-3944 (*1 *1 *1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3943 (*1 *1 *1 *2) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3943 (*1 *1 *1 *2) (-12 (-5 *2 (-741 *3)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)))) (-3943 (*1 *1 *1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3942 (*1 *1 *2 *3) (-12 (-5 *2 (-741 *4)) (-4 *4 (-758)) (-4 *1 (-1201 *4 *3)) (-4 *3 (-963)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-85)))) (-3940 (*1 *1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3950 (*1 *1 *2) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3957 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-85)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-758)) (-4 *2 (-963)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-85)))) (-3954 (*1 *1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3939 (*1 *1 *1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)) (-4 *3 (-146)))) (-3939 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-4 *4 (-146)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-585 *3))))) -(-13 (-963) (-1196 |t#2|) (-381 |t#2|) (-952 (-741 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3959 ((-741 |t#1|) $)) (-15 -3945 ((-2 (|:| |k| (-741 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3958 (|t#2| $ (-741 |t#1|))) (-15 -3958 (|t#2| $ $)) (-15 -3944 ($ $ |t#1|)) (-15 -3944 ($ $ (-741 |t#1|))) (-15 -3944 ($ $ $)) (-15 -3943 ($ $ |t#1|)) (-15 -3943 ($ $ (-741 |t#1|))) (-15 -3943 ($ $ $)) (-15 -3942 ($ (-741 |t#1|) |t#2|)) (-15 -3941 ((-85) $)) (-15 -3940 ($ $)) (-15 -3950 ($ |t#1|)) (-15 -3957 ((-85) $)) (-15 -3956 (|t#2| $)) (-15 -3955 ((-85) $)) (-15 -3954 ($ $)) (IF (|has| |t#2| (-146)) (PROGN (-15 -3939 ($ $ $)) (-15 -3939 ($ $ (-696)))) |%noBranch|) (-15 -3938 ((-585 |t#1|) $)) (IF (|has| |t#2| (-6 -3991)) (-6 -3991) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 (-741 |#1|)) . T) ((-557 |#2|) . T) ((-554 (-774)) . T) ((-381 |#2|) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-592 |#2|) . T) ((-592 $) . T) ((-584 |#2|) |has| |#2| (-146)) ((-656 |#2|) |has| |#2| (-146)) ((-665) . T) ((-952 (-741 |#1|)) . T) ((-965 |#2|) . T) ((-970 |#2|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1196 |#2|) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3938 (((-585 |#1|) $) 99 T ELT)) (-3951 (($ $ (-696)) 103 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3939 (($ $ $) NIL (|has| |#2| (-146)) ELT) (($ $ (-696)) NIL (|has| |#2| (-146)) ELT)) (-3727 (($) NIL T CONST)) (-3943 (($ $ |#1|) NIL T ELT) (($ $ (-741 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3160 (((-3 (-741 |#1|) #1#) $) NIL T ELT) (((-3 (-805 |#1|) #1#) $) NIL T ELT)) (-3159 (((-741 |#1|) $) NIL T ELT) (((-805 |#1|) $) NIL T ELT)) (-3962 (($ $) 102 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3955 (((-85) $) 90 T ELT)) (-3954 (($ $) 93 T ELT)) (-3948 (($ $ $ (-696)) 104 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-3942 (($ (-741 |#1|) |#2|) NIL T ELT) (($ (-805 |#1|) |#2|) 28 T ELT)) (-3940 (($ $) 120 T ELT)) (-3945 (((-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3959 (((-741 |#1|) $) NIL T ELT)) (-3960 (((-741 |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3944 (($ $ |#1|) NIL T ELT) (($ $ (-741 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3946 (($ $ (-696)) 113 (|has| |#2| (-656 (-350 (-486)))) ELT)) (-1754 (((-2 (|:| |k| (-805 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2897 (((-805 |#1|) $) 84 T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3947 (($ $ (-696)) 110 (|has| |#2| (-656 (-350 (-486)))) ELT)) (-3952 (((-696) $) 100 T ELT)) (-3957 (((-85) $) 85 T ELT)) (-3956 ((|#2| $) 88 T ELT)) (-3950 (((-774) $) 70 T ELT) (($ (-486)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-741 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-805 |#1|)) NIL T ELT) (($ (-608 |#1| |#2|)) 47 T ELT) (((-1197 |#1| |#2|) $) 77 T ELT) (((-1206 |#1| |#2|) $) 82 T ELT)) (-3820 (((-585 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-805 |#1|)) NIL T ELT)) (-3958 ((|#2| $ (-741 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 21 T CONST)) (-2669 (($) 27 T CONST)) (-2668 (((-585 (-2 (|:| |k| (-805 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3949 (((-3 (-608 |#1| |#2|) #1#) $) 119 T ELT)) (-3059 (((-85) $ $) 78 T ELT)) (-3840 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3842 (($ $ $) 20 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-805 |#1|)) NIL T ELT))) -(((-1202 |#1| |#2|) (-13 (-1204 |#1| |#2|) (-335 |#2| (-805 |#1|)) (-10 -8 (-15 -3950 ($ (-608 |#1| |#2|))) (-15 -3950 ((-1197 |#1| |#2|) $)) (-15 -3950 ((-1206 |#1| |#2|) $)) (-15 -3949 ((-3 (-608 |#1| |#2|) "failed") $)) (-15 -3948 ($ $ $ (-696))) (IF (|has| |#2| (-656 (-350 (-486)))) (PROGN (-15 -3947 ($ $ (-696))) (-15 -3946 ($ $ (-696)))) |%noBranch|))) (-758) (-146)) (T -1202)) -((-3950 (*1 *1 *2) (-12 (-5 *2 (-608 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *1 (-1202 *3 *4)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-1206 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-3949 (*1 *2 *1) (|partial| -12 (-5 *2 (-608 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-3948 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-3947 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-656 (-350 (-486)))) (-4 *3 (-758)) (-4 *4 (-146)))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-656 (-350 (-486)))) (-4 *3 (-758)) (-4 *4 (-146))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3938 (((-585 (-1092)) $) NIL T ELT)) (-3965 (($ (-1197 (-1092) |#1|)) NIL T ELT)) (-3951 (($ $ (-696)) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3939 (($ $ $) NIL (|has| |#1| (-146)) ELT) (($ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-3727 (($) NIL T CONST)) (-3943 (($ $ (-1092)) NIL T ELT) (($ $ (-741 (-1092))) NIL T ELT) (($ $ $) NIL T ELT)) (-3160 (((-3 (-741 (-1092)) #1#) $) NIL T ELT)) (-3159 (((-741 (-1092)) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3955 (((-85) $) NIL T ELT)) (-3954 (($ $) NIL T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-3942 (($ (-741 (-1092)) |#1|) NIL T ELT)) (-3940 (($ $) NIL T ELT)) (-3945 (((-2 (|:| |k| (-741 (-1092))) (|:| |c| |#1|)) $) NIL T ELT)) (-3959 (((-741 (-1092)) $) NIL T ELT)) (-3960 (((-741 (-1092)) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3944 (($ $ (-1092)) NIL T ELT) (($ $ (-741 (-1092))) NIL T ELT) (($ $ $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3966 (((-1197 (-1092) |#1|) $) NIL T ELT)) (-3952 (((-696) $) NIL T ELT)) (-3957 (((-85) $) NIL T ELT)) (-3956 ((|#1| $) NIL T ELT)) (-3950 (((-774) $) NIL T ELT) (($ (-486)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-741 (-1092))) NIL T ELT) (($ (-1092)) NIL T ELT)) (-3958 ((|#1| $ (-741 (-1092))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3129 (((-696)) NIL T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-3964 (((-585 (-2 (|:| |k| (-1092)) (|:| |c| $))) $) NIL T ELT)) (-2669 (($) NIL T CONST)) (-3059 (((-85) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1092) $) NIL T ELT))) -(((-1203 |#1|) (-13 (-1204 (-1092) |#1|) (-10 -8 (-15 -3966 ((-1197 (-1092) |#1|) $)) (-15 -3965 ($ (-1197 (-1092) |#1|))) (-15 -3964 ((-585 (-2 (|:| |k| (-1092)) (|:| |c| $))) $)))) (-963)) (T -1203)) -((-3966 (*1 *2 *1) (-12 (-5 *2 (-1197 (-1092) *3)) (-5 *1 (-1203 *3)) (-4 *3 (-963)))) (-3965 (*1 *1 *2) (-12 (-5 *2 (-1197 (-1092) *3)) (-4 *3 (-963)) (-5 *1 (-1203 *3)))) (-3964 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |k| (-1092)) (|:| |c| (-1203 *3))))) (-5 *1 (-1203 *3)) (-4 *3 (-963))))) -((-2571 (((-85) $ $) 7 T ELT)) (-3191 (((-85) $) 22 T ELT)) (-3938 (((-585 |#1|) $) 56 T ELT)) (-3951 (($ $ (-696)) 90 T ELT)) (-1314 (((-3 $ "failed") $ $) 26 T ELT)) (-3939 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-696)) 57 (|has| |#2| (-146)) ELT)) (-3727 (($) 23 T CONST)) (-3943 (($ $ |#1|) 69 T ELT) (($ $ (-741 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3160 (((-3 (-741 |#1|) "failed") $) 79 T ELT)) (-3159 (((-741 |#1|) $) 80 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3955 (((-85) $) 60 T ELT)) (-3954 (($ $) 59 T ELT)) (-1216 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3941 (((-85) $) 65 T ELT)) (-3942 (($ (-741 |#1|) |#2|) 66 T ELT)) (-3940 (($ $) 64 T ELT)) (-3945 (((-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3959 (((-741 |#1|) $) 76 T ELT)) (-3960 (((-741 |#1|) $) 92 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) 81 T ELT)) (-3944 (($ $ |#1|) 72 T ELT) (($ $ (-741 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3245 (((-1075) $) 11 T ELT)) (-3246 (((-1035) $) 12 T ELT)) (-3952 (((-696) $) 91 T ELT)) (-3957 (((-85) $) 62 T ELT)) (-3956 ((|#2| $) 61 T ELT)) (-3950 (((-774) $) 13 T ELT) (($ (-486)) 41 T ELT) (($ |#2|) 84 T ELT) (($ (-741 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3958 ((|#2| $ (-741 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3129 (((-696)) 40 T CONST)) (-1267 (((-85) $ $) 6 T ELT)) (-3128 (((-85) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-85) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-486) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 83 T ELT) (($ $ |#2|) 82 T ELT) (($ |#1| $) 77 T ELT))) -(((-1204 |#1| |#2|) (-113) (-758) (-963)) (T -1204)) -((-3960 (*1 *2 *1) (-12 (-4 *1 (-1204 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-741 *3)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-1204 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-696)))) (-3951 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1204 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963))))) -(-13 (-1201 |t#1| |t#2|) (-10 -8 (-15 -3960 ((-741 |t#1|) $)) (-15 -3952 ((-696) $)) (-15 -3951 ($ $ (-696))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-557 (-486)) . T) ((-557 (-741 |#1|)) . T) ((-557 |#2|) . T) ((-554 (-774)) . T) ((-381 |#2|) . T) ((-13) . T) ((-590 (-486)) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-592 |#2|) . T) ((-592 $) . T) ((-584 |#2|) |has| |#2| (-146)) ((-656 |#2|) |has| |#2| (-146)) ((-665) . T) ((-952 (-741 |#1|)) . T) ((-965 |#2|) . T) ((-970 |#2|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1063) . T) ((-1015) . T) ((-1131) . T) ((-1196 |#2|) . T) ((-1201 |#1| |#2|) . T)) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) NIL T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 43 T ELT)) (-3955 (((-85) $) 37 T ELT)) (-3954 (($ $) 38 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-2824 (((-585 $) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-3942 (($ |#2| |#1|) NIL T ELT)) (-3959 ((|#2| $) 25 T ELT)) (-3960 ((|#2| $) 23 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1754 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2897 ((|#2| $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3957 (((-85) $) 33 T ELT)) (-3956 ((|#1| $) 34 T ELT)) (-3950 (((-774) $) 66 T ELT) (($ (-486)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3820 (((-585 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ |#2|) NIL T ELT)) (-3958 ((|#1| $ |#2|) 29 T ELT)) (-3129 (((-696)) 14 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 30 T CONST)) (-2669 (($) 11 T CONST)) (-2668 (((-585 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3059 (((-85) $ $) 31 T ELT)) (-3953 (($ $ |#1|) 68 (|has| |#1| (-312)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 51 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 53 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3961 (((-696) $) 18 T ELT))) -(((-1205 |#1| |#2|) (-13 (-963) (-1196 |#1|) (-335 |#1| |#2|) (-557 |#2|) (-381 |#1|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3961 ((-696) $)) (-15 -3960 (|#2| $)) (-15 -3959 (|#2| $)) (-15 -3962 ($ $)) (-15 -3958 (|#1| $ |#2|)) (-15 -3957 ((-85) $)) (-15 -3956 (|#1| $)) (-15 -3955 ((-85) $)) (-15 -3954 ($ $)) (IF (|has| |#1| (-312)) (-15 -3953 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3991)) (-6 -3991) |%noBranch|) (IF (|has| |#1| (-6 -3995)) (-6 -3995) |%noBranch|) (IF (|has| |#1| (-6 -3996)) (-6 -3996) |%noBranch|))) (-963) (-756)) (T -1205)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-963)) (-4 *3 (-756)))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-963)) (-4 *3 (-756)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-963)) (-4 *4 (-756)))) (-3960 (*1 *2 *1) (-12 (-4 *2 (-756)) (-5 *1 (-1205 *3 *2)) (-4 *3 (-963)))) (-3959 (*1 *2 *1) (-12 (-4 *2 (-756)) (-5 *1 (-1205 *3 *2)) (-4 *3 (-963)))) (-3958 (*1 *2 *1 *3) (-12 (-4 *2 (-963)) (-5 *1 (-1205 *2 *3)) (-4 *3 (-756)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-963)) (-4 *4 (-756)))) (-3956 (*1 *2 *1) (-12 (-4 *2 (-963)) (-5 *1 (-1205 *2 *3)) (-4 *3 (-756)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-963)) (-4 *4 (-756)))) (-3954 (*1 *1 *1) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-963)) (-4 *3 (-756)))) (-3953 (*1 *1 *1 *2) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-312)) (-4 *2 (-963)) (-4 *3 (-756))))) -((-2571 (((-85) $ $) 27 T ELT)) (-3191 (((-85) $) NIL T ELT)) (-3938 (((-585 |#1|) $) 132 T ELT)) (-3965 (($ (-1197 |#1| |#2|)) 50 T ELT)) (-3951 (($ $ (-696)) 38 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3939 (($ $ $) 54 (|has| |#2| (-146)) ELT) (($ $ (-696)) 52 (|has| |#2| (-146)) ELT)) (-3727 (($) NIL T CONST)) (-3943 (($ $ |#1|) 114 T ELT) (($ $ (-741 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3160 (((-3 (-741 |#1|) #1#) $) NIL T ELT)) (-3159 (((-741 |#1|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 122 T ELT)) (-3955 (((-85) $) 117 T ELT)) (-3954 (($ $) 118 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3941 (((-85) $) NIL T ELT)) (-3942 (($ (-741 |#1|) |#2|) 20 T ELT)) (-3940 (($ $) NIL T ELT)) (-3945 (((-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3959 (((-741 |#1|) $) 123 T ELT)) (-3960 (((-741 |#1|) $) 126 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3944 (($ $ |#1|) 112 T ELT) (($ $ (-741 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3966 (((-1197 |#1| |#2|) $) 94 T ELT)) (-3952 (((-696) $) 129 T ELT)) (-3957 (((-85) $) 81 T ELT)) (-3956 ((|#2| $) 32 T ELT)) (-3950 (((-774) $) 73 T ELT) (($ (-486)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-741 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3958 ((|#2| $ (-741 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3129 (((-696)) 120 T CONST)) (-1267 (((-85) $ $) NIL T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 15 T CONST)) (-3964 (((-585 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2669 (($) 33 T CONST)) (-3059 (((-85) $ $) 14 T ELT)) (-3840 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3842 (($ $ $) 61 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 55 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) 53 T ELT) (($ (-486) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) -(((-1206 |#1| |#2|) (-13 (-1204 |#1| |#2|) (-10 -8 (-15 -3966 ((-1197 |#1| |#2|) $)) (-15 -3965 ($ (-1197 |#1| |#2|))) (-15 -3964 ((-585 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-758) (-963)) (T -1206)) -((-3966 (*1 *2 *1) (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)))) (-3965 (*1 *1 *2) (-12 (-5 *2 (-1197 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *1 (-1206 *3 *4)))) (-3964 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |k| *3) (|:| |c| (-1206 *3 *4))))) (-5 *1 (-1206 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3968 (($ (-585 (-832))) 11 T ELT)) (-3967 (((-886) $) 12 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3950 (((-774) $) 25 T ELT) (($ (-886)) 14 T ELT) (((-886) $) 13 T ELT)) (-1267 (((-85) $ $) NIL T ELT)) (-3059 (((-85) $ $) 17 T ELT))) -(((-1207) (-13 (-1015) (-431 (-886)) (-10 -8 (-15 -3968 ($ (-585 (-832)))) (-15 -3967 ((-886) $))))) (T -1207)) -((-3968 (*1 *1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1207)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-1207))))) -((-3969 (((-585 (-1071 |#1|)) (-1 (-585 (-1071 |#1|)) (-585 (-1071 |#1|))) (-486)) 16 T ELT) (((-1071 |#1|) (-1 (-1071 |#1|) (-1071 |#1|))) 13 T ELT))) -(((-1208 |#1|) (-10 -7 (-15 -3969 ((-1071 |#1|) (-1 (-1071 |#1|) (-1071 |#1|)))) (-15 -3969 ((-585 (-1071 |#1|)) (-1 (-585 (-1071 |#1|)) (-585 (-1071 |#1|))) (-486)))) (-1131)) (T -1208)) -((-3969 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-585 (-1071 *5)) (-585 (-1071 *5)))) (-5 *4 (-486)) (-5 *2 (-585 (-1071 *5))) (-5 *1 (-1208 *5)) (-4 *5 (-1131)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-1 (-1071 *4) (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1208 *4)) (-4 *4 (-1131))))) -((-3971 (((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|))) 174 T ELT) (((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85)) 173 T ELT) (((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85) (-85)) 172 T ELT) (((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85) (-85) (-85)) 171 T ELT) (((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-960 |#1| |#2|)) 156 T ELT)) (-3970 (((-585 (-960 |#1| |#2|)) (-585 (-859 |#1|))) 85 T ELT) (((-585 (-960 |#1| |#2|)) (-585 (-859 |#1|)) (-85)) 84 T ELT) (((-585 (-960 |#1| |#2|)) (-585 (-859 |#1|)) (-85) (-85)) 83 T ELT)) (-3974 (((-585 (-1062 |#1| (-471 (-775 |#3|)) (-775 |#3|) (-705 |#1| (-775 |#3|)))) (-960 |#1| |#2|)) 73 T ELT)) (-3972 (((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|))) 140 T ELT) (((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85)) 139 T ELT) (((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85) (-85)) 138 T ELT) (((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85) (-85) (-85)) 137 T ELT) (((-585 (-585 (-939 (-350 |#1|)))) (-960 |#1| |#2|)) 132 T ELT)) (-3973 (((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|))) 145 T ELT) (((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85)) 144 T ELT) (((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85) (-85)) 143 T ELT) (((-585 (-585 (-939 (-350 |#1|)))) (-960 |#1| |#2|)) 142 T ELT)) (-3975 (((-585 (-705 |#1| (-775 |#3|))) (-1062 |#1| (-471 (-775 |#3|)) (-775 |#3|) (-705 |#1| (-775 |#3|)))) 111 T ELT) (((-1087 (-939 (-350 |#1|))) (-1087 |#1|)) 102 T ELT) (((-859 (-939 (-350 |#1|))) (-705 |#1| (-775 |#3|))) 109 T ELT) (((-859 (-939 (-350 |#1|))) (-859 |#1|)) 107 T ELT) (((-705 |#1| (-775 |#3|)) (-705 |#1| (-775 |#2|))) 33 T ELT))) -(((-1209 |#1| |#2| |#3|) (-10 -7 (-15 -3970 ((-585 (-960 |#1| |#2|)) (-585 (-859 |#1|)) (-85) (-85))) (-15 -3970 ((-585 (-960 |#1| |#2|)) (-585 (-859 |#1|)) (-85))) (-15 -3970 ((-585 (-960 |#1| |#2|)) (-585 (-859 |#1|)))) (-15 -3971 ((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-960 |#1| |#2|))) (-15 -3971 ((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85) (-85) (-85))) (-15 -3971 ((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85) (-85))) (-15 -3971 ((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85))) (-15 -3971 ((-585 (-2 (|:| -1752 (-1087 |#1|)) (|:| -3227 (-585 (-859 |#1|))))) (-585 (-859 |#1|)))) (-15 -3972 ((-585 (-585 (-939 (-350 |#1|)))) (-960 |#1| |#2|))) (-15 -3972 ((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85) (-85) (-85))) (-15 -3972 ((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85) (-85))) (-15 -3972 ((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85))) (-15 -3972 ((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)))) (-15 -3973 ((-585 (-585 (-939 (-350 |#1|)))) (-960 |#1| |#2|))) (-15 -3973 ((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85) (-85))) (-15 -3973 ((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)) (-85))) (-15 -3973 ((-585 (-585 (-939 (-350 |#1|)))) (-585 (-859 |#1|)))) (-15 -3974 ((-585 (-1062 |#1| (-471 (-775 |#3|)) (-775 |#3|) (-705 |#1| (-775 |#3|)))) (-960 |#1| |#2|))) (-15 -3975 ((-705 |#1| (-775 |#3|)) (-705 |#1| (-775 |#2|)))) (-15 -3975 ((-859 (-939 (-350 |#1|))) (-859 |#1|))) (-15 -3975 ((-859 (-939 (-350 |#1|))) (-705 |#1| (-775 |#3|)))) (-15 -3975 ((-1087 (-939 (-350 |#1|))) (-1087 |#1|))) (-15 -3975 ((-585 (-705 |#1| (-775 |#3|))) (-1062 |#1| (-471 (-775 |#3|)) (-775 |#3|) (-705 |#1| (-775 |#3|)))))) (-13 (-757) (-258) (-120) (-935)) (-585 (-1092)) (-585 (-1092))) (T -1209)) -((-3975 (*1 *2 *3) (-12 (-5 *3 (-1062 *4 (-471 (-775 *6)) (-775 *6) (-705 *4 (-775 *6)))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *6 (-585 (-1092))) (-5 *2 (-585 (-705 *4 (-775 *6)))) (-5 *1 (-1209 *4 *5 *6)) (-14 *5 (-585 (-1092))))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-1087 (-939 (-350 *4)))) (-5 *1 (-1209 *4 *5 *6)) (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092))))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-705 *4 (-775 *6))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *6 (-585 (-1092))) (-5 *2 (-859 (-939 (-350 *4)))) (-5 *1 (-1209 *4 *5 *6)) (-14 *5 (-585 (-1092))))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-859 *4)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-859 (-939 (-350 *4)))) (-5 *1 (-1209 *4 *5 *6)) (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092))))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-705 *4 (-775 *5))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *5 (-585 (-1092))) (-5 *2 (-705 *4 (-775 *6))) (-5 *1 (-1209 *4 *5 *6)) (-14 *6 (-585 (-1092))))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *5 (-585 (-1092))) (-5 *2 (-585 (-1062 *4 (-471 (-775 *6)) (-775 *6) (-705 *4 (-775 *6))))) (-5 *1 (-1209 *4 *5 *6)) (-14 *6 (-585 (-1092))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-350 *4))))) (-5 *1 (-1209 *4 *5 *6)) (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092))))) (-3973 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) (-3973 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *5 (-585 (-1092))) (-5 *2 (-585 (-585 (-939 (-350 *4))))) (-5 *1 (-1209 *4 *5 *6)) (-14 *6 (-585 (-1092))))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-350 *4))))) (-5 *1 (-1209 *4 *5 *6)) (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092))))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) (-3972 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) (-3972 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *5 (-585 (-1092))) (-5 *2 (-585 (-585 (-939 (-350 *4))))) (-5 *1 (-1209 *4 *5 *6)) (-14 *6 (-585 (-1092))))) (-3971 (*1 *2 *3) (-12 (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-2 (|:| -1752 (-1087 *4)) (|:| -3227 (-585 (-859 *4)))))) (-5 *1 (-1209 *4 *5 *6)) (-5 *3 (-585 (-859 *4))) (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092))))) (-3971 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) (-5 *1 (-1209 *5 *6 *7)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) (-3971 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) (-5 *1 (-1209 *5 *6 *7)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) (-3971 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) (-5 *1 (-1209 *5 *6 *7)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *5 (-585 (-1092))) (-5 *2 (-585 (-2 (|:| -1752 (-1087 *4)) (|:| -3227 (-585 (-859 *4)))))) (-5 *1 (-1209 *4 *5 *6)) (-14 *6 (-585 (-1092))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-960 *4 *5))) (-5 *1 (-1209 *4 *5 *6)) (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092))))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-1209 *5 *6 *7)) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) (-3970 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-1209 *5 *6 *7)) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092)))))) -((-3978 (((-3 (-1181 (-350 (-486))) #1="failed") (-1181 |#1|) |#1|) 21 T ELT)) (-3976 (((-85) (-1181 |#1|)) 12 T ELT)) (-3977 (((-3 (-1181 (-486)) #1#) (-1181 |#1|)) 16 T ELT))) -(((-1210 |#1|) (-10 -7 (-15 -3976 ((-85) (-1181 |#1|))) (-15 -3977 ((-3 (-1181 (-486)) #1="failed") (-1181 |#1|))) (-15 -3978 ((-3 (-1181 (-350 (-486))) #1#) (-1181 |#1|) |#1|))) (-13 (-963) (-582 (-486)))) (T -1210)) -((-3978 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 (-486)))) (-5 *2 (-1181 (-350 (-486)))) (-5 *1 (-1210 *4)))) (-3977 (*1 *2 *3) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 (-486)))) (-5 *2 (-1181 (-486))) (-5 *1 (-1210 *4)))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 (-486)))) (-5 *2 (-85)) (-5 *1 (-1210 *4))))) -((-2571 (((-85) $ $) NIL T ELT)) (-3191 (((-85) $) 12 T ELT)) (-1314 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-696)) 9 T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) 57 T ELT)) (-2997 (($) 46 T ELT)) (-1216 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 38 T ELT)) (-3448 (((-634 $) $) 36 T ELT)) (-2012 (((-832) $) 14 T ELT)) (-3245 (((-1075) $) NIL T ELT)) (-3449 (($) 26 T CONST)) (-2402 (($ (-832)) 47 T ELT)) (-3246 (((-1035) $) NIL T ELT)) (-3975 (((-486) $) 16 T ELT)) (-3950 (((-774) $) 21 T ELT) (($ (-486)) 18 T ELT)) (-3129 (((-696)) 10 T CONST)) (-1267 (((-85) $ $) 59 T ELT)) (-3128 (((-85) $ $) NIL T ELT)) (-2663 (($) 23 T CONST)) (-2669 (($) 25 T CONST)) (-3059 (((-85) $ $) 31 T ELT)) (-3840 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3842 (($ $ $) 29 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 52 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-486) $) 41 T ELT) (($ $ $) 40 T ELT))) -(((-1211 |#1|) (-13 (-146) (-320) (-555 (-486)) (-1068)) (-832)) (T -1211)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 2793071 2793076 2793081 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2793056 2793061 2793066 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2793041 2793046 2793051 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2793026 2793031 2793036 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1211 2792005 2792944 2793021 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1210 2791220 2791399 2791618 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1209 2782379 2784248 2786182 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1208 2781767 2781920 2782109 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1207 2781229 2781532 2781645 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1206 2778789 2780691 2780894 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1205 2775673 2777326 2777876 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1204 2772912 2774642 2774696 "XPOLYC" 2774981 XPOLYC (NIL T T) -9 NIL 2775094 NIL) (-1203 2770431 2772416 2772619 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1202 2766679 2769290 2769678 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1201 2761629 2763262 2763316 "XFALG" 2765362 XFALG (NIL T T) -9 NIL 2766124 NIL) (-1200 2756785 2759518 2759560 "XF" 2760178 XF (NIL T) -9 NIL 2760574 NIL) (-1199 2756503 2756613 2756780 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1198 2755730 2755852 2756056 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1197 2753472 2755630 2755725 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1196 2752053 2752848 2752890 "XALG" 2752895 XALG (NIL T) -9 NIL 2753004 NIL) (-1195 2745904 2750463 2750941 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1194 2744147 2745149 2745470 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1193 2743746 2744018 2744087 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1192 2743233 2743536 2743629 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1191 2742310 2742520 2742815 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1190 2740606 2741069 2741531 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1189 2739495 2740080 2740122 "VSPACE" 2740258 VSPACE (NIL T) -9 NIL 2740332 NIL) (-1188 2739366 2739399 2739490 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1187 2739209 2739263 2739331 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1186 2736192 2736987 2737724 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1185 2727290 2729891 2732064 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1184 2720867 2722758 2724337 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1183 2719351 2719746 2720152 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1182 2718178 2718459 2718775 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1181 2713575 2718005 2718097 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1180 2706901 2711230 2711273 "VECTCAT" 2712261 VECTCAT (NIL T) -9 NIL 2712845 NIL) (-1179 2706180 2706506 2706896 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1178 2705674 2705916 2706036 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1177 2705607 2705612 2705642 "UTYPE" 2705647 UTYPE (NIL) -9 NIL NIL NIL) (-1176 2704594 2704770 2705031 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1175 2702445 2702953 2703477 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1174 2692309 2698279 2698321 "UTSCAT" 2699419 UTSCAT (NIL T) -9 NIL 2700176 NIL) (-1173 2690374 2691317 2692304 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1172 2690048 2690097 2690228 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1171 2681759 2688244 2688723 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1170 2676303 2678576 2678619 "URAGG" 2680659 URAGG (NIL T) -9 NIL 2681384 NIL) (-1169 2674374 2675306 2676298 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1168 2670081 2673350 2673812 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1167 2662510 2670005 2670076 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1166 2651143 2658630 2658691 "UPXSCCA" 2659259 UPXSCCA (NIL T T) -9 NIL 2659491 NIL) (-1165 2650864 2650966 2651138 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1164 2639398 2646610 2646652 "UPXSCAT" 2647292 UPXSCAT (NIL T) -9 NIL 2647900 NIL) (-1163 2638911 2638996 2639173 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1162 2630597 2638502 2638764 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1161 2629492 2629762 2630112 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1160 2622177 2625662 2625716 "UPSCAT" 2626785 UPSCAT (NIL T T) -9 NIL 2627549 NIL) (-1159 2621597 2621849 2622172 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1158 2621271 2621320 2621451 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1157 2605382 2614337 2614379 "UPOLYC" 2616457 UPOLYC (NIL T) -9 NIL 2617677 NIL) (-1156 2599437 2602285 2605377 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1155 2598873 2598998 2599161 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1154 2598507 2598594 2598733 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1153 2597320 2597587 2597891 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1152 2596653 2596783 2596968 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1151 2596245 2596320 2596467 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1150 2587009 2596011 2596139 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1149 2586371 2586508 2586713 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1148 2584972 2585819 2586095 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1147 2584201 2584398 2584623 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1146 2571011 2584125 2584196 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1145 2550767 2564002 2564063 "ULSCCAT" 2564694 ULSCCAT (NIL T T) -9 NIL 2564981 NIL) (-1144 2550102 2550388 2550762 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1143 2538456 2545590 2545632 "ULSCAT" 2546485 ULSCAT (NIL T) -9 NIL 2547215 NIL) (-1142 2537969 2538054 2538231 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1141 2520086 2537468 2537709 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1140 2519120 2519813 2519927 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2520038) (-1139 2518153 2518846 2518960 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2519071) (-1138 2517186 2517879 2517993 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2518104) (-1137 2516219 2516912 2517026 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2517137) (-1136 2514226 2515447 2515477 "UFD" 2515688 UFD (NIL) -9 NIL 2515801 NIL) (-1135 2514070 2514127 2514221 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1134 2513322 2513529 2513745 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1133 2511542 2511995 2512460 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1132 2511267 2511507 2511537 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1131 2511205 2511210 2511240 "TYPE" 2511245 TYPE (NIL) -9 NIL 2511252 NIL) (-1130 2510364 2510584 2510824 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1129 2509542 2509973 2510208 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1128 2507696 2508269 2508808 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1127 2506730 2506966 2507202 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1126 2495328 2499505 2499601 "TSETCAT" 2504816 TSETCAT (NIL T T T T) -9 NIL 2506320 NIL) (-1125 2491665 2493481 2495323 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1124 2486057 2490891 2491173 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1123 2481394 2482407 2483336 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1122 2480891 2480966 2481129 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1121 2478967 2479257 2479612 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1120 2478451 2478600 2478630 "TRIGCAT" 2478843 TRIGCAT (NIL) -9 NIL NIL NIL) (-1119 2478202 2478305 2478446 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1118 2475198 2477308 2477589 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1117 2474304 2475000 2475030 "TRANFUN" 2475065 TRANFUN (NIL) -9 NIL 2475131 NIL) (-1116 2473768 2474019 2474299 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1115 2473605 2473643 2473704 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1114 2473062 2473193 2473344 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1113 2471803 2472460 2472696 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1112 2471615 2471652 2471724 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1111 2469829 2470475 2470904 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1110 2468209 2468546 2468868 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1109 2458194 2465898 2465954 "TBAGG" 2466271 TBAGG (NIL T T) -9 NIL 2466481 NIL) (-1108 2455599 2456854 2458189 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1107 2455076 2455201 2455346 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1106 2454586 2454906 2454996 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1105 2454083 2454200 2454338 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1104 2446587 2454011 2454078 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1103 2442340 2443635 2444880 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1102 2441709 2441868 2442049 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1101 2438863 2439616 2440399 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1100 2438637 2438827 2438858 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1099 2437591 2438276 2438402 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2438588) (-1098 2436855 2437403 2437482 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2437542) (-1097 2433678 2434837 2435537 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1096 2431361 2432044 2432678 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1095 2427439 2428485 2429462 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1094 2424538 2427094 2427323 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1093 2424134 2424221 2424343 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1092 2420758 2422232 2423051 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1091 2413718 2419955 2420248 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1090 2405404 2413309 2413571 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1089 2404683 2404822 2405039 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1088 2404367 2404432 2404543 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1087 2395090 2404079 2404204 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1086 2393820 2394118 2394473 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1085 2393225 2393303 2393494 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1084 2375377 2392724 2392965 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1083 2374976 2375248 2375317 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1082 2374312 2374593 2374733 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1081 2368914 2370173 2371126 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1080 2368446 2368546 2368710 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1079 2363557 2364839 2365986 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1078 2358015 2359486 2360797 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1077 2350930 2352994 2354785 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1076 2343099 2350868 2350925 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1075 2338048 2342813 2342928 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1074 2337635 2337718 2337862 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1073 2336786 2336987 2337222 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1072 2336526 2336584 2336677 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1071 2330052 2334729 2335337 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1070 2329228 2329433 2329664 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1069 2328473 2328844 2328991 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1068 2327961 2328203 2328233 "STEP" 2328327 STEP (NIL) -9 NIL 2328398 NIL) (-1067 2320455 2327879 2327956 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1066 2315480 2319235 2319278 "STAGG" 2319705 STAGG (NIL T) -9 NIL 2319879 NIL) (-1065 2313938 2314646 2315475 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1064 2312100 2313765 2313857 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1063 2311380 2311919 2311949 "SRING" 2311954 SRING (NIL) -9 NIL 2311974 NIL) (-1062 2304295 2309918 2310357 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1061 2298069 2299508 2301012 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1060 2290686 2295344 2295374 "SRAGG" 2296673 SRAGG (NIL) -9 NIL 2297277 NIL) (-1059 2289983 2290303 2290681 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1058 2284089 2289305 2289728 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1057 2278018 2281442 2282193 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1056 2274447 2275266 2275903 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1055 2273422 2273727 2273757 "SPFCAT" 2274201 SPFCAT (NIL) -9 NIL NIL NIL) (-1054 2272359 2272611 2272875 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1053 2263117 2265391 2265421 "SPADXPT" 2270058 SPADXPT (NIL) -9 NIL 2272182 NIL) (-1052 2262919 2262965 2263034 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1051 2260575 2262883 2262914 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1050 2252249 2254338 2254380 "SPACEC" 2258695 SPACEC (NIL T) -9 NIL 2260500 NIL) (-1049 2250078 2252196 2252244 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1048 2249057 2249246 2249529 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1047 2247461 2247794 2248205 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1046 2246726 2246960 2247221 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1045 2242906 2243866 2244861 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1044 2239264 2239963 2240692 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1043 2233286 2238549 2238645 "SNTSCAT" 2238650 SNTSCAT (NIL T T T T) -9 NIL 2238720 NIL) (-1042 2227107 2231927 2232317 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1041 2220879 2227026 2227102 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1040 2219311 2219642 2220040 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1039 2210925 2215859 2215961 "SMATCAT" 2217304 SMATCAT (NIL NIL T T T) -9 NIL 2217852 NIL) (-1038 2208766 2209750 2210920 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1037 2208368 2208540 2208583 "SMAGG" 2208668 SMAGG (NIL T) -9 NIL 2208725 NIL) (-1036 2205911 2207517 2207560 "SKAGG" 2207821 SKAGG (NIL T) -9 NIL 2207957 NIL) (-1035 2201957 2205731 2205842 "SINT" NIL SINT (NIL) -8 NIL NIL 2205883) (-1034 2201767 2201811 2201877 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1033 2200842 2201074 2201342 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1032 2199846 2200008 2200284 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1031 2199192 2199532 2199655 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1030 2198538 2198845 2198985 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1029 2196649 2197141 2197647 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1028 2190133 2196568 2196644 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1027 2189636 2189873 2189903 "SGROUP" 2189996 SGROUP (NIL) -9 NIL 2190058 NIL) (-1026 2189526 2189558 2189631 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1025 2189164 2189204 2189245 "SGPOPC" 2189250 SGPOPC (NIL T) -9 NIL 2189451 NIL) (-1024 2188698 2188975 2189081 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1023 2186121 2186890 2187612 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1022 2180242 2185505 2185601 "SFRTCAT" 2185606 SFRTCAT (NIL T T T T) -9 NIL 2185644 NIL) (-1021 2174634 2175747 2176874 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1020 2168810 2169971 2171135 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1019 2167782 2168684 2168805 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1018 2163390 2164285 2164380 "SEXCAT" 2166993 SEXCAT (NIL T T T T T) -9 NIL 2167544 NIL) (-1017 2162363 2163317 2163385 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1016 2160754 2161339 2161641 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1015 2160277 2160462 2160492 "SETCAT" 2160609 SETCAT (NIL) -9 NIL 2160693 NIL) (-1014 2160109 2160173 2160272 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1013 2157161 2158545 2158588 "SETAGG" 2159456 SETAGG (NIL T) -9 NIL 2159794 NIL) (-1012 2156767 2156919 2157156 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1011 2154012 2156714 2156762 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1010 2153478 2153788 2153888 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1009 2152605 2152971 2153032 "SEGXCAT" 2153318 SEGXCAT (NIL T T) -9 NIL 2153438 NIL) (-1008 2151530 2151798 2151841 "SEGCAT" 2152363 SEGCAT (NIL T) -9 NIL 2152584 NIL) (-1007 2151210 2151275 2151388 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1006 2150276 2150746 2150954 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1005 2149854 2150133 2150209 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1004 2149219 2149355 2149559 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1003 2148285 2149032 2149214 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1002 2147538 2148233 2148280 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1001 2139023 2147405 2147533 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1000 2137877 2138167 2138486 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-999 2137183 2137395 2137583 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-998 2136533 2136690 2136866 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-997 2136106 2136337 2136365 "SASTCAT" 2136370 SASTCAT (NIL) -9 NIL 2136383 NIL) (-996 2135573 2135998 2136072 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-995 2135176 2135217 2135388 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-994 2134807 2134848 2135005 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-993 2127888 2134724 2134802 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-992 2126538 2126867 2127263 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-991 2125299 2125660 2125960 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-990 2124923 2125144 2125225 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-989 2122383 2123017 2123470 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-988 2122222 2122255 2122323 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-987 2121713 2122016 2122107 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-986 2117341 2118209 2119120 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-985 2106396 2111659 2111753 "RSETCAT" 2115809 RSETCAT (NIL T T T T) -9 NIL 2116897 NIL) (-984 2104934 2105576 2106391 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-983 2098708 2100153 2101660 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-982 2096590 2097147 2097219 "RRCC" 2098292 RRCC (NIL T T) -9 NIL 2098633 NIL) (-981 2096115 2096314 2096585 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-980 2095585 2095895 2095993 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-979 2068118 2078832 2078896 "RPOLCAT" 2089370 RPOLCAT (NIL T T T) -9 NIL 2092515 NIL) (-978 2062217 2065040 2068113 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-977 2058384 2061965 2062103 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-976 2056712 2057451 2057707 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-975 2052355 2055167 2055195 "RNS" 2055457 RNS (NIL) -9 NIL 2055709 NIL) (-974 2051258 2051745 2052282 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-973 2050376 2050777 2050977 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-972 2049514 2050076 2050104 "RNG" 2050164 RNG (NIL) -9 NIL 2050218 NIL) (-971 2049403 2049437 2049509 "RNG-" NIL RNG- (NIL T) -7 NIL NIL NIL) (-970 2048665 2049170 2049210 "RMODULE" 2049215 RMODULE (NIL T) -9 NIL 2049241 NIL) (-969 2047604 2047710 2048040 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-968 2044501 2047194 2047487 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-967 2037342 2039786 2039898 "RMATCAT" 2043069 RMATCAT (NIL NIL NIL T T T) -9 NIL 2044000 NIL) (-966 2036859 2037038 2037337 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-965 2036427 2036638 2036679 "RLINSET" 2036740 RLINSET (NIL T) -9 NIL 2036784 NIL) (-964 2036072 2036153 2036279 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-963 2034918 2035649 2035677 "RING" 2035732 RING (NIL) -9 NIL 2035824 NIL) (-962 2034763 2034819 2034913 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-961 2033817 2034084 2034340 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-960 2025041 2033445 2033646 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-959 2024266 2024777 2024816 "RGBCSPC" 2024873 RGBCSPC (NIL T) -9 NIL 2024924 NIL) (-958 2023300 2023786 2023825 "RGBCMDL" 2024053 RGBCMDL (NIL T) -9 NIL 2024167 NIL) (-957 2023012 2023081 2023182 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-956 2022775 2022816 2022911 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-955 2021199 2021629 2022009 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-954 2018786 2019454 2020122 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-953 2018336 2018434 2018594 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-952 2017958 2018056 2018097 "RETRACT" 2018228 RETRACT (NIL T) -9 NIL 2018315 NIL) (-951 2017838 2017869 2017953 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-950 2017440 2017712 2017779 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-949 2015920 2016811 2017008 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-948 2015611 2015672 2015768 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-947 2015354 2015395 2015500 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-946 2015089 2015130 2015239 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-945 2010160 2011611 2012826 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-944 2007256 2008014 2008822 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-943 2005225 2005847 2006447 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-942 1998153 2003776 2004212 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-941 1997465 1997745 1997894 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-940 1996950 1997065 1997230 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-939 1992543 1996353 1996574 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-938 1991775 1991974 1992187 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-937 1989065 1989903 1990785 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-936 1985647 1986683 1987742 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-935 1985483 1985536 1985564 "REAL" 1985569 REAL (NIL) -9 NIL 1985604 NIL) (-934 1984973 1985277 1985368 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-933 1984453 1984531 1984736 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-932 1983686 1983878 1984089 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-931 1982574 1982871 1983238 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-930 1980841 1981311 1981844 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-929 1979765 1980042 1980429 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-928 1978594 1978903 1979322 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-927 1971942 1975454 1975482 "RCFIELD" 1976759 RCFIELD (NIL) -9 NIL 1977489 NIL) (-926 1970560 1971172 1971869 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-925 1967314 1968646 1968687 "RCAGG" 1969741 RCAGG (NIL T) -9 NIL 1970203 NIL) (-924 1967041 1967151 1967309 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-923 1966486 1966615 1966776 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-922 1966103 1966182 1966301 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-921 1965518 1965668 1965818 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-920 1965300 1965350 1965421 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-919 1957742 1964418 1964726 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-918 1947444 1957609 1957737 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-917 1947078 1947171 1947199 "RADCAT" 1947356 RADCAT (NIL) -9 NIL NIL NIL) (-916 1946916 1946976 1947073 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-915 1945021 1946747 1946836 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-914 1944702 1944751 1944878 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-913 1936971 1941055 1941095 "QUATCAT" 1941873 QUATCAT (NIL T) -9 NIL 1942637 NIL) (-912 1934221 1935501 1936877 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-911 1930061 1934171 1934216 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-910 1927399 1929058 1929099 "QUAGG" 1929474 QUAGG (NIL T) -9 NIL 1929650 NIL) (-909 1927001 1927273 1927340 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-908 1926007 1926637 1926800 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-907 1925688 1925737 1925864 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-906 1915270 1921439 1921479 "QFCAT" 1922137 QFCAT (NIL T) -9 NIL 1923130 NIL) (-905 1912154 1913593 1915176 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-904 1911700 1911834 1911964 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-903 1905896 1907057 1908219 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-902 1905315 1905495 1905727 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-901 1903137 1903665 1904088 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-900 1902036 1902278 1902595 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-899 1900397 1900595 1900948 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-898 1896153 1897369 1897410 "PTRANFN" 1899294 PTRANFN (NIL T) -9 NIL NIL NIL) (-897 1894800 1895145 1895466 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-896 1894493 1894556 1894663 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-895 1888790 1893234 1893274 "PTCAT" 1893566 PTCAT (NIL T) -9 NIL 1893719 NIL) (-894 1888483 1888524 1888648 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-893 1887362 1887678 1888012 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-892 1876241 1878802 1881111 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-891 1869443 1872006 1872100 "PSETCAT" 1875074 PSETCAT (NIL T T T T) -9 NIL 1875883 NIL) (-890 1867893 1868627 1869438 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-889 1867212 1867407 1867435 "PSCURVE" 1867703 PSCURVE (NIL) -9 NIL 1867870 NIL) (-888 1862796 1864616 1864680 "PSCAT" 1865515 PSCAT (NIL T T T) -9 NIL 1865754 NIL) (-887 1862110 1862392 1862791 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-886 1860507 1861422 1861685 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-885 1859998 1860301 1860392 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-884 1851018 1853440 1855628 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-883 1848712 1850281 1850321 "PRQAGG" 1850504 PRQAGG (NIL T) -9 NIL 1850607 NIL) (-882 1847885 1848331 1848359 "PROPLOG" 1848498 PROPLOG (NIL) -9 NIL 1848612 NIL) (-881 1847560 1847623 1847746 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-880 1846996 1847135 1847307 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-879 1845244 1846007 1846304 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-878 1844796 1844928 1845056 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-877 1839237 1843736 1844556 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-876 1839066 1839104 1839163 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-875 1838505 1838645 1838796 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-874 1836973 1837392 1837858 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-873 1836690 1836751 1836779 "PRIMCAT" 1836903 PRIMCAT (NIL) -9 NIL NIL NIL) (-872 1835861 1836057 1836285 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-871 1832022 1835811 1835856 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-870 1831721 1831783 1831894 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-869 1828857 1831370 1831603 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-868 1828308 1828465 1828493 "PPCURVE" 1828698 PPCURVE (NIL) -9 NIL 1828834 NIL) (-867 1827921 1828166 1828249 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-866 1825677 1826098 1826690 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-865 1825120 1825184 1825417 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-864 1821840 1822326 1822937 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-863 1807412 1813542 1813606 "POLYCAT" 1817091 POLYCAT (NIL T T T) -9 NIL 1818968 NIL) (-862 1802922 1805069 1807407 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-861 1802579 1802653 1802772 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-860 1802272 1802335 1802442 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-859 1795635 1802005 1802164 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-858 1794522 1794785 1795061 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-857 1793126 1793439 1793769 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-856 1788569 1793076 1793121 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-855 1787057 1787468 1787843 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-854 1785814 1786123 1786519 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-853 1785485 1785569 1785686 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-852 1785064 1785139 1785313 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-851 1784550 1784646 1784806 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-850 1784022 1784142 1784296 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-849 1782917 1783135 1783512 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-848 1782528 1782613 1782765 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-847 1782079 1782161 1782342 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-846 1781771 1781852 1781965 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-845 1781284 1781359 1781567 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-844 1780632 1780760 1780962 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-843 1779994 1780128 1780291 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-842 1779298 1779480 1779661 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-841 1779021 1779095 1779189 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-840 1775589 1776778 1777694 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-839 1774673 1774874 1775109 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-838 1770238 1771622 1772764 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-837 1750159 1755046 1759893 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-836 1749899 1749952 1750055 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-835 1749340 1749474 1749654 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-834 1747349 1748570 1748598 "PID" 1748795 PID (NIL) -9 NIL 1748922 NIL) (-833 1747137 1747180 1747255 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-832 1746324 1746984 1747071 "PI" NIL PI (NIL) -8 NIL NIL 1747111) (-831 1745776 1745927 1746103 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-830 1742104 1743062 1743967 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-829 1740468 1740757 1741123 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-828 1739910 1740025 1740186 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-827 1736451 1738779 1739132 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-826 1735057 1735337 1735662 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-825 1733822 1734076 1734424 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-824 1732532 1732759 1733111 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-823 1729542 1731102 1731130 "PFECAT" 1731723 PFECAT (NIL) -9 NIL 1732100 NIL) (-822 1729165 1729330 1729537 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-821 1727989 1728271 1728572 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-820 1726171 1726558 1726988 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-819 1722141 1726097 1726166 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-818 1718044 1719191 1720058 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-817 1715976 1717065 1717106 "PERMCAT" 1717505 PERMCAT (NIL T) -9 NIL 1717802 NIL) (-816 1715672 1715719 1715842 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-815 1712121 1713802 1714447 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-814 1710147 1711876 1711997 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-813 1709030 1709293 1709332 "PDSPC" 1709853 PDSPC (NIL T) -9 NIL 1710098 NIL) (-812 1708399 1708665 1709025 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-811 1707036 1708029 1708068 "PDRING" 1708073 PDRING (NIL T) -9 NIL 1708100 NIL) (-810 1705748 1706537 1706588 "PDMOD" 1706593 PDMOD (NIL T T) -9 NIL 1706696 NIL) (-809 1704841 1705053 1705302 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-808 1704446 1704513 1704567 "PDDOM" 1704732 PDDOM (NIL T T) -9 NIL 1704812 NIL) (-807 1704298 1704334 1704441 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-806 1704084 1704123 1704212 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-805 1702401 1703155 1703454 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-804 1702090 1702153 1702262 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-803 1700228 1700658 1701109 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-802 1693848 1695677 1696969 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-801 1693479 1693552 1693684 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-800 1691181 1691861 1692342 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-799 1689385 1689813 1690216 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-798 1688831 1689079 1689120 "PATMAB" 1689227 PATMAB (NIL T) -9 NIL 1689310 NIL) (-797 1687478 1687882 1688139 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-796 1687016 1687147 1687188 "PATAB" 1687193 PATAB (NIL T) -9 NIL 1687365 NIL) (-795 1685559 1685996 1686419 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-794 1685237 1685312 1685414 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-793 1684926 1684989 1685098 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-792 1684731 1684777 1684844 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-791 1684409 1684484 1684586 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-790 1684098 1684161 1684270 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-789 1683789 1683859 1683956 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-788 1683478 1683541 1683650 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-787 1682639 1683018 1683197 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-786 1682246 1682344 1682463 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-785 1681214 1681639 1681858 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-784 1679879 1680533 1680893 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-783 1672969 1679283 1679477 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-782 1665390 1672467 1672651 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-781 1662115 1664030 1664070 "PADICCT" 1664651 PADICCT (NIL NIL) -9 NIL 1664933 NIL) (-780 1660105 1662065 1662110 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-779 1659267 1659477 1659743 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-778 1658609 1658752 1658956 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-777 1656990 1658017 1658295 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-776 1656514 1656773 1656870 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-775 1655573 1656251 1656423 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-774 1645995 1648864 1651063 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-773 1645387 1645701 1645827 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-772 1644664 1644859 1644887 "OUTBCON" 1645205 OUTBCON (NIL) -9 NIL 1645371 NIL) (-771 1644372 1644502 1644659 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-770 1643753 1643898 1644059 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-769 1643124 1643551 1643640 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-768 1642539 1642954 1642982 "OSGROUP" 1642987 OSGROUP (NIL) -9 NIL 1643009 NIL) (-767 1641503 1641764 1642049 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-766 1638772 1641378 1641498 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-765 1635913 1638523 1638649 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-764 1633931 1634459 1635019 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-763 1627273 1629813 1629853 "OREPCAT" 1632174 OREPCAT (NIL T) -9 NIL 1633276 NIL) (-762 1625299 1626233 1627268 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-761 1624496 1624767 1624795 "ORDTYPE" 1625100 ORDTYPE (NIL) -9 NIL 1625258 NIL) (-760 1624030 1624241 1624491 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-759 1623492 1623868 1624025 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-758 1622986 1623349 1623377 "ORDSET" 1623382 ORDSET (NIL) -9 NIL 1623404 NIL) (-757 1621551 1622573 1622601 "ORDRING" 1622606 ORDRING (NIL) -9 NIL 1622634 NIL) (-756 1620799 1621356 1621384 "ORDMON" 1621389 ORDMON (NIL) -9 NIL 1621410 NIL) (-755 1620103 1620265 1620457 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-754 1619314 1619822 1619850 "ORDFIN" 1619915 ORDFIN (NIL) -9 NIL 1619989 NIL) (-753 1618708 1618847 1619033 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-752 1615383 1617676 1618082 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-751 1614790 1615145 1615250 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-750 1614598 1614643 1614709 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-749 1613899 1614175 1614216 "OPERCAT" 1614427 OPERCAT (NIL T) -9 NIL 1614523 NIL) (-748 1613711 1613778 1613894 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-747 1611077 1612513 1613009 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-746 1610498 1610625 1610799 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-745 1607399 1609637 1610003 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-744 1604265 1606774 1606814 "OMSAGG" 1606875 OMSAGG (NIL T) -9 NIL 1606939 NIL) (-743 1602677 1603936 1604104 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-742 1600873 1602114 1602142 "OINTDOM" 1602147 OINTDOM (NIL) -9 NIL 1602168 NIL) (-741 1598303 1599875 1600204 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-740 1597557 1598253 1598298 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-739 1594759 1597398 1597552 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-738 1586296 1594630 1594754 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-737 1579751 1586187 1586291 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-736 1578723 1578960 1579233 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-735 1576364 1577034 1577738 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-734 1572141 1573101 1574124 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-733 1571649 1571737 1571931 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-732 1569098 1569680 1570353 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-731 1566493 1567001 1567597 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-730 1563490 1564029 1564675 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-729 1562845 1562953 1563211 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-728 1562003 1562128 1562349 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-727 1558287 1559083 1559996 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-726 1557727 1557822 1558044 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-725 1557408 1557457 1557584 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-724 1554011 1557207 1557326 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-723 1553171 1553793 1553821 "OCAMON" 1553826 OCAMON (NIL) -9 NIL 1553847 NIL) (-722 1547365 1550179 1550219 "OC" 1551314 OC (NIL T) -9 NIL 1552170 NIL) (-721 1545365 1546291 1547271 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-720 1544781 1545199 1545227 "OASGP" 1545232 OASGP (NIL) -9 NIL 1545252 NIL) (-719 1543844 1544493 1544521 "OAMONS" 1544561 OAMONS (NIL) -9 NIL 1544604 NIL) (-718 1542989 1543570 1543598 "OAMON" 1543655 OAMON (NIL) -9 NIL 1543706 NIL) (-717 1542885 1542917 1542984 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-716 1541636 1542410 1542438 "OAGROUP" 1542584 OAGROUP (NIL) -9 NIL 1542676 NIL) (-715 1541427 1541514 1541631 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-714 1541167 1541223 1541311 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-713 1536229 1537792 1539319 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-712 1532924 1533958 1534993 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-711 1532034 1532267 1532485 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-710 1520895 1523923 1526371 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-709 1515018 1520281 1520375 "NTSCAT" 1520380 NTSCAT (NIL T T T T) -9 NIL 1520418 NIL) (-708 1514359 1514538 1514731 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-707 1514052 1514115 1514222 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-706 1501719 1511672 1512482 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-705 1490728 1501584 1501714 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-704 1489448 1489773 1490130 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-703 1488284 1488548 1488906 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-702 1487451 1487584 1487800 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-701 1485769 1486088 1486494 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-700 1485482 1485516 1485640 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-699 1485301 1485336 1485405 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-698 1485077 1485267 1485296 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-697 1484641 1484708 1484885 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-696 1482927 1484004 1484259 "NNI" NIL NNI (NIL) -8 NIL NIL 1484606) (-695 1481655 1481992 1482356 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-694 1480632 1480884 1481186 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-693 1479719 1480284 1480325 "NETCLT" 1480496 NETCLT (NIL T) -9 NIL 1480577 NIL) (-692 1478623 1478890 1479171 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-691 1478422 1478465 1478540 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-690 1476953 1477341 1477761 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-689 1475586 1476552 1476580 "NASRING" 1476690 NASRING (NIL) -9 NIL 1476770 NIL) (-688 1475431 1475487 1475581 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-687 1474360 1475038 1475066 "NARNG" 1475183 NARNG (NIL) -9 NIL 1475274 NIL) (-686 1474136 1474221 1474355 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-685 1472902 1473656 1473696 "NAALG" 1473775 NAALG (NIL T) -9 NIL 1473836 NIL) (-684 1472772 1472807 1472897 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-683 1467751 1468936 1470122 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-682 1467146 1467233 1467417 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-681 1459137 1463632 1463684 "MTSCAT" 1464744 MTSCAT (NIL T T) -9 NIL 1465258 NIL) (-680 1458903 1458963 1459055 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-679 1458729 1458768 1458828 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-678 1456358 1458243 1458284 "MSETAGG" 1458289 MSETAGG (NIL T) -9 NIL 1458323 NIL) (-677 1452728 1455401 1455722 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-676 1449121 1450944 1451663 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-675 1448758 1448831 1448960 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-674 1448411 1448452 1448596 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-673 1446276 1446613 1447044 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-672 1439674 1446175 1446271 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-671 1439199 1439240 1439448 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-670 1438758 1438807 1438990 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-669 1438032 1438125 1438344 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-668 1436649 1437010 1437400 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-667 1436170 1436237 1436276 "MONOPC" 1436336 MONOPC (NIL T) -9 NIL 1436555 NIL) (-666 1435621 1435957 1436085 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-665 1434763 1435142 1435170 "MONOID" 1435388 MONOID (NIL) -9 NIL 1435532 NIL) (-664 1434422 1434572 1434758 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-663 1423360 1430230 1430289 "MONOGEN" 1430963 MONOGEN (NIL T T) -9 NIL 1431419 NIL) (-662 1421372 1422258 1423241 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-661 1420086 1420630 1420658 "MONADWU" 1421049 MONADWU (NIL) -9 NIL 1421284 NIL) (-660 1419634 1419834 1420081 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-659 1418911 1419212 1419240 "MONAD" 1419447 MONAD (NIL) -9 NIL 1419559 NIL) (-658 1418678 1418774 1418906 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-657 1417068 1417838 1418117 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-656 1416202 1416729 1416769 "MODULE" 1416774 MODULE (NIL T) -9 NIL 1416812 NIL) (-655 1415881 1416007 1416197 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-654 1413600 1414486 1414800 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-653 1410779 1412196 1412709 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-652 1409413 1409987 1410263 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-651 1398632 1408078 1408491 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-650 1395596 1397640 1397909 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-649 1394680 1395047 1395237 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-648 1394249 1394298 1394477 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-647 1392074 1393070 1393110 "MLO" 1393527 MLO (NIL T) -9 NIL 1393767 NIL) (-646 1389955 1390482 1391077 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-645 1389423 1389519 1389673 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-644 1389093 1389169 1389292 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-643 1388305 1388491 1388719 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-642 1387798 1387914 1388070 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-641 1387170 1387284 1387469 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-640 1386197 1386470 1386747 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-639 1385630 1385718 1385889 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-638 1382788 1383667 1384546 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-637 1381455 1381803 1382156 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-636 1378879 1380542 1380583 "MDAGG" 1380840 MDAGG (NIL T) -9 NIL 1380985 NIL) (-635 1378153 1378317 1378517 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-634 1377231 1377517 1377747 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-633 1375328 1375905 1376466 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-632 1371072 1374918 1375165 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-631 1367421 1368190 1368924 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-630 1366174 1366343 1366672 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-629 1355619 1359243 1359319 "MATCAT" 1364307 MATCAT (NIL T T T) -9 NIL 1365753 NIL) (-628 1352900 1354206 1355614 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-627 1351301 1351661 1352045 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-626 1350434 1350631 1350853 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-625 1349185 1349511 1349838 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-624 1348347 1348749 1348925 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-623 1348016 1348080 1348203 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-622 1347664 1347737 1347851 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-621 1347199 1347314 1347456 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-620 1345408 1346176 1346477 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-619 1344902 1345204 1345294 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-618 1339223 1343199 1343240 "LZSTAGG" 1344017 LZSTAGG (NIL T) -9 NIL 1344307 NIL) (-617 1336572 1337884 1339218 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-616 1333959 1334925 1335408 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-615 1333540 1333819 1333893 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-614 1325755 1333401 1333535 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-613 1325118 1325263 1325491 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-612 1322602 1323300 1324012 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-611 1320818 1321141 1321575 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-610 1314198 1319850 1319891 "LSAGG" 1319953 LSAGG (NIL T) -9 NIL 1320031 NIL) (-609 1311892 1312991 1314193 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-608 1309372 1311241 1311490 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-607 1309039 1309130 1309253 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-606 1308710 1308789 1308817 "LOGIC" 1308928 LOGIC (NIL) -9 NIL 1309010 NIL) (-605 1308605 1308634 1308705 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-604 1307924 1308082 1308275 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-603 1306709 1306958 1307309 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-602 1302531 1305330 1305370 "LODOCAT" 1305802 LODOCAT (NIL T) -9 NIL 1306013 NIL) (-601 1302324 1302400 1302526 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-600 1299324 1302201 1302319 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-599 1296422 1299274 1299319 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-598 1293509 1296352 1296417 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-597 1292562 1292737 1293039 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-596 1290694 1291824 1292077 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-595 1286609 1288835 1288876 "LNAGG" 1289735 LNAGG (NIL T) -9 NIL 1290173 NIL) (-594 1285996 1286263 1286604 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-593 1282568 1283509 1284146 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-592 1281830 1282335 1282375 "LMODULE" 1282380 LMODULE (NIL T) -9 NIL 1282406 NIL) (-591 1279299 1281566 1281689 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-590 1278867 1279078 1279119 "LLINSET" 1279180 LLINSET (NIL T) -9 NIL 1279224 NIL) (-589 1278543 1278803 1278862 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-588 1278142 1278222 1278361 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-587 1276593 1276941 1277340 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-586 1275764 1275960 1276188 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-585 1269078 1275020 1275274 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-584 1268655 1268888 1268929 "LINSET" 1268934 LINSET (NIL T) -9 NIL 1268967 NIL) (-583 1267556 1268278 1268445 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-582 1265822 1266577 1266617 "LINEXP" 1267103 LINEXP (NIL T) -9 NIL 1267376 NIL) (-581 1264444 1265431 1265612 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-580 1263271 1263543 1263845 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-579 1262484 1263073 1263183 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-578 1260042 1260764 1261514 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-577 1258677 1258974 1259365 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-576 1257470 1258072 1258112 "LIECAT" 1258252 LIECAT (NIL T) -9 NIL 1258403 NIL) (-575 1257344 1257377 1257465 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-574 1251600 1257034 1257262 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-573 1243240 1251276 1251432 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-572 1239692 1240641 1241576 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-571 1238316 1239224 1239252 "LFCAT" 1239459 LFCAT (NIL) -9 NIL 1239598 NIL) (-570 1236555 1236885 1237230 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-569 1234072 1234737 1235418 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-568 1231084 1232062 1232565 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-567 1230575 1230878 1230969 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-566 1229282 1229606 1230006 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-565 1228548 1228633 1228859 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-564 1223551 1227116 1227652 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-563 1223176 1223226 1223386 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-562 1221947 1222720 1222760 "LALG" 1222821 LALG (NIL T) -9 NIL 1222879 NIL) (-561 1221730 1221807 1221942 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-560 1219583 1220998 1221249 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-559 1219412 1219442 1219483 "KVTFROM" 1219545 KVTFROM (NIL T) -9 NIL NIL NIL) (-558 1218228 1218943 1219132 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-557 1218057 1218087 1218128 "KRCFROM" 1218190 KRCFROM (NIL T) -9 NIL NIL NIL) (-556 1217159 1217356 1217651 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-555 1216988 1217018 1217059 "KONVERT" 1217121 KONVERT (NIL T) -9 NIL NIL NIL) (-554 1216817 1216847 1216888 "KOERCE" 1216950 KOERCE (NIL T) -9 NIL NIL NIL) (-553 1216387 1216480 1216612 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-552 1214440 1215334 1215706 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-551 1207427 1212119 1212173 "KDAGG" 1212549 KDAGG (NIL T T) -9 NIL 1212789 NIL) (-550 1207085 1207220 1207422 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-549 1200389 1206877 1207023 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-548 1200039 1200321 1200384 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-547 1199009 1199508 1199757 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-546 1198135 1198584 1198789 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-545 1196999 1197491 1197791 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-544 1196281 1196680 1196841 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-543 1195991 1196227 1196276 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-542 1190246 1195681 1195909 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-541 1189664 1189997 1190117 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-540 1186392 1187852 1187904 "IXAGG" 1188801 IXAGG (NIL T T) -9 NIL 1189261 NIL) (-539 1185679 1186010 1186387 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-538 1184748 1185023 1185265 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-537 1183410 1183617 1183910 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-536 1182361 1182583 1182866 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-535 1182036 1182099 1182222 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-534 1181298 1181670 1181844 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-533 1179274 1180574 1180848 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-532 1168822 1174591 1175748 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-531 1168067 1168219 1168455 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-530 1167558 1167861 1167952 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-529 1166851 1166942 1167155 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-528 1165983 1166208 1166448 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-527 1164396 1164777 1165205 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-526 1164181 1164225 1164301 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-525 1163031 1163328 1163623 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-524 1162304 1162655 1162806 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-523 1161507 1161638 1161851 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-522 1159669 1160166 1160710 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-521 1156750 1158018 1158707 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-520 1156575 1156615 1156675 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-519 1152573 1156501 1156570 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-518 1150576 1152512 1152568 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-517 1149947 1150246 1150376 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-516 1149400 1149688 1149820 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-515 1148481 1149106 1149232 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-514 1147891 1148385 1148413 "IOBCON" 1148418 IOBCON (NIL) -9 NIL 1148439 NIL) (-513 1147462 1147526 1147708 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-512 1139521 1141892 1144217 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-511 1136632 1137415 1138279 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-510 1136309 1136406 1136523 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-509 1133751 1136245 1136304 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-508 1131863 1132392 1132959 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-507 1131365 1131479 1131619 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-506 1129749 1130155 1130617 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-505 1127528 1128122 1128733 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-504 1124901 1125511 1126231 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-503 1124305 1124463 1124671 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-502 1123824 1123910 1124098 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-501 1122029 1122550 1123007 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-500 1115119 1116772 1118501 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-499 1114485 1114647 1114820 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-498 1112358 1112822 1113366 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-497 1110484 1111434 1111462 "INTDOM" 1111761 INTDOM (NIL) -9 NIL 1111966 NIL) (-496 1110037 1110239 1110479 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-495 1105844 1108316 1108370 "INTCAT" 1109166 INTCAT (NIL T) -9 NIL 1109482 NIL) (-494 1105409 1105529 1105656 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-493 1104249 1104421 1104727 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-492 1103822 1103918 1104075 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-491 1096305 1103729 1103817 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-490 1095603 1096158 1096223 "INT8" NIL INT8 (NIL) -8 NIL NIL 1096257) (-489 1094900 1095455 1095520 "INT64" NIL INT64 (NIL) -8 NIL NIL 1095554) (-488 1094197 1094752 1094817 "INT32" NIL INT32 (NIL) -8 NIL NIL 1094851) (-487 1093494 1094049 1094114 "INT16" NIL INT16 (NIL) -8 NIL NIL 1094148) (-486 1089957 1093413 1093489 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-485 1084014 1087497 1087525 "INS" 1088455 INS (NIL) -9 NIL 1089114 NIL) (-484 1082076 1082994 1083941 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-483 1081135 1081358 1081633 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-482 1080349 1080490 1080687 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-481 1079339 1079480 1079717 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-480 1078491 1078655 1078915 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-479 1077771 1077886 1078074 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-478 1076510 1076779 1077103 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-477 1075790 1075931 1076114 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-476 1075453 1075525 1075623 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-475 1072531 1074017 1074540 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-474 1072130 1072237 1072351 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-473 1071286 1071931 1072032 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-472 1070136 1070404 1070725 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-471 1069126 1070066 1070131 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-470 1068751 1068831 1068948 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-469 1067665 1068210 1068414 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-468 1063760 1064815 1065758 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-467 1062614 1062937 1062965 "INBCON" 1063478 INBCON (NIL) -9 NIL 1063744 NIL) (-466 1062068 1062333 1062609 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-465 1061562 1061864 1061954 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-464 1061019 1061328 1061433 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-463 1059858 1059999 1060316 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-462 1058281 1058550 1058889 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-461 1053124 1058212 1058276 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-460 1052504 1052838 1052953 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-459 1047596 1051942 1052128 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-458 1046626 1047518 1047591 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-457 1046198 1046275 1046329 "IEVALAB" 1046536 IEVALAB (NIL T T) -9 NIL NIL NIL) (-456 1045953 1046033 1046193 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-455 1045338 1045565 1045722 "IDPT" NIL IDPT (NIL T T) -8 NIL NIL NIL) (-454 1044331 1045258 1045333 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-453 1043394 1044251 1044326 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-452 1042477 1043123 1043260 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-451 1040941 1041512 1041563 "IDPC" 1041972 IDPC (NIL T T) -9 NIL 1042263 NIL) (-450 1040229 1040863 1040936 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-449 1039399 1040151 1040224 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-448 1039092 1039305 1039365 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-447 1038796 1038836 1038875 "IDEMOPC" 1038880 IDEMOPC (NIL T) -9 NIL 1039017 NIL) (-446 1035867 1036748 1037640 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-445 1029493 1030770 1031809 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-444 1028755 1028885 1029084 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-443 1027928 1028427 1028565 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-442 1026319 1026650 1027041 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-441 1022356 1026275 1026314 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-440 1019614 1020238 1020933 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-439 1017840 1018320 1018853 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-438 1015655 1017746 1017835 "IARRAY2" NIL IARRAY2 (NIL T T T) -8 NIL NIL NIL) (-437 1011797 1015593 1015650 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-436 1005376 1010761 1011229 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-435 1004944 1005007 1005180 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-434 1004436 1004585 1004613 "HYPCAT" 1004820 HYPCAT (NIL) -9 NIL NIL NIL) (-433 1004092 1004245 1004431 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-432 1003705 1003950 1004033 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-431 1003538 1003587 1003628 "HOMOTOP" 1003633 HOMOTOP (NIL T) -9 NIL 1003666 NIL) (-430 1002041 1002853 1002894 "HOAGG" 1002899 HOAGG (NIL T) -9 NIL 1003199 NIL) (-429 1001668 1001815 1002036 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-428 994868 1001393 1001541 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-427 993803 994061 994324 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-426 992738 993668 993798 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-425 990937 992571 992659 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-424 990252 990604 990737 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-423 983750 990185 990247 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-422 976889 983486 983637 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-421 976342 976499 976662 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-420 968842 976259 976337 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-419 968333 968636 968727 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-418 965883 968120 968299 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-417 961569 965766 965878 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-416 954046 961466 961564 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-415 945983 953415 953670 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-414 945007 945516 945544 "GROUP" 945747 GROUP (NIL) -9 NIL 945881 NIL) (-413 944550 944751 945002 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-412 943222 943561 943948 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-411 942044 942401 942452 "GRMOD" 942981 GRMOD (NIL T T) -9 NIL 943147 NIL) (-410 941863 941911 942039 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-409 937986 939197 940197 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-408 936708 937032 937347 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-407 936261 936389 936530 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-406 935334 935833 935884 "GRALG" 936037 GRALG (NIL T T) -9 NIL 936127 NIL) (-405 935053 935154 935329 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-404 932072 934744 934911 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-403 931485 931548 931805 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-402 927339 928235 928760 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-401 926514 926716 926954 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-400 921517 922444 923463 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-399 921265 921322 921411 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-398 920747 920836 921001 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-397 920256 920297 920510 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-396 919057 919340 919644 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-395 912332 918747 918908 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-394 902115 907122 908226 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-393 900167 901270 901298 "GCDDOM" 901553 GCDDOM (NIL) -9 NIL 901710 NIL) (-392 899790 899947 900162 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-391 890583 893053 895441 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-390 888718 889043 889461 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-389 887659 887848 888115 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-388 886530 886737 887041 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-387 885993 886135 886283 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-386 884605 884953 885266 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-385 883150 883471 883793 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-384 880776 881132 881537 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-383 874028 875689 877267 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-382 873680 873901 873969 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-381 873425 873467 873508 "FUNCTOR" 873592 FUNCTOR (NIL T) -9 NIL 873651 NIL) (-380 873049 873270 873351 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-379 871146 871829 872289 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-378 869739 870046 870438 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-377 868394 868753 869077 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-376 867697 867821 868008 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-375 866671 866937 867284 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-374 864329 864859 865341 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-373 863912 863972 864141 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-372 862212 863126 863429 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-371 861360 861494 861717 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-370 860531 860692 860919 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-369 856747 859408 859449 "FSAGG" 859819 FSAGG (NIL T) -9 NIL 860080 NIL) (-368 855101 855860 856652 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-367 853057 853353 853897 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-366 852104 852286 852586 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-365 851785 851834 851961 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-364 831941 841442 841483 "FS" 845353 FS (NIL T) -9 NIL 847631 NIL) (-363 824172 827665 831644 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-362 823706 823833 823985 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-361 818229 821387 821427 "FRNAALG" 822747 FRNAALG (NIL T) -9 NIL 823345 NIL) (-360 814970 816221 817479 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-359 814651 814700 814827 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-358 813138 813695 813989 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-357 812424 812517 812804 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-356 810258 811024 811340 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-355 809367 809810 809851 "FRETRCT" 809856 FRETRCT (NIL T) -9 NIL 810027 NIL) (-354 808740 809018 809362 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-353 805484 807004 807063 "FRAMALG" 807945 FRAMALG (NIL T T) -9 NIL 808237 NIL) (-352 804080 804631 805261 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-351 803773 803836 803943 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-350 797414 803578 803768 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-349 797107 797170 797277 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-348 789516 794087 795394 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-347 783294 786797 786825 "FPS" 787944 FPS (NIL) -9 NIL 788500 NIL) (-346 782851 782984 783148 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-345 779661 781704 781732 "FPC" 781957 FPC (NIL) -9 NIL 782099 NIL) (-344 779507 779559 779656 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-343 778284 778993 779034 "FPATMAB" 779039 FPATMAB (NIL T) -9 NIL 779191 NIL) (-342 776714 777310 777657 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-341 776289 776347 776520 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-340 774792 775687 775861 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-339 773407 773912 773940 "FNCAT" 774397 FNCAT (NIL) -9 NIL 774654 NIL) (-338 772864 773374 773402 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-337 771451 772813 772859 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-336 768039 769397 769438 "FMONCAT" 770655 FMONCAT (NIL T) -9 NIL 771259 NIL) (-335 764998 766078 766131 "FMCAT" 767213 FMCAT (NIL T T) -9 NIL 767683 NIL) (-334 763698 764821 764920 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-333 762746 763546 763693 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-332 760933 761385 761879 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-331 758868 759404 759982 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-330 752254 757205 757819 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-329 750735 751836 751876 "FLINEXP" 751881 FLINEXP (NIL T) -9 NIL 751974 NIL) (-328 750144 750403 750730 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-327 749393 749552 749766 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-326 746276 747355 747407 "FLALG" 748634 FLALG (NIL T T) -9 NIL 749101 NIL) (-325 745447 745608 745835 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-324 739153 742843 742884 "FLAGG" 744123 FLAGG (NIL T) -9 NIL 744771 NIL) (-323 738261 738665 739148 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-322 734822 736086 736145 "FINRALG" 737273 FINRALG (NIL T T) -9 NIL 737781 NIL) (-321 734213 734478 734817 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-320 733511 733807 733835 "FINITE" 734031 FINITE (NIL) -9 NIL 734138 NIL) (-319 733419 733445 733506 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-318 730189 731515 731556 "FINAGG" 732555 FINAGG (NIL T) -9 NIL 733062 NIL) (-317 729108 729631 730184 "FINAGG-" NIL FINAGG- (NIL T T) -7 NIL NIL NIL) (-316 721069 723660 723700 "FINAALG" 727352 FINAALG (NIL T) -9 NIL 728790 NIL) (-315 717336 718581 719704 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-314 715888 716307 716361 "FILECAT" 717045 FILECAT (NIL T T) -9 NIL 717261 NIL) (-313 715239 715713 715816 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-312 712487 714365 714393 "FIELD" 714433 FIELD (NIL) -9 NIL 714513 NIL) (-311 711512 711973 712482 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-310 709516 710462 710808 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-309 708759 708940 709159 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-308 704029 708697 708754 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-307 703691 703758 703893 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-306 703231 703273 703482 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-305 699911 700788 701565 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-304 695195 699843 699906 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-303 689874 694684 694874 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-302 684355 689155 689413 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-301 678562 683806 684017 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-300 677585 677795 678110 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-299 673025 675730 675758 "FFIELDC" 676377 FFIELDC (NIL) -9 NIL 676752 NIL) (-298 672094 672534 673020 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-297 671709 671767 671891 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-296 669853 670376 670893 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-295 664947 669652 669753 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-294 660047 664736 664843 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-293 654713 659838 659946 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-292 654167 654216 654451 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-291 632742 643776 643862 "FFCAT" 649012 FFCAT (NIL T T T) -9 NIL 650448 NIL) (-290 628982 630208 631514 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-289 623825 628913 628977 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-288 622848 623317 623358 "FEVALAB" 623363 FEVALAB (NIL T) -9 NIL 623602 NIL) (-287 622253 622505 622843 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-286 619080 619991 620106 "FDIVCAT" 621673 FDIVCAT (NIL T T T T) -9 NIL 622109 NIL) (-285 618874 618906 619075 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-284 618181 618274 618551 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-283 616667 617665 617868 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-282 615760 616144 616346 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-281 614882 615371 615511 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-280 606469 611112 611152 "FAXF" 612953 FAXF (NIL T) -9 NIL 613643 NIL) (-279 604385 605189 606004 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-278 599534 603907 604081 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-277 593973 596397 596449 "FAMR" 597460 FAMR (NIL T T) -9 NIL 597919 NIL) (-276 593172 593537 593968 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-275 592193 593114 593167 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-274 589787 590666 590719 "FAMONC" 591660 FAMONC (NIL T T) -9 NIL 592045 NIL) (-273 588343 589645 589782 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-272 586423 586784 587186 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-271 585700 585897 586119 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-270 577560 585147 585346 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-269 575579 576149 576735 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-268 572481 573123 573843 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-267 567638 568345 569150 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-266 567327 567390 567499 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-265 552120 566376 566802 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-264 542647 551440 551728 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-263 542141 542443 542533 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-262 541917 542107 542136 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-261 541606 541674 541787 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-260 541123 541265 541306 "EVALAB" 541476 EVALAB (NIL T) -9 NIL 541580 NIL) (-259 540751 540897 541118 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-258 537794 539389 539417 "EUCDOM" 539971 EUCDOM (NIL) -9 NIL 540320 NIL) (-257 536721 537214 537789 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-256 536446 536502 536602 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-255 536134 536198 536307 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-254 529905 531805 531833 "ES" 534575 ES (NIL) -9 NIL 535959 NIL) (-253 526420 527952 529744 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-252 525768 525921 526097 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-251 518274 525698 525763 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-250 517963 518026 518135 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-249 511700 514825 516229 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-248 508003 509099 510192 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-247 506832 507182 507487 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-246 505717 506448 506476 "ENTIRER" 506481 ENTIRER (NIL) -9 NIL 506525 NIL) (-245 505606 505640 505712 "ENTIRER-" NIL ENTIRER- (NIL T) -7 NIL NIL NIL) (-244 502247 504044 504393 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-243 501348 501563 501615 "ELTAGG" 501981 ELTAGG (NIL T T) -9 NIL 502195 NIL) (-242 501130 501204 501343 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-241 500876 500911 500965 "ELTAB" 501049 ELTAB (NIL T T) -9 NIL 501101 NIL) (-240 500127 500297 500496 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-239 499851 499925 499953 "ELEMFUN" 500058 ELEMFUN (NIL) -9 NIL NIL NIL) (-238 499751 499778 499846 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-237 495068 497758 497799 "ELAGG" 498732 ELAGG (NIL T) -9 NIL 499193 NIL) (-236 493866 494404 495063 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-235 493284 493451 493607 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-234 492197 492516 492795 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-233 485590 487588 488415 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-232 479569 481565 482375 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-231 477383 477789 478260 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-230 468383 470296 471837 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-229 467496 467997 468146 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-228 466194 466868 466908 "DVARCAT" 467191 DVARCAT (NIL T) -9 NIL 467331 NIL) (-227 465613 465877 466189 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-226 457680 465481 465608 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-225 456018 456809 456850 "DSEXT" 457213 DSEXT (NIL T) -9 NIL 457507 NIL) (-224 454823 455347 456013 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-223 454547 454612 454710 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-222 450698 451914 453045 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-221 446344 447699 448763 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-220 445019 445380 445766 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-219 444705 444764 444882 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-218 443680 443978 444268 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-217 443265 443340 443490 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-216 435678 437790 439905 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-215 431195 432214 433293 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-214 427743 429804 429845 "DQAGG" 430474 DQAGG (NIL T) -9 NIL 430747 NIL) (-213 414267 421908 421990 "DPOLCAT" 423827 DPOLCAT (NIL T T T T) -9 NIL 424370 NIL) (-212 410675 412323 414262 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-211 403724 410573 410670 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-210 396682 403553 403719 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-209 396275 396535 396624 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-208 395689 396137 396217 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-207 394975 395300 395451 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-206 388114 394711 394862 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-205 385863 387180 387220 "DMEXT" 387225 DMEXT (NIL T) -9 NIL 387400 NIL) (-204 385519 385581 385725 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-203 379111 385004 385194 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-202 376319 377922 377963 "DLAGG" 378504 DLAGG (NIL T) -9 NIL 378736 NIL) (-201 374670 375541 375569 "DIVRING" 375661 DIVRING (NIL) -9 NIL 375744 NIL) (-200 374121 374365 374665 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-199 372549 372966 373372 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-198 371586 371807 372072 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-197 365104 371518 371581 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-196 353424 359846 359899 "DIRPCAT" 360155 DIRPCAT (NIL NIL T) -9 NIL 361030 NIL) (-195 351430 352200 353087 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-194 350877 351043 351229 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-193 348200 349736 349777 "DIOPS" 350197 DIOPS (NIL T) -9 NIL 350425 NIL) (-192 347860 348004 348195 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-191 346867 347613 347641 "DIOID" 347646 DIOID (NIL) -9 NIL 347668 NIL) (-190 345695 346524 346552 "DIFRING" 346557 DIFRING (NIL) -9 NIL 346578 NIL) (-189 345331 345429 345457 "DIFFSPC" 345576 DIFFSPC (NIL) -9 NIL 345651 NIL) (-188 345072 345174 345326 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 343975 344600 344640 "DIFFMOD" 344645 DIFFMOD (NIL T) -9 NIL 344742 NIL) (-186 343659 343716 343757 "DIFFDOM" 343878 DIFFDOM (NIL T) -9 NIL 343946 NIL) (-185 343540 343570 343654 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 341213 342734 342774 "DIFEXT" 342779 DIFEXT (NIL T) -9 NIL 342931 NIL) (-183 339141 340677 340718 "DIAGG" 340723 DIAGG (NIL T) -9 NIL 340743 NIL) (-182 338697 338887 339136 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 333881 337887 338164 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 330339 331392 332402 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 324889 329493 329820 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 323455 323747 324122 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 320737 321989 322357 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 318462 320568 320657 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 317845 317990 318172 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 315163 315887 316687 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 313272 313730 314292 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 312655 312988 313102 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 305855 312380 312528 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 303775 304285 304789 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 303414 303463 303614 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 302673 303235 303326 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 300697 301139 301499 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 299989 300278 300424 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 299440 299586 299738 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 296802 297595 298322 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 296241 296387 296558 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 294313 294624 294991 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 293870 294125 294226 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 293071 293454 293482 "CTORCAT" 293663 CTORCAT (NIL) -9 NIL 293775 NIL) (-159 292774 292908 293066 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 292267 292524 292632 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 291683 292114 292187 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 291142 291259 291412 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 287536 288292 289047 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 287027 287330 287421 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 286246 286455 286683 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 285750 285855 286059 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 285503 285537 285643 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 282442 283204 283922 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 281961 282103 282242 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 277854 280424 280916 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 277728 277755 277783 "CONDUIT" 277820 CONDUIT (NIL) -9 NIL NIL NIL) (-146 276607 277338 277366 "COMRING" 277371 COMRING (NIL) -9 NIL 277421 NIL) (-145 275772 276139 276317 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 275468 275509 275637 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 275161 275224 275331 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 264003 275111 275156 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 263464 263603 263763 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 263217 263258 263356 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 244630 256880 256920 "COMPCAT" 257921 COMPCAT (NIL T) -9 NIL 259263 NIL) (-138 237168 240681 244274 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 236927 236961 237063 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 236757 236796 236854 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 236338 236617 236691 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 235915 236156 236243 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 235110 235358 235386 "COMBOPC" 235724 COMBOPC (NIL) -9 NIL 235899 NIL) (-132 234174 234426 234668 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 231106 231790 232413 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 229986 230437 230672 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 229477 229780 229871 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 229164 229217 229342 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 228634 228944 229042 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 225154 226224 227304 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 223449 224434 224672 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 221053 222214 222255 "CLAGG" 222724 CLAGG (NIL T) -9 NIL 223051 NIL) (-123 220723 220855 221048 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 220352 220443 220583 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 218289 218796 219344 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 217250 217981 218009 "CHARZ" 218014 CHARZ (NIL) -9 NIL 218028 NIL) (-119 217044 217090 217168 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 215883 216646 216674 "CHARNZ" 216735 CHARNZ (NIL) -9 NIL 216783 NIL) (-117 213361 214458 214981 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 213069 213148 213176 "CFCAT" 213287 CFCAT (NIL) -9 NIL NIL NIL) (-115 212412 212541 212723 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 208680 211825 212105 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 208058 208245 208422 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 207586 208005 208053 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 207059 207368 207465 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 206550 206853 206944 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 205799 205959 206180 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 201899 203156 203864 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 200265 201296 201547 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 199846 200125 200199 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 199280 199533 199561 "CACHSET" 199693 CACHSET (NIL) -9 NIL 199771 NIL) (-104 198632 199047 199075 "CABMON" 199125 CABMON (NIL) -9 NIL 199181 NIL) (-103 198162 198426 198536 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 193651 197830 197991 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 192621 193325 193460 "BYTE" NIL BYTE (NIL) -8 NIL NIL 193623) (-100 190087 192388 192494 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 187524 189841 189949 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 184702 186908 186947 "BTCAT" 187014 BTCAT (NIL T) -9 NIL 187095 NIL) (-97 184453 184551 184697 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 179770 183626 183652 "BTAGG" 183763 BTAGG (NIL) -9 NIL 183871 NIL) (-95 179401 179562 179765 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 176480 178893 179083 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 175750 175902 176080 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 172826 174447 174486 "BRAGG" 175115 BRAGG (NIL T) -9 NIL 175375 NIL) (-91 171901 172332 172821 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 164435 171406 171587 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 162427 164387 164430 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 162160 162196 162307 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 160399 160832 161280 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 156365 157781 158671 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 155241 156132 156254 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 154827 154984 155010 "BOOLE" 155118 BOOLE (NIL) -9 NIL 155199 NIL) (-83 154620 154701 154822 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 153758 154285 154335 "BMODULE" 154340 BMODULE (NIL T T) -9 NIL 154404 NIL) (-81 149643 153615 153684 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 149456 149496 149535 "BINOPC" 149540 BINOPC (NIL T) -9 NIL 149585 NIL) (-79 148998 149271 149373 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-78 148519 148663 148801 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 141725 148249 148394 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 139941 140914 140953 "BGAGG" 141209 BGAGG (NIL T) -9 NIL 141349 NIL) (-75 139810 139848 139936 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 138661 138862 139147 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 135316 137841 138146 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 134901 134994 135020 "BASTYPE" 135191 BASTYPE (NIL) -9 NIL 135287 NIL) (-71 134671 134767 134896 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 134186 134274 134424 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 133085 133760 133945 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 132833 132838 132864 "ATTREG" 132869 ATTREG (NIL) -9 NIL NIL NIL) (-67 132438 132710 132775 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 131938 132087 132113 "ATRIG" 132314 ATRIG (NIL) -9 NIL NIL NIL) (-65 131793 131846 131933 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 131363 131594 131620 "ASTCAT" 131625 ASTCAT (NIL) -9 NIL 131655 NIL) (-63 131162 131239 131358 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 129326 130995 131083 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 128133 128446 128811 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 125926 128063 128128 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 125117 125308 125529 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 120985 124848 124962 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 115535 117597 117672 "ARR2CAT" 119940 ARR2CAT (NIL T T T) -9 NIL 120591 NIL) (-56 114496 114978 115530 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 113864 114235 114357 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 112796 112964 113260 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 112497 112551 112669 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 111880 112026 112182 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 111285 111575 111695 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 108980 110141 110443 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 108505 108765 108861 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 102200 107567 108009 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 97835 99498 99548 "AMR" 100189 AMR (NIL T T) -9 NIL 100764 NIL) (-46 97189 97469 97830 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 79174 97123 97184 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 75577 78850 79019 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 72587 73247 73854 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 71966 72079 72263 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 68378 69003 69595 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 57867 68071 68221 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 57184 57338 57516 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 55897 56692 56730 "ALGEBRA" 56735 ALGEBRA (NIL T) -9 NIL 56775 NIL) (-37 55683 55760 55892 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 33898 52685 52737 "ALAGG" 52872 ALAGG (NIL T T) -9 NIL 53044 NIL) (-35 33398 33547 33573 "AHYP" 33774 AHYP (NIL) -9 NIL NIL NIL) (-34 32880 33012 33038 "AGG" 33243 AGG (NIL) -9 NIL 33369 NIL) (-33 32723 32781 32875 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30862 31322 31722 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30357 30660 30749 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29727 30022 30178 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17285 26564 26602 "ACFS" 27209 ACFS (NIL T) -9 NIL 27448 NIL) (-28 15908 16518 17280 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11460 13839 13865 "ACF" 14744 ACF (NIL) -9 NIL 15156 NIL) (-26 10556 10962 11455 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10058 10298 10324 "ABELSG" 10416 ABELSG (NIL) -9 NIL 10481 NIL) (-24 9956 9987 10053 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9111 9485 9511 "ABELMON" 9736 ABELMON (NIL) -9 NIL 9869 NIL) (-22 8793 8933 9106 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8005 8488 8514 "ABELGRP" 8586 ABELGRP (NIL) -9 NIL 8661 NIL) (-20 7558 7754 8000 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 6767 6806 "A1AGG" 6811 A1AGG (NIL T) -9 NIL 6845 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 9 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-1134) (-999)) (T -1134)) +NIL +((-3723 (((-85)) 18 T ELT)) (-3720 (((-1189) (-587 |#1|) (-587 |#1|)) 22 T ELT) (((-1189) (-587 |#1|)) 23 T ELT)) (-3725 (((-85) |#1| |#1|) 37 (|has| |#1| (-760)) ELT)) (-3722 (((-85) |#1| |#1| (-1 (-85) |#1| |#1|)) 29 T ELT) (((-3 (-85) "failed") |#1| |#1|) 27 T ELT)) (-3724 ((|#1| (-587 |#1|)) 38 (|has| |#1| (-760)) ELT) ((|#1| (-587 |#1|) (-1 (-85) |#1| |#1|)) 32 T ELT)) (-3721 (((-2 (|:| -3235 (-587 |#1|)) (|:| -3234 (-587 |#1|)))) 20 T ELT))) +(((-1135 |#1|) (-10 -7 (-15 -3720 ((-1189) (-587 |#1|))) (-15 -3720 ((-1189) (-587 |#1|) (-587 |#1|))) (-15 -3721 ((-2 (|:| -3235 (-587 |#1|)) (|:| -3234 (-587 |#1|))))) (-15 -3722 ((-3 (-85) "failed") |#1| |#1|)) (-15 -3722 ((-85) |#1| |#1| (-1 (-85) |#1| |#1|))) (-15 -3724 (|#1| (-587 |#1|) (-1 (-85) |#1| |#1|))) (-15 -3723 ((-85))) (IF (|has| |#1| (-760)) (PROGN (-15 -3724 (|#1| (-587 |#1|))) (-15 -3725 ((-85) |#1| |#1|))) |%noBranch|)) (-1017)) (T -1135)) +((-3725 (*1 *2 *3 *3) (-12 (-5 *2 (-85)) (-5 *1 (-1135 *3)) (-4 *3 (-760)) (-4 *3 (-1017)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-1017)) (-4 *2 (-760)) (-5 *1 (-1135 *2)))) (-3723 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1135 *3)) (-4 *3 (-1017)))) (-3724 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1135 *2)) (-4 *2 (-1017)))) (-3722 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1017)) (-5 *2 (-85)) (-5 *1 (-1135 *3)))) (-3722 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1135 *3)) (-4 *3 (-1017)))) (-3721 (*1 *2) (-12 (-5 *2 (-2 (|:| -3235 (-587 *3)) (|:| -3234 (-587 *3)))) (-5 *1 (-1135 *3)) (-4 *3 (-1017)))) (-3720 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-1017)) (-5 *2 (-1189)) (-5 *1 (-1135 *4)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-1017)) (-5 *2 (-1189)) (-5 *1 (-1135 *4))))) +((-3726 (((-1189) (-587 (-1094)) (-587 (-1094))) 14 T ELT) (((-1189) (-587 (-1094))) 12 T ELT)) (-3728 (((-1189)) 16 T ELT)) (-3727 (((-2 (|:| -3234 (-587 (-1094))) (|:| -3235 (-587 (-1094))))) 20 T ELT))) +(((-1136) (-10 -7 (-15 -3726 ((-1189) (-587 (-1094)))) (-15 -3726 ((-1189) (-587 (-1094)) (-587 (-1094)))) (-15 -3727 ((-2 (|:| -3234 (-587 (-1094))) (|:| -3235 (-587 (-1094)))))) (-15 -3728 ((-1189))))) (T -1136)) +((-3728 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1136)))) (-3727 (*1 *2) (-12 (-5 *2 (-2 (|:| -3234 (-587 (-1094))) (|:| -3235 (-587 (-1094))))) (-5 *1 (-1136)))) (-3726 (*1 *2 *3 *3) (-12 (-5 *3 (-587 (-1094))) (-5 *2 (-1189)) (-5 *1 (-1136)))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-587 (-1094))) (-5 *2 (-1189)) (-5 *1 (-1136))))) +((-3781 (($ $) 17 T ELT)) (-3729 (((-85) $) 27 T ELT))) +(((-1137 |#1|) (-10 -7 (-15 -3781 (|#1| |#1|)) (-15 -3729 ((-85) |#1|))) (-1138)) (T -1137)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3781 (($ $) 66 T ELT)) (-3977 (((-350 $) $) 67 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3729 (((-85) $) 68 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-1899 (($ $ $) 60 T ELT) (($ (-587 $)) 59 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 58 T ELT)) (-3150 (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-3738 (((-350 $) $) 65 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-1138) (-113)) (T -1138)) +((-3729 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-85)))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-350 *1)) (-4 *1 (-1138)))) (-3781 (*1 *1 *1) (-4 *1 (-1138))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-350 *1)) (-4 *1 (-1138))))) +(-13 (-395) (-10 -8 (-15 -3729 ((-85) $)) (-15 -3977 ((-350 $) $)) (-15 -3781 ($ $)) (-15 -3738 ((-350 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-559 (-488)) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-248) . T) ((-395) . T) ((-499) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 $) . T) ((-594 $) . T) ((-586 $) . T) ((-658 $) . T) ((-667) . T) ((-967 $) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-2318 (($ $) NIL T ELT)) (-3142 (((-698)) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3000 (($) NIL T ELT)) (-2537 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2863 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2015 (((-834) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2405 (($ (-834)) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-3731 (($ $ $) NIL T ELT)) (-3732 (($ $ $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2316 (($ $ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) NIL T ELT)) (-2317 (($ $ $) NIL T ELT))) +(((-1139) (-13 (-756) (-608) (-10 -8 (-15 -3732 ($ $ $)) (-15 -3731 ($ $ $)) (-15 -3730 ($) -3959)))) (T -1139)) +((-3732 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3731 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3730 (*1 *1) (-5 *1 (-1139)))) +((-698) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) +((-2574 (((-85) $ $) NIL T ELT)) (-2318 (($ $) NIL T ELT)) (-3142 (((-698)) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3000 (($) NIL T ELT)) (-2537 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2863 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2015 (((-834) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2405 (($ (-834)) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-3731 (($ $ $) NIL T ELT)) (-3732 (($ $ $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2316 (($ $ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) NIL T ELT)) (-2317 (($ $ $) NIL T ELT))) +(((-1140) (-13 (-756) (-608) (-10 -8 (-15 -3732 ($ $ $)) (-15 -3731 ($ $ $)) (-15 -3730 ($) -3959)))) (T -1140)) +((-3732 (*1 *1 *1 *1) (-5 *1 (-1140))) (-3731 (*1 *1 *1 *1) (-5 *1 (-1140))) (-3730 (*1 *1) (-5 *1 (-1140)))) +((-698) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) +((-2574 (((-85) $ $) NIL T ELT)) (-2318 (($ $) NIL T ELT)) (-3142 (((-698)) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3000 (($) NIL T ELT)) (-2537 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2863 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2015 (((-834) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2405 (($ (-834)) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-3731 (($ $ $) NIL T ELT)) (-3732 (($ $ $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2316 (($ $ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) NIL T ELT)) (-2317 (($ $ $) NIL T ELT))) +(((-1141) (-13 (-756) (-608) (-10 -8 (-15 -3732 ($ $ $)) (-15 -3731 ($ $ $)) (-15 -3730 ($) -3959)))) (T -1141)) +((-3732 (*1 *1 *1 *1) (-5 *1 (-1141))) (-3731 (*1 *1 *1 *1) (-5 *1 (-1141))) (-3730 (*1 *1) (-5 *1 (-1141)))) +((-698) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) +((-2574 (((-85) $ $) NIL T ELT)) (-2318 (($ $) NIL T ELT)) (-3142 (((-698)) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3000 (($) NIL T ELT)) (-2537 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2863 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2015 (((-834) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2405 (($ (-834)) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT)) (-3731 (($ $ $) NIL T ELT)) (-3732 (($ $ $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2316 (($ $ $) NIL T ELT)) (-2572 (((-85) $ $) NIL T ELT)) (-2573 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL T ELT)) (-2691 (((-85) $ $) NIL T ELT)) (-2317 (($ $ $) NIL T ELT))) +(((-1142) (-13 (-756) (-608) (-10 -8 (-15 -3732 ($ $ $)) (-15 -3731 ($ $ $)) (-15 -3730 ($) -3959)))) (T -1142)) +((-3732 (*1 *1 *1 *1) (-5 *1 (-1142))) (-3731 (*1 *1 *1 *1) (-5 *1 (-1142))) (-3730 (*1 *1) (-5 *1 (-1142)))) +((-698) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3135 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-260)) (|has| |#1| (-314))) ELT)) (-3087 (((-587 (-998)) $) NIL T ELT)) (-3837 (((-1094) $) 10 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) (|has| |#1| (-499))) ELT)) (-2068 (($ $) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) (|has| |#1| (-499))) ELT)) (-2066 (((-85) $) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) (|has| |#1| (-499))) ELT)) (-3777 (($ $ (-488)) NIL T ELT) (($ $ (-488) (-488)) NIL T ELT)) (-3780 (((-1073 (-2 (|:| |k| (-488)) (|:| |c| |#1|))) $) NIL T ELT)) (-3737 (((-1173 |#1| |#2| |#3|) $) NIL T ELT)) (-3734 (((-3 (-1173 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3735 (((-1173 |#1| |#2| |#3|) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3645 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1316 (((-3 $ #1#) $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) ELT)) (-3781 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-314)) ELT)) (-3043 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) ELT)) (-1612 (((-85) $ $) NIL (|has| |#1| (-314)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3644 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3629 (((-488) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) ELT)) (-3824 (($ (-1073 (-2 (|:| |k| (-488)) (|:| |c| |#1|)))) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3643 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-1173 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1094) #1#) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-954 (-1094))) (|has| |#1| (-314))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-954 (-488))) (|has| |#1| (-314))) ELT) (((-3 (-488) #1#) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-954 (-488))) (|has| |#1| (-314))) ELT)) (-3162 (((-1173 |#1| |#2| |#3|) $) NIL T ELT) (((-1094) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-954 (-1094))) (|has| |#1| (-314))) ELT) (((-352 (-488)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-954 (-488))) (|has| |#1| (-314))) ELT) (((-488) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-954 (-488))) (|has| |#1| (-314))) ELT)) (-3736 (($ $) NIL T ELT) (($ (-488) $) NIL T ELT)) (-2570 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3965 (($ $) NIL T ELT)) (-2284 (((-634 (-1173 |#1| |#2| |#3|)) (-634 $)) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |mat| (-634 (-1173 |#1| |#2| |#3|))) (|:| |vec| (-1183 (-1173 |#1| |#2| |#3|)))) (-634 $) (-1183 $)) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-584 (-488))) (|has| |#1| (-314))) ELT) (((-634 (-488)) (-634 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-584 (-488))) (|has| |#1| (-314))) ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3733 (((-352 (-861 |#1|)) $ (-488)) NIL (|has| |#1| (-499)) ELT) (((-352 (-861 |#1|)) $ (-488) (-488)) NIL (|has| |#1| (-499)) ELT)) (-3000 (($) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-487)) (|has| |#1| (-314))) ELT)) (-2569 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL (|has| |#1| (-314)) ELT)) (-3729 (((-85) $) NIL (|has| |#1| (-314)) ELT)) (-3192 (((-85) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) ELT)) (-2898 (((-85) $) NIL T ELT)) (-3633 (($) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-800 (-332))) (|has| |#1| (-314))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-800 (-488))) (|has| |#1| (-314))) ELT)) (-3778 (((-488) $) NIL T ELT) (((-488) $ (-488)) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3002 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3004 (((-1173 |#1| |#2| |#3|) $) NIL (|has| |#1| (-314)) ELT)) (-3017 (($ $ (-488)) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3451 (((-636 $) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1070)) (|has| |#1| (-314))) ELT)) (-3193 (((-85) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) ELT)) (-3783 (($ $ (-834)) NIL T ELT)) (-3821 (($ (-1 |#1| (-488)) $) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-488)) 18 T ELT) (($ $ (-998) (-488)) NIL T ELT) (($ $ (-587 (-998)) (-587 (-488))) NIL T ELT)) (-2537 (($ $ $) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-760)) (|has| |#1| (-314)))) ELT)) (-2863 (($ $ $) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-760)) (|has| |#1| (-314)))) ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-314)) ELT)) (-3949 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2285 (((-634 (-1173 |#1| |#2| |#3|)) (-1183 $)) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |mat| (-634 (-1173 |#1| |#2| |#3|))) (|:| |vec| (-1183 (-1173 |#1| |#2| |#3|)))) (-1183 $) $) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-584 (-488))) (|has| |#1| (-314))) ELT) (((-634 (-488)) (-1183 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-584 (-488))) (|has| |#1| (-314))) ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3785 (($ (-488) (-1173 |#1| |#2| |#3|)) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3818 (($ $) 27 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-29 (-488))) (|has| |#1| (-875)) (|has| |#1| (-1119))) (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-15 -3818 (|#1| |#1| (-1094)))) (|has| |#1| (-15 -3087 ((-587 (-1094)) |#1|))))) ELT) (($ $ (-1180 |#2|)) 28 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3452 (($) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1070)) (|has| |#1| (-314))) CONST)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#1| (-314)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3134 (($ $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-260)) (|has| |#1| (-314))) ELT)) (-3136 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-487)) (|has| |#1| (-314))) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) ELT)) (-3738 (((-350 $) $) NIL (|has| |#1| (-314)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3775 (($ $ (-488)) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) (|has| |#1| (-499))) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-3950 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3774 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-488)))) ELT) (($ $ (-1094) (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-459 (-1094) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-314))) ELT) (($ $ (-587 (-1094)) (-587 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-459 (-1094) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-314))) ELT) (($ $ (-587 (-251 (-1173 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-262 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-314))) ELT) (($ $ (-251 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-262 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-314))) ELT) (($ $ (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-262 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-314))) ELT) (($ $ (-587 (-1173 |#1| |#2| |#3|)) (-587 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-262 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-314))) ELT)) (-1611 (((-698) $) NIL (|has| |#1| (-314)) ELT)) (-3806 ((|#1| $ (-488)) NIL T ELT) (($ $ $) NIL (|has| (-488) (-1029)) ELT) (($ $ (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-243 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-314))) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3764 (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) (-698)) NIL (|has| |#1| (-314)) ELT) (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) NIL (|has| |#1| (-314)) ELT) (($ $ (-1180 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-192)) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-191)) (|has| |#1| (-314))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-698)) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-192)) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-191)) (|has| |#1| (-314))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-813 (-1094))) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT) (($ $ (-587 (-1094))) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-813 (-1094))) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT) (($ $ (-1094) (-698)) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-813 (-1094))) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-813 (-1094))) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT)) (-3001 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3003 (((-1173 |#1| |#2| |#3|) $) NIL (|has| |#1| (-314)) ELT)) (-3955 (((-488) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3978 (((-477) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-557 (-477))) (|has| |#1| (-314))) ELT) (((-332) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-937)) (|has| |#1| (-314))) ELT) (((-181) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-937)) (|has| |#1| (-314))) ELT) (((-804 (-332)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-557 (-804 (-332)))) (|has| |#1| (-314))) ELT) (((-804 (-488)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-557 (-804 (-488)))) (|has| |#1| (-314))) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| (-1173 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) ELT)) (-2897 (($ $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-148)) ELT) (($ (-1173 |#1| |#2| |#3|)) NIL T ELT) (($ (-1180 |#2|)) 24 T ELT) (($ (-1094)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-954 (-1094))) (|has| |#1| (-314))) ELT) (($ $) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) (|has| |#1| (-499))) ELT) (($ (-352 (-488))) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-954 (-488))) (|has| |#1| (-314))) (|has| |#1| (-38 (-352 (-488))))) ELT)) (-3683 ((|#1| $ (-488)) NIL T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1173 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-118)) (|has| |#1| (-314))) (|has| |#1| (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-3779 ((|#1| $) 11 T ELT)) (-3137 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-487)) (|has| |#1| (-314))) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2067 (((-85) $ $) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-825)) (|has| |#1| (-314))) (|has| |#1| (-499))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3506 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3776 ((|#1| $ (-488)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-488)))) (|has| |#1| (-15 -3953 (|#1| (-1094))))) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3507 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3505 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3389 (($ $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) ELT)) (-2666 (($) 20 T CONST)) (-2672 (($) 15 T CONST)) (-2675 (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) (-698)) NIL (|has| |#1| (-314)) ELT) (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) NIL (|has| |#1| (-314)) ELT) (($ $ (-1180 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-192)) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-191)) (|has| |#1| (-314))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-698)) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-192)) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-191)) (|has| |#1| (-314))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-813 (-1094))) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT) (($ $ (-587 (-1094))) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-813 (-1094))) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT) (($ $ (-1094) (-698)) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-813 (-1094))) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-813 (-1094))) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT)) (-2572 (((-85) $ $) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-760)) (|has| |#1| (-314)))) ELT)) (-2573 (((-85) $ $) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-760)) (|has| |#1| (-314)))) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-2690 (((-85) $ $) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-760)) (|has| |#1| (-314)))) ELT)) (-2691 (((-85) $ $) NIL (OR (-12 (|has| (-1173 |#1| |#2| |#3|) (-744)) (|has| |#1| (-314))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-760)) (|has| |#1| (-314)))) ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT) (($ (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 22 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1173 |#1| |#2| |#3|)) NIL (|has| |#1| (-314)) ELT) (($ (-1173 |#1| |#2| |#3|) $) NIL (|has| |#1| (-314)) ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-1143 |#1| |#2| |#3|) (-13 (-1147 |#1| (-1173 |#1| |#2| |#3|)) (-810 $ (-1180 |#2|)) (-10 -8 (-15 -3953 ($ (-1180 |#2|))) (IF (|has| |#1| (-38 (-352 (-488)))) (-15 -3818 ($ $ (-1180 |#2|))) |%noBranch|))) (-965) (-1094) |#1|) (T -1143)) +((-3953 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-965)) (-14 *5 *3))) (-3818 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)) (-14 *5 *3)))) +((-3849 (((-1143 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1143 |#1| |#3| |#5|)) 23 T ELT))) +(((-1144 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3849 ((-1143 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1143 |#1| |#3| |#5|)))) (-965) (-965) (-1094) (-1094) |#1| |#2|) (T -1144)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1143 *5 *7 *9)) (-4 *5 (-965)) (-4 *6 (-965)) (-14 *7 (-1094)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1143 *6 *8 *10)) (-5 *1 (-1144 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1094))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3087 (((-587 (-998)) $) 96 T ELT)) (-3837 (((-1094) $) 130 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 72 (|has| |#1| (-499)) ELT)) (-2068 (($ $) 73 (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) 75 (|has| |#1| (-499)) ELT)) (-3777 (($ $ (-488)) 125 T ELT) (($ $ (-488) (-488)) 124 T ELT)) (-3780 (((-1073 (-2 (|:| |k| (-488)) (|:| |c| |#1|))) $) 131 T ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3645 (($ $) 147 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3781 (($ $) 191 (|has| |#1| (-314)) ELT)) (-3977 (((-350 $) $) 192 (|has| |#1| (-314)) ELT)) (-3043 (($ $) 146 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1612 (((-85) $ $) 182 (|has| |#1| (-314)) ELT)) (-3496 (($ $) 163 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3644 (($ $) 148 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3824 (($ (-1073 (-2 (|:| |k| (-488)) (|:| |c| |#1|)))) 202 T ELT)) (-3500 (($ $) 162 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3643 (($ $) 149 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3730 (($) 23 T CONST)) (-2570 (($ $ $) 186 (|has| |#1| (-314)) ELT)) (-3965 (($ $) 81 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3733 (((-352 (-861 |#1|)) $ (-488)) 200 (|has| |#1| (-499)) ELT) (((-352 (-861 |#1|)) $ (-488) (-488)) 199 (|has| |#1| (-499)) ELT)) (-2569 (($ $ $) 185 (|has| |#1| (-314)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 180 (|has| |#1| (-314)) ELT)) (-3729 (((-85) $) 193 (|has| |#1| (-314)) ELT)) (-2898 (((-85) $) 95 T ELT)) (-3633 (($) 174 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3778 (((-488) $) 127 T ELT) (((-488) $ (-488)) 126 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3017 (($ $ (-488)) 145 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3783 (($ $ (-834)) 128 T ELT)) (-3821 (($ (-1 |#1| (-488)) $) 201 T ELT)) (-1609 (((-3 (-587 $) #1="failed") (-587 $) $) 189 (|has| |#1| (-314)) ELT)) (-3944 (((-85) $) 83 T ELT)) (-2899 (($ |#1| (-488)) 82 T ELT) (($ $ (-998) (-488)) 98 T ELT) (($ $ (-587 (-998)) (-587 (-488))) 97 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-3949 (($ $) 171 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2900 (($ $) 85 T ELT)) (-3180 ((|#1| $) 86 T ELT)) (-1899 (($ (-587 $)) 178 (|has| |#1| (-314)) ELT) (($ $ $) 177 (|has| |#1| (-314)) ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 194 (|has| |#1| (-314)) ELT)) (-3818 (($ $) 198 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-1094)) 197 (OR (-12 (|has| |#1| (-29 (-488))) (|has| |#1| (-875)) (|has| |#1| (-1119)) (|has| |#1| (-38 (-352 (-488))))) (-12 (|has| |#1| (-15 -3087 ((-587 (-1094)) |#1|))) (|has| |#1| (-15 -3818 (|#1| |#1| (-1094)))) (|has| |#1| (-38 (-352 (-488)))))) ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 179 (|has| |#1| (-314)) ELT)) (-3150 (($ (-587 $)) 176 (|has| |#1| (-314)) ELT) (($ $ $) 175 (|has| |#1| (-314)) ELT)) (-3738 (((-350 $) $) 190 (|has| |#1| (-314)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 188 (|has| |#1| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 187 (|has| |#1| (-314)) ELT)) (-3775 (($ $ (-488)) 122 T ELT)) (-3472 (((-3 $ "failed") $ $) 71 (|has| |#1| (-499)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 181 (|has| |#1| (-314)) ELT)) (-3950 (($ $) 172 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3774 (((-1073 |#1|) $ |#1|) 121 (|has| |#1| (-15 ** (|#1| |#1| (-488)))) ELT)) (-1611 (((-698) $) 183 (|has| |#1| (-314)) ELT)) (-3806 ((|#1| $ (-488)) 132 T ELT) (($ $ $) 108 (|has| (-488) (-1029)) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 184 (|has| |#1| (-314)) ELT)) (-3764 (($ $ (-1094)) 120 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-587 (-1094))) 118 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-1094) (-698)) 117 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 116 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $) 112 (|has| |#1| (-15 * (|#1| (-488) |#1|))) ELT) (($ $ (-698)) 110 (|has| |#1| (-15 * (|#1| (-488) |#1|))) ELT)) (-3955 (((-488) $) 84 T ELT)) (-3501 (($ $) 161 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3642 (($ $) 150 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3499 (($ $) 160 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3641 (($ $) 151 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3497 (($ $) 159 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3640 (($ $) 152 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2897 (($ $) 94 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#1|) 68 (|has| |#1| (-148)) ELT) (($ (-352 (-488))) 78 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $) 70 (|has| |#1| (-499)) ELT)) (-3683 ((|#1| $ (-488)) 80 T ELT)) (-2708 (((-636 $) $) 69 (|has| |#1| (-118)) ELT)) (-3132 (((-698)) 40 T CONST)) (-3779 ((|#1| $) 129 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3504 (($ $) 170 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2067 (((-85) $ $) 74 (|has| |#1| (-499)) ELT)) (-3502 (($ $) 169 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3490 (($ $) 157 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3506 (($ $) 168 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3494 (($ $) 156 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3776 ((|#1| $ (-488)) 123 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-488)))) (|has| |#1| (-15 -3953 (|#1| (-1094))))) ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-3507 (($ $) 167 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3495 (($ $) 155 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3505 (($ $) 166 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3493 (($ $) 154 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3503 (($ $) 165 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3491 (($ $) 153 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-1094)) 119 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-587 (-1094))) 115 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-1094) (-698)) 114 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 113 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-488) |#1|))) ELT) (($ $ (-698)) 109 (|has| |#1| (-15 * (|#1| (-488) |#1|))) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ |#1|) 79 (|has| |#1| (-314)) ELT) (($ $ $) 196 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 195 (|has| |#1| (-314)) ELT) (($ $ $) 173 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 144 (|has| |#1| (-38 (-352 (-488)))) ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-352 (-488)) $) 77 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 76 (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-1145 |#1|) (-113) (-965)) (T -1145)) +((-3824 (*1 *1 *2) (-12 (-5 *2 (-1073 (-2 (|:| |k| (-488)) (|:| |c| *3)))) (-4 *3 (-965)) (-4 *1 (-1145 *3)))) (-3821 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-488))) (-4 *1 (-1145 *3)) (-4 *3 (-965)))) (-3733 (*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-4 *1 (-1145 *4)) (-4 *4 (-965)) (-4 *4 (-499)) (-5 *2 (-352 (-861 *4))))) (-3733 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-488)) (-4 *1 (-1145 *4)) (-4 *4 (-965)) (-4 *4 (-499)) (-5 *2 (-352 (-861 *4))))) (-3818 (*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-965)) (-4 *2 (-38 (-352 (-488)))))) (-3818 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1094)) (-4 *1 (-1145 *3)) (-4 *3 (-965)) (-12 (-4 *3 (-29 (-488))) (-4 *3 (-875)) (-4 *3 (-1119)) (-4 *3 (-38 (-352 (-488)))))) (-12 (-5 *2 (-1094)) (-4 *1 (-1145 *3)) (-4 *3 (-965)) (-12 (|has| *3 (-15 -3087 ((-587 *2) *3))) (|has| *3 (-15 -3818 (*3 *3 *2))) (-4 *3 (-38 (-352 (-488))))))))) +(-13 (-1162 |t#1| (-488)) (-10 -8 (-15 -3824 ($ (-1073 (-2 (|:| |k| (-488)) (|:| |c| |t#1|))))) (-15 -3821 ($ (-1 |t#1| (-488)) $)) (IF (|has| |t#1| (-499)) (PROGN (-15 -3733 ((-352 (-861 |t#1|)) $ (-488))) (-15 -3733 ((-352 (-861 |t#1|)) $ (-488) (-488)))) |%noBranch|) (IF (|has| |t#1| (-38 (-352 (-488)))) (PROGN (-15 -3818 ($ $)) (IF (|has| |t#1| (-15 -3818 (|t#1| |t#1| (-1094)))) (IF (|has| |t#1| (-15 -3087 ((-587 (-1094)) |t#1|))) (-15 -3818 ($ $ (-1094))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1119)) (IF (|has| |t#1| (-875)) (IF (|has| |t#1| (-29 (-488))) (-15 -3818 ($ $ (-1094))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-919)) (-6 (-1119))) |%noBranch|) (IF (|has| |t#1| (-314)) (-6 (-314)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-488)) . T) ((-25) . T) ((-38 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-38 |#1|) |has| |#1| (-148)) ((-38 $) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-35) |has| |#1| (-38 (-352 (-488)))) ((-66) |has| |#1| (-38 (-352 (-488)))) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-499)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-559 (-488)) . T) ((-559 |#1|) |has| |#1| (-148)) ((-559 $) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-556 (-776)) . T) ((-148) OR (|has| |#1| (-499)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-188 $) |has| |#1| (-15 * (|#1| (-488) |#1|))) ((-192) |has| |#1| (-15 * (|#1| (-488) |#1|))) ((-191) |has| |#1| (-15 * (|#1| (-488) |#1|))) ((-203) |has| |#1| (-314)) ((-241) |has| |#1| (-38 (-352 (-488)))) ((-243 (-488) |#1|) . T) ((-243 $ $) |has| (-488) (-1029)) ((-248) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-260) |has| |#1| (-314)) ((-314) |has| |#1| (-314)) ((-383 |#1|) . T) ((-395) |has| |#1| (-314)) ((-436) |has| |#1| (-38 (-352 (-488)))) ((-499) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-13) . T) ((-592 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-594 |#1|) . T) ((-594 $) . T) ((-586 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-586 |#1|) |has| |#1| (-148)) ((-586 $) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-658 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-658 |#1|) |has| |#1| (-148)) ((-658 $) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-667) . T) ((-810 $ (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ((-813 (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ((-815 (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ((-890 |#1| (-488) (-998)) . T) ((-836) |has| |#1| (-314)) ((-919) |has| |#1| (-38 (-352 (-488)))) ((-967 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-499)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-972 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-972 |#1|) . T) ((-972 $) OR (|has| |#1| (-499)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1119) |has| |#1| (-38 (-352 (-488)))) ((-1122) |has| |#1| (-38 (-352 (-488)))) ((-1133) . T) ((-1138) |has| |#1| (-314)) ((-1162 |#1| (-488)) . T)) +((-3194 (((-85) $) 12 T ELT)) (-3163 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1094) #1#) $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL T ELT) (((-3 (-488) #1#) $) NIL T ELT)) (-3162 ((|#3| $) 14 T ELT) (((-1094) $) NIL T ELT) (((-352 (-488)) $) NIL T ELT) (((-488) $) NIL T ELT))) +(((-1146 |#1| |#2| |#3|) (-10 -7 (-15 -3163 ((-3 (-488) #1="failed") |#1|)) (-15 -3162 ((-488) |#1|)) (-15 -3163 ((-3 (-352 (-488)) #1#) |#1|)) (-15 -3162 ((-352 (-488)) |#1|)) (-15 -3163 ((-3 (-1094) #1#) |#1|)) (-15 -3162 ((-1094) |#1|)) (-15 -3163 ((-3 |#3| #1#) |#1|)) (-15 -3162 (|#3| |#1|)) (-15 -3194 ((-85) |#1|))) (-1147 |#2| |#3|) (-965) (-1176 |#2|)) (T -1146)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3135 ((|#2| $) 267 (-2568 (|has| |#2| (-260)) (|has| |#1| (-314))) ELT)) (-3087 (((-587 (-998)) $) 96 T ELT)) (-3837 (((-1094) $) 130 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 72 (|has| |#1| (-499)) ELT)) (-2068 (($ $) 73 (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) 75 (|has| |#1| (-499)) ELT)) (-3777 (($ $ (-488)) 125 T ELT) (($ $ (-488) (-488)) 124 T ELT)) (-3780 (((-1073 (-2 (|:| |k| (-488)) (|:| |c| |#1|))) $) 131 T ELT)) (-3737 ((|#2| $) 303 T ELT)) (-3734 (((-3 |#2| "failed") $) 299 T ELT)) (-3735 ((|#2| $) 300 T ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3645 (($ $) 147 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) 276 (-2568 (|has| |#2| (-825)) (|has| |#1| (-314))) ELT)) (-3781 (($ $) 191 (|has| |#1| (-314)) ELT)) (-3977 (((-350 $) $) 192 (|has| |#1| (-314)) ELT)) (-3043 (($ $) 146 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1="failed") (-587 (-1089 $)) (-1089 $)) 273 (-2568 (|has| |#2| (-825)) (|has| |#1| (-314))) ELT)) (-1612 (((-85) $ $) 182 (|has| |#1| (-314)) ELT)) (-3496 (($ $) 163 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3644 (($ $) 148 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3629 (((-488) $) 285 (-2568 (|has| |#2| (-744)) (|has| |#1| (-314))) ELT)) (-3824 (($ (-1073 (-2 (|:| |k| (-488)) (|:| |c| |#1|)))) 202 T ELT)) (-3500 (($ $) 162 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3643 (($ $) 149 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3730 (($) 23 T CONST)) (-3163 (((-3 |#2| #2="failed") $) 306 T ELT) (((-3 (-488) #2#) $) 296 (-2568 (|has| |#2| (-954 (-488))) (|has| |#1| (-314))) ELT) (((-3 (-352 (-488)) #2#) $) 294 (-2568 (|has| |#2| (-954 (-488))) (|has| |#1| (-314))) ELT) (((-3 (-1094) #2#) $) 278 (-2568 (|has| |#2| (-954 (-1094))) (|has| |#1| (-314))) ELT)) (-3162 ((|#2| $) 307 T ELT) (((-488) $) 295 (-2568 (|has| |#2| (-954 (-488))) (|has| |#1| (-314))) ELT) (((-352 (-488)) $) 293 (-2568 (|has| |#2| (-954 (-488))) (|has| |#1| (-314))) ELT) (((-1094) $) 277 (-2568 (|has| |#2| (-954 (-1094))) (|has| |#1| (-314))) ELT)) (-3736 (($ $) 302 T ELT) (($ (-488) $) 301 T ELT)) (-2570 (($ $ $) 186 (|has| |#1| (-314)) ELT)) (-3965 (($ $) 81 T ELT)) (-2284 (((-634 |#2|) (-634 $)) 255 (|has| |#1| (-314)) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 $) (-1183 $)) 254 (|has| |#1| (-314)) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) 253 (-2568 (|has| |#2| (-584 (-488))) (|has| |#1| (-314))) ELT) (((-634 (-488)) (-634 $)) 252 (-2568 (|has| |#2| (-584 (-488))) (|has| |#1| (-314))) ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3733 (((-352 (-861 |#1|)) $ (-488)) 200 (|has| |#1| (-499)) ELT) (((-352 (-861 |#1|)) $ (-488) (-488)) 199 (|has| |#1| (-499)) ELT)) (-3000 (($) 269 (-2568 (|has| |#2| (-487)) (|has| |#1| (-314))) ELT)) (-2569 (($ $ $) 185 (|has| |#1| (-314)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 180 (|has| |#1| (-314)) ELT)) (-3729 (((-85) $) 193 (|has| |#1| (-314)) ELT)) (-3192 (((-85) $) 283 (-2568 (|has| |#2| (-744)) (|has| |#1| (-314))) ELT)) (-2898 (((-85) $) 95 T ELT)) (-3633 (($) 174 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) 261 (-2568 (|has| |#2| (-800 (-332))) (|has| |#1| (-314))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) 260 (-2568 (|has| |#2| (-800 (-488))) (|has| |#1| (-314))) ELT)) (-3778 (((-488) $) 127 T ELT) (((-488) $ (-488)) 126 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3002 (($ $) 265 (|has| |#1| (-314)) ELT)) (-3004 ((|#2| $) 263 (|has| |#1| (-314)) ELT)) (-3017 (($ $ (-488)) 145 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3451 (((-636 $) $) 297 (-2568 (|has| |#2| (-1070)) (|has| |#1| (-314))) ELT)) (-3193 (((-85) $) 284 (-2568 (|has| |#2| (-744)) (|has| |#1| (-314))) ELT)) (-3783 (($ $ (-834)) 128 T ELT)) (-3821 (($ (-1 |#1| (-488)) $) 201 T ELT)) (-1609 (((-3 (-587 $) #3="failed") (-587 $) $) 189 (|has| |#1| (-314)) ELT)) (-3944 (((-85) $) 83 T ELT)) (-2899 (($ |#1| (-488)) 82 T ELT) (($ $ (-998) (-488)) 98 T ELT) (($ $ (-587 (-998)) (-587 (-488))) 97 T ELT)) (-2537 (($ $ $) 292 (-2568 (|has| |#2| (-760)) (|has| |#1| (-314))) ELT)) (-2863 (($ $ $) 291 (-2568 (|has| |#2| (-760)) (|has| |#1| (-314))) ELT)) (-3849 (($ (-1 |#1| |#1|) $) 87 T ELT) (($ (-1 |#2| |#2|) $) 245 (|has| |#1| (-314)) ELT)) (-3949 (($ $) 171 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2285 (((-634 |#2|) (-1183 $)) 257 (|has| |#1| (-314)) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-1183 $) $) 256 (|has| |#1| (-314)) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) 251 (-2568 (|has| |#2| (-584 (-488))) (|has| |#1| (-314))) ELT) (((-634 (-488)) (-1183 $)) 250 (-2568 (|has| |#2| (-584 (-488))) (|has| |#1| (-314))) ELT)) (-2900 (($ $) 85 T ELT)) (-3180 ((|#1| $) 86 T ELT)) (-1899 (($ (-587 $)) 178 (|has| |#1| (-314)) ELT) (($ $ $) 177 (|has| |#1| (-314)) ELT)) (-3785 (($ (-488) |#2|) 304 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 194 (|has| |#1| (-314)) ELT)) (-3818 (($ $) 198 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-1094)) 197 (OR (-12 (|has| |#1| (-29 (-488))) (|has| |#1| (-875)) (|has| |#1| (-1119)) (|has| |#1| (-38 (-352 (-488))))) (-12 (|has| |#1| (-15 -3087 ((-587 (-1094)) |#1|))) (|has| |#1| (-15 -3818 (|#1| |#1| (-1094)))) (|has| |#1| (-38 (-352 (-488)))))) ELT)) (-3452 (($) 298 (-2568 (|has| |#2| (-1070)) (|has| |#1| (-314))) CONST)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 179 (|has| |#1| (-314)) ELT)) (-3150 (($ (-587 $)) 176 (|has| |#1| (-314)) ELT) (($ $ $) 175 (|has| |#1| (-314)) ELT)) (-3134 (($ $) 268 (-2568 (|has| |#2| (-260)) (|has| |#1| (-314))) ELT)) (-3136 ((|#2| $) 271 (-2568 (|has| |#2| (-487)) (|has| |#1| (-314))) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) 274 (-2568 (|has| |#2| (-825)) (|has| |#1| (-314))) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) 275 (-2568 (|has| |#2| (-825)) (|has| |#1| (-314))) ELT)) (-3738 (((-350 $) $) 190 (|has| |#1| (-314)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 188 (|has| |#1| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 187 (|has| |#1| (-314)) ELT)) (-3775 (($ $ (-488)) 122 T ELT)) (-3472 (((-3 $ "failed") $ $) 71 (|has| |#1| (-499)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 181 (|has| |#1| (-314)) ELT)) (-3950 (($ $) 172 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3774 (((-1073 |#1|) $ |#1|) 121 (|has| |#1| (-15 ** (|#1| |#1| (-488)))) ELT) (($ $ (-1094) |#2|) 244 (-2568 (|has| |#2| (-459 (-1094) |#2|)) (|has| |#1| (-314))) ELT) (($ $ (-587 (-1094)) (-587 |#2|)) 243 (-2568 (|has| |#2| (-459 (-1094) |#2|)) (|has| |#1| (-314))) ELT) (($ $ (-587 (-251 |#2|))) 242 (-2568 (|has| |#2| (-262 |#2|)) (|has| |#1| (-314))) ELT) (($ $ (-251 |#2|)) 241 (-2568 (|has| |#2| (-262 |#2|)) (|has| |#1| (-314))) ELT) (($ $ |#2| |#2|) 240 (-2568 (|has| |#2| (-262 |#2|)) (|has| |#1| (-314))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) 239 (-2568 (|has| |#2| (-262 |#2|)) (|has| |#1| (-314))) ELT)) (-1611 (((-698) $) 183 (|has| |#1| (-314)) ELT)) (-3806 ((|#1| $ (-488)) 132 T ELT) (($ $ $) 108 (|has| (-488) (-1029)) ELT) (($ $ |#2|) 238 (-2568 (|has| |#2| (-243 |#2| |#2|)) (|has| |#1| (-314))) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 184 (|has| |#1| (-314)) ELT)) (-3764 (($ $ (-1 |#2| |#2|) (-698)) 247 (|has| |#1| (-314)) ELT) (($ $ (-1 |#2| |#2|)) 246 (|has| |#1| (-314)) ELT) (($ $) 112 (OR (-2568 (|has| |#2| (-191)) (|has| |#1| (-314))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-698)) 110 (OR (-2568 (|has| |#2| (-191)) (|has| |#1| (-314))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-1094)) 120 (OR (-2568 (|has| |#2| (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT) (($ $ (-587 (-1094))) 118 (OR (-2568 (|has| |#2| (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT) (($ $ (-1094) (-698)) 117 (OR (-2568 (|has| |#2| (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 116 (OR (-2568 (|has| |#2| (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT)) (-3001 (($ $) 266 (|has| |#1| (-314)) ELT)) (-3003 ((|#2| $) 264 (|has| |#1| (-314)) ELT)) (-3955 (((-488) $) 84 T ELT)) (-3501 (($ $) 161 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3642 (($ $) 150 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3499 (($ $) 160 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3641 (($ $) 151 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3497 (($ $) 159 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3640 (($ $) 152 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3978 (((-181) $) 282 (-2568 (|has| |#2| (-937)) (|has| |#1| (-314))) ELT) (((-332) $) 281 (-2568 (|has| |#2| (-937)) (|has| |#1| (-314))) ELT) (((-477) $) 280 (-2568 (|has| |#2| (-557 (-477))) (|has| |#1| (-314))) ELT) (((-804 (-332)) $) 259 (-2568 (|has| |#2| (-557 (-804 (-332)))) (|has| |#1| (-314))) ELT) (((-804 (-488)) $) 258 (-2568 (|has| |#2| (-557 (-804 (-488)))) (|has| |#1| (-314))) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) 272 (-2568 (-2568 (|has| $ (-118)) (|has| |#2| (-825))) (|has| |#1| (-314))) ELT)) (-2897 (($ $) 94 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#1|) 68 (|has| |#1| (-148)) ELT) (($ |#2|) 305 T ELT) (($ (-1094)) 279 (-2568 (|has| |#2| (-954 (-1094))) (|has| |#1| (-314))) ELT) (($ (-352 (-488))) 78 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $) 70 (|has| |#1| (-499)) ELT)) (-3683 ((|#1| $ (-488)) 80 T ELT)) (-2708 (((-636 $) $) 69 (OR (-2568 (OR (|has| |#2| (-118)) (-2568 (|has| $ (-118)) (|has| |#2| (-825)))) (|has| |#1| (-314))) (|has| |#1| (-118))) ELT)) (-3132 (((-698)) 40 T CONST)) (-3779 ((|#1| $) 129 T ELT)) (-3137 ((|#2| $) 270 (-2568 (|has| |#2| (-487)) (|has| |#1| (-314))) ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3504 (($ $) 170 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2067 (((-85) $ $) 74 (|has| |#1| (-499)) ELT)) (-3502 (($ $) 169 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3490 (($ $) 157 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3506 (($ $) 168 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3494 (($ $) 156 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3776 ((|#1| $ (-488)) 123 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-488)))) (|has| |#1| (-15 -3953 (|#1| (-1094))))) ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-3507 (($ $) 167 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3495 (($ $) 155 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3505 (($ $) 166 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3493 (($ $) 154 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3503 (($ $) 165 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3491 (($ $) 153 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3389 (($ $) 286 (-2568 (|has| |#2| (-744)) (|has| |#1| (-314))) ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-1 |#2| |#2|) (-698)) 249 (|has| |#1| (-314)) ELT) (($ $ (-1 |#2| |#2|)) 248 (|has| |#1| (-314)) ELT) (($ $) 111 (OR (-2568 (|has| |#2| (-191)) (|has| |#1| (-314))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-698)) 109 (OR (-2568 (|has| |#2| (-191)) (|has| |#1| (-314))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-1094)) 119 (OR (-2568 (|has| |#2| (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT) (($ $ (-587 (-1094))) 115 (OR (-2568 (|has| |#2| (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT) (($ $ (-1094) (-698)) 114 (OR (-2568 (|has| |#2| (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 113 (OR (-2568 (|has| |#2| (-815 (-1094))) (|has| |#1| (-314))) (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|))))) ELT)) (-2572 (((-85) $ $) 290 (-2568 (|has| |#2| (-760)) (|has| |#1| (-314))) ELT)) (-2573 (((-85) $ $) 288 (-2568 (|has| |#2| (-760)) (|has| |#1| (-314))) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-2690 (((-85) $ $) 289 (-2568 (|has| |#2| (-760)) (|has| |#1| (-314))) ELT)) (-2691 (((-85) $ $) 287 (-2568 (|has| |#2| (-760)) (|has| |#1| (-314))) ELT)) (-3956 (($ $ |#1|) 79 (|has| |#1| (-314)) ELT) (($ $ $) 196 (|has| |#1| (-314)) ELT) (($ |#2| |#2|) 262 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 195 (|has| |#1| (-314)) ELT) (($ $ $) 173 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 144 (|has| |#1| (-38 (-352 (-488)))) ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ $ |#2|) 237 (|has| |#1| (-314)) ELT) (($ |#2| $) 236 (|has| |#1| (-314)) ELT) (($ (-352 (-488)) $) 77 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 76 (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-1147 |#1| |#2|) (-113) (-965) (-1176 |t#1|)) (T -1147)) +((-3955 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4)) (-4 *3 (-965)) (-4 *4 (-1176 *3)) (-5 *2 (-488)))) (-3785 (*1 *1 *2 *3) (-12 (-5 *2 (-488)) (-4 *4 (-965)) (-4 *1 (-1147 *4 *3)) (-4 *3 (-1176 *4)))) (-3737 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-965)) (-4 *2 (-1176 *3)))) (-3736 (*1 *1 *1) (-12 (-4 *1 (-1147 *2 *3)) (-4 *2 (-965)) (-4 *3 (-1176 *2)))) (-3736 (*1 *1 *2 *1) (-12 (-5 *2 (-488)) (-4 *1 (-1147 *3 *4)) (-4 *3 (-965)) (-4 *4 (-1176 *3)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-965)) (-4 *2 (-1176 *3)))) (-3734 (*1 *2 *1) (|partial| -12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-965)) (-4 *2 (-1176 *3))))) +(-13 (-1145 |t#1|) (-954 |t#2|) (-559 |t#2|) (-10 -8 (-15 -3785 ($ (-488) |t#2|)) (-15 -3955 ((-488) $)) (-15 -3737 (|t#2| $)) (-15 -3736 ($ $)) (-15 -3736 ($ (-488) $)) (-15 -3735 (|t#2| $)) (-15 -3734 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-314)) (-6 (-908 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-488)) . T) ((-25) . T) ((-38 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-38 |#1|) |has| |#1| (-148)) ((-38 |#2|) |has| |#1| (-314)) ((-38 $) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-35) |has| |#1| (-38 (-352 (-488)))) ((-66) |has| |#1| (-38 (-352 (-488)))) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-82 |#1| |#1|) . T) ((-82 |#2| |#2|) |has| |#1| (-314)) ((-82 $ $) OR (|has| |#1| (-499)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-104) . T) ((-118) OR (-12 (|has| |#1| (-314)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-120) OR (-12 (|has| |#1| (-314)) (|has| |#2| (-744))) (-12 (|has| |#1| (-314)) (|has| |#2| (-120))) (|has| |#1| (-120))) ((-559 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-559 (-488)) . T) ((-559 (-1094)) -12 (|has| |#1| (-314)) (|has| |#2| (-954 (-1094)))) ((-559 |#1|) |has| |#1| (-148)) ((-559 |#2|) . T) ((-559 $) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-556 (-776)) . T) ((-148) OR (|has| |#1| (-499)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-557 (-181)) -12 (|has| |#1| (-314)) (|has| |#2| (-937))) ((-557 (-332)) -12 (|has| |#1| (-314)) (|has| |#2| (-937))) ((-557 (-477)) -12 (|has| |#1| (-314)) (|has| |#2| (-557 (-477)))) ((-557 (-804 (-332))) -12 (|has| |#1| (-314)) (|has| |#2| (-557 (-804 (-332))))) ((-557 (-804 (-488))) -12 (|has| |#1| (-314)) (|has| |#2| (-557 (-804 (-488))))) ((-188 $) OR (|has| |#1| (-15 * (|#1| (-488) |#1|))) (-12 (|has| |#1| (-314)) (|has| |#2| (-191))) (-12 (|has| |#1| (-314)) (|has| |#2| (-192)))) ((-186 |#2|) |has| |#1| (-314)) ((-192) OR (|has| |#1| (-15 * (|#1| (-488) |#1|))) (-12 (|has| |#1| (-314)) (|has| |#2| (-192)))) ((-191) OR (|has| |#1| (-15 * (|#1| (-488) |#1|))) (-12 (|has| |#1| (-314)) (|has| |#2| (-191))) (-12 (|has| |#1| (-314)) (|has| |#2| (-192)))) ((-227 |#2|) |has| |#1| (-314)) ((-203) |has| |#1| (-314)) ((-241) |has| |#1| (-38 (-352 (-488)))) ((-243 (-488) |#1|) . T) ((-243 |#2| $) -12 (|has| |#1| (-314)) (|has| |#2| (-243 |#2| |#2|))) ((-243 $ $) |has| (-488) (-1029)) ((-248) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-260) |has| |#1| (-314)) ((-262 |#2|) -12 (|has| |#1| (-314)) (|has| |#2| (-262 |#2|))) ((-314) |has| |#1| (-314)) ((-290 |#2|) |has| |#1| (-314)) ((-331 |#2|) |has| |#1| (-314)) ((-345 |#2|) |has| |#1| (-314)) ((-383 |#1|) . T) ((-383 |#2|) |has| |#1| (-314)) ((-395) |has| |#1| (-314)) ((-436) |has| |#1| (-38 (-352 (-488)))) ((-459 (-1094) |#2|) -12 (|has| |#1| (-314)) (|has| |#2| (-459 (-1094) |#2|))) ((-459 |#2| |#2|) -12 (|has| |#1| (-314)) (|has| |#2| (-262 |#2|))) ((-499) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-13) . T) ((-592 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 |#2|) |has| |#1| (-314)) ((-592 $) . T) ((-594 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-594 (-488)) -12 (|has| |#1| (-314)) (|has| |#2| (-584 (-488)))) ((-594 |#1|) . T) ((-594 |#2|) |has| |#1| (-314)) ((-594 $) . T) ((-586 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-586 |#1|) |has| |#1| (-148)) ((-586 |#2|) |has| |#1| (-314)) ((-586 $) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-584 (-488)) -12 (|has| |#1| (-314)) (|has| |#2| (-584 (-488)))) ((-584 |#2|) |has| |#1| (-314)) ((-658 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-658 |#1|) |has| |#1| (-148)) ((-658 |#2|) |has| |#1| (-314)) ((-658 $) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-667) . T) ((-718) -12 (|has| |#1| (-314)) (|has| |#2| (-744))) ((-720) -12 (|has| |#1| (-314)) (|has| |#2| (-744))) ((-722) -12 (|has| |#1| (-314)) (|has| |#2| (-744))) ((-725) -12 (|has| |#1| (-314)) (|has| |#2| (-744))) ((-744) -12 (|has| |#1| (-314)) (|has| |#2| (-744))) ((-759) -12 (|has| |#1| (-314)) (|has| |#2| (-744))) ((-760) OR (-12 (|has| |#1| (-314)) (|has| |#2| (-760))) (-12 (|has| |#1| (-314)) (|has| |#2| (-744)))) ((-763) OR (-12 (|has| |#1| (-314)) (|has| |#2| (-760))) (-12 (|has| |#1| (-314)) (|has| |#2| (-744)))) ((-810 $ (-1094)) OR (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) (-12 (|has| |#1| (-314)) (|has| |#2| (-815 (-1094)))) (-12 (|has| |#1| (-314)) (|has| |#2| (-813 (-1094))))) ((-813 (-1094)) OR (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) (-12 (|has| |#1| (-314)) (|has| |#2| (-813 (-1094))))) ((-815 (-1094)) OR (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) (-12 (|has| |#1| (-314)) (|has| |#2| (-815 (-1094)))) (-12 (|has| |#1| (-314)) (|has| |#2| (-813 (-1094))))) ((-800 (-332)) -12 (|has| |#1| (-314)) (|has| |#2| (-800 (-332)))) ((-800 (-488)) -12 (|has| |#1| (-314)) (|has| |#2| (-800 (-488)))) ((-798 |#2|) |has| |#1| (-314)) ((-825) -12 (|has| |#1| (-314)) (|has| |#2| (-825))) ((-890 |#1| (-488) (-998)) . T) ((-836) |has| |#1| (-314)) ((-908 |#2|) |has| |#1| (-314)) ((-919) |has| |#1| (-38 (-352 (-488)))) ((-937) -12 (|has| |#1| (-314)) (|has| |#2| (-937))) ((-954 (-352 (-488))) -12 (|has| |#1| (-314)) (|has| |#2| (-954 (-488)))) ((-954 (-488)) -12 (|has| |#1| (-314)) (|has| |#2| (-954 (-488)))) ((-954 (-1094)) -12 (|has| |#1| (-314)) (|has| |#2| (-954 (-1094)))) ((-954 |#2|) . T) ((-967 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-967 |#1|) . T) ((-967 |#2|) |has| |#1| (-314)) ((-967 $) OR (|has| |#1| (-499)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-972 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-972 |#1|) . T) ((-972 |#2|) |has| |#1| (-314)) ((-972 $) OR (|has| |#1| (-499)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1070) -12 (|has| |#1| (-314)) (|has| |#2| (-1070))) ((-1119) |has| |#1| (-38 (-352 (-488)))) ((-1122) |has| |#1| (-38 (-352 (-488)))) ((-1133) . T) ((-1138) |has| |#1| (-314)) ((-1145 |#1|) . T) ((-1162 |#1| (-488)) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 83 T ELT)) (-3135 ((|#2| $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-260))) ELT)) (-3087 (((-587 (-998)) $) NIL T ELT)) (-3837 (((-1094) $) 102 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3777 (($ $ (-488)) 111 T ELT) (($ $ (-488) (-488)) 114 T ELT)) (-3780 (((-1073 (-2 (|:| |k| (-488)) (|:| |c| |#1|))) $) 51 T ELT)) (-3737 ((|#2| $) 11 T ELT)) (-3734 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3735 ((|#2| $) 36 T ELT)) (-3498 (($ $) 208 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3645 (($ $) 184 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1316 (((-3 $ #1#) $ $) NIL T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-825))) ELT)) (-3781 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-314)) ELT)) (-3043 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-825))) ELT)) (-1612 (((-85) $ $) NIL (|has| |#1| (-314)) ELT)) (-3496 (($ $) 204 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3644 (($ $) 180 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3629 (((-488) $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-744))) ELT)) (-3824 (($ (-1073 (-2 (|:| |k| (-488)) (|:| |c| |#1|)))) 59 T ELT)) (-3500 (($ $) 212 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3643 (($ $) 188 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-488) #1#) $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-954 (-488)))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-954 (-488)))) ELT) (((-3 (-1094) #1#) $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-954 (-1094)))) ELT)) (-3162 ((|#2| $) 158 T ELT) (((-488) $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-954 (-488)))) ELT) (((-352 (-488)) $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-954 (-488)))) ELT) (((-1094) $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-954 (-1094)))) ELT)) (-3736 (($ $) 65 T ELT) (($ (-488) $) 28 T ELT)) (-2570 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3965 (($ $) NIL T ELT)) (-2284 (((-634 |#2|) (-634 $)) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 $) (-1183 $)) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-584 (-488)))) ELT) (((-634 (-488)) (-634 $)) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-584 (-488)))) ELT)) (-3473 (((-3 $ #1#) $) 90 T ELT)) (-3733 (((-352 (-861 |#1|)) $ (-488)) 126 (|has| |#1| (-499)) ELT) (((-352 (-861 |#1|)) $ (-488) (-488)) 128 (|has| |#1| (-499)) ELT)) (-3000 (($) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-487))) ELT)) (-2569 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL (|has| |#1| (-314)) ELT)) (-3729 (((-85) $) NIL (|has| |#1| (-314)) ELT)) (-3192 (((-85) $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-744))) ELT)) (-2898 (((-85) $) 76 T ELT)) (-3633 (($) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-800 (-332)))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-800 (-488)))) ELT)) (-3778 (((-488) $) 107 T ELT) (((-488) $ (-488)) 109 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3002 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3004 ((|#2| $) 167 (|has| |#1| (-314)) ELT)) (-3017 (($ $ (-488)) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3451 (((-636 $) $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-1070))) ELT)) (-3193 (((-85) $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-744))) ELT)) (-3783 (($ $ (-834)) 150 T ELT)) (-3821 (($ (-1 |#1| (-488)) $) 146 T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-488)) 20 T ELT) (($ $ (-998) (-488)) NIL T ELT) (($ $ (-587 (-998)) (-587 (-488))) NIL T ELT)) (-2537 (($ $ $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-760))) ELT)) (-2863 (($ $ $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-760))) ELT)) (-3849 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-314)) ELT)) (-3949 (($ $) 178 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2285 (((-634 |#2|) (-1183 $)) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-1183 $) $) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-584 (-488)))) ELT) (((-634 (-488)) (-1183 $)) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-584 (-488)))) ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3785 (($ (-488) |#2|) 10 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) 161 (|has| |#1| (-314)) ELT)) (-3818 (($ $) 230 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-1094)) 235 (OR (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-29 (-488))) (|has| |#1| (-875)) (|has| |#1| (-1119))) (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-15 -3818 (|#1| |#1| (-1094)))) (|has| |#1| (-15 -3087 ((-587 (-1094)) |#1|))))) ELT)) (-3452 (($) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-1070))) CONST)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#1| (-314)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3134 (($ $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-260))) ELT)) (-3136 ((|#2| $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-487))) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-825))) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-825))) ELT)) (-3738 (((-350 $) $) NIL (|has| |#1| (-314)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3775 (($ $ (-488)) 140 T ELT)) (-3472 (((-3 $ #1#) $ $) 130 (|has| |#1| (-499)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-3950 (($ $) 176 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3774 (((-1073 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-488)))) ELT) (($ $ (-1094) |#2|) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-459 (-1094) |#2|))) ELT) (($ $ (-587 (-1094)) (-587 |#2|)) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-459 (-1094) |#2|))) ELT) (($ $ (-587 (-251 |#2|))) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-262 |#2|))) ELT) (($ $ (-251 |#2|)) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-262 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-262 |#2|))) ELT) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-262 |#2|))) ELT)) (-1611 (((-698) $) NIL (|has| |#1| (-314)) ELT)) (-3806 ((|#1| $ (-488)) 105 T ELT) (($ $ $) 92 (|has| (-488) (-1029)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-243 |#2| |#2|))) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3764 (($ $ (-1 |#2| |#2|) (-698)) NIL (|has| |#1| (-314)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-314)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-314)) (|has| |#2| (-191))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-698)) NIL (OR (-12 (|has| |#1| (-314)) (|has| |#2| (-191))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-1094)) 155 (OR (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) (-12 (|has| |#1| (-314)) (|has| |#2| (-815 (-1094))))) ELT) (($ $ (-587 (-1094))) NIL (OR (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) (-12 (|has| |#1| (-314)) (|has| |#2| (-815 (-1094))))) ELT) (($ $ (-1094) (-698)) NIL (OR (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) (-12 (|has| |#1| (-314)) (|has| |#2| (-815 (-1094))))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (OR (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) (-12 (|has| |#1| (-314)) (|has| |#2| (-815 (-1094))))) ELT)) (-3001 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3003 ((|#2| $) 168 (|has| |#1| (-314)) ELT)) (-3955 (((-488) $) 12 T ELT)) (-3501 (($ $) 214 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3642 (($ $) 190 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3499 (($ $) 210 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3641 (($ $) 186 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3497 (($ $) 206 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3640 (($ $) 182 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3978 (((-181) $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-937))) ELT) (((-332) $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-937))) ELT) (((-477) $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-557 (-477)))) ELT) (((-804 (-332)) $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-557 (-804 (-332))))) ELT) (((-804 (-488)) $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-557 (-804 (-488))))) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-314)) (|has| |#2| (-825))) ELT)) (-2897 (($ $) 138 T ELT)) (-3953 (((-776) $) 268 T ELT) (($ (-488)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-148)) ELT) (($ |#2|) 21 T ELT) (($ (-1094)) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-954 (-1094)))) ELT) (($ (-352 (-488))) 171 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $) NIL (|has| |#1| (-499)) ELT)) (-3683 ((|#1| $ (-488)) 87 T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-314)) (|has| |#2| (-825))) (|has| |#1| (-118)) (-12 (|has| |#1| (-314)) (|has| |#2| (-118)))) ELT)) (-3132 (((-698)) 157 T CONST)) (-3779 ((|#1| $) 104 T ELT)) (-3137 ((|#2| $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-487))) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3504 (($ $) 220 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3492 (($ $) 196 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3502 (($ $) 216 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3490 (($ $) 192 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3506 (($ $) 224 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3494 (($ $) 200 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3776 ((|#1| $ (-488)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-488)))) (|has| |#1| (-15 -3953 (|#1| (-1094))))) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3507 (($ $) 226 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3495 (($ $) 202 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3505 (($ $) 222 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3493 (($ $) 198 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3503 (($ $) 218 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3491 (($ $) 194 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3389 (($ $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-744))) ELT)) (-2666 (($) 13 T CONST)) (-2672 (($) 18 T CONST)) (-2675 (($ $ (-1 |#2| |#2|) (-698)) NIL (|has| |#1| (-314)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-314)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-314)) (|has| |#2| (-191))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-698)) NIL (OR (-12 (|has| |#1| (-314)) (|has| |#2| (-191))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) (-12 (|has| |#1| (-314)) (|has| |#2| (-815 (-1094))))) ELT) (($ $ (-587 (-1094))) NIL (OR (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) (-12 (|has| |#1| (-314)) (|has| |#2| (-815 (-1094))))) ELT) (($ $ (-1094) (-698)) NIL (OR (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) (-12 (|has| |#1| (-314)) (|has| |#2| (-815 (-1094))))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (OR (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-488) |#1|)))) (-12 (|has| |#1| (-314)) (|has| |#2| (-815 (-1094))))) ELT)) (-2572 (((-85) $ $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-760))) ELT)) (-2573 (((-85) $ $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-760))) ELT)) (-3062 (((-85) $ $) 74 T ELT)) (-2690 (((-85) $ $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-760))) ELT)) (-2691 (((-85) $ $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-760))) ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT) (($ $ $) 165 (|has| |#1| (-314)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3845 (($ $ $) 78 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 86 T ELT) (($ $ (-488)) 162 (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 174 (|has| |#1| (-38 (-352 (-488)))) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-314)) ELT) (($ |#2| $) 163 (|has| |#1| (-314)) ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-1148 |#1| |#2|) (-1147 |#1| |#2|) (-965) (-1176 |#1|)) (T -1148)) +NIL +((-3740 (((-2 (|:| |contp| (-488)) (|:| -1787 (-587 (-2 (|:| |irr| |#1|) (|:| -2400 (-488)))))) |#1| (-85)) 13 T ELT)) (-3739 (((-350 |#1|) |#1|) 26 T ELT)) (-3738 (((-350 |#1|) |#1|) 24 T ELT))) +(((-1149 |#1|) (-10 -7 (-15 -3738 ((-350 |#1|) |#1|)) (-15 -3739 ((-350 |#1|) |#1|)) (-15 -3740 ((-2 (|:| |contp| (-488)) (|:| -1787 (-587 (-2 (|:| |irr| |#1|) (|:| -2400 (-488)))))) |#1| (-85)))) (-1159 (-488))) (T -1149)) +((-3740 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-488)) (|:| -1787 (-587 (-2 (|:| |irr| *3) (|:| -2400 (-488))))))) (-5 *1 (-1149 *3)) (-4 *3 (-1159 (-488))))) (-3739 (*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-1149 *3)) (-4 *3 (-1159 (-488))))) (-3738 (*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-1149 *3)) (-4 *3 (-1159 (-488)))))) +((-2574 (((-85) $ $) NIL (|has| |#1| (-1017)) ELT)) (-3742 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3849 (((-1073 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-759)) ELT)) (-3235 ((|#1| $) 15 T ELT)) (-3237 ((|#1| $) 12 T ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-3233 (((-488) $) 19 T ELT)) (-3234 ((|#1| $) 18 T ELT)) (-3236 ((|#1| $) 13 T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-3741 (((-85) $) 17 T ELT)) (-3969 (((-1073 |#1|) $) 41 (|has| |#1| (-759)) ELT) (((-1073 |#1|) (-587 $)) 40 (|has| |#1| (-759)) ELT)) (-3978 (($ |#1|) 26 T ELT)) (-3953 (($ (-1005 |#1|)) 25 T ELT) (((-776) $) 37 (|has| |#1| (-1017)) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-1017)) ELT)) (-3743 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3238 (($ $ (-488)) 14 T ELT)) (-3062 (((-85) $ $) 30 (|has| |#1| (-1017)) ELT))) +(((-1150 |#1|) (-13 (-1010 |#1|) (-10 -8 (-15 -3743 ($ |#1|)) (-15 -3742 ($ |#1|)) (-15 -3953 ($ (-1005 |#1|))) (-15 -3741 ((-85) $)) (IF (|has| |#1| (-1017)) (-6 (-1017)) |%noBranch|) (IF (|has| |#1| (-759)) (-6 (-1011 |#1| (-1073 |#1|))) |%noBranch|))) (-1133)) (T -1150)) +((-3743 (*1 *1 *2) (-12 (-5 *1 (-1150 *2)) (-4 *2 (-1133)))) (-3742 (*1 *1 *2) (-12 (-5 *1 (-1150 *2)) (-4 *2 (-1133)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-1005 *3)) (-4 *3 (-1133)) (-5 *1 (-1150 *3)))) (-3741 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1150 *3)) (-4 *3 (-1133))))) +((-3849 (((-1073 |#2|) (-1 |#2| |#1|) (-1150 |#1|)) 23 (|has| |#1| (-759)) ELT) (((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|)) 17 T ELT))) +(((-1151 |#1| |#2|) (-10 -7 (-15 -3849 ((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|))) (IF (|has| |#1| (-759)) (-15 -3849 ((-1073 |#2|) (-1 |#2| |#1|) (-1150 |#1|))) |%noBranch|)) (-1133) (-1133)) (T -1151)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5)) (-4 *5 (-759)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-1073 *6)) (-5 *1 (-1151 *5 *6)))) (-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-1150 *6)) (-5 *1 (-1151 *5 *6))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3773 (((-1183 |#2|) $ (-698)) NIL T ELT)) (-3087 (((-587 (-998)) $) NIL T ELT)) (-3771 (($ (-1089 |#2|)) NIL T ELT)) (-3089 (((-1089 $) $ (-998)) NIL T ELT) (((-1089 |#2|) $) NIL T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#2| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#2| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#2| (-499)) ELT)) (-2825 (((-698) $) NIL T ELT) (((-698) $ (-587 (-998))) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3761 (($ $ $) NIL (|has| |#2| (-499)) ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-3781 (($ $) NIL (|has| |#2| (-395)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#2| (-395)) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1#) (-587 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-1612 (((-85) $ $) NIL (|has| |#2| (-314)) ELT)) (-3767 (($ $ (-698)) NIL T ELT)) (-3766 (($ $ (-698)) NIL T ELT)) (-3757 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-395)) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| |#2| (-954 (-352 (-488)))) ELT) (((-3 (-488) #1#) $) NIL (|has| |#2| (-954 (-488))) ELT) (((-3 (-998) #1#) $) NIL T ELT)) (-3162 ((|#2| $) NIL T ELT) (((-352 (-488)) $) NIL (|has| |#2| (-954 (-352 (-488)))) ELT) (((-488) $) NIL (|has| |#2| (-954 (-488))) ELT) (((-998) $) NIL T ELT)) (-3762 (($ $ $ (-998)) NIL (|has| |#2| (-148)) ELT) ((|#2| $ $) NIL (|has| |#2| (-148)) ELT)) (-2570 (($ $ $) NIL (|has| |#2| (-314)) ELT)) (-3965 (($ $) NIL T ELT)) (-2284 (((-634 (-488)) (-634 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-634 $) (-1183 $)) NIL T ELT) (((-634 |#2|) (-634 $)) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-2569 (($ $ $) NIL (|has| |#2| (-314)) ELT)) (-3765 (($ $ $) NIL T ELT)) (-3759 (($ $ $) NIL (|has| |#2| (-499)) ELT)) (-3758 (((-2 (|:| -3961 |#2|) (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#2| (-499)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL (|has| |#2| (-314)) ELT)) (-3509 (($ $) NIL (|has| |#2| (-395)) ELT) (($ $ (-998)) NIL (|has| |#2| (-395)) ELT)) (-2824 (((-587 $) $) NIL T ELT)) (-3729 (((-85) $) NIL (|has| |#2| (-825)) ELT)) (-1628 (($ $ |#2| (-698) $) NIL T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) NIL (-12 (|has| (-998) (-800 (-332))) (|has| |#2| (-800 (-332)))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) NIL (-12 (|has| (-998) (-800 (-488))) (|has| |#2| (-800 (-488)))) ELT)) (-3778 (((-698) $ $) NIL (|has| |#2| (-499)) ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2425 (((-698) $) NIL T ELT)) (-3451 (((-636 $) $) NIL (|has| |#2| (-1070)) ELT)) (-3090 (($ (-1089 |#2|) (-998)) NIL T ELT) (($ (-1089 $) (-998)) NIL T ELT)) (-3783 (($ $ (-698)) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL (|has| |#2| (-314)) ELT)) (-2827 (((-587 $) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#2| (-698)) 18 T ELT) (($ $ (-998) (-698)) NIL T ELT) (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT)) (-3769 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $ (-998)) NIL T ELT) (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL T ELT)) (-2826 (((-698) $) NIL T ELT) (((-698) $ (-998)) NIL T ELT) (((-587 (-698)) $ (-587 (-998))) NIL T ELT)) (-1629 (($ (-1 (-698) (-698)) $) NIL T ELT)) (-3849 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3772 (((-1089 |#2|) $) NIL T ELT)) (-3088 (((-3 (-998) #1#) $) NIL T ELT)) (-2285 (((-634 (-488)) (-1183 $)) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) NIL (|has| |#2| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#2|)) (|:| |vec| (-1183 |#2|))) (-1183 $) $) NIL T ELT) (((-634 |#2|) (-1183 $)) NIL T ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#2| $) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#2| (-395)) ELT) (($ $ $) NIL (|has| |#2| (-395)) ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3768 (((-2 (|:| -1977 $) (|:| -2908 $)) $ (-698)) NIL T ELT)) (-2829 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2828 (((-3 (-587 $) #1#) $) NIL T ELT)) (-2830 (((-3 (-2 (|:| |var| (-998)) (|:| -2406 (-698))) #1#) $) NIL T ELT)) (-3818 (($ $) NIL (|has| |#2| (-38 (-352 (-488)))) ELT)) (-3452 (($) NIL (|has| |#2| (-1070)) CONST)) (-3249 (((-1037) $) NIL T ELT)) (-1805 (((-85) $) NIL T ELT)) (-1804 ((|#2| $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#2| (-395)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#2| (-395)) ELT) (($ $ $) NIL (|has| |#2| (-395)) ELT)) (-3744 (($ $ (-698) |#2| $) NIL T ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) NIL (|has| |#2| (-825)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#2| (-825)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#2| (-314)) ELT)) (-3472 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-499)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-499)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL (|has| |#2| (-314)) ELT)) (-3774 (($ $ (-587 (-251 $))) NIL T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ (-998) |#2|) NIL T ELT) (($ $ (-587 (-998)) (-587 |#2|)) NIL T ELT) (($ $ (-998) $) NIL T ELT) (($ $ (-587 (-998)) (-587 $)) NIL T ELT)) (-1611 (((-698) $) NIL (|has| |#2| (-314)) ELT)) (-3806 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-352 $) (-352 $) (-352 $)) NIL (|has| |#2| (-499)) ELT) ((|#2| (-352 $) |#2|) NIL (|has| |#2| (-314)) ELT) (((-352 $) $ (-352 $)) NIL (|has| |#2| (-499)) ELT)) (-3770 (((-3 $ #1#) $ (-698)) NIL T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#2| (-314)) ELT)) (-3763 (($ $ (-998)) NIL (|has| |#2| (-148)) ELT) ((|#2| $) NIL (|has| |#2| (-148)) ELT)) (-3764 (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT) (($ $ (-998) (-698)) NIL T ELT) (($ $ (-587 (-998))) NIL T ELT) (($ $ (-998)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-698)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1094)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#2| (-815 (-1094))) ELT)) (-3955 (((-698) $) NIL T ELT) (((-698) $ (-998)) NIL T ELT) (((-587 (-698)) $ (-587 (-998))) NIL T ELT)) (-3978 (((-804 (-332)) $) NIL (-12 (|has| (-998) (-557 (-804 (-332)))) (|has| |#2| (-557 (-804 (-332))))) ELT) (((-804 (-488)) $) NIL (-12 (|has| (-998) (-557 (-804 (-488)))) (|has| |#2| (-557 (-804 (-488))))) ELT) (((-477) $) NIL (-12 (|has| (-998) (-557 (-477))) (|has| |#2| (-557 (-477)))) ELT)) (-2823 ((|#2| $) NIL (|has| |#2| (-395)) ELT) (($ $ (-998)) NIL (|has| |#2| (-395)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-825))) ELT)) (-3760 (((-3 $ #1#) $ $) NIL (|has| |#2| (-499)) ELT) (((-3 (-352 $) #1#) (-352 $) $) NIL (|has| |#2| (-499)) ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-998)) NIL T ELT) (($ (-1180 |#1|)) 20 T ELT) (($ (-352 (-488))) NIL (OR (|has| |#2| (-38 (-352 (-488)))) (|has| |#2| (-954 (-352 (-488))))) ELT) (($ $) NIL (|has| |#2| (-499)) ELT)) (-3823 (((-587 |#2|) $) NIL T ELT)) (-3683 ((|#2| $ (-698)) NIL T ELT) (($ $ (-998) (-698)) NIL T ELT) (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT)) (-2708 (((-636 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-825))) (|has| |#2| (-118))) ELT)) (-3132 (((-698)) NIL T CONST)) (-1627 (($ $ $ (-698)) NIL (|has| |#2| (-148)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL (|has| |#2| (-499)) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) 14 T CONST)) (-2675 (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT) (($ $ (-998) (-698)) NIL T ELT) (($ $ (-587 (-998))) NIL T ELT) (($ $ (-998)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-698)) NIL T ELT) (($ $ (-1094)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) NIL (|has| |#2| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (|has| |#2| (-815 (-1094))) ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#2|) NIL (|has| |#2| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-352 (-488))) NIL (|has| |#2| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) NIL (|has| |#2| (-38 (-352 (-488)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-1152 |#1| |#2|) (-13 (-1159 |#2|) (-559 (-1180 |#1|)) (-10 -8 (-15 -3744 ($ $ (-698) |#2| $)))) (-1094) (-965)) (T -1152)) +((-3744 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-698)) (-5 *1 (-1152 *4 *3)) (-14 *4 (-1094)) (-4 *3 (-965))))) +((-3849 (((-1152 |#3| |#4|) (-1 |#4| |#2|) (-1152 |#1| |#2|)) 15 T ELT))) +(((-1153 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3849 ((-1152 |#3| |#4|) (-1 |#4| |#2|) (-1152 |#1| |#2|)))) (-1094) (-965) (-1094) (-965)) (T -1153)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1152 *5 *6)) (-14 *5 (-1094)) (-4 *6 (-965)) (-4 *8 (-965)) (-5 *2 (-1152 *7 *8)) (-5 *1 (-1153 *5 *6 *7 *8)) (-14 *7 (-1094))))) +((-3747 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3745 ((|#1| |#3|) 13 T ELT)) (-3746 ((|#3| |#3|) 19 T ELT))) +(((-1154 |#1| |#2| |#3|) (-10 -7 (-15 -3745 (|#1| |#3|)) (-15 -3746 (|#3| |#3|)) (-15 -3747 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-499) (-908 |#1|) (-1159 |#2|)) (T -1154)) +((-3747 (*1 *2 *3) (-12 (-4 *4 (-499)) (-4 *5 (-908 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1154 *4 *5 *3)) (-4 *3 (-1159 *5)))) (-3746 (*1 *2 *2) (-12 (-4 *3 (-499)) (-4 *4 (-908 *3)) (-5 *1 (-1154 *3 *4 *2)) (-4 *2 (-1159 *4)))) (-3745 (*1 *2 *3) (-12 (-4 *4 (-908 *2)) (-4 *2 (-499)) (-5 *1 (-1154 *2 *4 *3)) (-4 *3 (-1159 *4))))) +((-3749 (((-3 |#2| #1="failed") |#2| (-698) |#1|) 35 T ELT)) (-3748 (((-3 |#2| #1#) |#2| (-698)) 36 T ELT)) (-3751 (((-3 (-2 (|:| -3144 |#2|) (|:| -3143 |#2|)) #1#) |#2|) 50 T ELT)) (-3752 (((-587 |#2|) |#2|) 52 T ELT)) (-3750 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) +(((-1155 |#1| |#2|) (-10 -7 (-15 -3748 ((-3 |#2| #1="failed") |#2| (-698))) (-15 -3749 ((-3 |#2| #1#) |#2| (-698) |#1|)) (-15 -3750 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3751 ((-3 (-2 (|:| -3144 |#2|) (|:| -3143 |#2|)) #1#) |#2|)) (-15 -3752 ((-587 |#2|) |#2|))) (-13 (-499) (-120)) (-1159 |#1|)) (T -1155)) +((-3752 (*1 *2 *3) (-12 (-4 *4 (-13 (-499) (-120))) (-5 *2 (-587 *3)) (-5 *1 (-1155 *4 *3)) (-4 *3 (-1159 *4)))) (-3751 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-499) (-120))) (-5 *2 (-2 (|:| -3144 *3) (|:| -3143 *3))) (-5 *1 (-1155 *4 *3)) (-4 *3 (-1159 *4)))) (-3750 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-499) (-120))) (-5 *1 (-1155 *3 *2)) (-4 *2 (-1159 *3)))) (-3749 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-698)) (-4 *4 (-13 (-499) (-120))) (-5 *1 (-1155 *4 *2)) (-4 *2 (-1159 *4)))) (-3748 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-698)) (-4 *4 (-13 (-499) (-120))) (-5 *1 (-1155 *4 *2)) (-4 *2 (-1159 *4))))) +((-3753 (((-3 (-2 (|:| -1977 |#2|) (|:| -2908 |#2|)) "failed") |#2| |#2|) 30 T ELT))) +(((-1156 |#1| |#2|) (-10 -7 (-15 -3753 ((-3 (-2 (|:| -1977 |#2|) (|:| -2908 |#2|)) "failed") |#2| |#2|))) (-499) (-1159 |#1|)) (T -1156)) +((-3753 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-499)) (-5 *2 (-2 (|:| -1977 *3) (|:| -2908 *3))) (-5 *1 (-1156 *4 *3)) (-4 *3 (-1159 *4))))) +((-3754 ((|#2| |#2| |#2|) 22 T ELT)) (-3755 ((|#2| |#2| |#2|) 36 T ELT)) (-3756 ((|#2| |#2| |#2| (-698) (-698)) 44 T ELT))) +(((-1157 |#1| |#2|) (-10 -7 (-15 -3754 (|#2| |#2| |#2|)) (-15 -3755 (|#2| |#2| |#2|)) (-15 -3756 (|#2| |#2| |#2| (-698) (-698)))) (-965) (-1159 |#1|)) (T -1157)) +((-3756 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-698)) (-4 *4 (-965)) (-5 *1 (-1157 *4 *2)) (-4 *2 (-1159 *4)))) (-3755 (*1 *2 *2 *2) (-12 (-4 *3 (-965)) (-5 *1 (-1157 *3 *2)) (-4 *2 (-1159 *3)))) (-3754 (*1 *2 *2 *2) (-12 (-4 *3 (-965)) (-5 *1 (-1157 *3 *2)) (-4 *2 (-1159 *3))))) +((-3773 (((-1183 |#2|) $ (-698)) 129 T ELT)) (-3087 (((-587 (-998)) $) 16 T ELT)) (-3771 (($ (-1089 |#2|)) 80 T ELT)) (-2825 (((-698) $) NIL T ELT) (((-698) $ (-587 (-998))) 21 T ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) 217 T ELT)) (-3781 (($ $) 207 T ELT)) (-3977 (((-350 $) $) 205 T ELT)) (-2710 (((-3 (-587 (-1089 $)) #1="failed") (-587 (-1089 $)) (-1089 $)) 95 T ELT)) (-3767 (($ $ (-698)) 84 T ELT)) (-3766 (($ $ (-698)) 86 T ELT)) (-3757 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3163 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-352 (-488)) #1#) $) NIL T ELT) (((-3 (-488) #1#) $) NIL T ELT) (((-3 (-998) #1#) $) NIL T ELT)) (-3162 ((|#2| $) 130 T ELT) (((-352 (-488)) $) NIL T ELT) (((-488) $) NIL T ELT) (((-998) $) NIL T ELT)) (-3759 (($ $ $) 182 T ELT)) (-3758 (((-2 (|:| -3961 |#2|) (|:| -1977 $) (|:| -2908 $)) $ $) 185 T ELT)) (-3778 (((-698) $ $) 202 T ELT)) (-3451 (((-636 $) $) 149 T ELT)) (-2899 (($ |#2| (-698)) NIL T ELT) (($ $ (-998) (-698)) 59 T ELT) (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT)) (-2826 (((-698) $) NIL T ELT) (((-698) $ (-998)) 54 T ELT) (((-587 (-698)) $ (-587 (-998))) 55 T ELT)) (-3772 (((-1089 |#2|) $) 72 T ELT)) (-3088 (((-3 (-998) #1#) $) 52 T ELT)) (-3768 (((-2 (|:| -1977 $) (|:| -2908 $)) $ (-698)) 83 T ELT)) (-3818 (($ $) 232 T ELT)) (-3452 (($) 134 T CONST)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 214 T ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) 101 T ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) 99 T ELT)) (-3738 (((-350 $) $) 120 T ELT)) (-3774 (($ $ (-587 (-251 $))) 51 T ELT) (($ $ (-251 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-587 $) (-587 $)) NIL T ELT) (($ $ (-998) |#2|) 39 T ELT) (($ $ (-587 (-998)) (-587 |#2|)) 36 T ELT) (($ $ (-998) $) 32 T ELT) (($ $ (-587 (-998)) (-587 $)) 30 T ELT)) (-1611 (((-698) $) 220 T ELT)) (-3806 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-352 $) (-352 $) (-352 $)) 176 T ELT) ((|#2| (-352 $) |#2|) 219 T ELT) (((-352 $) $ (-352 $)) 201 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 225 T ELT)) (-3764 (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT) (($ $ (-998) (-698)) NIL T ELT) (($ $ (-587 (-998))) NIL T ELT) (($ $ (-998)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-698)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1094)) NIL T ELT) (($ $ (-587 (-1094))) NIL T ELT) (($ $ (-1094) (-698)) NIL T ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL T ELT)) (-3955 (((-698) $) NIL T ELT) (((-698) $ (-998)) 17 T ELT) (((-587 (-698)) $ (-587 (-998))) 23 T ELT)) (-2823 ((|#2| $) NIL T ELT) (($ $ (-998)) 151 T ELT)) (-3760 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-352 $) #1#) (-352 $) $) 189 T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-998)) 64 T ELT) (($ (-352 (-488))) NIL T ELT) (($ $) NIL T ELT))) +(((-1158 |#1| |#2|) (-10 -7 (-15 -3953 (|#1| |#1|)) (-15 -2714 ((-1089 |#1|) (-1089 |#1|) (-1089 |#1|))) (-15 -3764 (|#1| |#1| (-587 (-1094)) (-587 (-698)))) (-15 -3764 (|#1| |#1| (-1094) (-698))) (-15 -3764 (|#1| |#1| (-587 (-1094)))) (-15 -3764 (|#1| |#1| (-1094))) (-15 -3977 ((-350 |#1|) |#1|)) (-15 -3781 (|#1| |#1|)) (-15 -3953 (|#1| (-352 (-488)))) (-15 -3452 (|#1|) -3959) (-15 -3451 ((-636 |#1|) |#1|)) (-15 -3806 ((-352 |#1|) |#1| (-352 |#1|))) (-15 -1611 ((-698) |#1|)) (-15 -2885 ((-2 (|:| -1977 |#1|) (|:| -2908 |#1|)) |#1| |#1|)) (-15 -3818 (|#1| |#1|)) (-15 -3806 (|#2| (-352 |#1|) |#2|)) (-15 -3757 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3758 ((-2 (|:| -3961 |#2|) (|:| -1977 |#1|) (|:| -2908 |#1|)) |#1| |#1|)) (-15 -3759 (|#1| |#1| |#1|)) (-15 -3760 ((-3 (-352 |#1|) #1="failed") (-352 |#1|) |#1|)) (-15 -3760 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3778 ((-698) |#1| |#1|)) (-15 -3806 ((-352 |#1|) (-352 |#1|) (-352 |#1|))) (-15 -3764 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3766 (|#1| |#1| (-698))) (-15 -3767 (|#1| |#1| (-698))) (-15 -3768 ((-2 (|:| -1977 |#1|) (|:| -2908 |#1|)) |#1| (-698))) (-15 -3771 (|#1| (-1089 |#2|))) (-15 -3772 ((-1089 |#2|) |#1|)) (-15 -3773 ((-1183 |#2|) |#1| (-698))) (-15 -3764 (|#1| |#1| (-1 |#2| |#2|) (-698))) (-15 -3764 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3764 (|#1| |#1| (-698))) (-15 -3764 (|#1| |#1|)) (-15 -3806 (|#1| |#1| |#1|)) (-15 -3806 (|#2| |#1| |#2|)) (-15 -3738 ((-350 |#1|) |#1|)) (-15 -2713 ((-350 (-1089 |#1|)) (-1089 |#1|))) (-15 -2712 ((-350 (-1089 |#1|)) (-1089 |#1|))) (-15 -2711 ((-350 (-1089 |#1|)) (-1089 |#1|))) (-15 -2710 ((-3 (-587 (-1089 |#1|)) #1#) (-587 (-1089 |#1|)) (-1089 |#1|))) (-15 -2823 (|#1| |#1| (-998))) (-15 -3087 ((-587 (-998)) |#1|)) (-15 -2825 ((-698) |#1| (-587 (-998)))) (-15 -2825 ((-698) |#1|)) (-15 -2899 (|#1| |#1| (-587 (-998)) (-587 (-698)))) (-15 -2899 (|#1| |#1| (-998) (-698))) (-15 -2826 ((-587 (-698)) |#1| (-587 (-998)))) (-15 -2826 ((-698) |#1| (-998))) (-15 -3088 ((-3 (-998) #1#) |#1|)) (-15 -3955 ((-587 (-698)) |#1| (-587 (-998)))) (-15 -3955 ((-698) |#1| (-998))) (-15 -3953 (|#1| (-998))) (-15 -3163 ((-3 (-998) #1#) |#1|)) (-15 -3162 ((-998) |#1|)) (-15 -3774 (|#1| |#1| (-587 (-998)) (-587 |#1|))) (-15 -3774 (|#1| |#1| (-998) |#1|)) (-15 -3774 (|#1| |#1| (-587 (-998)) (-587 |#2|))) (-15 -3774 (|#1| |#1| (-998) |#2|)) (-15 -3774 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -3774 (|#1| |#1| |#1| |#1|)) (-15 -3774 (|#1| |#1| (-251 |#1|))) (-15 -3774 (|#1| |#1| (-587 (-251 |#1|)))) (-15 -3955 ((-698) |#1|)) (-15 -2899 (|#1| |#2| (-698))) (-15 -3163 ((-3 (-488) #1#) |#1|)) (-15 -3162 ((-488) |#1|)) (-15 -3163 ((-3 (-352 (-488)) #1#) |#1|)) (-15 -3162 ((-352 (-488)) |#1|)) (-15 -3162 (|#2| |#1|)) (-15 -3163 ((-3 |#2| #1#) |#1|)) (-15 -3953 (|#1| |#2|)) (-15 -2826 ((-698) |#1|)) (-15 -2823 (|#2| |#1|)) (-15 -3764 (|#1| |#1| (-998))) (-15 -3764 (|#1| |#1| (-587 (-998)))) (-15 -3764 (|#1| |#1| (-998) (-698))) (-15 -3764 (|#1| |#1| (-587 (-998)) (-587 (-698)))) (-15 -3953 (|#1| (-488))) (-15 -3953 ((-776) |#1|))) (-1159 |#2|) (-965)) (T -1158)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3773 (((-1183 |#1|) $ (-698)) 272 T ELT)) (-3087 (((-587 (-998)) $) 124 T ELT)) (-3771 (($ (-1089 |#1|)) 270 T ELT)) (-3089 (((-1089 $) $ (-998)) 139 T ELT) (((-1089 |#1|) $) 138 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 101 (|has| |#1| (-499)) ELT)) (-2068 (($ $) 102 (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) 104 (|has| |#1| (-499)) ELT)) (-2825 (((-698) $) 126 T ELT) (((-698) $ (-587 (-998))) 125 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3761 (($ $ $) 257 (|has| |#1| (-499)) ELT)) (-2713 (((-350 (-1089 $)) (-1089 $)) 114 (|has| |#1| (-825)) ELT)) (-3781 (($ $) 112 (|has| |#1| (-395)) ELT)) (-3977 (((-350 $) $) 111 (|has| |#1| (-395)) ELT)) (-2710 (((-3 (-587 (-1089 $)) #1="failed") (-587 (-1089 $)) (-1089 $)) 117 (|has| |#1| (-825)) ELT)) (-1612 (((-85) $ $) 242 (|has| |#1| (-314)) ELT)) (-3767 (($ $ (-698)) 265 T ELT)) (-3766 (($ $ (-698)) 264 T ELT)) (-3757 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 252 (|has| |#1| (-395)) ELT)) (-3730 (($) 23 T CONST)) (-3163 (((-3 |#1| #2="failed") $) 182 T ELT) (((-3 (-352 (-488)) #2#) $) 179 (|has| |#1| (-954 (-352 (-488)))) ELT) (((-3 (-488) #2#) $) 177 (|has| |#1| (-954 (-488))) ELT) (((-3 (-998) #2#) $) 154 T ELT)) (-3162 ((|#1| $) 181 T ELT) (((-352 (-488)) $) 180 (|has| |#1| (-954 (-352 (-488)))) ELT) (((-488) $) 178 (|has| |#1| (-954 (-488))) ELT) (((-998) $) 155 T ELT)) (-3762 (($ $ $ (-998)) 122 (|has| |#1| (-148)) ELT) ((|#1| $ $) 260 (|has| |#1| (-148)) ELT)) (-2570 (($ $ $) 246 (|has| |#1| (-314)) ELT)) (-3965 (($ $) 172 T ELT)) (-2284 (((-634 (-488)) (-634 $)) 150 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-634 $) (-1183 $)) 149 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-634 $) (-1183 $)) 148 T ELT) (((-634 |#1|) (-634 $)) 147 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-2569 (($ $ $) 245 (|has| |#1| (-314)) ELT)) (-3765 (($ $ $) 263 T ELT)) (-3759 (($ $ $) 254 (|has| |#1| (-499)) ELT)) (-3758 (((-2 (|:| -3961 |#1|) (|:| -1977 $) (|:| -2908 $)) $ $) 253 (|has| |#1| (-499)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 240 (|has| |#1| (-314)) ELT)) (-3509 (($ $) 194 (|has| |#1| (-395)) ELT) (($ $ (-998)) 119 (|has| |#1| (-395)) ELT)) (-2824 (((-587 $) $) 123 T ELT)) (-3729 (((-85) $) 110 (|has| |#1| (-825)) ELT)) (-1628 (($ $ |#1| (-698) $) 190 T ELT)) (-2802 (((-802 (-332) $) $ (-804 (-332)) (-802 (-332) $)) 98 (-12 (|has| (-998) (-800 (-332))) (|has| |#1| (-800 (-332)))) ELT) (((-802 (-488) $) $ (-804 (-488)) (-802 (-488) $)) 97 (-12 (|has| (-998) (-800 (-488))) (|has| |#1| (-800 (-488)))) ELT)) (-3778 (((-698) $ $) 258 (|has| |#1| (-499)) ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-2425 (((-698) $) 187 T ELT)) (-3451 (((-636 $) $) 238 (|has| |#1| (-1070)) ELT)) (-3090 (($ (-1089 |#1|) (-998)) 131 T ELT) (($ (-1089 $) (-998)) 130 T ELT)) (-3783 (($ $ (-698)) 269 T ELT)) (-1609 (((-3 (-587 $) #3="failed") (-587 $) $) 249 (|has| |#1| (-314)) ELT)) (-2827 (((-587 $) $) 140 T ELT)) (-3944 (((-85) $) 170 T ELT)) (-2899 (($ |#1| (-698)) 171 T ELT) (($ $ (-998) (-698)) 133 T ELT) (($ $ (-587 (-998)) (-587 (-698))) 132 T ELT)) (-3769 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $ (-998)) 134 T ELT) (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 267 T ELT)) (-2826 (((-698) $) 188 T ELT) (((-698) $ (-998)) 136 T ELT) (((-587 (-698)) $ (-587 (-998))) 135 T ELT)) (-1629 (($ (-1 (-698) (-698)) $) 189 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3772 (((-1089 |#1|) $) 271 T ELT)) (-3088 (((-3 (-998) #4="failed") $) 137 T ELT)) (-2285 (((-634 (-488)) (-1183 $)) 152 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 (-488))) (|:| |vec| (-1183 (-488)))) (-1183 $) $) 151 (|has| |#1| (-584 (-488))) ELT) (((-2 (|:| |mat| (-634 |#1|)) (|:| |vec| (-1183 |#1|))) (-1183 $) $) 146 T ELT) (((-634 |#1|) (-1183 $)) 145 T ELT)) (-2900 (($ $) 168 T ELT)) (-3180 ((|#1| $) 167 T ELT)) (-1899 (($ (-587 $)) 108 (|has| |#1| (-395)) ELT) (($ $ $) 107 (|has| |#1| (-395)) ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3768 (((-2 (|:| -1977 $) (|:| -2908 $)) $ (-698)) 266 T ELT)) (-2829 (((-3 (-587 $) #4#) $) 128 T ELT)) (-2828 (((-3 (-587 $) #4#) $) 129 T ELT)) (-2830 (((-3 (-2 (|:| |var| (-998)) (|:| -2406 (-698))) #4#) $) 127 T ELT)) (-3818 (($ $) 250 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3452 (($) 237 (|has| |#1| (-1070)) CONST)) (-3249 (((-1037) $) 12 T ELT)) (-1805 (((-85) $) 184 T ELT)) (-1804 ((|#1| $) 185 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 109 (|has| |#1| (-395)) ELT)) (-3150 (($ (-587 $)) 106 (|has| |#1| (-395)) ELT) (($ $ $) 105 (|has| |#1| (-395)) ELT)) (-2711 (((-350 (-1089 $)) (-1089 $)) 116 (|has| |#1| (-825)) ELT)) (-2712 (((-350 (-1089 $)) (-1089 $)) 115 (|has| |#1| (-825)) ELT)) (-3738 (((-350 $) $) 113 (|has| |#1| (-825)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 248 (|has| |#1| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 247 (|has| |#1| (-314)) ELT)) (-3472 (((-3 $ "failed") $ |#1|) 192 (|has| |#1| (-499)) ELT) (((-3 $ "failed") $ $) 100 (|has| |#1| (-499)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 241 (|has| |#1| (-314)) ELT)) (-3774 (($ $ (-587 (-251 $))) 163 T ELT) (($ $ (-251 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-587 $) (-587 $)) 160 T ELT) (($ $ (-998) |#1|) 159 T ELT) (($ $ (-587 (-998)) (-587 |#1|)) 158 T ELT) (($ $ (-998) $) 157 T ELT) (($ $ (-587 (-998)) (-587 $)) 156 T ELT)) (-1611 (((-698) $) 243 (|has| |#1| (-314)) ELT)) (-3806 ((|#1| $ |#1|) 282 T ELT) (($ $ $) 281 T ELT) (((-352 $) (-352 $) (-352 $)) 259 (|has| |#1| (-499)) ELT) ((|#1| (-352 $) |#1|) 251 (|has| |#1| (-314)) ELT) (((-352 $) $ (-352 $)) 239 (|has| |#1| (-499)) ELT)) (-3770 (((-3 $ "failed") $ (-698)) 268 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 244 (|has| |#1| (-314)) ELT)) (-3763 (($ $ (-998)) 121 (|has| |#1| (-148)) ELT) ((|#1| $) 261 (|has| |#1| (-148)) ELT)) (-3764 (($ $ (-587 (-998)) (-587 (-698))) 52 T ELT) (($ $ (-998) (-698)) 51 T ELT) (($ $ (-587 (-998))) 50 T ELT) (($ $ (-998)) 48 T ELT) (($ $) 280 T ELT) (($ $ (-698)) 278 T ELT) (($ $ (-1 |#1| |#1|)) 276 T ELT) (($ $ (-1 |#1| |#1|) (-698)) 275 T ELT) (($ $ (-1 |#1| |#1|) $) 262 T ELT) (($ $ (-1094)) 236 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) 234 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) 233 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 232 (|has| |#1| (-815 (-1094))) ELT)) (-3955 (((-698) $) 169 T ELT) (((-698) $ (-998)) 144 T ELT) (((-587 (-698)) $ (-587 (-998))) 143 T ELT)) (-3978 (((-804 (-332)) $) 96 (-12 (|has| (-998) (-557 (-804 (-332)))) (|has| |#1| (-557 (-804 (-332))))) ELT) (((-804 (-488)) $) 95 (-12 (|has| (-998) (-557 (-804 (-488)))) (|has| |#1| (-557 (-804 (-488))))) ELT) (((-477) $) 94 (-12 (|has| (-998) (-557 (-477))) (|has| |#1| (-557 (-477)))) ELT)) (-2823 ((|#1| $) 193 (|has| |#1| (-395)) ELT) (($ $ (-998)) 120 (|has| |#1| (-395)) ELT)) (-2709 (((-3 (-1183 $) #1#) (-634 $)) 118 (-2568 (|has| $ (-118)) (|has| |#1| (-825))) ELT)) (-3760 (((-3 $ "failed") $ $) 256 (|has| |#1| (-499)) ELT) (((-3 (-352 $) "failed") (-352 $) $) 255 (|has| |#1| (-499)) ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#1|) 183 T ELT) (($ (-998)) 153 T ELT) (($ (-352 (-488))) 92 (OR (|has| |#1| (-954 (-352 (-488)))) (|has| |#1| (-38 (-352 (-488))))) ELT) (($ $) 99 (|has| |#1| (-499)) ELT)) (-3823 (((-587 |#1|) $) 186 T ELT)) (-3683 ((|#1| $ (-698)) 173 T ELT) (($ $ (-998) (-698)) 142 T ELT) (($ $ (-587 (-998)) (-587 (-698))) 141 T ELT)) (-2708 (((-636 $) $) 93 (OR (-2568 (|has| $ (-118)) (|has| |#1| (-825))) (|has| |#1| (-118))) ELT)) (-3132 (((-698)) 40 T CONST)) (-1627 (($ $ $ (-698)) 191 (|has| |#1| (-148)) ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 103 (|has| |#1| (-499)) ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-587 (-998)) (-587 (-698))) 55 T ELT) (($ $ (-998) (-698)) 54 T ELT) (($ $ (-587 (-998))) 53 T ELT) (($ $ (-998)) 49 T ELT) (($ $) 279 T ELT) (($ $ (-698)) 277 T ELT) (($ $ (-1 |#1| |#1|)) 274 T ELT) (($ $ (-1 |#1| |#1|) (-698)) 273 T ELT) (($ $ (-1094)) 235 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094))) 231 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-1094) (-698)) 230 (|has| |#1| (-815 (-1094))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 229 (|has| |#1| (-815 (-1094))) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ |#1|) 174 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-352 (-488))) 176 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ (-352 (-488)) $) 175 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ |#1| $) 165 T ELT) (($ $ |#1|) 164 T ELT))) +(((-1159 |#1|) (-113) (-965)) (T -1159)) +((-3773 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-4 *1 (-1159 *4)) (-4 *4 (-965)) (-5 *2 (-1183 *4)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-965)) (-5 *2 (-1089 *3)))) (-3771 (*1 *1 *2) (-12 (-5 *2 (-1089 *3)) (-4 *3 (-965)) (-4 *1 (-1159 *3)))) (-3783 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-1159 *3)) (-4 *3 (-965)))) (-3770 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-698)) (-4 *1 (-1159 *3)) (-4 *3 (-965)))) (-3769 (*1 *2 *1 *1) (-12 (-4 *3 (-965)) (-5 *2 (-2 (|:| -1977 *1) (|:| -2908 *1))) (-4 *1 (-1159 *3)))) (-3768 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-4 *4 (-965)) (-5 *2 (-2 (|:| -1977 *1) (|:| -2908 *1))) (-4 *1 (-1159 *4)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-1159 *3)) (-4 *3 (-965)))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-1159 *3)) (-4 *3 (-965)))) (-3765 (*1 *1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-965)))) (-3764 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1159 *3)) (-4 *3 (-965)))) (-3763 (*1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-965)) (-4 *2 (-148)))) (-3762 (*1 *2 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-965)) (-4 *2 (-148)))) (-3806 (*1 *2 *2 *2) (-12 (-5 *2 (-352 *1)) (-4 *1 (-1159 *3)) (-4 *3 (-965)) (-4 *3 (-499)))) (-3778 (*1 *2 *1 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-965)) (-4 *3 (-499)) (-5 *2 (-698)))) (-3761 (*1 *1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-965)) (-4 *2 (-499)))) (-3760 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1159 *2)) (-4 *2 (-965)) (-4 *2 (-499)))) (-3760 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-352 *1)) (-4 *1 (-1159 *3)) (-4 *3 (-965)) (-4 *3 (-499)))) (-3759 (*1 *1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-965)) (-4 *2 (-499)))) (-3758 (*1 *2 *1 *1) (-12 (-4 *3 (-499)) (-4 *3 (-965)) (-5 *2 (-2 (|:| -3961 *3) (|:| -1977 *1) (|:| -2908 *1))) (-4 *1 (-1159 *3)))) (-3757 (*1 *2 *1 *1) (-12 (-4 *3 (-395)) (-4 *3 (-965)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1159 *3)))) (-3806 (*1 *2 *3 *2) (-12 (-5 *3 (-352 *1)) (-4 *1 (-1159 *2)) (-4 *2 (-965)) (-4 *2 (-314)))) (-3818 (*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-965)) (-4 *2 (-38 (-352 (-488))))))) +(-13 (-865 |t#1| (-698) (-998)) (-243 |t#1| |t#1|) (-243 $ $) (-192) (-186 |t#1|) (-10 -8 (-15 -3773 ((-1183 |t#1|) $ (-698))) (-15 -3772 ((-1089 |t#1|) $)) (-15 -3771 ($ (-1089 |t#1|))) (-15 -3783 ($ $ (-698))) (-15 -3770 ((-3 $ "failed") $ (-698))) (-15 -3769 ((-2 (|:| -1977 $) (|:| -2908 $)) $ $)) (-15 -3768 ((-2 (|:| -1977 $) (|:| -2908 $)) $ (-698))) (-15 -3767 ($ $ (-698))) (-15 -3766 ($ $ (-698))) (-15 -3765 ($ $ $)) (-15 -3764 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1070)) (-6 (-1070)) |%noBranch|) (IF (|has| |t#1| (-148)) (PROGN (-15 -3763 (|t#1| $)) (-15 -3762 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-499)) (PROGN (-6 (-243 (-352 $) (-352 $))) (-15 -3806 ((-352 $) (-352 $) (-352 $))) (-15 -3778 ((-698) $ $)) (-15 -3761 ($ $ $)) (-15 -3760 ((-3 $ "failed") $ $)) (-15 -3760 ((-3 (-352 $) "failed") (-352 $) $)) (-15 -3759 ($ $ $)) (-15 -3758 ((-2 (|:| -3961 |t#1|) (|:| -1977 $) (|:| -2908 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-395)) (-15 -3757 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-314)) (PROGN (-6 (-260)) (-6 -3997) (-15 -3806 (|t#1| (-352 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-352 (-488)))) (-15 -3818 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-698)) . T) ((-25) . T) ((-38 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-38 |#1|) |has| |#1| (-148)) ((-38 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-314))) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) OR (|has| |#1| (-954 (-352 (-488)))) (|has| |#1| (-38 (-352 (-488))))) ((-559 (-488)) . T) ((-559 (-998)) . T) ((-559 |#1|) . T) ((-559 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-314))) ((-556 (-776)) . T) ((-148) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-557 (-477)) -12 (|has| |#1| (-557 (-477))) (|has| (-998) (-557 (-477)))) ((-557 (-804 (-332))) -12 (|has| |#1| (-557 (-804 (-332)))) (|has| (-998) (-557 (-804 (-332))))) ((-557 (-804 (-488))) -12 (|has| |#1| (-557 (-804 (-488)))) (|has| (-998) (-557 (-804 (-488))))) ((-188 $) . T) ((-186 |#1|) . T) ((-192) . T) ((-191) . T) ((-227 |#1|) . T) ((-243 (-352 $) (-352 $)) |has| |#1| (-499)) ((-243 |#1| |#1|) . T) ((-243 $ $) . T) ((-248) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-314))) ((-260) |has| |#1| (-314)) ((-262 $) . T) ((-279 |#1| (-698)) . T) ((-331 |#1|) . T) ((-357 |#1|) . T) ((-383 |#1|) . T) ((-395) OR (|has| |#1| (-825)) (|has| |#1| (-395)) (|has| |#1| (-314))) ((-459 (-998) |#1|) . T) ((-459 (-998) $) . T) ((-459 $ $) . T) ((-499) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-314))) ((-13) . T) ((-592 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-594 (-488)) |has| |#1| (-584 (-488))) ((-594 |#1|) . T) ((-594 $) . T) ((-586 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-586 |#1|) |has| |#1| (-148)) ((-586 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-314))) ((-584 (-488)) |has| |#1| (-584 (-488))) ((-584 |#1|) . T) ((-658 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-658 |#1|) |has| |#1| (-148)) ((-658 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-314))) ((-667) . T) ((-810 $ (-998)) . T) ((-810 $ (-1094)) OR (|has| |#1| (-815 (-1094))) (|has| |#1| (-813 (-1094)))) ((-813 (-998)) . T) ((-813 (-1094)) |has| |#1| (-813 (-1094))) ((-815 (-998)) . T) ((-815 (-1094)) OR (|has| |#1| (-815 (-1094))) (|has| |#1| (-813 (-1094)))) ((-800 (-332)) -12 (|has| |#1| (-800 (-332))) (|has| (-998) (-800 (-332)))) ((-800 (-488)) -12 (|has| |#1| (-800 (-488))) (|has| (-998) (-800 (-488)))) ((-865 |#1| (-698) (-998)) . T) ((-825) |has| |#1| (-825)) ((-836) |has| |#1| (-314)) ((-954 (-352 (-488))) |has| |#1| (-954 (-352 (-488)))) ((-954 (-488)) |has| |#1| (-954 (-488))) ((-954 (-998)) . T) ((-954 |#1|) . T) ((-967 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-972 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-972 |#1|) . T) ((-972 $) OR (|has| |#1| (-825)) (|has| |#1| (-499)) (|has| |#1| (-395)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1070) |has| |#1| (-1070)) ((-1133) . T) ((-1138) |has| |#1| (-825))) +((-3849 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) +(((-1160 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3849 (|#4| (-1 |#3| |#1|) |#2|))) (-965) (-1159 |#1|) (-965) (-1159 |#3|)) (T -1160)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-965)) (-4 *6 (-965)) (-4 *2 (-1159 *6)) (-5 *1 (-1160 *5 *4 *6 *2)) (-4 *4 (-1159 *5))))) +((-3087 (((-587 (-998)) $) 34 T ELT)) (-3965 (($ $) 31 T ELT)) (-2899 (($ |#2| |#3|) NIL T ELT) (($ $ (-998) |#3|) 28 T ELT) (($ $ (-587 (-998)) (-587 |#3|)) 27 T ELT)) (-2900 (($ $) 14 T ELT)) (-3180 ((|#2| $) 12 T ELT)) (-3955 ((|#3| $) 10 T ELT))) +(((-1161 |#1| |#2| |#3|) (-10 -7 (-15 -3087 ((-587 (-998)) |#1|)) (-15 -2899 (|#1| |#1| (-587 (-998)) (-587 |#3|))) (-15 -2899 (|#1| |#1| (-998) |#3|)) (-15 -3965 (|#1| |#1|)) (-15 -2899 (|#1| |#2| |#3|)) (-15 -3955 (|#3| |#1|)) (-15 -2900 (|#1| |#1|)) (-15 -3180 (|#2| |#1|))) (-1162 |#2| |#3|) (-965) (-720)) (T -1161)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3087 (((-587 (-998)) $) 96 T ELT)) (-3837 (((-1094) $) 130 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 72 (|has| |#1| (-499)) ELT)) (-2068 (($ $) 73 (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) 75 (|has| |#1| (-499)) ELT)) (-3777 (($ $ |#2|) 125 T ELT) (($ $ |#2| |#2|) 124 T ELT)) (-3780 (((-1073 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 131 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3965 (($ $) 81 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-2898 (((-85) $) 95 T ELT)) (-3778 ((|#2| $) 127 T ELT) ((|#2| $ |#2|) 126 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3783 (($ $ (-834)) 128 T ELT)) (-3944 (((-85) $) 83 T ELT)) (-2899 (($ |#1| |#2|) 82 T ELT) (($ $ (-998) |#2|) 98 T ELT) (($ $ (-587 (-998)) (-587 |#2|)) 97 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-2900 (($ $) 85 T ELT)) (-3180 ((|#1| $) 86 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3775 (($ $ |#2|) 122 T ELT)) (-3472 (((-3 $ "failed") $ $) 71 (|has| |#1| (-499)) ELT)) (-3774 (((-1073 |#1|) $ |#1|) 121 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3806 ((|#1| $ |#2|) 132 T ELT) (($ $ $) 108 (|has| |#2| (-1029)) ELT)) (-3764 (($ $ (-1094)) 120 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-587 (-1094))) 118 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1094) (-698)) 117 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 116 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 112 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-698)) 110 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3955 ((|#2| $) 84 T ELT)) (-2897 (($ $) 94 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ (-352 (-488))) 78 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $) 70 (|has| |#1| (-499)) ELT) (($ |#1|) 68 (|has| |#1| (-148)) ELT)) (-3683 ((|#1| $ |#2|) 80 T ELT)) (-2708 (((-636 $) $) 69 (|has| |#1| (-118)) ELT)) (-3132 (((-698)) 40 T CONST)) (-3779 ((|#1| $) 129 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 74 (|has| |#1| (-499)) ELT)) (-3776 ((|#1| $ |#2|) 123 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3953 (|#1| (-1094))))) ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-1094)) 119 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-587 (-1094))) 115 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1094) (-698)) 114 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 113 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-698)) 109 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ |#1|) 79 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-352 (-488)) $) 77 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 76 (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-1162 |#1| |#2|) (-113) (-965) (-720)) (T -1162)) +((-3780 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720)) (-5 *2 (-1073 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720)) (-5 *2 (-1094)))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-1162 *2 *3)) (-4 *3 (-720)) (-4 *2 (-965)))) (-3783 (*1 *1 *1 *2) (-12 (-5 *2 (-834)) (-4 *1 (-1162 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-965)) (-4 *2 (-720)))) (-3778 (*1 *2 *1 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-965)) (-4 *2 (-720)))) (-3777 (*1 *1 *1 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-965)) (-4 *2 (-720)))) (-3777 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-965)) (-4 *2 (-720)))) (-3776 (*1 *2 *1 *3) (-12 (-4 *1 (-1162 *2 *3)) (-4 *3 (-720)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3953 (*2 (-1094)))) (-4 *2 (-965)))) (-3775 (*1 *1 *1 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-965)) (-4 *2 (-720)))) (-3774 (*1 *2 *1 *3) (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1073 *3))))) +(-13 (-890 |t#1| |t#2| (-998)) (-243 |t#2| |t#1|) (-10 -8 (-15 -3780 ((-1073 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3837 ((-1094) $)) (-15 -3779 (|t#1| $)) (-15 -3783 ($ $ (-834))) (-15 -3778 (|t#2| $)) (-15 -3778 (|t#2| $ |t#2|)) (-15 -3777 ($ $ |t#2|)) (-15 -3777 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3953 (|t#1| (-1094)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3776 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3775 ($ $ |t#2|)) (IF (|has| |t#2| (-1029)) (-6 (-243 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-192)) (IF (|has| |t#1| (-813 (-1094))) (-6 (-813 (-1094))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3774 ((-1073 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-38 |#1|) |has| |#1| (-148)) ((-38 $) |has| |#1| (-499)) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-559 (-488)) . T) ((-559 |#1|) |has| |#1| (-148)) ((-559 $) |has| |#1| (-499)) ((-556 (-776)) . T) ((-148) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-188 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-192) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-191) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-243 |#2| |#1|) . T) ((-243 $ $) |has| |#2| (-1029)) ((-248) |has| |#1| (-499)) ((-383 |#1|) . T) ((-499) |has| |#1| (-499)) ((-13) . T) ((-592 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-594 |#1|) . T) ((-594 $) . T) ((-586 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-586 |#1|) |has| |#1| (-148)) ((-586 $) |has| |#1| (-499)) ((-658 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-658 |#1|) |has| |#1| (-148)) ((-658 $) |has| |#1| (-499)) ((-667) . T) ((-810 $ (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-813 (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-815 (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-890 |#1| |#2| (-998)) . T) ((-967 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-972 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-972 |#1|) . T) ((-972 $) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-3781 ((|#2| |#2|) 12 T ELT)) (-3977 (((-350 |#2|) |#2|) 14 T ELT)) (-3782 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-488))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-488)))) 30 T ELT))) +(((-1163 |#1| |#2|) (-10 -7 (-15 -3977 ((-350 |#2|) |#2|)) (-15 -3781 (|#2| |#2|)) (-15 -3782 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-488))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-488)))))) (-499) (-13 (-1159 |#1|) (-499) (-10 -8 (-15 -3150 ($ $ $))))) (T -1163)) +((-3782 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-488)))) (-4 *4 (-13 (-1159 *3) (-499) (-10 -8 (-15 -3150 ($ $ $))))) (-4 *3 (-499)) (-5 *1 (-1163 *3 *4)))) (-3781 (*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-1159 *3) (-499) (-10 -8 (-15 -3150 ($ $ $))))))) (-3977 (*1 *2 *3) (-12 (-4 *4 (-499)) (-5 *2 (-350 *3)) (-5 *1 (-1163 *4 *3)) (-4 *3 (-13 (-1159 *4) (-499) (-10 -8 (-15 -3150 ($ $ $)))))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3087 (((-587 (-998)) $) NIL T ELT)) (-3837 (((-1094) $) 11 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3777 (($ $ (-352 (-488))) NIL T ELT) (($ $ (-352 (-488)) (-352 (-488))) NIL T ELT)) (-3780 (((-1073 (-2 (|:| |k| (-352 (-488))) (|:| |c| |#1|))) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3645 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-314)) ELT)) (-3043 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1612 (((-85) $ $) NIL (|has| |#1| (-314)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3644 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3824 (($ (-698) (-1073 (-2 (|:| |k| (-352 (-488))) (|:| |c| |#1|)))) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3643 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-1143 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1173 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3162 (((-1143 |#1| |#2| |#3|) $) NIL T ELT) (((-1173 |#1| |#2| |#3|) $) NIL T ELT)) (-2570 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3965 (($ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3787 (((-352 (-488)) $) 68 T ELT)) (-2569 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3788 (($ (-352 (-488)) (-1143 |#1| |#2| |#3|)) NIL T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL (|has| |#1| (-314)) ELT)) (-3729 (((-85) $) NIL (|has| |#1| (-314)) ELT)) (-2898 (((-85) $) NIL T ELT)) (-3633 (($) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3778 (((-352 (-488)) $) NIL T ELT) (((-352 (-488)) $ (-352 (-488))) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3017 (($ $ (-488)) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3783 (($ $ (-834)) NIL T ELT) (($ $ (-352 (-488))) NIL T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-352 (-488))) 30 T ELT) (($ $ (-998) (-352 (-488))) NIL T ELT) (($ $ (-587 (-998)) (-587 (-352 (-488)))) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3949 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3786 (((-1143 |#1| |#2| |#3|) $) 71 T ELT)) (-3784 (((-3 (-1143 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3785 (((-1143 |#1| |#2| |#3|) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3818 (($ $) 39 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-1094)) NIL (OR (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-29 (-488))) (|has| |#1| (-875)) (|has| |#1| (-1119))) (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-15 -3818 (|#1| |#1| (-1094)))) (|has| |#1| (-15 -3087 ((-587 (-1094)) |#1|))))) ELT) (($ $ (-1180 |#2|)) 40 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#1| (-314)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#1| (-314)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3775 (($ $ (-352 (-488))) NIL T ELT)) (-3472 (((-3 $ #1#) $ $) NIL (|has| |#1| (-499)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-3950 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3774 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-352 (-488))))) ELT)) (-1611 (((-698) $) NIL (|has| |#1| (-314)) ELT)) (-3806 ((|#1| $ (-352 (-488))) NIL T ELT) (($ $ $) NIL (|has| (-352 (-488)) (-1029)) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3764 (($ $ (-1094)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-698)) NIL (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-1180 |#2|)) 38 T ELT)) (-3955 (((-352 (-488)) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3953 (((-776) $) 107 T ELT) (($ (-488)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-148)) ELT) (($ (-1143 |#1| |#2| |#3|)) 16 T ELT) (($ (-1173 |#1| |#2| |#3|)) 17 T ELT) (($ (-1180 |#2|)) 36 T ELT) (($ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $) NIL (|has| |#1| (-499)) ELT)) (-3683 ((|#1| $ (-352 (-488))) NIL T ELT)) (-2708 (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-3132 (((-698)) NIL T CONST)) (-3779 ((|#1| $) 12 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3506 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3776 ((|#1| $ (-352 (-488))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-352 (-488))))) (|has| |#1| (-15 -3953 (|#1| (-1094))))) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3507 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3505 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2666 (($) 32 T CONST)) (-2672 (($) 26 T CONST)) (-2675 (($ $ (-1094)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-698)) NIL (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-1180 |#2|)) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 34 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ (-488)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-1164 |#1| |#2| |#3|) (-13 (-1168 |#1| (-1143 |#1| |#2| |#3|)) (-810 $ (-1180 |#2|)) (-954 (-1173 |#1| |#2| |#3|)) (-559 (-1180 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-352 (-488)))) (-15 -3818 ($ $ (-1180 |#2|))) |%noBranch|))) (-965) (-1094) |#1|) (T -1164)) +((-3818 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)) (-14 *5 *3)))) +((-3849 (((-1164 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1164 |#1| |#3| |#5|)) 24 T ELT))) +(((-1165 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3849 ((-1164 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1164 |#1| |#3| |#5|)))) (-965) (-965) (-1094) (-1094) |#1| |#2|) (T -1165)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1164 *5 *7 *9)) (-4 *5 (-965)) (-4 *6 (-965)) (-14 *7 (-1094)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1164 *6 *8 *10)) (-5 *1 (-1165 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1094))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3087 (((-587 (-998)) $) 96 T ELT)) (-3837 (((-1094) $) 130 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 72 (|has| |#1| (-499)) ELT)) (-2068 (($ $) 73 (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) 75 (|has| |#1| (-499)) ELT)) (-3777 (($ $ (-352 (-488))) 125 T ELT) (($ $ (-352 (-488)) (-352 (-488))) 124 T ELT)) (-3780 (((-1073 (-2 (|:| |k| (-352 (-488))) (|:| |c| |#1|))) $) 131 T ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3645 (($ $) 147 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3781 (($ $) 191 (|has| |#1| (-314)) ELT)) (-3977 (((-350 $) $) 192 (|has| |#1| (-314)) ELT)) (-3043 (($ $) 146 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1612 (((-85) $ $) 182 (|has| |#1| (-314)) ELT)) (-3496 (($ $) 163 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3644 (($ $) 148 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3824 (($ (-698) (-1073 (-2 (|:| |k| (-352 (-488))) (|:| |c| |#1|)))) 200 T ELT)) (-3500 (($ $) 162 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3643 (($ $) 149 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3730 (($) 23 T CONST)) (-2570 (($ $ $) 186 (|has| |#1| (-314)) ELT)) (-3965 (($ $) 81 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-2569 (($ $ $) 185 (|has| |#1| (-314)) ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 180 (|has| |#1| (-314)) ELT)) (-3729 (((-85) $) 193 (|has| |#1| (-314)) ELT)) (-2898 (((-85) $) 95 T ELT)) (-3633 (($) 174 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3778 (((-352 (-488)) $) 127 T ELT) (((-352 (-488)) $ (-352 (-488))) 126 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3017 (($ $ (-488)) 145 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3783 (($ $ (-834)) 128 T ELT) (($ $ (-352 (-488))) 199 T ELT)) (-1609 (((-3 (-587 $) #1="failed") (-587 $) $) 189 (|has| |#1| (-314)) ELT)) (-3944 (((-85) $) 83 T ELT)) (-2899 (($ |#1| (-352 (-488))) 82 T ELT) (($ $ (-998) (-352 (-488))) 98 T ELT) (($ $ (-587 (-998)) (-587 (-352 (-488)))) 97 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-3949 (($ $) 171 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2900 (($ $) 85 T ELT)) (-3180 ((|#1| $) 86 T ELT)) (-1899 (($ (-587 $)) 178 (|has| |#1| (-314)) ELT) (($ $ $) 177 (|has| |#1| (-314)) ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 194 (|has| |#1| (-314)) ELT)) (-3818 (($ $) 198 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-1094)) 197 (OR (-12 (|has| |#1| (-29 (-488))) (|has| |#1| (-875)) (|has| |#1| (-1119)) (|has| |#1| (-38 (-352 (-488))))) (-12 (|has| |#1| (-15 -3087 ((-587 (-1094)) |#1|))) (|has| |#1| (-15 -3818 (|#1| |#1| (-1094)))) (|has| |#1| (-38 (-352 (-488)))))) ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 179 (|has| |#1| (-314)) ELT)) (-3150 (($ (-587 $)) 176 (|has| |#1| (-314)) ELT) (($ $ $) 175 (|has| |#1| (-314)) ELT)) (-3738 (((-350 $) $) 190 (|has| |#1| (-314)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 188 (|has| |#1| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 187 (|has| |#1| (-314)) ELT)) (-3775 (($ $ (-352 (-488))) 122 T ELT)) (-3472 (((-3 $ "failed") $ $) 71 (|has| |#1| (-499)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 181 (|has| |#1| (-314)) ELT)) (-3950 (($ $) 172 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3774 (((-1073 |#1|) $ |#1|) 121 (|has| |#1| (-15 ** (|#1| |#1| (-352 (-488))))) ELT)) (-1611 (((-698) $) 183 (|has| |#1| (-314)) ELT)) (-3806 ((|#1| $ (-352 (-488))) 132 T ELT) (($ $ $) 108 (|has| (-352 (-488)) (-1029)) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 184 (|has| |#1| (-314)) ELT)) (-3764 (($ $ (-1094)) 120 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094))) 118 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-1094) (-698)) 117 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 116 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $) 112 (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-698)) 110 (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT)) (-3955 (((-352 (-488)) $) 84 T ELT)) (-3501 (($ $) 161 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3642 (($ $) 150 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3499 (($ $) 160 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3641 (($ $) 151 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3497 (($ $) 159 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3640 (($ $) 152 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2897 (($ $) 94 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#1|) 68 (|has| |#1| (-148)) ELT) (($ (-352 (-488))) 78 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $) 70 (|has| |#1| (-499)) ELT)) (-3683 ((|#1| $ (-352 (-488))) 80 T ELT)) (-2708 (((-636 $) $) 69 (|has| |#1| (-118)) ELT)) (-3132 (((-698)) 40 T CONST)) (-3779 ((|#1| $) 129 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3504 (($ $) 170 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2067 (((-85) $ $) 74 (|has| |#1| (-499)) ELT)) (-3502 (($ $) 169 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3490 (($ $) 157 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3506 (($ $) 168 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3494 (($ $) 156 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3776 ((|#1| $ (-352 (-488))) 123 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-352 (-488))))) (|has| |#1| (-15 -3953 (|#1| (-1094))))) ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-3507 (($ $) 167 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3495 (($ $) 155 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3505 (($ $) 166 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3493 (($ $) 154 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3503 (($ $) 165 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3491 (($ $) 153 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-1094)) 119 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094))) 115 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-1094) (-698)) 114 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 113 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-698)) 109 (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ |#1|) 79 (|has| |#1| (-314)) ELT) (($ $ $) 196 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 195 (|has| |#1| (-314)) ELT) (($ $ $) 173 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 144 (|has| |#1| (-38 (-352 (-488)))) ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-352 (-488)) $) 77 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 76 (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-1166 |#1|) (-113) (-965)) (T -1166)) +((-3824 (*1 *1 *2 *3) (-12 (-5 *2 (-698)) (-5 *3 (-1073 (-2 (|:| |k| (-352 (-488))) (|:| |c| *4)))) (-4 *4 (-965)) (-4 *1 (-1166 *4)))) (-3783 (*1 *1 *1 *2) (-12 (-5 *2 (-352 (-488))) (-4 *1 (-1166 *3)) (-4 *3 (-965)))) (-3818 (*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-965)) (-4 *2 (-38 (-352 (-488)))))) (-3818 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1094)) (-4 *1 (-1166 *3)) (-4 *3 (-965)) (-12 (-4 *3 (-29 (-488))) (-4 *3 (-875)) (-4 *3 (-1119)) (-4 *3 (-38 (-352 (-488)))))) (-12 (-5 *2 (-1094)) (-4 *1 (-1166 *3)) (-4 *3 (-965)) (-12 (|has| *3 (-15 -3087 ((-587 *2) *3))) (|has| *3 (-15 -3818 (*3 *3 *2))) (-4 *3 (-38 (-352 (-488))))))))) +(-13 (-1162 |t#1| (-352 (-488))) (-10 -8 (-15 -3824 ($ (-698) (-1073 (-2 (|:| |k| (-352 (-488))) (|:| |c| |t#1|))))) (-15 -3783 ($ $ (-352 (-488)))) (IF (|has| |t#1| (-38 (-352 (-488)))) (PROGN (-15 -3818 ($ $)) (IF (|has| |t#1| (-15 -3818 (|t#1| |t#1| (-1094)))) (IF (|has| |t#1| (-15 -3087 ((-587 (-1094)) |t#1|))) (-15 -3818 ($ $ (-1094))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1119)) (IF (|has| |t#1| (-875)) (IF (|has| |t#1| (-29 (-488))) (-15 -3818 ($ $ (-1094))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-919)) (-6 (-1119))) |%noBranch|) (IF (|has| |t#1| (-314)) (-6 (-314)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-352 (-488))) . T) ((-25) . T) ((-38 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-38 |#1|) |has| |#1| (-148)) ((-38 $) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-35) |has| |#1| (-38 (-352 (-488)))) ((-66) |has| |#1| (-38 (-352 (-488)))) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-499)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-559 (-488)) . T) ((-559 |#1|) |has| |#1| (-148)) ((-559 $) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-556 (-776)) . T) ((-148) OR (|has| |#1| (-499)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-188 $) |has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ((-192) |has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ((-191) |has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ((-203) |has| |#1| (-314)) ((-241) |has| |#1| (-38 (-352 (-488)))) ((-243 (-352 (-488)) |#1|) . T) ((-243 $ $) |has| (-352 (-488)) (-1029)) ((-248) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-260) |has| |#1| (-314)) ((-314) |has| |#1| (-314)) ((-383 |#1|) . T) ((-395) |has| |#1| (-314)) ((-436) |has| |#1| (-38 (-352 (-488)))) ((-499) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-13) . T) ((-592 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-594 |#1|) . T) ((-594 $) . T) ((-586 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-586 |#1|) |has| |#1| (-148)) ((-586 $) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-658 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-658 |#1|) |has| |#1| (-148)) ((-658 $) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-667) . T) ((-810 $ (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ((-813 (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ((-815 (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ((-890 |#1| (-352 (-488)) (-998)) . T) ((-836) |has| |#1| (-314)) ((-919) |has| |#1| (-38 (-352 (-488)))) ((-967 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-499)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-972 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-972 |#1|) . T) ((-972 $) OR (|has| |#1| (-499)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1119) |has| |#1| (-38 (-352 (-488)))) ((-1122) |has| |#1| (-38 (-352 (-488)))) ((-1133) . T) ((-1138) |has| |#1| (-314)) ((-1162 |#1| (-352 (-488))) . T)) +((-3194 (((-85) $) 12 T ELT)) (-3163 (((-3 |#3| "failed") $) 17 T ELT)) (-3162 ((|#3| $) 14 T ELT))) +(((-1167 |#1| |#2| |#3|) (-10 -7 (-15 -3163 ((-3 |#3| "failed") |#1|)) (-15 -3162 (|#3| |#1|)) (-15 -3194 ((-85) |#1|))) (-1168 |#2| |#3|) (-965) (-1145 |#2|)) (T -1167)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3087 (((-587 (-998)) $) 96 T ELT)) (-3837 (((-1094) $) 130 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 72 (|has| |#1| (-499)) ELT)) (-2068 (($ $) 73 (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) 75 (|has| |#1| (-499)) ELT)) (-3777 (($ $ (-352 (-488))) 125 T ELT) (($ $ (-352 (-488)) (-352 (-488))) 124 T ELT)) (-3780 (((-1073 (-2 (|:| |k| (-352 (-488))) (|:| |c| |#1|))) $) 131 T ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3645 (($ $) 147 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3781 (($ $) 191 (|has| |#1| (-314)) ELT)) (-3977 (((-350 $) $) 192 (|has| |#1| (-314)) ELT)) (-3043 (($ $) 146 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1612 (((-85) $ $) 182 (|has| |#1| (-314)) ELT)) (-3496 (($ $) 163 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3644 (($ $) 148 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3824 (($ (-698) (-1073 (-2 (|:| |k| (-352 (-488))) (|:| |c| |#1|)))) 200 T ELT)) (-3500 (($ $) 162 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3643 (($ $) 149 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3730 (($) 23 T CONST)) (-3163 (((-3 |#2| "failed") $) 213 T ELT)) (-3162 ((|#2| $) 214 T ELT)) (-2570 (($ $ $) 186 (|has| |#1| (-314)) ELT)) (-3965 (($ $) 81 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3787 (((-352 (-488)) $) 210 T ELT)) (-2569 (($ $ $) 185 (|has| |#1| (-314)) ELT)) (-3788 (($ (-352 (-488)) |#2|) 211 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 180 (|has| |#1| (-314)) ELT)) (-3729 (((-85) $) 193 (|has| |#1| (-314)) ELT)) (-2898 (((-85) $) 95 T ELT)) (-3633 (($) 174 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3778 (((-352 (-488)) $) 127 T ELT) (((-352 (-488)) $ (-352 (-488))) 126 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3017 (($ $ (-488)) 145 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3783 (($ $ (-834)) 128 T ELT) (($ $ (-352 (-488))) 199 T ELT)) (-1609 (((-3 (-587 $) #1="failed") (-587 $) $) 189 (|has| |#1| (-314)) ELT)) (-3944 (((-85) $) 83 T ELT)) (-2899 (($ |#1| (-352 (-488))) 82 T ELT) (($ $ (-998) (-352 (-488))) 98 T ELT) (($ $ (-587 (-998)) (-587 (-352 (-488)))) 97 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-3949 (($ $) 171 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2900 (($ $) 85 T ELT)) (-3180 ((|#1| $) 86 T ELT)) (-1899 (($ (-587 $)) 178 (|has| |#1| (-314)) ELT) (($ $ $) 177 (|has| |#1| (-314)) ELT)) (-3786 ((|#2| $) 209 T ELT)) (-3784 (((-3 |#2| "failed") $) 207 T ELT)) (-3785 ((|#2| $) 208 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 194 (|has| |#1| (-314)) ELT)) (-3818 (($ $) 198 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-1094)) 197 (OR (-12 (|has| |#1| (-29 (-488))) (|has| |#1| (-875)) (|has| |#1| (-1119)) (|has| |#1| (-38 (-352 (-488))))) (-12 (|has| |#1| (-15 -3087 ((-587 (-1094)) |#1|))) (|has| |#1| (-15 -3818 (|#1| |#1| (-1094)))) (|has| |#1| (-38 (-352 (-488)))))) ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 179 (|has| |#1| (-314)) ELT)) (-3150 (($ (-587 $)) 176 (|has| |#1| (-314)) ELT) (($ $ $) 175 (|has| |#1| (-314)) ELT)) (-3738 (((-350 $) $) 190 (|has| |#1| (-314)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 188 (|has| |#1| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 187 (|has| |#1| (-314)) ELT)) (-3775 (($ $ (-352 (-488))) 122 T ELT)) (-3472 (((-3 $ "failed") $ $) 71 (|has| |#1| (-499)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 181 (|has| |#1| (-314)) ELT)) (-3950 (($ $) 172 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3774 (((-1073 |#1|) $ |#1|) 121 (|has| |#1| (-15 ** (|#1| |#1| (-352 (-488))))) ELT)) (-1611 (((-698) $) 183 (|has| |#1| (-314)) ELT)) (-3806 ((|#1| $ (-352 (-488))) 132 T ELT) (($ $ $) 108 (|has| (-352 (-488)) (-1029)) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 184 (|has| |#1| (-314)) ELT)) (-3764 (($ $ (-1094)) 120 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094))) 118 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-1094) (-698)) 117 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 116 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $) 112 (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-698)) 110 (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT)) (-3955 (((-352 (-488)) $) 84 T ELT)) (-3501 (($ $) 161 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3642 (($ $) 150 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3499 (($ $) 160 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3641 (($ $) 151 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3497 (($ $) 159 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3640 (($ $) 152 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2897 (($ $) 94 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#1|) 68 (|has| |#1| (-148)) ELT) (($ |#2|) 212 T ELT) (($ (-352 (-488))) 78 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $) 70 (|has| |#1| (-499)) ELT)) (-3683 ((|#1| $ (-352 (-488))) 80 T ELT)) (-2708 (((-636 $) $) 69 (|has| |#1| (-118)) ELT)) (-3132 (((-698)) 40 T CONST)) (-3779 ((|#1| $) 129 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3504 (($ $) 170 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2067 (((-85) $ $) 74 (|has| |#1| (-499)) ELT)) (-3502 (($ $) 169 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3490 (($ $) 157 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3506 (($ $) 168 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3494 (($ $) 156 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3776 ((|#1| $ (-352 (-488))) 123 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-352 (-488))))) (|has| |#1| (-15 -3953 (|#1| (-1094))))) ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-3507 (($ $) 167 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3495 (($ $) 155 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3505 (($ $) 166 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3493 (($ $) 154 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3503 (($ $) 165 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3491 (($ $) 153 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-1094)) 119 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094))) 115 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-1094) (-698)) 114 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 113 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-698)) 109 (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ |#1|) 79 (|has| |#1| (-314)) ELT) (($ $ $) 196 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 195 (|has| |#1| (-314)) ELT) (($ $ $) 173 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 144 (|has| |#1| (-38 (-352 (-488)))) ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-352 (-488)) $) 77 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 76 (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-1168 |#1| |#2|) (-113) (-965) (-1145 |t#1|)) (T -1168)) +((-3955 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-965)) (-4 *4 (-1145 *3)) (-5 *2 (-352 (-488))))) (-3788 (*1 *1 *2 *3) (-12 (-5 *2 (-352 (-488))) (-4 *4 (-965)) (-4 *1 (-1168 *4 *3)) (-4 *3 (-1145 *4)))) (-3787 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-965)) (-4 *4 (-1145 *3)) (-5 *2 (-352 (-488))))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-965)) (-4 *2 (-1145 *3)))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-965)) (-4 *2 (-1145 *3)))) (-3784 (*1 *2 *1) (|partial| -12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-965)) (-4 *2 (-1145 *3))))) +(-13 (-1166 |t#1|) (-954 |t#2|) (-559 |t#2|) (-10 -8 (-15 -3788 ($ (-352 (-488)) |t#2|)) (-15 -3787 ((-352 (-488)) $)) (-15 -3786 (|t#2| $)) (-15 -3955 ((-352 (-488)) $)) (-15 -3785 (|t#2| $)) (-15 -3784 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-352 (-488))) . T) ((-25) . T) ((-38 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-38 |#1|) |has| |#1| (-148)) ((-38 $) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-35) |has| |#1| (-38 (-352 (-488)))) ((-66) |has| |#1| (-38 (-352 (-488)))) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-499)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-559 (-488)) . T) ((-559 |#1|) |has| |#1| (-148)) ((-559 |#2|) . T) ((-559 $) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-556 (-776)) . T) ((-148) OR (|has| |#1| (-499)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-188 $) |has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ((-192) |has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ((-191) |has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ((-203) |has| |#1| (-314)) ((-241) |has| |#1| (-38 (-352 (-488)))) ((-243 (-352 (-488)) |#1|) . T) ((-243 $ $) |has| (-352 (-488)) (-1029)) ((-248) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-260) |has| |#1| (-314)) ((-314) |has| |#1| (-314)) ((-383 |#1|) . T) ((-395) |has| |#1| (-314)) ((-436) |has| |#1| (-38 (-352 (-488)))) ((-499) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-13) . T) ((-592 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-594 |#1|) . T) ((-594 $) . T) ((-586 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-586 |#1|) |has| |#1| (-148)) ((-586 $) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-658 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-658 |#1|) |has| |#1| (-148)) ((-658 $) OR (|has| |#1| (-499)) (|has| |#1| (-314))) ((-667) . T) ((-810 $ (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ((-813 (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ((-815 (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ((-890 |#1| (-352 (-488)) (-998)) . T) ((-836) |has| |#1| (-314)) ((-919) |has| |#1| (-38 (-352 (-488)))) ((-954 |#2|) . T) ((-967 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-499)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-972 (-352 (-488))) OR (|has| |#1| (-314)) (|has| |#1| (-38 (-352 (-488))))) ((-972 |#1|) . T) ((-972 $) OR (|has| |#1| (-499)) (|has| |#1| (-314)) (|has| |#1| (-148))) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1119) |has| |#1| (-38 (-352 (-488)))) ((-1122) |has| |#1| (-38 (-352 (-488)))) ((-1133) . T) ((-1138) |has| |#1| (-314)) ((-1162 |#1| (-352 (-488))) . T) ((-1166 |#1|) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3087 (((-587 (-998)) $) NIL T ELT)) (-3837 (((-1094) $) 104 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3777 (($ $ (-352 (-488))) 116 T ELT) (($ $ (-352 (-488)) (-352 (-488))) 118 T ELT)) (-3780 (((-1073 (-2 (|:| |k| (-352 (-488))) (|:| |c| |#1|))) $) 54 T ELT)) (-3498 (($ $) 192 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3645 (($ $) 168 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3781 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3977 (((-350 $) $) NIL (|has| |#1| (-314)) ELT)) (-3043 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1612 (((-85) $ $) NIL (|has| |#1| (-314)) ELT)) (-3496 (($ $) 188 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3644 (($ $) 164 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3824 (($ (-698) (-1073 (-2 (|:| |k| (-352 (-488))) (|:| |c| |#1|)))) 65 T ELT)) (-3500 (($ $) 196 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3643 (($ $) 172 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#2| #1#) $) NIL T ELT)) (-3162 ((|#2| $) NIL T ELT)) (-2570 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3965 (($ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) 85 T ELT)) (-3787 (((-352 (-488)) $) 13 T ELT)) (-2569 (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3788 (($ (-352 (-488)) |#2|) 11 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) NIL (|has| |#1| (-314)) ELT)) (-3729 (((-85) $) NIL (|has| |#1| (-314)) ELT)) (-2898 (((-85) $) 74 T ELT)) (-3633 (($) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3778 (((-352 (-488)) $) 113 T ELT) (((-352 (-488)) $ (-352 (-488))) 114 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3017 (($ $ (-488)) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3783 (($ $ (-834)) 130 T ELT) (($ $ (-352 (-488))) 128 T ELT)) (-1609 (((-3 (-587 $) #1#) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-352 (-488))) 33 T ELT) (($ $ (-998) (-352 (-488))) NIL T ELT) (($ $ (-587 (-998)) (-587 (-352 (-488)))) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3949 (($ $) 162 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-1899 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3786 ((|#2| $) 12 T ELT)) (-3784 (((-3 |#2| #1#) $) 44 T ELT)) (-3785 ((|#2| $) 45 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-2490 (($ $) 101 (|has| |#1| (-314)) ELT)) (-3818 (($ $) 146 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-1094)) 151 (OR (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-29 (-488))) (|has| |#1| (-875)) (|has| |#1| (-1119))) (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-15 -3818 (|#1| |#1| (-1094)))) (|has| |#1| (-15 -3087 ((-587 (-1094)) |#1|))))) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) NIL (|has| |#1| (-314)) ELT)) (-3150 (($ (-587 $)) NIL (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-314)) ELT)) (-3738 (((-350 $) $) NIL (|has| |#1| (-314)) ELT)) (-1610 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-314)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3775 (($ $ (-352 (-488))) 122 T ELT)) (-3472 (((-3 $ #1#) $ $) NIL (|has| |#1| (-499)) ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) NIL (|has| |#1| (-314)) ELT)) (-3950 (($ $) 160 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3774 (((-1073 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-352 (-488))))) ELT)) (-1611 (((-698) $) NIL (|has| |#1| (-314)) ELT)) (-3806 ((|#1| $ (-352 (-488))) 108 T ELT) (($ $ $) 94 (|has| (-352 (-488)) (-1029)) ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) NIL (|has| |#1| (-314)) ELT)) (-3764 (($ $ (-1094)) 138 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-698)) NIL (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT)) (-3955 (((-352 (-488)) $) 16 T ELT)) (-3501 (($ $) 198 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3642 (($ $) 174 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3499 (($ $) 194 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3641 (($ $) 170 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3497 (($ $) 190 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3640 (($ $) 166 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2897 (($ $) 120 T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-148)) ELT) (($ |#2|) 34 T ELT) (($ (-352 (-488))) 139 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $) NIL (|has| |#1| (-499)) ELT)) (-3683 ((|#1| $ (-352 (-488))) 107 T ELT)) (-2708 (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-3132 (((-698)) 127 T CONST)) (-3779 ((|#1| $) 106 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3504 (($ $) 204 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3492 (($ $) 180 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3502 (($ $) 200 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3490 (($ $) 176 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3506 (($ $) 208 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3494 (($ $) 184 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3776 ((|#1| $ (-352 (-488))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-352 (-488))))) (|has| |#1| (-15 -3953 (|#1| (-1094))))) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3507 (($ $) 210 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3495 (($ $) 186 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3505 (($ $) 206 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3493 (($ $) 182 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3503 (($ $) 202 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3491 (($ $) 178 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2666 (($) 21 T CONST)) (-2672 (($) 17 T CONST)) (-2675 (($ $ (-1094)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT) (($ $ (-698)) NIL (|has| |#1| (-15 * (|#1| (-352 (-488)) |#1|))) ELT)) (-3062 (((-85) $ $) 72 T ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT) (($ $ $) 100 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3845 (($ $ $) 76 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 82 T ELT) (($ $ (-488)) 157 (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 158 (|has| |#1| (-38 (-352 (-488)))) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-1169 |#1| |#2|) (-1168 |#1| |#2|) (-965) (-1145 |#1|)) (T -1169)) +NIL +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 37 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL T ELT)) (-2068 (($ $) NIL T ELT)) (-2066 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 (-488) #1#) $) NIL (|has| (-1164 |#2| |#3| |#4|) (-954 (-488))) ELT) (((-3 (-352 (-488)) #1#) $) NIL (|has| (-1164 |#2| |#3| |#4|) (-954 (-352 (-488)))) ELT) (((-3 (-1164 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3162 (((-488) $) NIL (|has| (-1164 |#2| |#3| |#4|) (-954 (-488))) ELT) (((-352 (-488)) $) NIL (|has| (-1164 |#2| |#3| |#4|) (-954 (-352 (-488)))) ELT) (((-1164 |#2| |#3| |#4|) $) NIL T ELT)) (-3965 (($ $) 41 T ELT)) (-3473 (((-3 $ #1#) $) 27 T ELT)) (-3509 (($ $) NIL (|has| (-1164 |#2| |#3| |#4|) (-395)) ELT)) (-1628 (($ $ (-1164 |#2| |#3| |#4|) (-272 |#2| |#3| |#4|) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2425 (((-698) $) 11 T ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ (-1164 |#2| |#3| |#4|) (-272 |#2| |#3| |#4|)) 25 T ELT)) (-2826 (((-272 |#2| |#3| |#4|) $) NIL T ELT)) (-1629 (($ (-1 (-272 |#2| |#3| |#4|) (-272 |#2| |#3| |#4|)) $) NIL T ELT)) (-3849 (($ (-1 (-1164 |#2| |#3| |#4|) (-1164 |#2| |#3| |#4|)) $) NIL T ELT)) (-3790 (((-3 (-754 |#2|) #1#) $) 91 T ELT)) (-2900 (($ $) NIL T ELT)) (-3180 (((-1164 |#2| |#3| |#4|) $) 20 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-1805 (((-85) $) NIL T ELT)) (-1804 (((-1164 |#2| |#3| |#4|) $) NIL T ELT)) (-3472 (((-3 $ #1#) $ (-1164 |#2| |#3| |#4|)) NIL (|has| (-1164 |#2| |#3| |#4|) (-499)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3789 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1164 |#2| |#3| |#4|)) (|:| |%expon| (-272 |#2| |#3| |#4|)) (|:| |%expTerms| (-587 (-2 (|:| |k| (-352 (-488))) (|:| |c| |#2|)))))) (|:| |%type| (-1077))) #1#) $) 74 T ELT)) (-3955 (((-272 |#2| |#3| |#4|) $) 17 T ELT)) (-2823 (((-1164 |#2| |#3| |#4|) $) NIL (|has| (-1164 |#2| |#3| |#4|) (-395)) ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ (-1164 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-352 (-488))) NIL (OR (|has| (-1164 |#2| |#3| |#4|) (-954 (-352 (-488)))) (|has| (-1164 |#2| |#3| |#4|) (-38 (-352 (-488))))) ELT)) (-3823 (((-587 (-1164 |#2| |#3| |#4|)) $) NIL T ELT)) (-3683 (((-1164 |#2| |#3| |#4|) $ (-272 |#2| |#3| |#4|)) NIL T ELT)) (-2708 (((-636 $) $) NIL (|has| (-1164 |#2| |#3| |#4|) (-118)) ELT)) (-3132 (((-698)) NIL T CONST)) (-1627 (($ $ $ (-698)) NIL (|has| (-1164 |#2| |#3| |#4|) (-148)) ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-2067 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2672 (($) NIL T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ (-1164 |#2| |#3| |#4|)) NIL (|has| (-1164 |#2| |#3| |#4|) (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1164 |#2| |#3| |#4|)) NIL T ELT) (($ (-1164 |#2| |#3| |#4|) $) NIL T ELT) (($ (-352 (-488)) $) NIL (|has| (-1164 |#2| |#3| |#4|) (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| (-1164 |#2| |#3| |#4|) (-38 (-352 (-488)))) ELT))) +(((-1170 |#1| |#2| |#3| |#4|) (-13 (-279 (-1164 |#2| |#3| |#4|) (-272 |#2| |#3| |#4|)) (-499) (-10 -8 (-15 -3790 ((-3 (-754 |#2|) #1="failed") $)) (-15 -3789 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1164 |#2| |#3| |#4|)) (|:| |%expon| (-272 |#2| |#3| |#4|)) (|:| |%expTerms| (-587 (-2 (|:| |k| (-352 (-488))) (|:| |c| |#2|)))))) (|:| |%type| (-1077))) #1#) $)))) (-13 (-954 (-488)) (-584 (-488)) (-395)) (-13 (-27) (-1119) (-366 |#1|)) (-1094) |#2|) (T -1170)) +((-3790 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-954 (-488)) (-584 (-488)) (-395))) (-5 *2 (-754 *4)) (-5 *1 (-1170 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1119) (-366 *3))) (-14 *5 (-1094)) (-14 *6 *4))) (-3789 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-954 (-488)) (-584 (-488)) (-395))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1164 *4 *5 *6)) (|:| |%expon| (-272 *4 *5 *6)) (|:| |%expTerms| (-587 (-2 (|:| |k| (-352 (-488))) (|:| |c| *4)))))) (|:| |%type| (-1077)))) (-5 *1 (-1170 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1119) (-366 *3))) (-14 *5 (-1094)) (-14 *6 *4)))) +((-3408 ((|#2| $) 34 T ELT)) (-3801 ((|#2| $) 18 T ELT)) (-3803 (($ $) 43 T ELT)) (-3791 (($ $ (-488)) 78 T ELT)) (-3031 ((|#2| $ |#2|) 75 T ELT)) (-3792 ((|#2| $ |#2|) 71 T ELT)) (-3794 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 64 T ELT) (($ $ #3="rest" $) 68 T ELT) ((|#2| $ #4="last" |#2|) 66 T ELT)) (-3032 (($ $ (-587 $)) 74 T ELT)) (-3802 ((|#2| $) 17 T ELT)) (-3805 (($ $) NIL T ELT) (($ $ (-698)) 51 T ELT)) (-3037 (((-587 $) $) 31 T ELT)) (-3033 (((-85) $ $) 62 T ELT)) (-3533 (((-85) $) 33 T ELT)) (-3804 ((|#2| $) 25 T ELT) (($ $ (-698)) 57 T ELT)) (-3806 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3639 (((-85) $) 23 T ELT)) (-3798 (($ $) 46 T ELT)) (-3796 (($ $) 79 T ELT)) (-3799 (((-698) $) 50 T ELT)) (-3800 (($ $) 49 T ELT)) (-3808 (($ $ $) 70 T ELT) (($ |#2| $) NIL T ELT)) (-3528 (((-587 $) $) 32 T ELT)) (-3062 (((-85) $ $) 60 T ELT))) +(((-1171 |#1| |#2|) (-10 -7 (-15 -3062 ((-85) |#1| |#1|)) (-15 -3791 (|#1| |#1| (-488))) (-15 -3794 (|#2| |#1| #1="last" |#2|)) (-15 -3792 (|#2| |#1| |#2|)) (-15 -3794 (|#1| |#1| #2="rest" |#1|)) (-15 -3794 (|#2| |#1| #3="first" |#2|)) (-15 -3796 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3799 ((-698) |#1|)) (-15 -3800 (|#1| |#1|)) (-15 -3801 (|#2| |#1|)) (-15 -3802 (|#2| |#1|)) (-15 -3803 (|#1| |#1|)) (-15 -3804 (|#1| |#1| (-698))) (-15 -3806 (|#2| |#1| #1#)) (-15 -3804 (|#2| |#1|)) (-15 -3805 (|#1| |#1| (-698))) (-15 -3806 (|#1| |#1| #2#)) (-15 -3805 (|#1| |#1|)) (-15 -3806 (|#2| |#1| #3#)) (-15 -3808 (|#1| |#2| |#1|)) (-15 -3808 (|#1| |#1| |#1|)) (-15 -3031 (|#2| |#1| |#2|)) (-15 -3794 (|#2| |#1| #4="value" |#2|)) (-15 -3032 (|#1| |#1| (-587 |#1|))) (-15 -3033 ((-85) |#1| |#1|)) (-15 -3639 ((-85) |#1|)) (-15 -3806 (|#2| |#1| #4#)) (-15 -3408 (|#2| |#1|)) (-15 -3533 ((-85) |#1|)) (-15 -3037 ((-587 |#1|) |#1|)) (-15 -3528 ((-587 |#1|) |#1|))) (-1172 |#2|) (-1133)) (T -1171)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3408 ((|#1| $) 43 T ELT)) (-3801 ((|#1| $) 62 T ELT)) (-3803 (($ $) 64 T ELT)) (-3791 (($ $ (-488)) 49 (|has| $ (-1039 |#1|)) ELT)) (-3031 ((|#1| $ |#1|) 34 (|has| $ (-1039 |#1|)) ELT)) (-3793 (($ $ $) 53 (|has| $ (-1039 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 51 (|has| $ (-1039 |#1|)) ELT)) (-3795 ((|#1| $ |#1|) 55 (|has| $ (-1039 |#1|)) ELT)) (-3794 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ "first" |#1|) 54 (|has| $ (-1039 |#1|)) ELT) (($ $ "rest" $) 52 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ "last" |#1|) 50 (|has| $ (-1039 |#1|)) ELT)) (-3032 (($ $ (-587 $)) 36 (|has| $ (-1039 |#1|)) ELT)) (-3802 ((|#1| $) 63 T ELT)) (-3730 (($) 6 T CONST)) (-3805 (($ $) 70 T ELT) (($ $ (-698)) 68 T ELT)) (-3037 (((-587 $) $) 45 T ELT)) (-3033 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3036 (((-587 |#1|) $) 40 T ELT)) (-3533 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-3804 ((|#1| $) 67 T ELT) (($ $ (-698)) 65 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-3807 ((|#1| $) 73 T ELT) (($ $ (-698)) 71 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#1| $ #1#) 42 T ELT) ((|#1| $ "first") 72 T ELT) (($ $ "rest") 69 T ELT) ((|#1| $ "last") 66 T ELT)) (-3035 (((-488) $ $) 39 T ELT)) (-3639 (((-85) $) 41 T ELT)) (-3798 (($ $) 59 T ELT)) (-3796 (($ $) 56 (|has| $ (-1039 |#1|)) ELT)) (-3799 (((-698) $) 60 T ELT)) (-3800 (($ $) 61 T ELT)) (-3406 (($ $) 9 T ELT)) (-3797 (($ $ $) 58 (|has| $ (-1039 |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (-1039 |#1|)) ELT)) (-3808 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-3528 (((-587 $) $) 46 T ELT)) (-3034 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT))) +(((-1172 |#1|) (-113) (-1133)) (T -1172)) +((-3808 (*1 *1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3808 (*1 *1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3806 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3807 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-1172 *3)) (-4 *3 (-1133)))) (-3805 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3806 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1172 *3)) (-4 *3 (-1133)))) (-3805 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-1172 *3)) (-4 *3 (-1133)))) (-3804 (*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3806 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3804 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-1172 *3)) (-4 *3 (-1133)))) (-3803 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3800 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-1133)) (-5 *2 (-698)))) (-3798 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3797 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3797 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3795 (*1 *2 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3794 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (-4 *1 (-1039 *2)) (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3793 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3794 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (-4 *1 (-1039 *3)) (-4 *1 (-1172 *3)) (-4 *3 (-1133)))) (-3792 (*1 *2 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3794 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (-4 *1 (-1039 *2)) (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) (-3791 (*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-1039 *3)) (-4 *1 (-1172 *3)) (-4 *3 (-1133))))) +(-13 (-927 |t#1|) (-10 -8 (-15 -3808 ($ $ $)) (-15 -3808 ($ |t#1| $)) (-15 -3807 (|t#1| $)) (-15 -3806 (|t#1| $ "first")) (-15 -3807 ($ $ (-698))) (-15 -3805 ($ $)) (-15 -3806 ($ $ "rest")) (-15 -3805 ($ $ (-698))) (-15 -3804 (|t#1| $)) (-15 -3806 (|t#1| $ "last")) (-15 -3804 ($ $ (-698))) (-15 -3803 ($ $)) (-15 -3802 (|t#1| $)) (-15 -3801 (|t#1| $)) (-15 -3800 ($ $)) (-15 -3799 ((-698) $)) (-15 -3798 ($ $)) (IF (|has| $ (-1039 |t#1|)) (PROGN (-15 -3797 ($ $ $)) (-15 -3797 ($ $ |t#1|)) (-15 -3796 ($ $)) (-15 -3795 (|t#1| $ |t#1|)) (-15 -3794 (|t#1| $ "first" |t#1|)) (-15 -3793 ($ $ $)) (-15 -3794 ($ $ "rest" $)) (-15 -3792 (|t#1| $ |t#1|)) (-15 -3794 (|t#1| $ "last" |t#1|)) (-15 -3791 ($ $ (-488)))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-556 (-776)))) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-927 |#1|) . T) ((-1017) |has| |#1| (-1017)) ((-1133) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3087 (((-587 (-998)) $) NIL T ELT)) (-3837 (((-1094) $) 87 T ELT)) (-3817 (((-1152 |#2| |#1|) $ (-698)) 70 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) NIL (|has| |#1| (-499)) ELT)) (-2068 (($ $) NIL (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) 139 (|has| |#1| (-499)) ELT)) (-3777 (($ $ (-698)) 125 T ELT) (($ $ (-698) (-698)) 127 T ELT)) (-3780 (((-1073 (-2 (|:| |k| (-698)) (|:| |c| |#1|))) $) 42 T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3645 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3043 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3644 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3824 (($ (-1073 (-2 (|:| |k| (-698)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1073 |#1|)) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3643 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3730 (($) NIL T CONST)) (-3811 (($ $) 131 T ELT)) (-3965 (($ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3822 (($ $) 137 T ELT)) (-3820 (((-861 |#1|) $ (-698)) 60 T ELT) (((-861 |#1|) $ (-698) (-698)) 62 T ELT)) (-2898 (((-85) $) NIL T ELT)) (-3633 (($) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3778 (((-698) $) NIL T ELT) (((-698) $ (-698)) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3814 (($ $) 115 T ELT)) (-3017 (($ $ (-488)) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3810 (($ (-488) (-488) $) 133 T ELT)) (-3783 (($ $ (-834)) 136 T ELT)) (-3821 (($ (-1 |#1| (-488)) $) 109 T ELT)) (-3944 (((-85) $) NIL T ELT)) (-2899 (($ |#1| (-698)) 16 T ELT) (($ $ (-998) (-698)) NIL T ELT) (($ $ (-587 (-998)) (-587 (-698))) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3949 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2900 (($ $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3815 (($ $) 113 T ELT)) (-3816 (($ $) 111 T ELT)) (-3809 (($ (-488) (-488) $) 135 T ELT)) (-3818 (($ $) 147 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-1094)) 153 (OR (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-29 (-488))) (|has| |#1| (-875)) (|has| |#1| (-1119))) (-12 (|has| |#1| (-38 (-352 (-488)))) (|has| |#1| (-15 -3818 (|#1| |#1| (-1094)))) (|has| |#1| (-15 -3087 ((-587 (-1094)) |#1|))))) ELT) (($ $ (-1180 |#2|)) 148 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3812 (($ $ (-488) (-488)) 119 T ELT)) (-3775 (($ $ (-698)) 121 T ELT)) (-3472 (((-3 $ #1#) $ $) NIL (|has| |#1| (-499)) ELT)) (-3950 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3813 (($ $) 117 T ELT)) (-3774 (((-1073 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-698)))) ELT)) (-3806 ((|#1| $ (-698)) 93 T ELT) (($ $ $) 129 (|has| (-698) (-1029)) ELT)) (-3764 (($ $ (-1094)) 106 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-698) |#1|))) ELT) (($ $ (-698)) NIL (|has| |#1| (-15 * (|#1| (-698) |#1|))) ELT) (($ $ (-1180 |#2|)) 101 T ELT)) (-3955 (((-698) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2897 (($ $) 123 T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) 26 T ELT) (($ (-352 (-488))) 145 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $) NIL (|has| |#1| (-499)) ELT) (($ |#1|) 25 (|has| |#1| (-148)) ELT) (($ (-1152 |#2| |#1|)) 78 T ELT) (($ (-1180 |#2|)) 22 T ELT)) (-3823 (((-1073 |#1|) $) NIL T ELT)) (-3683 ((|#1| $ (-698)) 92 T ELT)) (-2708 (((-636 $) $) NIL (|has| |#1| (-118)) ELT)) (-3132 (((-698)) NIL T CONST)) (-3779 ((|#1| $) 88 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2067 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3506 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3776 ((|#1| $ (-698)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-698)))) (|has| |#1| (-15 -3953 (|#1| (-1094))))) ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-3507 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3505 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2666 (($) 18 T CONST)) (-2672 (($) 13 T CONST)) (-2675 (($ $ (-1094)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $ (-587 (-1094))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $ (-1094) (-698)) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) NIL (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-698) |#1|))) ELT) (($ $ (-698)) NIL (|has| |#1| (-15 * (|#1| (-698) |#1|))) ELT) (($ $ (-1180 |#2|)) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3956 (($ $ |#1|) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3845 (($ $ $) 20 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-314)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-352 (-488)) $) NIL (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) NIL (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-1173 |#1| |#2| |#3|) (-13 (-1176 |#1|) (-810 $ (-1180 |#2|)) (-10 -8 (-15 -3953 ($ (-1152 |#2| |#1|))) (-15 -3817 ((-1152 |#2| |#1|) $ (-698))) (-15 -3953 ($ (-1180 |#2|))) (-15 -3816 ($ $)) (-15 -3815 ($ $)) (-15 -3814 ($ $)) (-15 -3813 ($ $)) (-15 -3812 ($ $ (-488) (-488))) (-15 -3811 ($ $)) (-15 -3810 ($ (-488) (-488) $)) (-15 -3809 ($ (-488) (-488) $)) (IF (|has| |#1| (-38 (-352 (-488)))) (-15 -3818 ($ $ (-1180 |#2|))) |%noBranch|))) (-965) (-1094) |#1|) (T -1173)) +((-3953 (*1 *1 *2) (-12 (-5 *2 (-1152 *4 *3)) (-4 *3 (-965)) (-14 *4 (-1094)) (-14 *5 *3) (-5 *1 (-1173 *3 *4 *5)))) (-3817 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1152 *5 *4)) (-5 *1 (-1173 *4 *5 *6)) (-4 *4 (-965)) (-14 *5 (-1094)) (-14 *6 *4))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-965)) (-14 *5 *3))) (-3816 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-965)) (-14 *3 (-1094)) (-14 *4 *2))) (-3815 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-965)) (-14 *3 (-1094)) (-14 *4 *2))) (-3814 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-965)) (-14 *3 (-1094)) (-14 *4 *2))) (-3813 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-965)) (-14 *3 (-1094)) (-14 *4 *2))) (-3812 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-965)) (-14 *4 (-1094)) (-14 *5 *3))) (-3811 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-965)) (-14 *3 (-1094)) (-14 *4 *2))) (-3810 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-965)) (-14 *4 (-1094)) (-14 *5 *3))) (-3809 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-965)) (-14 *4 (-1094)) (-14 *5 *3))) (-3818 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)) (-14 *5 *3)))) +((-3849 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) +(((-1174 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3849 (|#4| (-1 |#2| |#1|) |#3|))) (-965) (-965) (-1176 |#1|) (-1176 |#2|)) (T -1174)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-965)) (-4 *6 (-965)) (-4 *2 (-1176 *6)) (-5 *1 (-1174 *5 *6 *4 *2)) (-4 *4 (-1176 *5))))) +((-3194 (((-85) $) 17 T ELT)) (-3498 (($ $) 105 T ELT)) (-3645 (($ $) 81 T ELT)) (-3496 (($ $) 101 T ELT)) (-3644 (($ $) 77 T ELT)) (-3500 (($ $) 109 T ELT)) (-3643 (($ $) 85 T ELT)) (-3949 (($ $) 75 T ELT)) (-3950 (($ $) 73 T ELT)) (-3501 (($ $) 111 T ELT)) (-3642 (($ $) 87 T ELT)) (-3499 (($ $) 107 T ELT)) (-3641 (($ $) 83 T ELT)) (-3497 (($ $) 103 T ELT)) (-3640 (($ $) 79 T ELT)) (-3953 (((-776) $) 61 T ELT) (($ (-488)) NIL T ELT) (($ (-352 (-488))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3504 (($ $) 117 T ELT)) (-3492 (($ $) 93 T ELT)) (-3502 (($ $) 113 T ELT)) (-3490 (($ $) 89 T ELT)) (-3506 (($ $) 121 T ELT)) (-3494 (($ $) 97 T ELT)) (-3507 (($ $) 123 T ELT)) (-3495 (($ $) 99 T ELT)) (-3505 (($ $) 119 T ELT)) (-3493 (($ $) 95 T ELT)) (-3503 (($ $) 115 T ELT)) (-3491 (($ $) 91 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-352 (-488))) 71 T ELT))) +(((-1175 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-352 (-488)))) (-15 -3645 (|#1| |#1|)) (-15 -3644 (|#1| |#1|)) (-15 -3643 (|#1| |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3503 (|#1| |#1|)) (-15 -3505 (|#1| |#1|)) (-15 -3507 (|#1| |#1|)) (-15 -3506 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -3504 (|#1| |#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3950 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3953 (|#1| |#2|)) (-15 -3953 (|#1| |#1|)) (-15 -3953 (|#1| (-352 (-488)))) (-15 -3953 (|#1| (-488))) (-15 ** (|#1| |#1| (-698))) (-15 ** (|#1| |#1| (-834))) (-15 -3194 ((-85) |#1|)) (-15 -3953 ((-776) |#1|))) (-1176 |#2|) (-965)) (T -1175)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3087 (((-587 (-998)) $) 96 T ELT)) (-3837 (((-1094) $) 130 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 72 (|has| |#1| (-499)) ELT)) (-2068 (($ $) 73 (|has| |#1| (-499)) ELT)) (-2066 (((-85) $) 75 (|has| |#1| (-499)) ELT)) (-3777 (($ $ (-698)) 125 T ELT) (($ $ (-698) (-698)) 124 T ELT)) (-3780 (((-1073 (-2 (|:| |k| (-698)) (|:| |c| |#1|))) $) 131 T ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3645 (($ $) 147 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3043 (($ $) 146 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3496 (($ $) 163 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3644 (($ $) 148 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3824 (($ (-1073 (-2 (|:| |k| (-698)) (|:| |c| |#1|)))) 184 T ELT) (($ (-1073 |#1|)) 182 T ELT)) (-3500 (($ $) 162 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3643 (($ $) 149 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3730 (($) 23 T CONST)) (-3965 (($ $) 81 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3822 (($ $) 181 T ELT)) (-3820 (((-861 |#1|) $ (-698)) 179 T ELT) (((-861 |#1|) $ (-698) (-698)) 178 T ELT)) (-2898 (((-85) $) 95 T ELT)) (-3633 (($) 174 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3778 (((-698) $) 127 T ELT) (((-698) $ (-698)) 126 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3017 (($ $ (-488)) 145 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3783 (($ $ (-834)) 128 T ELT)) (-3821 (($ (-1 |#1| (-488)) $) 180 T ELT)) (-3944 (((-85) $) 83 T ELT)) (-2899 (($ |#1| (-698)) 82 T ELT) (($ $ (-998) (-698)) 98 T ELT) (($ $ (-587 (-998)) (-587 (-698))) 97 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-3949 (($ $) 171 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2900 (($ $) 85 T ELT)) (-3180 ((|#1| $) 86 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3818 (($ $) 176 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-1094)) 175 (OR (-12 (|has| |#1| (-29 (-488))) (|has| |#1| (-875)) (|has| |#1| (-1119)) (|has| |#1| (-38 (-352 (-488))))) (-12 (|has| |#1| (-15 -3087 ((-587 (-1094)) |#1|))) (|has| |#1| (-15 -3818 (|#1| |#1| (-1094)))) (|has| |#1| (-38 (-352 (-488)))))) ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3775 (($ $ (-698)) 122 T ELT)) (-3472 (((-3 $ "failed") $ $) 71 (|has| |#1| (-499)) ELT)) (-3950 (($ $) 172 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3774 (((-1073 |#1|) $ |#1|) 121 (|has| |#1| (-15 ** (|#1| |#1| (-698)))) ELT)) (-3806 ((|#1| $ (-698)) 132 T ELT) (($ $ $) 108 (|has| (-698) (-1029)) ELT)) (-3764 (($ $ (-1094)) 120 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $ (-587 (-1094))) 118 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $ (-1094) (-698)) 117 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 116 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $) 112 (|has| |#1| (-15 * (|#1| (-698) |#1|))) ELT) (($ $ (-698)) 110 (|has| |#1| (-15 * (|#1| (-698) |#1|))) ELT)) (-3955 (((-698) $) 84 T ELT)) (-3501 (($ $) 161 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3642 (($ $) 150 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3499 (($ $) 160 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3641 (($ $) 151 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3497 (($ $) 159 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3640 (($ $) 152 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2897 (($ $) 94 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ (-352 (-488))) 78 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $) 70 (|has| |#1| (-499)) ELT) (($ |#1|) 68 (|has| |#1| (-148)) ELT)) (-3823 (((-1073 |#1|) $) 183 T ELT)) (-3683 ((|#1| $ (-698)) 80 T ELT)) (-2708 (((-636 $) $) 69 (|has| |#1| (-118)) ELT)) (-3132 (((-698)) 40 T CONST)) (-3779 ((|#1| $) 129 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-3504 (($ $) 170 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2067 (((-85) $ $) 74 (|has| |#1| (-499)) ELT)) (-3502 (($ $) 169 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3490 (($ $) 157 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3506 (($ $) 168 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3494 (($ $) 156 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3776 ((|#1| $ (-698)) 123 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-698)))) (|has| |#1| (-15 -3953 (|#1| (-1094))))) ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-3507 (($ $) 167 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3495 (($ $) 155 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3505 (($ $) 166 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3493 (($ $) 154 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3503 (($ $) 165 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-3491 (($ $) 153 (|has| |#1| (-38 (-352 (-488)))) ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-2675 (($ $ (-1094)) 119 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $ (-587 (-1094))) 115 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $ (-1094) (-698)) 114 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $ (-587 (-1094)) (-587 (-698))) 113 (-12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-698) |#1|))) ELT) (($ $ (-698)) 109 (|has| |#1| (-15 * (|#1| (-698) |#1|))) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ |#1|) 79 (|has| |#1| (-314)) ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ |#1|) 177 (|has| |#1| (-314)) ELT) (($ $ $) 173 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 144 (|has| |#1| (-38 (-352 (-488)))) ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-352 (-488)) $) 77 (|has| |#1| (-38 (-352 (-488)))) ELT) (($ $ (-352 (-488))) 76 (|has| |#1| (-38 (-352 (-488)))) ELT))) +(((-1176 |#1|) (-113) (-965)) (T -1176)) +((-3824 (*1 *1 *2) (-12 (-5 *2 (-1073 (-2 (|:| |k| (-698)) (|:| |c| *3)))) (-4 *3 (-965)) (-4 *1 (-1176 *3)))) (-3823 (*1 *2 *1) (-12 (-4 *1 (-1176 *3)) (-4 *3 (-965)) (-5 *2 (-1073 *3)))) (-3824 (*1 *1 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-4 *1 (-1176 *3)))) (-3822 (*1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-965)))) (-3821 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-488))) (-4 *1 (-1176 *3)) (-4 *3 (-965)))) (-3820 (*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-4 *1 (-1176 *4)) (-4 *4 (-965)) (-5 *2 (-861 *4)))) (-3820 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-698)) (-4 *1 (-1176 *4)) (-4 *4 (-965)) (-5 *2 (-861 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-965)) (-4 *2 (-314)))) (-3818 (*1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-965)) (-4 *2 (-38 (-352 (-488)))))) (-3818 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1094)) (-4 *1 (-1176 *3)) (-4 *3 (-965)) (-12 (-4 *3 (-29 (-488))) (-4 *3 (-875)) (-4 *3 (-1119)) (-4 *3 (-38 (-352 (-488)))))) (-12 (-5 *2 (-1094)) (-4 *1 (-1176 *3)) (-4 *3 (-965)) (-12 (|has| *3 (-15 -3087 ((-587 *2) *3))) (|has| *3 (-15 -3818 (*3 *3 *2))) (-4 *3 (-38 (-352 (-488))))))))) +(-13 (-1162 |t#1| (-698)) (-10 -8 (-15 -3824 ($ (-1073 (-2 (|:| |k| (-698)) (|:| |c| |t#1|))))) (-15 -3823 ((-1073 |t#1|) $)) (-15 -3824 ($ (-1073 |t#1|))) (-15 -3822 ($ $)) (-15 -3821 ($ (-1 |t#1| (-488)) $)) (-15 -3820 ((-861 |t#1|) $ (-698))) (-15 -3820 ((-861 |t#1|) $ (-698) (-698))) (IF (|has| |t#1| (-314)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-352 (-488)))) (PROGN (-15 -3818 ($ $)) (IF (|has| |t#1| (-15 -3818 (|t#1| |t#1| (-1094)))) (IF (|has| |t#1| (-15 -3087 ((-587 (-1094)) |t#1|))) (-15 -3818 ($ $ (-1094))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1119)) (IF (|has| |t#1| (-875)) (IF (|has| |t#1| (-29 (-488))) (-15 -3818 ($ $ (-1094))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-919)) (-6 (-1119))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-698)) . T) ((-25) . T) ((-38 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-38 |#1|) |has| |#1| (-148)) ((-38 $) |has| |#1| (-499)) ((-35) |has| |#1| (-38 (-352 (-488)))) ((-66) |has| |#1| (-38 (-352 (-488)))) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-559 (-488)) . T) ((-559 |#1|) |has| |#1| (-148)) ((-559 $) |has| |#1| (-499)) ((-556 (-776)) . T) ((-148) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-188 $) |has| |#1| (-15 * (|#1| (-698) |#1|))) ((-192) |has| |#1| (-15 * (|#1| (-698) |#1|))) ((-191) |has| |#1| (-15 * (|#1| (-698) |#1|))) ((-241) |has| |#1| (-38 (-352 (-488)))) ((-243 (-698) |#1|) . T) ((-243 $ $) |has| (-698) (-1029)) ((-248) |has| |#1| (-499)) ((-383 |#1|) . T) ((-436) |has| |#1| (-38 (-352 (-488)))) ((-499) |has| |#1| (-499)) ((-13) . T) ((-592 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-594 |#1|) . T) ((-594 $) . T) ((-586 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-586 |#1|) |has| |#1| (-148)) ((-586 $) |has| |#1| (-499)) ((-658 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-658 |#1|) |has| |#1| (-148)) ((-658 $) |has| |#1| (-499)) ((-667) . T) ((-810 $ (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ((-813 (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ((-815 (-1094)) -12 (|has| |#1| (-813 (-1094))) (|has| |#1| (-15 * (|#1| (-698) |#1|)))) ((-890 |#1| (-698) (-998)) . T) ((-919) |has| |#1| (-38 (-352 (-488)))) ((-967 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-972 (-352 (-488))) |has| |#1| (-38 (-352 (-488)))) ((-972 |#1|) . T) ((-972 $) OR (|has| |#1| (-499)) (|has| |#1| (-148))) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1119) |has| |#1| (-38 (-352 (-488)))) ((-1122) |has| |#1| (-38 (-352 (-488)))) ((-1133) . T) ((-1162 |#1| (-698)) . T)) +((-3827 (((-1 (-1073 |#1|) (-587 (-1073 |#1|))) (-1 |#2| (-587 |#2|))) 24 T ELT)) (-3826 (((-1 (-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3825 (((-1 (-1073 |#1|) (-1073 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3830 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3829 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3831 ((|#2| (-1 |#2| (-587 |#2|)) (-587 |#1|)) 60 T ELT)) (-3832 (((-587 |#2|) (-587 |#1|) (-587 (-1 |#2| (-587 |#2|)))) 66 T ELT)) (-3828 ((|#2| |#2| |#2|) 43 T ELT))) +(((-1177 |#1| |#2|) (-10 -7 (-15 -3825 ((-1 (-1073 |#1|) (-1073 |#1|)) (-1 |#2| |#2|))) (-15 -3826 ((-1 (-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3827 ((-1 (-1073 |#1|) (-587 (-1073 |#1|))) (-1 |#2| (-587 |#2|)))) (-15 -3828 (|#2| |#2| |#2|)) (-15 -3829 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3830 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3831 (|#2| (-1 |#2| (-587 |#2|)) (-587 |#1|))) (-15 -3832 ((-587 |#2|) (-587 |#1|) (-587 (-1 |#2| (-587 |#2|)))))) (-38 (-352 (-488))) (-1176 |#1|)) (T -1177)) +((-3832 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 (-1 *6 (-587 *6)))) (-4 *5 (-38 (-352 (-488)))) (-4 *6 (-1176 *5)) (-5 *2 (-587 *6)) (-5 *1 (-1177 *5 *6)))) (-3831 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-587 *2))) (-5 *4 (-587 *5)) (-4 *5 (-38 (-352 (-488)))) (-4 *2 (-1176 *5)) (-5 *1 (-1177 *5 *2)))) (-3830 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1176 *4)) (-5 *1 (-1177 *4 *2)) (-4 *4 (-38 (-352 (-488)))))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1176 *4)) (-5 *1 (-1177 *4 *2)) (-4 *4 (-38 (-352 (-488)))))) (-3828 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-1176 *3)))) (-3827 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-587 *5))) (-4 *5 (-1176 *4)) (-4 *4 (-38 (-352 (-488)))) (-5 *2 (-1 (-1073 *4) (-587 (-1073 *4)))) (-5 *1 (-1177 *4 *5)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-38 (-352 (-488)))) (-5 *2 (-1 (-1073 *4) (-1073 *4) (-1073 *4))) (-5 *1 (-1177 *4 *5)))) (-3825 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-38 (-352 (-488)))) (-5 *2 (-1 (-1073 *4) (-1073 *4))) (-5 *1 (-1177 *4 *5))))) +((-3834 ((|#2| |#4| (-698)) 31 T ELT)) (-3833 ((|#4| |#2|) 26 T ELT)) (-3836 ((|#4| (-352 |#2|)) 49 (|has| |#1| (-499)) ELT)) (-3835 (((-1 |#4| (-587 |#4|)) |#3|) 43 T ELT))) +(((-1178 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3833 (|#4| |#2|)) (-15 -3834 (|#2| |#4| (-698))) (-15 -3835 ((-1 |#4| (-587 |#4|)) |#3|)) (IF (|has| |#1| (-499)) (-15 -3836 (|#4| (-352 |#2|))) |%noBranch|)) (-965) (-1159 |#1|) (-604 |#2|) (-1176 |#1|)) (T -1178)) +((-3836 (*1 *2 *3) (-12 (-5 *3 (-352 *5)) (-4 *5 (-1159 *4)) (-4 *4 (-499)) (-4 *4 (-965)) (-4 *2 (-1176 *4)) (-5 *1 (-1178 *4 *5 *6 *2)) (-4 *6 (-604 *5)))) (-3835 (*1 *2 *3) (-12 (-4 *4 (-965)) (-4 *5 (-1159 *4)) (-5 *2 (-1 *6 (-587 *6))) (-5 *1 (-1178 *4 *5 *3 *6)) (-4 *3 (-604 *5)) (-4 *6 (-1176 *4)))) (-3834 (*1 *2 *3 *4) (-12 (-5 *4 (-698)) (-4 *5 (-965)) (-4 *2 (-1159 *5)) (-5 *1 (-1178 *5 *2 *6 *3)) (-4 *6 (-604 *2)) (-4 *3 (-1176 *5)))) (-3833 (*1 *2 *3) (-12 (-4 *4 (-965)) (-4 *3 (-1159 *4)) (-4 *2 (-1176 *4)) (-5 *1 (-1178 *4 *3 *5 *2)) (-4 *5 (-604 *3))))) +NIL +(((-1179) (-113)) (T -1179)) +NIL +(-13 (-10 -7 (-6 -2292))) +((-2574 (((-85) $ $) NIL T ELT)) (-3837 (((-1094)) 12 T ELT)) (-3248 (((-1077) $) 18 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 11 T ELT) (((-1094) $) 8 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 15 T ELT))) +(((-1180 |#1|) (-13 (-1017) (-556 (-1094)) (-10 -8 (-15 -3953 ((-1094) $)) (-15 -3837 ((-1094))))) (-1094)) (T -1180)) +((-3953 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1180 *3)) (-14 *3 *2))) (-3837 (*1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-1180 *3)) (-14 *3 *2)))) +((-3844 (($ (-698)) 19 T ELT)) (-3841 (((-634 |#2|) $ $) 41 T ELT)) (-3838 ((|#2| $) 51 T ELT)) (-3839 ((|#2| $) 50 T ELT)) (-3842 ((|#2| $ $) 36 T ELT)) (-3840 (($ $ $) 47 T ELT)) (-3843 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3845 (($ $ $) 15 T ELT)) (* (($ (-488) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) +(((-1181 |#1| |#2|) (-10 -7 (-15 -3838 (|#2| |#1|)) (-15 -3839 (|#2| |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3841 ((-634 |#2|) |#1| |#1|)) (-15 -3842 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-488) |#1|)) (-15 -3843 (|#1| |#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -3844 (|#1| (-698))) (-15 -3845 (|#1| |#1| |#1|))) (-1182 |#2|) (-1133)) (T -1181)) +NIL +((-2574 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3844 (($ (-698)) 123 (|has| |#1| (-23)) ELT)) (-2203 (((-1189) $ (-488) (-488)) 35 (|has| $ (-1039 |#1|)) ELT)) (-1740 (((-85) (-1 (-85) |#1| |#1|) $) 96 T ELT) (((-85) $) 90 (|has| |#1| (-760)) ELT)) (-1738 (($ (-1 (-85) |#1| |#1|) $) 87 (|has| $ (-1039 |#1|)) ELT) (($ $) 86 (-12 (|has| |#1| (-760)) (|has| $ (-1039 |#1|))) ELT)) (-2915 (($ (-1 (-85) |#1| |#1|) $) 97 T ELT) (($ $) 91 (|has| |#1| (-760)) ELT)) (-3794 ((|#1| $ (-488) |#1|) 47 (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-1150 (-488)) |#1|) 55 (|has| $ (-1039 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) 69 (|has| $ (-320 |#1|)) ELT)) (-3730 (($) 6 T CONST)) (-2302 (($ $) 88 (|has| $ (-1039 |#1|)) ELT)) (-2303 (($ $) 98 T ELT)) (-1357 (($ $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT)) (-3412 (($ |#1| $) 70 (-12 (|has| |#1| (-72)) (|has| $ (-320 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 68 (|has| $ (-320 |#1|)) ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 105 T ELT)) (-1580 ((|#1| $ (-488) |#1|) 48 (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-488)) 46 T ELT)) (-3425 (((-488) (-1 (-85) |#1|) $) 95 T ELT) (((-488) |#1| $) 94 (|has| |#1| (-72)) ELT) (((-488) |#1| $ (-488)) 93 (|has| |#1| (-72)) ELT)) (-3841 (((-634 |#1|) $ $) 116 (|has| |#1| (-965)) ELT)) (-3620 (($ (-698) |#1|) 65 T ELT)) (-2205 (((-488) $) 38 (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) 80 (|has| |#1| (-760)) ELT)) (-3524 (($ (-1 (-85) |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| (-760)) ELT)) (-2614 (((-587 |#1|) $) 104 T ELT)) (-3251 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2206 (((-488) $) 39 (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) 81 (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) 112 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3838 ((|#1| $) 113 (-12 (|has| |#1| (-965)) (|has| |#1| (-919))) ELT)) (-3839 ((|#1| $) 114 (-12 (|has| |#1| (-965)) (|has| |#1| (-919))) ELT)) (-3248 (((-1077) $) 21 (|has| |#1| (-1017)) ELT)) (-2309 (($ |#1| $ (-488)) 57 T ELT) (($ $ $ (-488)) 56 T ELT)) (-2208 (((-587 (-488)) $) 41 T ELT)) (-2209 (((-85) (-488) $) 42 T ELT)) (-3249 (((-1037) $) 20 (|has| |#1| (-1017)) ELT)) (-3807 ((|#1| $) 37 (|has| (-488) (-760)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 107 T ELT)) (-2204 (($ $ |#1|) 36 (|has| $ (-1039 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) 25 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) 24 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) 23 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) 22 (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) 10 T ELT)) (-2207 (((-85) |#1| $) 40 (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) 43 T ELT)) (-3409 (((-85) $) 7 T ELT)) (-3571 (($) 8 T ELT)) (-3806 ((|#1| $ (-488) |#1|) 45 T ELT) ((|#1| $ (-488)) 44 T ELT) (($ $ (-1150 (-488))) 66 T ELT)) (-3842 ((|#1| $ $) 117 (|has| |#1| (-965)) ELT)) (-2310 (($ $ (-488)) 59 T ELT) (($ $ (-1150 (-488))) 58 T ELT)) (-3840 (($ $ $) 115 (|has| |#1| (-965)) ELT)) (-1735 (((-698) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) 103 T ELT)) (-1739 (($ $ $ (-488)) 89 (|has| $ (-1039 |#1|)) ELT)) (-3406 (($ $) 9 T ELT)) (-3978 (((-477) $) 72 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 67 T ELT)) (-3808 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-3953 (((-776) $) 16 (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) 101 T ELT)) (-2572 (((-85) $ $) 82 (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) 84 (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2690 (((-85) $ $) 83 (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) 85 (|has| |#1| (-760)) ELT)) (-3843 (($ $) 122 (|has| |#1| (-21)) ELT) (($ $ $) 121 (|has| |#1| (-21)) ELT)) (-3845 (($ $ $) 124 (|has| |#1| (-25)) ELT)) (* (($ (-488) $) 120 (|has| |#1| (-21)) ELT) (($ |#1| $) 119 (|has| |#1| (-667)) ELT) (($ $ |#1|) 118 (|has| |#1| (-667)) ELT)) (-3964 (((-698) $) 100 T ELT))) +(((-1182 |#1|) (-113) (-1133)) (T -1182)) +((-3845 (*1 *1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1133)) (-4 *2 (-25)))) (-3844 (*1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-1182 *3)) (-4 *3 (-23)) (-4 *3 (-1133)))) (-3843 (*1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1133)) (-4 *2 (-21)))) (-3843 (*1 *1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1133)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-488)) (-4 *1 (-1182 *3)) (-4 *3 (-1133)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1133)) (-4 *2 (-667)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1133)) (-4 *2 (-667)))) (-3842 (*1 *2 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1133)) (-4 *2 (-965)))) (-3841 (*1 *2 *1 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-1133)) (-4 *3 (-965)) (-5 *2 (-634 *3)))) (-3840 (*1 *1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1133)) (-4 *2 (-965)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1133)) (-4 *2 (-919)) (-4 *2 (-965)))) (-3838 (*1 *2 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1133)) (-4 *2 (-919)) (-4 *2 (-965))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3845 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3844 ($ (-698))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3843 ($ $)) (-15 -3843 ($ $ $)) (-15 * ($ (-488) $))) |%noBranch|) (IF (|has| |t#1| (-667)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-965)) (PROGN (-15 -3842 (|t#1| $ $)) (-15 -3841 ((-634 |t#1|) $ $)) (-15 -3840 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-919)) (IF (|has| |t#1| (-965)) (PROGN (-15 -3839 (|t#1| $)) (-15 -3838 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1017)) (|has| |#1| (-760)) (|has| |#1| (-72))) ((-556 (-776)) OR (|has| |#1| (-1017)) (|has| |#1| (-760)) (|has| |#1| (-556 (-776)))) ((-124 |#1|) . T) ((-557 (-477)) |has| |#1| (-557 (-477))) ((-243 (-488) |#1|) . T) ((-243 (-1150 (-488)) $) . T) ((-245 (-488) |#1|) . T) ((-262 |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-320 |#1|) . T) ((-326 |#1|) . T) ((-383 |#1|) . T) ((-432 |#1|) . T) ((-542 (-488) |#1|) . T) ((-459 |#1| |#1|) -12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ((-13) . T) ((-597 |#1|) . T) ((-19 |#1|) . T) ((-760) |has| |#1| (-760)) ((-763) |has| |#1| (-760)) ((-1017) OR (|has| |#1| (-1017)) (|has| |#1| (-760))) ((-1039 |#1|) . T) ((-1133) . T)) +((-2574 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3844 (($ (-698)) NIL (|has| |#1| (-23)) ELT)) (-3846 (($ (-587 |#1|)) 9 T ELT)) (-2203 (((-1189) $ (-488) (-488)) NIL (|has| $ (-1039 |#1|)) ELT)) (-1740 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-760)) ELT)) (-1738 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1039 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1039 |#1|)) (|has| |#1| (-760))) ELT)) (-2915 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-760)) ELT)) (-3794 ((|#1| $ (-488) |#1|) NIL (|has| $ (-1039 |#1|)) ELT) ((|#1| $ (-1150 (-488)) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3716 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3730 (($) NIL T CONST)) (-2302 (($ $) NIL (|has| $ (-1039 |#1|)) ELT)) (-2303 (($ $) NIL T ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-3412 (($ |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-320 |#1|)) ELT)) (-3848 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1580 ((|#1| $ (-488) |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-3118 ((|#1| $ (-488)) NIL T ELT)) (-3425 (((-488) (-1 (-85) |#1|) $) NIL T ELT) (((-488) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-488) |#1| $ (-488)) NIL (|has| |#1| (-72)) ELT)) (-3841 (((-634 |#1|) $ $) NIL (|has| |#1| (-965)) ELT)) (-3620 (($ (-698) |#1|) NIL T ELT)) (-2205 (((-488) $) NIL (|has| (-488) (-760)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-3524 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-2614 (((-587 |#1|) $) 15 T ELT)) (-3251 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2206 (((-488) $) 11 (|has| (-488) (-760)) ELT)) (-2863 (($ $ $) NIL (|has| |#1| (-760)) ELT)) (-3332 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3838 ((|#1| $) NIL (-12 (|has| |#1| (-919)) (|has| |#1| (-965))) ELT)) (-3839 ((|#1| $) NIL (-12 (|has| |#1| (-919)) (|has| |#1| (-965))) ELT)) (-3248 (((-1077) $) NIL (|has| |#1| (-1017)) ELT)) (-2309 (($ |#1| $ (-488)) NIL T ELT) (($ $ $ (-488)) NIL T ELT)) (-2208 (((-587 (-488)) $) NIL T ELT)) (-2209 (((-85) (-488) $) NIL T ELT)) (-3249 (((-1037) $) NIL (|has| |#1| (-1017)) ELT)) (-3807 ((|#1| $) NIL (|has| (-488) (-760)) ELT)) (-1734 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2204 (($ $ |#1|) NIL (|has| $ (-1039 |#1|)) ELT)) (-1736 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3774 (($ $ (-587 (-251 |#1|))) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-251 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-262 |#1|)) (|has| |#1| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-2207 (((-85) |#1| $) NIL (-12 (|has| $ (-320 |#1|)) (|has| |#1| (-72))) ELT)) (-2210 (((-587 |#1|) $) NIL T ELT)) (-3409 (((-85) $) NIL T ELT)) (-3571 (($) NIL T ELT)) (-3806 ((|#1| $ (-488) |#1|) NIL T ELT) ((|#1| $ (-488)) NIL T ELT) (($ $ (-1150 (-488))) NIL T ELT)) (-3842 ((|#1| $ $) NIL (|has| |#1| (-965)) ELT)) (-2310 (($ $ (-488)) NIL T ELT) (($ $ (-1150 (-488))) NIL T ELT)) (-3840 (($ $ $) NIL (|has| |#1| (-965)) ELT)) (-1735 (((-698) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-698) (-1 (-85) |#1|) $) NIL T ELT)) (-1739 (($ $ $ (-488)) NIL (|has| $ (-1039 |#1|)) ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) 19 (|has| |#1| (-557 (-477))) ELT)) (-3536 (($ (-587 |#1|)) 8 T ELT)) (-3808 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-587 $)) NIL T ELT)) (-3953 (((-776) $) NIL (|has| |#1| (-556 (-776))) ELT)) (-1269 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1737 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2572 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2573 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3062 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2690 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-2691 (((-85) $ $) NIL (|has| |#1| (-760)) ELT)) (-3843 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3845 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-488) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-667)) ELT) (($ $ |#1|) NIL (|has| |#1| (-667)) ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-1183 |#1|) (-13 (-1182 |#1|) (-10 -8 (-15 -3846 ($ (-587 |#1|))))) (-1133)) (T -1183)) +((-3846 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1133)) (-5 *1 (-1183 *3))))) +((-3847 (((-1183 |#2|) (-1 |#2| |#1| |#2|) (-1183 |#1|) |#2|) 13 T ELT)) (-3848 ((|#2| (-1 |#2| |#1| |#2|) (-1183 |#1|) |#2|) 15 T ELT)) (-3849 (((-3 (-1183 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1183 |#1|)) 30 T ELT) (((-1183 |#2|) (-1 |#2| |#1|) (-1183 |#1|)) 18 T ELT))) +(((-1184 |#1| |#2|) (-10 -7 (-15 -3847 ((-1183 |#2|) (-1 |#2| |#1| |#2|) (-1183 |#1|) |#2|)) (-15 -3848 (|#2| (-1 |#2| |#1| |#2|) (-1183 |#1|) |#2|)) (-15 -3849 ((-1183 |#2|) (-1 |#2| |#1|) (-1183 |#1|))) (-15 -3849 ((-3 (-1183 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1183 |#1|)))) (-1133) (-1133)) (T -1184)) +((-3849 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1183 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-1183 *6)) (-5 *1 (-1184 *5 *6)))) (-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1183 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-1183 *6)) (-5 *1 (-1184 *5 *6)))) (-3848 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1183 *5)) (-4 *5 (-1133)) (-4 *2 (-1133)) (-5 *1 (-1184 *5 *2)))) (-3847 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1183 *6)) (-4 *6 (-1133)) (-4 *5 (-1133)) (-5 *2 (-1183 *5)) (-5 *1 (-1184 *6 *5))))) +((-3850 (((-411) (-587 (-587 (-858 (-181)))) (-587 (-223))) 22 T ELT) (((-411) (-587 (-587 (-858 (-181))))) 21 T ELT) (((-411) (-587 (-587 (-858 (-181)))) (-787) (-787) (-834) (-587 (-223))) 20 T ELT)) (-3851 (((-1186) (-587 (-587 (-858 (-181)))) (-587 (-223))) 30 T ELT) (((-1186) (-587 (-587 (-858 (-181)))) (-787) (-787) (-834) (-587 (-223))) 29 T ELT)) (-3953 (((-1186) (-411)) 46 T ELT))) +(((-1185) (-10 -7 (-15 -3850 ((-411) (-587 (-587 (-858 (-181)))) (-787) (-787) (-834) (-587 (-223)))) (-15 -3850 ((-411) (-587 (-587 (-858 (-181)))))) (-15 -3850 ((-411) (-587 (-587 (-858 (-181)))) (-587 (-223)))) (-15 -3851 ((-1186) (-587 (-587 (-858 (-181)))) (-787) (-787) (-834) (-587 (-223)))) (-15 -3851 ((-1186) (-587 (-587 (-858 (-181)))) (-587 (-223)))) (-15 -3953 ((-1186) (-411))))) (T -1185)) +((-3953 (*1 *2 *3) (-12 (-5 *3 (-411)) (-5 *2 (-1186)) (-5 *1 (-1185)))) (-3851 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-587 (-858 (-181))))) (-5 *4 (-587 (-223))) (-5 *2 (-1186)) (-5 *1 (-1185)))) (-3851 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-587 (-587 (-858 (-181))))) (-5 *4 (-787)) (-5 *5 (-834)) (-5 *6 (-587 (-223))) (-5 *2 (-1186)) (-5 *1 (-1185)))) (-3850 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-587 (-858 (-181))))) (-5 *4 (-587 (-223))) (-5 *2 (-411)) (-5 *1 (-1185)))) (-3850 (*1 *2 *3) (-12 (-5 *3 (-587 (-587 (-858 (-181))))) (-5 *2 (-411)) (-5 *1 (-1185)))) (-3850 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-587 (-587 (-858 (-181))))) (-5 *4 (-787)) (-5 *5 (-834)) (-5 *6 (-587 (-223))) (-5 *2 (-411)) (-5 *1 (-1185))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3869 (((-1077) $ (-1077)) 107 T ELT) (((-1077) $ (-1077) (-1077)) 105 T ELT) (((-1077) $ (-1077) (-587 (-1077))) 104 T ELT)) (-3865 (($) 69 T ELT)) (-3852 (((-1189) $ (-411) (-834)) 54 T ELT)) (-3858 (((-1189) $ (-834) (-1077)) 89 T ELT) (((-1189) $ (-834) (-787)) 90 T ELT)) (-3880 (((-1189) $ (-834) (-332) (-332)) 57 T ELT)) (-3890 (((-1189) $ (-1077)) 84 T ELT)) (-3853 (((-1189) $ (-834) (-1077)) 94 T ELT)) (-3854 (((-1189) $ (-834) (-332) (-332)) 58 T ELT)) (-3891 (((-1189) $ (-834) (-834)) 55 T ELT)) (-3871 (((-1189) $) 85 T ELT)) (-3856 (((-1189) $ (-834) (-1077)) 93 T ELT)) (-3860 (((-1189) $ (-411) (-834)) 41 T ELT)) (-3857 (((-1189) $ (-834) (-1077)) 92 T ELT)) (-3893 (((-587 (-223)) $) 29 T ELT) (($ $ (-587 (-223))) 30 T ELT)) (-3892 (((-1189) $ (-698) (-698)) 52 T ELT)) (-3864 (($ $) 70 T ELT) (($ (-411) (-587 (-223))) 71 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3867 (((-488) $) 48 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3861 (((-1183 (-3 (-411) "undefined")) $) 47 T ELT)) (-3862 (((-1183 (-2 (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |deltaX| (-181)) (|:| |deltaY| (-181)) (|:| -3857 (-488)) (|:| -3855 (-488)) (|:| |spline| (-488)) (|:| -3886 (-488)) (|:| |axesColor| (-787)) (|:| -3858 (-488)) (|:| |unitsColor| (-787)) (|:| |showing| (-488)))) $) 46 T ELT)) (-3863 (((-1189) $ (-834) (-181) (-181) (-181) (-181) (-488) (-488) (-488) (-488) (-787) (-488) (-787) (-488)) 83 T ELT)) (-3866 (((-587 (-858 (-181))) $) NIL T ELT)) (-3859 (((-411) $ (-834)) 43 T ELT)) (-3889 (((-1189) $ (-698) (-698) (-834) (-834)) 50 T ELT)) (-3887 (((-1189) $ (-1077)) 95 T ELT)) (-3855 (((-1189) $ (-834) (-1077)) 91 T ELT)) (-3953 (((-776) $) 102 T ELT)) (-3868 (((-1189) $) 96 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3886 (((-1189) $ (-834) (-1077)) 87 T ELT) (((-1189) $ (-834) (-787)) 88 T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-1186) (-13 (-1017) (-10 -8 (-15 -3866 ((-587 (-858 (-181))) $)) (-15 -3865 ($)) (-15 -3864 ($ $)) (-15 -3893 ((-587 (-223)) $)) (-15 -3893 ($ $ (-587 (-223)))) (-15 -3864 ($ (-411) (-587 (-223)))) (-15 -3863 ((-1189) $ (-834) (-181) (-181) (-181) (-181) (-488) (-488) (-488) (-488) (-787) (-488) (-787) (-488))) (-15 -3862 ((-1183 (-2 (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |deltaX| (-181)) (|:| |deltaY| (-181)) (|:| -3857 (-488)) (|:| -3855 (-488)) (|:| |spline| (-488)) (|:| -3886 (-488)) (|:| |axesColor| (-787)) (|:| -3858 (-488)) (|:| |unitsColor| (-787)) (|:| |showing| (-488)))) $)) (-15 -3861 ((-1183 (-3 (-411) "undefined")) $)) (-15 -3890 ((-1189) $ (-1077))) (-15 -3860 ((-1189) $ (-411) (-834))) (-15 -3859 ((-411) $ (-834))) (-15 -3886 ((-1189) $ (-834) (-1077))) (-15 -3886 ((-1189) $ (-834) (-787))) (-15 -3858 ((-1189) $ (-834) (-1077))) (-15 -3858 ((-1189) $ (-834) (-787))) (-15 -3857 ((-1189) $ (-834) (-1077))) (-15 -3856 ((-1189) $ (-834) (-1077))) (-15 -3855 ((-1189) $ (-834) (-1077))) (-15 -3887 ((-1189) $ (-1077))) (-15 -3868 ((-1189) $)) (-15 -3889 ((-1189) $ (-698) (-698) (-834) (-834))) (-15 -3854 ((-1189) $ (-834) (-332) (-332))) (-15 -3880 ((-1189) $ (-834) (-332) (-332))) (-15 -3853 ((-1189) $ (-834) (-1077))) (-15 -3892 ((-1189) $ (-698) (-698))) (-15 -3852 ((-1189) $ (-411) (-834))) (-15 -3891 ((-1189) $ (-834) (-834))) (-15 -3869 ((-1077) $ (-1077))) (-15 -3869 ((-1077) $ (-1077) (-1077))) (-15 -3869 ((-1077) $ (-1077) (-587 (-1077)))) (-15 -3871 ((-1189) $)) (-15 -3867 ((-488) $)) (-15 -3953 ((-776) $))))) (T -1186)) +((-3953 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1186)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-587 (-858 (-181)))) (-5 *1 (-1186)))) (-3865 (*1 *1) (-5 *1 (-1186))) (-3864 (*1 *1 *1) (-5 *1 (-1186))) (-3893 (*1 *2 *1) (-12 (-5 *2 (-587 (-223))) (-5 *1 (-1186)))) (-3893 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-223))) (-5 *1 (-1186)))) (-3864 (*1 *1 *2 *3) (-12 (-5 *2 (-411)) (-5 *3 (-587 (-223))) (-5 *1 (-1186)))) (-3863 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-834)) (-5 *4 (-181)) (-5 *5 (-488)) (-5 *6 (-787)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-1183 (-2 (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |deltaX| (-181)) (|:| |deltaY| (-181)) (|:| -3857 (-488)) (|:| -3855 (-488)) (|:| |spline| (-488)) (|:| -3886 (-488)) (|:| |axesColor| (-787)) (|:| -3858 (-488)) (|:| |unitsColor| (-787)) (|:| |showing| (-488))))) (-5 *1 (-1186)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-1183 (-3 (-411) "undefined"))) (-5 *1 (-1186)))) (-3890 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3860 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-411)) (-5 *4 (-834)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3859 (*1 *2 *1 *3) (-12 (-5 *3 (-834)) (-5 *2 (-411)) (-5 *1 (-1186)))) (-3886 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3886 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-787)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3858 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3858 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-787)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3857 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3856 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3855 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3887 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3889 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-698)) (-5 *4 (-834)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3854 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-834)) (-5 *4 (-332)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3880 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-834)) (-5 *4 (-332)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3853 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3892 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3852 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-411)) (-5 *4 (-834)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3891 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3869 (*1 *2 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1186)))) (-3869 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1186)))) (-3869 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-587 (-1077))) (-5 *2 (-1077)) (-5 *1 (-1186)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-1186))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3881 (((-1189) $ (-332)) 168 T ELT) (((-1189) $ (-332) (-332) (-332)) 169 T ELT)) (-3869 (((-1077) $ (-1077)) 177 T ELT) (((-1077) $ (-1077) (-1077)) 175 T ELT) (((-1077) $ (-1077) (-587 (-1077))) 174 T ELT)) (-3897 (($) 67 T ELT)) (-3888 (((-1189) $ (-332) (-332) (-332) (-332) (-332)) 140 T ELT) (((-2 (|:| |theta| (-181)) (|:| |phi| (-181)) (|:| -3854 (-181)) (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |scaleZ| (-181)) (|:| |deltaX| (-181)) (|:| |deltaY| (-181))) $) 138 T ELT) (((-1189) $ (-2 (|:| |theta| (-181)) (|:| |phi| (-181)) (|:| -3854 (-181)) (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |scaleZ| (-181)) (|:| |deltaX| (-181)) (|:| |deltaY| (-181)))) 139 T ELT) (((-1189) $ (-488) (-488) (-332) (-332) (-332)) 143 T ELT) (((-1189) $ (-332) (-332)) 144 T ELT) (((-1189) $ (-332) (-332) (-332)) 151 T ELT)) (-3900 (((-332)) 121 T ELT) (((-332) (-332)) 122 T ELT)) (-3902 (((-332)) 116 T ELT) (((-332) (-332)) 118 T ELT)) (-3901 (((-332)) 119 T ELT) (((-332) (-332)) 120 T ELT)) (-3898 (((-332)) 125 T ELT) (((-332) (-332)) 126 T ELT)) (-3899 (((-332)) 123 T ELT) (((-332) (-332)) 124 T ELT)) (-3880 (((-1189) $ (-332) (-332)) 170 T ELT)) (-3890 (((-1189) $ (-1077)) 152 T ELT)) (-3895 (((-1051 (-181)) $) 68 T ELT) (($ $ (-1051 (-181))) 69 T ELT)) (-3876 (((-1189) $ (-1077)) 186 T ELT)) (-3875 (((-1189) $ (-1077)) 187 T ELT)) (-3882 (((-1189) $ (-332) (-332)) 150 T ELT) (((-1189) $ (-488) (-488)) 167 T ELT)) (-3891 (((-1189) $ (-834) (-834)) 159 T ELT)) (-3871 (((-1189) $) 136 T ELT)) (-3879 (((-1189) $ (-1077)) 185 T ELT)) (-3884 (((-1189) $ (-1077)) 133 T ELT)) (-3893 (((-587 (-223)) $) 70 T ELT) (($ $ (-587 (-223))) 71 T ELT)) (-3892 (((-1189) $ (-698) (-698)) 158 T ELT)) (-3894 (((-1189) $ (-698) (-858 (-181))) 192 T ELT)) (-3896 (($ $) 73 T ELT) (($ (-1051 (-181)) (-1077)) 74 T ELT) (($ (-1051 (-181)) (-587 (-223))) 75 T ELT)) (-3873 (((-1189) $ (-332) (-332) (-332)) 130 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3867 (((-488) $) 127 T ELT)) (-3872 (((-1189) $ (-332)) 172 T ELT)) (-3877 (((-1189) $ (-332)) 190 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3878 (((-1189) $ (-332)) 189 T ELT)) (-3883 (((-1189) $ (-1077)) 135 T ELT)) (-3889 (((-1189) $ (-698) (-698) (-834) (-834)) 157 T ELT)) (-3885 (((-1189) $ (-1077)) 132 T ELT)) (-3887 (((-1189) $ (-1077)) 134 T ELT)) (-3870 (((-1189) $ (-130) (-130)) 156 T ELT)) (-3953 (((-776) $) 165 T ELT)) (-3868 (((-1189) $) 137 T ELT)) (-3874 (((-1189) $ (-1077)) 188 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3886 (((-1189) $ (-1077)) 131 T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-1187) (-13 (-1017) (-10 -8 (-15 -3902 ((-332))) (-15 -3902 ((-332) (-332))) (-15 -3901 ((-332))) (-15 -3901 ((-332) (-332))) (-15 -3900 ((-332))) (-15 -3900 ((-332) (-332))) (-15 -3899 ((-332))) (-15 -3899 ((-332) (-332))) (-15 -3898 ((-332))) (-15 -3898 ((-332) (-332))) (-15 -3897 ($)) (-15 -3896 ($ $)) (-15 -3896 ($ (-1051 (-181)) (-1077))) (-15 -3896 ($ (-1051 (-181)) (-587 (-223)))) (-15 -3895 ((-1051 (-181)) $)) (-15 -3895 ($ $ (-1051 (-181)))) (-15 -3894 ((-1189) $ (-698) (-858 (-181)))) (-15 -3893 ((-587 (-223)) $)) (-15 -3893 ($ $ (-587 (-223)))) (-15 -3892 ((-1189) $ (-698) (-698))) (-15 -3891 ((-1189) $ (-834) (-834))) (-15 -3890 ((-1189) $ (-1077))) (-15 -3889 ((-1189) $ (-698) (-698) (-834) (-834))) (-15 -3888 ((-1189) $ (-332) (-332) (-332) (-332) (-332))) (-15 -3888 ((-2 (|:| |theta| (-181)) (|:| |phi| (-181)) (|:| -3854 (-181)) (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |scaleZ| (-181)) (|:| |deltaX| (-181)) (|:| |deltaY| (-181))) $)) (-15 -3888 ((-1189) $ (-2 (|:| |theta| (-181)) (|:| |phi| (-181)) (|:| -3854 (-181)) (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |scaleZ| (-181)) (|:| |deltaX| (-181)) (|:| |deltaY| (-181))))) (-15 -3888 ((-1189) $ (-488) (-488) (-332) (-332) (-332))) (-15 -3888 ((-1189) $ (-332) (-332))) (-15 -3888 ((-1189) $ (-332) (-332) (-332))) (-15 -3887 ((-1189) $ (-1077))) (-15 -3886 ((-1189) $ (-1077))) (-15 -3885 ((-1189) $ (-1077))) (-15 -3884 ((-1189) $ (-1077))) (-15 -3883 ((-1189) $ (-1077))) (-15 -3882 ((-1189) $ (-332) (-332))) (-15 -3882 ((-1189) $ (-488) (-488))) (-15 -3881 ((-1189) $ (-332))) (-15 -3881 ((-1189) $ (-332) (-332) (-332))) (-15 -3880 ((-1189) $ (-332) (-332))) (-15 -3879 ((-1189) $ (-1077))) (-15 -3878 ((-1189) $ (-332))) (-15 -3877 ((-1189) $ (-332))) (-15 -3876 ((-1189) $ (-1077))) (-15 -3875 ((-1189) $ (-1077))) (-15 -3874 ((-1189) $ (-1077))) (-15 -3873 ((-1189) $ (-332) (-332) (-332))) (-15 -3872 ((-1189) $ (-332))) (-15 -3871 ((-1189) $)) (-15 -3870 ((-1189) $ (-130) (-130))) (-15 -3869 ((-1077) $ (-1077))) (-15 -3869 ((-1077) $ (-1077) (-1077))) (-15 -3869 ((-1077) $ (-1077) (-587 (-1077)))) (-15 -3868 ((-1189) $)) (-15 -3867 ((-488) $))))) (T -1187)) +((-3902 (*1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187)))) (-3901 (*1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187)))) (-3900 (*1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187)))) (-3899 (*1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187)))) (-3898 (*1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187)))) (-3897 (*1 *1) (-5 *1 (-1187))) (-3896 (*1 *1 *1) (-5 *1 (-1187))) (-3896 (*1 *1 *2 *3) (-12 (-5 *2 (-1051 (-181))) (-5 *3 (-1077)) (-5 *1 (-1187)))) (-3896 (*1 *1 *2 *3) (-12 (-5 *2 (-1051 (-181))) (-5 *3 (-587 (-223))) (-5 *1 (-1187)))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-1051 (-181))) (-5 *1 (-1187)))) (-3895 (*1 *1 *1 *2) (-12 (-5 *2 (-1051 (-181))) (-5 *1 (-1187)))) (-3894 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-698)) (-5 *4 (-858 (-181))) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3893 (*1 *2 *1) (-12 (-5 *2 (-587 (-223))) (-5 *1 (-1187)))) (-3893 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-223))) (-5 *1 (-1187)))) (-3892 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3891 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3890 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3889 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-698)) (-5 *4 (-834)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3888 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3888 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-181)) (|:| |phi| (-181)) (|:| -3854 (-181)) (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |scaleZ| (-181)) (|:| |deltaX| (-181)) (|:| |deltaY| (-181)))) (-5 *1 (-1187)))) (-3888 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-181)) (|:| |phi| (-181)) (|:| -3854 (-181)) (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |scaleZ| (-181)) (|:| |deltaX| (-181)) (|:| |deltaY| (-181)))) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3888 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-488)) (-5 *4 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3888 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3888 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3887 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3886 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3885 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3883 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3882 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3882 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-488)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3881 (*1 *2 *1 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3881 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3880 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3878 (*1 *2 *1 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3875 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3874 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3873 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3872 (*1 *2 *1 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3870 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3869 (*1 *2 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1187)))) (-3869 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1187)))) (-3869 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-587 (-1077))) (-5 *2 (-1077)) (-5 *1 (-1187)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1187)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-1187))))) +((-3911 (((-587 (-1077)) (-587 (-1077))) 103 T ELT) (((-587 (-1077))) 96 T ELT)) (-3912 (((-587 (-1077))) 94 T ELT)) (-3909 (((-587 (-834)) (-587 (-834))) 69 T ELT) (((-587 (-834))) 64 T ELT)) (-3908 (((-587 (-698)) (-587 (-698))) 61 T ELT) (((-587 (-698))) 55 T ELT)) (-3910 (((-1189)) 71 T ELT)) (-3914 (((-834) (-834)) 87 T ELT) (((-834)) 86 T ELT)) (-3913 (((-834) (-834)) 85 T ELT) (((-834)) 84 T ELT)) (-3906 (((-787) (-787)) 81 T ELT) (((-787)) 80 T ELT)) (-3916 (((-181)) 91 T ELT) (((-181) (-332)) 93 T ELT)) (-3915 (((-834)) 88 T ELT) (((-834) (-834)) 89 T ELT)) (-3907 (((-834) (-834)) 83 T ELT) (((-834)) 82 T ELT)) (-3903 (((-787) (-787)) 75 T ELT) (((-787)) 73 T ELT)) (-3904 (((-787) (-787)) 77 T ELT) (((-787)) 76 T ELT)) (-3905 (((-787) (-787)) 79 T ELT) (((-787)) 78 T ELT))) +(((-1188) (-10 -7 (-15 -3903 ((-787))) (-15 -3903 ((-787) (-787))) (-15 -3904 ((-787))) (-15 -3904 ((-787) (-787))) (-15 -3905 ((-787))) (-15 -3905 ((-787) (-787))) (-15 -3906 ((-787))) (-15 -3906 ((-787) (-787))) (-15 -3907 ((-834))) (-15 -3907 ((-834) (-834))) (-15 -3908 ((-587 (-698)))) (-15 -3908 ((-587 (-698)) (-587 (-698)))) (-15 -3909 ((-587 (-834)))) (-15 -3909 ((-587 (-834)) (-587 (-834)))) (-15 -3910 ((-1189))) (-15 -3911 ((-587 (-1077)))) (-15 -3911 ((-587 (-1077)) (-587 (-1077)))) (-15 -3912 ((-587 (-1077)))) (-15 -3913 ((-834))) (-15 -3914 ((-834))) (-15 -3913 ((-834) (-834))) (-15 -3914 ((-834) (-834))) (-15 -3915 ((-834) (-834))) (-15 -3915 ((-834))) (-15 -3916 ((-181) (-332))) (-15 -3916 ((-181))))) (T -1188)) +((-3916 (*1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-1188)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-332)) (-5 *2 (-181)) (-5 *1 (-1188)))) (-3915 (*1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1188)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1188)))) (-3914 (*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1188)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1188)))) (-3914 (*1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1188)))) (-3913 (*1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1188)))) (-3912 (*1 *2) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-1188)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-1188)))) (-3911 (*1 *2) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-1188)))) (-3910 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1188)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-587 (-834))) (-5 *1 (-1188)))) (-3909 (*1 *2) (-12 (-5 *2 (-587 (-834))) (-5 *1 (-1188)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-587 (-698))) (-5 *1 (-1188)))) (-3908 (*1 *2) (-12 (-5 *2 (-587 (-698))) (-5 *1 (-1188)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1188)))) (-3907 (*1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1188)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1188)))) (-3906 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1188)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1188)))) (-3905 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1188)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1188)))) (-3904 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1188)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1188)))) (-3903 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1188))))) +((-3917 (($) 6 T ELT)) (-3953 (((-776) $) 9 T ELT))) +(((-1189) (-13 (-556 (-776)) (-10 -8 (-15 -3917 ($))))) (T -1189)) +((-3917 (*1 *1) (-5 *1 (-1189)))) +((-3956 (($ $ |#2|) 10 T ELT))) +(((-1190 |#1| |#2|) (-10 -7 (-15 -3956 (|#1| |#1| |#2|))) (-1191 |#2|) (-314)) (T -1190)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-1218 (((-85) $ $) 20 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3918 (((-107)) 39 T ELT)) (-3953 (((-776) $) 13 T ELT)) (-1269 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ |#1|) 40 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-1191 |#1|) (-113) (-314)) (T -1191)) +((-3956 (*1 *1 *1 *2) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-314)))) (-3918 (*1 *2) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-314)) (-5 *2 (-107))))) +(-13 (-658 |t#1|) (-10 -8 (-15 -3956 ($ $ |t#1|)) (-15 -3918 ((-107))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-594 |#1|) . T) ((-586 |#1|) . T) ((-658 |#1|) . T) ((-967 |#1|) . T) ((-972 |#1|) . T) ((-1017) . T) ((-1133) . T)) +((-3923 (((-587 (-1126 |#1|)) (-1094) (-1126 |#1|)) 83 T ELT)) (-3921 (((-1073 (-1073 (-861 |#1|))) (-1094) (-1073 (-861 |#1|))) 63 T ELT)) (-3924 (((-1 (-1073 (-1126 |#1|)) (-1073 (-1126 |#1|))) (-698) (-1126 |#1|) (-1073 (-1126 |#1|))) 74 T ELT)) (-3919 (((-1 (-1073 (-861 |#1|)) (-1073 (-861 |#1|))) (-698)) 65 T ELT)) (-3922 (((-1 (-1089 (-861 |#1|)) (-861 |#1|)) (-1094)) 32 T ELT)) (-3920 (((-1 (-1073 (-861 |#1|)) (-1073 (-861 |#1|))) (-698)) 64 T ELT))) +(((-1192 |#1|) (-10 -7 (-15 -3919 ((-1 (-1073 (-861 |#1|)) (-1073 (-861 |#1|))) (-698))) (-15 -3920 ((-1 (-1073 (-861 |#1|)) (-1073 (-861 |#1|))) (-698))) (-15 -3921 ((-1073 (-1073 (-861 |#1|))) (-1094) (-1073 (-861 |#1|)))) (-15 -3922 ((-1 (-1089 (-861 |#1|)) (-861 |#1|)) (-1094))) (-15 -3923 ((-587 (-1126 |#1|)) (-1094) (-1126 |#1|))) (-15 -3924 ((-1 (-1073 (-1126 |#1|)) (-1073 (-1126 |#1|))) (-698) (-1126 |#1|) (-1073 (-1126 |#1|))))) (-314)) (T -1192)) +((-3924 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-698)) (-4 *6 (-314)) (-5 *4 (-1126 *6)) (-5 *2 (-1 (-1073 *4) (-1073 *4))) (-5 *1 (-1192 *6)) (-5 *5 (-1073 *4)))) (-3923 (*1 *2 *3 *4) (-12 (-5 *3 (-1094)) (-4 *5 (-314)) (-5 *2 (-587 (-1126 *5))) (-5 *1 (-1192 *5)) (-5 *4 (-1126 *5)))) (-3922 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-1 (-1089 (-861 *4)) (-861 *4))) (-5 *1 (-1192 *4)) (-4 *4 (-314)))) (-3921 (*1 *2 *3 *4) (-12 (-5 *3 (-1094)) (-4 *5 (-314)) (-5 *2 (-1073 (-1073 (-861 *5)))) (-5 *1 (-1192 *5)) (-5 *4 (-1073 (-861 *5))))) (-3920 (*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1 (-1073 (-861 *4)) (-1073 (-861 *4)))) (-5 *1 (-1192 *4)) (-4 *4 (-314)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1 (-1073 (-861 *4)) (-1073 (-861 *4)))) (-5 *1 (-1192 *4)) (-4 *4 (-314))))) +((-3926 (((-2 (|:| -2017 (-634 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-634 |#2|))) |#2|) 80 T ELT)) (-3925 (((-2 (|:| -2017 (-634 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-634 |#2|)))) 79 T ELT))) +(((-1193 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3925 ((-2 (|:| -2017 (-634 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-634 |#2|))))) (-15 -3926 ((-2 (|:| -2017 (-634 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-634 |#2|))) |#2|))) (-301) (-1159 |#1|) (-1159 |#2|) (-355 |#2| |#3|)) (T -1193)) +((-3926 (*1 *2 *3) (-12 (-4 *4 (-301)) (-4 *3 (-1159 *4)) (-4 *5 (-1159 *3)) (-5 *2 (-2 (|:| -2017 (-634 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-634 *3)))) (-5 *1 (-1193 *4 *3 *5 *6)) (-4 *6 (-355 *3 *5)))) (-3925 (*1 *2) (-12 (-4 *3 (-301)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 *4)) (-5 *2 (-2 (|:| -2017 (-634 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-634 *4)))) (-5 *1 (-1193 *3 *4 *5 *6)) (-4 *6 (-355 *4 *5))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3927 (((-1053) $) 12 T ELT)) (-3928 (((-1053) $) 10 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 18 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-1194) (-13 (-999) (-10 -8 (-15 -3928 ((-1053) $)) (-15 -3927 ((-1053) $))))) (T -1194)) +((-3928 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1194)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1194))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3929 (((-1053) $) 11 T ELT)) (-3953 (((-776) $) 17 T ELT) (($ (-1099)) NIL T ELT) (((-1099) $) NIL T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT))) +(((-1195) (-13 (-999) (-10 -8 (-15 -3929 ((-1053) $))))) (T -1195)) +((-3929 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1195))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 59 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 82 T ELT) (($ (-488)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-148)) ELT)) (-3132 (((-698)) NIL T CONST)) (-3930 (((-1189) (-698)) 16 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 36 T CONST)) (-2672 (($) 85 T CONST)) (-3062 (((-85) $ $) 88 T ELT)) (-3956 (((-3 $ #1#) $ $) NIL (|has| |#1| (-314)) ELT)) (-3843 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 64 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-148)) ELT) (($ $ |#1|) NIL (|has| |#1| (-148)) ELT))) +(((-1196 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-965) (-433 |#4|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-314)) (-15 -3956 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3930 ((-1189) (-698))))) (-965) (-760) (-721) (-865 |#1| |#3| |#2|) (-587 |#2|) (-587 (-698)) (-698)) (T -1196)) +((-3956 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-314)) (-4 *2 (-965)) (-4 *3 (-760)) (-4 *4 (-721)) (-14 *6 (-587 *3)) (-5 *1 (-1196 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-865 *2 *4 *3)) (-14 *7 (-587 (-698))) (-14 *8 (-698)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-698)) (-4 *4 (-965)) (-4 *5 (-760)) (-4 *6 (-721)) (-14 *8 (-587 *5)) (-5 *2 (-1189)) (-5 *1 (-1196 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-865 *4 *6 *5)) (-14 *9 (-587 *3)) (-14 *10 *3)))) +((-2574 (((-85) $ $) NIL T ELT)) (-3687 (((-587 (-2 (|:| -3868 $) (|:| -1706 (-587 |#4|)))) (-587 |#4|)) NIL T ELT)) (-3688 (((-587 $) (-587 |#4|)) 95 T ELT)) (-3087 (((-587 |#3|) $) NIL T ELT)) (-2914 (((-85) $) NIL T ELT)) (-2905 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3699 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3694 ((|#4| |#4| $) NIL T ELT)) (-2915 (((-2 (|:| |under| $) (|:| -3136 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3716 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-320 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3730 (($) NIL T CONST)) (-2910 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-2912 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-2911 (((-85) $ $) NIL (|has| |#1| (-499)) ELT)) (-2913 (((-85) $) NIL (|has| |#1| (-499)) ELT)) (-3695 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 31 T ELT)) (-2906 (((-587 |#4|) (-587 |#4|) $) 28 (|has| |#1| (-499)) ELT)) (-2907 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-499)) ELT)) (-3163 (((-3 $ #1#) (-587 |#4|)) NIL T ELT)) (-3162 (($ (-587 |#4|)) NIL T ELT)) (-3805 (((-3 $ #1#) $) 77 T ELT)) (-3691 ((|#4| |#4| $) 82 T ELT)) (-1357 (($ $) NIL (-12 (|has| $ (-320 |#4|)) (|has| |#4| (-72))) ELT)) (-3412 (($ |#4| $) NIL (-12 (|has| $ (-320 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-320 |#4|)) ELT)) (-2908 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-499)) ELT)) (-3700 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3848 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3702 (((-2 (|:| -3868 (-587 |#4|)) (|:| -1706 (-587 |#4|))) $) NIL T ELT)) (-3701 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3186 ((|#3| $) 83 T ELT)) (-2614 (((-587 |#4|) $) 32 T ELT)) (-3251 (((-85) |#4| $) NIL (|has| |#4| (-72)) ELT)) (-3933 (((-3 $ #1#) (-587 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-587 |#4|)) 38 T ELT)) (-3332 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-3849 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2920 (((-587 |#3|) $) NIL T ELT)) (-2919 (((-85) |#3| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3804 (((-3 |#4| #1#) $) NIL T ELT)) (-3703 (((-587 |#4|) $) 53 T ELT)) (-3697 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3692 ((|#4| |#4| $) 81 T ELT)) (-3705 (((-85) $ $) 92 T ELT)) (-2909 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-499)) ELT)) (-3698 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3693 ((|#4| |#4| $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3807 (((-3 |#4| #1#) $) 76 T ELT)) (-1734 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3685 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3775 (($ $ |#4|) NIL T ELT)) (-1736 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3774 (($ $ (-587 |#4|) (-587 |#4|)) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-251 |#4|)) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT) (($ $ (-587 (-251 |#4|))) NIL (-12 (|has| |#4| (-262 |#4|)) (|has| |#4| (-1017))) ELT)) (-1226 (((-85) $ $) NIL T ELT)) (-3409 (((-85) $) 74 T ELT)) (-3571 (($) 45 T ELT)) (-3955 (((-698) $) NIL T ELT)) (-1735 (((-698) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-698) (-1 (-85) |#4|) $) NIL T ELT)) (-3406 (($ $) NIL T ELT)) (-3978 (((-477) $) NIL (|has| |#4| (-557 (-477))) ELT)) (-3536 (($ (-587 |#4|)) NIL T ELT)) (-2916 (($ $ |#3|) NIL T ELT)) (-2918 (($ $ |#3|) NIL T ELT)) (-3690 (($ $) NIL T ELT)) (-2917 (($ $ |#3|) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (((-587 |#4|) $) 62 T ELT)) (-3684 (((-698) $) NIL (|has| |#3| (-322)) ELT)) (-3932 (((-3 $ #1#) (-587 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-587 |#4|)) 44 T ELT)) (-3931 (((-587 $) (-587 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-587 $) (-587 |#4|)) 73 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3704 (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#4|))) #1#) (-587 |#4|) (-1 (-85) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3329 (-587 |#4|))) #1#) (-587 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3696 (((-85) $ (-1 (-85) |#4| (-587 |#4|))) NIL T ELT)) (-1737 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3686 (((-587 |#3|) $) NIL T ELT)) (-3940 (((-85) |#3| $) NIL T ELT)) (-3062 (((-85) $ $) NIL T ELT)) (-3964 (((-698) $) NIL T ELT))) +(((-1197 |#1| |#2| |#3| |#4|) (-13 (-1128 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3933 ((-3 $ #1="failed") (-587 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3933 ((-3 $ #1#) (-587 |#4|))) (-15 -3932 ((-3 $ #1#) (-587 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3932 ((-3 $ #1#) (-587 |#4|))) (-15 -3931 ((-587 $) (-587 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3931 ((-587 $) (-587 |#4|))))) (-499) (-721) (-760) (-981 |#1| |#2| |#3|)) (T -1197)) +((-3933 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-587 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-499)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *1 (-1197 *5 *6 *7 *8)))) (-3933 (*1 *1 *2) (|partial| -12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-1197 *3 *4 *5 *6)))) (-3932 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-587 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-499)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *1 (-1197 *5 *6 *7 *8)))) (-3932 (*1 *1 *2) (|partial| -12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-1197 *3 *4 *5 *6)))) (-3931 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-981 *6 *7 *8)) (-4 *6 (-499)) (-4 *7 (-721)) (-4 *8 (-760)) (-5 *2 (-587 (-1197 *6 *7 *8 *9))) (-5 *1 (-1197 *6 *7 *8 *9)))) (-3931 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-587 (-1197 *4 *5 *6 *7))) (-5 *1 (-1197 *4 *5 *6 *7))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3730 (($) 23 T CONST)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#1|) 53 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 55 T ELT) (($ |#1| $) 54 T ELT))) +(((-1198 |#1|) (-113) (-965)) (T -1198)) +NIL +(-13 (-965) (-82 |t#1| |t#1|) (-559 |t#1|) (-10 -7 (IF (|has| |t#1| (-148)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-148)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-559 (-488)) . T) ((-559 |#1|) . T) ((-556 (-776)) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-586 |#1|) |has| |#1| (-148)) ((-658 |#1|) |has| |#1| (-148)) ((-667) . T) ((-967 |#1|) . T) ((-972 |#1|) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T)) +((-2574 (((-85) $ $) 69 T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3941 (((-587 |#1|) $) 54 T ELT)) (-3954 (($ $ (-698)) 47 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3942 (($ $ (-698)) 25 (|has| |#2| (-148)) ELT) (($ $ $) 26 (|has| |#2| (-148)) ELT)) (-3730 (($) NIL T CONST)) (-3946 (($ $ $) 72 T ELT) (($ $ (-743 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3163 (((-3 (-743 |#1|) #1#) $) NIL T ELT)) (-3162 (((-743 |#1|) $) NIL T ELT)) (-3965 (($ $) 40 T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3958 (((-85) $) NIL T ELT)) (-3957 (($ $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2425 (((-698) $) NIL T ELT)) (-2827 (((-587 $) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-3945 (($ (-743 |#1|) |#2|) 39 T ELT)) (-3943 (($ $) 41 T ELT)) (-3948 (((-2 (|:| |k| (-743 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3962 (((-743 |#1|) $) NIL T ELT)) (-3963 (((-743 |#1|) $) 42 T ELT)) (-3849 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3947 (($ $ $) 71 T ELT) (($ $ (-743 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1757 (((-2 (|:| |k| (-743 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2900 (((-743 |#1|) $) 36 T ELT)) (-3180 ((|#2| $) 38 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3955 (((-698) $) 44 T ELT)) (-3960 (((-85) $) 48 T ELT)) (-3959 ((|#2| $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-743 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-488)) NIL T ELT)) (-3823 (((-587 |#2|) $) NIL T ELT)) (-3683 ((|#2| $ (-743 |#1|)) NIL T ELT)) (-3961 ((|#2| $ $) 78 T ELT) ((|#2| $ (-743 |#1|)) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 14 T CONST)) (-2672 (($) 20 T CONST)) (-2671 (((-587 (-2 (|:| |k| (-743 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3062 (((-85) $ $) 45 T ELT)) (-3843 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3845 (($ $ $) 29 T ELT)) (** (($ $ (-698)) NIL T ELT) (($ $ (-834)) NIL T ELT)) (* (($ $ |#2|) 70 T ELT) (($ |#2| $) 28 T ELT) (($ (-488) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-834) $) NIL T ELT) (($ |#2| (-743 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT))) +(((-1199 |#1| |#2|) (-13 (-337 |#2| (-743 |#1|)) (-1206 |#1| |#2|)) (-760) (-965)) (T -1199)) +NIL +((-3949 ((|#3| |#3| (-698)) 28 T ELT)) (-3950 ((|#3| |#3| (-698)) 34 T ELT)) (-3934 ((|#3| |#3| |#3| (-698)) 35 T ELT))) +(((-1200 |#1| |#2| |#3|) (-10 -7 (-15 -3950 (|#3| |#3| (-698))) (-15 -3949 (|#3| |#3| (-698))) (-15 -3934 (|#3| |#3| |#3| (-698)))) (-13 (-965) (-658 (-352 (-488)))) (-760) (-1206 |#2| |#1|)) (T -1200)) +((-3934 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-698)) (-4 *4 (-13 (-965) (-658 (-352 (-488))))) (-4 *5 (-760)) (-5 *1 (-1200 *4 *5 *2)) (-4 *2 (-1206 *5 *4)))) (-3949 (*1 *2 *2 *3) (-12 (-5 *3 (-698)) (-4 *4 (-13 (-965) (-658 (-352 (-488))))) (-4 *5 (-760)) (-5 *1 (-1200 *4 *5 *2)) (-4 *2 (-1206 *5 *4)))) (-3950 (*1 *2 *2 *3) (-12 (-5 *3 (-698)) (-4 *4 (-13 (-965) (-658 (-352 (-488))))) (-4 *5 (-760)) (-5 *1 (-1200 *4 *5 *2)) (-4 *2 (-1206 *5 *4))))) +((-3939 (((-85) $) 15 T ELT)) (-3940 (((-85) $) 14 T ELT)) (-3935 (($ $) 19 T ELT) (($ $ (-698)) 21 T ELT))) +(((-1201 |#1| |#2|) (-10 -7 (-15 -3935 (|#1| |#1| (-698))) (-15 -3935 (|#1| |#1|)) (-15 -3939 ((-85) |#1|)) (-15 -3940 ((-85) |#1|))) (-1202 |#2|) (-314)) (T -1201)) +NIL +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-2069 (((-2 (|:| -1780 $) (|:| -3988 $) (|:| |associate| $)) $) 55 T ELT)) (-2068 (($ $) 54 T ELT)) (-2066 (((-85) $) 52 T ELT)) (-3939 (((-85) $) 114 T ELT)) (-3936 (((-698)) 110 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3781 (($ $) 91 T ELT)) (-3977 (((-350 $) $) 90 T ELT)) (-1612 (((-85) $ $) 75 T ELT)) (-3730 (($) 23 T CONST)) (-3163 (((-3 |#1| "failed") $) 121 T ELT)) (-3162 ((|#1| $) 122 T ELT)) (-2570 (($ $ $) 71 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-2569 (($ $ $) 72 T ELT)) (-2747 (((-2 (|:| -3961 (-587 $)) (|:| -2414 $)) (-587 $)) 66 T ELT)) (-1772 (($ $ (-698)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3729 (((-85) $) 89 T ELT)) (-3778 (((-747 (-834)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-1609 (((-3 (-587 $) #1="failed") (-587 $) $) 68 T ELT)) (-1899 (($ $ $) 60 T ELT) (($ (-587 $)) 59 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-2490 (($ $) 88 T ELT)) (-3938 (((-85) $) 113 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-2714 (((-1089 $) (-1089 $) (-1089 $)) 58 T ELT)) (-3150 (($ $ $) 62 T ELT) (($ (-587 $)) 61 T ELT)) (-3738 (((-350 $) $) 92 T ELT)) (-3937 (((-747 (-834))) 111 T ELT)) (-1610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2414 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3472 (((-3 $ "failed") $ $) 56 T ELT)) (-2746 (((-636 (-587 $)) (-587 $) $) 65 T ELT)) (-1611 (((-698) $) 74 T ELT)) (-2885 (((-2 (|:| -1977 $) (|:| -2908 $)) $ $) 73 T ELT)) (-1773 (((-3 (-698) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3918 (((-107)) 119 T ELT)) (-3955 (((-747 (-834)) $) 112 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ $) 57 T ELT) (($ (-352 (-488))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2708 (((-636 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-322))) ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-2067 (((-85) $ $) 53 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-3940 (((-85) $) 115 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3935 (($ $) 109 (|has| |#1| (-322)) ELT) (($ $ (-698)) 108 (|has| |#1| (-322)) ELT)) (-3062 (((-85) $ $) 8 T ELT)) (-3956 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT) (($ $ (-488)) 87 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-352 (-488))) 86 T ELT) (($ (-352 (-488)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT))) +(((-1202 |#1|) (-113) (-314)) (T -1202)) +((-3940 (*1 *2 *1) (-12 (-4 *1 (-1202 *3)) (-4 *3 (-314)) (-5 *2 (-85)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1202 *3)) (-4 *3 (-314)) (-5 *2 (-85)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-1202 *3)) (-4 *3 (-314)) (-5 *2 (-85)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1202 *3)) (-4 *3 (-314)) (-5 *2 (-747 (-834))))) (-3937 (*1 *2) (-12 (-4 *1 (-1202 *3)) (-4 *3 (-314)) (-5 *2 (-747 (-834))))) (-3936 (*1 *2) (-12 (-4 *1 (-1202 *3)) (-4 *3 (-314)) (-5 *2 (-698)))) (-3935 (*1 *1 *1) (-12 (-4 *1 (-1202 *2)) (-4 *2 (-314)) (-4 *2 (-322)))) (-3935 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-1202 *3)) (-4 *3 (-314)) (-4 *3 (-322))))) +(-13 (-314) (-954 |t#1|) (-1191 |t#1|) (-10 -8 (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-347)) |%noBranch|) (-15 -3940 ((-85) $)) (-15 -3939 ((-85) $)) (-15 -3938 ((-85) $)) (-15 -3955 ((-747 (-834)) $)) (-15 -3937 ((-747 (-834)))) (-15 -3936 ((-698))) (IF (|has| |t#1| (-322)) (PROGN (-6 (-347)) (-15 -3935 ($ $)) (-15 -3935 ($ $ (-698)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-352 (-488))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-352 (-488)) (-352 (-488))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-322)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-559 (-352 (-488))) . T) ((-559 (-488)) . T) ((-559 |#1|) . T) ((-559 $) . T) ((-556 (-776)) . T) ((-148) . T) ((-203) . T) ((-248) . T) ((-260) . T) ((-314) . T) ((-347) OR (|has| |#1| (-322)) (|has| |#1| (-118))) ((-395) . T) ((-499) . T) ((-13) . T) ((-592 (-352 (-488))) . T) ((-592 (-488)) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-594 (-352 (-488))) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-586 (-352 (-488))) . T) ((-586 |#1|) . T) ((-586 $) . T) ((-658 (-352 (-488))) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-667) . T) ((-836) . T) ((-954 |#1|) . T) ((-967 (-352 (-488))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-972 (-352 (-488))) . T) ((-972 |#1|) . T) ((-972 $) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T) ((-1138) . T) ((-1191 |#1|) . T)) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3941 (((-587 |#1|) $) 56 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3942 (($ $ $) 58 (|has| |#2| (-148)) ELT) (($ $ (-698)) 57 (|has| |#2| (-148)) ELT)) (-3730 (($) 23 T CONST)) (-3946 (($ $ |#1|) 69 T ELT) (($ $ (-743 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3163 (((-3 (-743 |#1|) "failed") $) 79 T ELT)) (-3162 (((-743 |#1|) $) 80 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3958 (((-85) $) 60 T ELT)) (-3957 (($ $) 59 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3944 (((-85) $) 65 T ELT)) (-3945 (($ (-743 |#1|) |#2|) 66 T ELT)) (-3943 (($ $) 64 T ELT)) (-3948 (((-2 (|:| |k| (-743 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3962 (((-743 |#1|) $) 76 T ELT)) (-3849 (($ (-1 |#2| |#2|) $) 81 T ELT)) (-3947 (($ $ |#1|) 72 T ELT) (($ $ (-743 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3960 (((-85) $) 62 T ELT)) (-3959 ((|#2| $) 61 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#2|) 84 T ELT) (($ (-743 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3961 ((|#2| $ (-743 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 83 T ELT) (($ $ |#2|) 82 T ELT) (($ |#1| $) 77 T ELT))) +(((-1203 |#1| |#2|) (-113) (-760) (-965)) (T -1203)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-760)) (-4 *2 (-965)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-760)) (-4 *3 (-965)))) (-3962 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) (-5 *2 (-743 *3)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) (-5 *2 (-2 (|:| |k| (-743 *3)) (|:| |c| *4))))) (-3961 (*1 *2 *1 *3) (-12 (-5 *3 (-743 *4)) (-4 *1 (-1203 *4 *2)) (-4 *4 (-760)) (-4 *2 (-965)))) (-3961 (*1 *2 *1 *1) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-760)) (-4 *2 (-965)))) (-3947 (*1 *1 *1 *2) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-760)) (-4 *3 (-965)))) (-3947 (*1 *1 *1 *2) (-12 (-5 *2 (-743 *3)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)))) (-3947 (*1 *1 *1 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-760)) (-4 *3 (-965)))) (-3946 (*1 *1 *1 *2) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-760)) (-4 *3 (-965)))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-743 *3)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)))) (-3946 (*1 *1 *1 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-760)) (-4 *3 (-965)))) (-3945 (*1 *1 *2 *3) (-12 (-5 *2 (-743 *4)) (-4 *4 (-760)) (-4 *1 (-1203 *4 *3)) (-4 *3 (-965)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) (-5 *2 (-85)))) (-3943 (*1 *1 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-760)) (-4 *3 (-965)))) (-3953 (*1 *1 *2) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-760)) (-4 *3 (-965)))) (-3960 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) (-5 *2 (-85)))) (-3959 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-760)) (-4 *2 (-965)))) (-3958 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) (-5 *2 (-85)))) (-3957 (*1 *1 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-760)) (-4 *3 (-965)))) (-3942 (*1 *1 *1 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-760)) (-4 *3 (-965)) (-4 *3 (-148)))) (-3942 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) (-4 *4 (-148)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) (-5 *2 (-587 *3))))) +(-13 (-965) (-1198 |t#2|) (-383 |t#2|) (-954 (-743 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3962 ((-743 |t#1|) $)) (-15 -3948 ((-2 (|:| |k| (-743 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3961 (|t#2| $ (-743 |t#1|))) (-15 -3961 (|t#2| $ $)) (-15 -3947 ($ $ |t#1|)) (-15 -3947 ($ $ (-743 |t#1|))) (-15 -3947 ($ $ $)) (-15 -3946 ($ $ |t#1|)) (-15 -3946 ($ $ (-743 |t#1|))) (-15 -3946 ($ $ $)) (-15 -3945 ($ (-743 |t#1|) |t#2|)) (-15 -3944 ((-85) $)) (-15 -3943 ($ $)) (-15 -3953 ($ |t#1|)) (-15 -3960 ((-85) $)) (-15 -3959 (|t#2| $)) (-15 -3958 ((-85) $)) (-15 -3957 ($ $)) (IF (|has| |t#2| (-148)) (PROGN (-15 -3942 ($ $ $)) (-15 -3942 ($ $ (-698)))) |%noBranch|) (-15 -3941 ((-587 |t#1|) $)) (IF (|has| |t#2| (-6 -3994)) (-6 -3994) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-148)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-559 (-488)) . T) ((-559 (-743 |#1|)) . T) ((-559 |#2|) . T) ((-556 (-776)) . T) ((-383 |#2|) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#2|) . T) ((-592 $) . T) ((-594 |#2|) . T) ((-594 $) . T) ((-586 |#2|) |has| |#2| (-148)) ((-658 |#2|) |has| |#2| (-148)) ((-667) . T) ((-954 (-743 |#1|)) . T) ((-967 |#2|) . T) ((-972 |#2|) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T) ((-1198 |#2|) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3941 (((-587 |#1|) $) 99 T ELT)) (-3954 (($ $ (-698)) 103 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3942 (($ $ $) NIL (|has| |#2| (-148)) ELT) (($ $ (-698)) NIL (|has| |#2| (-148)) ELT)) (-3730 (($) NIL T CONST)) (-3946 (($ $ |#1|) NIL T ELT) (($ $ (-743 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3163 (((-3 (-743 |#1|) #1#) $) NIL T ELT) (((-3 (-807 |#1|) #1#) $) NIL T ELT)) (-3162 (((-743 |#1|) $) NIL T ELT) (((-807 |#1|) $) NIL T ELT)) (-3965 (($ $) 102 T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3958 (((-85) $) 90 T ELT)) (-3957 (($ $) 93 T ELT)) (-3951 (($ $ $ (-698)) 104 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2425 (((-698) $) NIL T ELT)) (-2827 (((-587 $) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-3945 (($ (-743 |#1|) |#2|) NIL T ELT) (($ (-807 |#1|) |#2|) 28 T ELT)) (-3943 (($ $) 120 T ELT)) (-3948 (((-2 (|:| |k| (-743 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3962 (((-743 |#1|) $) NIL T ELT)) (-3963 (((-743 |#1|) $) NIL T ELT)) (-3849 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3947 (($ $ |#1|) NIL T ELT) (($ $ (-743 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3949 (($ $ (-698)) 113 (|has| |#2| (-658 (-352 (-488)))) ELT)) (-1757 (((-2 (|:| |k| (-807 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2900 (((-807 |#1|) $) 84 T ELT)) (-3180 ((|#2| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3950 (($ $ (-698)) 110 (|has| |#2| (-658 (-352 (-488)))) ELT)) (-3955 (((-698) $) 100 T ELT)) (-3960 (((-85) $) 85 T ELT)) (-3959 ((|#2| $) 88 T ELT)) (-3953 (((-776) $) 70 T ELT) (($ (-488)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-743 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-807 |#1|)) NIL T ELT) (($ (-610 |#1| |#2|)) 47 T ELT) (((-1199 |#1| |#2|) $) 77 T ELT) (((-1208 |#1| |#2|) $) 82 T ELT)) (-3823 (((-587 |#2|) $) NIL T ELT)) (-3683 ((|#2| $ (-807 |#1|)) NIL T ELT)) (-3961 ((|#2| $ (-743 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 21 T CONST)) (-2672 (($) 27 T CONST)) (-2671 (((-587 (-2 (|:| |k| (-807 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3952 (((-3 (-610 |#1| |#2|) #1#) $) 119 T ELT)) (-3062 (((-85) $ $) 78 T ELT)) (-3843 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3845 (($ $ $) 20 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-807 |#1|)) NIL T ELT))) +(((-1204 |#1| |#2|) (-13 (-1206 |#1| |#2|) (-337 |#2| (-807 |#1|)) (-10 -8 (-15 -3953 ($ (-610 |#1| |#2|))) (-15 -3953 ((-1199 |#1| |#2|) $)) (-15 -3953 ((-1208 |#1| |#2|) $)) (-15 -3952 ((-3 (-610 |#1| |#2|) "failed") $)) (-15 -3951 ($ $ $ (-698))) (IF (|has| |#2| (-658 (-352 (-488)))) (PROGN (-15 -3950 ($ $ (-698))) (-15 -3949 ($ $ (-698)))) |%noBranch|))) (-760) (-148)) (T -1204)) +((-3953 (*1 *1 *2) (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)) (-5 *1 (-1204 *3 *4)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-1208 *3 *4)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)))) (-3952 (*1 *2 *1) (|partial| -12 (-5 *2 (-610 *3 *4)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)))) (-3951 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-1204 *3 *4)) (-4 *4 (-658 (-352 (-488)))) (-4 *3 (-760)) (-4 *4 (-148)))) (-3949 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-1204 *3 *4)) (-4 *4 (-658 (-352 (-488)))) (-4 *3 (-760)) (-4 *4 (-148))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3941 (((-587 (-1094)) $) NIL T ELT)) (-3968 (($ (-1199 (-1094) |#1|)) NIL T ELT)) (-3954 (($ $ (-698)) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3942 (($ $ $) NIL (|has| |#1| (-148)) ELT) (($ $ (-698)) NIL (|has| |#1| (-148)) ELT)) (-3730 (($) NIL T CONST)) (-3946 (($ $ (-1094)) NIL T ELT) (($ $ (-743 (-1094))) NIL T ELT) (($ $ $) NIL T ELT)) (-3163 (((-3 (-743 (-1094)) #1#) $) NIL T ELT)) (-3162 (((-743 (-1094)) $) NIL T ELT)) (-3473 (((-3 $ #1#) $) NIL T ELT)) (-3958 (((-85) $) NIL T ELT)) (-3957 (($ $) NIL T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-3945 (($ (-743 (-1094)) |#1|) NIL T ELT)) (-3943 (($ $) NIL T ELT)) (-3948 (((-2 (|:| |k| (-743 (-1094))) (|:| |c| |#1|)) $) NIL T ELT)) (-3962 (((-743 (-1094)) $) NIL T ELT)) (-3963 (((-743 (-1094)) $) NIL T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3947 (($ $ (-1094)) NIL T ELT) (($ $ (-743 (-1094))) NIL T ELT) (($ $ $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3969 (((-1199 (-1094) |#1|) $) NIL T ELT)) (-3955 (((-698) $) NIL T ELT)) (-3960 (((-85) $) NIL T ELT)) (-3959 ((|#1| $) NIL T ELT)) (-3953 (((-776) $) NIL T ELT) (($ (-488)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-743 (-1094))) NIL T ELT) (($ (-1094)) NIL T ELT)) (-3961 ((|#1| $ (-743 (-1094))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3132 (((-698)) NIL T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-3967 (((-587 (-2 (|:| |k| (-1094)) (|:| |c| $))) $) NIL T ELT)) (-2672 (($) NIL T CONST)) (-3062 (((-85) $ $) NIL T ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) NIL T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) NIL T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1094) $) NIL T ELT))) +(((-1205 |#1|) (-13 (-1206 (-1094) |#1|) (-10 -8 (-15 -3969 ((-1199 (-1094) |#1|) $)) (-15 -3968 ($ (-1199 (-1094) |#1|))) (-15 -3967 ((-587 (-2 (|:| |k| (-1094)) (|:| |c| $))) $)))) (-965)) (T -1205)) +((-3969 (*1 *2 *1) (-12 (-5 *2 (-1199 (-1094) *3)) (-5 *1 (-1205 *3)) (-4 *3 (-965)))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-1199 (-1094) *3)) (-4 *3 (-965)) (-5 *1 (-1205 *3)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |k| (-1094)) (|:| |c| (-1205 *3))))) (-5 *1 (-1205 *3)) (-4 *3 (-965))))) +((-2574 (((-85) $ $) 7 T ELT)) (-3194 (((-85) $) 22 T ELT)) (-3941 (((-587 |#1|) $) 56 T ELT)) (-3954 (($ $ (-698)) 90 T ELT)) (-1316 (((-3 $ "failed") $ $) 26 T ELT)) (-3942 (($ $ $) 58 (|has| |#2| (-148)) ELT) (($ $ (-698)) 57 (|has| |#2| (-148)) ELT)) (-3730 (($) 23 T CONST)) (-3946 (($ $ |#1|) 69 T ELT) (($ $ (-743 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3163 (((-3 (-743 |#1|) "failed") $) 79 T ELT)) (-3162 (((-743 |#1|) $) 80 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-3958 (((-85) $) 60 T ELT)) (-3957 (($ $) 59 T ELT)) (-1218 (((-85) $ $) 20 T ELT)) (-2415 (((-85) $) 44 T ELT)) (-3944 (((-85) $) 65 T ELT)) (-3945 (($ (-743 |#1|) |#2|) 66 T ELT)) (-3943 (($ $) 64 T ELT)) (-3948 (((-2 (|:| |k| (-743 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3962 (((-743 |#1|) $) 76 T ELT)) (-3963 (((-743 |#1|) $) 92 T ELT)) (-3849 (($ (-1 |#2| |#2|) $) 81 T ELT)) (-3947 (($ $ |#1|) 72 T ELT) (($ $ (-743 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3248 (((-1077) $) 11 T ELT)) (-3249 (((-1037) $) 12 T ELT)) (-3955 (((-698) $) 91 T ELT)) (-3960 (((-85) $) 62 T ELT)) (-3959 ((|#2| $) 61 T ELT)) (-3953 (((-776) $) 13 T ELT) (($ (-488)) 41 T ELT) (($ |#2|) 84 T ELT) (($ (-743 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3961 ((|#2| $ (-743 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3132 (((-698)) 40 T CONST)) (-1269 (((-85) $ $) 6 T ELT)) (-3131 (((-85) $ $) 33 T ELT)) (-2666 (($) 24 T CONST)) (-2672 (($) 45 T CONST)) (-3062 (((-85) $ $) 8 T ELT)) (-3843 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3845 (($ $ $) 18 T ELT)) (** (($ $ (-834)) 35 T ELT) (($ $ (-698)) 43 T ELT)) (* (($ (-834) $) 17 T ELT) (($ (-698) $) 21 T ELT) (($ (-488) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 83 T ELT) (($ $ |#2|) 82 T ELT) (($ |#1| $) 77 T ELT))) +(((-1206 |#1| |#2|) (-113) (-760) (-965)) (T -1206)) +((-3963 (*1 *2 *1) (-12 (-4 *1 (-1206 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) (-5 *2 (-743 *3)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1206 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) (-5 *2 (-698)))) (-3954 (*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-1206 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965))))) +(-13 (-1203 |t#1| |t#2|) (-10 -8 (-15 -3963 ((-743 |t#1|) $)) (-15 -3955 ((-698) $)) (-15 -3954 ($ $ (-698))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-148)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-559 (-488)) . T) ((-559 (-743 |#1|)) . T) ((-559 |#2|) . T) ((-556 (-776)) . T) ((-383 |#2|) . T) ((-13) . T) ((-592 (-488)) . T) ((-592 |#2|) . T) ((-592 $) . T) ((-594 |#2|) . T) ((-594 $) . T) ((-586 |#2|) |has| |#2| (-148)) ((-658 |#2|) |has| |#2| (-148)) ((-667) . T) ((-954 (-743 |#1|)) . T) ((-967 |#2|) . T) ((-972 |#2|) . T) ((-965) . T) ((-974) . T) ((-1029) . T) ((-1065) . T) ((-1017) . T) ((-1133) . T) ((-1198 |#2|) . T) ((-1203 |#1| |#2|) . T)) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) NIL T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3730 (($) NIL T CONST)) (-3163 (((-3 |#2| #1#) $) NIL T ELT)) (-3162 ((|#2| $) NIL T ELT)) (-3965 (($ $) NIL T ELT)) (-3473 (((-3 $ #1#) $) 43 T ELT)) (-3958 (((-85) $) 37 T ELT)) (-3957 (($ $) 38 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-2425 (((-698) $) NIL T ELT)) (-2827 (((-587 $) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-3945 (($ |#2| |#1|) NIL T ELT)) (-3962 ((|#2| $) 25 T ELT)) (-3963 ((|#2| $) 23 T ELT)) (-3849 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1757 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2900 ((|#2| $) NIL T ELT)) (-3180 ((|#1| $) NIL T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3960 (((-85) $) 33 T ELT)) (-3959 ((|#1| $) 34 T ELT)) (-3953 (((-776) $) 66 T ELT) (($ (-488)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3823 (((-587 |#1|) $) NIL T ELT)) (-3683 ((|#1| $ |#2|) NIL T ELT)) (-3961 ((|#1| $ |#2|) 29 T ELT)) (-3132 (((-698)) 14 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 30 T CONST)) (-2672 (($) 11 T CONST)) (-2671 (((-587 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3062 (((-85) $ $) 31 T ELT)) (-3956 (($ $ |#1|) 68 (|has| |#1| (-314)) ELT)) (-3843 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3845 (($ $ $) 51 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 53 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3964 (((-698) $) 18 T ELT))) +(((-1207 |#1| |#2|) (-13 (-965) (-1198 |#1|) (-337 |#1| |#2|) (-559 |#2|) (-383 |#1|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3964 ((-698) $)) (-15 -3963 (|#2| $)) (-15 -3962 (|#2| $)) (-15 -3965 ($ $)) (-15 -3961 (|#1| $ |#2|)) (-15 -3960 ((-85) $)) (-15 -3959 (|#1| $)) (-15 -3958 ((-85) $)) (-15 -3957 ($ $)) (IF (|has| |#1| (-314)) (-15 -3956 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3994)) (-6 -3994) |%noBranch|) (IF (|has| |#1| (-6 -3998)) (-6 -3998) |%noBranch|) (IF (|has| |#1| (-6 -3999)) (-6 -3999) |%noBranch|))) (-965) (-758)) (T -1207)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1207 *2 *3)) (-4 *2 (-965)) (-4 *3 (-758)))) (-3965 (*1 *1 *1) (-12 (-5 *1 (-1207 *2 *3)) (-4 *2 (-965)) (-4 *3 (-758)))) (-3964 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-965)) (-4 *4 (-758)))) (-3963 (*1 *2 *1) (-12 (-4 *2 (-758)) (-5 *1 (-1207 *3 *2)) (-4 *3 (-965)))) (-3962 (*1 *2 *1) (-12 (-4 *2 (-758)) (-5 *1 (-1207 *3 *2)) (-4 *3 (-965)))) (-3961 (*1 *2 *1 *3) (-12 (-4 *2 (-965)) (-5 *1 (-1207 *2 *3)) (-4 *3 (-758)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-965)) (-4 *4 (-758)))) (-3959 (*1 *2 *1) (-12 (-4 *2 (-965)) (-5 *1 (-1207 *2 *3)) (-4 *3 (-758)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-965)) (-4 *4 (-758)))) (-3957 (*1 *1 *1) (-12 (-5 *1 (-1207 *2 *3)) (-4 *2 (-965)) (-4 *3 (-758)))) (-3956 (*1 *1 *1 *2) (-12 (-5 *1 (-1207 *2 *3)) (-4 *2 (-314)) (-4 *2 (-965)) (-4 *3 (-758))))) +((-2574 (((-85) $ $) 27 T ELT)) (-3194 (((-85) $) NIL T ELT)) (-3941 (((-587 |#1|) $) 132 T ELT)) (-3968 (($ (-1199 |#1| |#2|)) 50 T ELT)) (-3954 (($ $ (-698)) 38 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3942 (($ $ $) 54 (|has| |#2| (-148)) ELT) (($ $ (-698)) 52 (|has| |#2| (-148)) ELT)) (-3730 (($) NIL T CONST)) (-3946 (($ $ |#1|) 114 T ELT) (($ $ (-743 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3163 (((-3 (-743 |#1|) #1#) $) NIL T ELT)) (-3162 (((-743 |#1|) $) NIL T ELT)) (-3473 (((-3 $ #1#) $) 122 T ELT)) (-3958 (((-85) $) 117 T ELT)) (-3957 (($ $) 118 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) NIL T ELT)) (-3944 (((-85) $) NIL T ELT)) (-3945 (($ (-743 |#1|) |#2|) 20 T ELT)) (-3943 (($ $) NIL T ELT)) (-3948 (((-2 (|:| |k| (-743 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3962 (((-743 |#1|) $) 123 T ELT)) (-3963 (((-743 |#1|) $) 126 T ELT)) (-3849 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3947 (($ $ |#1|) 112 T ELT) (($ $ (-743 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3969 (((-1199 |#1| |#2|) $) 94 T ELT)) (-3955 (((-698) $) 129 T ELT)) (-3960 (((-85) $) 81 T ELT)) (-3959 ((|#2| $) 32 T ELT)) (-3953 (((-776) $) 73 T ELT) (($ (-488)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-743 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3961 ((|#2| $ (-743 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3132 (((-698)) 120 T CONST)) (-1269 (((-85) $ $) NIL T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 15 T CONST)) (-3967 (((-587 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2672 (($) 33 T CONST)) (-3062 (((-85) $ $) 14 T ELT)) (-3843 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3845 (($ $ $) 61 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 55 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) 53 T ELT) (($ (-488) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) +(((-1208 |#1| |#2|) (-13 (-1206 |#1| |#2|) (-10 -8 (-15 -3969 ((-1199 |#1| |#2|) $)) (-15 -3968 ($ (-1199 |#1| |#2|))) (-15 -3967 ((-587 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-760) (-965)) (T -1208)) +((-3969 (*1 *2 *1) (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-1199 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) (-5 *1 (-1208 *3 *4)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |k| *3) (|:| |c| (-1208 *3 *4))))) (-5 *1 (-1208 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3971 (($ (-587 (-834))) 11 T ELT)) (-3970 (((-888) $) 12 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3953 (((-776) $) 25 T ELT) (($ (-888)) 14 T ELT) (((-888) $) 13 T ELT)) (-1269 (((-85) $ $) NIL T ELT)) (-3062 (((-85) $ $) 17 T ELT))) +(((-1209) (-13 (-1017) (-433 (-888)) (-10 -8 (-15 -3971 ($ (-587 (-834)))) (-15 -3970 ((-888) $))))) (T -1209)) +((-3971 (*1 *1 *2) (-12 (-5 *2 (-587 (-834))) (-5 *1 (-1209)))) (-3970 (*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-1209))))) +((-3972 (((-587 (-1073 |#1|)) (-1 (-587 (-1073 |#1|)) (-587 (-1073 |#1|))) (-488)) 16 T ELT) (((-1073 |#1|) (-1 (-1073 |#1|) (-1073 |#1|))) 13 T ELT))) +(((-1210 |#1|) (-10 -7 (-15 -3972 ((-1073 |#1|) (-1 (-1073 |#1|) (-1073 |#1|)))) (-15 -3972 ((-587 (-1073 |#1|)) (-1 (-587 (-1073 |#1|)) (-587 (-1073 |#1|))) (-488)))) (-1133)) (T -1210)) +((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-587 (-1073 *5)) (-587 (-1073 *5)))) (-5 *4 (-488)) (-5 *2 (-587 (-1073 *5))) (-5 *1 (-1210 *5)) (-4 *5 (-1133)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-1 (-1073 *4) (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1210 *4)) (-4 *4 (-1133))))) +((-3974 (((-587 (-2 (|:| -1755 (-1089 |#1|)) (|:| -3230 (-587 (-861 |#1|))))) (-587 (-861 |#1|))) 174 T ELT) (((-587 (-2 (|:| -1755 (-1089 |#1|)) (|:| -3230 (-587 (-861 |#1|))))) (-587 (-861 |#1|)) (-85)) 173 T ELT) (((-587 (-2 (|:| -1755 (-1089 |#1|)) (|:| -3230 (-587 (-861 |#1|))))) (-587 (-861 |#1|)) (-85) (-85)) 172 T ELT) (((-587 (-2 (|:| -1755 (-1089 |#1|)) (|:| -3230 (-587 (-861 |#1|))))) (-587 (-861 |#1|)) (-85) (-85) (-85)) 171 T ELT) (((-587 (-2 (|:| -1755 (-1089 |#1|)) (|:| -3230 (-587 (-861 |#1|))))) (-962 |#1| |#2|)) 156 T ELT)) (-3973 (((-587 (-962 |#1| |#2|)) (-587 (-861 |#1|))) 85 T ELT) (((-587 (-962 |#1| |#2|)) (-587 (-861 |#1|)) (-85)) 84 T ELT) (((-587 (-962 |#1| |#2|)) (-587 (-861 |#1|)) (-85) (-85)) 83 T ELT)) (-3977 (((-587 (-1064 |#1| (-473 (-777 |#3|)) (-777 |#3|) (-707 |#1| (-777 |#3|)))) (-962 |#1| |#2|)) 73 T ELT)) (-3975 (((-587 (-587 (-941 (-352 |#1|)))) (-587 (-861 |#1|))) 140 T ELT) (((-587 (-587 (-941 (-352 |#1|)))) (-587 (-861 |#1|)) (-85)) 139 T ELT) (((-587 (-587 (-941 (-352 |#1|)))) (-587 (-861 |#1|)) (-85) (-85)) 138 T ELT) (((-587 (-587 (-941 (-352 |#1|)))) (-587 (-861 |#1|)) (-85) (-85) (-85)) 137 T ELT) (((-587 (-587 (-941 (-352 |#1|)))) (-962 |#1| |#2|)) 132 T ELT)) (-3976 (((-587 (-587 (-941 (-352 |#1|)))) (-587 (-861 |#1|))) 145 T ELT) (((-587 (-587 (-941 (-352 |#1|)))) (-587 (-861 |#1|)) (-85)) 144 T ELT) (((-587 (-587 (-941 (-352 |#1|)))) (-587 (-861 |#1|)) (-85) (-85)) 143 T ELT) (((-587 (-587 (-941 (-352 |#1|)))) (-962 |#1| |#2|)) 142 T ELT)) (-3978 (((-587 (-707 |#1| (-777 |#3|))) (-1064 |#1| (-473 (-777 |#3|)) (-777 |#3|) (-707 |#1| (-777 |#3|)))) 111 T ELT) (((-1089 (-941 (-352 |#1|))) (-1089 |#1|)) 102 T ELT) (((-861 (-941 (-352 |#1|))) (-707 |#1| (-777 |#3|))) 109 T ELT) (((-861 (-941 (-352 |#1|))) (-861 |#1|)) 107 T ELT) (((-707 |#1| (-777 |#3|)) (-707 |#1| (-777 |#2|))) 33 T ELT))) +(((-1211 |#1| |#2| |#3|) (-10 -7 (-15 -3973 ((-587 (-962 |#1| |#2|)) (-587 (-861 |#1|)) (-85) (-85))) (-15 -3973 ((-587 (-962 |#1| |#2|)) (-587 (-861 |#1|)) (-85))) (-15 -3973 ((-587 (-962 |#1| |#2|)) (-587 (-861 |#1|)))) (-15 -3974 ((-587 (-2 (|:| -1755 (-1089 |#1|)) (|:| -3230 (-587 (-861 |#1|))))) (-962 |#1| |#2|))) (-15 -3974 ((-587 (-2 (|:| -1755 (-1089 |#1|)) (|:| -3230 (-587 (-861 |#1|))))) (-587 (-861 |#1|)) (-85) (-85) (-85))) (-15 -3974 ((-587 (-2 (|:| -1755 (-1089 |#1|)) (|:| -3230 (-587 (-861 |#1|))))) (-587 (-861 |#1|)) (-85) (-85))) (-15 -3974 ((-587 (-2 (|:| -1755 (-1089 |#1|)) (|:| -3230 (-587 (-861 |#1|))))) (-587 (-861 |#1|)) (-85))) (-15 -3974 ((-587 (-2 (|:| -1755 (-1089 |#1|)) (|:| -3230 (-587 (-861 |#1|))))) (-587 (-861 |#1|)))) (-15 -3975 ((-587 (-587 (-941 (-352 |#1|)))) (-962 |#1| |#2|))) (-15 -3975 ((-587 (-587 (-941 (-352 |#1|)))) (-587 (-861 |#1|)) (-85) (-85) (-85))) (-15 -3975 ((-587 (-587 (-941 (-352 |#1|)))) (-587 (-861 |#1|)) (-85) (-85))) (-15 -3975 ((-587 (-587 (-941 (-352 |#1|)))) (-587 (-861 |#1|)) (-85))) (-15 -3975 ((-587 (-587 (-941 (-352 |#1|)))) (-587 (-861 |#1|)))) (-15 -3976 ((-587 (-587 (-941 (-352 |#1|)))) (-962 |#1| |#2|))) (-15 -3976 ((-587 (-587 (-941 (-352 |#1|)))) (-587 (-861 |#1|)) (-85) (-85))) (-15 -3976 ((-587 (-587 (-941 (-352 |#1|)))) (-587 (-861 |#1|)) (-85))) (-15 -3976 ((-587 (-587 (-941 (-352 |#1|)))) (-587 (-861 |#1|)))) (-15 -3977 ((-587 (-1064 |#1| (-473 (-777 |#3|)) (-777 |#3|) (-707 |#1| (-777 |#3|)))) (-962 |#1| |#2|))) (-15 -3978 ((-707 |#1| (-777 |#3|)) (-707 |#1| (-777 |#2|)))) (-15 -3978 ((-861 (-941 (-352 |#1|))) (-861 |#1|))) (-15 -3978 ((-861 (-941 (-352 |#1|))) (-707 |#1| (-777 |#3|)))) (-15 -3978 ((-1089 (-941 (-352 |#1|))) (-1089 |#1|))) (-15 -3978 ((-587 (-707 |#1| (-777 |#3|))) (-1064 |#1| (-473 (-777 |#3|)) (-777 |#3|) (-707 |#1| (-777 |#3|)))))) (-13 (-759) (-260) (-120) (-937)) (-587 (-1094)) (-587 (-1094))) (T -1211)) +((-3978 (*1 *2 *3) (-12 (-5 *3 (-1064 *4 (-473 (-777 *6)) (-777 *6) (-707 *4 (-777 *6)))) (-4 *4 (-13 (-759) (-260) (-120) (-937))) (-14 *6 (-587 (-1094))) (-5 *2 (-587 (-707 *4 (-777 *6)))) (-5 *1 (-1211 *4 *5 *6)) (-14 *5 (-587 (-1094))))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-1089 *4)) (-4 *4 (-13 (-759) (-260) (-120) (-937))) (-5 *2 (-1089 (-941 (-352 *4)))) (-5 *1 (-1211 *4 *5 *6)) (-14 *5 (-587 (-1094))) (-14 *6 (-587 (-1094))))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-707 *4 (-777 *6))) (-4 *4 (-13 (-759) (-260) (-120) (-937))) (-14 *6 (-587 (-1094))) (-5 *2 (-861 (-941 (-352 *4)))) (-5 *1 (-1211 *4 *5 *6)) (-14 *5 (-587 (-1094))))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-861 *4)) (-4 *4 (-13 (-759) (-260) (-120) (-937))) (-5 *2 (-861 (-941 (-352 *4)))) (-5 *1 (-1211 *4 *5 *6)) (-14 *5 (-587 (-1094))) (-14 *6 (-587 (-1094))))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-707 *4 (-777 *5))) (-4 *4 (-13 (-759) (-260) (-120) (-937))) (-14 *5 (-587 (-1094))) (-5 *2 (-707 *4 (-777 *6))) (-5 *1 (-1211 *4 *5 *6)) (-14 *6 (-587 (-1094))))) (-3977 (*1 *2 *3) (-12 (-5 *3 (-962 *4 *5)) (-4 *4 (-13 (-759) (-260) (-120) (-937))) (-14 *5 (-587 (-1094))) (-5 *2 (-587 (-1064 *4 (-473 (-777 *6)) (-777 *6) (-707 *4 (-777 *6))))) (-5 *1 (-1211 *4 *5 *6)) (-14 *6 (-587 (-1094))))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-587 (-861 *4))) (-4 *4 (-13 (-759) (-260) (-120) (-937))) (-5 *2 (-587 (-587 (-941 (-352 *4))))) (-5 *1 (-1211 *4 *5 *6)) (-14 *5 (-587 (-1094))) (-14 *6 (-587 (-1094))))) (-3976 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-759) (-260) (-120) (-937))) (-5 *2 (-587 (-587 (-941 (-352 *5))))) (-5 *1 (-1211 *5 *6 *7)) (-14 *6 (-587 (-1094))) (-14 *7 (-587 (-1094))))) (-3976 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-759) (-260) (-120) (-937))) (-5 *2 (-587 (-587 (-941 (-352 *5))))) (-5 *1 (-1211 *5 *6 *7)) (-14 *6 (-587 (-1094))) (-14 *7 (-587 (-1094))))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-962 *4 *5)) (-4 *4 (-13 (-759) (-260) (-120) (-937))) (-14 *5 (-587 (-1094))) (-5 *2 (-587 (-587 (-941 (-352 *4))))) (-5 *1 (-1211 *4 *5 *6)) (-14 *6 (-587 (-1094))))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-587 (-861 *4))) (-4 *4 (-13 (-759) (-260) (-120) (-937))) (-5 *2 (-587 (-587 (-941 (-352 *4))))) (-5 *1 (-1211 *4 *5 *6)) (-14 *5 (-587 (-1094))) (-14 *6 (-587 (-1094))))) (-3975 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-759) (-260) (-120) (-937))) (-5 *2 (-587 (-587 (-941 (-352 *5))))) (-5 *1 (-1211 *5 *6 *7)) (-14 *6 (-587 (-1094))) (-14 *7 (-587 (-1094))))) (-3975 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-759) (-260) (-120) (-937))) (-5 *2 (-587 (-587 (-941 (-352 *5))))) (-5 *1 (-1211 *5 *6 *7)) (-14 *6 (-587 (-1094))) (-14 *7 (-587 (-1094))))) (-3975 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-759) (-260) (-120) (-937))) (-5 *2 (-587 (-587 (-941 (-352 *5))))) (-5 *1 (-1211 *5 *6 *7)) (-14 *6 (-587 (-1094))) (-14 *7 (-587 (-1094))))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-962 *4 *5)) (-4 *4 (-13 (-759) (-260) (-120) (-937))) (-14 *5 (-587 (-1094))) (-5 *2 (-587 (-587 (-941 (-352 *4))))) (-5 *1 (-1211 *4 *5 *6)) (-14 *6 (-587 (-1094))))) (-3974 (*1 *2 *3) (-12 (-4 *4 (-13 (-759) (-260) (-120) (-937))) (-5 *2 (-587 (-2 (|:| -1755 (-1089 *4)) (|:| -3230 (-587 (-861 *4)))))) (-5 *1 (-1211 *4 *5 *6)) (-5 *3 (-587 (-861 *4))) (-14 *5 (-587 (-1094))) (-14 *6 (-587 (-1094))))) (-3974 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-759) (-260) (-120) (-937))) (-5 *2 (-587 (-2 (|:| -1755 (-1089 *5)) (|:| -3230 (-587 (-861 *5)))))) (-5 *1 (-1211 *5 *6 *7)) (-5 *3 (-587 (-861 *5))) (-14 *6 (-587 (-1094))) (-14 *7 (-587 (-1094))))) (-3974 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-759) (-260) (-120) (-937))) (-5 *2 (-587 (-2 (|:| -1755 (-1089 *5)) (|:| -3230 (-587 (-861 *5)))))) (-5 *1 (-1211 *5 *6 *7)) (-5 *3 (-587 (-861 *5))) (-14 *6 (-587 (-1094))) (-14 *7 (-587 (-1094))))) (-3974 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-759) (-260) (-120) (-937))) (-5 *2 (-587 (-2 (|:| -1755 (-1089 *5)) (|:| -3230 (-587 (-861 *5)))))) (-5 *1 (-1211 *5 *6 *7)) (-5 *3 (-587 (-861 *5))) (-14 *6 (-587 (-1094))) (-14 *7 (-587 (-1094))))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-962 *4 *5)) (-4 *4 (-13 (-759) (-260) (-120) (-937))) (-14 *5 (-587 (-1094))) (-5 *2 (-587 (-2 (|:| -1755 (-1089 *4)) (|:| -3230 (-587 (-861 *4)))))) (-5 *1 (-1211 *4 *5 *6)) (-14 *6 (-587 (-1094))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-587 (-861 *4))) (-4 *4 (-13 (-759) (-260) (-120) (-937))) (-5 *2 (-587 (-962 *4 *5))) (-5 *1 (-1211 *4 *5 *6)) (-14 *5 (-587 (-1094))) (-14 *6 (-587 (-1094))))) (-3973 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-759) (-260) (-120) (-937))) (-5 *2 (-587 (-962 *5 *6))) (-5 *1 (-1211 *5 *6 *7)) (-14 *6 (-587 (-1094))) (-14 *7 (-587 (-1094))))) (-3973 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-759) (-260) (-120) (-937))) (-5 *2 (-587 (-962 *5 *6))) (-5 *1 (-1211 *5 *6 *7)) (-14 *6 (-587 (-1094))) (-14 *7 (-587 (-1094)))))) +((-3981 (((-3 (-1183 (-352 (-488))) #1="failed") (-1183 |#1|) |#1|) 21 T ELT)) (-3979 (((-85) (-1183 |#1|)) 12 T ELT)) (-3980 (((-3 (-1183 (-488)) #1#) (-1183 |#1|)) 16 T ELT))) +(((-1212 |#1|) (-10 -7 (-15 -3979 ((-85) (-1183 |#1|))) (-15 -3980 ((-3 (-1183 (-488)) #1="failed") (-1183 |#1|))) (-15 -3981 ((-3 (-1183 (-352 (-488))) #1#) (-1183 |#1|) |#1|))) (-13 (-965) (-584 (-488)))) (T -1212)) +((-3981 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1183 *4)) (-4 *4 (-13 (-965) (-584 (-488)))) (-5 *2 (-1183 (-352 (-488)))) (-5 *1 (-1212 *4)))) (-3980 (*1 *2 *3) (|partial| -12 (-5 *3 (-1183 *4)) (-4 *4 (-13 (-965) (-584 (-488)))) (-5 *2 (-1183 (-488))) (-5 *1 (-1212 *4)))) (-3979 (*1 *2 *3) (-12 (-5 *3 (-1183 *4)) (-4 *4 (-13 (-965) (-584 (-488)))) (-5 *2 (-85)) (-5 *1 (-1212 *4))))) +((-2574 (((-85) $ $) NIL T ELT)) (-3194 (((-85) $) 12 T ELT)) (-1316 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3142 (((-698)) 9 T ELT)) (-3730 (($) NIL T CONST)) (-3473 (((-3 $ #1#) $) 57 T ELT)) (-3000 (($) 46 T ELT)) (-1218 (((-85) $ $) NIL T ELT)) (-2415 (((-85) $) 38 T ELT)) (-3451 (((-636 $) $) 36 T ELT)) (-2015 (((-834) $) 14 T ELT)) (-3248 (((-1077) $) NIL T ELT)) (-3452 (($) 26 T CONST)) (-2405 (($ (-834)) 47 T ELT)) (-3249 (((-1037) $) NIL T ELT)) (-3978 (((-488) $) 16 T ELT)) (-3953 (((-776) $) 21 T ELT) (($ (-488)) 18 T ELT)) (-3132 (((-698)) 10 T CONST)) (-1269 (((-85) $ $) 59 T ELT)) (-3131 (((-85) $ $) NIL T ELT)) (-2666 (($) 23 T CONST)) (-2672 (($) 25 T CONST)) (-3062 (((-85) $ $) 31 T ELT)) (-3843 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3845 (($ $ $) 29 T ELT)) (** (($ $ (-834)) NIL T ELT) (($ $ (-698)) 52 T ELT)) (* (($ (-834) $) NIL T ELT) (($ (-698) $) NIL T ELT) (($ (-488) $) 41 T ELT) (($ $ $) 40 T ELT))) +(((-1213 |#1|) (-13 (-148) (-322) (-557 (-488)) (-1070)) (-834)) (T -1213)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 2793725 2793730 2793735 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2793710 2793715 2793720 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2793695 2793700 2793705 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2793680 2793685 2793690 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1213 2792659 2793598 2793675 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1212 2791874 2792053 2792272 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1211 2783033 2784902 2786836 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1210 2782421 2782574 2782763 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1209 2781883 2782186 2782299 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1208 2779443 2781345 2781548 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1207 2776327 2777980 2778530 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1206 2773566 2775296 2775350 "XPOLYC" 2775635 XPOLYC (NIL T T) -9 NIL 2775748 NIL) (-1205 2771085 2773070 2773273 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1204 2767333 2769944 2770332 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1203 2762283 2763916 2763970 "XFALG" 2766016 XFALG (NIL T T) -9 NIL 2766778 NIL) (-1202 2757439 2760172 2760214 "XF" 2760832 XF (NIL T) -9 NIL 2761228 NIL) (-1201 2757157 2757267 2757434 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1200 2756384 2756506 2756710 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1199 2754126 2756284 2756379 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1198 2752707 2753502 2753544 "XALG" 2753549 XALG (NIL T) -9 NIL 2753658 NIL) (-1197 2746558 2751117 2751595 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1196 2744801 2745803 2746124 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1195 2744400 2744672 2744741 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1194 2743887 2744190 2744283 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1193 2742964 2743174 2743469 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1192 2741260 2741723 2742185 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1191 2740149 2740734 2740776 "VSPACE" 2740912 VSPACE (NIL T) -9 NIL 2740986 NIL) (-1190 2740020 2740053 2740144 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1189 2739863 2739917 2739985 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1188 2736846 2737641 2738378 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1187 2727944 2730545 2732718 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1186 2721521 2723412 2724991 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1185 2720005 2720400 2720806 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1184 2718832 2719113 2719429 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1183 2714229 2718659 2718751 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1182 2707555 2711884 2711927 "VECTCAT" 2712915 VECTCAT (NIL T) -9 NIL 2713499 NIL) (-1181 2706834 2707160 2707550 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1180 2706328 2706570 2706690 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1179 2706261 2706266 2706296 "UTYPE" 2706301 UTYPE (NIL) -9 NIL NIL NIL) (-1178 2705248 2705424 2705685 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1177 2703099 2703607 2704131 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1176 2692963 2698933 2698975 "UTSCAT" 2700073 UTSCAT (NIL T) -9 NIL 2700830 NIL) (-1175 2691028 2691971 2692958 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1174 2690702 2690751 2690882 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1173 2682413 2688898 2689377 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1172 2676957 2679230 2679273 "URAGG" 2681313 URAGG (NIL T) -9 NIL 2682038 NIL) (-1171 2675028 2675960 2676952 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1170 2670735 2674004 2674466 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1169 2663164 2670659 2670730 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1168 2651797 2659284 2659345 "UPXSCCA" 2659913 UPXSCCA (NIL T T) -9 NIL 2660145 NIL) (-1167 2651518 2651620 2651792 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1166 2640052 2647264 2647306 "UPXSCAT" 2647946 UPXSCAT (NIL T) -9 NIL 2648554 NIL) (-1165 2639565 2639650 2639827 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1164 2631251 2639156 2639418 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1163 2630146 2630416 2630766 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1162 2622831 2626316 2626370 "UPSCAT" 2627439 UPSCAT (NIL T T) -9 NIL 2628203 NIL) (-1161 2622251 2622503 2622826 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1160 2621925 2621974 2622105 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1159 2606036 2614991 2615033 "UPOLYC" 2617111 UPOLYC (NIL T) -9 NIL 2618331 NIL) (-1158 2600091 2602939 2606031 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1157 2599527 2599652 2599815 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1156 2599161 2599248 2599387 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1155 2597974 2598241 2598545 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1154 2597307 2597437 2597622 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1153 2596899 2596974 2597121 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1152 2587663 2596665 2596793 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1151 2587025 2587162 2587367 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1150 2585626 2586473 2586749 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1149 2584855 2585052 2585277 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1148 2571665 2584779 2584850 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1147 2551421 2564656 2564717 "ULSCCAT" 2565348 ULSCCAT (NIL T T) -9 NIL 2565635 NIL) (-1146 2550756 2551042 2551416 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1145 2539110 2546244 2546286 "ULSCAT" 2547139 ULSCAT (NIL T) -9 NIL 2547869 NIL) (-1144 2538623 2538708 2538885 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1143 2520740 2538122 2538363 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1142 2519774 2520467 2520581 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2520692) (-1141 2518807 2519500 2519614 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2519725) (-1140 2517840 2518533 2518647 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2518758) (-1139 2516873 2517566 2517680 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2517791) (-1138 2514880 2516101 2516131 "UFD" 2516342 UFD (NIL) -9 NIL 2516455 NIL) (-1137 2514724 2514781 2514875 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1136 2513976 2514183 2514399 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1135 2512196 2512649 2513114 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1134 2511921 2512161 2512191 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1133 2511859 2511864 2511894 "TYPE" 2511899 TYPE (NIL) -9 NIL 2511906 NIL) (-1132 2511018 2511238 2511478 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1131 2510196 2510627 2510862 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1130 2508350 2508923 2509462 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1129 2507384 2507620 2507856 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1128 2495982 2500159 2500255 "TSETCAT" 2505470 TSETCAT (NIL T T T T) -9 NIL 2506974 NIL) (-1127 2492319 2494135 2495977 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1126 2486711 2491545 2491827 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1125 2482048 2483061 2483990 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1124 2481545 2481620 2481783 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1123 2479621 2479911 2480266 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1122 2479105 2479254 2479284 "TRIGCAT" 2479497 TRIGCAT (NIL) -9 NIL NIL NIL) (-1121 2478856 2478959 2479100 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1120 2475852 2477962 2478243 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1119 2474958 2475654 2475684 "TRANFUN" 2475719 TRANFUN (NIL) -9 NIL 2475785 NIL) (-1118 2474422 2474673 2474953 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1117 2474259 2474297 2474358 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1116 2473716 2473847 2473998 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1115 2472457 2473114 2473350 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1114 2472269 2472306 2472378 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1113 2470483 2471129 2471558 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1112 2468863 2469200 2469522 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1111 2458848 2466552 2466608 "TBAGG" 2466925 TBAGG (NIL T T) -9 NIL 2467135 NIL) (-1110 2456253 2457508 2458843 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1109 2455730 2455855 2456000 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1108 2455240 2455560 2455650 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1107 2454737 2454854 2454992 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1106 2447241 2454665 2454732 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1105 2442994 2444289 2445534 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1104 2442363 2442522 2442703 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1103 2439517 2440270 2441053 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1102 2439291 2439481 2439512 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1101 2438245 2438930 2439056 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2439242) (-1100 2437509 2438057 2438136 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2438196) (-1099 2434332 2435491 2436191 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1098 2432015 2432698 2433332 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1097 2428093 2429139 2430116 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1096 2425192 2427748 2427977 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1095 2424788 2424875 2424997 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1094 2421412 2422886 2423705 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1093 2414372 2420609 2420902 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1092 2406058 2413963 2414225 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1091 2405337 2405476 2405693 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1090 2405021 2405086 2405197 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1089 2395744 2404733 2404858 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1088 2394474 2394772 2395127 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1087 2393879 2393957 2394148 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1086 2376031 2393378 2393619 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1085 2375630 2375902 2375971 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1084 2374966 2375247 2375387 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1083 2369568 2370827 2371780 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1082 2369100 2369200 2369364 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1081 2364211 2365493 2366640 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1080 2358669 2360140 2361451 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1079 2351584 2353648 2355439 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1078 2343753 2351522 2351579 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1077 2338702 2343467 2343582 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1076 2338289 2338372 2338516 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1075 2337440 2337641 2337876 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1074 2337180 2337238 2337331 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1073 2330706 2335383 2335991 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1072 2329882 2330087 2330318 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1071 2329127 2329498 2329645 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1070 2328615 2328857 2328887 "STEP" 2328981 STEP (NIL) -9 NIL 2329052 NIL) (-1069 2321109 2328533 2328610 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1068 2316134 2319889 2319932 "STAGG" 2320359 STAGG (NIL T) -9 NIL 2320533 NIL) (-1067 2314592 2315300 2316129 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1066 2312754 2314419 2314511 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1065 2312034 2312573 2312603 "SRING" 2312608 SRING (NIL) -9 NIL 2312628 NIL) (-1064 2304949 2310572 2311011 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1063 2298723 2300162 2301666 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1062 2291340 2295998 2296028 "SRAGG" 2297327 SRAGG (NIL) -9 NIL 2297931 NIL) (-1061 2290637 2290957 2291335 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1060 2284743 2289959 2290382 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1059 2278672 2282096 2282847 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1058 2275101 2275920 2276557 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1057 2274076 2274381 2274411 "SPFCAT" 2274855 SPFCAT (NIL) -9 NIL NIL NIL) (-1056 2273013 2273265 2273529 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1055 2263771 2266045 2266075 "SPADXPT" 2270712 SPADXPT (NIL) -9 NIL 2272836 NIL) (-1054 2263573 2263619 2263688 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1053 2261229 2263537 2263568 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1052 2252903 2254992 2255034 "SPACEC" 2259349 SPACEC (NIL T) -9 NIL 2261154 NIL) (-1051 2250732 2252850 2252898 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1050 2249711 2249900 2250183 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1049 2248115 2248448 2248859 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1048 2247380 2247614 2247875 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1047 2243560 2244520 2245515 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1046 2239918 2240617 2241346 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1045 2233940 2239203 2239299 "SNTSCAT" 2239304 SNTSCAT (NIL T T T T) -9 NIL 2239374 NIL) (-1044 2227761 2232581 2232971 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1043 2221533 2227680 2227756 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1042 2219965 2220296 2220694 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1041 2211579 2216513 2216615 "SMATCAT" 2217958 SMATCAT (NIL NIL T T T) -9 NIL 2218506 NIL) (-1040 2209420 2210404 2211574 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1039 2209022 2209194 2209237 "SMAGG" 2209322 SMAGG (NIL T) -9 NIL 2209379 NIL) (-1038 2206565 2208171 2208214 "SKAGG" 2208475 SKAGG (NIL T) -9 NIL 2208611 NIL) (-1037 2202611 2206385 2206496 "SINT" NIL SINT (NIL) -8 NIL NIL 2206537) (-1036 2202421 2202465 2202531 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1035 2201496 2201728 2201996 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1034 2200500 2200662 2200938 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1033 2199846 2200186 2200309 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1032 2199192 2199499 2199639 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1031 2197303 2197795 2198301 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1030 2190787 2197222 2197298 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1029 2190290 2190527 2190557 "SGROUP" 2190650 SGROUP (NIL) -9 NIL 2190712 NIL) (-1028 2190180 2190212 2190285 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1027 2189818 2189858 2189899 "SGPOPC" 2189904 SGPOPC (NIL T) -9 NIL 2190105 NIL) (-1026 2189352 2189629 2189735 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1025 2186775 2187544 2188266 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1024 2180896 2186159 2186255 "SFRTCAT" 2186260 SFRTCAT (NIL T T T T) -9 NIL 2186298 NIL) (-1023 2175288 2176401 2177528 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1022 2169464 2170625 2171789 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1021 2168436 2169338 2169459 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1020 2164044 2164939 2165034 "SEXCAT" 2167647 SEXCAT (NIL T T T T T) -9 NIL 2168198 NIL) (-1019 2163017 2163971 2164039 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1018 2161408 2161993 2162295 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1017 2160931 2161116 2161146 "SETCAT" 2161263 SETCAT (NIL) -9 NIL 2161347 NIL) (-1016 2160763 2160827 2160926 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1015 2157815 2159199 2159242 "SETAGG" 2160110 SETAGG (NIL T) -9 NIL 2160448 NIL) (-1014 2157421 2157573 2157810 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1013 2154666 2157368 2157416 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1012 2154132 2154442 2154542 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1011 2153259 2153625 2153686 "SEGXCAT" 2153972 SEGXCAT (NIL T T) -9 NIL 2154092 NIL) (-1010 2152184 2152452 2152495 "SEGCAT" 2153017 SEGCAT (NIL T) -9 NIL 2153238 NIL) (-1009 2151864 2151929 2152042 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1008 2150930 2151400 2151608 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1007 2150508 2150787 2150863 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1006 2149873 2150009 2150213 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1005 2148939 2149686 2149868 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1004 2148192 2148887 2148934 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1003 2139677 2148059 2148187 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1002 2138531 2138821 2139140 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1001 2137829 2138041 2138231 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-1000 2137173 2137330 2137508 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-999 2136746 2136977 2137005 "SASTCAT" 2137010 SASTCAT (NIL) -9 NIL 2137023 NIL) (-998 2136213 2136638 2136712 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-997 2135816 2135857 2136028 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-996 2135447 2135488 2135645 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-995 2128528 2135364 2135442 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-994 2127178 2127507 2127903 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-993 2125939 2126300 2126600 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-992 2125563 2125784 2125865 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-991 2123023 2123657 2124110 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-990 2122862 2122895 2122963 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-989 2122353 2122656 2122747 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-988 2117981 2118849 2119760 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-987 2107036 2112299 2112393 "RSETCAT" 2116449 RSETCAT (NIL T T T T) -9 NIL 2117537 NIL) (-986 2105574 2106216 2107031 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-985 2099348 2100793 2102300 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-984 2097230 2097787 2097859 "RRCC" 2098932 RRCC (NIL T T) -9 NIL 2099273 NIL) (-983 2096755 2096954 2097225 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-982 2096225 2096535 2096633 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-981 2068758 2079472 2079536 "RPOLCAT" 2090010 RPOLCAT (NIL T T T) -9 NIL 2093155 NIL) (-980 2062857 2065680 2068753 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-979 2059024 2062605 2062743 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-978 2057352 2058091 2058347 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-977 2052995 2055807 2055835 "RNS" 2056097 RNS (NIL) -9 NIL 2056349 NIL) (-976 2051898 2052385 2052922 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-975 2051016 2051417 2051617 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-974 2050154 2050716 2050744 "RNG" 2050804 RNG (NIL) -9 NIL 2050858 NIL) (-973 2050043 2050077 2050149 "RNG-" NIL RNG- (NIL T) -7 NIL NIL NIL) (-972 2049305 2049810 2049850 "RMODULE" 2049855 RMODULE (NIL T) -9 NIL 2049881 NIL) (-971 2048244 2048350 2048680 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-970 2045141 2047834 2048127 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-969 2037982 2040426 2040538 "RMATCAT" 2043709 RMATCAT (NIL NIL NIL T T T) -9 NIL 2044640 NIL) (-968 2037499 2037678 2037977 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-967 2037067 2037278 2037319 "RLINSET" 2037380 RLINSET (NIL T) -9 NIL 2037424 NIL) (-966 2036712 2036793 2036919 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-965 2035558 2036289 2036317 "RING" 2036372 RING (NIL) -9 NIL 2036464 NIL) (-964 2035403 2035459 2035553 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-963 2034457 2034724 2034980 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-962 2025681 2034085 2034286 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-961 2024906 2025417 2025456 "RGBCSPC" 2025513 RGBCSPC (NIL T) -9 NIL 2025564 NIL) (-960 2023940 2024426 2024465 "RGBCMDL" 2024693 RGBCMDL (NIL T) -9 NIL 2024807 NIL) (-959 2023652 2023721 2023822 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-958 2023415 2023456 2023551 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-957 2021839 2022269 2022649 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-956 2019426 2020094 2020762 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-955 2018976 2019074 2019234 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-954 2018598 2018696 2018737 "RETRACT" 2018868 RETRACT (NIL T) -9 NIL 2018955 NIL) (-953 2018478 2018509 2018593 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-952 2018080 2018352 2018419 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-951 2016560 2017451 2017648 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-950 2016251 2016312 2016408 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-949 2015994 2016035 2016140 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-948 2015729 2015770 2015879 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-947 2010800 2012251 2013466 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-946 2007896 2008654 2009462 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-945 2005865 2006487 2007087 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-944 1998793 2004416 2004852 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-943 1998105 1998385 1998534 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-942 1997590 1997705 1997870 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-941 1993183 1996993 1997214 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-940 1992415 1992614 1992827 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-939 1989705 1990543 1991425 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-938 1986287 1987323 1988382 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-937 1986123 1986176 1986204 "REAL" 1986209 REAL (NIL) -9 NIL 1986244 NIL) (-936 1985613 1985917 1986008 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-935 1985093 1985171 1985376 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-934 1984326 1984518 1984729 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-933 1983214 1983511 1983878 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-932 1981481 1981951 1982484 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-931 1980405 1980682 1981069 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-930 1979234 1979543 1979962 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-929 1972582 1976094 1976122 "RCFIELD" 1977399 RCFIELD (NIL) -9 NIL 1978129 NIL) (-928 1971200 1971812 1972509 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-927 1967954 1969286 1969327 "RCAGG" 1970381 RCAGG (NIL T) -9 NIL 1970843 NIL) (-926 1967681 1967791 1967949 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-925 1967126 1967255 1967416 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-924 1966743 1966822 1966941 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-923 1966158 1966308 1966458 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-922 1965940 1965990 1966061 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-921 1958382 1965058 1965366 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-920 1948084 1958249 1958377 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-919 1947718 1947811 1947839 "RADCAT" 1947996 RADCAT (NIL) -9 NIL NIL NIL) (-918 1947556 1947616 1947713 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-917 1945661 1947387 1947476 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-916 1945342 1945391 1945518 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-915 1937611 1941695 1941735 "QUATCAT" 1942513 QUATCAT (NIL T) -9 NIL 1943277 NIL) (-914 1934861 1936141 1937517 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-913 1930701 1934811 1934856 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-912 1928039 1929698 1929739 "QUAGG" 1930114 QUAGG (NIL T) -9 NIL 1930290 NIL) (-911 1927641 1927913 1927980 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-910 1926647 1927277 1927440 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-909 1926328 1926377 1926504 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-908 1915910 1922079 1922119 "QFCAT" 1922777 QFCAT (NIL T) -9 NIL 1923770 NIL) (-907 1912794 1914233 1915816 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-906 1912340 1912474 1912604 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-905 1906536 1907697 1908859 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-904 1905955 1906135 1906367 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-903 1903777 1904305 1904728 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-902 1902676 1902918 1903235 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-901 1901037 1901235 1901588 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-900 1896793 1898009 1898050 "PTRANFN" 1899934 PTRANFN (NIL T) -9 NIL NIL NIL) (-899 1895440 1895785 1896106 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-898 1895133 1895196 1895303 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-897 1889430 1893874 1893914 "PTCAT" 1894206 PTCAT (NIL T) -9 NIL 1894359 NIL) (-896 1889123 1889164 1889288 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-895 1888002 1888318 1888652 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-894 1876881 1879442 1881751 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-893 1870083 1872646 1872740 "PSETCAT" 1875714 PSETCAT (NIL T T T T) -9 NIL 1876523 NIL) (-892 1868533 1869267 1870078 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-891 1867852 1868047 1868075 "PSCURVE" 1868343 PSCURVE (NIL) -9 NIL 1868510 NIL) (-890 1863436 1865256 1865320 "PSCAT" 1866155 PSCAT (NIL T T T) -9 NIL 1866394 NIL) (-889 1862750 1863032 1863431 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-888 1861147 1862062 1862325 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-887 1860638 1860941 1861032 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-886 1851658 1854080 1856268 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-885 1849352 1850921 1850961 "PRQAGG" 1851144 PRQAGG (NIL T) -9 NIL 1851247 NIL) (-884 1848525 1848971 1848999 "PROPLOG" 1849138 PROPLOG (NIL) -9 NIL 1849252 NIL) (-883 1848200 1848263 1848386 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-882 1847636 1847775 1847947 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-881 1845884 1846647 1846944 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-880 1845436 1845568 1845696 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-879 1839877 1844376 1845196 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-878 1839706 1839744 1839803 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-877 1839145 1839285 1839436 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-876 1837613 1838032 1838498 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-875 1837330 1837391 1837419 "PRIMCAT" 1837543 PRIMCAT (NIL) -9 NIL NIL NIL) (-874 1836501 1836697 1836925 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-873 1832662 1836451 1836496 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-872 1832361 1832423 1832534 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-871 1829497 1832010 1832243 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-870 1828948 1829105 1829133 "PPCURVE" 1829338 PPCURVE (NIL) -9 NIL 1829474 NIL) (-869 1828561 1828806 1828889 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-868 1826317 1826738 1827330 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-867 1825760 1825824 1826057 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-866 1822480 1822966 1823577 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-865 1808052 1814182 1814246 "POLYCAT" 1817731 POLYCAT (NIL T T T) -9 NIL 1819608 NIL) (-864 1803562 1805709 1808047 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-863 1803219 1803293 1803412 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-862 1802912 1802975 1803082 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-861 1796275 1802645 1802804 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-860 1795162 1795425 1795701 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-859 1793766 1794079 1794409 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-858 1789209 1793716 1793761 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-857 1787697 1788108 1788483 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-856 1786454 1786763 1787159 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-855 1786125 1786209 1786326 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-854 1785704 1785779 1785953 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-853 1785190 1785286 1785446 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-852 1784662 1784782 1784936 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-851 1783557 1783775 1784152 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-850 1783168 1783253 1783405 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-849 1782719 1782801 1782982 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-848 1782411 1782492 1782605 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-847 1781924 1781999 1782207 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-846 1781272 1781400 1781602 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-845 1780634 1780768 1780931 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-844 1779938 1780120 1780301 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-843 1779661 1779735 1779829 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-842 1776229 1777418 1778334 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-841 1775313 1775514 1775749 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-840 1770878 1772262 1773404 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-839 1750799 1755686 1760533 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-838 1750539 1750592 1750695 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-837 1749980 1750114 1750294 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-836 1747989 1749210 1749238 "PID" 1749435 PID (NIL) -9 NIL 1749562 NIL) (-835 1747777 1747820 1747895 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-834 1746964 1747624 1747711 "PI" NIL PI (NIL) -8 NIL NIL 1747751) (-833 1746416 1746567 1746743 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-832 1742744 1743702 1744607 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-831 1741108 1741397 1741763 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-830 1740550 1740665 1740826 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-829 1737091 1739419 1739772 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-828 1735697 1735977 1736302 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-827 1734462 1734716 1735064 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-826 1733172 1733399 1733751 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-825 1730182 1731742 1731770 "PFECAT" 1732363 PFECAT (NIL) -9 NIL 1732740 NIL) (-824 1729805 1729970 1730177 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-823 1728629 1728911 1729212 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-822 1726811 1727198 1727628 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-821 1722781 1726737 1726806 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-820 1718684 1719831 1720698 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-819 1716616 1717705 1717746 "PERMCAT" 1718145 PERMCAT (NIL T) -9 NIL 1718442 NIL) (-818 1716312 1716359 1716482 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-817 1712761 1714442 1715087 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-816 1710787 1712516 1712637 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-815 1709670 1709933 1709972 "PDSPC" 1710493 PDSPC (NIL T) -9 NIL 1710738 NIL) (-814 1709039 1709305 1709665 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-813 1707676 1708669 1708708 "PDRING" 1708713 PDRING (NIL T) -9 NIL 1708740 NIL) (-812 1706388 1707177 1707228 "PDMOD" 1707233 PDMOD (NIL T T) -9 NIL 1707336 NIL) (-811 1705481 1705693 1705942 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-810 1705086 1705153 1705207 "PDDOM" 1705372 PDDOM (NIL T T) -9 NIL 1705452 NIL) (-809 1704938 1704974 1705081 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-808 1704724 1704763 1704852 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-807 1703041 1703795 1704094 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-806 1702730 1702793 1702902 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-805 1700868 1701298 1701749 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-804 1694488 1696317 1697609 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-803 1694119 1694192 1694324 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-802 1691821 1692501 1692982 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-801 1690025 1690453 1690856 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-800 1689471 1689719 1689760 "PATMAB" 1689867 PATMAB (NIL T) -9 NIL 1689950 NIL) (-799 1688118 1688522 1688779 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-798 1687656 1687787 1687828 "PATAB" 1687833 PATAB (NIL T) -9 NIL 1688005 NIL) (-797 1686199 1686636 1687059 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-796 1685877 1685952 1686054 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-795 1685566 1685629 1685738 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-794 1685371 1685417 1685484 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-793 1685049 1685124 1685226 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-792 1684738 1684801 1684910 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-791 1684429 1684499 1684596 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-790 1684118 1684181 1684290 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-789 1683279 1683658 1683837 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-788 1682886 1682984 1683103 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-787 1681854 1682279 1682498 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-786 1680519 1681173 1681533 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-785 1673609 1679923 1680117 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-784 1666030 1673107 1673291 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-783 1662755 1664670 1664710 "PADICCT" 1665291 PADICCT (NIL NIL) -9 NIL 1665573 NIL) (-782 1660745 1662705 1662750 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-781 1659907 1660117 1660383 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-780 1659249 1659392 1659596 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-779 1657630 1658657 1658935 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-778 1657154 1657413 1657510 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-777 1656213 1656891 1657063 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-776 1646635 1649504 1651703 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-775 1646027 1646341 1646467 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-774 1645304 1645499 1645527 "OUTBCON" 1645845 OUTBCON (NIL) -9 NIL 1646011 NIL) (-773 1645012 1645142 1645299 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-772 1644393 1644538 1644699 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-771 1643764 1644191 1644280 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-770 1643179 1643594 1643622 "OSGROUP" 1643627 OSGROUP (NIL) -9 NIL 1643649 NIL) (-769 1642143 1642404 1642689 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-768 1639412 1642018 1642138 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-767 1636553 1639163 1639289 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-766 1634571 1635099 1635659 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-765 1627913 1630453 1630493 "OREPCAT" 1632814 OREPCAT (NIL T) -9 NIL 1633916 NIL) (-764 1625939 1626873 1627908 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-763 1625136 1625407 1625435 "ORDTYPE" 1625740 ORDTYPE (NIL) -9 NIL 1625898 NIL) (-762 1624670 1624881 1625131 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-761 1624132 1624508 1624665 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-760 1623626 1623989 1624017 "ORDSET" 1624022 ORDSET (NIL) -9 NIL 1624044 NIL) (-759 1622191 1623213 1623241 "ORDRING" 1623246 ORDRING (NIL) -9 NIL 1623274 NIL) (-758 1621439 1621996 1622024 "ORDMON" 1622029 ORDMON (NIL) -9 NIL 1622050 NIL) (-757 1620743 1620905 1621097 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-756 1619954 1620462 1620490 "ORDFIN" 1620555 ORDFIN (NIL) -9 NIL 1620629 NIL) (-755 1619348 1619487 1619673 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-754 1616023 1618316 1618722 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-753 1615430 1615785 1615890 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-752 1615238 1615283 1615349 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-751 1614539 1614815 1614856 "OPERCAT" 1615067 OPERCAT (NIL T) -9 NIL 1615163 NIL) (-750 1614351 1614418 1614534 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-749 1611717 1613153 1613649 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-748 1611138 1611265 1611439 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-747 1608039 1610277 1610643 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-746 1604905 1607414 1607454 "OMSAGG" 1607515 OMSAGG (NIL T) -9 NIL 1607579 NIL) (-745 1603317 1604576 1604744 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-744 1601513 1602754 1602782 "OINTDOM" 1602787 OINTDOM (NIL) -9 NIL 1602808 NIL) (-743 1598943 1600515 1600844 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-742 1598197 1598893 1598938 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-741 1595399 1598038 1598192 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-740 1586936 1595270 1595394 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-739 1580391 1586827 1586931 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-738 1579363 1579600 1579873 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-737 1577004 1577674 1578378 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-736 1572781 1573741 1574764 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-735 1572289 1572377 1572571 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-734 1569738 1570320 1570993 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-733 1567133 1567641 1568237 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-732 1564130 1564669 1565315 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-731 1563485 1563593 1563851 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-730 1562643 1562768 1562989 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-729 1558927 1559723 1560636 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-728 1558367 1558462 1558684 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-727 1558048 1558097 1558224 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-726 1554651 1557847 1557966 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-725 1553811 1554433 1554461 "OCAMON" 1554466 OCAMON (NIL) -9 NIL 1554487 NIL) (-724 1548005 1550819 1550859 "OC" 1551954 OC (NIL T) -9 NIL 1552810 NIL) (-723 1546005 1546931 1547911 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-722 1545421 1545839 1545867 "OASGP" 1545872 OASGP (NIL) -9 NIL 1545892 NIL) (-721 1544484 1545133 1545161 "OAMONS" 1545201 OAMONS (NIL) -9 NIL 1545244 NIL) (-720 1543629 1544210 1544238 "OAMON" 1544295 OAMON (NIL) -9 NIL 1544346 NIL) (-719 1543525 1543557 1543624 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-718 1542276 1543050 1543078 "OAGROUP" 1543224 OAGROUP (NIL) -9 NIL 1543316 NIL) (-717 1542067 1542154 1542271 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-716 1541807 1541863 1541951 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-715 1536869 1538432 1539959 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-714 1533564 1534598 1535633 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-713 1532674 1532907 1533125 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-712 1521535 1524563 1527011 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-711 1515658 1520921 1521015 "NTSCAT" 1521020 NTSCAT (NIL T T T T) -9 NIL 1521058 NIL) (-710 1514999 1515178 1515371 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-709 1514692 1514755 1514862 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-708 1502359 1512312 1513122 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-707 1491368 1502224 1502354 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-706 1490088 1490413 1490770 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-705 1488924 1489188 1489546 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-704 1488091 1488224 1488440 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-703 1486409 1486728 1487134 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-702 1486122 1486156 1486280 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-701 1485941 1485976 1486045 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-700 1485717 1485907 1485936 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-699 1485281 1485348 1485525 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-698 1483567 1484644 1484899 "NNI" NIL NNI (NIL) -8 NIL NIL 1485246) (-697 1482295 1482632 1482996 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-696 1481272 1481524 1481826 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-695 1480359 1480924 1480965 "NETCLT" 1481136 NETCLT (NIL T) -9 NIL 1481217 NIL) (-694 1479263 1479530 1479811 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-693 1479062 1479105 1479180 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-692 1477593 1477981 1478401 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-691 1476226 1477192 1477220 "NASRING" 1477330 NASRING (NIL) -9 NIL 1477410 NIL) (-690 1476071 1476127 1476221 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-689 1475000 1475678 1475706 "NARNG" 1475823 NARNG (NIL) -9 NIL 1475914 NIL) (-688 1474776 1474861 1474995 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-687 1473542 1474296 1474336 "NAALG" 1474415 NAALG (NIL T) -9 NIL 1474476 NIL) (-686 1473412 1473447 1473537 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-685 1468391 1469576 1470762 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-684 1467786 1467873 1468057 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-683 1459777 1464272 1464324 "MTSCAT" 1465384 MTSCAT (NIL T T) -9 NIL 1465898 NIL) (-682 1459543 1459603 1459695 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-681 1459369 1459408 1459468 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-680 1456998 1458883 1458924 "MSETAGG" 1458929 MSETAGG (NIL T) -9 NIL 1458963 NIL) (-679 1453368 1456041 1456362 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-678 1449761 1451584 1452303 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-677 1449398 1449471 1449600 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-676 1449051 1449092 1449236 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-675 1446916 1447253 1447684 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-674 1440314 1446815 1446911 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-673 1439839 1439880 1440088 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-672 1439398 1439447 1439630 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-671 1438672 1438765 1438984 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-670 1437289 1437650 1438040 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-669 1436810 1436877 1436916 "MONOPC" 1436976 MONOPC (NIL T) -9 NIL 1437195 NIL) (-668 1436261 1436597 1436725 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-667 1435403 1435782 1435810 "MONOID" 1436028 MONOID (NIL) -9 NIL 1436172 NIL) (-666 1435062 1435212 1435398 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-665 1424000 1430870 1430929 "MONOGEN" 1431603 MONOGEN (NIL T T) -9 NIL 1432059 NIL) (-664 1422012 1422898 1423881 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-663 1420726 1421270 1421298 "MONADWU" 1421689 MONADWU (NIL) -9 NIL 1421924 NIL) (-662 1420274 1420474 1420721 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-661 1419551 1419852 1419880 "MONAD" 1420087 MONAD (NIL) -9 NIL 1420199 NIL) (-660 1419318 1419414 1419546 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-659 1417708 1418478 1418757 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-658 1416842 1417369 1417409 "MODULE" 1417414 MODULE (NIL T) -9 NIL 1417452 NIL) (-657 1416521 1416647 1416837 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-656 1414240 1415126 1415440 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-655 1411419 1412836 1413349 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-654 1410053 1410627 1410903 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-653 1399272 1408718 1409131 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-652 1396236 1398280 1398549 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-651 1395320 1395687 1395877 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-650 1394889 1394938 1395117 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-649 1392714 1393710 1393750 "MLO" 1394167 MLO (NIL T) -9 NIL 1394407 NIL) (-648 1390595 1391122 1391717 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-647 1390063 1390159 1390313 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-646 1389733 1389809 1389932 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-645 1388945 1389131 1389359 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-644 1388438 1388554 1388710 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-643 1387810 1387924 1388109 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-642 1386837 1387110 1387387 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-641 1386270 1386358 1386529 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-640 1383428 1384307 1385186 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-639 1382095 1382443 1382796 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-638 1379519 1381182 1381223 "MDAGG" 1381480 MDAGG (NIL T) -9 NIL 1381625 NIL) (-637 1378793 1378957 1379157 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-636 1377871 1378157 1378387 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-635 1375968 1376545 1377106 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-634 1371712 1375558 1375805 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-633 1368061 1368830 1369564 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-632 1366814 1366983 1367312 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-631 1356259 1359883 1359959 "MATCAT" 1364947 MATCAT (NIL T T T) -9 NIL 1366393 NIL) (-630 1353540 1354846 1356254 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-629 1351941 1352301 1352685 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-628 1351074 1351271 1351493 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-627 1349825 1350151 1350478 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-626 1348987 1349389 1349565 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-625 1348656 1348720 1348843 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-624 1348304 1348377 1348491 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-623 1347839 1347954 1348096 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-622 1346048 1346816 1347117 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-621 1345542 1345844 1345934 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-620 1339863 1343839 1343880 "LZSTAGG" 1344657 LZSTAGG (NIL T) -9 NIL 1344947 NIL) (-619 1337212 1338524 1339858 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-618 1334599 1335565 1336048 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-617 1334180 1334459 1334533 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-616 1326395 1334041 1334175 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-615 1325758 1325903 1326131 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-614 1323242 1323940 1324652 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-613 1321458 1321781 1322215 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-612 1314838 1320490 1320531 "LSAGG" 1320593 LSAGG (NIL T) -9 NIL 1320671 NIL) (-611 1312532 1313631 1314833 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-610 1310012 1311881 1312130 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-609 1309679 1309770 1309893 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-608 1309350 1309429 1309457 "LOGIC" 1309568 LOGIC (NIL) -9 NIL 1309650 NIL) (-607 1309245 1309274 1309345 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-606 1308564 1308722 1308915 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-605 1307349 1307598 1307949 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-604 1303171 1305970 1306010 "LODOCAT" 1306442 LODOCAT (NIL T) -9 NIL 1306653 NIL) (-603 1302964 1303040 1303166 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-602 1299964 1302841 1302959 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-601 1297062 1299914 1299959 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-600 1294149 1296992 1297057 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-599 1293202 1293377 1293679 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-598 1291334 1292464 1292717 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-597 1287249 1289475 1289516 "LNAGG" 1290375 LNAGG (NIL T) -9 NIL 1290813 NIL) (-596 1286636 1286903 1287244 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-595 1283208 1284149 1284786 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-594 1282470 1282975 1283015 "LMODULE" 1283020 LMODULE (NIL T) -9 NIL 1283046 NIL) (-593 1279939 1282206 1282329 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-592 1279507 1279718 1279759 "LLINSET" 1279820 LLINSET (NIL T) -9 NIL 1279864 NIL) (-591 1279183 1279443 1279502 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-590 1278782 1278862 1279001 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-589 1277233 1277581 1277980 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-588 1276404 1276600 1276828 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-587 1269718 1275660 1275914 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-586 1269295 1269528 1269569 "LINSET" 1269574 LINSET (NIL T) -9 NIL 1269607 NIL) (-585 1268196 1268918 1269085 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-584 1266462 1267217 1267257 "LINEXP" 1267743 LINEXP (NIL T) -9 NIL 1268016 NIL) (-583 1265084 1266071 1266252 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-582 1263911 1264183 1264485 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-581 1263124 1263713 1263823 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-580 1260682 1261404 1262154 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-579 1259317 1259614 1260005 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-578 1258110 1258712 1258752 "LIECAT" 1258892 LIECAT (NIL T) -9 NIL 1259043 NIL) (-577 1257984 1258017 1258105 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-576 1252240 1257674 1257902 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-575 1243880 1251916 1252072 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-574 1240332 1241281 1242216 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-573 1238956 1239864 1239892 "LFCAT" 1240099 LFCAT (NIL) -9 NIL 1240238 NIL) (-572 1237195 1237525 1237870 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-571 1234712 1235377 1236058 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-570 1231724 1232702 1233205 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-569 1231215 1231518 1231609 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-568 1229922 1230246 1230646 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-567 1229188 1229273 1229499 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-566 1224191 1227756 1228292 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-565 1223816 1223866 1224026 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-564 1222587 1223360 1223400 "LALG" 1223461 LALG (NIL T) -9 NIL 1223519 NIL) (-563 1222370 1222447 1222582 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-562 1220223 1221638 1221889 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-561 1220052 1220082 1220123 "KVTFROM" 1220185 KVTFROM (NIL T) -9 NIL NIL NIL) (-560 1218868 1219583 1219772 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-559 1218697 1218727 1218768 "KRCFROM" 1218830 KRCFROM (NIL T) -9 NIL NIL NIL) (-558 1217799 1217996 1218291 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-557 1217628 1217658 1217699 "KONVERT" 1217761 KONVERT (NIL T) -9 NIL NIL NIL) (-556 1217457 1217487 1217528 "KOERCE" 1217590 KOERCE (NIL T) -9 NIL NIL NIL) (-555 1217027 1217120 1217252 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-554 1215080 1215974 1216346 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-553 1208067 1212759 1212813 "KDAGG" 1213189 KDAGG (NIL T T) -9 NIL 1213429 NIL) (-552 1207725 1207860 1208062 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-551 1201029 1207517 1207663 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-550 1200679 1200961 1201024 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-549 1199649 1200148 1200397 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-548 1198775 1199224 1199429 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-547 1197639 1198131 1198431 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-546 1196921 1197320 1197481 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-545 1196631 1196867 1196916 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-544 1190886 1196321 1196549 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-543 1190304 1190637 1190757 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-542 1187032 1188492 1188544 "IXAGG" 1189441 IXAGG (NIL T T) -9 NIL 1189901 NIL) (-541 1186319 1186650 1187027 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-540 1185388 1185663 1185905 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-539 1184050 1184257 1184550 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-538 1183001 1183223 1183506 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-537 1182676 1182739 1182862 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-536 1181938 1182310 1182484 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-535 1179914 1181214 1181488 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-534 1169462 1175231 1176388 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-533 1168707 1168859 1169095 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-532 1168198 1168501 1168592 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-531 1167491 1167582 1167795 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-530 1166623 1166848 1167088 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-529 1165036 1165417 1165845 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-528 1164821 1164865 1164941 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-527 1163671 1163968 1164263 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-526 1162944 1163295 1163446 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-525 1162147 1162278 1162491 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-524 1160309 1160806 1161350 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-523 1157390 1158658 1159347 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-522 1157215 1157255 1157315 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-521 1153213 1157141 1157210 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-520 1151216 1153152 1153208 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-519 1150587 1150886 1151016 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-518 1150040 1150328 1150460 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-517 1149121 1149746 1149872 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-516 1148531 1149025 1149053 "IOBCON" 1149058 IOBCON (NIL) -9 NIL 1149079 NIL) (-515 1148102 1148166 1148348 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-514 1140161 1142532 1144857 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-513 1137272 1138055 1138919 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-512 1136949 1137046 1137163 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-511 1134391 1136885 1136944 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-510 1132503 1133032 1133599 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-509 1132005 1132119 1132259 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-508 1130389 1130795 1131257 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-507 1128168 1128762 1129373 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-506 1125541 1126151 1126871 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-505 1124945 1125103 1125311 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-504 1124464 1124550 1124738 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-503 1122669 1123190 1123647 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-502 1115759 1117412 1119141 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-501 1115125 1115287 1115460 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-500 1112998 1113462 1114006 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-499 1111124 1112074 1112102 "INTDOM" 1112401 INTDOM (NIL) -9 NIL 1112606 NIL) (-498 1110677 1110879 1111119 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-497 1106484 1108956 1109010 "INTCAT" 1109806 INTCAT (NIL T) -9 NIL 1110122 NIL) (-496 1106049 1106169 1106296 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-495 1104889 1105061 1105367 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-494 1104462 1104558 1104715 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-493 1096945 1104369 1104457 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-492 1096243 1096798 1096863 "INT8" NIL INT8 (NIL) -8 NIL NIL 1096897) (-491 1095540 1096095 1096160 "INT64" NIL INT64 (NIL) -8 NIL NIL 1096194) (-490 1094837 1095392 1095457 "INT32" NIL INT32 (NIL) -8 NIL NIL 1095491) (-489 1094134 1094689 1094754 "INT16" NIL INT16 (NIL) -8 NIL NIL 1094788) (-488 1090597 1094053 1094129 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-487 1084654 1088137 1088165 "INS" 1089095 INS (NIL) -9 NIL 1089754 NIL) (-486 1082716 1083634 1084581 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-485 1081775 1081998 1082273 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-484 1080989 1081130 1081327 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-483 1079979 1080120 1080357 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-482 1079131 1079295 1079555 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-481 1078411 1078526 1078714 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-480 1077150 1077419 1077743 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-479 1076430 1076571 1076754 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-478 1076093 1076165 1076263 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-477 1073171 1074657 1075180 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-476 1072770 1072877 1072991 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-475 1071926 1072571 1072672 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-474 1070776 1071044 1071365 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-473 1069766 1070706 1070771 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-472 1069391 1069471 1069588 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-471 1068305 1068850 1069054 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-470 1064400 1065455 1066398 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-469 1063254 1063577 1063605 "INBCON" 1064118 INBCON (NIL) -9 NIL 1064384 NIL) (-468 1062708 1062973 1063249 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-467 1062202 1062504 1062594 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-466 1061659 1061968 1062073 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-465 1060498 1060639 1060956 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-464 1058921 1059190 1059529 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-463 1053764 1058852 1058916 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-462 1053144 1053478 1053593 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-461 1048236 1052582 1052768 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-460 1047266 1048158 1048231 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-459 1046838 1046915 1046969 "IEVALAB" 1047176 IEVALAB (NIL T T) -9 NIL NIL NIL) (-458 1046593 1046673 1046833 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-457 1045978 1046205 1046362 "IDPT" NIL IDPT (NIL T T) -8 NIL NIL NIL) (-456 1044971 1045898 1045973 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-455 1044034 1044891 1044966 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-454 1043117 1043763 1043900 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-453 1041581 1042152 1042203 "IDPC" 1042612 IDPC (NIL T T) -9 NIL 1042903 NIL) (-452 1040869 1041503 1041576 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-451 1040039 1040791 1040864 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-450 1039732 1039945 1040005 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-449 1039436 1039476 1039515 "IDEMOPC" 1039520 IDEMOPC (NIL T) -9 NIL 1039657 NIL) (-448 1036507 1037388 1038280 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-447 1030133 1031410 1032449 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-446 1029395 1029525 1029724 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-445 1028568 1029067 1029205 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-444 1026959 1027290 1027681 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-443 1022996 1026915 1026954 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-442 1020254 1020878 1021573 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-441 1018480 1018960 1019493 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-440 1016295 1018386 1018475 "IARRAY2" NIL IARRAY2 (NIL T T T) -8 NIL NIL NIL) (-439 1012437 1016233 1016290 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-438 1006016 1011401 1011869 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-437 1005584 1005647 1005820 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-436 1005076 1005225 1005253 "HYPCAT" 1005460 HYPCAT (NIL) -9 NIL NIL NIL) (-435 1004732 1004885 1005071 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-434 1004345 1004590 1004673 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-433 1004178 1004227 1004268 "HOMOTOP" 1004273 HOMOTOP (NIL T) -9 NIL 1004306 NIL) (-432 1002681 1003493 1003534 "HOAGG" 1003539 HOAGG (NIL T) -9 NIL 1003839 NIL) (-431 1002308 1002455 1002676 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-430 995508 1002033 1002181 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-429 994443 994701 994964 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-428 993378 994308 994438 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-427 991577 993211 993299 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-426 990892 991244 991377 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-425 984390 990825 990887 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-424 977529 984126 984277 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-423 976982 977139 977302 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-422 969482 976899 976977 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-421 968973 969276 969367 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-420 966523 968760 968939 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-419 962209 966406 966518 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-418 954686 962106 962204 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-417 946623 954055 954310 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-416 945647 946156 946184 "GROUP" 946387 GROUP (NIL) -9 NIL 946521 NIL) (-415 945190 945391 945642 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-414 943862 944201 944588 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-413 942684 943041 943092 "GRMOD" 943621 GRMOD (NIL T T) -9 NIL 943787 NIL) (-412 942503 942551 942679 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-411 938626 939837 940837 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-410 937348 937672 937987 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-409 936901 937029 937170 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-408 935974 936473 936524 "GRALG" 936677 GRALG (NIL T T) -9 NIL 936767 NIL) (-407 935693 935794 935969 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-406 932712 935384 935551 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-405 932125 932188 932445 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-404 927979 928875 929400 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-403 927154 927356 927594 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-402 922157 923084 924103 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-401 921905 921962 922051 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-400 921387 921476 921641 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-399 920896 920937 921150 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-398 919697 919980 920284 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-397 912972 919387 919548 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-396 902755 907762 908866 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-395 900807 901910 901938 "GCDDOM" 902193 GCDDOM (NIL) -9 NIL 902350 NIL) (-394 900430 900587 900802 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-393 891223 893693 896081 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-392 889358 889683 890101 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-391 888299 888488 888755 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-390 887170 887377 887681 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-389 886633 886775 886923 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-388 885245 885593 885906 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-387 883790 884111 884433 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-386 881416 881772 882177 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-385 874668 876329 877907 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-384 874320 874541 874609 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-383 874065 874107 874148 "FUNCTOR" 874232 FUNCTOR (NIL T) -9 NIL 874291 NIL) (-382 873689 873910 873991 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-381 871786 872469 872929 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-380 870379 870686 871078 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-379 869034 869393 869717 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-378 868337 868461 868648 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-377 867311 867577 867924 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-376 864969 865499 865981 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-375 864552 864612 864781 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-374 862852 863766 864069 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-373 862000 862134 862357 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-372 861171 861332 861559 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-371 857387 860048 860089 "FSAGG" 860459 FSAGG (NIL T) -9 NIL 860720 NIL) (-370 855741 856500 857292 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-369 853697 853993 854537 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-368 852744 852926 853226 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-367 852425 852474 852601 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-366 832581 842082 842123 "FS" 845993 FS (NIL T) -9 NIL 848271 NIL) (-365 824812 828305 832284 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-364 824346 824473 824625 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-363 818869 822027 822067 "FRNAALG" 823387 FRNAALG (NIL T) -9 NIL 823985 NIL) (-362 815610 816861 818119 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-361 815291 815340 815467 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-360 813778 814335 814629 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-359 813064 813157 813444 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-358 810898 811664 811980 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-357 810007 810450 810491 "FRETRCT" 810496 FRETRCT (NIL T) -9 NIL 810667 NIL) (-356 809380 809658 810002 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-355 806124 807644 807703 "FRAMALG" 808585 FRAMALG (NIL T T) -9 NIL 808877 NIL) (-354 804720 805271 805901 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-353 804413 804476 804583 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-352 798054 804218 804408 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-351 797747 797810 797917 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-350 790156 794727 796034 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-349 783934 787437 787465 "FPS" 788584 FPS (NIL) -9 NIL 789140 NIL) (-348 783491 783624 783788 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-347 780301 782344 782372 "FPC" 782597 FPC (NIL) -9 NIL 782739 NIL) (-346 780147 780199 780296 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-345 778924 779633 779674 "FPATMAB" 779679 FPATMAB (NIL T) -9 NIL 779831 NIL) (-344 777354 777950 778297 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-343 776929 776987 777160 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-342 775432 776327 776501 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-341 774047 774552 774580 "FNCAT" 775037 FNCAT (NIL) -9 NIL 775294 NIL) (-340 773504 774014 774042 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-339 772091 773453 773499 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-338 768679 770037 770078 "FMONCAT" 771295 FMONCAT (NIL T) -9 NIL 771899 NIL) (-337 765638 766718 766771 "FMCAT" 767853 FMCAT (NIL T T) -9 NIL 768323 NIL) (-336 764338 765461 765560 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-335 763386 764186 764333 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-334 761573 762025 762519 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-333 759508 760044 760622 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-332 752894 757845 758459 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-331 751375 752476 752516 "FLINEXP" 752521 FLINEXP (NIL T) -9 NIL 752614 NIL) (-330 750784 751043 751370 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-329 750033 750192 750406 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-328 746916 747995 748047 "FLALG" 749274 FLALG (NIL T T) -9 NIL 749741 NIL) (-327 746087 746248 746475 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-326 739793 743483 743524 "FLAGG" 744763 FLAGG (NIL T) -9 NIL 745411 NIL) (-325 738901 739305 739788 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-324 735462 736726 736785 "FINRALG" 737913 FINRALG (NIL T T) -9 NIL 738421 NIL) (-323 734853 735118 735457 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-322 734151 734447 734475 "FINITE" 734671 FINITE (NIL) -9 NIL 734778 NIL) (-321 734059 734085 734146 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-320 730829 732155 732196 "FINAGG" 733195 FINAGG (NIL T) -9 NIL 733702 NIL) (-319 729748 730271 730824 "FINAGG-" NIL FINAGG- (NIL T T) -7 NIL NIL NIL) (-318 721709 724300 724340 "FINAALG" 727992 FINAALG (NIL T) -9 NIL 729430 NIL) (-317 717976 719221 720344 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-316 716528 716947 717001 "FILECAT" 717685 FILECAT (NIL T T) -9 NIL 717901 NIL) (-315 715879 716353 716456 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-314 713127 715005 715033 "FIELD" 715073 FIELD (NIL) -9 NIL 715153 NIL) (-313 712152 712613 713122 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-312 710156 711102 711448 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-311 709399 709580 709799 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-310 704669 709337 709394 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-309 704331 704398 704533 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-308 703871 703913 704122 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-307 700551 701428 702205 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-306 695835 700483 700546 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-305 690514 695324 695514 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-304 684995 689795 690053 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-303 679202 684446 684657 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-302 678225 678435 678750 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-301 673665 676370 676398 "FFIELDC" 677017 FFIELDC (NIL) -9 NIL 677392 NIL) (-300 672734 673174 673660 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-299 672349 672407 672531 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-298 670493 671016 671533 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-297 665587 670292 670393 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-296 660687 665376 665483 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-295 655353 660478 660586 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-294 654807 654856 655091 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-293 633382 644416 644502 "FFCAT" 649652 FFCAT (NIL T T T) -9 NIL 651088 NIL) (-292 629622 630848 632154 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-291 624465 629553 629617 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-290 623488 623957 623998 "FEVALAB" 624003 FEVALAB (NIL T) -9 NIL 624242 NIL) (-289 622893 623145 623483 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-288 619720 620631 620746 "FDIVCAT" 622313 FDIVCAT (NIL T T T T) -9 NIL 622749 NIL) (-287 619514 619546 619715 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-286 618821 618914 619191 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-285 617307 618305 618508 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-284 616400 616784 616986 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-283 615522 616011 616151 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-282 607109 611752 611792 "FAXF" 613593 FAXF (NIL T) -9 NIL 614283 NIL) (-281 605025 605829 606644 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-280 600174 604547 604721 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-279 594613 597037 597089 "FAMR" 598100 FAMR (NIL T T) -9 NIL 598559 NIL) (-278 593812 594177 594608 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-277 592833 593754 593807 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-276 590427 591306 591359 "FAMONC" 592300 FAMONC (NIL T T) -9 NIL 592685 NIL) (-275 588983 590285 590422 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-274 587063 587424 587826 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-273 586340 586537 586759 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-272 578200 585787 585986 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-271 576219 576789 577375 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-270 573121 573763 574483 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-269 568278 568985 569790 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-268 567967 568030 568139 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-267 552760 567016 567442 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-266 543287 552080 552368 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-265 542781 543083 543173 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-264 542557 542747 542776 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-263 542246 542314 542427 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-262 541763 541905 541946 "EVALAB" 542116 EVALAB (NIL T) -9 NIL 542220 NIL) (-261 541391 541537 541758 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-260 538434 540029 540057 "EUCDOM" 540611 EUCDOM (NIL) -9 NIL 540960 NIL) (-259 537361 537854 538429 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-258 537086 537142 537242 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-257 536774 536838 536947 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-256 530545 532445 532473 "ES" 535215 ES (NIL) -9 NIL 536599 NIL) (-255 527060 528592 530384 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-254 526408 526561 526737 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-253 518914 526338 526403 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-252 518603 518666 518775 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-251 512340 515465 516869 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-250 508643 509739 510832 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-249 507469 507820 508126 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-248 506354 507085 507113 "ENTIRER" 507118 ENTIRER (NIL) -9 NIL 507162 NIL) (-247 506243 506277 506349 "ENTIRER-" NIL ENTIRER- (NIL T) -7 NIL NIL NIL) (-246 502884 504681 505030 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-245 501985 502200 502252 "ELTAGG" 502618 ELTAGG (NIL T T) -9 NIL 502832 NIL) (-244 501767 501841 501980 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-243 501513 501548 501602 "ELTAB" 501686 ELTAB (NIL T T) -9 NIL 501738 NIL) (-242 500764 500934 501133 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-241 500488 500562 500590 "ELEMFUN" 500695 ELEMFUN (NIL) -9 NIL NIL NIL) (-240 500388 500415 500483 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-239 495705 498395 498436 "ELAGG" 499369 ELAGG (NIL T) -9 NIL 499830 NIL) (-238 494503 495041 495700 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-237 493921 494088 494244 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-236 492834 493153 493432 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-235 486227 488225 489052 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-234 480206 482202 483012 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-233 478020 478426 478897 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-232 469020 470933 472474 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-231 468133 468634 468783 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-230 466831 467505 467545 "DVARCAT" 467828 DVARCAT (NIL T) -9 NIL 467968 NIL) (-229 466250 466514 466826 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-228 458317 466118 466245 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-227 456655 457446 457487 "DSEXT" 457850 DSEXT (NIL T) -9 NIL 458144 NIL) (-226 455460 455984 456650 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-225 455184 455249 455347 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-224 451335 452551 453682 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-223 446981 448336 449400 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-222 445656 446017 446403 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-221 445342 445401 445519 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-220 444317 444615 444905 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-219 443902 443977 444127 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-218 436315 438427 440542 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-217 431832 432851 433930 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-216 428380 430441 430482 "DQAGG" 431111 DQAGG (NIL T) -9 NIL 431384 NIL) (-215 414904 422545 422627 "DPOLCAT" 424464 DPOLCAT (NIL T T T T) -9 NIL 425007 NIL) (-214 411312 412960 414899 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-213 404361 411210 411307 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-212 397319 404190 404356 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-211 396912 397172 397261 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-210 396326 396774 396854 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-209 395612 395937 396088 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-208 388751 395348 395499 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-207 386500 387817 387857 "DMEXT" 387862 DMEXT (NIL T) -9 NIL 388037 NIL) (-206 386156 386218 386362 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-205 379748 385641 385831 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-204 376956 378559 378600 "DLAGG" 379141 DLAGG (NIL T) -9 NIL 379373 NIL) (-203 375307 376178 376206 "DIVRING" 376298 DIVRING (NIL) -9 NIL 376381 NIL) (-202 374758 375002 375302 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-201 373186 373603 374009 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-200 372223 372444 372709 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-199 365741 372155 372218 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-198 354061 360483 360536 "DIRPCAT" 360792 DIRPCAT (NIL NIL T) -9 NIL 361667 NIL) (-197 352067 352837 353724 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-196 351514 351680 351866 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-195 348837 350373 350414 "DIOPS" 350834 DIOPS (NIL T) -9 NIL 351062 NIL) (-194 348497 348641 348832 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-193 347504 348250 348278 "DIOID" 348283 DIOID (NIL) -9 NIL 348305 NIL) (-192 346332 347161 347189 "DIFRING" 347194 DIFRING (NIL) -9 NIL 347215 NIL) (-191 345968 346066 346094 "DIFFSPC" 346213 DIFFSPC (NIL) -9 NIL 346288 NIL) (-190 345709 345811 345963 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-189 344612 345237 345277 "DIFFMOD" 345282 DIFFMOD (NIL T) -9 NIL 345379 NIL) (-188 344296 344353 344394 "DIFFDOM" 344515 DIFFDOM (NIL T) -9 NIL 344583 NIL) (-187 344177 344207 344291 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-186 341850 343371 343411 "DIFEXT" 343416 DIFEXT (NIL T) -9 NIL 343568 NIL) (-185 339778 341314 341355 "DIAGG" 341360 DIAGG (NIL T) -9 NIL 341380 NIL) (-184 339334 339524 339773 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-183 334518 338524 338801 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-182 330976 332029 333039 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-181 325526 330130 330457 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-180 324092 324384 324759 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-179 321374 322626 322994 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-178 319099 321205 321294 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-177 318482 318627 318809 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-176 315800 316524 317324 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-175 313909 314367 314929 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-174 313292 313625 313739 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-173 306492 313017 313165 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-172 304412 304922 305426 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-171 304051 304100 304251 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-170 303310 303872 303963 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-169 301334 301776 302136 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-168 300626 300915 301061 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-167 300077 300223 300375 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-166 297439 298232 298959 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-165 296878 297024 297195 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-164 294950 295261 295628 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-163 294507 294762 294863 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-162 293708 294091 294119 "CTORCAT" 294300 CTORCAT (NIL) -9 NIL 294412 NIL) (-161 293411 293545 293703 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-160 292904 293161 293269 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-159 292320 292751 292824 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-158 291779 291896 292049 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-157 288173 288929 289684 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-156 287664 287967 288058 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-155 286883 287092 287320 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-154 286387 286492 286696 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-153 286140 286174 286280 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-152 283079 283841 284559 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-151 282598 282740 282879 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-150 278491 281061 281553 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-149 278365 278392 278420 "CONDUIT" 278457 CONDUIT (NIL) -9 NIL NIL NIL) (-148 277244 277975 278003 "COMRING" 278008 COMRING (NIL) -9 NIL 278058 NIL) (-147 276409 276776 276954 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-146 276105 276146 276274 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-145 275798 275861 275968 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-144 264640 275748 275793 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-143 264101 264240 264400 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-142 263854 263895 263993 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-141 245267 257517 257557 "COMPCAT" 258558 COMPCAT (NIL T) -9 NIL 259900 NIL) (-140 237805 241318 244911 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-139 237481 237521 237560 "COMOPC" 237565 COMOPC (NIL T) -9 NIL 237730 NIL) (-138 237168 237286 237399 "COMOP" NIL COMOP (NIL T) -8 NIL NIL NIL) (-137 236927 236961 237063 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 236757 236796 236854 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 236338 236617 236691 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 235915 236156 236243 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 235110 235358 235386 "COMBOPC" 235724 COMBOPC (NIL) -9 NIL 235899 NIL) (-132 234174 234426 234668 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 231106 231790 232413 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 229986 230437 230672 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 229477 229780 229871 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 229164 229217 229342 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 228634 228944 229042 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 225154 226224 227304 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 223449 224434 224672 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 221053 222214 222255 "CLAGG" 222724 CLAGG (NIL T) -9 NIL 223051 NIL) (-123 220723 220855 221048 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 220352 220443 220583 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 218289 218796 219344 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 217250 217981 218009 "CHARZ" 218014 CHARZ (NIL) -9 NIL 218028 NIL) (-119 217044 217090 217168 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 215883 216646 216674 "CHARNZ" 216735 CHARNZ (NIL) -9 NIL 216783 NIL) (-117 213361 214458 214981 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 213069 213148 213176 "CFCAT" 213287 CFCAT (NIL) -9 NIL NIL NIL) (-115 212412 212541 212723 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 208680 211825 212105 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 208058 208245 208422 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 207586 208005 208053 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 207059 207368 207465 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 206550 206853 206944 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 205799 205959 206180 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 201899 203156 203864 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 200265 201296 201547 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 199846 200125 200199 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 199280 199533 199561 "CACHSET" 199693 CACHSET (NIL) -9 NIL 199771 NIL) (-104 198632 199047 199075 "CABMON" 199125 CABMON (NIL) -9 NIL 199181 NIL) (-103 198162 198426 198536 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 193651 197830 197991 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 192621 193325 193460 "BYTE" NIL BYTE (NIL) -8 NIL NIL 193623) (-100 190087 192388 192494 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 187524 189841 189949 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 184702 186908 186947 "BTCAT" 187014 BTCAT (NIL T) -9 NIL 187095 NIL) (-97 184453 184551 184697 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 179770 183626 183652 "BTAGG" 183763 BTAGG (NIL) -9 NIL 183871 NIL) (-95 179401 179562 179765 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 176480 178893 179083 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 175750 175902 176080 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 172826 174447 174486 "BRAGG" 175115 BRAGG (NIL T) -9 NIL 175375 NIL) (-91 171901 172332 172821 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 164435 171406 171587 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 162427 164387 164430 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 162160 162196 162307 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 160399 160832 161280 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 156365 157781 158671 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 155241 156132 156254 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 154827 154984 155010 "BOOLE" 155118 BOOLE (NIL) -9 NIL 155199 NIL) (-83 154620 154701 154822 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 153758 154285 154335 "BMODULE" 154340 BMODULE (NIL T T) -9 NIL 154404 NIL) (-81 149643 153615 153684 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 149456 149496 149535 "BINOPC" 149540 BINOPC (NIL T) -9 NIL 149585 NIL) (-79 148998 149271 149373 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-78 148519 148663 148801 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 141725 148249 148394 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 139941 140914 140953 "BGAGG" 141209 BGAGG (NIL T) -9 NIL 141349 NIL) (-75 139810 139848 139936 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 138661 138862 139147 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 135316 137841 138146 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 134901 134994 135020 "BASTYPE" 135191 BASTYPE (NIL) -9 NIL 135287 NIL) (-71 134671 134767 134896 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 134186 134274 134424 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 133085 133760 133945 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 132833 132838 132864 "ATTREG" 132869 ATTREG (NIL) -9 NIL NIL NIL) (-67 132438 132710 132775 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 131938 132087 132113 "ATRIG" 132314 ATRIG (NIL) -9 NIL NIL NIL) (-65 131793 131846 131933 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 131363 131594 131620 "ASTCAT" 131625 ASTCAT (NIL) -9 NIL 131655 NIL) (-63 131162 131239 131358 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 129326 130995 131083 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 128133 128446 128811 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 125926 128063 128128 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 125117 125308 125529 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 120985 124848 124962 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 115535 117597 117672 "ARR2CAT" 119940 ARR2CAT (NIL T T T) -9 NIL 120591 NIL) (-56 114496 114978 115530 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 113864 114235 114357 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 112796 112964 113260 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 112497 112551 112669 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 111880 112026 112182 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 111285 111575 111695 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 108980 110141 110443 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 108505 108765 108861 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 102200 107567 108009 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 97835 99498 99548 "AMR" 100189 AMR (NIL T T) -9 NIL 100764 NIL) (-46 97189 97469 97830 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 79174 97123 97184 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 75577 78850 79019 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 72587 73247 73854 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 71966 72079 72263 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 68378 69003 69595 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 57867 68071 68221 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 57184 57338 57516 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 55897 56692 56730 "ALGEBRA" 56735 ALGEBRA (NIL T) -9 NIL 56775 NIL) (-37 55683 55760 55892 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 33898 52685 52737 "ALAGG" 52872 ALAGG (NIL T T) -9 NIL 53044 NIL) (-35 33398 33547 33573 "AHYP" 33774 AHYP (NIL) -9 NIL NIL NIL) (-34 32880 33012 33038 "AGG" 33243 AGG (NIL) -9 NIL 33369 NIL) (-33 32723 32781 32875 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30862 31322 31722 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30357 30660 30749 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29727 30022 30178 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17285 26564 26602 "ACFS" 27209 ACFS (NIL T) -9 NIL 27448 NIL) (-28 15908 16518 17280 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11460 13839 13865 "ACF" 14744 ACF (NIL) -9 NIL 15156 NIL) (-26 10556 10962 11455 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10058 10298 10324 "ABELSG" 10416 ABELSG (NIL) -9 NIL 10481 NIL) (-24 9956 9987 10053 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9111 9485 9511 "ABELMON" 9736 ABELMON (NIL) -9 NIL 9869 NIL) (-22 8793 8933 9106 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8005 8488 8514 "ABELGRP" 8586 ABELGRP (NIL) -9 NIL 8661 NIL) (-20 7558 7754 8000 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 6767 6806 "A1AGG" 6811 A1AGG (NIL T) -9 NIL 6845 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index db55e819..7ed631cd 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,13100 +1,13101 @@ -(628638 . 3580468867) +(628725 . 3580478884) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 (-486)))) - (-5 *2 (-1181 (-350 (-486)))) (-5 *1 (-1210 *4))))) + (|partial| -12 (-5 *3 (-1183 *4)) (-4 *4 (-13 (-965) (-584 (-488)))) + (-5 *2 (-1183 (-352 (-488)))) (-5 *1 (-1212 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 (-486)))) - (-5 *2 (-1181 (-486))) (-5 *1 (-1210 *4))))) + (|partial| -12 (-5 *3 (-1183 *4)) (-4 *4 (-13 (-965) (-584 (-488)))) + (-5 *2 (-1183 (-488))) (-5 *1 (-1212 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 (-486)))) (-5 *2 (-85)) - (-5 *1 (-1210 *4))))) + (-12 (-5 *3 (-1183 *4)) (-4 *4 (-13 (-965) (-584 (-488)))) (-5 *2 (-85)) + (-5 *1 (-1212 *4))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-555 *2) (-146))) (-5 *2 (-802 *4)) (-5 *1 (-144 *4 *5 *3)) - (-4 *4 (-1015)) (-4 *3 (-139 *5)))) + (-12 (-4 *5 (-13 (-557 *2) (-148))) (-5 *2 (-804 *4)) (-5 *1 (-146 *4 *5 *3)) + (-4 *4 (-1017)) (-4 *3 (-141 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1181 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) - (-4 *4 (-1157 *3)))) + (-12 (-5 *2 (-1183 *3)) (-4 *3 (-148)) (-4 *1 (-355 *3 *4)) + (-4 *4 (-1159 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) - (-5 *2 (-1181 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1181 *3)))) + (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-148)) (-4 *4 (-1159 *3)) + (-5 *2 (-1183 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-148)) (-4 *1 (-363 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-5 *2 (-1183 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-348 *1)) (-4 *1 (-364 *3)) (-4 *3 (-497)) (-4 *3 (-1015)))) + (-12 (-5 *2 (-350 *1)) (-4 *1 (-366 *3)) (-4 *3 (-499)) (-4 *3 (-1017)))) ((*1 *1 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) - (-4 *5 (-758)) (-5 *1 (-404 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-475)))) - ((*1 *2 *1) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1131)))) - ((*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-1131)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-663 *3 *2)) (-4 *2 (-1157 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) + (-4 *5 (-760)) (-5 *1 (-406 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1019)) (-5 *1 (-477)))) + ((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1133)))) + ((*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-1133)))) + ((*1 *1 *2) (-12 (-4 *3 (-148)) (-4 *1 (-665 *3 *2)) (-4 *2 (-1159 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-587 (-804 *3))) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) ((*1 *1 *2) - (-12 (-5 *2 (-859 *3)) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) - (-4 *5 (-555 (-1092))) (-4 *4 (-719)) (-4 *5 (-758)))) + (-12 (-5 *2 (-861 *3)) (-4 *3 (-965)) (-4 *1 (-981 *3 *4 *5)) + (-4 *5 (-557 (-1094))) (-4 *4 (-721)) (-4 *5 (-760)))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) - (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-4 *3 (-38 (-486))) - (-4 *5 (-555 (-1092)))) - (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))) - (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) - (-4 *4 (-719)) (-4 *5 (-758))))) + (-12 (-5 *2 (-861 (-488))) (-4 *1 (-981 *3 *4 *5)) + (-12 (-2566 (-4 *3 (-38 (-352 (-488))))) (-4 *3 (-38 (-488))) + (-4 *5 (-557 (-1094)))) + (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760))) + (-12 (-5 *2 (-861 (-488))) (-4 *1 (-981 *3 *4 *5)) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *5 (-557 (-1094)))) (-4 *3 (-965)) + (-4 *4 (-721)) (-4 *5 (-760))))) ((*1 *1 *2) - (-12 (-5 *2 (-859 (-350 (-486)))) (-4 *1 (-979 *3 *4 *5)) - (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092))) (-4 *3 (-963)) - (-4 *4 (-719)) (-4 *5 (-758)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1601 *8))) - (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-985 *4 *5 *6 *7)) (-4 *4 (-393)) - (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1075)) - (-5 *1 (-983 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1601 *8))) - (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-1022 *4 *5 *6 *7)) (-4 *4 (-393)) - (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1075)) - (-5 *1 (-1061 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-1097)))) - ((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1097)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-774)) (-5 *3 (-486)) (-5 *1 (-1111)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-5 *3 (-486)) (-5 *1 (-1111)))) - ((*1 *2 *3) - (-12 (-5 *3 (-705 *4 (-775 *5))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) - (-14 *5 (-585 (-1092))) (-5 *2 (-705 *4 (-775 *6))) (-5 *1 (-1209 *4 *5 *6)) - (-14 *6 (-585 (-1092))))) - ((*1 *2 *3) - (-12 (-5 *3 (-859 *4)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) - (-5 *2 (-859 (-939 (-350 *4)))) (-5 *1 (-1209 *4 *5 *6)) - (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092))))) - ((*1 *2 *3) - (-12 (-5 *3 (-705 *4 (-775 *6))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) - (-14 *6 (-585 (-1092))) (-5 *2 (-859 (-939 (-350 *4)))) - (-5 *1 (-1209 *4 *5 *6)) (-14 *5 (-585 (-1092))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1087 *4)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) - (-5 *2 (-1087 (-939 (-350 *4)))) (-5 *1 (-1209 *4 *5 *6)) - (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1062 *4 (-471 (-775 *6)) (-775 *6) (-705 *4 (-775 *6)))) - (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *6 (-585 (-1092))) - (-5 *2 (-585 (-705 *4 (-775 *6)))) (-5 *1 (-1209 *4 *5 *6)) - (-14 *5 (-585 (-1092)))))) -(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-499 *3)) (-4 *3 (-485)))) - ((*1 *2 *3) - (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-348 *3)) - (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-863 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-4 *7 (-863 *6 *4 *5)) - (-5 *2 (-348 (-1087 *7))) (-5 *1 (-683 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-393)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-5 *2 (-348 *1)) (-4 *1 (-863 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-393)) (-5 *2 (-348 *3)) - (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-863 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-393)) (-4 *7 (-863 *6 *4 *5)) - (-5 *2 (-348 (-1087 (-350 *7)))) (-5 *1 (-1089 *4 *5 *6 *7)) - (-5 *3 (-1087 (-350 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1136)))) - ((*1 *2 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-348 *3)) (-5 *1 (-1161 *4 *3)) - (-4 *3 (-13 (-1157 *4) (-497) (-10 -8 (-15 -3147 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) - (-14 *5 (-585 (-1092))) - (-5 *2 (-585 (-1062 *4 (-471 (-775 *6)) (-775 *6) (-705 *4 (-775 *6))))) - (-5 *1 (-1209 *4 *5 *6)) (-14 *6 (-585 (-1092)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) - (-14 *5 (-585 (-1092))) (-5 *2 (-585 (-585 (-939 (-350 *4))))) - (-5 *1 (-1209 *4 *5 *6)) (-14 *6 (-585 (-1092))))) + (-12 (-5 *2 (-861 (-352 (-488)))) (-4 *1 (-981 *3 *4 *5)) + (-4 *3 (-38 (-352 (-488)))) (-4 *5 (-557 (-1094))) (-4 *3 (-965)) + (-4 *4 (-721)) (-4 *5 (-760)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1604 *8))) + (-4 *7 (-981 *4 *5 *6)) (-4 *8 (-987 *4 *5 *6 *7)) (-4 *4 (-395)) + (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-1077)) + (-5 *1 (-985 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1604 *8))) + (-4 *7 (-981 *4 *5 *6)) (-4 *8 (-1024 *4 *5 *6 *7)) (-4 *4 (-395)) + (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-1077)) + (-5 *1 (-1063 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1019)) (-5 *1 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-1019)) (-5 *1 (-1099)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-776)) (-5 *3 (-488)) (-5 *1 (-1113)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-488)) (-5 *1 (-1113)))) + ((*1 *2 *3) + (-12 (-5 *3 (-707 *4 (-777 *5))) (-4 *4 (-13 (-759) (-260) (-120) (-937))) + (-14 *5 (-587 (-1094))) (-5 *2 (-707 *4 (-777 *6))) (-5 *1 (-1211 *4 *5 *6)) + (-14 *6 (-587 (-1094))))) + ((*1 *2 *3) + (-12 (-5 *3 (-861 *4)) (-4 *4 (-13 (-759) (-260) (-120) (-937))) + (-5 *2 (-861 (-941 (-352 *4)))) (-5 *1 (-1211 *4 *5 *6)) + (-14 *5 (-587 (-1094))) (-14 *6 (-587 (-1094))))) + ((*1 *2 *3) + (-12 (-5 *3 (-707 *4 (-777 *6))) (-4 *4 (-13 (-759) (-260) (-120) (-937))) + (-14 *6 (-587 (-1094))) (-5 *2 (-861 (-941 (-352 *4)))) + (-5 *1 (-1211 *4 *5 *6)) (-14 *5 (-587 (-1094))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1089 *4)) (-4 *4 (-13 (-759) (-260) (-120) (-937))) + (-5 *2 (-1089 (-941 (-352 *4)))) (-5 *1 (-1211 *4 *5 *6)) + (-14 *5 (-587 (-1094))) (-14 *6 (-587 (-1094))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1064 *4 (-473 (-777 *6)) (-777 *6) (-707 *4 (-777 *6)))) + (-4 *4 (-13 (-759) (-260) (-120) (-937))) (-14 *6 (-587 (-1094))) + (-5 *2 (-587 (-707 *4 (-777 *6)))) (-5 *1 (-1211 *4 *5 *6)) + (-14 *5 (-587 (-1094)))))) +(((*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-501 *3)) (-4 *3 (-487)))) + ((*1 *2 *3) + (-12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-260)) (-5 *2 (-350 *3)) + (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-865 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-260)) (-4 *7 (-865 *6 *4 *5)) + (-5 *2 (-350 (-1089 *7))) (-5 *1 (-685 *4 *5 *6 *7)) (-5 *3 (-1089 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-395)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-5 *2 (-350 *1)) (-4 *1 (-865 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-760)) (-4 *5 (-721)) (-4 *6 (-395)) (-5 *2 (-350 *3)) + (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-865 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-395)) (-4 *7 (-865 *6 *4 *5)) + (-5 *2 (-350 (-1089 (-352 *7)))) (-5 *1 (-1091 *4 *5 *6 *7)) + (-5 *3 (-1089 (-352 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-350 *1)) (-4 *1 (-1138)))) + ((*1 *2 *3) + (-12 (-4 *4 (-499)) (-5 *2 (-350 *3)) (-5 *1 (-1163 *4 *3)) + (-4 *3 (-13 (-1159 *4) (-499) (-10 -8 (-15 -3150 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-962 *4 *5)) (-4 *4 (-13 (-759) (-260) (-120) (-937))) + (-14 *5 (-587 (-1094))) + (-5 *2 (-587 (-1064 *4 (-473 (-777 *6)) (-777 *6) (-707 *4 (-777 *6))))) + (-5 *1 (-1211 *4 *5 *6)) (-14 *6 (-587 (-1094)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-962 *4 *5)) (-4 *4 (-13 (-759) (-260) (-120) (-937))) + (-14 *5 (-587 (-1094))) (-5 *2 (-587 (-587 (-941 (-352 *4))))) + (-5 *1 (-1211 *4 *5 *6)) (-14 *6 (-587 (-1094))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-757) (-258) (-120) (-935))) - (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) - (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-757) (-258) (-120) (-935))) - (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) - (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) - ((*1 *2 *3) - (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) - (-5 *2 (-585 (-585 (-939 (-350 *4))))) (-5 *1 (-1209 *4 *5 *6)) - (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092)))))) + (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-759) (-260) (-120) (-937))) + (-5 *2 (-587 (-587 (-941 (-352 *5))))) (-5 *1 (-1211 *5 *6 *7)) + (-14 *6 (-587 (-1094))) (-14 *7 (-587 (-1094))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-759) (-260) (-120) (-937))) + (-5 *2 (-587 (-587 (-941 (-352 *5))))) (-5 *1 (-1211 *5 *6 *7)) + (-14 *6 (-587 (-1094))) (-14 *7 (-587 (-1094))))) + ((*1 *2 *3) + (-12 (-5 *3 (-587 (-861 *4))) (-4 *4 (-13 (-759) (-260) (-120) (-937))) + (-5 *2 (-587 (-587 (-941 (-352 *4))))) (-5 *1 (-1211 *4 *5 *6)) + (-14 *5 (-587 (-1094))) (-14 *6 (-587 (-1094)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-585 (-859 (-486)))) (-5 *4 (-585 (-1092))) - (-5 *2 (-585 (-585 (-330)))) (-5 *1 (-938)) (-5 *5 (-330)))) + (-12 (-5 *3 (-587 (-861 (-488)))) (-5 *4 (-587 (-1094))) + (-5 *2 (-587 (-587 (-332)))) (-5 *1 (-940)) (-5 *5 (-332)))) ((*1 *2 *3) - (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) - (-14 *5 (-585 (-1092))) (-5 *2 (-585 (-585 (-939 (-350 *4))))) - (-5 *1 (-1209 *4 *5 *6)) (-14 *6 (-585 (-1092))))) + (-12 (-5 *3 (-962 *4 *5)) (-4 *4 (-13 (-759) (-260) (-120) (-937))) + (-14 *5 (-587 (-1094))) (-5 *2 (-587 (-587 (-941 (-352 *4))))) + (-5 *1 (-1211 *4 *5 *6)) (-14 *6 (-587 (-1094))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-757) (-258) (-120) (-935))) - (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) - (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) + (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-759) (-260) (-120) (-937))) + (-5 *2 (-587 (-587 (-941 (-352 *5))))) (-5 *1 (-1211 *5 *6 *7)) + (-14 *6 (-587 (-1094))) (-14 *7 (-587 (-1094))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-757) (-258) (-120) (-935))) - (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) - (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-757) (-258) (-120) (-935))) - (-5 *2 (-585 (-585 (-939 (-350 *5))))) (-5 *1 (-1209 *5 *6 *7)) - (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) - ((*1 *2 *3) - (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) - (-5 *2 (-585 (-585 (-939 (-350 *4))))) (-5 *1 (-1209 *4 *5 *6)) - (-14 *5 (-585 (-1092))) (-14 *6 (-585 (-1092)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) - (-14 *5 (-585 (-1092))) - (-5 *2 (-585 (-2 (|:| -1752 (-1087 *4)) (|:| -3227 (-585 (-859 *4)))))) - (-5 *1 (-1209 *4 *5 *6)) (-14 *6 (-585 (-1092))))) + (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-759) (-260) (-120) (-937))) + (-5 *2 (-587 (-587 (-941 (-352 *5))))) (-5 *1 (-1211 *5 *6 *7)) + (-14 *6 (-587 (-1094))) (-14 *7 (-587 (-1094))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-759) (-260) (-120) (-937))) + (-5 *2 (-587 (-587 (-941 (-352 *5))))) (-5 *1 (-1211 *5 *6 *7)) + (-14 *6 (-587 (-1094))) (-14 *7 (-587 (-1094))))) + ((*1 *2 *3) + (-12 (-5 *3 (-587 (-861 *4))) (-4 *4 (-13 (-759) (-260) (-120) (-937))) + (-5 *2 (-587 (-587 (-941 (-352 *4))))) (-5 *1 (-1211 *4 *5 *6)) + (-14 *5 (-587 (-1094))) (-14 *6 (-587 (-1094)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-962 *4 *5)) (-4 *4 (-13 (-759) (-260) (-120) (-937))) + (-14 *5 (-587 (-1094))) + (-5 *2 (-587 (-2 (|:| -1755 (-1089 *4)) (|:| -3230 (-587 (-861 *4)))))) + (-5 *1 (-1211 *4 *5 *6)) (-14 *6 (-587 (-1094))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) - (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) - (-5 *1 (-1209 *5 *6 *7)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092))) - (-14 *7 (-585 (-1092))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-759) (-260) (-120) (-937))) + (-5 *2 (-587 (-2 (|:| -1755 (-1089 *5)) (|:| -3230 (-587 (-861 *5)))))) + (-5 *1 (-1211 *5 *6 *7)) (-5 *3 (-587 (-861 *5))) (-14 *6 (-587 (-1094))) + (-14 *7 (-587 (-1094))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) - (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) - (-5 *1 (-1209 *5 *6 *7)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092))) - (-14 *7 (-585 (-1092))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) - (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) - (-5 *1 (-1209 *5 *6 *7)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092))) - (-14 *7 (-585 (-1092))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-757) (-258) (-120) (-935))) - (-5 *2 (-585 (-2 (|:| -1752 (-1087 *4)) (|:| -3227 (-585 (-859 *4)))))) - (-5 *1 (-1209 *4 *5 *6)) (-5 *3 (-585 (-859 *4))) (-14 *5 (-585 (-1092))) - (-14 *6 (-585 (-1092)))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-759) (-260) (-120) (-937))) + (-5 *2 (-587 (-2 (|:| -1755 (-1089 *5)) (|:| -3230 (-587 (-861 *5)))))) + (-5 *1 (-1211 *5 *6 *7)) (-5 *3 (-587 (-861 *5))) (-14 *6 (-587 (-1094))) + (-14 *7 (-587 (-1094))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-759) (-260) (-120) (-937))) + (-5 *2 (-587 (-2 (|:| -1755 (-1089 *5)) (|:| -3230 (-587 (-861 *5)))))) + (-5 *1 (-1211 *5 *6 *7)) (-5 *3 (-587 (-861 *5))) (-14 *6 (-587 (-1094))) + (-14 *7 (-587 (-1094))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-759) (-260) (-120) (-937))) + (-5 *2 (-587 (-2 (|:| -1755 (-1089 *4)) (|:| -3230 (-587 (-861 *4)))))) + (-5 *1 (-1211 *4 *5 *6)) (-5 *3 (-587 (-861 *4))) (-14 *5 (-587 (-1094))) + (-14 *6 (-587 (-1094)))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-960 *5 *6))) - (-5 *1 (-1209 *5 *6 *7)) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) + (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-759) (-260) (-120) (-937))) (-5 *2 (-587 (-962 *5 *6))) + (-5 *1 (-1211 *5 *6 *7)) (-14 *6 (-587 (-1094))) (-14 *7 (-587 (-1094))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-960 *5 *6))) - (-5 *1 (-1209 *5 *6 *7)) (-14 *6 (-585 (-1092))) (-14 *7 (-585 (-1092))))) + (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-759) (-260) (-120) (-937))) (-5 *2 (-587 (-962 *5 *6))) + (-5 *1 (-1211 *5 *6 *7)) (-14 *6 (-587 (-1094))) (-14 *7 (-587 (-1094))))) ((*1 *2 *3) - (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) - (-5 *2 (-585 (-960 *4 *5))) (-5 *1 (-1209 *4 *5 *6)) (-14 *5 (-585 (-1092))) - (-14 *6 (-585 (-1092)))))) + (-12 (-5 *3 (-587 (-861 *4))) (-4 *4 (-13 (-759) (-260) (-120) (-937))) + (-5 *2 (-587 (-962 *4 *5))) (-5 *1 (-1211 *4 *5 *6)) (-14 *5 (-587 (-1094))) + (-14 *6 (-587 (-1094)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1071 *4) (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1208 *4)) - (-4 *4 (-1131)))) + (-12 (-5 *3 (-1 (-1073 *4) (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1210 *4)) + (-4 *4 (-1133)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-585 (-1071 *5)) (-585 (-1071 *5)))) (-5 *4 (-486)) - (-5 *2 (-585 (-1071 *5))) (-5 *1 (-1208 *5)) (-4 *5 (-1131))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1207))))) -(((*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-1207))))) + (-12 (-5 *3 (-1 (-587 (-1073 *5)) (-587 (-1073 *5)))) (-5 *4 (-488)) + (-5 *2 (-587 (-1073 *5))) (-5 *1 (-1210 *5)) (-4 *5 (-1133))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 (-834))) (-5 *1 (-1209))))) +(((*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-1209))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-832)) (-4 *6 (-497)) (-5 *2 (-585 (-265 *6))) - (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-963)))) - ((*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-497)))) + (-12 (-5 *4 (-834)) (-4 *6 (-499)) (-5 *2 (-587 (-267 *6))) + (-5 *1 (-177 *5 *6)) (-5 *3 (-267 *6)) (-4 *5 (-965)))) + ((*1 *2 *1) (-12 (-5 *1 (-350 *2)) (-4 *2 (-499)))) ((*1 *2 *3) - (-12 (-5 *3 (-521 *5)) (-4 *5 (-13 (-29 *4) (-1117))) - (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-585 *5)) - (-5 *1 (-523 *4 *5)))) + (-12 (-5 *3 (-523 *5)) (-4 *5 (-13 (-29 *4) (-1119))) + (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-587 *5)) + (-5 *1 (-525 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-521 (-350 (-859 *4)))) - (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-585 (-265 *4))) - (-5 *1 (-527 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1009 *3 *2)) (-4 *3 (-757)) (-4 *2 (-1066 *3)))) + (-12 (-5 *3 (-523 (-352 (-861 *4)))) + (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-587 (-267 *4))) + (-5 *1 (-529 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1011 *3 *2)) (-4 *3 (-759)) (-4 *2 (-1068 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-585 *1)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-757)) - (-4 *2 (-1066 *4)))) + (-12 (-5 *3 (-587 *1)) (-4 *1 (-1011 *4 *2)) (-4 *4 (-759)) + (-4 *2 (-1068 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119))))) ((*1 *2 *1) - (-12 (-5 *2 (-1197 (-1092) *3)) (-5 *1 (-1203 *3)) (-4 *3 (-963)))) + (-12 (-5 *2 (-1199 (-1094) *3)) (-5 *1 (-1205 *3)) (-4 *3 (-965)))) ((*1 *2 *1) - (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-758)) - (-4 *4 (-963))))) + (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-760)) + (-4 *4 (-965))))) (((*1 *1 *2) - (-12 (-5 *2 (-1197 (-1092) *3)) (-4 *3 (-963)) (-5 *1 (-1203 *3)))) + (-12 (-5 *2 (-1199 (-1094) *3)) (-4 *3 (-965)) (-5 *1 (-1205 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1197 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) - (-5 *1 (-1206 *3 *4))))) + (-12 (-5 *2 (-1199 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) + (-5 *1 (-1208 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-585 (-2 (|:| |k| (-1092)) (|:| |c| (-1203 *3))))) - (-5 *1 (-1203 *3)) (-4 *3 (-963)))) + (-12 (-5 *2 (-587 (-2 (|:| |k| (-1094)) (|:| |c| (-1205 *3))))) + (-5 *1 (-1205 *3)) (-4 *3 (-965)))) ((*1 *2 *1) - (-12 (-5 *2 (-585 (-2 (|:| |k| *3) (|:| |c| (-1206 *3 *4))))) - (-5 *1 (-1206 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-696)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-832)))) + (-12 (-5 *2 (-587 (-2 (|:| |k| *3) (|:| |c| (-1208 *3 *4))))) + (-5 *1 (-1208 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-698)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-834)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-130)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-488)) (-14 *3 (-698)) (-4 *4 (-148)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-130)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-130)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117))) (-5 *1 (-181 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1027)) (-4 *2 (-1131)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1027)) (-4 *2 (-1131)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-104)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1015)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1015)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-334 *3 *2)) (-4 *3 (-963)) (-4 *2 (-758)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1015)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) + (-12 (-5 *2 (-858 *3)) (-4 *3 (-13 (-314) (-1119))) (-5 *1 (-183 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-251 *2)) (-4 *2 (-1029)) (-4 *2 (-1133)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-251 *2)) (-4 *2 (-1029)) (-4 *2 (-1133)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-276 *3 *2)) (-4 *3 (-1017)) (-4 *2 (-104)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-1017)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-312 *2)) (-4 *2 (-1017)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-336 *3 *2)) (-4 *3 (-965)) (-4 *2 (-760)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-965)) (-4 *3 (-1017)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-338 *2)) (-4 *2 (-1017)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-1017)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) (-4 *6 (-196 (-3961 *3) (-696))) + (-12 (-14 *3 (-587 (-1094))) (-4 *4 (-148)) (-4 *6 (-198 (-3964 *3) (-698))) (-14 *7 - (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *6)) - (-2 (|:| -2402 *5) (|:| -2403 *6)))) - (-5 *1 (-402 *3 *4 *5 *6 *7 *2)) (-4 *5 (-758)) - (-4 *2 (-863 *4 *6 (-775 *3))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + (-1 (-85) (-2 (|:| -2405 *5) (|:| -2406 *6)) + (-2 (|:| -2405 *5) (|:| -2406 *6)))) + (-5 *1 (-404 *3 *4 *5 *6 *7 *2)) (-4 *5 (-760)) + (-4 *2 (-865 *4 *6 (-777 *3))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-413 *2 *3)) (-4 *2 (-148)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-413 *2 *3)) (-4 *2 (-148)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) - (-4 *5 (-863 *2 *3 *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-299)) (-5 *1 (-468 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-475))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-533 *3)) (-4 *3 (-963)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-1027)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) - (-4 *7 (-1015)) (-5 *2 (-1 *7 *5)) (-5 *1 (-627 *5 *6 *7)))) + (-12 (-4 *2 (-314)) (-4 *3 (-721)) (-4 *4 (-760)) (-5 *1 (-447 *2 *3 *4 *5)) + (-4 *5 (-865 *2 *3 *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-301)) (-5 *1 (-470 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-477))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-535 *3)) (-4 *3 (-965)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1029)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-760)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) + (-4 *7 (-1017)) (-5 *2 (-1 *7 *5)) (-5 *1 (-629 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-629 *3 *2 *4)) (-4 *3 (-963)) (-4 *2 (-324 *3)) - (-4 *4 (-324 *3)))) + (-12 (-4 *1 (-631 *3 *2 *4)) (-4 *3 (-965)) (-4 *2 (-326 *3)) + (-4 *4 (-326 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-629 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-324 *3)) - (-4 *2 (-324 *3)))) + (-12 (-4 *1 (-631 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-326 *3)) + (-4 *2 (-326 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)))) + (-12 (-5 *2 (-488)) (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) - (-4 *4 (-324 *2)))) + (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) + (-4 *4 (-326 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) - (-4 *4 (-324 *2)))) + (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) + (-4 *4 (-326 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) - (-4 *4 (-324 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-659))) ((*1 *1 *1 *1) (-5 *1 (-774))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) + (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) + (-4 *4 (-326 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-661))) ((*1 *1 *1 *1) (-5 *1 (-776))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1017)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-497)) - (-5 *1 (-884 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-965 *2)) (-4 *2 (-1027)))) - ((*1 *1 *1 *1) (-4 *1 (-1027))) + (-12 (-5 *2 (-1183 *4)) (-4 *4 (-1159 *3)) (-4 *3 (-499)) + (-5 *1 (-886 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-967 *2)) (-4 *2 (-1029)))) + ((*1 *1 *1 *1) (-4 *1 (-1029))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1039 *3 *4 *2 *5)) (-4 *4 (-963)) (-4 *2 (-196 *3 *4)) - (-4 *5 (-196 *3 *4)))) + (-12 (-4 *1 (-1041 *3 *4 *2 *5)) (-4 *4 (-965)) (-4 *2 (-198 *3 *4)) + (-4 *5 (-198 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1039 *3 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) - (-4 *2 (-196 *3 *4)))) + (-12 (-4 *1 (-1041 *3 *4 *5 *2)) (-4 *4 (-965)) (-4 *5 (-198 *3 *4)) + (-4 *2 (-198 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-963)) (-4 *4 (-758)) (-5 *1 (-1042 *3 *4 *2)) - (-4 *2 (-863 *3 (-471 *4) *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-856 (-179))) (-5 *3 (-179)) (-5 *1 (-1128)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-665)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-665)))) + (-12 (-4 *3 (-965)) (-4 *4 (-760)) (-5 *1 (-1044 *3 *4 *2)) + (-4 *2 (-865 *3 (-473 *4) *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-858 (-181))) (-5 *3 (-181)) (-5 *1 (-1130)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1133)) (-4 *2 (-667)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1133)) (-4 *2 (-667)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-486)) (-4 *1 (-1180 *3)) (-4 *3 (-1131)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-758)) (-4 *2 (-963)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-963)) (-4 *3 (-756))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) - ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-963)) (-14 *3 (-585 (-1092))))) + (-12 (-5 *2 (-488)) (-4 *1 (-1182 *3)) (-4 *3 (-1133)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-760)) (-4 *3 (-965)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-760)) (-4 *2 (-965)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-1207 *2 *3)) (-4 *2 (-965)) (-4 *3 (-758))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-965)) (-4 *3 (-720)))) + ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-965)) (-14 *3 (-587 (-1094))))) ((*1 *1 *1) - (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-963) (-758))) - (-14 *3 (-585 (-1092))))) - ((*1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1015)))) + (-12 (-5 *1 (-179 *2 *3)) (-4 *2 (-13 (-965) (-760))) + (-14 *3 (-587 (-1094))))) + ((*1 *1 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-965)) (-4 *3 (-1017)))) ((*1 *1 *1) - (-12 (-14 *2 (-585 (-1092))) (-4 *3 (-146)) (-4 *5 (-196 (-3961 *2) (-696))) + (-12 (-14 *2 (-587 (-1094))) (-4 *3 (-148)) (-4 *5 (-198 (-3964 *2) (-698))) (-14 *6 - (-1 (-85) (-2 (|:| -2402 *4) (|:| -2403 *5)) - (-2 (|:| -2402 *4) (|:| -2403 *5)))) - (-5 *1 (-402 *2 *3 *4 *5 *6 *7)) (-4 *4 (-758)) - (-4 *7 (-863 *3 *5 (-775 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-451 *2 *3)) (-4 *2 (-72)) (-4 *3 (-761)))) - ((*1 *1 *1) (-12 (-4 *2 (-497)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1157 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-963)))) + (-1 (-85) (-2 (|:| -2405 *4) (|:| -2406 *5)) + (-2 (|:| -2405 *4) (|:| -2406 *5)))) + (-5 *1 (-404 *2 *3 *4 *5 *6 *7)) (-4 *4 (-760)) + (-4 *7 (-865 *3 *5 (-777 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-72)) (-4 *3 (-763)))) + ((*1 *1 *1) (-12 (-4 *2 (-499)) (-5 *1 (-566 *2 *3)) (-4 *3 (-1159 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-965)))) ((*1 *1 *1) - (-12 (-5 *1 (-676 *2 *3)) (-4 *3 (-758)) (-4 *2 (-963)) (-4 *3 (-665)))) - ((*1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)))) + (-12 (-5 *1 (-678 *2 *3)) (-4 *3 (-760)) (-4 *2 (-965)) (-4 *3 (-667)))) + ((*1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) - ((*1 *1 *1) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-963)) (-4 *3 (-756))))) -(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-209)))) - ((*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1131)) (-5 *2 (-696)))) - ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-886)))) + (-12 (-4 *1 (-981 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)))) + ((*1 *1 *1) (-12 (-5 *1 (-1207 *2 *3)) (-4 *2 (-965)) (-4 *3 (-758))))) +(((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-211)))) + ((*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-1133)) (-5 *2 (-698)))) + ((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-888)))) ((*1 *2 *1) - (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) - (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-486)))) + (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) + (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-488)))) ((*1 *2 *1) - (-12 (-5 *2 (-696)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-963)) (-4 *4 (-756))))) + (-12 (-5 *2 (-698)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-965)) (-4 *4 (-758))))) (((*1 *2 *1) - (-12 (-4 *1 (-1204 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-741 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-756)) (-5 *1 (-1205 *3 *2)) (-4 *3 (-963))))) + (-12 (-4 *1 (-1206 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) (-5 *2 (-743 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-758)) (-5 *1 (-1207 *3 *2)) (-4 *3 (-965))))) (((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-741 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-756)) (-5 *1 (-1205 *3 *2)) (-4 *3 (-963))))) + (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) (-5 *2 (-743 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-758)) (-5 *1 (-1207 *3 *2)) (-4 *3 (-965))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1206 *4 *2)) (-4 *1 (-326 *4 *2)) (-4 *4 (-758)) - (-4 *2 (-146)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-758)) (-4 *2 (-963)))) + (-12 (-5 *3 (-1208 *4 *2)) (-4 *1 (-328 *4 *2)) (-4 *4 (-760)) + (-4 *2 (-148)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-760)) (-4 *2 (-965)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-741 *4)) (-4 *1 (-1201 *4 *2)) (-4 *4 (-758)) (-4 *2 (-963)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-963)) (-5 *1 (-1205 *2 *3)) (-4 *3 (-756))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) + (-12 (-5 *3 (-743 *4)) (-4 *1 (-1203 *4 *2)) (-4 *4 (-760)) (-4 *2 (-965)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-965)) (-5 *1 (-1207 *2 *3)) (-4 *3 (-758))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-236)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) ((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-963)) (-4 *4 (-756))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-965)) (-4 *4 (-758))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1015)) (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)) - (-4 *4 (-1015)))) - ((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-265 (-486))) (-5 *1 (-842)))) - ((*1 *2 *2) (-12 (-4 *3 (-1015)) (-5 *1 (-843 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-758)) (-4 *2 (-963)))) - ((*1 *2 *1) (-12 (-4 *2 (-963)) (-5 *1 (-1205 *2 *3)) (-4 *3 (-756))))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1017)) (-5 *2 (-1 *5 *4)) (-5 *1 (-628 *4 *5)) + (-4 *4 (-1017)))) + ((*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-267 (-488))) (-5 *1 (-844)))) + ((*1 *2 *2) (-12 (-4 *3 (-1017)) (-5 *1 (-845 *3 *2)) (-4 *2 (-366 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-760)) (-4 *2 (-965)))) + ((*1 *2 *1) (-12 (-4 *2 (-965)) (-5 *1 (-1207 *2 *3)) (-4 *3 (-758))))) (((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-963)) (-4 *4 (-756))))) -(((*1 *1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) - ((*1 *1 *1) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-963)) (-4 *3 (-756))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-965)) (-4 *4 (-758))))) +(((*1 *1 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-760)) (-4 *3 (-965)))) + ((*1 *1 *1) (-12 (-5 *1 (-1207 *2 *3)) (-4 *2 (-965)) (-4 *3 (-758))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *2 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-179)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-965)) (-4 *3 (-720)) (-4 *2 (-314)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-181)))) ((*1 *1 *1 *1) - (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1131))) - (-12 (-5 *1 (-249 *2)) (-4 *2 (-414)) (-4 *2 (-1131))))) - ((*1 *1 *1 *1) (-4 *1 (-312))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-330)))) + (OR (-12 (-5 *1 (-251 *2)) (-4 *2 (-314)) (-4 *2 (-1133))) + (-12 (-5 *1 (-251 *2)) (-4 *2 (-416)) (-4 *2 (-1133))))) + ((*1 *1 *1 *1) (-4 *1 (-314))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-332)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1041 *3 (-552 *1))) (-4 *3 (-497)) (-4 *3 (-1015)) - (-4 *1 (-364 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-414))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-299)) (-5 *1 (-468 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-475))) + (-12 (-5 *2 (-1043 *3 (-554 *1))) (-4 *3 (-499)) (-4 *3 (-1017)) + (-4 *1 (-366 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-416))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-301)) (-5 *1 (-470 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-477))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-146)) (-5 *1 (-560 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-665) *4)))) + (-12 (-4 *4 (-148)) (-5 *1 (-562 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-667) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-146)) (-5 *1 (-560 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-665) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-576 *2)) (-4 *2 (-146)) (-4 *2 (-312)))) + (-12 (-4 *4 (-148)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-667) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-578 *2)) (-4 *2 (-148)) (-4 *2 (-314)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-146)) (-5 *1 (-596 *2 *4 *3)) (-4 *2 (-656 *4)) - (-4 *3 (|SubsetCategory| (-665) *4)))) + (-12 (-4 *4 (-148)) (-5 *1 (-598 *2 *4 *3)) (-4 *2 (-658 *4)) + (-4 *3 (|SubsetCategory| (-667) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-146)) (-5 *1 (-596 *3 *4 *2)) (-4 *3 (-656 *4)) - (-4 *2 (|SubsetCategory| (-665) *4)))) + (-12 (-4 *4 (-148)) (-5 *1 (-598 *3 *4 *2)) (-4 *3 (-658 *4)) + (-4 *2 (|SubsetCategory| (-667) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) - (-4 *4 (-324 *2)) (-4 *2 (-312)))) - ((*1 *1 *1 *1) (-5 *1 (-774))) + (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) + (-4 *4 (-326 *2)) (-4 *2 (-314)))) + ((*1 *1 *1 *1) (-5 *1 (-776))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-777 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-963)) - (-14 *3 (-585 (-1092))) (-14 *4 (-585 (-696))) (-14 *5 (-696)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)))) + (|partial| -12 (-5 *1 (-779 *2 *3 *4 *5)) (-4 *2 (-314)) (-4 *2 (-965)) + (-14 *3 (-587 (-1094))) (-14 *4 (-587 (-698))) (-14 *5 (-698)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1017)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-908 *2)) (-4 *2 (-499)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-963)) (-4 *5 (-196 *4 *2)) - (-4 *6 (-196 *3 *2)) (-4 *2 (-312)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1189 *2)) (-4 *2 (-312)))) + (-12 (-4 *1 (-969 *3 *4 *2 *5 *6)) (-4 *2 (-965)) (-4 *5 (-198 *4 *2)) + (-4 *6 (-198 *3 *2)) (-4 *2 (-314)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-314)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-312)) (-4 *2 (-963)) (-4 *3 (-758)) (-4 *4 (-719)) - (-14 *6 (-585 *3)) (-5 *1 (-1194 *2 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-863 *2 *4 *3)) (-14 *7 (-585 (-696))) (-14 *8 (-696)))) + (|partial| -12 (-4 *2 (-314)) (-4 *2 (-965)) (-4 *3 (-760)) (-4 *4 (-721)) + (-14 *6 (-587 *3)) (-5 *1 (-1196 *2 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-865 *2 *4 *3)) (-14 *7 (-587 (-698))) (-14 *8 (-698)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-312)) (-4 *2 (-963)) (-4 *3 (-756))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) + (-12 (-5 *1 (-1207 *2 *3)) (-4 *2 (-314)) (-4 *2 (-965)) (-4 *3 (-758))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-965)) (-4 *2 (-720)))) ((*1 *2 *1) - (-12 (-5 *2 (-696)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) - (-14 *4 (-585 (-1092))))) + (-12 (-5 *2 (-698)) (-5 *1 (-50 *3 *4)) (-4 *3 (-965)) + (-14 *4 (-587 (-1094))))) ((*1 *2 *1) - (-12 (-5 *2 (-486)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) - (-14 *4 (-585 (-1092))))) + (-12 (-5 *2 (-488)) (-5 *1 (-179 *3 *4)) (-4 *3 (-13 (-965) (-760))) + (-14 *4 (-587 (-1094))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) - (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-696)))) - ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-229)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1087 *8)) (-5 *4 (-585 *6)) (-4 *6 (-758)) - (-4 *8 (-863 *7 *5 *6)) (-4 *5 (-719)) (-4 *7 (-963)) (-5 *2 (-585 (-696))) - (-5 *1 (-272 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-832)))) - ((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *2 (-696)))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-497)) (-5 *2 (-486)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1157 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) - ((*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) - ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) - ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) + (-12 (-4 *1 (-215 *4 *3 *5 *6)) (-4 *4 (-965)) (-4 *3 (-760)) + (-4 *5 (-230 *3)) (-4 *6 (-721)) (-5 *2 (-698)))) + ((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-231)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1089 *8)) (-5 *4 (-587 *6)) (-4 *6 (-760)) + (-4 *8 (-865 *7 *5 *6)) (-4 *5 (-721)) (-4 *7 (-965)) (-5 *2 (-587 (-698))) + (-5 *1 (-274 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-282 *3)) (-4 *3 (-314)) (-5 *2 (-834)))) + ((*1 *2 *1) + (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)) (-5 *2 (-698)))) + ((*1 *2 *1) (-12 (-4 *1 (-413 *3 *2)) (-4 *3 (-148)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-499)) (-5 *2 (-488)) (-5 *1 (-566 *3 *4)) (-4 *4 (-1159 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-649 *3)) (-4 *3 (-965)) (-5 *2 (-698)))) + ((*1 *2 *1) (-12 (-4 *1 (-765 *3)) (-4 *3 (-965)) (-5 *2 (-698)))) + ((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-817 *3)) (-4 *3 (-1017)))) + ((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-820 *3)) (-4 *3 (-1017)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-585 *6)) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-585 (-696))))) + (-12 (-5 *3 (-587 *6)) (-4 *1 (-865 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-587 (-698))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-863 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) - (-5 *2 (-696)))) + (-12 (-4 *1 (-865 *4 *5 *3)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 (-760)) + (-5 *2 (-698)))) ((*1 *2 *1) - (-12 (-4 *1 (-888 *3 *2 *4)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *2 (-718)))) + (-12 (-4 *1 (-890 *3 *2 *4)) (-4 *3 (-965)) (-4 *4 (-760)) (-4 *2 (-720)))) ((*1 *2 *1) - (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-696)))) + (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-698)))) ((*1 *2 *1) - (-12 (-4 *1 (-1145 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1174 *3)) (-5 *2 (-486)))) + (-12 (-4 *1 (-1147 *3 *4)) (-4 *3 (-965)) (-4 *4 (-1176 *3)) (-5 *2 (-488)))) ((*1 *2 *1) - (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1143 *3)) - (-5 *2 (-350 (-486))))) - ((*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-745 (-832))))) + (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-965)) (-4 *4 (-1145 *3)) + (-5 *2 (-352 (-488))))) + ((*1 *2 *1) (-12 (-4 *1 (-1202 *3)) (-4 *3 (-314)) (-5 *2 (-747 (-834))))) ((*1 *2 *1) - (-12 (-4 *1 (-1204 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-696))))) + (-12 (-4 *1 (-1206 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) (-5 *2 (-698))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-696)) (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) + (-12 (-5 *2 (-698)) (-4 *1 (-328 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-696)) (-4 *1 (-1204 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963))))) + (-12 (-5 *2 (-698)) (-4 *1 (-1206 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965))))) (((*1 *1 *2) - (-12 (-5 *2 (-1181 *3)) (-4 *3 (-312)) (-14 *6 (-1181 (-632 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1131)))) + (-12 (-5 *2 (-1183 *3)) (-4 *3 (-314)) (-14 *6 (-1183 (-634 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1133)))) ((*1 *2 *3) - (-12 (-5 *3 (-1181 (-632 *4))) (-4 *4 (-146)) - (-5 *2 (-1181 (-632 (-350 (-859 *4))))) (-5 *1 (-163 *4)))) + (-12 (-5 *3 (-1183 (-634 *4))) (-4 *4 (-148)) + (-5 *2 (-1183 (-634 (-352 (-861 *4))))) (-5 *1 (-165 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1006 (-265 *4))) (-4 *4 (-13 (-758) (-497) (-555 (-330)))) - (-5 *2 (-1006 (-330))) (-5 *1 (-219 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-229)))) + (-12 (-5 *3 (-1008 (-267 *4))) (-4 *4 (-13 (-760) (-499) (-557 (-332)))) + (-5 *2 (-1008 (-332))) (-5 *1 (-221 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-231)))) ((*1 *2 *1) - (-12 (-4 *2 (-1157 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) + (-12 (-4 *2 (-1159 *3)) (-5 *1 (-246 *3 *2 *4 *5 *6 *7)) (-4 *3 (-148)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1162 *4 *5 *6)) (-4 *4 (-13 (-27) (-1117) (-364 *3))) - (-14 *5 (-1092)) (-14 *6 *4) - (-4 *3 (-13 (-952 (-486)) (-582 (-486)) (-393))) - (-5 *1 (-264 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1164 *4 *5 *6)) (-4 *4 (-13 (-27) (-1119) (-366 *3))) + (-14 *5 (-1094)) (-14 *6 *4) + (-4 *3 (-13 (-954 (-488)) (-584 (-488)) (-395))) + (-5 *1 (-266 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *3 *4 *2)) - (-4 *3 (-280 *4)))) + (-12 (-4 *4 (-301)) (-4 *2 (-282 *4)) (-5 *1 (-299 *3 *4 *2)) + (-4 *3 (-282 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *2 *4 *3)) - (-4 *3 (-280 *4)))) + (-12 (-4 *4 (-301)) (-4 *2 (-282 *4)) (-5 *1 (-299 *2 *4 *3)) + (-4 *3 (-282 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) - (-5 *2 (-1206 *3 *4)))) + (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)) + (-5 *2 (-1208 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) - (-5 *2 (-1197 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-758)) (-4 *3 (-146)))) + (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)) + (-5 *2 (-1199 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-328 *2 *3)) (-4 *2 (-760)) (-4 *3 (-148)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-859 (-350 *3)))) (-4 *3 (-497)) (-4 *3 (-1015)) - (-4 *1 (-364 *3)))) + (-12 (-5 *2 (-352 (-861 (-352 *3)))) (-4 *3 (-499)) (-4 *3 (-1017)) + (-4 *1 (-366 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-859 (-350 *3))) (-4 *3 (-497)) (-4 *3 (-1015)) - (-4 *1 (-364 *3)))) + (-12 (-5 *2 (-861 (-352 *3))) (-4 *3 (-499)) (-4 *3 (-1017)) + (-4 *1 (-366 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 *3)) (-4 *3 (-497)) (-4 *3 (-1015)) (-4 *1 (-364 *3)))) + (-12 (-5 *2 (-352 *3)) (-4 *3 (-499)) (-4 *3 (-1017)) (-4 *1 (-366 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1041 *3 (-552 *1))) (-4 *3 (-963)) (-4 *3 (-1015)) - (-4 *1 (-364 *3)))) + (-12 (-5 *2 (-1043 *3 (-554 *1))) (-4 *3 (-965)) (-4 *3 (-1017)) + (-4 *1 (-366 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-758) (-21))) (-5 *1 (-372 *3 *4)) - (-4 *3 (-13 (-146) (-38 (-350 (-486))))))) + (-12 (-5 *2 (-283 *4)) (-4 *4 (-13 (-760) (-21))) (-5 *1 (-374 *3 *4)) + (-4 *3 (-13 (-148) (-38 (-352 (-488))))))) ((*1 *1 *2) - (-12 (-5 *1 (-372 *2 *3)) (-4 *2 (-13 (-146) (-38 (-350 (-486))))) - (-4 *3 (-13 (-758) (-21))))) - ((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-377)))) - ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-379)))) + (-12 (-5 *1 (-374 *2 *3)) (-4 *2 (-13 (-148) (-38 (-352 (-488))))) + (-4 *3 (-13 (-760) (-21))))) + ((*1 *2 *1) (-12 (-5 *2 (-1019)) (-5 *1 (-379)))) + ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-379)))) + ((*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-379)))) + ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-379)))) + ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-381)))) ((*1 *1 *2) - (-12 (-5 *2 (-1181 (-350 (-859 *3)))) (-4 *3 (-146)) - (-14 *6 (-1181 (-632 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *4 (-832)) - (-14 *5 (-585 (-1092))))) - ((*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-409)))) - ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-409)))) + (-12 (-5 *2 (-1183 (-352 (-861 *3)))) (-4 *3 (-148)) + (-14 *6 (-1183 (-634 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-14 *4 (-834)) + (-14 *5 (-587 (-1094))))) + ((*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-858 (-181))))) (-5 *1 (-411)))) + ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-411)))) ((*1 *1 *2) - (-12 (-5 *2 (-1162 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3) - (-5 *1 (-415 *3 *4 *5)))) + (-12 (-5 *2 (-1164 *3 *4 *5)) (-4 *3 (-965)) (-14 *4 (-1094)) (-14 *5 *3) + (-5 *1 (-417 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-415 *3 *4 *5)) - (-4 *3 (-963)) (-14 *5 *3))) + (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-417 *3 *4 *5)) + (-4 *3 (-965)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-719)) - (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-464)))) - ((*1 *1 *2) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-541)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-542 *3 *2)) (-4 *2 (-685 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1131)))) - ((*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1131)))) - ((*1 *1 *2) (-12 (-4 *1 (-562 *2)) (-4 *2 (-963)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1202 *3 *4)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) - (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) - (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-574 *3 *2)) (-4 *2 (-685 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) - ((*1 *2 *1) (-12 (-5 *2 (-741 *3)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) - ((*1 *2 *1) (-12 (-5 *2 (-741 *3)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) - ((*1 *1 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-624)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1015)))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-865 *3 *4 *5)) (-4 *3 (-314)) (-4 *4 (-721)) + (-4 *5 (-760)) (-5 *1 (-447 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-587 (-1134))) (-5 *1 (-466)))) + ((*1 *1 *2) (-12 (-5 *2 (-587 (-1134))) (-5 *1 (-543)))) + ((*1 *1 *2) (-12 (-4 *3 (-148)) (-5 *1 (-544 *3 *2)) (-4 *2 (-687 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1133)))) + ((*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-1133)))) + ((*1 *1 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-965)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1204 *3 *4)) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-760)) + (-4 *4 (-13 (-148) (-658 (-352 (-488))))) (-14 *5 (-834)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-760)) + (-4 *4 (-13 (-148) (-658 (-352 (-488))))) (-14 *5 (-834)))) + ((*1 *1 *2) (-12 (-4 *3 (-148)) (-5 *1 (-576 *3 *2)) (-4 *2 (-687 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-618 *3)) (-4 *3 (-760)))) + ((*1 *2 *1) (-12 (-5 *2 (-743 *3)) (-5 *1 (-618 *3)) (-4 *3 (-760)))) + ((*1 *2 *1) (-12 (-5 *2 (-743 *3)) (-5 *1 (-622 *3)) (-4 *3 (-760)))) + ((*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-626)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-627 *3)) (-4 *3 (-1017)))) ((*1 *1 *2) - (-12 (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *2)) (-4 *4 (-324 *3)) - (-4 *2 (-324 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1075)) (-5 *1 (-649)))) + (-12 (-4 *3 (-965)) (-4 *1 (-631 *3 *4 *2)) (-4 *4 (-326 *3)) + (-4 *2 (-326 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1077)) (-5 *1 (-651)))) ((*1 *2 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-148)) (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-148)) (-5 *1 (-656 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-585 (-2 (|:| -3958 *3) (|:| -3942 *4)))) (-4 *3 (-963)) - (-4 *4 (-665)) (-5 *1 (-676 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-689)))) - ((*1 *2 *3) (-12 (-5 *2 (-698)) (-5 *1 (-699 *3)) (-4 *3 (-1131)))) - ((*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-769)))) - ((*1 *2 *3) (-12 (-5 *3 (-859 (-48))) (-5 *2 (-265 (-486))) (-5 *1 (-786)))) - ((*1 *2 *3) - (-12 (-5 *3 (-350 (-859 (-48)))) (-5 *2 (-265 (-486))) (-5 *1 (-786)))) - ((*1 *1 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-758)))) - ((*1 *2 *1) (-12 (-5 *2 (-741 *3)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) - ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-815 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-815 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-585 (-815 *3))) (-4 *3 (-1015)) (-5 *1 (-818 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) - ((*1 *1 *2) (-12 (-5 *2 (-350 (-348 *3))) (-4 *3 (-258)) (-5 *1 (-827 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-350 *3)) (-5 *1 (-827 *3)) (-4 *3 (-258)))) - ((*1 *2 *3) - (-12 (-5 *3 (-418)) (-5 *2 (-265 *4)) (-5 *1 (-833 *4)) (-4 *4 (-497)))) - ((*1 *2 *3) (-12 (-5 *2 (-1187)) (-5 *1 (-948 *3)) (-4 *3 (-1131)))) - ((*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-948 *2)) (-4 *2 (-1131)))) + (-12 (-5 *2 (-587 (-2 (|:| -3961 *3) (|:| -3945 *4)))) (-4 *3 (-965)) + (-4 *4 (-667)) (-5 *1 (-678 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-691)))) + ((*1 *2 *3) (-12 (-5 *2 (-700)) (-5 *1 (-701 *3)) (-4 *3 (-1133)))) + ((*1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-771)))) + ((*1 *2 *3) (-12 (-5 *3 (-861 (-48))) (-5 *2 (-267 (-488))) (-5 *1 (-788)))) + ((*1 *2 *3) + (-12 (-5 *3 (-352 (-861 (-48)))) (-5 *2 (-267 (-488))) (-5 *1 (-788)))) + ((*1 *1 *2) (-12 (-5 *1 (-807 *2)) (-4 *2 (-760)))) + ((*1 *2 *1) (-12 (-5 *2 (-743 *3)) (-5 *1 (-807 *3)) (-4 *3 (-760)))) + ((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-5 *1 (-817 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1017)) (-5 *1 (-817 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-587 (-817 *3))) (-4 *3 (-1017)) (-5 *1 (-820 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-817 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1017)))) + ((*1 *1 *2) (-12 (-5 *2 (-352 (-350 *3))) (-4 *3 (-260)) (-5 *1 (-829 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-352 *3)) (-5 *1 (-829 *3)) (-4 *3 (-260)))) + ((*1 *2 *3) + (-12 (-5 *3 (-420)) (-5 *2 (-267 *4)) (-5 *1 (-835 *4)) (-4 *4 (-499)))) + ((*1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *1 (-950 *3)) (-4 *3 (-1133)))) + ((*1 *2 *3) (-12 (-5 *3 (-264)) (-5 *1 (-950 *2)) (-4 *2 (-1133)))) ((*1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) - (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-863 *3 *4 *5)) (-14 *6 (-585 *2)))) - ((*1 *2 *3) (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-954 *3)) (-4 *3 (-497)))) + (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) + (-5 *1 (-951 *3 *4 *5 *2 *6)) (-4 *2 (-865 *3 *4 *5)) (-14 *6 (-587 *2)))) + ((*1 *2 *3) (-12 (-5 *2 (-352 (-861 *3))) (-5 *1 (-956 *3)) (-4 *3 (-499)))) ((*1 *1 *2) - (-12 (-4 *3 (-963)) (-4 *4 (-758)) (-5 *1 (-1042 *3 *4 *2)) - (-4 *2 (-863 *3 (-471 *4) *4)))) + (-12 (-4 *3 (-965)) (-4 *4 (-760)) (-5 *1 (-1044 *3 *4 *2)) + (-4 *2 (-865 *3 (-473 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-963)) (-4 *2 (-758)) (-5 *1 (-1042 *3 *2 *4)) - (-4 *4 (-863 *3 (-471 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-774)))) - ((*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1060)))) - ((*1 *2 *3) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-963)))) + (-12 (-4 *3 (-965)) (-4 *2 (-760)) (-5 *1 (-1044 *3 *2 *4)) + (-4 *4 (-865 *3 (-473 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-776)))) + ((*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1062)))) + ((*1 *2 *3) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-1079 *3)) (-4 *3 (-965)))) ((*1 *1 *2) - (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1084 *3 *4 *5)) - (-4 *3 (-963)) (-14 *5 *3))) + (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1086 *3 *4 *5)) + (-4 *3 (-965)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1091 *3 *4 *5)) - (-4 *3 (-963)) (-14 *5 *3))) + (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1093 *3 *4 *5)) + (-4 *3 (-965)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1150 *4 *3)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3) - (-5 *1 (-1091 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104 (-1092) (-379))) (-5 *1 (-1096)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1097)))) - ((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-1097)))) - ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1097)))) - ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1097)))) - ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1105 *3)) (-4 *3 (-1015)))) - ((*1 *2 *3) (-12 (-5 *2 (-1111)) (-5 *1 (-1112 *3)) (-4 *3 (-1015)))) - ((*1 *1 *2) (-12 (-5 *2 (-859 *3)) (-4 *3 (-963)) (-5 *1 (-1124 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1124 *3)) (-4 *3 (-963)))) + (-12 (-5 *2 (-1152 *4 *3)) (-4 *3 (-965)) (-14 *4 (-1094)) (-14 *5 *3) + (-5 *1 (-1093 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106 (-1094) (-381))) (-5 *1 (-1098)))) + ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1107 *3)) (-4 *3 (-1017)))) + ((*1 *2 *3) (-12 (-5 *2 (-1113)) (-5 *1 (-1114 *3)) (-4 *3 (-1017)))) + ((*1 *1 *2) (-12 (-5 *2 (-861 *3)) (-4 *3 (-965)) (-5 *1 (-1126 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-1126 *3)) (-4 *3 (-965)))) ((*1 *1 *2) - (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1141 *3 *4 *5)) - (-4 *3 (-963)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1003 *3)) (-4 *3 (-1131)) (-5 *1 (-1148 *3)))) + (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1143 *3 *4 *5)) + (-4 *3 (-965)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1005 *3)) (-4 *3 (-1133)) (-5 *1 (-1150 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1171 *3 *4 *5)) - (-4 *3 (-963)) (-14 *5 *3))) + (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1173 *3 *4 *5)) + (-4 *3 (-965)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1150 *4 *3)) (-4 *3 (-963)) (-14 *4 (-1092)) (-14 *5 *3) - (-5 *1 (-1171 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1178 *3)) (-14 *3 *2))) - ((*1 *2 *3) (-12 (-5 *3 (-409)) (-5 *2 (-1184)) (-5 *1 (-1183)))) - ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1184)))) - ((*1 *1 *2) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1206 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-758)) - (-4 *4 (-146)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-758)) - (-4 *4 (-146)))) + (-12 (-5 *2 (-1152 *4 *3)) (-4 *3 (-965)) (-14 *4 (-1094)) (-14 *5 *3) + (-5 *1 (-1173 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1180 *3)) (-14 *3 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-411)) (-5 *2 (-1186)) (-5 *1 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1186)))) + ((*1 *1 *2) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-760)) (-4 *3 (-965)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1208 *3 *4)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-760)) + (-4 *4 (-148)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-760)) + (-4 *4 (-148)))) ((*1 *1 *2) - (-12 (-5 *2 (-608 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) - (-5 *1 (-1202 *3 *4))))) + (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)) + (-5 *1 (-1204 *3 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-1197 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) - (-5 *1 (-608 *3 *4)))) + (|partial| -12 (-5 *2 (-1199 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)) + (-5 *1 (-610 *3 *4)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-608 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-758)) - (-4 *4 (-146))))) + (|partial| -12 (-5 *2 (-610 *3 *4)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-760)) + (-4 *4 (-148))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-488)) (-14 *3 (-698)) (-4 *4 (-148)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) + (-12 (-5 *3 (-1094)) (-4 *4 (-499)) (-5 *1 (-131 *4 *2)) (-4 *2 (-366 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1006 *2)) (-4 *2 (-364 *4)) (-4 *4 (-497)) + (-12 (-5 *3 (-1008 *2)) (-4 *2 (-366 *4)) (-4 *4 (-499)) (-5 *1 (-131 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-133)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1092)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-406 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1008 *1)) (-4 *1 (-133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1094)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-148)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-696)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146))))) + (-12 (-5 *2 (-698)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148))))) (((*1 *1 *2) - (-12 (-5 *2 (-585 (-486))) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) - (-14 *4 (-585 (-1092))))) + (-12 (-5 *2 (-587 (-488))) (-5 *1 (-50 *3 *4)) (-4 *3 (-965)) + (-14 *4 (-587 (-1094))))) ((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) - ((*1 *1 *1) (-4 *1 (-239))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) + ((*1 *1 *1) (-4 *1 (-241))) ((*1 *1 *2) - (-12 (-5 *2 (-608 *3 *4)) (-4 *3 (-758)) - (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-5 *1 (-568 *3 *4 *5)) - (-14 *5 (-832)))) + (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-760)) + (-4 *4 (-13 (-148) (-658 (-352 (-488))))) (-5 *1 (-570 *3 *4 *5)) + (-14 *5 (-834)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-696)) (-4 *4 (-13 (-963) (-656 (-350 (-486))))) (-4 *5 (-758)) - (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1204 *5 *4)))) + (-12 (-5 *3 (-698)) (-4 *4 (-13 (-965) (-658 (-352 (-488))))) (-4 *5 (-760)) + (-5 *1 (-1200 *4 *5 *2)) (-4 *2 (-1206 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-696)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-656 (-350 (-486)))) - (-4 *3 (-758)) (-4 *4 (-146))))) + (-12 (-5 *2 (-698)) (-5 *1 (-1204 *3 *4)) (-4 *4 (-658 (-352 (-488)))) + (-4 *3 (-760)) (-4 *4 (-148))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) - ((*1 *1 *1) (-4 *1 (-239))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) + ((*1 *1 *1) (-4 *1 (-241))) ((*1 *2 *3) - (-12 (-5 *3 (-348 *4)) (-4 *4 (-497)) - (-5 *2 (-585 (-2 (|:| -3958 (-696)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) + (-12 (-5 *3 (-350 *4)) (-4 *4 (-499)) + (-5 *2 (-587 (-2 (|:| -3961 (-698)) (|:| |logand| *4)))) (-5 *1 (-273 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-608 *3 *4)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) - (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) + (-12 (-5 *2 (-610 *3 *4)) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-760)) + (-4 *4 (-13 (-148) (-658 (-352 (-488))))) (-14 *5 (-834)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-696)) (-4 *4 (-13 (-963) (-656 (-350 (-486))))) (-4 *5 (-758)) - (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1204 *5 *4)))) + (-12 (-5 *3 (-698)) (-4 *4 (-13 (-965) (-658 (-352 (-488))))) (-4 *5 (-760)) + (-5 *1 (-1200 *4 *5 *2)) (-4 *2 (-1206 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-696)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-656 (-350 (-486)))) - (-4 *3 (-758)) (-4 *4 (-146))))) + (-12 (-5 *2 (-698)) (-5 *1 (-1204 *3 *4)) (-4 *4 (-658 (-352 (-488)))) + (-4 *3 (-760)) (-4 *4 (-148))))) (((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) - (-5 *2 (-2 (|:| |k| (-741 *3)) (|:| |c| *4)))))) + (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) + (-5 *2 (-2 (|:| |k| (-743 *3)) (|:| |c| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1206 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) - (-4 *4 (-146)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) + (-12 (-5 *2 (-1208 *3 *4)) (-4 *1 (-328 *3 *4)) (-4 *3 (-760)) + (-4 *4 (-148)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-338 *2)) (-4 *2 (-1017)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-743 *2)) (-4 *2 (-760)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-760)) (-4 *3 (-965)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-741 *3)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963))))) + (-12 (-5 *2 (-743 *3)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-760)) (-4 *3 (-965))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1206 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) - (-4 *4 (-146)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1015)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) + (-12 (-5 *2 (-1208 *3 *4)) (-4 *1 (-328 *3 *4)) (-4 *3 (-760)) + (-4 *4 (-148)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-338 *2)) (-4 *2 (-1017)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-743 *2)) (-4 *2 (-760)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-760)) (-4 *3 (-965)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-741 *3)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1015)))) + (-12 (-5 *2 (-743 *3)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-760)) (-4 *3 (-965))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-337 *3 *2)) (-4 *3 (-965)) (-4 *2 (-1017)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-486)) (-5 *2 (-1071 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-963)))) + (-12 (-5 *4 (-488)) (-5 *2 (-1073 *3)) (-5 *1 (-1079 *3)) (-4 *3 (-965)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-741 *4)) (-4 *4 (-758)) (-4 *1 (-1201 *4 *3)) (-4 *3 (-963))))) + (-12 (-5 *2 (-743 *4)) (-4 *4 (-760)) (-4 *1 (-1203 *4 *3)) (-4 *3 (-965))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-85)))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-532 *3)) (-4 *3 (-963)))) + (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-965)) (-4 *4 (-1017)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-534 *3)) (-4 *3 (-965)))) ((*1 *2 *1) - (-12 (-4 *3 (-497)) (-5 *2 (-85)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1157 *3)))) + (-12 (-4 *3 (-499)) (-5 *2 (-85)) (-5 *1 (-566 *3 *4)) (-4 *4 (-1159 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) + (-12 (-5 *2 (-85)) (-5 *1 (-678 *3 *4)) (-4 *3 (-965)) (-4 *4 (-667)))) ((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-85))))) -(((*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-758)) (-4 *3 (-146)))) + (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) (-5 *2 (-85))))) +(((*1 *1 *1) (-12 (-4 *1 (-328 *2 *3)) (-4 *2 (-760)) (-4 *3 (-148)))) ((*1 *1 *1) - (-12 (-5 *1 (-568 *2 *3 *4)) (-4 *2 (-758)) - (-4 *3 (-13 (-146) (-656 (-350 (-486))))) (-14 *4 (-832)))) - ((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) - ((*1 *1 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) - ((*1 *1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963))))) + (-12 (-5 *1 (-570 *2 *3 *4)) (-4 *2 (-760)) + (-4 *3 (-13 (-148) (-658 (-352 (-488))))) (-14 *4 (-834)))) + ((*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-760)))) + ((*1 *1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-760)))) + ((*1 *1 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-760)) (-4 *3 (-965))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-696)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) - (-4 *4 (-146)))) + (-12 (-5 *2 (-698)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) + (-4 *4 (-148)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)) (-4 *3 (-146))))) + (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-760)) (-4 *3 (-965)) (-4 *3 (-148))))) (((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *2 (-585 *3)))) + (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-760)) (-4 *4 (-148)) (-5 *2 (-587 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-585 *3)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) - (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-741 *3)) (-4 *3 (-758)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) + (-12 (-5 *2 (-587 *3)) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-760)) + (-4 *4 (-13 (-148) (-658 (-352 (-488))))) (-14 *5 (-834)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-618 *3)) (-4 *3 (-760)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-622 *3)) (-4 *3 (-760)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-743 *3)) (-4 *3 (-760)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-807 *3)) (-4 *3 (-760)))) ((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-585 *3))))) + (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-760)) (-4 *4 (-965)) (-5 *2 (-587 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1126 *4 *5 *3 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *3 (-758)) - (-4 *6 (-979 *4 *5 *3)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1128 *4 *5 *3 *6)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *3 (-760)) + (-4 *6 (-981 *4 *5 *3)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-1202 *3)) (-4 *3 (-314)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1202 *3)) (-4 *3 (-314)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1202 *3)) (-4 *3 (-314)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-312)) (-5 *2 (-832)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) + (-12 (-4 *4 (-314)) (-5 *2 (-834)) (-5 *1 (-281 *3 *4)) (-4 *3 (-282 *4)))) ((*1 *2) - (-12 (-4 *4 (-312)) (-5 *2 (-745 (-832))) (-5 *1 (-279 *3 *4)) - (-4 *3 (-280 *4)))) - ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-832)))) - ((*1 *2) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-745 (-832)))))) + (-12 (-4 *4 (-314)) (-5 *2 (-747 (-834))) (-5 *1 (-281 *3 *4)) + (-4 *3 (-282 *4)))) + ((*1 *2) (-12 (-4 *1 (-282 *3)) (-4 *3 (-314)) (-5 *2 (-834)))) + ((*1 *2) (-12 (-4 *1 (-1202 *3)) (-4 *3 (-314)) (-5 *2 (-747 (-834)))))) (((*1 *2) - (-12 (-4 *4 (-312)) (-5 *2 (-696)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) - ((*1 *2) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-5 *2 (-696))))) + (-12 (-4 *4 (-314)) (-5 *2 (-698)) (-5 *1 (-281 *3 *4)) (-4 *3 (-282 *4)))) + ((*1 *2) (-12 (-4 *1 (-1202 *3)) (-4 *3 (-314)) (-5 *2 (-698))))) (((*1 *2 *2) - (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1157 *4)) - (-5 *1 (-702 *3 *4 *5 *2 *6)) (-4 *2 (-1157 *5)) (-14 *6 (-832)))) + (-12 (-4 *3 (-301)) (-4 *4 (-282 *3)) (-4 *5 (-1159 *4)) + (-5 *1 (-704 *3 *4 *5 *2 *6)) (-4 *2 (-1159 *5)) (-14 *6 (-834)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-696)) (-4 *1 (-1200 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) - ((*1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-312)) (-4 *2 (-320))))) + (-12 (-5 *2 (-698)) (-4 *1 (-1202 *3)) (-4 *3 (-314)) (-4 *3 (-322)))) + ((*1 *1 *1) (-12 (-4 *1 (-1202 *2)) (-4 *2 (-314)) (-4 *2 (-322))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-696)) (-4 *4 (-13 (-963) (-656 (-350 (-486))))) (-4 *5 (-758)) - (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1204 *5 *4))))) + (-12 (-5 *3 (-698)) (-4 *4 (-13 (-965) (-658 (-352 (-488))))) (-4 *5 (-760)) + (-5 *1 (-1200 *4 *5 *2)) (-4 *2 (-1206 *5 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) - (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-1195 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) + (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-1197 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-85) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) - (-4 *7 (-758)) (-5 *1 (-1195 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-587 *8)) (-5 *3 (-1 (-85) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-499)) (-4 *6 (-721)) + (-4 *7 (-760)) (-5 *1 (-1197 *5 *6 *7 *8))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) - (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-1195 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) + (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-1197 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-85) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) - (-4 *7 (-758)) (-5 *1 (-1195 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-587 *8)) (-5 *3 (-1 (-85) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-499)) (-4 *6 (-721)) + (-4 *7 (-760)) (-5 *1 (-1197 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-585 (-1195 *4 *5 *6 *7))) - (-5 *1 (-1195 *4 *5 *6 *7)))) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-499)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-587 (-1197 *4 *5 *6 *7))) + (-5 *1 (-1197 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-585 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-979 *6 *7 *8)) (-4 *6 (-497)) (-4 *7 (-719)) (-4 *8 (-758)) - (-5 *2 (-585 (-1195 *6 *7 *8 *9))) (-5 *1 (-1195 *6 *7 *8 *9))))) + (-12 (-5 *3 (-587 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-981 *6 *7 *8)) (-4 *6 (-499)) (-4 *7 (-721)) (-4 *8 (-760)) + (-5 *2 (-587 (-1197 *6 *7 *8 *9))) (-5 *1 (-1197 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-777 *4 *5 *6 *7)) (-4 *4 (-963)) - (-14 *5 (-585 (-1092))) (-14 *6 (-585 *3)) (-14 *7 *3))) + (-12 (-5 *3 (-698)) (-5 *2 (-1189)) (-5 *1 (-779 *4 *5 *6 *7)) (-4 *4 (-965)) + (-14 *5 (-587 (-1094))) (-14 *6 (-587 *3)) (-14 *7 *3))) ((*1 *2 *3) - (-12 (-5 *3 (-696)) (-4 *4 (-963)) (-4 *5 (-758)) (-4 *6 (-719)) - (-14 *8 (-585 *5)) (-5 *2 (-1187)) (-5 *1 (-1194 *4 *5 *6 *7 *8 *9 *10)) - (-4 *7 (-863 *4 *6 *5)) (-14 *9 (-585 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-460)))) + (-12 (-5 *3 (-698)) (-4 *4 (-965)) (-4 *5 (-760)) (-4 *6 (-721)) + (-14 *8 (-587 *5)) (-5 *2 (-1189)) (-5 *1 (-1196 *4 *5 *6 *7 *8 *9 *10)) + (-4 *7 (-865 *4 *6 *5)) (-14 *9 (-587 *3)) (-14 *10 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-462)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1015) (-34))) (-5 *1 (-1056 *3 *2)) - (-4 *3 (-13 (-1015) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1193))))) -(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1192))))) -(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1192))))) + (-12 (-4 *2 (-13 (-1017) (-34))) (-5 *1 (-1058 *3 *2)) + (-4 *3 (-13 (-1017) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1194))))) +(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1194))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) - (-4 *4 (-1157 *3)) + (-12 (-4 *3 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) + (-4 *4 (-1159 *3)) (-5 *2 - (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) - (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) + (-2 (|:| -2017 (-634 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-634 *3)))) + (-5 *1 (-302 *3 *4 *5)) (-4 *5 (-355 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-486)) (-4 *4 (-1157 *3)) + (-12 (-5 *3 (-488)) (-4 *4 (-1159 *3)) (-5 *2 - (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) - (-5 *1 (-694 *4 *5)) (-4 *5 (-353 *3 *4)))) + (-2 (|:| -2017 (-634 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-634 *3)))) + (-5 *1 (-696 *4 *5)) (-4 *5 (-355 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-299)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3)) + (-12 (-4 *4 (-301)) (-4 *3 (-1159 *4)) (-4 *5 (-1159 *3)) (-5 *2 - (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) - (-5 *1 (-900 *4 *3 *5 *6)) (-4 *6 (-663 *3 *5)))) + (-2 (|:| -2017 (-634 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-634 *3)))) + (-5 *1 (-902 *4 *3 *5 *6)) (-4 *6 (-665 *3 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-299)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3)) + (-12 (-4 *4 (-301)) (-4 *3 (-1159 *4)) (-4 *5 (-1159 *3)) (-5 *2 - (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) - (-5 *1 (-1191 *4 *3 *5 *6)) (-4 *6 (-353 *3 *5))))) + (-2 (|:| -2017 (-634 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-634 *3)))) + (-5 *1 (-1193 *4 *3 *5 *6)) (-4 *6 (-355 *3 *5))))) (((*1 *2) - (-12 (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) - (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5)))) + (-12 (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) + (-5 *2 (-1183 *1)) (-4 *1 (-293 *3 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) - (-4 *4 (-1157 *3)) + (-12 (-4 *3 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) + (-4 *4 (-1159 *3)) (-5 *2 - (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) - (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) + (-2 (|:| -2017 (-634 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-634 *3)))) + (-5 *1 (-302 *3 *4 *5)) (-4 *5 (-355 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-1157 (-486))) + (-12 (-4 *3 (-1159 (-488))) (-5 *2 - (-2 (|:| -2014 (-632 (-486))) (|:| |basisDen| (-486)) - (|:| |basisInv| (-632 (-486))))) - (-5 *1 (-694 *3 *4)) (-4 *4 (-353 (-486) *3)))) + (-2 (|:| -2017 (-634 (-488))) (|:| |basisDen| (-488)) + (|:| |basisInv| (-634 (-488))))) + (-5 *1 (-696 *3 *4)) (-4 *4 (-355 (-488) *3)))) ((*1 *2) - (-12 (-4 *3 (-299)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4)) + (-12 (-4 *3 (-301)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 *4)) (-5 *2 - (-2 (|:| -2014 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) - (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-663 *4 *5)))) + (-2 (|:| -2017 (-634 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-634 *4)))) + (-5 *1 (-902 *3 *4 *5 *6)) (-4 *6 (-665 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-299)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4)) + (-12 (-4 *3 (-301)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 *4)) (-5 *2 - (-2 (|:| -2014 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) - (-5 *1 (-1191 *3 *4 *5 *6)) (-4 *6 (-353 *4 *5))))) + (-2 (|:| -2017 (-634 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-634 *4)))) + (-5 *1 (-1193 *3 *4 *5 *6)) (-4 *6 (-355 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-696)) (-4 *6 (-312)) (-5 *4 (-1124 *6)) - (-5 *2 (-1 (-1071 *4) (-1071 *4))) (-5 *1 (-1190 *6)) (-5 *5 (-1071 *4))))) + (-12 (-5 *3 (-698)) (-4 *6 (-314)) (-5 *4 (-1126 *6)) + (-5 *2 (-1 (-1073 *4) (-1073 *4))) (-5 *1 (-1192 *6)) (-5 *5 (-1073 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1092)) (-4 *5 (-312)) (-5 *2 (-585 (-1124 *5))) - (-5 *1 (-1190 *5)) (-5 *4 (-1124 *5))))) + (-12 (-5 *3 (-1094)) (-4 *5 (-314)) (-5 *2 (-587 (-1126 *5))) + (-5 *1 (-1192 *5)) (-5 *4 (-1126 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1092)) (-5 *2 (-1 (-1087 (-859 *4)) (-859 *4))) - (-5 *1 (-1190 *4)) (-4 *4 (-312))))) + (-12 (-5 *3 (-1094)) (-5 *2 (-1 (-1089 (-861 *4)) (-861 *4))) + (-5 *1 (-1192 *4)) (-4 *4 (-314))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1092)) (-4 *5 (-312)) (-5 *2 (-1071 (-1071 (-859 *5)))) - (-5 *1 (-1190 *5)) (-5 *4 (-1071 (-859 *5)))))) + (-12 (-5 *3 (-1094)) (-4 *5 (-314)) (-5 *2 (-1073 (-1073 (-861 *5)))) + (-5 *1 (-1192 *5)) (-5 *4 (-1073 (-861 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-696)) (-5 *2 (-1 (-1071 (-859 *4)) (-1071 (-859 *4)))) - (-5 *1 (-1190 *4)) (-4 *4 (-312))))) + (-12 (-5 *3 (-698)) (-5 *2 (-1 (-1073 (-861 *4)) (-1073 (-861 *4)))) + (-5 *1 (-1192 *4)) (-4 *4 (-314))))) (((*1 *2 *3) - (-12 (-5 *3 (-696)) (-5 *2 (-1 (-1071 (-859 *4)) (-1071 (-859 *4)))) - (-5 *1 (-1190 *4)) (-4 *4 (-312))))) + (-12 (-5 *3 (-698)) (-5 *2 (-1 (-1073 (-861 *4)) (-1073 (-861 *4)))) + (-5 *1 (-1192 *4)) (-4 *4 (-314))))) (((*1 *2) - (-12 (-14 *4 (-696)) (-4 *5 (-1131)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) - (-4 *3 (-196 *4 *5)))) + (-12 (-14 *4 (-698)) (-4 *5 (-1133)) (-5 *2 (-107)) (-5 *1 (-197 *3 *4 *5)) + (-4 *3 (-198 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-312)) (-5 *2 (-107)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) + (-12 (-4 *4 (-314)) (-5 *2 (-107)) (-5 *1 (-281 *3 *4)) (-4 *3 (-282 *4)))) ((*1 *2) - (-12 (-5 *2 (-696)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-146)))) + (-12 (-5 *2 (-698)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-148)))) ((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-486)) - (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) + (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-488)) + (-5 *1 (-447 *3 *4 *5 *6)) (-4 *6 (-865 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) - (-5 *2 (-486)) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-895 *3)) (-4 *3 (-963)) (-5 *2 (-832)))) - ((*1 *2) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-312)) (-5 *2 (-107))))) + (-12 (-5 *3 (-587 *6)) (-4 *6 (-760)) (-4 *4 (-314)) (-4 *5 (-721)) + (-5 *2 (-488)) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *7 (-865 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-897 *3)) (-4 *3 (-965)) (-5 *2 (-834)))) + ((*1 *2) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-314)) (-5 *2 (-107))))) +(((*1 *1) (-5 *1 (-1189)))) +(((*1 *2 *3) (-12 (-5 *3 (-332)) (-5 *2 (-181)) (-5 *1 (-1188)))) + ((*1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-1188))))) +(((*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1188)))) + ((*1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1188))))) +(((*1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1188)))) + ((*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1188))))) +(((*1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1188)))) + ((*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1188))))) +(((*1 *2) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-1188))))) +(((*1 *2) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-1188)))) + ((*1 *2 *2) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-1188))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1188))))) +(((*1 *2) (-12 (-5 *2 (-587 (-834))) (-5 *1 (-1188)))) + ((*1 *2 *2) (-12 (-5 *2 (-587 (-834))) (-5 *1 (-1188))))) +(((*1 *2) (-12 (-5 *2 (-587 (-698))) (-5 *1 (-1188)))) + ((*1 *2 *2) (-12 (-5 *2 (-587 (-698))) (-5 *1 (-1188))))) +(((*1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1188)))) + ((*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1188))))) +(((*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1188)))) + ((*1 *2 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1188))))) +(((*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1188)))) + ((*1 *2 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1188))))) +(((*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1188)))) + ((*1 *2 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1188))))) +(((*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1188)))) + ((*1 *2 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1188))))) +(((*1 *2 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187)))) + ((*1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187))))) +(((*1 *2 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187)))) + ((*1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187))))) +(((*1 *2 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187)))) + ((*1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187))))) +(((*1 *2 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187)))) + ((*1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187))))) +(((*1 *2 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187)))) + ((*1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-1187))))) (((*1 *1) (-5 *1 (-1187)))) -(((*1 *2 *3) (-12 (-5 *3 (-330)) (-5 *2 (-179)) (-5 *1 (-1186)))) - ((*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1186))))) -(((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) - ((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186))))) -(((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) - ((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186))))) -(((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) - ((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186))))) -(((*1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1186))))) -(((*1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1186)))) - ((*1 *2 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1186))))) -(((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1186))))) -(((*1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1186)))) - ((*1 *2 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1186))))) -(((*1 *2) (-12 (-5 *2 (-585 (-696))) (-5 *1 (-1186)))) - ((*1 *2 *2) (-12 (-5 *2 (-585 (-696))) (-5 *1 (-1186))))) -(((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186)))) - ((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1186))))) -(((*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) - ((*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186))))) -(((*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) - ((*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186))))) -(((*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) - ((*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186))))) -(((*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186)))) - ((*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1186))))) -(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) - ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185))))) -(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) - ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185))))) -(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) - ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185))))) -(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) - ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185))))) -(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185)))) - ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1185))))) -(((*1 *1) (-5 *1 (-1185)))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1049 (-179))) (-5 *3 (-585 (-221))) (-5 *1 (-1185)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1049 (-179))) (-5 *3 (-1075)) (-5 *1 (-1185)))) - ((*1 *1 *1) (-5 *1 (-1185)))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-1081 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1049 (-179))) (-5 *1 (-1185)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049 (-179))) (-5 *1 (-1185))))) + (-12 (-5 *2 (-1051 (-181))) (-5 *3 (-587 (-223))) (-5 *1 (-1187)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1051 (-181))) (-5 *3 (-1077)) (-5 *1 (-1187)))) + ((*1 *1 *1) (-5 *1 (-1187)))) +(((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-1083 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1083 *2 *3)) (-14 *2 (-834)) (-4 *3 (-965)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1051 (-181))) (-5 *1 (-1187)))) + ((*1 *2 *1) (-12 (-5 *2 (-1051 (-181))) (-5 *1 (-1187))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-696)) (-5 *3 (-856 *4)) (-4 *1 (-1050 *4)) (-4 *4 (-963)))) + (-12 (-5 *2 (-698)) (-5 *3 (-858 *4)) (-4 *1 (-1052 *4)) (-4 *4 (-965)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-696)) (-5 *4 (-856 (-179))) (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1184)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1184)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1185)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1185))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-1184)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1187)) (-5 *1 (-1184)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) + (-12 (-5 *3 (-698)) (-5 *4 (-858 (-181))) (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-223))) (-5 *1 (-1186)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-223))) (-5 *1 (-1186)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-223))) (-5 *1 (-1187)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-223))) (-5 *1 (-1187))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1189)) (-5 *1 (-1186)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1189)) (-5 *1 (-1186)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-223)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1077)) (-5 *3 (-587 (-223))) (-5 *1 (-224)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1186)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187))))) (((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-696)) (-5 *4 (-832)) (-5 *2 (-1187)) (-5 *1 (-1184)))) + (-12 (-5 *3 (-698)) (-5 *4 (-834)) (-5 *2 (-1189)) (-5 *1 (-1186)))) ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-696)) (-5 *4 (-832)) (-5 *2 (-1187)) (-5 *1 (-1185))))) + (-12 (-5 *3 (-698)) (-5 *4 (-834)) (-5 *2 (-1189)) (-5 *1 (-1187))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3851 (-179)) - (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) - (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *1 (-221)))) + (-2 (|:| |theta| (-181)) (|:| |phi| (-181)) (|:| -3854 (-181)) + (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |scaleZ| (-181)) + (|:| |deltaX| (-181)) (|:| |deltaY| (-181)))) + (-5 *1 (-223)))) ((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3851 (-179)) - (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) - (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *3 (-585 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) + (-2 (|:| |theta| (-181)) (|:| |phi| (-181)) (|:| -3854 (-181)) + (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |scaleZ| (-181)) + (|:| |deltaX| (-181)) (|:| |deltaY| (-181)))) + (-5 *3 (-587 (-223))) (-5 *1 (-224)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187)))) ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-486)) (-5 *4 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) + (-12 (-5 *3 (-488)) (-5 *4 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187)))) ((*1 *2 *1 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3851 (-179)) - (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) - (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *2 (-1187)) (-5 *1 (-1185)))) + (-2 (|:| |theta| (-181)) (|:| |phi| (-181)) (|:| -3854 (-181)) + (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |scaleZ| (-181)) + (|:| |deltaX| (-181)) (|:| |deltaY| (-181)))) + (-5 *2 (-1189)) (-5 *1 (-1187)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3851 (-179)) - (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) - (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *1 (-1185)))) + (-2 (|:| |theta| (-181)) (|:| |phi| (-181)) (|:| -3854 (-181)) + (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |scaleZ| (-181)) + (|:| |deltaX| (-181)) (|:| |deltaY| (-181)))) + (-5 *1 (-1187)))) ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) + (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1186)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-832)) (-5 *4 (-785)) (-5 *2 (-1187)) (-5 *1 (-1184)))) + (-12 (-5 *3 (-834)) (-5 *4 (-787)) (-5 *2 (-1189)) (-5 *1 (-1186)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-1185)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) - ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117))))) + (-12 (-5 *3 (-834)) (-5 *4 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1186)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-488)) (-5 *2 (-1189)) (-5 *1 (-1187)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1005 (-181))) (-5 *1 (-840)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1005 (-181))) (-5 *1 (-840)))) + ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1005 (-181))) (-5 *1 (-842)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-183 *2)) (-4 *2 (-13 (-314) (-1119))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-832)) (-5 *4 (-330)) (-5 *2 (-1187)) (-5 *1 (-1184)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1184)))) - ((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1187)) (-5 *1 (-1185))))) + (-12 (-5 *3 (-834)) (-5 *4 (-332)) (-5 *2 (-1189)) (-5 *1 (-1186)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-332)) (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1186)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1189)) (-5 *1 (-1187))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-1075)) (-5 *1 (-1184)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1184)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1184)))) + (-12 (-5 *3 (-587 (-1077))) (-5 *2 (-1077)) (-5 *1 (-1186)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1186)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1186)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-1075)) (-5 *1 (-1185)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1185)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1185))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) - ((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1184)))) - ((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1185))))) -(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-409)))) - ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1184)))) - ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1185))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-856 (-179)))) (-5 *1 (-1184))))) -(((*1 *1) (-5 *1 (-1184)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-409)) (-5 *3 (-585 (-221))) (-5 *1 (-1184)))) - ((*1 *1 *1) (-5 *1 (-1184)))) + (-12 (-5 *3 (-587 (-1077))) (-5 *2 (-1077)) (-5 *1 (-1187)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1187)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1187))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-147)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1186)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1187))))) +(((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-411)))) + ((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-1186)))) + ((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-1187))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-858 (-181)))) (-5 *1 (-1186))))) +(((*1 *1) (-5 *1 (-1186)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-411)) (-5 *3 (-587 (-223))) (-5 *1 (-1186)))) + ((*1 *1 *1) (-5 *1 (-1186)))) (((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-832)) (-5 *4 (-179)) (-5 *5 (-486)) (-5 *6 (-785)) - (-5 *2 (-1187)) (-5 *1 (-1184))))) + (-12 (-5 *3 (-834)) (-5 *4 (-181)) (-5 *5 (-488)) (-5 *6 (-787)) + (-5 *2 (-1189)) (-5 *1 (-1186))))) (((*1 *2 *1) (-12 (-5 *2 - (-1181 - (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) - (|:| |deltaY| (-179)) (|:| -3854 (-486)) (|:| -3852 (-486)) - (|:| |spline| (-486)) (|:| -3883 (-486)) (|:| |axesColor| (-785)) - (|:| -3855 (-486)) (|:| |unitsColor| (-785)) (|:| |showing| (-486))))) - (-5 *1 (-1184))))) -(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) - ((*1 *2 *1) (-12 (-5 *2 (-1181 (-3 (-409) "undefined"))) (-5 *1 (-1184))))) + (-1183 + (-2 (|:| |scaleX| (-181)) (|:| |scaleY| (-181)) (|:| |deltaX| (-181)) + (|:| |deltaY| (-181)) (|:| -3857 (-488)) (|:| -3855 (-488)) + (|:| |spline| (-488)) (|:| -3886 (-488)) (|:| |axesColor| (-787)) + (|:| -3858 (-488)) (|:| |unitsColor| (-787)) (|:| |showing| (-488))))) + (-5 *1 (-1186))))) +(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166)))) + ((*1 *2 *1) (-12 (-5 *2 (-1183 (-3 (-411) "undefined"))) (-5 *1 (-1186))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-409)) (-5 *4 (-832)) (-5 *2 (-1187)) (-5 *1 (-1184))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-832)) (-5 *2 (-409)) (-5 *1 (-1184))))) + (-12 (-5 *3 (-411)) (-5 *4 (-834)) (-5 *2 (-1189)) (-5 *1 (-1186))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-834)) (-5 *2 (-411)) (-5 *1 (-1186))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-585 (-330))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-330))) (-5 *1 (-409)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-330))) (-5 *1 (-409)))) + (-12 (-5 *2 (-587 (-332))) (-5 *3 (-587 (-223))) (-5 *1 (-224)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-332))) (-5 *1 (-411)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-332))) (-5 *1 (-411)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-832)) (-5 *4 (-785)) (-5 *2 (-1187)) (-5 *1 (-1184)))) + (-12 (-5 *3 (-834)) (-5 *4 (-787)) (-5 *2 (-1189)) (-5 *1 (-1186)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184))))) + (-12 (-5 *3 (-834)) (-5 *4 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1186))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184))))) + (-12 (-5 *3 (-834)) (-5 *4 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1186))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184))))) + (-12 (-5 *3 (-834)) (-5 *4 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1186))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) - ((*1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) + (-12 (-5 *3 (-834)) (-5 *4 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1186))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-183 *2)) (-4 *2 (-13 (-314) (-1119))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-659 *2)) (-4 *2 (-314)))) + ((*1 *1 *2) (-12 (-5 *1 (-659 *2)) (-4 *2 (-314)))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-832)) (-5 *4 (-330)) (-5 *2 (-1187)) (-5 *1 (-1184))))) + (-12 (-5 *3 (-834)) (-5 *4 (-332)) (-5 *2 (-1189)) (-5 *1 (-1186))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-832)) (-5 *4 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1184))))) + (-12 (-5 *3 (-834)) (-5 *4 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1186))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-409)) (-5 *4 (-832)) (-5 *2 (-1187)) (-5 *1 (-1184))))) + (-12 (-5 *3 (-411)) (-5 *4 (-834)) (-5 *2 (-1189)) (-5 *1 (-1186))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-785)) (-5 *5 (-832)) - (-5 *6 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-1183)))) + (-12 (-5 *3 (-587 (-587 (-858 (-181))))) (-5 *4 (-787)) (-5 *5 (-834)) + (-5 *6 (-587 (-223))) (-5 *2 (-1186)) (-5 *1 (-1185)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-585 (-221))) - (-5 *2 (-1184)) (-5 *1 (-1183))))) + (-12 (-5 *3 (-587 (-587 (-858 (-181))))) (-5 *4 (-587 (-223))) + (-5 *2 (-1186)) (-5 *1 (-1185))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-785)) (-5 *5 (-832)) - (-5 *6 (-585 (-221))) (-5 *2 (-409)) (-5 *1 (-1183)))) + (-12 (-5 *3 (-587 (-587 (-858 (-181))))) (-5 *4 (-787)) (-5 *5 (-834)) + (-5 *6 (-587 (-223))) (-5 *2 (-411)) (-5 *1 (-1185)))) ((*1 *2 *3) - (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *2 (-409)) (-5 *1 (-1183)))) + (-12 (-5 *3 (-587 (-587 (-858 (-181))))) (-5 *2 (-411)) (-5 *1 (-1185)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-585 (-221))) (-5 *2 (-409)) - (-5 *1 (-1183))))) + (-12 (-5 *3 (-587 (-587 (-858 (-181))))) (-5 *4 (-587 (-223))) (-5 *2 (-411)) + (-5 *1 (-1185))))) (((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) - (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1133)) + (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) - (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1133)) + (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-486)) - (-14 *6 (-696)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-488)) + (-14 *6 (-698)) (-4 *7 (-148)) (-4 *8 (-148)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) - (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-144 *5)) (-4 *5 (-148)) (-4 *6 (-148)) + (-5 *2 (-144 *6)) (-5 *1 (-145 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-696)) (-4 *6 (-1131)) - (-4 *7 (-1131)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-199 *5 *6)) (-14 *5 (-698)) (-4 *6 (-1133)) + (-4 *7 (-1133)) (-5 *2 (-199 *5 *7)) (-5 *1 (-200 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) - (-5 *2 (-249 *6)) (-5 *1 (-250 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-552 *1)) (-4 *1 (-254)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-251 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) + (-5 *2 (-251 *6)) (-5 *1 (-252 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-554 *1)) (-4 *1 (-256)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1075)) (-5 *5 (-552 *6)) (-4 *6 (-254)) - (-4 *2 (-1131)) (-5 *1 (-255 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1077)) (-5 *5 (-554 *6)) (-4 *6 (-256)) + (-4 *2 (-1133)) (-5 *1 (-257 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-552 *5)) (-4 *5 (-254)) (-4 *2 (-254)) - (-5 *1 (-256 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-554 *5)) (-4 *5 (-256)) (-4 *2 (-256)) + (-5 *1 (-258 *5 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) - (-5 *2 (-265 *6)) (-5 *1 (-266 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-267 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) + (-5 *2 (-267 *6)) (-5 *1 (-268 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-283 *5 *6 *7 *8)) (-4 *5 (-312)) - (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) - (-4 *9 (-312)) (-4 *10 (-1157 *9)) (-4 *11 (-1157 (-350 *10))) - (-5 *2 (-283 *9 *10 *11 *12)) (-5 *1 (-284 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-291 *9 *10 *11)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-285 *5 *6 *7 *8)) (-4 *5 (-314)) + (-4 *6 (-1159 *5)) (-4 *7 (-1159 (-352 *6))) (-4 *8 (-293 *5 *6 *7)) + (-4 *9 (-314)) (-4 *10 (-1159 *9)) (-4 *11 (-1159 (-352 *10))) + (-5 *2 (-285 *9 *10 *11 *12)) (-5 *1 (-286 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-293 *9 *10 *11)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1136)) (-4 *8 (-1136)) (-4 *6 (-1157 *5)) - (-4 *7 (-1157 (-350 *6))) (-4 *9 (-1157 *8)) (-4 *2 (-291 *8 *9 *10)) - (-5 *1 (-292 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-291 *5 *6 *7)) - (-4 *10 (-1157 (-350 *9))))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1138)) (-4 *8 (-1138)) (-4 *6 (-1159 *5)) + (-4 *7 (-1159 (-352 *6))) (-4 *9 (-1159 *8)) (-4 *2 (-293 *8 *9 *10)) + (-5 *1 (-294 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-293 *5 *6 *7)) + (-4 *10 (-1159 (-352 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-324 *6)) - (-5 *1 (-325 *5 *4 *6 *2)) (-4 *4 (-324 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *2 (-326 *6)) + (-5 *1 (-327 *5 *4 *6 *2)) (-4 *4 (-326 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-497)) (-4 *6 (-497)) - (-5 *2 (-348 *6)) (-5 *1 (-349 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-350 *5)) (-4 *5 (-497)) (-4 *6 (-497)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-350 *5)) (-4 *5 (-499)) (-4 *6 (-499)) (-5 *2 (-350 *6)) (-5 *1 (-351 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-356 *5 *6 *7 *8)) (-4 *5 (-258)) - (-4 *6 (-906 *5)) (-4 *7 (-1157 *6)) (-4 *8 (-13 (-353 *6 *7) (-952 *6))) - (-4 *9 (-258)) (-4 *10 (-906 *9)) (-4 *11 (-1157 *10)) - (-5 *2 (-356 *9 *10 *11 *12)) (-5 *1 (-357 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-353 *10 *11) (-952 *10))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-352 *5)) (-4 *5 (-499)) (-4 *6 (-499)) + (-5 *2 (-352 *6)) (-5 *1 (-353 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-358 *5 *6 *7 *8)) (-4 *5 (-260)) + (-4 *6 (-908 *5)) (-4 *7 (-1159 *6)) (-4 *8 (-13 (-355 *6 *7) (-954 *6))) + (-4 *9 (-260)) (-4 *10 (-908 *9)) (-4 *11 (-1159 *10)) + (-5 *2 (-358 *9 *10 *11 *12)) (-5 *1 (-359 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-355 *10 *11) (-954 *10))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-361 *6)) - (-5 *1 (-359 *4 *5 *2 *6)) (-4 *4 (-361 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-148)) (-4 *6 (-148)) (-4 *2 (-363 *6)) + (-5 *1 (-361 *4 *5 *2 *6)) (-4 *4 (-363 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-364 *6)) - (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-364 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-965)) (-4 *6 (-965)) (-4 *2 (-366 *6)) + (-5 *1 (-367 *5 *4 *6 *2)) (-4 *4 (-366 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-369 *6)) - (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-369 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-381 *3)) (-4 *3 (-1131)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *2 (-371 *6)) + (-5 *1 (-372 *5 *4 *6 *2)) (-4 *4 (-371 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-383 *3)) (-4 *3 (-1133)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-521 *5)) (-4 *5 (-312)) (-4 *6 (-312)) - (-5 *2 (-521 *6)) (-5 *1 (-522 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-523 *5)) (-4 *5 (-314)) (-4 *6 (-314)) + (-5 *2 (-523 *6)) (-5 *1 (-524 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2138 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312)) - (-4 *6 (-312)) (-5 *2 (-2 (|:| -2138 *6) (|:| |coeff| *6))) - (-5 *1 (-522 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -2141 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-314)) + (-4 *6 (-314)) (-5 *2 (-2 (|:| -2141 *6) (|:| |coeff| *6))) + (-5 *1 (-524 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-312)) - (-4 *2 (-312)) (-5 *1 (-522 *5 *2)))) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-314)) + (-4 *2 (-314)) (-5 *1 (-524 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) - (-4 *5 (-312)) (-4 *6 (-312)) + (-4 *5 (-314)) (-4 *6 (-314)) (-5 *2 (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-522 *5 *6)))) + (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-524 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-538 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) - (-5 *2 (-538 *6)) (-5 *1 (-535 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-540 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) + (-5 *2 (-540 *6)) (-5 *1 (-537 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-538 *6)) (-5 *5 (-538 *7)) - (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-538 *8)) - (-5 *1 (-536 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-540 *6)) (-5 *5 (-540 *7)) + (-4 *6 (-1133)) (-4 *7 (-1133)) (-4 *8 (-1133)) (-5 *2 (-540 *8)) + (-5 *1 (-538 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1071 *6)) (-5 *5 (-538 *7)) - (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-1071 *8)) - (-5 *1 (-536 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1073 *6)) (-5 *5 (-540 *7)) + (-4 *6 (-1133)) (-4 *7 (-1133)) (-4 *8 (-1133)) (-5 *2 (-1073 *8)) + (-5 *1 (-538 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-538 *6)) (-5 *5 (-1071 *7)) - (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-1071 *8)) - (-5 *1 (-536 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-540 *6)) (-5 *5 (-1073 *7)) + (-4 *6 (-1133)) (-4 *7 (-1133)) (-4 *8 (-1133)) (-5 *2 (-1073 *8)) + (-5 *1 (-538 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) - (-5 *2 (-585 *6)) (-5 *1 (-586 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) + (-5 *2 (-587 *6)) (-5 *1 (-588 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-585 *7)) - (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-585 *8)) - (-5 *1 (-588 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-587 *6)) (-5 *5 (-587 *7)) + (-4 *6 (-1133)) (-4 *7 (-1133)) (-4 *8 (-1133)) (-5 *2 (-587 *8)) + (-5 *1 (-590 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-597 *3)) (-4 *3 (-1133)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-963)) (-4 *8 (-963)) (-4 *6 (-324 *5)) - (-4 *7 (-324 *5)) (-4 *2 (-629 *8 *9 *10)) - (-5 *1 (-630 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-629 *5 *6 *7)) - (-4 *9 (-324 *8)) (-4 *10 (-324 *8)))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-965)) (-4 *8 (-965)) (-4 *6 (-326 *5)) + (-4 *7 (-326 *5)) (-4 *2 (-631 *8 *9 *10)) + (-5 *1 (-632 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-631 *5 *6 *7)) + (-4 *9 (-326 *8)) (-4 *10 (-326 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-963)) (-4 *8 (-963)) - (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-629 *8 *9 *10)) - (-5 *1 (-630 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-629 *5 *6 *7)) - (-4 *9 (-324 *8)) (-4 *10 (-324 *8)))) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-965)) (-4 *8 (-965)) + (-4 *6 (-326 *5)) (-4 *7 (-326 *5)) (-4 *2 (-631 *8 *9 *10)) + (-5 *1 (-632 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-631 *5 *6 *7)) + (-4 *9 (-326 *8)) (-4 *10 (-326 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-497)) (-4 *7 (-497)) (-4 *6 (-1157 *5)) - (-4 *2 (-1157 (-350 *8))) (-5 *1 (-648 *5 *6 *4 *7 *8 *2)) - (-4 *4 (-1157 (-350 *6))) (-4 *8 (-1157 *7)))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-499)) (-4 *7 (-499)) (-4 *6 (-1159 *5)) + (-4 *2 (-1159 (-352 *8))) (-5 *1 (-650 *5 *6 *4 *7 *8 *2)) + (-4 *4 (-1159 (-352 *6))) (-4 *8 (-1159 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-963)) (-4 *9 (-963)) (-4 *5 (-758)) - (-4 *6 (-719)) (-4 *2 (-863 *9 *7 *5)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-719)) (-4 *4 (-863 *8 *6 *5)))) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-965)) (-4 *9 (-965)) (-4 *5 (-760)) + (-4 *6 (-721)) (-4 *2 (-865 *9 *7 *5)) (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-721)) (-4 *4 (-865 *8 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-758)) (-4 *6 (-758)) (-4 *7 (-719)) - (-4 *9 (-963)) (-4 *2 (-863 *9 *8 *6)) (-5 *1 (-670 *5 *6 *7 *8 *9 *4 *2)) - (-4 *8 (-719)) (-4 *4 (-863 *9 *7 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-760)) (-4 *6 (-760)) (-4 *7 (-721)) + (-4 *9 (-965)) (-4 *2 (-865 *9 *8 *6)) (-5 *1 (-672 *5 *6 *7 *8 *9 *4 *2)) + (-4 *8 (-721)) (-4 *4 (-865 *9 *7 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-676 *5 *7)) (-4 *5 (-963)) (-4 *6 (-963)) - (-4 *7 (-665)) (-5 *2 (-676 *6 *7)) (-5 *1 (-675 *5 *6 *7)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-678 *5 *7)) (-4 *5 (-965)) (-4 *6 (-965)) + (-4 *7 (-667)) (-5 *2 (-678 *6 *7)) (-5 *1 (-677 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-706 *5)) (-4 *5 (-963)) (-4 *6 (-963)) - (-5 *2 (-706 *6)) (-5 *1 (-707 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-708 *5)) (-4 *5 (-965)) (-4 *6 (-965)) + (-5 *2 (-708 *6)) (-5 *1 (-709 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-722 *6)) - (-5 *1 (-725 *4 *5 *2 *6)) (-4 *4 (-722 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-148)) (-4 *6 (-148)) (-4 *2 (-724 *6)) + (-5 *1 (-727 *4 *5 *2 *6)) (-4 *4 (-724 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) - (-5 *2 (-745 *6)) (-5 *1 (-746 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) + (-5 *2 (-747 *6)) (-5 *1 (-748 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-745 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1015)) - (-4 *6 (-1015)) (-5 *1 (-746 *5 *6)))) + (-12 (-5 *2 (-747 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5)) (-4 *5 (-1017)) + (-4 *6 (-1017)) (-5 *1 (-748 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-752 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) - (-5 *2 (-752 *6)) (-5 *1 (-753 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-754 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) + (-5 *2 (-754 *6)) (-5 *1 (-755 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-752 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-752 *5)) (-4 *5 (-1015)) - (-4 *6 (-1015)) (-5 *1 (-753 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-789 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) - (-5 *2 (-789 *6)) (-5 *1 (-788 *5 *6)))) + (-12 (-5 *2 (-754 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-754 *5)) (-4 *5 (-1017)) + (-4 *6 (-1017)) (-5 *1 (-755 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-791 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-791 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-791 *6)) (-5 *1 (-790 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) - (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) + (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-800 *5 *6)) (-4 *5 (-1015)) (-4 *6 (-1015)) - (-4 *7 (-1015)) (-5 *2 (-800 *5 *7)) (-5 *1 (-801 *5 *6 *7)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-796 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) + (-5 *2 (-796 *6)) (-5 *1 (-795 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) - (-5 *2 (-802 *6)) (-5 *1 (-804 *5 *6)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-802 *5 *6)) (-4 *5 (-1017)) (-4 *6 (-1017)) + (-4 *7 (-1017)) (-5 *2 (-802 *5 *7)) (-5 *1 (-803 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-859 *5)) (-4 *5 (-963)) (-4 *6 (-963)) - (-5 *2 (-859 *6)) (-5 *1 (-860 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-804 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) + (-5 *2 (-804 *6)) (-5 *1 (-806 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-861 *5)) (-4 *5 (-965)) (-4 *6 (-965)) + (-5 *2 (-861 *6)) (-5 *1 (-862 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-758)) (-4 *8 (-963)) - (-4 *6 (-719)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-760)) (-4 *8 (-965)) + (-4 *6 (-721)) (-4 *2 - (-13 (-1015) - (-10 -8 (-15 -3842 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-696)))))) - (-5 *1 (-865 *6 *7 *8 *5 *2)) (-4 *5 (-863 *8 *6 *7)))) + (-13 (-1017) + (-10 -8 (-15 -3845 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-698)))))) + (-5 *1 (-867 *6 *7 *8 *5 *2)) (-4 *5 (-865 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-871 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) - (-5 *2 (-871 *6)) (-5 *1 (-872 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-873 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) + (-5 *2 (-873 *6)) (-5 *1 (-874 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) - (-5 *2 (-879 *6)) (-5 *1 (-881 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) + (-5 *2 (-881 *6)) (-5 *1 (-883 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-963)) (-4 *6 (-963)) - (-5 *2 (-856 *6)) (-5 *1 (-896 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-965)) (-4 *6 (-965)) + (-5 *2 (-858 *6)) (-5 *1 (-898 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-859 *4))) (-4 *4 (-963)) (-4 *2 (-863 (-859 *4) *5 *6)) - (-4 *5 (-719)) + (-12 (-5 *3 (-1 *2 (-861 *4))) (-4 *4 (-965)) (-4 *2 (-865 (-861 *4) *5 *6)) + (-4 *5 (-721)) (-4 *6 - (-13 (-758) - (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ "failed") (-1092)))))) - (-5 *1 (-899 *4 *5 *6 *2)))) + (-13 (-760) + (-10 -8 (-15 -3978 ((-1094) $)) (-15 -3837 ((-3 $ "failed") (-1094)))))) + (-5 *1 (-901 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-497)) (-4 *6 (-497)) (-4 *2 (-906 *6)) - (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-906 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-499)) (-4 *6 (-499)) (-4 *2 (-908 *6)) + (-5 *1 (-909 *5 *6 *4 *2)) (-4 *4 (-908 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-913 *6)) - (-5 *1 (-914 *4 *5 *2 *6)) (-4 *4 (-913 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-148)) (-4 *6 (-148)) (-4 *2 (-915 *6)) + (-5 *1 (-916 *4 *5 *2 *6)) (-4 *4 (-915 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) - (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) + (-4 *6 (-198 *4 *5)) (-4 *7 (-198 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-963)) (-4 *10 (-963)) (-14 *5 (-696)) - (-14 *6 (-696)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) - (-4 *2 (-967 *5 *6 *10 *11 *12)) - (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) - (-4 *12 (-196 *5 *10)))) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-965)) (-4 *10 (-965)) (-14 *5 (-698)) + (-14 *6 (-698)) (-4 *8 (-198 *6 *7)) (-4 *9 (-198 *5 *7)) + (-4 *2 (-969 *5 *6 *10 *11 *12)) + (-5 *1 (-971 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-969 *5 *6 *7 *8 *9)) (-4 *11 (-198 *6 *10)) + (-4 *12 (-198 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1003 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) - (-5 *2 (-1003 *6)) (-5 *1 (-1004 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1005 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) + (-5 *2 (-1005 *6)) (-5 *1 (-1006 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1003 *5)) (-4 *5 (-757)) (-4 *5 (-1131)) - (-4 *6 (-1131)) (-5 *2 (-585 *6)) (-5 *1 (-1004 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1005 *5)) (-4 *5 (-759)) (-4 *5 (-1133)) + (-4 *6 (-1133)) (-5 *2 (-587 *6)) (-5 *1 (-1006 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1006 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) - (-5 *2 (-1006 *6)) (-5 *1 (-1007 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1008 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) + (-5 *2 (-1008 *6)) (-5 *1 (-1009 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-757)) - (-4 *2 (-1066 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1011 *4 *2)) (-4 *4 (-759)) + (-4 *2 (-1068 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1071 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) - (-5 *2 (-1071 *6)) (-5 *1 (-1073 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1073 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) + (-5 *2 (-1073 *6)) (-5 *1 (-1075 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1071 *6)) (-5 *5 (-1071 *7)) - (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-1071 *8)) - (-5 *1 (-1074 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1073 *6)) (-5 *5 (-1073 *7)) + (-4 *6 (-1133)) (-4 *7 (-1133)) (-4 *8 (-1133)) (-5 *2 (-1073 *8)) + (-5 *1 (-1076 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1087 *5)) (-4 *5 (-963)) (-4 *6 (-963)) - (-5 *2 (-1087 *6)) (-5 *1 (-1088 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1089 *5)) (-4 *5 (-965)) (-4 *6 (-965)) + (-5 *2 (-1089 *6)) (-5 *1 (-1090 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1109 *3 *4)) (-4 *3 (-1015)) - (-4 *4 (-1015)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1111 *3 *4)) (-4 *3 (-1017)) + (-4 *4 (-1017)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5 *7 *9)) (-4 *5 (-963)) - (-4 *6 (-963)) (-14 *7 (-1092)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1141 *6 *8 *10)) (-5 *1 (-1142 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1092)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1143 *5 *7 *9)) (-4 *5 (-965)) + (-4 *6 (-965)) (-14 *7 (-1094)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1143 *6 *8 *10)) (-5 *1 (-1144 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1094)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) - (-5 *2 (-1148 *6)) (-5 *1 (-1149 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) + (-5 *2 (-1150 *6)) (-5 *1 (-1151 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-757)) (-4 *5 (-1131)) - (-4 *6 (-1131)) (-5 *2 (-1071 *6)) (-5 *1 (-1149 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5)) (-4 *5 (-759)) (-4 *5 (-1133)) + (-4 *6 (-1133)) (-5 *2 (-1073 *6)) (-5 *1 (-1151 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1150 *5 *6)) (-14 *5 (-1092)) (-4 *6 (-963)) - (-4 *8 (-963)) (-5 *2 (-1150 *7 *8)) (-5 *1 (-1151 *5 *6 *7 *8)) - (-14 *7 (-1092)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1152 *5 *6)) (-14 *5 (-1094)) (-4 *6 (-965)) + (-4 *8 (-965)) (-5 *2 (-1152 *7 *8)) (-5 *1 (-1153 *5 *6 *7 *8)) + (-14 *7 (-1094)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-1157 *6)) - (-5 *1 (-1158 *5 *4 *6 *2)) (-4 *4 (-1157 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-965)) (-4 *6 (-965)) (-4 *2 (-1159 *6)) + (-5 *1 (-1160 *5 *4 *6 *2)) (-4 *4 (-1159 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1162 *5 *7 *9)) (-4 *5 (-963)) - (-4 *6 (-963)) (-14 *7 (-1092)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1162 *6 *8 *10)) (-5 *1 (-1163 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1092)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1164 *5 *7 *9)) (-4 *5 (-965)) + (-4 *6 (-965)) (-14 *7 (-1094)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1164 *6 *8 *10)) (-5 *1 (-1165 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1094)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-1174 *6)) - (-5 *1 (-1172 *5 *6 *4 *2)) (-4 *4 (-1174 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-965)) (-4 *6 (-965)) (-4 *2 (-1176 *6)) + (-5 *1 (-1174 *5 *6 *4 *2)) (-4 *4 (-1176 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) - (-5 *2 (-1181 *6)) (-5 *1 (-1182 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1183 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) + (-5 *2 (-1183 *6)) (-5 *1 (-1184 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1181 *5)) - (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1181 *6)) (-5 *1 (-1182 *5 *6))))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1183 *5)) + (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-1183 *6)) (-5 *1 (-1184 *5 *6))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1133)) (-4 *2 (-1133)) (-5 *1 (-59 *5 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-963)) (-5 *2 (-2 (|:| -2006 (-1087 *4)) (|:| |deg| (-832)))) - (-5 *1 (-175 *4 *5)) (-5 *3 (-1087 *4)) (-4 *5 (-497)))) + (-12 (-4 *4 (-965)) (-5 *2 (-2 (|:| -2009 (-1089 *4)) (|:| |deg| (-834)))) + (-5 *1 (-177 *4 *5)) (-5 *3 (-1089 *4)) (-4 *5 (-499)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-696)) - (-4 *6 (-1131)) (-4 *2 (-1131)) (-5 *1 (-198 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-199 *5 *6)) (-14 *5 (-698)) + (-4 *6 (-1133)) (-4 *2 (-1133)) (-5 *1 (-200 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1157 *4)) + (-12 (-4 *4 (-148)) (-5 *1 (-246 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1159 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-497)) (-4 *2 (-1015)))) + ((*1 *1 *1) (-12 (-5 *1 (-267 *2)) (-4 *2 (-499)) (-4 *2 (-1017)))) ((*1 *1 *1) - (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1157 *2)) - (-4 *4 (-1157 (-350 *3))) (-4 *5 (-291 *2 *3 *4)))) + (-12 (-4 *1 (-288 *2 *3 *4 *5)) (-4 *2 (-314)) (-4 *3 (-1159 *2)) + (-4 *4 (-1159 (-352 *3))) (-4 *5 (-293 *2 *3 *4)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-72)) (-4 *1 (-318 *2)) (-4 *2 (-1131)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-72)) (-4 *1 (-320 *2)) (-4 *2 (-1133)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1131)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1131)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-320 *2)) (-4 *2 (-1133)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-320 *2)) (-4 *2 (-1133)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1131)) (-4 *2 (-1131)) - (-5 *1 (-325 *5 *4 *2 *6)) (-4 *4 (-324 *5)) (-4 *6 (-324 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1133)) (-4 *2 (-1133)) + (-5 *1 (-327 *5 *4 *2 *6)) (-4 *4 (-326 *5)) (-4 *6 (-326 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1015)) (-4 *2 (-1015)) - (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-369 *5)) (-4 *6 (-369 *2)))) - ((*1 *1 *1) (-5 *1 (-436))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1017)) (-4 *2 (-1017)) + (-5 *1 (-372 *5 *4 *2 *6)) (-4 *4 (-371 *5)) (-4 *6 (-371 *2)))) + ((*1 *1 *1) (-5 *1 (-438))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-585 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) - (-5 *1 (-586 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-587 *5)) (-4 *5 (-1133)) (-4 *2 (-1133)) + (-5 *1 (-588 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-963)) (-4 *2 (-963)) (-4 *6 (-324 *5)) - (-4 *7 (-324 *5)) (-4 *8 (-324 *2)) (-4 *9 (-324 *2)) - (-5 *1 (-630 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-629 *5 *6 *7)) - (-4 *10 (-629 *2 *8 *9)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-965)) (-4 *2 (-965)) (-4 *6 (-326 *5)) + (-4 *7 (-326 *5)) (-4 *8 (-326 *2)) (-4 *9 (-326 *2)) + (-5 *1 (-632 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-631 *5 *6 *7)) + (-4 *10 (-631 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-148)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) (-12 (-4 *3 (-963)) (-5 *1 (-651 *3 *2)) (-4 *2 (-1157 *3)))) + ((*1 *1 *2) (-12 (-4 *3 (-965)) (-5 *1 (-653 *3 *2)) (-4 *2 (-1159 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (-12 (-5 *1 (-656 *2 *3 *4 *5 *6)) (-4 *2 (-148)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-312)) - (-4 *3 (-146)) (-4 *1 (-663 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-663 *3 *2)) (-4 *2 (-1157 *3)))) + (|partial| -12 (-5 *2 (-352 *4)) (-4 *4 (-1159 *3)) (-4 *3 (-314)) + (-4 *3 (-148)) (-4 *1 (-665 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *3 (-148)) (-4 *1 (-665 *3 *2)) (-4 *2 (-1159 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-871 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) - (-5 *1 (-872 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-873 *5)) (-4 *5 (-1133)) (-4 *2 (-1133)) + (-5 *1 (-874 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) - (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-863 *3 *4 *5)) (-14 *6 (-585 *2)))) + (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) + (-5 *1 (-951 *3 *4 *5 *2 *6)) (-4 *2 (-865 *3 *4 *5)) (-14 *6 (-587 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-963)) (-4 *2 (-963)) (-14 *5 (-696)) - (-14 *6 (-696)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) - (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) - (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *12 (-967 *5 *6 *2 *10 *11)))) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-965)) (-4 *2 (-965)) (-14 *5 (-698)) + (-14 *6 (-698)) (-4 *8 (-198 *6 *7)) (-4 *9 (-198 *5 *7)) + (-4 *10 (-198 *6 *2)) (-4 *11 (-198 *5 *2)) + (-5 *1 (-971 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-969 *5 *6 *7 *8 *9)) (-4 *12 (-969 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1071 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) - (-5 *1 (-1073 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1073 *5)) (-4 *5 (-1133)) (-4 *2 (-1133)) + (-5 *1 (-1075 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) - (-4 *1 (-1126 *5 *6 *7 *2)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) - (-4 *2 (-979 *5 *6 *7)))) + (-4 *1 (-1128 *5 *6 *7 *2)) (-4 *5 (-499)) (-4 *6 (-721)) (-4 *7 (-760)) + (-4 *2 (-981 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1181 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) - (-5 *1 (-1182 *5 *2))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1183 *5)) (-4 *5 (-1133)) (-4 *2 (-1133)) + (-5 *1 (-1184 *5 *2))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1133)) (-4 *5 (-1133)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-696)) - (-4 *7 (-1131)) (-4 *5 (-1131)) (-5 *2 (-197 *6 *5)) - (-5 *1 (-198 *6 *7 *5)))) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-199 *6 *7)) (-14 *6 (-698)) + (-4 *7 (-1133)) (-4 *5 (-1133)) (-5 *2 (-199 *6 *5)) + (-5 *1 (-200 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-4 *2 (-324 *5)) - (-5 *1 (-325 *6 *4 *5 *2)) (-4 *4 (-324 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1133)) (-4 *5 (-1133)) (-4 *2 (-326 *5)) + (-5 *1 (-327 *6 *4 *5 *2)) (-4 *4 (-326 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1015)) (-4 *5 (-1015)) (-4 *2 (-369 *5)) - (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-369 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1017)) (-4 *5 (-1017)) (-4 *2 (-371 *5)) + (-5 *1 (-372 *6 *4 *5 *2)) (-4 *4 (-371 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-585 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) - (-5 *2 (-585 *5)) (-5 *1 (-586 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-587 *6)) (-4 *6 (-1133)) (-4 *5 (-1133)) + (-5 *2 (-587 *5)) (-5 *1 (-588 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-871 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) - (-5 *2 (-871 *5)) (-5 *1 (-872 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-873 *6)) (-4 *6 (-1133)) (-4 *5 (-1133)) + (-5 *2 (-873 *5)) (-5 *1 (-874 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1071 *6)) (-4 *6 (-1131)) (-4 *3 (-1131)) - (-5 *2 (-1071 *3)) (-5 *1 (-1073 *6 *3)))) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1073 *6)) (-4 *6 (-1133)) (-4 *3 (-1133)) + (-5 *2 (-1073 *3)) (-5 *1 (-1075 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1181 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) - (-5 *2 (-1181 *5)) (-5 *1 (-1182 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-1181 *3))))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1183 *6)) (-4 *6 (-1133)) (-4 *5 (-1133)) + (-5 *2 (-1183 *5)) (-5 *1 (-1184 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1133)) (-5 *1 (-1183 *3))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-130))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-167 *2)) + (-12 (-5 *1 (-169 *2)) (-4 *2 - (-13 (-758) - (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 ((-1187) $)) - (-15 -1965 ((-1187) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1131)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1131)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-104)))) + (-13 (-760) + (-10 -8 (-15 -3806 ((-1077) $ (-1094))) (-15 -3623 ((-1189) $)) + (-15 -1968 ((-1189) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-251 *2)) (-4 *2 (-25)) (-4 *2 (-1133)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-251 *2)) (-4 *2 (-25)) (-4 *2 (-1133)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-104)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *2)) (-4 *2 (-1157 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + (-12 (-4 *3 (-13 (-314) (-120))) (-5 *1 (-344 *3 *2)) (-4 *2 (-1159 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-413 *2 *3)) (-4 *2 (-148)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) - (-4 *5 (-863 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-475))) + (-12 (-4 *2 (-314)) (-4 *3 (-721)) (-4 *4 (-760)) (-5 *1 (-447 *2 *3 *4 *5)) + (-4 *5 (-865 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-477))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) - (-4 *4 (-324 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-774))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-25))))) + (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) + (-4 *4 (-326 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-776))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1017)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-858 (-181))) (-5 *1 (-1130)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1133)) (-4 *2 (-25))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-696)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)))) + (-12 (-5 *2 (-698)) (-4 *3 (-965)) (-4 *1 (-631 *3 *4 *5)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-696)) (-4 *1 (-1180 *3)) (-4 *3 (-23)) (-4 *3 (-1131))))) + (-12 (-5 *2 (-698)) (-4 *1 (-1182 *3)) (-4 *3 (-23)) (-4 *3 (-1133))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-107))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-167 *2)) + (-12 (-5 *1 (-169 *2)) (-4 *2 - (-13 (-758) - (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 ((-1187) $)) - (-15 -1965 ((-1187) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1131)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1131)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + (-13 (-760) + (-10 -8 (-15 -3806 ((-1077) $ (-1094))) (-15 -3623 ((-1189) $)) + (-15 -1968 ((-1189) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-251 *2)) (-4 *2 (-21)) (-4 *2 (-1133)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-251 *2)) (-4 *2 (-21)) (-4 *2 (-1133)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-413 *2 *3)) (-4 *2 (-148)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-413 *2 *3)) (-4 *2 (-148)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) - (-4 *4 (-324 *2)))) + (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) + (-4 *4 (-326 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) - (-4 *4 (-324 *2)))) - ((*1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1 *1) (-5 *1 (-774))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-21))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1131)) (-4 *2 (-963)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-774)))) - ((*1 *1 *1) (-5 *1 (-774))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-856 (-179))) (-5 *2 (-179)) (-5 *1 (-1128)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-963))))) + (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) + (-4 *4 (-326 *2)))) + ((*1 *1 *1) (-5 *1 (-776))) ((*1 *1 *1 *1) (-5 *1 (-776))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-858 (-181))) (-5 *1 (-1130)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1133)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1133)) (-4 *2 (-21))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-198 *3 *2)) (-4 *2 (-1133)) (-4 *2 (-965)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-776)))) + ((*1 *1 *1) (-5 *1 (-776))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-858 (-181))) (-5 *2 (-181)) (-5 *1 (-1130)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1133)) (-4 *2 (-965))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1131)) (-4 *3 (-963)) (-5 *2 (-632 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-963)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-963))))) -(((*1 *2 *3) - (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) - (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4)))) - ((*1 *1 *1) (-4 *1 (-485))) - ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) - ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) - ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-741 *3)) (-4 *3 (-758)))) - ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) - ((*1 *2 *1) (-12 (-4 *1 (-910 *3)) (-4 *3 (-1131)) (-5 *2 (-696)))) - ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1129 *3)) (-4 *3 (-1131)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-917)) (-4 *2 (-963))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1180 *2)) (-4 *2 (-1131)) (-4 *2 (-917)) (-4 *2 (-963))))) -(((*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-758)))) + (-12 (-4 *1 (-1182 *3)) (-4 *3 (-1133)) (-4 *3 (-965)) (-5 *2 (-634 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-965)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-858 (-181))) (-5 *1 (-1130)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1133)) (-4 *2 (-965))))) +(((*1 *2 *3) + (-12 (-4 *4 (-965)) (-4 *2 (-13 (-349) (-954 *4) (-314) (-1119) (-241))) + (-5 *1 (-386 *4 *3 *2)) (-4 *3 (-1159 *4)))) + ((*1 *1 *1) (-4 *1 (-487))) + ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-618 *3)) (-4 *3 (-760)))) + ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-622 *3)) (-4 *3 (-760)))) + ((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-743 *3)) (-4 *3 (-760)))) + ((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-807 *3)) (-4 *3 (-760)))) + ((*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-1133)) (-5 *2 (-698)))) + ((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-1131 *3)) (-4 *3 (-1133)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1133)) (-4 *2 (-919)) (-4 *2 (-965))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1133)) (-4 *2 (-919)) (-4 *2 (-965))))) +(((*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-760)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-775 *3)) (-14 *3 (-585 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-904)))) + (|partial| -12 (-5 *2 (-1094)) (-5 *1 (-777 *3)) (-14 *3 (-587 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-906)))) ((*1 *2 *1) - (-12 (-4 *4 (-1131)) (-5 *2 (-1092)) (-5 *1 (-973 *3 *4)) - (-4 *3 (-1008 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1006 *3)) (-4 *3 (-1131)))) + (-12 (-4 *4 (-1133)) (-5 *2 (-1094)) (-5 *1 (-975 *3 *4)) + (-4 *3 (-1010 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1008 *3)) (-4 *3 (-1133)))) ((*1 *2 *1) - (-12 (-4 *1 (-1160 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-1092)))) - ((*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1178 *3)) (-14 *3 *2)))) + (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720)) (-5 *2 (-1094)))) + ((*1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-1180 *3)) (-14 *3 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-350 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-497)) (-4 *4 (-963)) - (-4 *2 (-1174 *4)) (-5 *1 (-1176 *4 *5 *6 *2)) (-4 *6 (-602 *5))))) + (-12 (-5 *3 (-352 *5)) (-4 *5 (-1159 *4)) (-4 *4 (-499)) (-4 *4 (-965)) + (-4 *2 (-1176 *4)) (-5 *1 (-1178 *4 *5 *6 *2)) (-4 *6 (-604 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-963)) (-4 *5 (-1157 *4)) (-5 *2 (-1 *6 (-585 *6))) - (-5 *1 (-1176 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-1174 *4))))) + (-12 (-4 *4 (-965)) (-4 *5 (-1159 *4)) (-5 *2 (-1 *6 (-587 *6))) + (-5 *1 (-1178 *4 *5 *3 *6)) (-4 *3 (-604 *5)) (-4 *6 (-1176 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-696)) (-4 *5 (-963)) (-4 *2 (-1157 *5)) - (-5 *1 (-1176 *5 *2 *6 *3)) (-4 *6 (-602 *2)) (-4 *3 (-1174 *5))))) + (-12 (-5 *4 (-698)) (-4 *5 (-965)) (-4 *2 (-1159 *5)) + (-5 *1 (-1178 *5 *2 *6 *3)) (-4 *6 (-604 *2)) (-4 *3 (-1176 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-963)) (-4 *3 (-1157 *4)) (-4 *2 (-1174 *4)) - (-5 *1 (-1176 *4 *3 *5 *2)) (-4 *5 (-602 *3))))) + (-12 (-4 *4 (-965)) (-4 *3 (-1159 *4)) (-4 *2 (-1176 *4)) + (-5 *1 (-1178 *4 *3 *5 *2)) (-4 *5 (-604 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 (-1 *6 (-585 *6)))) - (-4 *5 (-38 (-350 (-486)))) (-4 *6 (-1174 *5)) (-5 *2 (-585 *6)) - (-5 *1 (-1175 *5 *6))))) + (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 (-1 *6 (-587 *6)))) + (-4 *5 (-38 (-352 (-488)))) (-4 *6 (-1176 *5)) (-5 *2 (-587 *6)) + (-5 *1 (-1177 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-585 *2))) (-5 *4 (-585 *5)) (-4 *5 (-38 (-350 (-486)))) - (-4 *2 (-1174 *5)) (-5 *1 (-1175 *5 *2))))) + (-12 (-5 *3 (-1 *2 (-587 *2))) (-5 *4 (-587 *5)) (-4 *5 (-38 (-352 (-488)))) + (-4 *2 (-1176 *5)) (-5 *1 (-1177 *5 *2))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1174 *4)) (-5 *1 (-1175 *4 *2)) - (-4 *4 (-38 (-350 (-486))))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1176 *4)) (-5 *1 (-1177 *4 *2)) + (-4 *4 (-38 (-352 (-488))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1174 *4)) (-5 *1 (-1175 *4 *2)) - (-4 *4 (-38 (-350 (-486))))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1176 *4)) (-5 *1 (-1177 *4 *2)) + (-4 *4 (-38 (-352 (-488))))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-1174 *3))))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-1176 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-585 *5))) (-4 *5 (-1174 *4)) (-4 *4 (-38 (-350 (-486)))) - (-5 *2 (-1 (-1071 *4) (-585 (-1071 *4)))) (-5 *1 (-1175 *4 *5))))) + (-12 (-5 *3 (-1 *5 (-587 *5))) (-4 *5 (-1176 *4)) (-4 *4 (-38 (-352 (-488)))) + (-5 *2 (-1 (-1073 *4) (-587 (-1073 *4)))) (-5 *1 (-1177 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1174 *4)) (-4 *4 (-38 (-350 (-486)))) - (-5 *2 (-1 (-1071 *4) (-1071 *4) (-1071 *4))) (-5 *1 (-1175 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-38 (-352 (-488)))) + (-5 *2 (-1 (-1073 *4) (-1073 *4) (-1073 *4))) (-5 *1 (-1177 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1174 *4)) (-4 *4 (-38 (-350 (-486)))) - (-5 *2 (-1 (-1071 *4) (-1071 *4))) (-5 *1 (-1175 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-38 (-352 (-488)))) + (-5 *2 (-1 (-1073 *4) (-1073 *4))) (-5 *1 (-1177 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) - (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-364 *4))))) + (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) + (-5 *2 (-51)) (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-27) (-1119) (-366 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) + (-12 (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-269 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-350 (-486))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) - (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) + (-12 (-5 *4 (-352 (-488))) (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) + (-5 *2 (-51)) (-5 *1 (-269 *5 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) - (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-267 *5 *3)))) + (-12 (-5 *4 (-251 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))) + (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-269 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-486))) - (-4 *3 (-13 (-27) (-1117) (-364 *6))) - (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-267 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-486))) (-5 *4 (-249 *6)) - (-4 *6 (-13 (-27) (-1117) (-364 *5))) - (-4 *5 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-400 *5 *6)))) + (-12 (-5 *4 (-251 *3)) (-5 *5 (-352 (-488))) + (-4 *3 (-13 (-27) (-1119) (-366 *6))) + (-4 *6 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-269 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-488))) (-5 *4 (-251 *6)) + (-4 *6 (-13 (-27) (-1119) (-366 *5))) + (-4 *5 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-402 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) - (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-400 *6 *3)))) + (-12 (-5 *4 (-1094)) (-5 *5 (-251 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *6))) + (-4 *6 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-402 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-486))) (-5 *4 (-249 *7)) (-5 *5 (-1148 (-486))) - (-4 *7 (-13 (-27) (-1117) (-364 *6))) - (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-400 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-488))) (-5 *4 (-251 *7)) (-5 *5 (-1150 (-488))) + (-4 *7 (-13 (-27) (-1119) (-366 *6))) + (-4 *6 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-402 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-486))) - (-4 *3 (-13 (-27) (-1117) (-364 *7))) - (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-400 *7 *3)))) + (-12 (-5 *4 (-1094)) (-5 *5 (-251 *3)) (-5 *6 (-1150 (-488))) + (-4 *3 (-13 (-27) (-1119) (-366 *7))) + (-4 *7 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-402 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-350 (-486)))) (-5 *4 (-249 *8)) - (-5 *5 (-1148 (-350 (-486)))) (-5 *6 (-350 (-486))) - (-4 *8 (-13 (-27) (-1117) (-364 *7))) - (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-400 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-352 (-488)))) (-5 *4 (-251 *8)) + (-5 *5 (-1150 (-352 (-488)))) (-5 *6 (-352 (-488))) + (-4 *8 (-13 (-27) (-1119) (-366 *7))) + (-4 *7 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-402 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-350 (-486)))) - (-5 *7 (-350 (-486))) (-4 *3 (-13 (-27) (-1117) (-364 *8))) - (-4 *8 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-400 *8 *3)))) + (-12 (-5 *4 (-1094)) (-5 *5 (-251 *3)) (-5 *6 (-1150 (-352 (-488)))) + (-5 *7 (-352 (-488))) (-4 *3 (-13 (-27) (-1119) (-366 *8))) + (-4 *8 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-402 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *3)))) (-4 *3 (-963)) - (-5 *1 (-532 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-533 *3)))) + (-12 (-5 *2 (-1073 (-2 (|:| |k| (-488)) (|:| |c| *3)))) (-4 *3 (-965)) + (-5 *1 (-534 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-535 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *3)))) (-4 *3 (-963)) - (-4 *1 (-1143 *3)))) + (-12 (-5 *2 (-1073 (-2 (|:| |k| (-488)) (|:| |c| *3)))) (-4 *3 (-965)) + (-4 *1 (-1145 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-696)) (-5 *3 (-1071 (-2 (|:| |k| (-350 (-486))) (|:| |c| *4)))) - (-4 *4 (-963)) (-4 *1 (-1164 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-4 *1 (-1174 *3)))) + (-12 (-5 *2 (-698)) (-5 *3 (-1073 (-2 (|:| |k| (-352 (-488))) (|:| |c| *4)))) + (-4 *4 (-965)) (-4 *1 (-1166 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-4 *1 (-1176 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1071 (-2 (|:| |k| (-696)) (|:| |c| *3)))) (-4 *3 (-963)) - (-4 *1 (-1174 *3))))) + (-12 (-5 *2 (-1073 (-2 (|:| |k| (-698)) (|:| |c| *3)))) (-4 *3 (-965)) + (-4 *1 (-1176 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-585 *3)))) + (-12 (-4 *1 (-279 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720)) (-5 *2 (-587 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-585 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-533 *3)) (-4 *3 (-963)))) + (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-965)) (-4 *4 (-1017)) (-5 *2 (-587 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-535 *3)) (-4 *3 (-965)))) ((*1 *2 *1) - (-12 (-5 *2 (-585 *3)) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) - ((*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-963)) (-5 *2 (-585 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-963)) (-5 *2 (-1071 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1174 *2)) (-4 *2 (-963))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-486))) (-4 *3 (-963)) (-5 *1 (-532 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-486))) (-4 *1 (-1143 *3)) (-4 *3 (-963)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-486))) (-4 *1 (-1174 *3)) (-4 *3 (-963))))) + (-12 (-5 *2 (-587 *3)) (-5 *1 (-678 *3 *4)) (-4 *3 (-965)) (-4 *4 (-667)))) + ((*1 *2 *1) (-12 (-4 *1 (-765 *3)) (-4 *3 (-965)) (-5 *2 (-587 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1176 *3)) (-4 *3 (-965)) (-5 *2 (-1073 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-965))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-488))) (-4 *3 (-965)) (-5 *1 (-534 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-488))) (-4 *1 (-1145 *3)) (-4 *3 (-965)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-488))) (-4 *1 (-1176 *3)) (-4 *3 (-965))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *5)) (-4 *4 (-963)) (-4 *5 (-758)) - (-5 *2 (-859 *4)))) + (-12 (-5 *3 (-698)) (-4 *1 (-683 *4 *5)) (-4 *4 (-965)) (-4 *5 (-760)) + (-5 *2 (-861 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *5)) (-4 *4 (-963)) (-4 *5 (-758)) - (-5 *2 (-859 *4)))) + (-12 (-5 *3 (-698)) (-4 *1 (-683 *4 *5)) (-4 *4 (-965)) (-4 *5 (-760)) + (-5 *2 (-861 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-696)) (-4 *1 (-1174 *4)) (-4 *4 (-963)) (-5 *2 (-859 *4)))) + (-12 (-5 *3 (-698)) (-4 *1 (-1176 *4)) (-4 *4 (-965)) (-5 *2 (-861 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-696)) (-4 *1 (-1174 *4)) (-4 *4 (-963)) (-5 *2 (-859 *4))))) + (-12 (-5 *3 (-698)) (-4 *1 (-1176 *4)) (-4 *4 (-965)) (-5 *2 (-861 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-350 (-486))) (-4 *4 (-952 (-486))) (-4 *4 (-497)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-364 *4)))) + (-12 (-5 *3 (-352 (-488))) (-4 *4 (-954 (-488))) (-4 *4 (-499)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-366 *4)))) ((*1 *1 *1 *1) (-5 *1 (-107))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-179))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-486)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-131 *3 *2)) (-4 *2 (-366 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-181))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-203)) (-5 *2 (-488)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-350 (-486))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1174 *4)) - (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1145 *4 *5)))) + (-12 (-5 *3 (-352 (-488))) (-4 *4 (-314)) (-4 *4 (-38 *3)) (-4 *5 (-1176 *4)) + (-5 *1 (-234 *4 *5 *2)) (-4 *2 (-1147 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-350 (-486))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1143 *4)) - (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1166 *4 *5)) (-4 *6 (-898 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-239))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-310 *2)) (-4 *2 (-1015)))) - ((*1 *1 *1 *1) (-5 *1 (-330))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-336 *2)) (-4 *2 (-1015)))) + (-12 (-5 *3 (-352 (-488))) (-4 *4 (-314)) (-4 *4 (-38 *3)) (-4 *5 (-1145 *4)) + (-5 *1 (-235 *4 *5 *2 *6)) (-4 *2 (-1168 *4 *5)) (-4 *6 (-900 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-241))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-312 *2)) (-4 *2 (-1017)))) + ((*1 *1 *1 *1) (-5 *1 (-332))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-698)) (-4 *1 (-338 *2)) (-4 *2 (-1017)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-696)) (-4 *1 (-364 *3)) (-4 *3 (-1015)) (-4 *3 (-1027)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-486)))) + (-12 (-5 *2 (-698)) (-4 *1 (-366 *3)) (-4 *3 (-1017)) (-4 *3 (-1029)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-488)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-696)) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) - (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) + (-12 (-5 *2 (-698)) (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) + (-5 *1 (-447 *3 *4 *5 *6)) (-4 *6 (-865 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1181 *4)) (-5 *3 (-486)) (-4 *4 (-299)) (-5 *1 (-468 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-475)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-475)))) + (-12 (-5 *2 (-1183 *4)) (-5 *3 (-488)) (-4 *4 (-301)) (-5 *1 (-470 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-477)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-477)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-696)) (-4 *4 (-1015)) (-5 *1 (-625 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-698)) (-4 *4 (-1017)) (-5 *1 (-627 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-4 *3 (-312)))) + (-12 (-5 *2 (-488)) (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)) (-4 *3 (-314)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-696)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)))) + (-12 (-5 *2 (-698)) (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-632 *4)) (-5 *3 (-696)) (-4 *4 (-963)) (-5 *1 (-633 *4)))) + (-12 (-5 *2 (-634 *4)) (-5 *3 (-698)) (-4 *4 (-965)) (-5 *1 (-635 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-486)) (-4 *3 (-963)) (-5 *1 (-653 *3 *4)) (-4 *4 (-592 *3)))) + (-12 (-5 *2 (-488)) (-4 *3 (-965)) (-5 *1 (-655 *3 *4)) (-4 *4 (-594 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-486)) (-4 *4 (-963)) (-5 *1 (-653 *4 *5)) - (-4 *5 (-592 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-832)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-696)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-696)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-747 *3)) (-4 *3 (-963)))) + (-12 (-5 *2 (-86)) (-5 *3 (-488)) (-4 *4 (-965)) (-5 *1 (-655 *4 *5)) + (-4 *5 (-594 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-834)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-698)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-667)) (-5 *2 (-698)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-749 *3)) (-4 *3 (-965)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-486)) (-5 *1 (-747 *4)) (-4 *4 (-963)))) - ((*1 *1 *1 *1) (-5 *1 (-774))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-917)) (-5 *2 (-350 (-486))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-832)))) + (-12 (-5 *2 (-86)) (-5 *3 (-488)) (-5 *1 (-749 *4)) (-4 *4 (-965)))) + ((*1 *1 *1 *1) (-5 *1 (-776))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1017)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-919)) (-5 *2 (-352 (-488))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1029)) (-5 *2 (-834)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-486)) (-4 *1 (-1039 *3 *4 *5 *6)) (-4 *4 (-963)) - (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-312)))) + (-12 (-5 *2 (-488)) (-4 *1 (-1041 *3 *4 *5 *6)) (-4 *4 (-965)) + (-4 *5 (-198 *3 *4)) (-4 *6 (-198 *3 *4)) (-4 *4 (-314)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1174 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-965)) (-4 *2 (-314))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1006 (-752 *3))) (-4 *3 (-13 (-1117) (-873) (-29 *5))) - (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) + (-12 (-5 *4 (-1008 (-754 *3))) (-4 *3 (-13 (-1119) (-875) (-29 *5))) + (-4 *5 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 - (-3 (|:| |f1| (-752 *3)) (|:| |f2| (-585 (-752 *3))) + (-3 (|:| |f1| (-754 *3)) (|:| |f2| (-587 (-754 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) - (-5 *1 (-173 *5 *3)))) + (-5 *1 (-175 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1006 (-752 *3))) (-5 *5 (-1075)) - (-4 *3 (-13 (-1117) (-873) (-29 *6))) - (-4 *6 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) + (-12 (-5 *4 (-1008 (-754 *3))) (-5 *5 (-1077)) + (-4 *3 (-13 (-1119) (-875) (-29 *6))) + (-4 *6 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 - (-3 (|:| |f1| (-752 *3)) (|:| |f2| (-585 (-752 *3))) (|:| |fail| #1#) + (-3 (|:| |f1| (-754 *3)) (|:| |f2| (-587 (-754 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) - (-5 *1 (-173 *6 *3)))) + (-5 *1 (-175 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1006 (-752 (-265 *5)))) - (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) + (-12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-1008 (-754 (-267 *5)))) + (-4 *5 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 - (-3 (|:| |f1| (-752 (-265 *5))) (|:| |f2| (-585 (-752 (-265 *5)))) + (-3 (|:| |f1| (-754 (-267 *5))) (|:| |f2| (-587 (-754 (-267 *5)))) (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole"))) - (-5 *1 (-174 *5)))) + (-5 *1 (-176 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-350 (-859 *6))) (-5 *4 (-1006 (-752 (-265 *6)))) - (-5 *5 (-1075)) (-4 *6 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) + (-12 (-5 *3 (-352 (-861 *6))) (-5 *4 (-1008 (-754 (-267 *6)))) + (-5 *5 (-1077)) (-4 *6 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 - (-3 (|:| |f1| (-752 (-265 *6))) (|:| |f2| (-585 (-752 (-265 *6)))) + (-3 (|:| |f1| (-754 (-267 *6))) (|:| |f2| (-587 (-754 (-267 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-174 *6)))) + (-5 *1 (-176 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1006 (-752 (-350 (-859 *5))))) (-5 *3 (-350 (-859 *5))) - (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) + (-12 (-5 *4 (-1008 (-754 (-352 (-861 *5))))) (-5 *3 (-352 (-861 *5))) + (-4 *5 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 - (-3 (|:| |f1| (-752 (-265 *5))) (|:| |f2| (-585 (-752 (-265 *5)))) + (-3 (|:| |f1| (-754 (-267 *5))) (|:| |f2| (-587 (-754 (-267 *5)))) (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-174 *5)))) + (-5 *1 (-176 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1006 (-752 (-350 (-859 *6))))) (-5 *5 (-1075)) - (-5 *3 (-350 (-859 *6))) - (-4 *6 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) + (-12 (-5 *4 (-1008 (-754 (-352 (-861 *6))))) (-5 *5 (-1077)) + (-5 *3 (-352 (-861 *6))) + (-4 *6 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 - (-3 (|:| |f1| (-752 (-265 *6))) (|:| |f2| (-585 (-752 (-265 *6)))) + (-3 (|:| |f1| (-754 (-267 *6))) (|:| |f2| (-587 (-754 (-267 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-174 *6)))) + (-5 *1 (-176 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) - (-5 *2 (-3 *3 (-585 *3))) (-5 *1 (-373 *5 *3)) - (-4 *3 (-13 (-1117) (-873) (-29 *5))))) + (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) + (-5 *2 (-3 *3 (-587 *3))) (-5 *1 (-375 *5 *3)) + (-4 *3 (-13 (-1119) (-875) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-415 *3 *4 *5)) - (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3))) + (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-417 *3 *4 *5)) + (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)) (-14 *5 *3))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-952 (-486)))) (-4 *5 (-1157 *4)) - (-5 *2 (-521 (-350 *5))) (-5 *1 (-506 *4 *5)) (-5 *3 (-350 *5)))) + (-12 (-4 *4 (-13 (-314) (-120) (-954 (-488)))) (-4 *5 (-1159 *4)) + (-5 *2 (-523 (-352 *5))) (-5 *1 (-508 *4 *5)) (-5 *3 (-352 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-120)) - (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) - (-5 *2 (-3 (-265 *5) (-585 (-265 *5)))) (-5 *1 (-527 *5)))) + (-12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-1094)) (-4 *5 (-120)) + (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) + (-5 *2 (-3 (-267 *5) (-587 (-267 *5)))) (-5 *1 (-529 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963)))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-681 *3 *2)) (-4 *3 (-963)) (-4 *2 (-758)) - (-4 *3 (-38 (-350 (-486)))))) + (-12 (-4 *1 (-683 *3 *2)) (-4 *3 (-965)) (-4 *2 (-760)) + (-4 *3 (-38 (-352 (-488)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1092)) (-5 *1 (-859 *3)) (-4 *3 (-38 (-350 (-486)))) - (-4 *3 (-963)))) + (-12 (-5 *2 (-1094)) (-5 *1 (-861 *3)) (-4 *3 (-38 (-352 (-488)))) + (-4 *3 (-965)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-4 *2 (-758)) - (-5 *1 (-1042 *3 *2 *4)) (-4 *4 (-863 *3 (-471 *2) *2)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)) (-4 *2 (-760)) + (-5 *1 (-1044 *3 *2 *4)) (-4 *4 (-865 *3 (-473 *2) *2)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) - (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)) + (-5 *1 (-1079 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1084 *3 *4 *5)) - (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3))) + (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1086 *3 *4 *5)) + (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1090 *3 *4 *5)) - (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3))) + (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1092 *3 *4 *5)) + (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1091 *3 *4 *5)) - (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3))) + (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1093 *3 *4 *5)) + (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1092)) (-5 *1 (-1124 *3)) (-4 *3 (-38 (-350 (-486)))) - (-4 *3 (-963)))) + (-12 (-5 *2 (-1094)) (-5 *1 (-1126 *3)) (-4 *3 (-38 (-352 (-488)))) + (-4 *3 (-965)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1141 *3 *4 *5)) - (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3))) + (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1143 *3 *4 *5)) + (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1092)) (-4 *1 (-1143 *3)) (-4 *3 (-963)) - (-12 (-4 *3 (-29 (-486))) (-4 *3 (-873)) (-4 *3 (-1117)) - (-4 *3 (-38 (-350 (-486)))))) - (-12 (-5 *2 (-1092)) (-4 *1 (-1143 *3)) (-4 *3 (-963)) - (-12 (|has| *3 (-15 -3084 ((-585 *2) *3))) - (|has| *3 (-15 -3815 (*3 *3 *2))) (-4 *3 (-38 (-350 (-486)))))))) + (-12 (-5 *2 (-1094)) (-4 *1 (-1145 *3)) (-4 *3 (-965)) + (-12 (-4 *3 (-29 (-488))) (-4 *3 (-875)) (-4 *3 (-1119)) + (-4 *3 (-38 (-352 (-488)))))) + (-12 (-5 *2 (-1094)) (-4 *1 (-1145 *3)) (-4 *3 (-965)) + (-12 (|has| *3 (-15 -3087 ((-587 *2) *3))) + (|has| *3 (-15 -3818 (*3 *3 *2))) (-4 *3 (-38 (-352 (-488)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1143 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-350 (-486)))))) + (-12 (-4 *1 (-1145 *2)) (-4 *2 (-965)) (-4 *2 (-38 (-352 (-488)))))) ((*1 *1 *1) - (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-350 (-486)))))) + (-12 (-4 *1 (-1159 *2)) (-4 *2 (-965)) (-4 *2 (-38 (-352 (-488)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1162 *3 *4 *5)) - (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3))) + (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1164 *3 *4 *5)) + (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1092)) (-4 *1 (-1164 *3)) (-4 *3 (-963)) - (-12 (-4 *3 (-29 (-486))) (-4 *3 (-873)) (-4 *3 (-1117)) - (-4 *3 (-38 (-350 (-486)))))) - (-12 (-5 *2 (-1092)) (-4 *1 (-1164 *3)) (-4 *3 (-963)) - (-12 (|has| *3 (-15 -3084 ((-585 *2) *3))) - (|has| *3 (-15 -3815 (*3 *3 *2))) (-4 *3 (-38 (-350 (-486)))))))) + (-12 (-5 *2 (-1094)) (-4 *1 (-1166 *3)) (-4 *3 (-965)) + (-12 (-4 *3 (-29 (-488))) (-4 *3 (-875)) (-4 *3 (-1119)) + (-4 *3 (-38 (-352 (-488)))))) + (-12 (-5 *2 (-1094)) (-4 *1 (-1166 *3)) (-4 *3 (-965)) + (-12 (|has| *3 (-15 -3087 ((-587 *2) *3))) + (|has| *3 (-15 -3818 (*3 *3 *2))) (-4 *3 (-38 (-352 (-488)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1164 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-350 (-486)))))) + (-12 (-4 *1 (-1166 *2)) (-4 *2 (-965)) (-4 *2 (-38 (-352 (-488)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1178 *4)) (-14 *4 (-1092)) (-5 *1 (-1171 *3 *4 *5)) - (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963)) (-14 *5 *3))) + (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1094)) (-5 *1 (-1173 *3 *4 *5)) + (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1092)) (-4 *1 (-1174 *3)) (-4 *3 (-963)) - (-12 (-4 *3 (-29 (-486))) (-4 *3 (-873)) (-4 *3 (-1117)) - (-4 *3 (-38 (-350 (-486)))))) - (-12 (-5 *2 (-1092)) (-4 *1 (-1174 *3)) (-4 *3 (-963)) - (-12 (|has| *3 (-15 -3084 ((-585 *2) *3))) - (|has| *3 (-15 -3815 (*3 *3 *2))) (-4 *3 (-38 (-350 (-486)))))))) + (-12 (-5 *2 (-1094)) (-4 *1 (-1176 *3)) (-4 *3 (-965)) + (-12 (-4 *3 (-29 (-488))) (-4 *3 (-875)) (-4 *3 (-1119)) + (-4 *3 (-38 (-352 (-488)))))) + (-12 (-5 *2 (-1094)) (-4 *1 (-1176 *3)) (-4 *3 (-965)) + (-12 (|has| *3 (-15 -3087 ((-587 *2) *3))) + (|has| *3 (-15 -3818 (*3 *3 *2))) (-4 *3 (-38 (-352 (-488)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1174 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-350 (-486))))))) + (-12 (-4 *1 (-1176 *2)) (-4 *2 (-965)) (-4 *2 (-38 (-352 (-488))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-696)) (-5 *2 (-1150 *5 *4)) (-5 *1 (-1091 *4 *5 *6)) - (-4 *4 (-963)) (-14 *5 (-1092)) (-14 *6 *4))) + (-12 (-5 *3 (-698)) (-5 *2 (-1152 *5 *4)) (-5 *1 (-1093 *4 *5 *6)) + (-4 *4 (-965)) (-14 *5 (-1094)) (-14 *6 *4))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-696)) (-5 *2 (-1150 *5 *4)) (-5 *1 (-1171 *4 *5 *6)) - (-4 *4 (-963)) (-14 *5 (-1092)) (-14 *6 *4)))) -(((*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) + (-12 (-5 *3 (-698)) (-5 *2 (-1152 *5 *4)) (-5 *1 (-1173 *4 *5 *6)) + (-4 *4 (-965)) (-14 *5 (-1094)) (-14 *6 *4)))) +(((*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) + (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-965)) (-14 *3 (-1094)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) + (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-965)) (-14 *3 (-1094)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) + (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-965)) (-14 *3 (-1094)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2)))) + (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-965)) (-14 *3 (-1094)) (-14 *4 *2)))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1071 *4)) (-5 *3 (-486)) (-4 *4 (-963)) (-5 *1 (-1077 *4)))) + (-12 (-5 *2 (-1073 *4)) (-5 *3 (-488)) (-4 *4 (-965)) (-5 *1 (-1079 *4)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-486)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1092)) + (-12 (-5 *2 (-488)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-965)) (-14 *4 (-1094)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1171 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1092)) (-14 *4 *2)))) + (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-965)) (-14 *3 (-1094)) (-14 *4 *2)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1071 *4)) (-5 *3 (-486)) (-4 *4 (-963)) (-5 *1 (-1077 *4)))) + (-12 (-5 *2 (-1073 *4)) (-5 *3 (-488)) (-4 *4 (-965)) (-5 *1 (-1079 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-486)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1092)) + (-12 (-5 *2 (-488)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-965)) (-14 *4 (-1094)) (-14 *5 *3)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1071 *4)) (-5 *3 (-486)) (-4 *4 (-963)) (-5 *1 (-1077 *4)))) + (-12 (-5 *2 (-1073 *4)) (-5 *3 (-488)) (-4 *4 (-965)) (-5 *1 (-1079 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-486)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1092)) + (-12 (-5 *2 (-488)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-965)) (-14 *4 (-1094)) (-14 *5 *3)))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1131)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1131)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1131)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1071 (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1072 *4)) - (-4 *4 (-1131)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) - (-12 (-4 *1 (-540 *3 *2)) (-4 *3 (-72)) (-4 *3 (-758)) (-4 *2 (-1131)))) - ((*1 *2 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) - ((*1 *2 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) - ((*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-784 *2 *3)) (-4 *3 (-1131)))) - ((*1 *2 *1) (-12 (-5 *2 (-616 *3)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) - (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) - ((*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-597 *3)) (-4 *3 (-1133)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1133)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1133)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1073 (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1074 *4)) + (-4 *4 (-1133)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) + (-12 (-4 *1 (-542 *3 *2)) (-4 *3 (-72)) (-4 *3 (-760)) (-4 *2 (-1133)))) + ((*1 *2 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-760)))) + ((*1 *2 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-760)))) + ((*1 *2 *1) (-12 (-4 *2 (-1133)) (-5 *1 (-786 *2 *3)) (-4 *3 (-1133)))) + ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-807 *3)) (-4 *3 (-760)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1128 *3 *4 *5 *2)) (-4 *3 (-499)) (-4 *4 (-721)) + (-4 *5 (-760)) (-4 *2 (-981 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-1172 *3)) (-4 *3 (-1133)))) + ((*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1131)) (-4 *4 (-324 *2)) - (-4 *5 (-324 *2)))) + (-12 (-5 *3 (-488)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1133)) (-4 *4 (-326 *2)) + (-4 *5 (-326 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) - (-4 *5 (-324 *2)) (-4 *2 (-1131)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1131)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1131)))) + (-12 (-5 *3 (-488)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-326 *2)) + (-4 *5 (-326 *2)) (-4 *2 (-1133)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1133)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1133)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-585 (-486))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) - (-14 *4 (-486)) (-14 *5 (-696)))) + (-12 (-5 *3 (-587 (-488))) (-4 *2 (-148)) (-5 *1 (-108 *4 *5 *2)) + (-14 *4 (-488)) (-14 *5 (-698)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-486)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-696)))) + (-12 (-5 *3 (-488)) (-4 *2 (-148)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-698)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-486)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-696)))) + (-12 (-5 *3 (-488)) (-4 *2 (-148)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-698)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-486)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-696)))) + (-12 (-5 *3 (-488)) (-4 *2 (-148)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-698)))) ((*1 *2 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-486)) (-14 *4 (-696)))) + (-12 (-4 *2 (-148)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-488)) (-14 *4 (-698)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1092)) (-5 *2 (-203 (-1075))) (-5 *1 (-167 *4)) + (-12 (-5 *3 (-1094)) (-5 *2 (-205 (-1077))) (-5 *1 (-169 *4)) (-4 *4 - (-13 (-758) - (-10 -8 (-15 -3803 ((-1075) $ *3)) (-15 -3620 ((-1187) $)) - (-15 -1965 ((-1187) $))))))) + (-13 (-760) + (-10 -8 (-15 -3806 ((-1077) $ *3)) (-15 -3623 ((-1189) $)) + (-15 -1968 ((-1189) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-904)) (-5 *1 (-167 *3)) + (-12 (-5 *2 (-906)) (-5 *1 (-169 *3)) (-4 *3 - (-13 (-758) - (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 ((-1187) $)) - (-15 -1965 ((-1187) $))))))) + (-13 (-760) + (-10 -8 (-15 -3806 ((-1077) $ (-1094))) (-15 -3623 ((-1189) $)) + (-15 -1968 ((-1189) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-696)) (-5 *1 (-203 *4)) (-4 *4 (-758)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-758)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-758)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1131)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-585 *1)) (-4 *1 (-254)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) + (-12 (-5 *3 "count") (-5 *2 (-698)) (-5 *1 (-205 *4)) (-4 *4 (-760)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-205 *3)) (-4 *3 (-760)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-205 *3)) (-4 *3 (-760)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1133)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-245 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1133)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-587 *1)) (-4 *1 (-256)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-256)) (-5 *2 (-86)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-256)) (-5 *2 (-86)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-256)) (-5 *2 (-86)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-256)) (-5 *2 (-86)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1136)) (-4 *3 (-1157 *2)) - (-4 *4 (-1157 (-350 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1075)) (-5 *1 (-443)))) + (-12 (-4 *1 (-293 *2 *3 *4)) (-4 *2 (-1138)) (-4 *3 (-1159 *2)) + (-4 *4 (-1159 (-352 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-1077)) (-5 *1 (-445)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-585 (-486))) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) - (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) + (-12 (-5 *2 (-587 (-488))) (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) + (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-585 (-802 *4))) (-5 *1 (-802 *4)) - (-4 *4 (-1015)))) + (-12 (-5 *2 (-86)) (-5 *3 (-587 (-804 *4))) (-5 *1 (-804 *4)) + (-4 *4 (-1017)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-696)) (-5 *2 (-815 *4)) (-5 *1 (-818 *4)) (-4 *4 (-1015)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-925 *2)) (-4 *2 (-1131)))) + (-12 (-5 *3 (-698)) (-5 *2 (-817 *4)) (-5 *1 (-820 *4)) (-4 *4 (-1017)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-927 *2)) (-4 *2 (-1133)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *2 (-963)) - (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) + (-12 (-5 *3 (-488)) (-4 *1 (-969 *4 *5 *2 *6 *7)) (-4 *2 (-965)) + (-4 *6 (-198 *5 *2)) (-4 *7 (-198 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) - (-4 *7 (-196 *4 *2)) (-4 *2 (-963)))) + (-12 (-5 *3 (-488)) (-4 *1 (-969 *4 *5 *2 *6 *7)) (-4 *6 (-198 *5 *2)) + (-4 *7 (-198 *4 *2)) (-4 *2 (-965)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-832)) (-4 *4 (-1015)) - (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-989 *4 *5 *2)) - (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))))) + (-12 (-5 *3 (-834)) (-4 *4 (-1017)) + (-4 *5 (-13 (-965) (-800 *4) (-557 (-804 *4)))) (-5 *1 (-991 *4 *5 *2)) + (-4 *2 (-13 (-366 *5) (-800 *4) (-557 (-804 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-832)) (-4 *4 (-1015)) - (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-991 *4 *5 *2)) - (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1060))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1092)))) + (-12 (-5 *3 (-834)) (-4 *4 (-1017)) + (-4 *5 (-13 (-965) (-800 *4) (-557 (-804 *4)))) (-5 *1 (-993 *4 *5 *2)) + (-4 *2 (-13 (-366 *5) (-800 *4) (-557 (-804 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1062))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-1094)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-350 *1)) (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) + (-12 (-5 *3 (-352 *1)) (-4 *1 (-1159 *2)) (-4 *2 (-965)) (-4 *2 (-314)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-350 *1)) (-4 *1 (-1157 *3)) (-4 *3 (-963)) (-4 *3 (-497)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) -(((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) - ((*1 *1 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) - ((*1 *1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-758)))) + (-12 (-5 *2 (-352 *1)) (-4 *1 (-1159 *3)) (-4 *3 (-965)) (-4 *3 (-499)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1172 *3)) (-4 *3 (-1133)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1172 *2)) (-4 *2 (-1133))))) +(((*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-760)))) + ((*1 *1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-760)))) + ((*1 *1 *1) (-12 (-5 *1 (-807 *2)) (-4 *2 (-760)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1126 *2 *3 *4 *5)) (-4 *2 (-497)) (-4 *3 (-719)) - (-4 *4 (-758)) (-4 *5 (-979 *2 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) - ((*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131)))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1010)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) - (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) - ((*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) -(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131)))) + (|partial| -12 (-4 *1 (-1128 *2 *3 *4 *5)) (-4 *2 (-499)) (-4 *3 (-721)) + (-4 *4 (-760)) (-4 *5 (-981 *2 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-1172 *3)) (-4 *3 (-1133)))) + ((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-204 *2)) (-4 *2 (-1133)))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1012)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1128 *3 *4 *5 *2)) (-4 *3 (-499)) (-4 *4 (-721)) + (-4 *5 (-760)) (-4 *2 (-981 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-1172 *3)) (-4 *3 (-1133)))) + ((*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133))))) +(((*1 *1 *1) (-12 (-4 *1 (-204 *2)) (-4 *2 (-1133)))) ((*1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) - ((*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-784 *3 *2)) (-4 *3 (-1131)))) - ((*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) -(((*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1131)) (-5 *2 (-696))))) -(((*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1131)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) -(((*1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)))) + ((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *2 (-1133)) (-5 *1 (-786 *3 *2)) (-4 *3 (-1133)))) + ((*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133))))) +(((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-1133)) (-5 *2 (-698))))) +(((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1133))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-204 *2)) (-4 *2 (-1133)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-1172 *2)) (-4 *2 (-1133))))) +(((*1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-1172 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-1172 *2)) (-4 *2 (-1133))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1131)) (-4 *4 (-324 *2)) - (-4 *5 (-324 *2)))) + (-12 (-5 *3 (-488)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1133)) (-4 *4 (-326 *2)) + (-4 *5 (-326 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (-4 *1 (-1037 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1131)))) + (-12 (-5 *2 "right") (-4 *1 (-1039 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1133)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (-4 *1 (-1037 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1131)))) + (-12 (-5 *2 "left") (-4 *1 (-1039 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1133)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1037 *2)) (-4 *1 (-243 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1131)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1092)) (-5 *1 (-573)))) + (-12 (-4 *1 (-1039 *2)) (-4 *1 (-245 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1133)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1094)) (-5 *1 (-575)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1148 (-486))) (-4 *1 (-1037 *2)) (-4 *1 (-595 *2)) - (-4 *2 (-1131)))) + (-12 (-5 *3 (-1150 (-488))) (-4 *1 (-1039 *2)) (-4 *1 (-597 *2)) + (-4 *2 (-1133)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-585 (-486))) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) - (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) + (-12 (-5 *2 (-587 (-488))) (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) + (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (-4 *1 (-1037 *2)) (-4 *1 (-925 *2)) (-4 *2 (-1131)))) + (-12 (-5 *3 "value") (-4 *1 (-1039 *2)) (-4 *1 (-927 *2)) (-4 *2 (-1133)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131)))) + (-12 (-5 *3 "last") (-4 *1 (-1039 *2)) (-4 *1 (-1172 *2)) (-4 *2 (-1133)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (-4 *1 (-1037 *3)) (-4 *1 (-1170 *3)) (-4 *3 (-1131)))) + (-12 (-5 *2 "rest") (-4 *1 (-1039 *3)) (-4 *1 (-1172 *3)) (-4 *3 (-1133)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1071 *3)) (-4 *3 (-1131)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-1170 *2)) (-4 *2 (-1131))))) + (-12 (-5 *3 "first") (-4 *1 (-1039 *2)) (-4 *1 (-1172 *2)) (-4 *2 (-1133))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-1073 *3)) (-4 *3 (-1133)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-1172 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-1172 *2)) (-4 *2 (-1133))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-486)) (-4 *1 (-1037 *3)) (-4 *1 (-1170 *3)) (-4 *3 (-1131))))) + (-12 (-5 *2 (-488)) (-4 *1 (-1039 *3)) (-4 *1 (-1172 *3)) (-4 *3 (-1133))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-952 (-486)) (-582 (-486)) (-393))) - (-5 *2 (-752 *4)) (-5 *1 (-264 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1117) (-364 *3))) (-14 *5 (-1092)) (-14 *6 *4))) + (|partial| -12 (-4 *3 (-13 (-954 (-488)) (-584 (-488)) (-395))) + (-5 *2 (-754 *4)) (-5 *1 (-266 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1119) (-366 *3))) (-14 *5 (-1094)) (-14 *6 *4))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-952 (-486)) (-582 (-486)) (-393))) - (-5 *2 (-752 *4)) (-5 *1 (-1168 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1117) (-364 *3))) (-14 *5 (-1092)) (-14 *6 *4)))) + (|partial| -12 (-4 *3 (-13 (-954 (-488)) (-584 (-488)) (-395))) + (-5 *2 (-754 *4)) (-5 *1 (-1170 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1119) (-366 *3))) (-14 *5 (-1094)) (-14 *6 *4)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-952 (-486)) (-582 (-486)) (-393))) + (|partial| -12 (-4 *3 (-13 (-954 (-488)) (-584 (-488)) (-395))) (-5 *2 (-2 (|:| |%term| - (-2 (|:| |%coef| (-1162 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) - (|:| |%expTerms| (-585 (-2 (|:| |k| (-350 (-486))) (|:| |c| *4)))))) - (|:| |%type| (-1075)))) - (-5 *1 (-1168 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1117) (-364 *3))) - (-14 *5 (-1092)) (-14 *6 *4)))) + (-2 (|:| |%coef| (-1164 *4 *5 *6)) (|:| |%expon| (-272 *4 *5 *6)) + (|:| |%expTerms| (-587 (-2 (|:| |k| (-352 (-488))) (|:| |c| *4)))))) + (|:| |%type| (-1077)))) + (-5 *1 (-1170 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1119) (-366 *3))) + (-14 *5 (-1094)) (-14 *6 *4)))) (((*1 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) - (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-364 *4))))) + (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) + (-5 *2 (-51)) (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-27) (-1119) (-366 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) + (-12 (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-269 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-350 (-486))) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) - (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) + (-12 (-5 *4 (-352 (-488))) (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) + (-5 *2 (-51)) (-5 *1 (-269 *5 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) - (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-267 *5 *3)))) + (-12 (-5 *4 (-251 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))) + (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-269 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-486))) - (-4 *3 (-13 (-27) (-1117) (-364 *6))) - (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-267 *6 *3)))) + (-12 (-5 *4 (-251 *3)) (-5 *5 (-352 (-488))) + (-4 *3 (-13 (-27) (-1119) (-366 *6))) + (-4 *6 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-269 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-350 (-486)))) (-5 *4 (-249 *8)) - (-5 *5 (-1148 (-350 (-486)))) (-5 *6 (-350 (-486))) - (-4 *8 (-13 (-27) (-1117) (-364 *7))) - (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-400 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-352 (-488)))) (-5 *4 (-251 *8)) + (-5 *5 (-1150 (-352 (-488)))) (-5 *6 (-352 (-488))) + (-4 *8 (-13 (-27) (-1119) (-366 *7))) + (-4 *7 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-402 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-350 (-486)))) - (-5 *7 (-350 (-486))) (-4 *3 (-13 (-27) (-1117) (-364 *8))) - (-4 *8 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-400 *8 *3)))) + (-12 (-5 *4 (-1094)) (-5 *5 (-251 *3)) (-5 *6 (-1150 (-352 (-488)))) + (-5 *7 (-352 (-488))) (-4 *3 (-13 (-27) (-1119) (-366 *8))) + (-4 *8 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-402 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-350 (-486))) (-4 *4 (-963)) (-4 *1 (-1166 *4 *3)) - (-4 *3 (-1143 *4))))) + (-12 (-5 *2 (-352 (-488))) (-4 *4 (-965)) (-4 *1 (-1168 *4 *3)) + (-4 *3 (-1145 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1143 *3)) - (-5 *2 (-350 (-486)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1143 *3))))) + (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-965)) (-4 *4 (-1145 *3)) + (-5 *2 (-352 (-488)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-965)) (-4 *2 (-1145 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) - (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-364 *4))))) + (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) + (-5 *2 (-51)) (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-27) (-1119) (-366 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) + (-12 (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-269 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-486)) (-4 *5 (-13 (-393) (-952 *4) (-582 *4))) (-5 *2 (-51)) - (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) + (-12 (-5 *4 (-488)) (-4 *5 (-13 (-395) (-954 *4) (-584 *4))) (-5 *2 (-51)) + (-5 *1 (-269 *5 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) - (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-267 *5 *3)))) + (-12 (-5 *4 (-251 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))) + (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-269 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) - (-4 *6 (-13 (-393) (-952 *5) (-582 *5))) (-5 *5 (-486)) (-5 *2 (-51)) - (-5 *1 (-267 *6 *3)))) + (-12 (-5 *4 (-251 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *6))) + (-4 *6 (-13 (-395) (-954 *5) (-584 *5))) (-5 *5 (-488)) (-5 *2 (-51)) + (-5 *1 (-269 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-486))) (-5 *4 (-249 *7)) (-5 *5 (-1148 (-486))) - (-4 *7 (-13 (-27) (-1117) (-364 *6))) - (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-400 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-488))) (-5 *4 (-251 *7)) (-5 *5 (-1150 (-488))) + (-4 *7 (-13 (-27) (-1119) (-366 *6))) + (-4 *6 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-402 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-486))) - (-4 *3 (-13 (-27) (-1117) (-364 *7))) - (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-400 *7 *3)))) + (-12 (-5 *4 (-1094)) (-5 *5 (-251 *3)) (-5 *6 (-1150 (-488))) + (-4 *3 (-13 (-27) (-1119) (-366 *7))) + (-4 *7 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-402 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-486)) (-4 *4 (-963)) (-4 *1 (-1145 *4 *3)) (-4 *3 (-1174 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1143 *3))))) + (-12 (-5 *2 (-488)) (-4 *4 (-965)) (-4 *1 (-1147 *4 *3)) (-4 *3 (-1176 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-965)) (-4 *2 (-1145 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1143 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1157 *3)) (-4 *3 (-963)))) + (|partial| -12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-965)) (-4 *2 (-1145 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-1159 *3)) (-4 *3 (-965)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-832)) (-4 *1 (-1160 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-4 *1 (-1164 *3)) (-4 *3 (-963))))) + (-12 (-5 *2 (-834)) (-4 *1 (-1162 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-352 (-488))) (-4 *1 (-1166 *3)) (-4 *3 (-965))))) (((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-486)))) - (-4 *4 (-13 (-1157 *3) (-497) (-10 -8 (-15 -3147 ($ $ $))))) (-4 *3 (-497)) - (-5 *1 (-1161 *3 *4))))) + (|:| |xpnt| (-488)))) + (-4 *4 (-13 (-1159 *3) (-499) (-10 -8 (-15 -3150 ($ $ $))))) (-4 *3 (-499)) + (-5 *1 (-1163 *3 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-863 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *2 (-393)))) + (-12 (-4 *1 (-865 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *2 (-395)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) - (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *1)))) - (-4 *1 (-985 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1136))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) + (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *1)))) + (-4 *1 (-987 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1138))) ((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-1161 *3 *2)) - (-4 *2 (-13 (-1157 *3) (-497) (-10 -8 (-15 -3147 ($ $ $)))))))) + (-12 (-4 *3 (-499)) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-1159 *3) (-499) (-10 -8 (-15 -3150 ($ $ $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)) - (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3947 *4)))))) + (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-104)) + (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3950 *4)))))) ((*1 *2 *1) - (-12 (-4 *1 (-451 *3 *4)) (-4 *3 (-72)) (-4 *4 (-761)) - (-5 *2 (-585 (-455 *3 *4))))) + (-12 (-4 *1 (-453 *3 *4)) (-4 *3 (-72)) (-4 *4 (-763)) + (-5 *2 (-587 (-457 *3 *4))))) ((*1 *2 *1) - (-12 (-5 *2 (-585 (-2 (|:| -3958 *3) (|:| -3942 *4)))) (-5 *1 (-676 *3 *4)) - (-4 *3 (-963)) (-4 *4 (-665)))) + (-12 (-5 *2 (-587 (-2 (|:| -3961 *3) (|:| -3945 *4)))) (-5 *1 (-678 *3 *4)) + (-4 *3 (-965)) (-4 *4 (-667)))) ((*1 *2 *1) - (-12 (-4 *1 (-1160 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) - (-5 *2 (-1071 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-486)) (-5 *1 (-199)))) + (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720)) + (-5 *2 (-1073 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1077)) (-5 *3 (-488)) (-5 *1 (-201)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-585 (-1075))) (-5 *3 (-486)) (-5 *4 (-1075)) (-5 *1 (-199)))) - ((*1 *1 *1) (-5 *1 (-774))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) - ((*1 *2 *1) (-12 (-4 *1 (-1160 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963))))) + (-12 (-5 *2 (-587 (-1077))) (-5 *3 (-488)) (-5 *4 (-1077)) (-5 *1 (-201)))) + ((*1 *1 *1) (-5 *1 (-776))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-776)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162 *2 *3)) (-4 *3 (-720)) (-4 *2 (-965))))) (((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) - (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-696)))) + (-12 (-4 *1 (-215 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-760)) + (-4 *5 (-230 *4)) (-4 *6 (-721)) (-5 *2 (-698)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) - (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-696)))) - ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-758)) (-5 *2 (-696)))) - ((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-832)))) - ((*1 *2 *3) - (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-320) (-312))) - (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) (-4 *7 (-291 *4 *5 *6)) - (-5 *2 (-696)) (-5 *1 (-341 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-745 (-832))))) - ((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-486)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-533 *3)) (-4 *3 (-963)))) - ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-533 *3)) (-4 *3 (-963)))) - ((*1 *2 *1) - (-12 (-4 *3 (-497)) (-5 *2 (-486)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1157 *3)))) + (-12 (-4 *1 (-215 *4 *3 *5 *6)) (-4 *4 (-965)) (-4 *3 (-760)) + (-4 *5 (-230 *3)) (-4 *6 (-721)) (-5 *2 (-698)))) + ((*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-760)) (-5 *2 (-698)))) + ((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-834)))) + ((*1 *2 *3) + (-12 (-5 *3 (-285 *4 *5 *6 *7)) (-4 *4 (-13 (-322) (-314))) + (-4 *5 (-1159 *4)) (-4 *6 (-1159 (-352 *5))) (-4 *7 (-293 *4 *5 *6)) + (-5 *2 (-698)) (-5 *1 (-343 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-747 (-834))))) + ((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-488)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-535 *3)) (-4 *3 (-965)))) + ((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-535 *3)) (-4 *3 (-965)))) + ((*1 *2 *1) + (-12 (-4 *3 (-499)) (-5 *2 (-488)) (-5 *1 (-566 *3 *4)) (-4 *4 (-1159 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-696)) (-4 *1 (-681 *4 *3)) (-4 *4 (-963)) (-4 *3 (-758)))) + (-12 (-5 *2 (-698)) (-4 *1 (-683 *4 *3)) (-4 *4 (-965)) (-4 *3 (-760)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-681 *4 *3)) (-4 *4 (-963)) (-4 *3 (-758)) (-5 *2 (-696)))) - ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-5 *2 (-696)))) - ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) - ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) - (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) - (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-696)) - (-5 *1 (-824 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-283 (-350 (-486)) *4 *5 *6)) - (-4 *4 (-1157 (-350 (-486)))) (-4 *5 (-1157 (-350 *4))) - (-4 *6 (-291 (-350 (-486)) *4 *5)) (-5 *2 (-696)) (-5 *1 (-825 *4 *5 *6)))) + (-12 (-4 *1 (-683 *4 *3)) (-4 *4 (-965)) (-4 *3 (-760)) (-5 *2 (-698)))) + ((*1 *2 *1) (-12 (-4 *1 (-783 *3)) (-5 *2 (-698)))) + ((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-817 *3)) (-4 *3 (-1017)))) + ((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-820 *3)) (-4 *3 (-1017)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-285 *5 *6 *7 *8)) (-4 *5 (-366 *4)) + (-4 *6 (-1159 *5)) (-4 *7 (-1159 (-352 *6))) (-4 *8 (-293 *5 *6 *7)) + (-4 *4 (-13 (-499) (-954 (-488)))) (-5 *2 (-698)) + (-5 *1 (-826 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-285 (-352 (-488)) *4 *5 *6)) + (-4 *4 (-1159 (-352 (-488)))) (-4 *5 (-1159 (-352 *4))) + (-4 *6 (-293 (-352 (-488)) *4 *5)) (-5 *2 (-698)) (-5 *1 (-827 *4 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-283 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-312)) - (-4 *7 (-1157 *6)) (-4 *4 (-1157 (-350 *7))) (-4 *8 (-291 *6 *7 *4)) - (-4 *9 (-13 (-320) (-312))) (-5 *2 (-696)) (-5 *1 (-933 *6 *7 *4 *8 *9)))) + (-12 (-5 *3 (-285 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-314)) + (-4 *7 (-1159 *6)) (-4 *4 (-1159 (-352 *7))) (-4 *8 (-293 *6 *7 *4)) + (-4 *9 (-13 (-322) (-314))) (-5 *2 (-698)) (-5 *1 (-935 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1157 *3)) (-4 *3 (-963)) (-4 *3 (-497)) (-5 *2 (-696)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) - ((*1 *2 *1) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718))))) -(((*1 *1 *1) (-4 *1 (-975))) - ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718))))) + (-12 (-4 *1 (-1159 *3)) (-4 *3 (-965)) (-4 *3 (-499)) (-5 *2 (-698)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-965)) (-4 *2 (-720)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-965)) (-4 *2 (-720))))) +(((*1 *1 *1) (-4 *1 (-977))) + ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-965)) (-4 *2 (-720)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-965)) (-4 *2 (-720))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-350 (-486))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-486)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486)))) + (-12 (-5 *2 (-352 (-488))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-488)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-783 *3)) (-5 *2 (-488)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-350 (-486))) (-5 *1 (-782 *4)) (-14 *4 *3) (-5 *3 (-486)))) + (-12 (-5 *2 (-352 (-488))) (-5 *1 (-784 *4)) (-14 *4 *3) (-5 *3 (-488)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-350 (-486))) (-5 *1 (-783 *4 *5)) (-5 *3 (-486)) - (-4 *5 (-781 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-927)) (-5 *2 (-350 (-486))))) + (-12 (-14 *4 *3) (-5 *2 (-352 (-488))) (-5 *1 (-785 *4 *5)) (-5 *3 (-488)) + (-4 *5 (-783 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-929)) (-5 *2 (-352 (-488))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-982 *2 *3)) (-4 *2 (-13 (-757) (-312))) (-4 *3 (-1157 *2)))) + (-12 (-4 *1 (-984 *2 *3)) (-4 *2 (-13 (-759) (-314))) (-4 *3 (-1159 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1160 *2 *3)) (-4 *3 (-718)) (|has| *2 (-15 ** (*2 *2 *3))) - (|has| *2 (-15 -3950 (*2 (-1092)))) (-4 *2 (-963))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-618 *3)) (-4 *3 (-1131)))) + (-12 (-4 *1 (-1162 *2 *3)) (-4 *3 (-720)) (|has| *2 (-15 ** (*2 *2 *3))) + (|has| *2 (-15 -3953 (*2 (-1094)))) (-4 *2 (-965))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-150 *3)) (-4 *3 (-260)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-620 *3)) (-4 *3 (-1133)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-696)) (-4 *1 (-681 *3 *4)) (-4 *3 (-963)) (-4 *4 (-758)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-895 *3)) (-4 *3 (-963)))) + (-12 (-5 *2 (-698)) (-4 *1 (-683 *3 *4)) (-4 *3 (-965)) (-4 *4 (-760)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-783 *3)) (-5 *2 (-488)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *1 (-897 *3)) (-4 *3 (-965)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-985 *4 *5 *6 *7)) - (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)))) + (-12 (-5 *2 (-587 *1)) (-5 *3 (-587 *7)) (-4 *1 (-987 *4 *5 *6 *7)) + (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *7)))) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) - (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)))) + (-12 (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-395)) + (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) - (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) + (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *2 (-979 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718))))) + (-12 (-4 *1 (-1128 *3 *4 *5 *2)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *2 (-981 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-965)) (-4 *2 (-720))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-350 *5)) (-4 *4 (-1136)) (-4 *5 (-1157 *4)) - (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1157 *3)))) + (-12 (-5 *3 (-352 *5)) (-4 *4 (-1138)) (-4 *5 (-1159 *4)) + (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1159 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1094 (-350 (-486)))) (-5 *2 (-350 (-486))) (-5 *1 (-164)))) + (-12 (-5 *3 (-1096 (-352 (-488)))) (-5 *2 (-352 (-488))) (-5 *1 (-166)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-585 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1015)) - (-4 *3 (-1131)) (-5 *1 (-249 *3)))) + (-12 (-5 *2 (-587 (-251 *3))) (-4 *3 (-262 *3)) (-4 *3 (-1017)) + (-4 *3 (-1133)) (-5 *1 (-251 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-260 *2)) (-4 *2 (-1015)) (-4 *2 (-1131)) (-5 *1 (-249 *2)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) + (-12 (-4 *2 (-262 *2)) (-4 *2 (-1017)) (-4 *2 (-1133)) (-5 *1 (-251 *2)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-256)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-585 *1))) (-4 *1 (-254)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-587 *1))) (-4 *1 (-256)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 (-86))) (-5 *3 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-254)))) + (-12 (-5 *2 (-587 (-86))) (-5 *3 (-587 (-1 *1 (-587 *1)))) (-4 *1 (-256)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 (-86))) (-5 *3 (-585 (-1 *1 *1))) (-4 *1 (-254)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) + (-12 (-5 *2 (-587 (-86))) (-5 *3 (-587 (-1 *1 *1))) (-4 *1 (-256)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-1 *1 *1)) (-4 *1 (-256)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1092)) (-5 *3 (-1 *1 (-585 *1))) (-4 *1 (-254)))) + (-12 (-5 *2 (-1094)) (-5 *3 (-1 *1 (-587 *1))) (-4 *1 (-256)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-254)))) + (-12 (-5 *2 (-587 (-1094))) (-5 *3 (-587 (-1 *1 (-587 *1)))) (-4 *1 (-256)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-585 (-1 *1 *1))) (-4 *1 (-254)))) + (-12 (-5 *2 (-587 (-1094))) (-5 *3 (-587 (-1 *1 *1))) (-4 *1 (-256)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-585 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1015)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1015)))) + (-12 (-5 *2 (-587 (-251 *3))) (-4 *1 (-262 *3)) (-4 *3 (-1017)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-251 *3)) (-4 *1 (-262 *3)) (-4 *3 (-1017)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-486))) (-5 *4 (-1094 (-350 (-486)))) (-5 *1 (-261 *2)) - (-4 *2 (-38 (-350 (-486)))))) + (-12 (-5 *3 (-1 *2 (-488))) (-5 *4 (-1096 (-352 (-488)))) (-5 *1 (-263 *2)) + (-4 *2 (-38 (-352 (-488)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 *1)) (-4 *1 (-326 *4 *5)) (-4 *4 (-758)) - (-4 *5 (-146)))) - ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-758)) (-4 *3 (-146)))) + (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 *1)) (-4 *1 (-328 *4 *5)) (-4 *4 (-760)) + (-4 *5 (-148)))) + ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-328 *2 *3)) (-4 *2 (-760)) (-4 *3 (-148)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1092)) (-5 *3 (-696)) (-5 *4 (-1 *1 *1)) (-4 *1 (-364 *5)) - (-4 *5 (-1015)) (-4 *5 (-963)))) + (-12 (-5 *2 (-1094)) (-5 *3 (-698)) (-5 *4 (-1 *1 *1)) (-4 *1 (-366 *5)) + (-4 *5 (-1017)) (-4 *5 (-965)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1092)) (-5 *3 (-696)) (-5 *4 (-1 *1 (-585 *1))) - (-4 *1 (-364 *5)) (-4 *5 (-1015)) (-4 *5 (-963)))) + (-12 (-5 *2 (-1094)) (-5 *3 (-698)) (-5 *4 (-1 *1 (-587 *1))) + (-4 *1 (-366 *5)) (-4 *5 (-1017)) (-4 *5 (-965)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-585 (-696))) - (-5 *4 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-364 *5)) (-4 *5 (-1015)) - (-4 *5 (-963)))) + (-12 (-5 *2 (-587 (-1094))) (-5 *3 (-587 (-698))) + (-5 *4 (-587 (-1 *1 (-587 *1)))) (-4 *1 (-366 *5)) (-4 *5 (-1017)) + (-4 *5 (-965)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-585 (-696))) (-5 *4 (-585 (-1 *1 *1))) - (-4 *1 (-364 *5)) (-4 *5 (-1015)) (-4 *5 (-963)))) + (-12 (-5 *2 (-587 (-1094))) (-5 *3 (-587 (-698))) (-5 *4 (-587 (-1 *1 *1))) + (-4 *1 (-366 *5)) (-4 *5 (-1017)) (-4 *5 (-965)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-585 (-86))) (-5 *3 (-585 *1)) (-5 *4 (-1092)) (-4 *1 (-364 *5)) - (-4 *5 (-1015)) (-4 *5 (-555 (-475))))) + (-12 (-5 *2 (-587 (-86))) (-5 *3 (-587 *1)) (-5 *4 (-1094)) (-4 *1 (-366 *5)) + (-4 *5 (-1017)) (-4 *5 (-557 (-477))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1092)) (-4 *1 (-364 *4)) (-4 *4 (-1015)) - (-4 *4 (-555 (-475))))) - ((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1015)) (-4 *2 (-555 (-475))))) + (-12 (-5 *2 (-86)) (-5 *3 (-1094)) (-4 *1 (-366 *4)) (-4 *4 (-1017)) + (-4 *4 (-557 (-477))))) + ((*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1017)) (-4 *2 (-557 (-477))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-585 (-1092))) (-4 *1 (-364 *3)) (-4 *3 (-1015)) - (-4 *3 (-555 (-475))))) + (-12 (-5 *2 (-587 (-1094))) (-4 *1 (-366 *3)) (-4 *3 (-1017)) + (-4 *3 (-557 (-477))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015)) - (-4 *3 (-555 (-475))))) - ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1131)))) + (-12 (-5 *2 (-1094)) (-4 *1 (-366 *3)) (-4 *3 (-1017)) + (-4 *3 (-557 (-477))))) + ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1133)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 *5)) (-4 *1 (-457 *4 *5)) (-4 *4 (-1015)) - (-4 *5 (-1131)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-745 *3)) (-4 *3 (-312)) (-5 *1 (-657 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) + (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 *5)) (-4 *1 (-459 *4 *5)) (-4 *4 (-1017)) + (-4 *5 (-1133)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-747 *3)) (-4 *3 (-314)) (-5 *1 (-659 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-659 *2)) (-4 *2 (-314)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-350 (-859 *4))) (-5 *3 (-1092)) (-4 *4 (-497)) - (-5 *1 (-954 *4)))) + (-12 (-5 *2 (-352 (-861 *4))) (-5 *3 (-1094)) (-4 *4 (-499)) + (-5 *1 (-956 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-585 (-1092))) (-5 *4 (-585 (-350 (-859 *5)))) - (-5 *2 (-350 (-859 *5))) (-4 *5 (-497)) (-5 *1 (-954 *5)))) + (-12 (-5 *3 (-587 (-1094))) (-5 *4 (-587 (-352 (-861 *5)))) + (-5 *2 (-352 (-861 *5))) (-4 *5 (-499)) (-5 *1 (-956 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-249 (-350 (-859 *4)))) (-5 *2 (-350 (-859 *4))) (-4 *4 (-497)) - (-5 *1 (-954 *4)))) + (-12 (-5 *3 (-251 (-352 (-861 *4)))) (-5 *2 (-352 (-861 *4))) (-4 *4 (-499)) + (-5 *1 (-956 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-585 (-249 (-350 (-859 *4))))) (-5 *2 (-350 (-859 *4))) - (-4 *4 (-497)) (-5 *1 (-954 *4)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3)))) + (-12 (-5 *3 (-587 (-251 (-352 (-861 *4))))) (-5 *2 (-352 (-861 *4))) + (-4 *4 (-499)) (-5 *1 (-956 *4)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1160 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1071 *3))))) + (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1073 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-696)) (-4 *1 (-1157 *4)) (-4 *4 (-963)) (-5 *2 (-1181 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-963)) (-5 *2 (-1087 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-963)) (-4 *1 (-1157 *3))))) + (-12 (-5 *3 (-698)) (-4 *1 (-1159 *4)) (-4 *4 (-965)) (-5 *2 (-1183 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-965)) (-5 *2 (-1089 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1089 *3)) (-4 *3 (-965)) (-4 *1 (-1159 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-696)) (-4 *1 (-1157 *3)) (-4 *3 (-963))))) + (|partial| -12 (-5 *2 (-698)) (-4 *1 (-1159 *3)) (-4 *3 (-965))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) - (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-863 *4 *5 *3)))) + (-12 (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 (-760)) + (-5 *2 (-2 (|:| -1977 *1) (|:| -2908 *1))) (-4 *1 (-865 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) - (-4 *1 (-1157 *3))))) + (-12 (-4 *3 (-965)) (-5 *2 (-2 (|:| -1977 *1) (|:| -2908 *1))) + (-4 *1 (-1159 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-696)) (-4 *4 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) - (-4 *1 (-1157 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1157 *3)) (-4 *3 (-963))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1157 *3)) (-4 *3 (-963))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963))))) -(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1131)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-696)))) + (-12 (-5 *3 (-698)) (-4 *4 (-965)) (-5 *2 (-2 (|:| -1977 *1) (|:| -2908 *1))) + (-4 *1 (-1159 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-1159 *3)) (-4 *3 (-965))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-1159 *3)) (-4 *3 (-965))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-965))))) +(((*1 *2 *1) (-12 (-4 *1 (-188 *2)) (-4 *2 (-1133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-191)) (-5 *2 (-698)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-696)) (-4 *1 (-225 *4)) (-4 *4 (-1131)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1131)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-698)) (-4 *1 (-227 *4)) (-4 *4 (-1133)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1133)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) - (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) + (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-312)) (-4 *2 (-811 *3)) (-5 *1 (-521 *2)) (-5 *3 (-1092)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-521 *2)) (-4 *2 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-774)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-808 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1131)))) + (-12 (-4 *2 (-314)) (-4 *2 (-813 *3)) (-5 *1 (-523 *2)) (-5 *3 (-1094)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-523 *2)) (-4 *2 (-314)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-776)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-810 *2 *3)) (-4 *3 (-1133)) (-4 *2 (-1133)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 (-696))) (-4 *1 (-813 *4)) + (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 (-698))) (-4 *1 (-815 *4)) (-4 *4 (-72)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-813 *2)) (-4 *2 (-72)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-813 *3)) (-4 *3 (-72)))) - ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1157 *3)) (-4 *3 (-963))))) -(((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-698)) (-4 *1 (-815 *2)) (-4 *2 (-72)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *1 (-815 *3)) (-4 *3 (-72)))) + ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1159 *3)) (-4 *3 (-965))))) +(((*1 *2) (-12 (-4 *2 (-148)) (-5 *1 (-140 *3 *2)) (-4 *3 (-141 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *2 *4)) (-4 *4 (-1157 *2)) - (-4 *2 (-146)))) + (-12 (-5 *3 (-1183 *1)) (-4 *1 (-324 *2 *4)) (-4 *4 (-1159 *2)) + (-4 *2 (-148)))) ((*1 *2) - (-12 (-4 *4 (-1157 *2)) (-4 *2 (-146)) (-5 *1 (-352 *3 *2 *4)) - (-4 *3 (-353 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-353 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-146)))) + (-12 (-4 *4 (-1159 *2)) (-4 *2 (-148)) (-5 *1 (-354 *3 *2 *4)) + (-4 *3 (-355 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-355 *2 *3)) (-4 *3 (-1159 *2)) (-4 *2 (-148)))) ((*1 *2) - (-12 (-4 *3 (-1157 *2)) (-5 *2 (-486)) (-5 *1 (-694 *3 *4)) - (-4 *4 (-353 *2 *3)))) + (-12 (-4 *3 (-1159 *2)) (-5 *2 (-488)) (-5 *1 (-696 *3 *4)) + (-4 *4 (-355 *2 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) - (-4 *3 (-146)))) - ((*1 *2 *3) (-12 (-4 *2 (-497)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1157 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-146))))) + (-12 (-4 *1 (-865 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)) + (-4 *3 (-148)))) + ((*1 *2 *3) (-12 (-4 *2 (-499)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1159 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-965)) (-4 *2 (-148))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) - (-4 *3 (-146)))) - ((*1 *2 *3 *3) (-12 (-4 *2 (-497)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1157 *2)))) + (-12 (-4 *1 (-865 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)) + (-4 *3 (-148)))) + ((*1 *2 *3 *3) (-12 (-4 *2 (-499)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1159 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *2 (-497)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-146))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3)))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *2 (-499)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-965)) (-4 *2 (-148))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-886 *3 *2)) (-4 *2 (-1159 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *2 (-497)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-497))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *2 (-499)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-965)) (-4 *2 (-499))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-1052 *3)) (-4 *3 (-965)))) ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-350 *1)) (-4 *1 (-1157 *3)) (-4 *3 (-963)) - (-4 *3 (-497)))) + (|partial| -12 (-5 *2 (-352 *1)) (-4 *1 (-1159 *3)) (-4 *3 (-965)) + (-4 *3 (-499)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-497))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-963)) (-4 *2 (-497))))) + (|partial| -12 (-4 *1 (-1159 *2)) (-4 *2 (-965)) (-4 *2 (-499))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-965)) (-4 *2 (-499))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| -3958 *4) (|:| -1974 *3) (|:| -2905 *3))) - (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4)))) + (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| -3961 *4) (|:| -1977 *3) (|:| -2908 *3))) + (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-979 *3 *4 *5)))) + (-12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-5 *2 (-2 (|:| -1977 *1) (|:| -2908 *1))) (-4 *1 (-981 *3 *4 *5)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-497)) (-4 *3 (-963)) - (-5 *2 (-2 (|:| -3958 *3) (|:| -1974 *1) (|:| -2905 *1))) - (-4 *1 (-1157 *3))))) + (-12 (-4 *3 (-499)) (-4 *3 (-965)) + (-5 *2 (-2 (|:| -3961 *3) (|:| -1977 *1) (|:| -2908 *1))) + (-4 *1 (-1159 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-312)) (-4 *4 (-497)) (-4 *5 (-1157 *4)) - (-5 *2 (-2 (|:| -1767 (-564 *4 *5)) (|:| -1766 (-350 *5)))) - (-5 *1 (-564 *4 *5)) (-5 *3 (-350 *5)))) + (-12 (-4 *4 (-314)) (-4 *4 (-499)) (-4 *5 (-1159 *4)) + (-5 *2 (-2 (|:| -1770 (-566 *4 *5)) (|:| -1769 (-352 *5)))) + (-5 *1 (-566 *4 *5)) (-5 *3 (-352 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-585 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) - (-4 *4 (-963)))) + (-12 (-5 *2 (-587 (-1083 *3 *4))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) + (-4 *4 (-965)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-393)) (-4 *3 (-963)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1157 *3))))) + (-12 (-4 *3 (-395)) (-4 *3 (-965)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1159 *3))))) (((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-696)) (-4 *4 (-963)) (-5 *1 (-1155 *4 *2)) (-4 *2 (-1157 *4))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-1155 *3 *2)) (-4 *2 (-1157 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-1155 *3 *2)) (-4 *2 (-1157 *3))))) + (-12 (-5 *3 (-698)) (-4 *4 (-965)) (-5 *1 (-1157 *4 *2)) (-4 *2 (-1159 *4))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-965)) (-5 *1 (-1157 *3 *2)) (-4 *2 (-1159 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-965)) (-5 *1 (-1157 *3 *2)) (-4 *2 (-1159 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-497)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) - (-5 *1 (-1154 *4 *3)) (-4 *3 (-1157 *4))))) + (|partial| -12 (-4 *4 (-499)) (-5 *2 (-2 (|:| -1977 *3) (|:| -2908 *3))) + (-5 *1 (-1156 *4 *3)) (-4 *3 (-1159 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-497) (-120))) (-5 *2 (-585 *3)) (-5 *1 (-1153 *4 *3)) - (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-13 (-499) (-120))) (-5 *2 (-587 *3)) (-5 *1 (-1155 *4 *3)) + (-4 *3 (-1159 *4))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-497) (-120))) - (-5 *2 (-2 (|:| -3141 *3) (|:| -3140 *3))) (-5 *1 (-1153 *4 *3)) - (-4 *3 (-1157 *4))))) + (|partial| -12 (-4 *4 (-13 (-499) (-120))) + (-5 *2 (-2 (|:| -3144 *3) (|:| -3143 *3))) (-5 *1 (-1155 *4 *3)) + (-4 *3 (-1159 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-497) (-120))) (-5 *1 (-1153 *3 *2)) - (-4 *2 (-1157 *3))))) + (|partial| -12 (-4 *3 (-13 (-499) (-120))) (-5 *1 (-1155 *3 *2)) + (-4 *2 (-1159 *3))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-696)) (-4 *4 (-13 (-497) (-120))) - (-5 *1 (-1153 *4 *2)) (-4 *2 (-1157 *4))))) + (|partial| -12 (-5 *3 (-698)) (-4 *4 (-13 (-499) (-120))) + (-5 *1 (-1155 *4 *2)) (-4 *2 (-1159 *4))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-696)) (-4 *4 (-13 (-497) (-120))) - (-5 *1 (-1153 *4 *2)) (-4 *2 (-1157 *4))))) + (|partial| -12 (-5 *3 (-698)) (-4 *4 (-13 (-499) (-120))) + (-5 *1 (-1155 *4 *2)) (-4 *2 (-1159 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) (-4 *5 (-906 *4)) + (-12 (-4 *4 (-499)) (-4 *5 (-908 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) - (-4 *3 (-324 *5)))) + (-4 *3 (-326 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-497)) (-4 *5 (-906 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-444 *4 *5 *6 *3)) - (-4 *6 (-324 *4)) (-4 *3 (-324 *5)))) + (-12 (-4 *4 (-499)) (-4 *5 (-908 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-446 *4 *5 *6 *3)) + (-4 *6 (-326 *4)) (-4 *3 (-326 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-632 *5)) (-4 *5 (-906 *4)) (-4 *4 (-497)) - (-5 *2 (-2 (|:| |num| (-632 *4)) (|:| |den| *4))) (-5 *1 (-635 *4 *5)))) + (-12 (-5 *3 (-634 *5)) (-4 *5 (-908 *4)) (-4 *4 (-499)) + (-5 *2 (-2 (|:| |num| (-634 *4)) (|:| |den| *4))) (-5 *1 (-637 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) - (-5 *2 (-2 (|:| -3269 *7) (|:| |rh| (-585 (-350 *6))))) - (-5 *1 (-730 *5 *6 *7 *3)) (-5 *4 (-585 (-350 *6))) (-4 *7 (-602 *6)) - (-4 *3 (-602 (-350 *6))))) + (-12 (-4 *5 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *6 (-1159 *5)) + (-5 *2 (-2 (|:| -3272 *7) (|:| |rh| (-587 (-352 *6))))) + (-5 *1 (-732 *5 *6 *7 *3)) (-5 *4 (-587 (-352 *6))) (-4 *7 (-604 *6)) + (-4 *3 (-604 (-352 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-497)) (-4 *5 (-906 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1152 *4 *5 *3)) - (-4 *3 (-1157 *5))))) + (-12 (-4 *4 (-499)) (-4 *5 (-908 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1154 *4 *5 *3)) + (-4 *3 (-1159 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-4 *4 (-906 *3)) (-5 *1 (-115 *3 *4 *2)) - (-4 *2 (-324 *4)))) + (-12 (-4 *3 (-499)) (-4 *4 (-908 *3)) (-5 *1 (-115 *3 *4 *2)) + (-4 *2 (-326 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-497)) (-4 *5 (-906 *4)) (-4 *2 (-324 *4)) - (-5 *1 (-444 *4 *5 *2 *3)) (-4 *3 (-324 *5)))) + (-12 (-4 *4 (-499)) (-4 *5 (-908 *4)) (-4 *2 (-326 *4)) + (-5 *1 (-446 *4 *5 *2 *3)) (-4 *3 (-326 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-632 *5)) (-4 *5 (-906 *4)) (-4 *4 (-497)) (-5 *2 (-632 *4)) - (-5 *1 (-635 *4 *5)))) + (-12 (-5 *3 (-634 *5)) (-4 *5 (-908 *4)) (-4 *4 (-499)) (-5 *2 (-634 *4)) + (-5 *1 (-637 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-497)) (-4 *4 (-906 *3)) (-5 *1 (-1152 *3 *4 *2)) - (-4 *2 (-1157 *4))))) + (-12 (-4 *3 (-499)) (-4 *4 (-908 *3)) (-5 *1 (-1154 *3 *4 *2)) + (-4 *2 (-1159 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-906 *2)) (-4 *2 (-497)) (-5 *1 (-115 *2 *4 *3)) - (-4 *3 (-324 *4)))) + (-12 (-4 *4 (-908 *2)) (-4 *2 (-499)) (-5 *1 (-115 *2 *4 *3)) + (-4 *3 (-326 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-906 *2)) (-4 *2 (-497)) (-5 *1 (-444 *2 *4 *5 *3)) - (-4 *5 (-324 *2)) (-4 *3 (-324 *4)))) + (-12 (-4 *4 (-908 *2)) (-4 *2 (-499)) (-5 *1 (-446 *2 *4 *5 *3)) + (-4 *5 (-326 *2)) (-4 *3 (-326 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-632 *4)) (-4 *4 (-906 *2)) (-4 *2 (-497)) - (-5 *1 (-635 *2 *4)))) + (-12 (-5 *3 (-634 *4)) (-4 *4 (-908 *2)) (-4 *2 (-499)) + (-5 *1 (-637 *2 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-906 *2)) (-4 *2 (-497)) (-5 *1 (-1152 *2 *4 *3)) - (-4 *3 (-1157 *4))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-696)) (-5 *1 (-706 *3)) (-4 *3 (-963)))) + (-12 (-4 *4 (-908 *2)) (-4 *2 (-499)) (-5 *1 (-1154 *2 *4 *3)) + (-4 *3 (-1159 *4))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-698)) (-5 *1 (-708 *3)) (-4 *3 (-965)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-869 *3 *2)) (-4 *2 (-104)) (-4 *3 (-497)) (-4 *3 (-963)) - (-4 *2 (-718)))) - ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1087 *3)) (-4 *3 (-963)))) + (-12 (-5 *1 (-871 *3 *2)) (-4 *2 (-104)) (-4 *3 (-499)) (-4 *3 (-965)) + (-4 *2 (-720)))) + ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-698)) (-5 *1 (-1089 *3)) (-4 *3 (-965)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-886)) (-4 *2 (-104)) (-5 *1 (-1094 *3)) (-4 *3 (-497)) - (-4 *3 (-963)))) + (-12 (-5 *2 (-888)) (-4 *2 (-104)) (-5 *1 (-1096 *3)) (-4 *3 (-499)) + (-4 *3 (-965)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-696)) (-5 *1 (-1150 *4 *3)) (-14 *4 (-1092)) (-4 *3 (-963))))) -(((*1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1 *1) (-5 *1 (-774))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131)))) - ((*1 *1 *2) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *2 (-1008 *3)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1131)))) - ((*1 *2 *1) (-12 (-5 *2 (-1003 *3)) (-5 *1 (-1006 *3)) (-4 *3 (-1131)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131)))) - ((*1 *1 *2) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1148 *3)) (-4 *3 (-1131))))) + (-12 (-5 *2 (-698)) (-5 *1 (-1152 *4 *3)) (-14 *4 (-1094)) (-4 *3 (-965))))) +(((*1 *1 *1) (-5 *1 (-776))) ((*1 *1 *1 *1) (-5 *1 (-776))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1133)))) + ((*1 *1 *2) (-12 (-5 *1 (-1150 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *2 (-1010 *3)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1133)))) + ((*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-1008 *3)) (-4 *3 (-1133)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1133)))) + ((*1 *1 *2) (-12 (-5 *1 (-1150 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1150 *3)) (-4 *3 (-1133))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 - (-2 (|:| |contp| (-486)) - (|:| -1784 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-486))))))) - (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) + (-2 (|:| |contp| (-488)) + (|:| -1787 (-587 (-2 (|:| |irr| *3) (|:| -2400 (-488))))))) + (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 - (-2 (|:| |contp| (-486)) - (|:| -1784 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-486))))))) - (-5 *1 (-1147 *3)) (-4 *3 (-1157 (-486)))))) + (-2 (|:| |contp| (-488)) + (|:| -1787 (-587 (-2 (|:| |irr| *3) (|:| -2400 (-488))))))) + (-5 *1 (-1149 *3)) (-4 *3 (-1159 (-488)))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) - (-4 *3 (-1157 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) + (-12 (-4 *4 (-301)) (-5 *2 (-350 *3)) (-5 *1 (-172 *4 *3)) + (-4 *3 (-1159 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) - (-4 *3 (-1157 (-486))))) + (-12 (-5 *4 (-698)) (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) + (-4 *3 (-1159 (-488))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-585 (-696))) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) - (-4 *3 (-1157 (-486))))) + (-12 (-5 *4 (-587 (-698))) (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) + (-4 *3 (-1159 (-488))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-585 (-696))) (-5 *5 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) - (-4 *3 (-1157 (-486))))) + (-12 (-5 *4 (-587 (-698))) (-5 *5 (-698)) (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) + (-4 *3 (-1159 (-488))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) - (-4 *3 (-1157 (-486))))) + (-12 (-5 *4 (-698)) (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) + (-4 *3 (-1159 (-488))))) ((*1 *2 *3) - (-12 (-5 *2 (-348 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1157 (-350 (-486)))))) - ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-1157 (-486)))))) + (-12 (-5 *2 (-350 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1159 (-352 (-488)))))) + ((*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-1149 *3)) (-4 *3 (-1159 (-488)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-585 (-48))) (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1157 (-48))))) - ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1157 (-48))))) + (-12 (-5 *4 (-587 (-48))) (-5 *2 (-350 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1159 (-48))))) + ((*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1159 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-585 (-48))) (-4 *5 (-758)) (-4 *6 (-719)) (-5 *2 (-348 *3)) - (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-863 (-48) *6 *5)))) + (-12 (-5 *4 (-587 (-48))) (-4 *5 (-760)) (-4 *6 (-721)) (-5 *2 (-350 *3)) + (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-865 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-585 (-48))) (-4 *5 (-758)) (-4 *6 (-719)) - (-4 *7 (-863 (-48) *6 *5)) (-5 *2 (-348 (-1087 *7))) (-5 *1 (-42 *5 *6 *7)) - (-5 *3 (-1087 *7)))) + (-12 (-5 *4 (-587 (-48))) (-4 *5 (-760)) (-4 *6 (-721)) + (-4 *7 (-865 (-48) *6 *5)) (-5 *2 (-350 (-1089 *7))) (-5 *1 (-42 *5 *6 *7)) + (-5 *3 (-1089 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-140 *4 *3)) - (-4 *3 (-1157 (-142 *4))))) + (-12 (-4 *4 (-260)) (-5 *2 (-350 *3)) (-5 *1 (-142 *4 *3)) + (-4 *3 (-1159 (-144 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) + (-12 (-5 *5 (-85)) (-4 *4 (-13 (-314) (-759))) (-5 *2 (-350 *3)) + (-5 *1 (-157 *4 *3)) (-4 *3 (-1159 (-144 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1157 (-142 *4))))) + (-12 (-4 *4 (-13 (-314) (-759))) (-5 *2 (-350 *3)) (-5 *1 (-157 *4 *3)) + (-4 *3 (-1159 (-144 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1157 (-142 *4))))) + (-12 (-4 *4 (-13 (-314) (-759))) (-5 *2 (-350 *3)) (-5 *1 (-157 *4 *3)) + (-4 *3 (-1159 (-144 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) - (-4 *3 (-1157 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) + (-12 (-4 *4 (-301)) (-5 *2 (-350 *3)) (-5 *1 (-172 *4 *3)) + (-4 *3 (-1159 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) - (-4 *3 (-1157 (-486))))) + (-12 (-5 *4 (-698)) (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) + (-4 *3 (-1159 (-488))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-585 (-696))) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) - (-4 *3 (-1157 (-486))))) + (-12 (-5 *4 (-587 (-698))) (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) + (-4 *3 (-1159 (-488))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-585 (-696))) (-5 *5 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) - (-4 *3 (-1157 (-486))))) + (-12 (-5 *4 (-587 (-698))) (-5 *5 (-698)) (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) + (-4 *3 (-1159 (-488))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-696)) (-5 *2 (-348 *3)) (-5 *1 (-383 *3)) - (-4 *3 (-1157 (-486))))) + (-12 (-5 *4 (-698)) (-5 *2 (-350 *3)) (-5 *1 (-385 *3)) + (-4 *3 (-1159 (-488))))) ((*1 *2 *3) - (-12 (-5 *2 (-348 (-142 (-486)))) (-5 *1 (-387)) (-5 *3 (-142 (-486))))) + (-12 (-5 *2 (-350 (-144 (-488)))) (-5 *1 (-389)) (-5 *3 (-144 (-488))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-758) - (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ "failed") (-1092)))))) - (-4 *5 (-719)) (-4 *7 (-497)) (-5 *2 (-348 *3)) - (-5 *1 (-397 *4 *5 *6 *7 *3)) (-4 *6 (-497)) (-4 *3 (-863 *7 *5 *4)))) + (-13 (-760) + (-10 -8 (-15 -3978 ((-1094) $)) (-15 -3837 ((-3 $ "failed") (-1094)))))) + (-4 *5 (-721)) (-4 *7 (-499)) (-5 *2 (-350 *3)) + (-5 *1 (-399 *4 *5 *6 *7 *3)) (-4 *6 (-499)) (-4 *3 (-865 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-258)) (-5 *2 (-348 (-1087 *4))) (-5 *1 (-399 *4)) - (-5 *3 (-1087 *4)))) + (-12 (-4 *4 (-260)) (-5 *2 (-350 (-1089 *4))) (-5 *1 (-401 *4)) + (-5 *3 (-1089 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) - (-4 *7 (-13 (-312) (-120) (-663 *5 *6))) (-5 *2 (-348 *3)) - (-5 *1 (-435 *5 *6 *7 *3)) (-4 *3 (-1157 *7)))) + (-12 (-5 *4 (-1 (-350 *6) *6)) (-4 *6 (-1159 *5)) (-4 *5 (-314)) + (-4 *7 (-13 (-314) (-120) (-665 *5 *6))) (-5 *2 (-350 *3)) + (-5 *1 (-437 *5 *6 *7 *3)) (-4 *3 (-1159 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-348 (-1087 *7)) (-1087 *7))) (-4 *7 (-13 (-258) (-120))) - (-4 *5 (-758)) (-4 *6 (-719)) (-5 *2 (-348 *3)) (-5 *1 (-480 *5 *6 *7 *3)) - (-4 *3 (-863 *7 *6 *5)))) + (-12 (-5 *4 (-1 (-350 (-1089 *7)) (-1089 *7))) (-4 *7 (-13 (-260) (-120))) + (-4 *5 (-760)) (-4 *6 (-721)) (-5 *2 (-350 *3)) (-5 *1 (-482 *5 *6 *7 *3)) + (-4 *3 (-865 *7 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-348 (-1087 *7)) (-1087 *7))) (-4 *7 (-13 (-258) (-120))) - (-4 *5 (-758)) (-4 *6 (-719)) (-4 *8 (-863 *7 *6 *5)) - (-5 *2 (-348 (-1087 *8))) (-5 *1 (-480 *5 *6 *7 *8)) (-5 *3 (-1087 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-499 *3)) (-4 *3 (-485)))) + (-12 (-5 *4 (-1 (-350 (-1089 *7)) (-1089 *7))) (-4 *7 (-13 (-260) (-120))) + (-4 *5 (-760)) (-4 *6 (-721)) (-4 *8 (-865 *7 *6 *5)) + (-5 *2 (-350 (-1089 *8))) (-5 *1 (-482 *5 *6 *7 *8)) (-5 *3 (-1089 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-501 *3)) (-4 *3 (-487)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-585 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) - (-4 *6 (-1157 *5)) (-5 *2 (-585 (-599 (-350 *6)))) (-5 *1 (-603 *5 *6)) - (-5 *3 (-599 (-350 *6))))) + (-12 (-5 *4 (-1 (-587 *5) *6)) + (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) + (-4 *6 (-1159 *5)) (-5 *2 (-587 (-601 (-352 *6)))) (-5 *1 (-605 *5 *6)) + (-5 *3 (-601 (-352 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) - (-4 *5 (-1157 *4)) (-5 *2 (-585 (-599 (-350 *5)))) (-5 *1 (-603 *4 *5)) - (-5 *3 (-599 (-350 *5))))) + (-4 *4 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) + (-4 *5 (-1159 *4)) (-5 *2 (-587 (-601 (-352 *5)))) (-5 *1 (-605 *4 *5)) + (-5 *3 (-601 (-352 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-741 *4)) (-4 *4 (-758)) (-5 *2 (-585 (-616 *4))) - (-5 *1 (-616 *4)))) + (-12 (-5 *3 (-743 *4)) (-4 *4 (-760)) (-5 *2 (-587 (-618 *4))) + (-5 *1 (-618 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-486)) (-5 *2 (-585 *3)) (-5 *1 (-637 *3)) (-4 *3 (-1157 *4)))) + (-12 (-5 *4 (-488)) (-5 *2 (-587 *3)) (-5 *1 (-639 *3)) (-4 *3 (-1159 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-299)) (-5 *2 (-348 *3)) - (-5 *1 (-639 *4 *5 *6 *3)) (-4 *3 (-863 *6 *5 *4)))) + (-12 (-4 *4 (-760)) (-4 *5 (-721)) (-4 *6 (-301)) (-5 *2 (-350 *3)) + (-5 *1 (-641 *4 *5 *6 *3)) (-4 *3 (-865 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-299)) (-4 *7 (-863 *6 *5 *4)) - (-5 *2 (-348 (-1087 *7))) (-5 *1 (-639 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) + (-12 (-4 *4 (-760)) (-4 *5 (-721)) (-4 *6 (-301)) (-4 *7 (-865 *6 *5 *4)) + (-5 *2 (-350 (-1089 *7))) (-5 *1 (-641 *4 *5 *6 *7)) (-5 *3 (-1089 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-719)) + (-12 (-4 *4 (-721)) (-4 *5 - (-13 (-758) - (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ "failed") (-1092)))))) - (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-671 *4 *5 *6 *3)) - (-4 *3 (-863 (-859 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-719)) (-4 *5 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) - (-4 *6 (-497)) (-5 *2 (-348 *3)) (-5 *1 (-673 *4 *5 *6 *3)) - (-4 *3 (-863 (-350 (-859 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-13 (-258) (-120))) - (-5 *2 (-348 *3)) (-5 *1 (-674 *4 *5 *6 *3)) - (-4 *3 (-863 (-350 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-13 (-258) (-120))) - (-5 *2 (-348 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-863 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-13 (-258) (-120))) - (-4 *7 (-863 *6 *5 *4)) (-5 *2 (-348 (-1087 *7))) (-5 *1 (-682 *4 *5 *6 *7)) - (-5 *3 (-1087 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-348 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1157 (-350 (-486)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-348 *3)) (-5 *1 (-956 *3)) - (-4 *3 (-1157 (-350 (-859 (-486))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1157 (-350 (-486)))) - (-4 *5 (-13 (-312) (-120) (-663 (-350 (-486)) *4))) (-5 *2 (-348 *3)) - (-5 *1 (-994 *4 *5 *3)) (-4 *3 (-1157 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1157 (-350 (-859 (-486))))) - (-4 *5 (-13 (-312) (-120) (-663 (-350 (-859 (-486))) *4))) (-5 *2 (-348 *3)) - (-5 *1 (-995 *4 *5 *3)) (-4 *3 (-1157 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-393)) (-4 *7 (-863 *6 *4 *5)) - (-5 *2 (-348 (-1087 (-350 *7)))) (-5 *1 (-1089 *4 *5 *6 *7)) - (-5 *3 (-1087 (-350 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1136)))) - ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-1157 (-486)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1145 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1174 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-90 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-486)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-782 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-782 *2)) (-14 *2 (-486)))) + (-13 (-760) + (-10 -8 (-15 -3978 ((-1094) $)) (-15 -3837 ((-3 $ "failed") (-1094)))))) + (-4 *6 (-260)) (-5 *2 (-350 *3)) (-5 *1 (-673 *4 *5 *6 *3)) + (-4 *3 (-865 (-861 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-721)) (-4 *5 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $))))) + (-4 *6 (-499)) (-5 *2 (-350 *3)) (-5 *1 (-675 *4 *5 *6 *3)) + (-4 *3 (-865 (-352 (-861 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-13 (-260) (-120))) + (-5 *2 (-350 *3)) (-5 *1 (-676 *4 *5 *6 *3)) + (-4 *3 (-865 (-352 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-760)) (-4 *5 (-721)) (-4 *6 (-13 (-260) (-120))) + (-5 *2 (-350 *3)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-865 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-760)) (-4 *5 (-721)) (-4 *6 (-13 (-260) (-120))) + (-4 *7 (-865 *6 *5 *4)) (-5 *2 (-350 (-1089 *7))) (-5 *1 (-684 *4 *5 *6 *7)) + (-5 *3 (-1089 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-350 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1159 (-352 (-488)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-350 *3)) (-5 *1 (-958 *3)) + (-4 *3 (-1159 (-352 (-861 (-488))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1159 (-352 (-488)))) + (-4 *5 (-13 (-314) (-120) (-665 (-352 (-488)) *4))) (-5 *2 (-350 *3)) + (-5 *1 (-996 *4 *5 *3)) (-4 *3 (-1159 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1159 (-352 (-861 (-488))))) + (-4 *5 (-13 (-314) (-120) (-665 (-352 (-861 (-488))) *4))) (-5 *2 (-350 *3)) + (-5 *1 (-997 *4 *5 *3)) (-4 *3 (-1159 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-395)) (-4 *7 (-865 *6 *4 *5)) + (-5 *2 (-350 (-1089 (-352 *7)))) (-5 *1 (-1091 *4 *5 *6 *7)) + (-5 *3 (-1089 (-352 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-350 *1)) (-4 *1 (-1138)))) + ((*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-1149 *3)) (-4 *3 (-1159 (-488)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-965)) (-4 *2 (-1176 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-90 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-488)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-784 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-784 *2)) (-14 *2 (-488)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-486)) (-14 *3 *2) (-5 *1 (-783 *3 *4)) (-4 *4 (-781 *3)))) - ((*1 *1 *1) (-12 (-14 *2 (-486)) (-5 *1 (-783 *2 *3)) (-4 *3 (-781 *2)))) + (-12 (-5 *2 (-488)) (-14 *3 *2) (-5 *1 (-785 *3 *4)) (-4 *4 (-783 *3)))) + ((*1 *1 *1) (-12 (-14 *2 (-488)) (-5 *1 (-785 *2 *3)) (-4 *3 (-783 *2)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-486)) (-4 *1 (-1145 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1174 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-1145 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1174 *2))))) + (-12 (-5 *2 (-488)) (-4 *1 (-1147 *3 *4)) (-4 *3 (-965)) (-4 *4 (-1176 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-1147 *2 *3)) (-4 *2 (-965)) (-4 *3 (-1176 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) - (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-364 *4))))) + (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) + (-5 *2 (-51)) (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-27) (-1119) (-366 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) + (-12 (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-269 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-696)) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) - (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) + (-12 (-5 *4 (-698)) (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) + (-5 *2 (-51)) (-5 *1 (-269 *5 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) - (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-267 *5 *3)))) + (-12 (-5 *4 (-251 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))) + (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-269 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-249 *3)) (-5 *5 (-696)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) - (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-267 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-486))) (-5 *4 (-249 *6)) - (-4 *6 (-13 (-27) (-1117) (-364 *5))) - (-4 *5 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-400 *5 *6)))) + (-12 (-5 *4 (-251 *3)) (-5 *5 (-698)) (-4 *3 (-13 (-27) (-1119) (-366 *6))) + (-4 *6 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-269 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-488))) (-5 *4 (-251 *6)) + (-4 *6 (-13 (-27) (-1119) (-366 *5))) + (-4 *5 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-402 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))) - (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-400 *6 *3)))) + (-12 (-5 *4 (-1094)) (-5 *5 (-251 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *6))) + (-4 *6 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-402 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-486))) (-5 *4 (-249 *7)) (-5 *5 (-1148 (-696))) - (-4 *7 (-13 (-27) (-1117) (-364 *6))) - (-4 *6 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-400 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-488))) (-5 *4 (-251 *7)) (-5 *5 (-1150 (-698))) + (-4 *7 (-13 (-27) (-1119) (-366 *6))) + (-4 *6 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-402 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1092)) (-5 *5 (-249 *3)) (-5 *6 (-1148 (-696))) - (-4 *3 (-13 (-27) (-1117) (-364 *7))) - (-4 *7 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *2 (-51)) - (-5 *1 (-400 *7 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1174 *3))))) + (-12 (-5 *4 (-1094)) (-5 *5 (-251 *3)) (-5 *6 (-1150 (-698))) + (-4 *3 (-13 (-27) (-1119) (-366 *7))) + (-4 *7 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 (-51)) + (-5 *1 (-402 *7 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-965)) (-4 *2 (-1176 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1145 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1174 *3))))) + (|partial| -12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-965)) (-4 *2 (-1176 *3))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-486)) (-4 *1 (-1143 *4)) (-4 *4 (-963)) (-4 *4 (-497)) - (-5 *2 (-350 (-859 *4))))) + (-12 (-5 *3 (-488)) (-4 *1 (-1145 *4)) (-4 *4 (-965)) (-4 *4 (-499)) + (-5 *2 (-352 (-861 *4))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-486)) (-4 *1 (-1143 *4)) (-4 *4 (-963)) (-4 *4 (-497)) - (-5 *2 (-350 (-859 *4)))))) + (-12 (-5 *3 (-488)) (-4 *1 (-1145 *4)) (-4 *4 (-965)) (-4 *4 (-499)) + (-5 *2 (-352 (-861 *4)))))) (((*1 *1 *1 *1) (-5 *1 (-101))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1099 *2)) (-14 *2 (-832)))) - ((*1 *1 *1 *1) (-5 *1 (-1137))) ((*1 *1 *1 *1) (-5 *1 (-1138))) - ((*1 *1 *1 *1) (-5 *1 (-1139))) ((*1 *1 *1 *1) (-5 *1 (-1140)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1101 *2)) (-14 *2 (-834)))) + ((*1 *1 *1 *1) (-5 *1 (-1139))) ((*1 *1 *1 *1) (-5 *1 (-1140))) + ((*1 *1 *1 *1) (-5 *1 (-1141))) ((*1 *1 *1 *1) (-5 *1 (-1142)))) (((*1 *1 *1 *1) (-5 *1 (-101))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1099 *2)) (-14 *2 (-832)))) - ((*1 *1 *1 *1) (-5 *1 (-1137))) ((*1 *1 *1 *1) (-5 *1 (-1138))) - ((*1 *1 *1 *1) (-5 *1 (-1139))) ((*1 *1 *1 *1) (-5 *1 (-1140)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1101 *2)) (-14 *2 (-834)))) + ((*1 *1 *1 *1) (-5 *1 (-1139))) ((*1 *1 *1 *1) (-5 *1 (-1140))) + ((*1 *1 *1 *1) (-5 *1 (-1141))) ((*1 *1 *1 *1) (-5 *1 (-1142)))) (((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-101))) ((*1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146)))) - ((*1 *1) (-5 *1 (-487))) ((*1 *1) (-5 *1 (-488))) ((*1 *1) (-5 *1 (-489))) - ((*1 *1) (-5 *1 (-490))) ((*1 *1) (-4 *1 (-665))) ((*1 *1) (-5 *1 (-1092))) - ((*1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-832)))) - ((*1 *1) (-12 (-5 *1 (-1099 *2)) (-14 *2 (-832)))) ((*1 *1) (-5 *1 (-1137))) - ((*1 *1) (-5 *1 (-1138))) ((*1 *1) (-5 *1 (-1139))) ((*1 *1) (-5 *1 (-1140)))) -(((*1 *2 *3) (-12 (-5 *3 (-142 (-486))) (-5 *2 (-85)) (-5 *1 (-387)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-488)) (-14 *3 (-698)) (-4 *4 (-148)))) + ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-5 *1 (-490))) ((*1 *1) (-5 *1 (-491))) + ((*1 *1) (-5 *1 (-492))) ((*1 *1) (-4 *1 (-667))) ((*1 *1) (-5 *1 (-1094))) + ((*1 *1) (-12 (-5 *1 (-1100 *2)) (-14 *2 (-834)))) + ((*1 *1) (-12 (-5 *1 (-1101 *2)) (-14 *2 (-834)))) ((*1 *1) (-5 *1 (-1139))) + ((*1 *1) (-5 *1 (-1140))) ((*1 *1) (-5 *1 (-1141))) ((*1 *1) (-5 *1 (-1142)))) +(((*1 *2 *3) (-12 (-5 *3 (-144 (-488))) (-5 *2 (-85)) (-5 *1 (-389)))) ((*1 *2 *3) (-12 (-5 *3 - (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486))))) - (-14 *4 (-585 (-1092))) (-14 *5 (-696)) (-5 *2 (-85)) (-5 *1 (-446 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-875 *3)) (-4 *3 (-485)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-85))))) -(((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1134))))) + (-447 (-352 (-488)) (-199 *5 (-698)) (-777 *4) (-208 *4 (-352 (-488))))) + (-14 *4 (-587 (-1094))) (-14 *5 (-698)) (-5 *2 (-85)) (-5 *1 (-448 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-877 *3)) (-4 *3 (-487)))) + ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-85))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1136))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3231 (-585 (-1092))) (|:| -3232 (-585 (-1092))))) - (-5 *1 (-1134))))) -(((*1 *2 *3) (-12 (-5 *3 (-585 (-1092))) (-5 *2 (-1187)) (-5 *1 (-1134)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-585 (-1092))) (-5 *2 (-1187)) (-5 *1 (-1134))))) + (-12 (-5 *2 (-2 (|:| -3234 (-587 (-1094))) (|:| -3235 (-587 (-1094))))) + (-5 *1 (-1136))))) +(((*1 *2 *3) (-12 (-5 *3 (-587 (-1094))) (-5 *2 (-1189)) (-5 *1 (-1136)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-587 (-1094))) (-5 *2 (-1189)) (-5 *1 (-1136))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-696)) (-4 *1 (-1066 *4)) (-4 *4 (-1131)) (-5 *2 (-85)))) + (-12 (-5 *3 (-698)) (-4 *1 (-1068 *4)) (-4 *4 (-1133)) (-5 *2 (-85)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-85)) (-5 *1 (-1133 *3)) (-4 *3 (-758)) (-4 *3 (-1015))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1135 *3)) (-4 *3 (-760)) (-4 *3 (-1017))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1133 *2)) - (-4 *2 (-1015)))) + (-12 (-5 *3 (-587 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1135 *2)) + (-4 *2 (-1017)))) ((*1 *2 *3) - (-12 (-5 *3 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-758)) (-5 *1 (-1133 *2))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1133 *3)) (-4 *3 (-1015))))) + (-12 (-5 *3 (-587 *2)) (-4 *2 (-1017)) (-4 *2 (-760)) (-5 *1 (-1135 *2))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1135 *3)) (-4 *3 (-1017))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-696)) (-4 *1 (-1066 *4)) (-4 *4 (-1131)) (-5 *2 (-85)))) + (-12 (-5 *3 (-698)) (-4 *1 (-1068 *4)) (-4 *4 (-1133)) (-5 *2 (-85)))) ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1133 *3)) (-4 *3 (-1015)))) + (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1135 *3)) (-4 *3 (-1017)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1015)) (-5 *2 (-85)) - (-5 *1 (-1133 *3))))) + (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1017)) (-5 *2 (-85)) + (-5 *1 (-1135 *3))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3232 (-585 *3)) (|:| -3231 (-585 *3)))) - (-5 *1 (-1133 *3)) (-4 *3 (-1015))))) + (-12 (-5 *2 (-2 (|:| -3235 (-587 *3)) (|:| -3234 (-587 *3)))) + (-5 *1 (-1135 *3)) (-4 *3 (-1017))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 *4)) (-4 *4 (-1015)) (-5 *2 (-1187)) (-5 *1 (-1133 *4)))) + (-12 (-5 *3 (-587 *4)) (-4 *4 (-1017)) (-5 *2 (-1189)) (-5 *1 (-1135 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-585 *4)) (-4 *4 (-1015)) (-5 *2 (-1187)) (-5 *1 (-1133 *4))))) + (-12 (-5 *3 (-587 *4)) (-4 *4 (-1017)) (-5 *2 (-1189)) (-5 *1 (-1135 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-486)) (-4 *5 (-299)) (-5 *2 (-348 (-1087 (-1087 *5)))) - (-5 *1 (-1130 *5)) (-5 *3 (-1087 (-1087 *5)))))) + (-12 (-5 *4 (-488)) (-4 *5 (-301)) (-5 *2 (-350 (-1089 (-1089 *5)))) + (-5 *1 (-1132 *5)) (-5 *3 (-1089 (-1089 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1087 (-1087 *4)))) (-5 *1 (-1130 *4)) - (-5 *3 (-1087 (-1087 *4)))))) + (-12 (-4 *4 (-301)) (-5 *2 (-350 (-1089 (-1089 *4)))) (-5 *1 (-1132 *4)) + (-5 *3 (-1089 (-1089 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1087 (-1087 *4)))) (-5 *1 (-1130 *4)) - (-5 *3 (-1087 (-1087 *4)))))) + (-12 (-4 *4 (-301)) (-5 *2 (-350 (-1089 (-1089 *4)))) (-5 *1 (-1132 *4)) + (-5 *3 (-1089 (-1089 *4)))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-124 *3)) - (-4 *3 (-1131)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-538 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-618 *3)) (-4 *3 (-1131)))) + (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-320 *3)) (-4 *1 (-124 *3)) + (-4 *3 (-1133)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1133)) (-5 *1 (-540 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-620 *3)) (-4 *3 (-1133)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1126 *4 *5 *3 *2)) (-4 *4 (-497)) (-4 *5 (-719)) - (-4 *3 (-758)) (-4 *2 (-979 *4 *5 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-1129 *2)) (-4 *2 (-1131))))) + (|partial| -12 (-4 *1 (-1128 *4 *5 *3 *2)) (-4 *4 (-499)) (-4 *5 (-721)) + (-4 *3 (-760)) (-4 *2 (-981 *4 *5 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-5 *1 (-1131 *2)) (-4 *2 (-1133))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-585 (-585 (-179)))) (-5 *4 (-179)) (-5 *2 (-585 (-856 *4))) - (-5 *1 (-1128)) (-5 *3 (-856 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-486)) (-5 *2 (-585 (-585 (-179)))) (-5 *1 (-1128))))) + (-12 (-5 *5 (-587 (-587 (-181)))) (-5 *4 (-181)) (-5 *2 (-587 (-858 *4))) + (-5 *1 (-1130)) (-5 *3 (-858 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-488)) (-5 *2 (-587 (-587 (-181)))) (-5 *1 (-1130))))) (((*1 *1 *2) - (-12 (-5 *2 (-832)) (-4 *1 (-196 *3 *4)) (-4 *4 (-963)) (-4 *4 (-1131)))) + (-12 (-5 *2 (-834)) (-4 *1 (-198 *3 *4)) (-4 *4 (-965)) (-4 *4 (-1133)))) ((*1 *1 *2) - (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) (-4 *5 (-196 (-3961 *3) (-696))) + (-12 (-14 *3 (-587 (-1094))) (-4 *4 (-148)) (-4 *5 (-198 (-3964 *3) (-698))) (-14 *6 - (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *5)) - (-2 (|:| -2402 *2) (|:| -2403 *5)))) - (-5 *1 (-402 *3 *4 *2 *5 *6 *7)) (-4 *2 (-758)) - (-4 *7 (-863 *4 *5 (-775 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128))))) + (-1 (-85) (-2 (|:| -2405 *2) (|:| -2406 *5)) + (-2 (|:| -2405 *2) (|:| -2406 *5)))) + (-5 *1 (-404 *3 *4 *2 *5 *6 *7)) (-4 *2 (-760)) + (-4 *7 (-865 *4 *5 (-777 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-858 (-181))) (-5 *1 (-1130))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-856 (-179))) (-5 *4 (-785)) (-5 *2 (-1187)) (-5 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-963)) (-4 *1 (-895 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-856 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) + (-12 (-5 *3 (-858 (-181))) (-5 *4 (-787)) (-5 *2 (-1189)) (-5 *1 (-411)))) + ((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-965)) (-4 *1 (-897 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-858 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-965)) (-4 *1 (-1052 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-4 *1 (-1052 *3)) (-4 *3 (-965)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *1 (-1052 *3)) (-4 *3 (-965)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *1 (-1052 *3)) (-4 *3 (-965)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1128)) (-5 *3 (-179))))) + (-12 (-5 *2 (-858 (-181))) (-5 *1 (-1130)) (-5 *3 (-181))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-179)) (-5 *5 (-486)) (-5 *2 (-1127 *3)) (-5 *1 (-714 *3)) - (-4 *3 (-889)))) + (-12 (-5 *4 (-181)) (-5 *5 (-488)) (-5 *2 (-1129 *3)) (-5 *1 (-716 *3)) + (-4 *3 (-891)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-85)) (-5 *1 (-1127 *2)) - (-4 *2 (-889))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1127 *3)) (-4 *3 (-889))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1127 *3)) (-4 *3 (-889))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1127 *3)) (-4 *3 (-889))))) -(((*1 *2 *1) - (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-1127 *3)) (-4 *3 (-889))))) -(((*1 *2 *1) (-12 (-5 *1 (-1127 *2)) (-4 *2 (-889))))) + (-12 (-5 *3 (-587 (-587 (-858 (-181))))) (-5 *4 (-85)) (-5 *1 (-1129 *2)) + (-4 *2 (-891))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-891))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-891))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-147)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-891))))) +(((*1 *2 *1) + (-12 (-5 *2 (-587 (-587 (-858 (-181))))) (-5 *1 (-1129 *3)) (-4 *3 (-891))))) +(((*1 *2 *1) (-12 (-5 *1 (-1129 *2)) (-4 *2 (-891))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) - (-4 *8 (-985 *4 *5 *6 *7)))) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *8)) + (-4 *8 (-987 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) - (-4 *8 (-985 *4 *5 *6 *7)))) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *8)) + (-4 *8 (-987 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-85))))) (((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) - (-4 *9 (-979 *6 *7 *8)) (-4 *6 (-497)) (-4 *7 (-719)) (-4 *8 (-758)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3326 (-585 *9)))) (-5 *3 (-585 *9)) - (-4 *1 (-1126 *6 *7 *8 *9)))) + (-4 *9 (-981 *6 *7 *8)) (-4 *6 (-499)) (-4 *7 (-721)) (-4 *8 (-760)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3329 (-587 *9)))) (-5 *3 (-587 *9)) + (-4 *1 (-1128 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-979 *5 *6 *7)) - (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3326 (-585 *8)))) (-5 *3 (-585 *8)) - (-4 *1 (-1126 *5 *6 *7 *8))))) + (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-981 *5 *6 *7)) + (-4 *5 (-499)) (-4 *6 (-721)) (-4 *7 (-760)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3329 (-587 *8)))) (-5 *3 (-587 *8)) + (-4 *1 (-1128 *5 *6 *7 *8))))) (((*1 *2 *1) - (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *6))))) + (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-587 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-979 *3 *4 *5)) - (-5 *2 (-2 (|:| -3865 (-585 *6)) (|:| -1703 (-585 *6))))))) + (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-981 *3 *4 *5)) + (-5 *2 (-2 (|:| -3868 (-587 *6)) (|:| -1706 (-587 *6))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-85)))) + (-12 (-5 *3 (-587 *1)) (-4 *1 (-981 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1126 *4 *5 *6 *3)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1128 *4 *5 *6 *3)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-85)))) + (-12 (-5 *3 (-587 *1)) (-4 *1 (-981 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)))) ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1126 *5 *6 *7 *3)) (-4 *5 (-497)) - (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-85))))) + (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1128 *5 *6 *7 *3)) (-4 *5 (-499)) + (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1126 *4 *5 *6 *3)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1128 *4 *5 *6 *3)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-85)))) + (-12 (-5 *3 (-587 *1)) (-4 *1 (-981 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1126 *4 *5 *6 *3)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1128 *4 *5 *6 *3)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-85)))) + (-12 (-5 *3 (-587 *1)) (-4 *1 (-981 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1126 *4 *5 *6 *3)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1128 *4 *5 *6 *3)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-85) *7 (-585 *7))) (-4 *1 (-1126 *4 *5 *6 *7)) - (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-12 (-5 *3 (-1 (-85) *7 (-587 *7))) (-4 *1 (-1128 *4 *5 *6 *7)) + (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-585 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) - (-4 *1 (-1126 *5 *6 *7 *8)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) - (-4 *8 (-979 *5 *6 *7))))) + (-12 (-5 *2 (-587 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) + (-4 *1 (-1128 *5 *6 *7 *8)) (-4 *5 (-499)) (-4 *6 (-721)) (-4 *7 (-760)) + (-4 *8 (-981 *5 *6 *7))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *2 (-979 *3 *4 *5))))) + (-12 (-4 *1 (-1128 *3 *4 *5 *2)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *2 (-981 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *2 (-979 *3 *4 *5))))) + (-12 (-4 *1 (-1128 *3 *4 *5 *2)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *2 (-981 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *2 (-979 *3 *4 *5))))) + (-12 (-4 *1 (-1128 *3 *4 *5 *2)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *2 (-981 *3 *4 *5))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *2 (-979 *3 *4 *5))))) + (-12 (-4 *1 (-1128 *3 *4 *5 *2)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *2 (-981 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1126 *2 *3 *4 *5)) (-4 *2 (-497)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *5 (-979 *2 *3 *4))))) + (-12 (-4 *1 (-1128 *2 *3 *4 *5)) (-4 *2 (-499)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *5 (-981 *2 *3 *4))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *2 (-979 *3 *4 *5))))) + (-12 (-4 *1 (-1128 *3 *4 *5 *2)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *2 (-981 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) - (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 *10)) - (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-985 *5 *6 *7 *8)) - (-4 *10 (-1022 *5 *6 *7 *8)))) + (-12 (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-395)) + (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-587 *10)) + (-5 *1 (-567 *5 *6 *7 *8 *9 *10)) (-4 *9 (-987 *5 *6 *7 *8)) + (-4 *10 (-1024 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) - (-14 *6 (-585 (-1092))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-569 *5 *6)))) + (-12 (-5 *3 (-587 (-707 *5 (-777 *6)))) (-5 *4 (-85)) (-4 *5 (-395)) + (-14 *6 (-587 (-1094))) (-5 *2 (-587 (-962 *5 *6))) (-5 *1 (-571 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) - (-14 *6 (-585 (-1092))) - (-5 *2 (-585 (-1062 *5 (-471 (-775 *6)) (-775 *6) (-705 *5 (-775 *6))))) - (-5 *1 (-569 *5 *6)))) + (-12 (-5 *3 (-587 (-707 *5 (-777 *6)))) (-5 *4 (-85)) (-4 *5 (-395)) + (-14 *6 (-587 (-1094))) + (-5 *2 (-587 (-1064 *5 (-473 (-777 *6)) (-777 *6) (-707 *5 (-777 *6))))) + (-5 *1 (-571 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) - (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *8))) - (-5 *1 (-942 *5 *6 *7 *8)))) + (-12 (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-395)) + (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-587 (-944 *5 *6 *7 *8))) + (-5 *1 (-944 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) - (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *8))) - (-5 *1 (-942 *5 *6 *7 *8)))) + (-12 (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-395)) + (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-587 (-944 *5 *6 *7 *8))) + (-5 *1 (-944 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) - (-14 *6 (-585 (-1092))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-960 *5 *6)))) + (-12 (-5 *3 (-587 (-707 *5 (-777 *6)))) (-5 *4 (-85)) (-4 *5 (-395)) + (-14 *6 (-587 (-1094))) (-5 *2 (-587 (-962 *5 *6))) (-5 *1 (-962 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) - (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *5 *6 *7 *8)))) + (-12 (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-395)) + (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-587 *1)) (-4 *1 (-987 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) - (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1062 *5 *6 *7 *8))) - (-5 *1 (-1062 *5 *6 *7 *8)))) + (-12 (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-395)) + (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-587 (-1064 *5 *6 *7 *8))) + (-5 *1 (-1064 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) - (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1062 *5 *6 *7 *8))) - (-5 *1 (-1062 *5 *6 *7 *8)))) + (-12 (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-395)) + (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-587 (-1064 *5 *6 *7 *8))) + (-5 *1 (-1064 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-1126 *4 *5 *6 *7))))) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-499)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-587 *1)) (-4 *1 (-1128 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) - (-5 *2 (-585 (-2 (|:| -3865 *1) (|:| -1703 (-585 *7))))) (-5 *3 (-585 *7)) - (-4 *1 (-1126 *4 *5 *6 *7))))) + (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) + (-5 *2 (-587 (-2 (|:| -3868 *1) (|:| -1706 (-587 *7))))) (-5 *3 (-587 *7)) + (-4 *1 (-1128 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *5))))) + (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-587 *5))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *3 (-497)) (-4 *4 (-719)) - (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5))))) + (|partial| -12 (-4 *1 (-1128 *3 *4 *5 *2)) (-4 *3 (-499)) (-4 *4 (-721)) + (-4 *5 (-760)) (-4 *2 (-981 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-979 *3 *4 *5)) (-4 *5 (-320)) (-5 *2 (-696))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) + (-12 (-4 *1 (-1128 *3 *4 *5 *6)) (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-981 *3 *4 *5)) (-4 *5 (-322)) (-5 *2 (-698))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-720)) (-4 *2 (-965)))) ((*1 *2 *1 *1) - (-12 (-4 *2 (-963)) (-5 *1 (-50 *2 *3)) (-14 *3 (-585 (-1092))))) + (-12 (-4 *2 (-965)) (-5 *1 (-50 *2 *3)) (-14 *3 (-587 (-1094))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-585 (-832))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) - (-14 *4 (-832)) (-14 *5 (-908 *4 *2)))) + (-12 (-5 *3 (-587 (-834))) (-4 *2 (-314)) (-5 *1 (-125 *4 *2 *5)) + (-14 *4 (-834)) (-14 *5 (-910 *4 *2)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) - (-14 *4 (-585 (-1092))))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-104)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1015)) (-4 *2 (-963)))) - ((*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-455 *2 *3)) (-4 *3 (-761)))) + (-12 (-5 *2 (-267 *3)) (-5 *1 (-179 *3 *4)) (-4 *3 (-13 (-965) (-760))) + (-14 *4 (-587 (-1094))))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-276 *3 *2)) (-4 *3 (-1017)) (-4 *2 (-104)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-1017)) (-4 *2 (-965)))) + ((*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-457 *2 *3)) (-4 *3 (-763)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-486)) (-4 *2 (-497)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1157 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-647 *2)) (-4 *2 (-963)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-963)) (-5 *1 (-676 *2 *3)) (-4 *3 (-665)))) + (-12 (-5 *3 (-488)) (-4 *2 (-499)) (-5 *1 (-566 *2 *4)) (-4 *4 (-1159 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-4 *1 (-649 *2)) (-4 *2 (-965)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-965)) (-5 *1 (-678 *2 *3)) (-4 *3 (-667)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 *5)) (-5 *3 (-585 (-696))) (-4 *1 (-681 *4 *5)) - (-4 *4 (-963)) (-4 *5 (-758)))) + (-12 (-5 *2 (-587 *5)) (-5 *3 (-587 (-698))) (-4 *1 (-683 *4 *5)) + (-4 *4 (-965)) (-4 *5 (-760)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *2)) (-4 *4 (-963)) (-4 *2 (-758)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-763 *2)) (-4 *2 (-963)))) + (-12 (-5 *3 (-698)) (-4 *1 (-683 *4 *2)) (-4 *4 (-965)) (-4 *2 (-760)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-4 *1 (-765 *2)) (-4 *2 (-965)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 (-696))) (-4 *1 (-863 *4 *5 *6)) - (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)))) + (-12 (-5 *2 (-587 *6)) (-5 *3 (-587 (-698))) (-4 *1 (-865 *4 *5 *6)) + (-4 *4 (-965)) (-4 *5 (-721)) (-4 *6 (-760)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-696)) (-4 *1 (-863 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-719)) - (-4 *2 (-758)))) + (-12 (-5 *3 (-698)) (-4 *1 (-865 *4 *5 *2)) (-4 *4 (-965)) (-4 *5 (-721)) + (-4 *2 (-760)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-696)) (-4 *2 (-863 *4 (-471 *5) *5)) (-5 *1 (-1042 *4 *5 *2)) - (-4 *4 (-963)) (-4 *5 (-758)))) + (-12 (-5 *3 (-698)) (-4 *2 (-865 *4 (-473 *5) *5)) (-5 *1 (-1044 *4 *5 *2)) + (-4 *4 (-965)) (-4 *5 (-760)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-696)) (-5 *2 (-859 *4)) (-5 *1 (-1124 *4)) (-4 *4 (-963))))) + (-12 (-5 *3 (-698)) (-5 *2 (-861 *4)) (-5 *1 (-1126 *4)) (-4 *4 (-965))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1042 *4 *3 *5))) (-4 *4 (-38 (-350 (-486)))) (-4 *4 (-963)) - (-4 *3 (-758)) (-5 *1 (-1042 *4 *3 *5)) (-4 *5 (-863 *4 (-471 *3) *3)))) + (-12 (-5 *2 (-1 (-1044 *4 *3 *5))) (-4 *4 (-38 (-352 (-488)))) (-4 *4 (-965)) + (-4 *3 (-760)) (-5 *1 (-1044 *4 *3 *5)) (-4 *5 (-865 *4 (-473 *3) *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1124 *4))) (-5 *3 (-1092)) (-5 *1 (-1124 *4)) - (-4 *4 (-38 (-350 (-486)))) (-4 *4 (-963))))) + (-12 (-5 *2 (-1 (-1126 *4))) (-5 *3 (-1094)) (-5 *1 (-1126 *4)) + (-4 *4 (-38 (-352 (-488)))) (-4 *4 (-965))))) (((*1 *2 *2) - (-12 (-4 *3 (-555 (-802 *3))) (-4 *3 (-798 *3)) (-4 *3 (-393)) - (-5 *1 (-1123 *3 *2)) (-4 *2 (-555 (-802 *3))) (-4 *2 (-798 *3)) - (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-557 (-804 *3))) (-4 *3 (-800 *3)) (-4 *3 (-395)) + (-5 *1 (-1125 *3 *2)) (-4 *2 (-557 (-804 *3))) (-4 *2 (-800 *3)) + (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) -(((*1 *2 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1015)) (-5 *1 (-880 *3)))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) +(((*1 *2 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-1017)) (-5 *1 (-882 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-393)) (-4 *3 (-758)) - (-4 *4 (-719)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-863 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-486))) (-5 *1 (-1034)))) + (-12 (-4 *2 (-120)) (-4 *2 (-260)) (-4 *2 (-395)) (-4 *3 (-760)) + (-4 *4 (-721)) (-5 *1 (-903 *2 *3 *4 *5)) (-4 *5 (-865 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-267 (-488))) (-5 *1 (-1036)))) ((*1 *2 *2) - (-12 (-4 *3 (-393)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-364 *3) (-1117)))))) + (-12 (-4 *3 (-395)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-366 *3) (-1119)))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-497)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-1122 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) + (-12 (-4 *3 (-499)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) + (-5 *1 (-1124 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-497)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-1122 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) + (-12 (-4 *3 (-499)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) + (-5 *1 (-1124 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-142 (-265 *4))) - (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 (-142 *4)))))) + (-12 (-4 *4 (-13 (-499) (-954 (-488)))) (-5 *2 (-144 (-267 *4))) + (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 (-144 *4)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-142 *3)) - (-5 *1 (-1121 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4)))))) + (-12 (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-144 *3)) + (-5 *1 (-1123 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) - (-4 *3 (-13 (-27) (-1117) (-364 (-142 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) + (-12 (-4 *4 (-13 (-499) (-954 (-488)))) (-5 *2 (-85)) (-5 *1 (-164 *4 *3)) + (-4 *3 (-13 (-27) (-1119) (-366 (-144 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-85)) - (-5 *1 (-1121 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) + (-12 (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-85)) + (-5 *1 (-1123 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-141 *2)) (-4 *2 (-148)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-265 *4)) - (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 (-142 *4)))))) + (-12 (-4 *4 (-13 (-499) (-954 (-488)))) (-5 *2 (-267 *4)) + (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 (-144 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) - (-4 *2 (-13 (-27) (-1117) (-364 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) + (-12 (-4 *3 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-1123 *3 *2)) + (-4 *2 (-13 (-27) (-1119) (-366 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-141 *2)) (-4 *2 (-148)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-265 *4)) - (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 (-142 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) + (-12 (-4 *4 (-13 (-499) (-954 (-488)))) (-5 *2 (-267 *4)) + (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 (-144 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)))) + ((*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-148)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) - (-4 *2 (-13 (-27) (-1117) (-364 *3)))))) + (-12 (-4 *3 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-1123 *3 *2)) + (-4 *2 (-13 (-27) (-1119) (-366 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-13 (-27) (-1117) (-364 (-142 *3)))))) + (-12 (-4 *3 (-13 (-499) (-954 (-488)))) (-5 *1 (-164 *3 *2)) + (-4 *2 (-13 (-27) (-1119) (-366 (-144 *3)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) - (-4 *2 (-13 (-27) (-1117) (-364 *3)))))) + (-12 (-4 *3 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-1123 *3 *2)) + (-4 *2 (-13 (-27) (-1119) (-366 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-13 (-27) (-1117) (-364 (-142 *3)))))) + (-12 (-4 *3 (-13 (-499) (-954 (-488)))) (-5 *1 (-164 *3 *2)) + (-4 *2 (-13 (-27) (-1119) (-366 (-144 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *4 *2)) - (-4 *2 (-13 (-27) (-1117) (-364 (-142 *4)))))) + (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-499) (-954 (-488)))) (-5 *1 (-164 *4 *2)) + (-4 *2 (-13 (-27) (-1119) (-366 (-144 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) - (-4 *2 (-13 (-27) (-1117) (-364 *3))))) + (-12 (-4 *3 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-1123 *3 *2)) + (-4 *2 (-13 (-27) (-1119) (-366 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) - (-5 *1 (-1121 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4)))))) + (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) + (-5 *1 (-1123 *4 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-13 (-27) (-1117) (-364 (-142 *3)))))) + (-12 (-4 *3 (-13 (-499) (-954 (-488)))) (-5 *1 (-164 *3 *2)) + (-4 *2 (-13 (-27) (-1119) (-366 (-144 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *1 (-162 *4 *2)) - (-4 *2 (-13 (-27) (-1117) (-364 (-142 *4)))))) + (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-499) (-954 (-488)))) (-5 *1 (-164 *4 *2)) + (-4 *2 (-13 (-27) (-1119) (-366 (-144 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1121 *3 *2)) - (-4 *2 (-13 (-27) (-1117) (-364 *3))))) + (-12 (-4 *3 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-1123 *3 *2)) + (-4 *2 (-13 (-27) (-1119) (-366 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) - (-5 *1 (-1121 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4)))))) + (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) + (-5 *1 (-1123 *4 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) - ((*1 *1 *1) (-4 *1 (-1120)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) + ((*1 *1 *1) (-4 *1 (-1122)))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-758)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-283 *2)) (-4 *2 (-760)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) - ((*1 *1 *1) (-4 *1 (-1120)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) + ((*1 *1 *1) (-4 *1 (-1122)))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) - ((*1 *1 *1) (-4 *1 (-1120)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) + ((*1 *1 *1) (-4 *1 (-1122)))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) - ((*1 *1 *1) (-4 *1 (-1120)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) + ((*1 *1 *1) (-4 *1 (-1122)))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) - ((*1 *1 *1) (-4 *1 (-1120)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) + ((*1 *1 *1) (-4 *1 (-1122)))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-758)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-283 *2)) (-4 *2 (-760)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3)))) - ((*1 *1 *1) (-4 *1 (-1120)))) -(((*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1118 *3)) (-4 *3 (-1015))))) -(((*1 *1 *2) (-12 (-5 *1 (-1118 *2)) (-4 *2 (-1015)))) - ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-1118 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3)))) + ((*1 *1 *1) (-4 *1 (-1122)))) +(((*1 *2 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1133)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1120 *3)) (-4 *3 (-1017))))) +(((*1 *1 *2) (-12 (-5 *1 (-1120 *2)) (-4 *2 (-1017)))) + ((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-5 *1 (-1120 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-585 (-1118 *2))) (-5 *1 (-1118 *2)) (-4 *2 (-1015))))) -(((*1 *1 *1) (-12 (-5 *1 (-1118 *2)) (-4 *2 (-1015))))) + (-12 (-5 *3 (-587 (-1120 *2))) (-5 *1 (-1120 *2)) (-4 *2 (-1017))))) +(((*1 *1 *1) (-12 (-5 *1 (-1120 *2)) (-4 *2 (-1017))))) (((*1 *2 *1) - (-12 (-5 *2 (-585 (-1118 *3))) (-5 *1 (-1118 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1118 *3)) (-4 *3 (-1015))))) + (-12 (-5 *2 (-587 (-1120 *3))) (-5 *1 (-1120 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1120 *3)) (-4 *3 (-1017))))) (((*1 *2 *1) - (-12 (-5 *2 (-585 (-1118 *3))) (-5 *1 (-1118 *3)) (-4 *3 (-1015))))) + (-12 (-5 *2 (-587 (-1120 *3))) (-5 *1 (-1120 *3)) (-4 *3 (-1017))))) (((*1 *2) - (-12 (-4 *2 (-13 (-364 *3) (-917))) (-5 *1 (-230 *3 *2)) (-4 *3 (-497)))) - ((*1 *1) (-5 *1 (-418))) ((*1 *1) (-4 *1 (-1117)))) -(((*1 *2) (-12 (-5 *2 (-1049 (-179))) (-5 *1 (-1115))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1075)) (-5 *2 (-486)) (-5 *1 (-1114 *4)) (-4 *4 (-963))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-486)) (-5 *1 (-1114 *3)) (-4 *3 (-963))))) -(((*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-486)))) - ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) + (-12 (-4 *2 (-13 (-366 *3) (-919))) (-5 *1 (-232 *3 *2)) (-4 *3 (-499)))) + ((*1 *1) (-5 *1 (-420))) ((*1 *1) (-4 *1 (-1119)))) +(((*1 *2) (-12 (-5 *2 (-1051 (-181))) (-5 *1 (-1117))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1077)) (-5 *2 (-488)) (-5 *1 (-1116 *4)) (-4 *4 (-965))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-488)) (-5 *1 (-1116 *3)) (-4 *3 (-965))))) +(((*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-488)))) + ((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-817 *3)) (-4 *3 (-1017)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) - (-5 *2 (-486)))) + (-12 (-4 *1 (-984 *4 *3)) (-4 *4 (-13 (-759) (-314))) (-4 *3 (-1159 *4)) + (-5 *2 (-488)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-497) (-952 *2) (-582 *2) (-393))) (-5 *2 (-486)) - (-5 *1 (-1032 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *4))))) + (|partial| -12 (-4 *4 (-13 (-499) (-954 *2) (-584 *2) (-395))) (-5 *2 (-488)) + (-5 *1 (-1034 *4 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *4))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-752 *3)) - (-4 *3 (-13 (-27) (-1117) (-364 *6))) - (-4 *6 (-13 (-497) (-952 *2) (-582 *2) (-393))) (-5 *2 (-486)) - (-5 *1 (-1032 *6 *3)))) + (|partial| -12 (-5 *4 (-1094)) (-5 *5 (-754 *3)) + (-4 *3 (-13 (-27) (-1119) (-366 *6))) + (-4 *6 (-13 (-499) (-954 *2) (-584 *2) (-395))) (-5 *2 (-488)) + (-5 *1 (-1034 *6 *3)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-1075)) - (-4 *6 (-13 (-497) (-952 *2) (-582 *2) (-393))) (-5 *2 (-486)) - (-5 *1 (-1032 *6 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *6))))) + (|partial| -12 (-5 *4 (-1094)) (-5 *5 (-1077)) + (-4 *6 (-13 (-499) (-954 *2) (-584 *2) (-395))) (-5 *2 (-488)) + (-5 *1 (-1034 *6 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *6))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-393)) (-5 *2 (-486)) - (-5 *1 (-1033 *4)))) + (|partial| -12 (-5 *3 (-352 (-861 *4))) (-4 *4 (-395)) (-5 *2 (-488)) + (-5 *1 (-1035 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-752 (-350 (-859 *6)))) - (-5 *3 (-350 (-859 *6))) (-4 *6 (-393)) (-5 *2 (-486)) (-5 *1 (-1033 *6)))) + (|partial| -12 (-5 *4 (-1094)) (-5 *5 (-754 (-352 (-861 *6)))) + (-5 *3 (-352 (-861 *6))) (-4 *6 (-395)) (-5 *2 (-488)) (-5 *1 (-1035 *6)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-350 (-859 *6))) (-5 *4 (-1092)) (-5 *5 (-1075)) - (-4 *6 (-393)) (-5 *2 (-486)) (-5 *1 (-1033 *6)))) - ((*1 *2 *3) (|partial| -12 (-5 *2 (-486)) (-5 *1 (-1114 *3)) (-4 *3 (-963))))) -(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1113)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1113))))) -(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1113))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-1113))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1015)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-1113))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1113))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-774) (-774))) (-5 *1 (-86)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-774) (-585 (-774)))) (-5 *1 (-86)))) - ((*1 *2 *1) (-12 (-5 *2 (-634 (-1 (-774) (-585 (-774))))) (-5 *1 (-86)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1187)) (-5 *1 (-167 *3)) + (|partial| -12 (-5 *3 (-352 (-861 *6))) (-5 *4 (-1094)) (-5 *5 (-1077)) + (-4 *6 (-395)) (-5 *2 (-488)) (-5 *1 (-1035 *6)))) + ((*1 *2 *3) (|partial| -12 (-5 *2 (-488)) (-5 *1 (-1116 *3)) (-4 *3 (-965))))) +(((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1115)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1115))))) +(((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1115))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-1115))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-315 *2)) (-4 *2 (-1017)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-1115))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1115))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-776) (-776))) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-776) (-587 (-776)))) (-5 *1 (-86)))) + ((*1 *2 *1) (-12 (-5 *2 (-636 (-1 (-776) (-587 (-776))))) (-5 *1 (-86)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1189)) (-5 *1 (-169 *3)) (-4 *3 - (-13 (-758) - (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 (*2 $)) - (-15 -1965 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-443)))) - ((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-649)))) - ((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1111)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-1111))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111))))) + (-13 (-760) + (-10 -8 (-15 -3806 ((-1077) $ (-1094))) (-15 -3623 (*2 $)) + (-15 -1968 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-445)))) + ((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-651)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1113)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-5 *2 (-1189)) (-5 *1 (-1113))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-1113))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-1113))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-696)) (-4 *3 (-1131)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)))) - ((*1 *1) (-5 *1 (-145))) - ((*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-832)) (-4 *3 (-1015)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-339)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) + (-12 (-5 *2 (-698)) (-4 *3 (-1133)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)))) + ((*1 *1) (-5 *1 (-147))) + ((*1 *1) (-12 (-5 *1 (-168 *2 *3)) (-14 *2 (-834)) (-4 *3 (-1017)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1077)) (-4 *1 (-341)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-698)) (-4 *1 (-597 *3)) (-4 *3 (-1133)))) ((*1 *1) - (-12 (-4 *3 (-1015)) (-5 *1 (-797 *2 *3 *4)) (-4 *2 (-1015)) - (-4 *4 (-610 *3)))) - ((*1 *1) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) - ((*1 *1 *2) (-12 (-5 *1 (-1058 *3 *2)) (-14 *3 (-696)) (-4 *2 (-963)))) - ((*1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) - ((*1 *1 *1) (-5 *1 (-1092))) ((*1 *1) (-5 *1 (-1092))) - ((*1 *1) (-5 *1 (-1111)))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-1111))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1131)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-758)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-758)))) - ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-237 *2)) (-4 *2 (-1131)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-636 *2)) (-4 *2 (-1015)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1187)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1015)) (-5 *1 (-1110 *3 *2)) (-4 *3 (-1015))))) + (-12 (-4 *3 (-1017)) (-5 *1 (-799 *2 *3 *4)) (-4 *2 (-1017)) + (-4 *4 (-612 *3)))) + ((*1 *1) (-12 (-5 *1 (-802 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1017)))) + ((*1 *1 *2) (-12 (-5 *1 (-1060 *3 *2)) (-14 *3 (-698)) (-4 *2 (-965)))) + ((*1 *1) (-12 (-5 *1 (-1083 *2 *3)) (-14 *2 (-834)) (-4 *3 (-965)))) + ((*1 *1 *1) (-5 *1 (-1094))) ((*1 *1) (-5 *1 (-1094))) + ((*1 *1) (-5 *1 (-1113)))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-1113))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-1113))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-1113))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-1113))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1133)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-760)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-760)))) + ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-239 *3)) (-4 *3 (-1133)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-488)) (-4 *1 (-239 *2)) (-4 *2 (-1133)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-698)) (-4 *1 (-638 *2)) (-4 *2 (-1017)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1189)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1017)) (-5 *1 (-1112 *3 *2)) (-4 *3 (-1017))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017))))) (((*1 *2) - (-12 (-5 *2 (-1187)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) + (-12 (-5 *2 (-1189)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017))))) (((*1 *2) - (-12 (-5 *2 (-1187)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) + (-12 (-5 *2 (-1189)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017))))) (((*1 *2 *3) - (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1110 *4 *5)) (-4 *4 (-1015)) - (-4 *5 (-1015))))) + (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1112 *4 *5)) (-4 *4 (-1017)) + (-4 *5 (-1017))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1110 *4 *5)) (-4 *4 (-1015)) - (-4 *5 (-1015))))) + (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1112 *4 *5)) (-4 *4 (-1017)) + (-4 *5 (-1017))))) (((*1 *2) - (-12 (-5 *2 (-1187)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) + (-12 (-5 *2 (-1189)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017))))) (((*1 *1 *2) - (-12 (-5 *2 (-585 (-2 (|:| -3864 *3) (|:| |entry| *4)))) (-4 *3 (-1015)) - (-4 *4 (-1015)) (-4 *1 (-1109 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1109 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-1107 *2)) (-4 *2 (-312))))) + (-12 (-5 *2 (-587 (-2 (|:| -3867 *3) (|:| |entry| *4)))) (-4 *3 (-1017)) + (-4 *4 (-1017)) (-4 *1 (-1111 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1111 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1017))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-1109 *2)) (-4 *2 (-314))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-832)) (-5 *2 (-1087 *3)) (-5 *1 (-1107 *3)) (-4 *3 (-312))))) -(((*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-1107 *2)) (-4 *2 (-312))))) + (-12 (-5 *4 (-834)) (-5 *2 (-1089 *3)) (-5 *1 (-1109 *3)) (-4 *3 (-314))))) +(((*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-5 *1 (-1109 *2)) (-4 *2 (-314))))) (((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-32 *3 *4)) (-4 *4 (-364 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-55)) (-5 *1 (-86)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-696)) (-5 *1 (-86)))) - ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-86)))) + (-12 (-5 *2 (-86)) (-4 *3 (-499)) (-5 *1 (-32 *3 *4)) (-4 *4 (-366 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-55)) (-5 *1 (-86)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-698)) (-5 *1 (-86)))) + ((*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-86)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-131 *3 *4)) (-4 *4 (-364 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-86)) (-5 *1 (-136)))) + (-12 (-5 *2 (-86)) (-4 *3 (-499)) (-5 *1 (-131 *3 *4)) (-4 *4 (-366 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-86)) (-5 *1 (-136)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-230 *3 *4)) - (-4 *4 (-13 (-364 *3) (-917))))) - ((*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-253 *3)) (-4 *3 (-254)))) - ((*1 *2 *2) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) + (-12 (-5 *2 (-86)) (-4 *3 (-499)) (-5 *1 (-232 *3 *4)) + (-4 *4 (-13 (-366 *3) (-919))))) + ((*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-255 *3)) (-4 *3 (-256)))) + ((*1 *2 *2) (-12 (-4 *1 (-256)) (-5 *2 (-86)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *4 (-1015)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))) + (-12 (-5 *2 (-86)) (-4 *4 (-1017)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-374 *3 *4)) (-4 *4 (-364 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) + (-12 (-5 *2 (-86)) (-4 *3 (-499)) (-5 *1 (-376 *3 *4)) (-4 *4 (-366 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-554 *3)) (-4 *3 (-1017)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-497)) (-5 *1 (-570 *3 *4)) - (-4 *4 (-13 (-364 *3) (-917) (-1117))))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-934)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1106 *2)) (-4 *2 (-1015))))) + (-12 (-5 *2 (-86)) (-4 *3 (-499)) (-5 *1 (-572 *3 *4)) + (-4 *4 (-13 (-366 *3) (-919) (-1119))))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-936)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1108 *2)) (-4 *2 (-1017))))) (((*1 *2 *1) - (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-585 (-585 *3))))) + (-12 (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)) (-5 *2 (-587 (-587 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-585 (-585 *5))))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-585 *3))) (-5 *1 (-1105 *3)) (-4 *3 (-1015))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-1105 *3))))) + (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) + (-4 *7 (-198 *3 *5)) (-5 *2 (-587 (-587 *5))))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-587 *3))) (-5 *1 (-1107 *3)) (-4 *3 (-1017))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1017)) (-5 *1 (-1107 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-758)) + (-12 (-4 *4 (-760)) (-5 *2 - (-2 (|:| |f1| (-585 *4)) (|:| |f2| (-585 (-585 (-585 *4)))) - (|:| |f3| (-585 (-585 *4))) (|:| |f4| (-585 (-585 (-585 *4)))))) - (-5 *1 (-1103 *4)) (-5 *3 (-585 (-585 (-585 *4))))))) + (-2 (|:| |f1| (-587 *4)) (|:| |f2| (-587 (-587 (-587 *4)))) + (|:| |f3| (-587 (-587 *4))) (|:| |f4| (-587 (-587 (-587 *4)))))) + (-5 *1 (-1105 *4)) (-5 *3 (-587 (-587 (-587 *4))))))) (((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-758)) (-5 *3 (-585 *6)) (-5 *5 (-585 *3)) + (-12 (-4 *6 (-760)) (-5 *3 (-587 *6)) (-5 *5 (-587 *3)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-585 *5)) (|:| |f3| *5) (|:| |f4| (-585 *5)))) - (-5 *1 (-1103 *6)) (-5 *4 (-585 *5))))) + (-2 (|:| |f1| *3) (|:| |f2| (-587 *5)) (|:| |f3| *5) (|:| |f4| (-587 *5)))) + (-5 *1 (-1105 *6)) (-5 *4 (-587 *5))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-314)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) + (-5 *1 (-464 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-497)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-4 *7 (-906 *4)) (-4 *2 (-629 *7 *8 *9)) - (-5 *1 (-463 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-629 *4 *5 *6)) - (-4 *8 (-324 *7)) (-4 *9 (-324 *7)))) + (|partial| -12 (-4 *4 (-499)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) + (-4 *7 (-908 *4)) (-4 *2 (-631 *7 *8 *9)) + (-5 *1 (-465 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-631 *4 *5 *6)) + (-4 *8 (-326 *7)) (-4 *9 (-326 *7)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) - (-4 *4 (-324 *2)) (-4 *2 (-312)))) + (|partial| -12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) + (-4 *4 (-326 *2)) (-4 *2 (-314)))) ((*1 *2 *2) - (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) - ((*1 *1 *1) (|partial| -12 (-5 *1 (-632 *2)) (-4 *2 (-312)) (-4 *2 (-963)))) + (|partial| -12 (-4 *3 (-314)) (-4 *3 (-148)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)) (-5 *1 (-633 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5)))) + ((*1 *1 *1) (|partial| -12 (-5 *1 (-634 *2)) (-4 *2 (-314)) (-4 *2 (-965)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1039 *2 *3 *4 *5)) (-4 *3 (-963)) - (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-312)))) - ((*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-1103 *3))))) + (|partial| -12 (-4 *1 (-1041 *2 *3 *4 *5)) (-4 *3 (-965)) + (-4 *4 (-198 *2 *3)) (-4 *5 (-198 *2 *3)) (-4 *3 (-314)))) + ((*1 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-760)) (-5 *1 (-1105 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-758)) (-5 *2 (-585 (-585 *4))) (-5 *1 (-1103 *4)) - (-5 *3 (-585 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-758)) (-5 *1 (-1103 *3))))) + (-12 (-4 *4 (-760)) (-5 *2 (-587 (-587 *4))) (-5 *1 (-1105 *4)) + (-5 *3 (-587 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-760)) (-5 *1 (-1105 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-758)) (-5 *2 (-1105 (-585 *4))) (-5 *1 (-1103 *4)) - (-5 *3 (-585 *4))))) + (-12 (-4 *4 (-760)) (-5 *2 (-1107 (-587 *4))) (-5 *1 (-1105 *4)) + (-5 *3 (-587 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-758)) (-5 *2 (-585 (-585 (-585 *4)))) (-5 *1 (-1103 *4)) - (-5 *3 (-585 (-585 *4)))))) + (-12 (-4 *4 (-760)) (-5 *2 (-587 (-587 (-587 *4)))) (-5 *1 (-1105 *4)) + (-5 *3 (-587 (-587 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1105 (-585 *4))) (-4 *4 (-758)) (-5 *2 (-585 (-585 *4))) - (-5 *1 (-1103 *4))))) + (-12 (-5 *3 (-1107 (-587 *4))) (-4 *4 (-760)) (-5 *2 (-587 (-587 *4))) + (-5 *1 (-1105 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 (-585 (-585 *4)))) (-5 *2 (-585 (-585 *4))) - (-5 *1 (-1103 *4)) (-4 *4 (-758))))) + (-12 (-5 *3 (-587 (-587 (-587 *4)))) (-5 *2 (-587 (-587 *4))) + (-5 *1 (-1105 *4)) (-4 *4 (-760))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-585 (-585 (-585 *4)))) (-5 *2 (-585 (-585 *4))) (-4 *4 (-758)) - (-5 *1 (-1103 *4))))) + (-12 (-5 *3 (-587 (-587 (-587 *4)))) (-5 *2 (-587 (-587 *4))) (-4 *4 (-760)) + (-5 *1 (-1105 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-585 (-585 (-585 *4)))) (-5 *3 (-585 *4)) (-4 *4 (-758)) - (-5 *1 (-1103 *4))))) + (-12 (-5 *2 (-587 (-587 (-587 *4)))) (-5 *3 (-587 *4)) (-4 *4 (-760)) + (-5 *1 (-1105 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-585 (-585 (-585 *5)))) (-5 *3 (-1 (-85) *5 *5)) - (-5 *4 (-585 *5)) (-4 *5 (-758)) (-5 *1 (-1103 *5))))) + (-12 (-5 *2 (-587 (-587 (-587 *5)))) (-5 *3 (-1 (-85) *5 *5)) + (-5 *4 (-587 *5)) (-4 *5 (-760)) (-5 *1 (-1105 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-758)) (-5 *4 (-585 *6)) - (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-585 *4)))) - (-5 *1 (-1103 *6)) (-5 *5 (-585 *4))))) -(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1102))))) -(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1102))))) -(((*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1102))))) -(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1102))))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-1102))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-350 (-859 *5)))) (-5 *4 (-585 (-1092))) (-4 *5 (-497)) - (-5 *2 (-585 (-585 (-859 *5)))) (-5 *1 (-1101 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-350 (-859 (-486))))) - (-5 *2 (-585 (-585 (-249 (-859 *4))))) (-5 *1 (-332 *4)) - (-4 *4 (-13 (-757) (-312))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-249 (-350 (-859 (-486)))))) - (-5 *2 (-585 (-585 (-249 (-859 *4))))) (-5 *1 (-332 *4)) - (-4 *4 (-13 (-757) (-312))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-859 (-486)))) (-5 *2 (-585 (-249 (-859 *4)))) - (-5 *1 (-332 *4)) (-4 *4 (-13 (-757) (-312))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-249 (-350 (-859 (-486))))) (-5 *2 (-585 (-249 (-859 *4)))) - (-5 *1 (-332 *4)) (-4 *4 (-13 (-757) (-312))))) + (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-760)) (-5 *4 (-587 *6)) + (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-587 *4)))) + (-5 *1 (-1105 *6)) (-5 *5 (-587 *4))))) +(((*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1104))))) +(((*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1104))))) +(((*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1104))))) +(((*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1104))))) +(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-1104))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-587 (-352 (-861 *5)))) (-5 *4 (-587 (-1094))) (-4 *5 (-499)) + (-5 *2 (-587 (-587 (-861 *5)))) (-5 *1 (-1103 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-587 (-352 (-861 (-488))))) + (-5 *2 (-587 (-587 (-251 (-861 *4))))) (-5 *1 (-334 *4)) + (-4 *4 (-13 (-759) (-314))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-587 (-251 (-352 (-861 (-488)))))) + (-5 *2 (-587 (-587 (-251 (-861 *4))))) (-5 *1 (-334 *4)) + (-4 *4 (-13 (-759) (-314))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-352 (-861 (-488)))) (-5 *2 (-587 (-251 (-861 *4)))) + (-5 *1 (-334 *4)) (-4 *4 (-13 (-759) (-314))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-251 (-352 (-861 (-488))))) (-5 *2 (-587 (-251 (-861 *4)))) + (-5 *1 (-334 *4)) (-4 *4 (-13 (-759) (-314))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1092)) - (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) - (-4 *4 (-13 (-29 *6) (-1117) (-873))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2014 (-585 *4)))) - (-5 *1 (-597 *6 *4 *3)) (-4 *3 (-602 *4)))) + (|partial| -12 (-5 *5 (-1094)) + (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) + (-4 *4 (-13 (-29 *6) (-1119) (-875))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2017 (-587 *4)))) + (-5 *1 (-599 *6 *4 *3)) (-4 *3 (-604 *4)))) ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-585 *2)) - (-4 *2 (-13 (-29 *6) (-1117) (-873))) - (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) - (-5 *1 (-597 *6 *2 *3)) (-4 *3 (-602 *2)))) + (|partial| -12 (-5 *4 (-1094)) (-5 *5 (-587 *2)) + (-4 *2 (-13 (-29 *6) (-1119) (-875))) + (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) + (-5 *1 (-599 *6 *2 *3)) (-4 *3 (-604 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1037 *5))) - (-4 *4 (-13 (-324 *5) (-1037 *5))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-585 *4)))) - (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4)))) + (-12 (-4 *5 (-314)) (-4 *6 (-13 (-326 *5) (-1039 *5))) + (-4 *4 (-13 (-326 *5) (-1039 *5))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2017 (-587 *4)))) + (-5 *1 (-613 *5 *6 *4 *3)) (-4 *3 (-631 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1037 *5))) - (-4 *7 (-13 (-324 *5) (-1037 *5))) - (-5 *2 (-585 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2014 (-585 *7))))) - (-5 *1 (-611 *5 *6 *7 *3)) (-5 *4 (-585 *7)) (-4 *3 (-629 *5 *6 *7)))) + (-12 (-4 *5 (-314)) (-4 *6 (-13 (-326 *5) (-1039 *5))) + (-4 *7 (-13 (-326 *5) (-1039 *5))) + (-5 *2 (-587 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2017 (-587 *7))))) + (-5 *1 (-613 *5 *6 *7 *3)) (-5 *4 (-587 *7)) (-4 *3 (-631 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-632 *5)) (-4 *5 (-312)) + (-12 (-5 *3 (-634 *5)) (-4 *5 (-314)) (-5 *2 - (-2 (|:| |particular| (-3 (-1181 *5) #2="failed")) - (|:| -2014 (-585 (-1181 *5))))) - (-5 *1 (-612 *5)) (-5 *4 (-1181 *5)))) + (-2 (|:| |particular| (-3 (-1183 *5) #2="failed")) + (|:| -2017 (-587 (-1183 *5))))) + (-5 *1 (-614 *5)) (-5 *4 (-1183 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-585 *5))) (-4 *5 (-312)) + (-12 (-5 *3 (-587 (-587 *5))) (-4 *5 (-314)) (-5 *2 - (-2 (|:| |particular| (-3 (-1181 *5) #2#)) (|:| -2014 (-585 (-1181 *5))))) - (-5 *1 (-612 *5)) (-5 *4 (-1181 *5)))) + (-2 (|:| |particular| (-3 (-1183 *5) #2#)) (|:| -2017 (-587 (-1183 *5))))) + (-5 *1 (-614 *5)) (-5 *4 (-1183 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-632 *5)) (-4 *5 (-312)) + (-12 (-5 *3 (-634 *5)) (-4 *5 (-314)) (-5 *2 - (-585 - (-2 (|:| |particular| (-3 (-1181 *5) #2#)) - (|:| -2014 (-585 (-1181 *5)))))) - (-5 *1 (-612 *5)) (-5 *4 (-585 (-1181 *5))))) + (-587 + (-2 (|:| |particular| (-3 (-1183 *5) #2#)) + (|:| -2017 (-587 (-1183 *5)))))) + (-5 *1 (-614 *5)) (-5 *4 (-587 (-1183 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-585 *5))) (-4 *5 (-312)) + (-12 (-5 *3 (-587 (-587 *5))) (-4 *5 (-314)) (-5 *2 - (-585 - (-2 (|:| |particular| (-3 (-1181 *5) #2#)) - (|:| -2014 (-585 (-1181 *5)))))) - (-5 *1 (-612 *5)) (-5 *4 (-585 (-1181 *5))))) + (-587 + (-2 (|:| |particular| (-3 (-1183 *5) #2#)) + (|:| -2017 (-587 (-1183 *5)))))) + (-5 *1 (-614 *5)) (-5 *4 (-587 (-1183 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-585 (-1092))) (-4 *5 (-497)) - (-5 *2 (-585 (-585 (-249 (-350 (-859 *5)))))) (-5 *1 (-695 *5)))) + (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-587 (-1094))) (-4 *5 (-499)) + (-5 *2 (-587 (-587 (-251 (-352 (-861 *5)))))) (-5 *1 (-697 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-497)) - (-5 *2 (-585 (-585 (-249 (-350 (-859 *4)))))) (-5 *1 (-695 *4)))) + (-12 (-5 *3 (-587 (-861 *4))) (-4 *4 (-499)) + (-5 *2 (-587 (-587 (-251 (-352 (-861 *4)))))) (-5 *1 (-697 *4)))) ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1092)) - (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) (-5 *1 (-697 *5 *2)) - (-4 *2 (-13 (-29 *5) (-1117) (-873))))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1094)) + (-4 *5 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) (-5 *1 (-699 *5 *2)) + (-4 *2 (-13 (-29 *5) (-1119) (-875))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-632 *7)) (-5 *5 (-1092)) - (-4 *7 (-13 (-29 *6) (-1117) (-873))) - (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) - (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -2014 (-585 (-1181 *7))))) - (-5 *1 (-727 *6 *7)) (-5 *4 (-1181 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-632 *6)) (-5 *4 (-1092)) - (-4 *6 (-13 (-29 *5) (-1117) (-873))) - (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) - (-5 *2 (-585 (-1181 *6))) (-5 *1 (-727 *5 *6)))) + (|partial| -12 (-5 *3 (-634 *7)) (-5 *5 (-1094)) + (-4 *7 (-13 (-29 *6) (-1119) (-875))) + (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1183 *7)) (|:| -2017 (-587 (-1183 *7))))) + (-5 *1 (-729 *6 *7)) (-5 *4 (-1183 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-634 *6)) (-5 *4 (-1094)) + (-4 *6 (-13 (-29 *5) (-1119) (-875))) + (-4 *5 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) + (-5 *2 (-587 (-1183 *6))) (-5 *1 (-729 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-585 (-249 *7))) (-5 *4 (-585 (-86))) (-5 *5 (-1092)) - (-4 *7 (-13 (-29 *6) (-1117) (-873))) - (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) - (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -2014 (-585 (-1181 *7))))) - (-5 *1 (-727 *6 *7)))) + (|partial| -12 (-5 *3 (-587 (-251 *7))) (-5 *4 (-587 (-86))) (-5 *5 (-1094)) + (-4 *7 (-13 (-29 *6) (-1119) (-875))) + (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1183 *7)) (|:| -2017 (-587 (-1183 *7))))) + (-5 *1 (-729 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-585 *7)) (-5 *4 (-585 (-86))) (-5 *5 (-1092)) - (-4 *7 (-13 (-29 *6) (-1117) (-873))) - (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) - (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -2014 (-585 (-1181 *7))))) - (-5 *1 (-727 *6 *7)))) + (|partial| -12 (-5 *3 (-587 *7)) (-5 *4 (-587 (-86))) (-5 *5 (-1094)) + (-4 *7 (-13 (-29 *6) (-1119) (-875))) + (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1183 *7)) (|:| -2017 (-587 (-1183 *7))))) + (-5 *1 (-729 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1092)) - (-4 *7 (-13 (-29 *6) (-1117) (-873))) - (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) - (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2014 (-585 *7))) *7 #3="failed")) - (-5 *1 (-727 *6 *7)))) + (-12 (-5 *3 (-251 *7)) (-5 *4 (-86)) (-5 *5 (-1094)) + (-4 *7 (-13 (-29 *6) (-1119) (-875))) + (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) + (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2017 (-587 *7))) *7 #3="failed")) + (-5 *1 (-729 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-86)) (-5 *5 (-1092)) - (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) - (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2014 (-585 *3))) *3 #3#)) - (-5 *1 (-727 *6 *3)) (-4 *3 (-13 (-29 *6) (-1117) (-873))))) + (-12 (-5 *4 (-86)) (-5 *5 (-1094)) + (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) + (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2017 (-587 *3))) *3 #3#)) + (-5 *1 (-729 *6 *3)) (-4 *3 (-13 (-29 *6) (-1119) (-875))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-585 *2)) - (-4 *2 (-13 (-29 *6) (-1117) (-873))) (-5 *1 (-727 *6 *2)) - (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))))) + (|partial| -12 (-5 *3 (-251 *2)) (-5 *4 (-86)) (-5 *5 (-587 *2)) + (-4 *2 (-13 (-29 *6) (-1119) (-875))) (-5 *1 (-729 *6 *2)) + (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-585 *2)) - (-4 *2 (-13 (-29 *6) (-1117) (-873))) - (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) - (-5 *1 (-727 *6 *2)))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-251 *2)) (-5 *5 (-587 *2)) + (-4 *2 (-13 (-29 *6) (-1119) (-875))) + (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) + (-5 *1 (-729 *6 *2)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 - (-1 (-3 (-2 (|:| |particular| *6) (|:| -2014 (-585 *6))) "failed") *7 *6)) - (-4 *6 (-312)) (-4 *7 (-602 *6)) - (-5 *2 (-2 (|:| |particular| (-1181 *6)) (|:| -2014 (-632 *6)))) - (-5 *1 (-735 *6 *7)) (-5 *3 (-632 *6)) (-5 *4 (-1181 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-859 (-350 (-486)))) (-5 *2 (-585 (-330))) (-5 *1 (-938)) - (-5 *4 (-330)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-859 (-486))) (-5 *2 (-585 (-330))) (-5 *1 (-938)) - (-5 *4 (-330)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) - (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) - (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1047 *4)) (-5 *3 (-265 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) - (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1047 *4)) - (-5 *3 (-249 (-265 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) - (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1047 *5)) - (-5 *3 (-249 (-265 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) - (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1047 *5)) (-5 *3 (-265 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-585 (-1092))) - (-4 *5 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) - (-5 *2 (-585 (-585 (-249 (-265 *5))))) (-5 *1 (-1047 *5)) - (-5 *3 (-585 (-249 (-265 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-350 (-859 *5)))) (-5 *4 (-585 (-1092))) (-4 *5 (-497)) - (-5 *2 (-585 (-585 (-249 (-350 (-859 *5)))))) (-5 *1 (-1101 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-585 (-1092))) (-4 *5 (-497)) - (-5 *2 (-585 (-585 (-249 (-350 (-859 *5)))))) (-5 *1 (-1101 *5)) - (-5 *3 (-585 (-249 (-350 (-859 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-585 (-350 (-859 *4)))) (-4 *4 (-497)) - (-5 *2 (-585 (-585 (-249 (-350 (-859 *4)))))) (-5 *1 (-1101 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-585 (-585 (-249 (-350 (-859 *4)))))) - (-5 *1 (-1101 *4)) (-5 *3 (-585 (-249 (-350 (-859 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1092)) (-4 *5 (-497)) (-5 *2 (-585 (-249 (-350 (-859 *5))))) - (-5 *1 (-1101 *5)) (-5 *3 (-350 (-859 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1092)) (-4 *5 (-497)) (-5 *2 (-585 (-249 (-350 (-859 *5))))) - (-5 *1 (-1101 *5)) (-5 *3 (-249 (-350 (-859 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-585 (-249 (-350 (-859 *4))))) (-5 *1 (-1101 *4)) - (-5 *3 (-350 (-859 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-585 (-249 (-350 (-859 *4))))) (-5 *1 (-1101 *4)) - (-5 *3 (-249 (-350 (-859 *4))))))) -(((*1 *2 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-554 (-774))))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-787)))) - ((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-787)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-486)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1075)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-448)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-530)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-419)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-110)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-129)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1083)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-567)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1010)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1005)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-987)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-885)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-950)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-263)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-615)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-127)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1069)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-465)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1193)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-980)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-460)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-624)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-67)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1031)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-106)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-541)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1192)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-619)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-464)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1097)))) - ((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-1097)))) - ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1097)))) - ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-1097))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1097))) (-5 *1 (-1097)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-585 (-1097))) (-5 *1 (-1097))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1097))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-448)) (-5 *1 (-234)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-486) (-179) (-448) (-1075) (-1097))) (-5 *1 (-1097))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-585 (-234))) (-5 *1 (-234)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-1097))) (-5 *1 (-1097))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1097))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2858)) (-5 *2 (-85)) (-5 *1 (-558)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2242)) (-5 *2 (-85)) (-5 *1 (-558)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2857)) (-5 *2 (-85)) (-5 *1 (-558)))) + (-1 (-3 (-2 (|:| |particular| *6) (|:| -2017 (-587 *6))) "failed") *7 *6)) + (-4 *6 (-314)) (-4 *7 (-604 *6)) + (-5 *2 (-2 (|:| |particular| (-1183 *6)) (|:| -2017 (-634 *6)))) + (-5 *1 (-737 *6 *7)) (-5 *3 (-634 *6)) (-5 *4 (-1183 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-861 (-352 (-488)))) (-5 *2 (-587 (-332))) (-5 *1 (-940)) + (-5 *4 (-332)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-861 (-488))) (-5 *2 (-587 (-332))) (-5 *1 (-940)) + (-5 *4 (-332)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) + (-5 *2 (-587 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1159 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) + (-5 *2 (-587 (-251 (-267 *4)))) (-5 *1 (-1049 *4)) (-5 *3 (-267 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) + (-5 *2 (-587 (-251 (-267 *4)))) (-5 *1 (-1049 *4)) + (-5 *3 (-251 (-267 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) + (-5 *2 (-587 (-251 (-267 *5)))) (-5 *1 (-1049 *5)) + (-5 *3 (-251 (-267 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) + (-5 *2 (-587 (-251 (-267 *5)))) (-5 *1 (-1049 *5)) (-5 *3 (-267 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-587 (-1094))) + (-4 *5 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) + (-5 *2 (-587 (-587 (-251 (-267 *5))))) (-5 *1 (-1049 *5)) + (-5 *3 (-587 (-251 (-267 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-587 (-352 (-861 *5)))) (-5 *4 (-587 (-1094))) (-4 *5 (-499)) + (-5 *2 (-587 (-587 (-251 (-352 (-861 *5)))))) (-5 *1 (-1103 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-587 (-1094))) (-4 *5 (-499)) + (-5 *2 (-587 (-587 (-251 (-352 (-861 *5)))))) (-5 *1 (-1103 *5)) + (-5 *3 (-587 (-251 (-352 (-861 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-587 (-352 (-861 *4)))) (-4 *4 (-499)) + (-5 *2 (-587 (-587 (-251 (-352 (-861 *4)))))) (-5 *1 (-1103 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-499)) (-5 *2 (-587 (-587 (-251 (-352 (-861 *4)))))) + (-5 *1 (-1103 *4)) (-5 *3 (-587 (-251 (-352 (-861 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1094)) (-4 *5 (-499)) (-5 *2 (-587 (-251 (-352 (-861 *5))))) + (-5 *1 (-1103 *5)) (-5 *3 (-352 (-861 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1094)) (-4 *5 (-499)) (-5 *2 (-587 (-251 (-352 (-861 *5))))) + (-5 *1 (-1103 *5)) (-5 *3 (-251 (-352 (-861 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-499)) (-5 *2 (-587 (-251 (-352 (-861 *4))))) (-5 *1 (-1103 *4)) + (-5 *3 (-352 (-861 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-499)) (-5 *2 (-587 (-251 (-352 (-861 *4))))) (-5 *1 (-1103 *4)) + (-5 *3 (-251 (-352 (-861 *4))))))) +(((*1 *2 *1) (-12 (-5 *1 (-636 *2)) (-4 *2 (-556 (-776))))) + ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-789)))) + ((*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-789)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-488)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-1077)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-450)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-532)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-421)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-110)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-129)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-1085)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-569)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-1012)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-1007)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-989)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-887)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-156)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-952)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-265)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-617)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-127)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-1071)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-467)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-1195)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-982)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-462)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-626)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-67)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-1033)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-106)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-543)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-1194)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-621)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-466)))) + ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-1099))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-1099))) (-5 *1 (-1099)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-587 (-1099))) (-5 *1 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1099))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-450)) (-5 *1 (-236)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-488) (-181) (-450) (-1077) (-1099))) (-5 *1 (-1099))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-587 (-236))) (-5 *1 (-236)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-1099))) (-5 *1 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1099))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2861)) (-5 *2 (-85)) (-5 *1 (-560)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2245)) (-5 *2 (-85)) (-5 *1 (-560)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2860)) (-5 *2 (-85)) (-5 *1 (-560)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2367)) (-5 *2 (-85)) (-5 *1 (-634 *4)) - (-4 *4 (-554 (-774))))) + (-12 (-5 *3 (|[\|\|]| -2370)) (-5 *2 (-85)) (-5 *1 (-636 *4)) + (-4 *4 (-556 (-776))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-554 (-774))) (-5 *2 (-85)) - (-5 *1 (-634 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-85)) (-5 *1 (-787)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-448))) (-5 *2 (-85)) (-5 *1 (-787)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-486))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-448))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-419))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1010))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1005))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-987))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-885))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-950))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-615))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1069))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-465))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1193))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-980))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-460))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1031))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-541))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-1192))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (|[\|\|]| (-464))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-85)) (-5 *1 (-1097)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-448))) (-5 *2 (-85)) (-5 *1 (-1097)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1097)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-486))) (-5 *2 (-85)) (-5 *1 (-1097))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-247))) ((*1 *1) (-5 *1 (-774))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-556 (-776))) (-5 *2 (-85)) + (-5 *1 (-636 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-85)) (-5 *1 (-789)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-450))) (-5 *2 (-85)) (-5 *1 (-789)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-488))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-450))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-532))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-421))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-569))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-1012))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-1007))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-989))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-887))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-952))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-265))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-467))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-1195))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-982))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-626))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-1033))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-543))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-1194))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-621))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-174))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1055)) (-5 *3 (|[\|\|]| (-466))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-85)) (-5 *1 (-1099)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-450))) (-5 *2 (-85)) (-5 *1 (-1099)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-181))) (-5 *2 (-85)) (-5 *1 (-1099)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-488))) (-5 *2 (-85)) (-5 *1 (-1099))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-249))) ((*1 *1) (-5 *1 (-776))) ((*1 *1) - (-12 (-4 *2 (-393)) (-4 *3 (-758)) (-4 *4 (-719)) (-5 *1 (-901 *2 *3 *4 *5)) - (-4 *5 (-863 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-999))) + (-12 (-4 *2 (-395)) (-4 *3 (-760)) (-4 *4 (-721)) (-5 *1 (-903 *2 *3 *4 *5)) + (-4 *5 (-865 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1001))) ((*1 *1) - (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) - (-4 *3 (-13 (-1015) (-34))))) - ((*1 *1) (-5 *1 (-1095))) ((*1 *1) (-5 *1 (-1096)))) -(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-379)) (-5 *3 (-1092)) (-5 *1 (-1095)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1092)) (-5 *1 (-1095)))) + (-12 (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1017) (-34))) + (-4 *3 (-13 (-1017) (-34))))) + ((*1 *1) (-5 *1 (-1097))) ((*1 *1) (-5 *1 (-1098)))) +(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-381)) (-5 *3 (-1094)) (-5 *1 (-1097)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1094)) (-5 *1 (-1097)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-379)) (-5 *3 (-585 (-1092))) (-5 *4 (-1092)) (-5 *1 (-1095)))) - ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1092)) (-5 *1 (-1095)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1092)) (-5 *1 (-1096)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-585 (-1092))) (-5 *1 (-1096))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-379)) (-5 *1 (-1096))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-1096))))) + (-12 (-5 *2 (-381)) (-5 *3 (-587 (-1094))) (-5 *4 (-1094)) (-5 *1 (-1097)))) + ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-381)) (-5 *3 (-1094)) (-5 *1 (-1097)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-381)) (-5 *3 (-1094)) (-5 *1 (-1098)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-381)) (-5 *3 (-587 (-1094))) (-5 *1 (-1098))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1094)) (-5 *2 (-381)) (-5 *1 (-1098))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-1094))) (-5 *1 (-1098))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-377)) + (-12 (-5 *3 (-379)) (-5 *2 - (-585 - (-3 (|:| -3545 (-1092)) - (|:| -3228 (-585 (-3 (|:| S (-1092)) (|:| P (-859 (-486))))))))) - (-5 *1 (-1096))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-1096))))) + (-587 + (-3 (|:| -3548 (-1094)) + (|:| -3231 (-587 (-3 (|:| S (-1094)) (|:| P (-861 (-488))))))))) + (-5 *1 (-1098))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-1094))) (-5 *1 (-1098))))) (((*1 *2 *1) (-12 (-5 *2 - (-585 - (-585 - (-3 (|:| -3545 (-1092)) - (|:| -3228 (-585 (-3 (|:| S (-1092)) (|:| P (-859 (-486)))))))))) - (-5 *1 (-1096))))) -(((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1096))))) -(((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) - ((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-1096))))) + (-587 + (-587 + (-3 (|:| -3548 (-1094)) + (|:| -3231 (-587 (-3 (|:| S (-1094)) (|:| P (-861 (-488)))))))))) + (-5 *1 (-1098))))) +(((*1 *2 *1) (-12 (-5 *2 (-1019)) (-5 *1 (-1098))))) +(((*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-1189)) (-5 *1 (-1097)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1098))))) (((*1 *1 *2) - (-12 (-5 *2 (-585 (-2 (|:| -3864 (-1092)) (|:| |entry| (-379))))) - (-5 *1 (-1096))))) -(((*1 *1) (-5 *1 (-1095)))) -(((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) - ((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1095))))) -(((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095))))) -(((*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1095))))) -(((*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1095))))) -(((*1 *2 *3) (-12 (-5 *3 (-585 (-1092))) (-5 *2 (-1187)) (-5 *1 (-1095)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-585 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) + (-12 (-5 *2 (-587 (-2 (|:| -3867 (-1094)) (|:| |entry| (-381))))) + (-5 *1 (-1098))))) +(((*1 *1) (-5 *1 (-1097)))) +(((*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-1189)) (-5 *1 (-1097)))) + ((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1097))))) +(((*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-1189)) (-5 *1 (-1097))))) +(((*1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-1097))))) +(((*1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-1097))))) +(((*1 *2 *3) (-12 (-5 *3 (-587 (-1094))) (-5 *2 (-1189)) (-5 *1 (-1097)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-587 (-1094))) (-5 *3 (-1094)) (-5 *2 (-1189)) (-5 *1 (-1097)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-585 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095))))) + (-12 (-5 *4 (-587 (-1094))) (-5 *3 (-1094)) (-5 *2 (-1189)) (-5 *1 (-1097))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-377)) (|:| -3914 #1="void"))) (-5 *2 (-1187)) - (-5 *1 (-1095)))) + (-12 (-5 *3 (-3 (|:| |fst| (-379)) (|:| -3917 #1="void"))) (-5 *2 (-1189)) + (-5 *1 (-1097)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1092)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3914 #1#))) - (-5 *2 (-1187)) (-5 *1 (-1095)))) + (-12 (-5 *3 (-1094)) (-5 *4 (-3 (|:| |fst| (-379)) (|:| -3917 #1#))) + (-5 *2 (-1189)) (-5 *1 (-1097)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1092)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3914 #1#))) - (-5 *2 (-1187)) (-5 *1 (-1095))))) -(((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1095)))) - ((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-1187)) (-5 *1 (-1095))))) + (-12 (-5 *3 (-1094)) (-5 *4 (-3 (|:| |fst| (-379)) (|:| -3917 #1#))) + (-5 *2 (-1189)) (-5 *1 (-1097))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1097)))) + ((*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-1189)) (-5 *1 (-1097)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1094)) (-5 *2 (-1189)) (-5 *1 (-1097))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1092)) (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3914 "void"))) - (-5 *1 (-1095))))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-1095)) (-5 *3 (-1092))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-1096)) (-5 *1 (-1095))))) -(((*1 *2 *3) - (-12 (-5 *3 (-585 *4)) (-4 *4 (-963)) (-5 *2 (-1181 *4)) (-5 *1 (-1093 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-832)) (-5 *2 (-1181 *3)) (-5 *1 (-1093 *3)) (-4 *3 (-963))))) -(((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-67)))) - ((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-78)))) - ((*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1015)) (-4 *2 (-1015)))) - ((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1075)))) - ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-380 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-424)))) - ((*1 *2 *1) (-12 (-4 *1 (-749 *2)) (-4 *2 (-1015)))) - ((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-776)))) - ((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-878)))) - ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-990 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-1031)))) ((*1 *1 *1) (-5 *1 (-1092)))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1092))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) + (-12 (-5 *3 (-1094)) (-5 *2 (-3 (|:| |fst| (-379)) (|:| -3917 "void"))) + (-5 *1 (-1097))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-587 (-1094))) (-5 *1 (-1097)) (-5 *3 (-1094))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1094)) (-5 *2 (-1098)) (-5 *1 (-1097))))) +(((*1 *2 *3) + (-12 (-5 *3 (-587 *4)) (-4 *4 (-965)) (-5 *2 (-1183 *4)) (-5 *1 (-1095 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-834)) (-5 *2 (-1183 *3)) (-5 *1 (-1095 *3)) (-4 *3 (-965))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1094))))) +(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-67)))) + ((*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-78)))) + ((*1 *2 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *3 (-1017)) (-4 *2 (-1017)))) + ((*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-1077)))) + ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-382 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-426)))) + ((*1 *2 *1) (-12 (-4 *1 (-751 *2)) (-4 *2 (-1017)))) + ((*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-778)))) + ((*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-880)))) + ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-992 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-1033)))) ((*1 *1 *1) (-5 *1 (-1094)))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1094))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -2587 (-585 (-774))) (|:| -2486 (-585 (-774))) - (|:| |presup| (-585 (-774))) (|:| -2585 (-585 (-774))) - (|:| |args| (-585 (-774))))) - (-5 *1 (-1092))))) + (-2 (|:| -2590 (-587 (-776))) (|:| -2489 (-587 (-776))) + (|:| |presup| (-587 (-776))) (|:| -2588 (-587 (-776))) + (|:| |args| (-587 (-776))))) + (-5 *1 (-1094))))) (((*1 *1 *1 *2) (-12 (-5 *2 - (-2 (|:| -2587 (-585 (-774))) (|:| -2486 (-585 (-774))) - (|:| |presup| (-585 (-774))) (|:| -2585 (-585 (-774))) - (|:| |args| (-585 (-774))))) - (-5 *1 (-1092)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 (-774)))) (-5 *1 (-1092))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1092))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1092))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1092))))) -(((*1 *1 *1) (-5 *1 (-774))) - ((*1 *2 *1) - (-12 (-4 *1 (-1018 *2 *3 *4 *5 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) - (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)))) - ((*1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-1075)))) - ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1075)))) - ((*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-1075)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1092))))) -(((*1 *1 *2) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1131)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-1092))))) + (-2 (|:| -2590 (-587 (-776))) (|:| -2489 (-587 (-776))) + (|:| |presup| (-587 (-776))) (|:| -2588 (-587 (-776))) + (|:| |args| (-587 (-776))))) + (-5 *1 (-1094)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-587 (-776)))) (-5 *1 (-1094))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-1094))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-1094))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-1094))))) +(((*1 *1 *1) (-5 *1 (-776))) + ((*1 *2 *1) + (-12 (-4 *1 (-1020 *2 *3 *4 *5 *6)) (-4 *3 (-1017)) (-4 *4 (-1017)) + (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *2 (-1017)))) + ((*1 *1 *2) (-12 (-5 *2 (-450)) (-5 *1 (-1077)))) + ((*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-1077)))) + ((*1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-1077)))) + ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1094))))) +(((*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1133)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-1094))) (-5 *1 (-1094))))) (((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-774) (-774) (-774))) (-5 *4 (-486)) (-5 *2 (-774)) - (-5 *1 (-593 *5 *6 *7)) (-4 *5 (-1015)) (-4 *6 (-23)) (-14 *7 *6))) + (-12 (-5 *3 (-1 (-776) (-776) (-776))) (-5 *4 (-488)) (-5 *2 (-776)) + (-5 *1 (-595 *5 *6 *7)) (-4 *5 (-1017)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-774)) (-5 *1 (-765 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-69 *3)) + (-12 (-5 *2 (-776)) (-5 *1 (-767 *3 *4 *5)) (-4 *3 (-965)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-774)))) - ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-774)))) - ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-774)))) - ((*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-1087 *3)) (-4 *3 (-963))))) + ((*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-776)))) + ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-776)))) + ((*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-776)))) + ((*1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-776)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1089 *3)) (-4 *3 (-965))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1003 *3)) (-4 *3 (-863 *7 *6 *4)) (-4 *6 (-719)) (-4 *4 (-758)) - (-4 *7 (-497)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-486)))) - (-5 *1 (-531 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-497)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-486)))) (-5 *1 (-531 *5 *4 *6 *3)) - (-4 *3 (-863 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1 *1) (-5 *1 (-774))) - ((*1 *1 *1) (-5 *1 (-774))) + (-12 (-5 *5 (-1005 *3)) (-4 *3 (-865 *7 *6 *4)) (-4 *6 (-721)) (-4 *4 (-760)) + (-4 *7 (-499)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-488)))) + (-5 *1 (-533 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-721)) (-4 *4 (-760)) (-4 *6 (-499)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-488)))) (-5 *1 (-533 *5 *4 *6 *3)) + (-4 *3 (-865 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-776))) ((*1 *1 *1 *1) (-5 *1 (-776))) + ((*1 *1 *1) (-5 *1 (-776))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) - (-5 *1 (-1085 *4 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1117))))) + (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-499) (-954 (-488)) (-584 (-488)))) + (-5 *1 (-1087 *4 *2)) (-4 *2 (-13 (-366 *4) (-133) (-27) (-1119))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1117))) - (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-1085 *4 *2)))) + (-12 (-5 *3 (-1008 *2)) (-4 *2 (-13 (-366 *4) (-133) (-27) (-1119))) + (-4 *4 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *1 (-1087 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)))) - (-5 *2 (-350 (-859 *5))) (-5 *1 (-1086 *5)) (-5 *3 (-859 *5)))) + (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-499) (-954 (-488)))) + (-5 *2 (-352 (-861 *5))) (-5 *1 (-1088 *5)) (-5 *3 (-861 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)))) - (-5 *2 (-3 (-350 (-859 *5)) (-265 *5))) (-5 *1 (-1086 *5)) - (-5 *3 (-350 (-859 *5))))) + (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-499) (-954 (-488)))) + (-5 *2 (-3 (-352 (-861 *5)) (-267 *5))) (-5 *1 (-1088 *5)) + (-5 *3 (-352 (-861 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1006 (-859 *5))) (-5 *3 (-859 *5)) - (-4 *5 (-13 (-497) (-952 (-486)))) (-5 *2 (-350 *3)) (-5 *1 (-1086 *5)))) + (-12 (-5 *4 (-1008 (-861 *5))) (-5 *3 (-861 *5)) + (-4 *5 (-13 (-499) (-954 (-488)))) (-5 *2 (-352 *3)) (-5 *1 (-1088 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1006 (-350 (-859 *5)))) (-5 *3 (-350 (-859 *5))) - (-4 *5 (-13 (-497) (-952 (-486)))) (-5 *2 (-3 *3 (-265 *5))) - (-5 *1 (-1086 *5))))) + (-12 (-5 *4 (-1008 (-352 (-861 *5)))) (-5 *3 (-352 (-861 *5))) + (-4 *5 (-13 (-499) (-954 (-488)))) (-5 *2 (-3 *3 (-267 *5))) + (-5 *1 (-1088 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-5 *2 (-1 (-85) *5)) - (-5 *1 (-803 *4 *5)) (-4 *5 (-1131)))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1083))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-4 *1 (-124 *3)))) + (-12 (-5 *3 (-804 *4)) (-4 *4 (-1017)) (-5 *2 (-1 (-85) *5)) + (-5 *1 (-805 *4 *5)) (-4 *5 (-1133)))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1085))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1133)) (-4 *1 (-124 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-585 (-2 (|:| -2403 (-696)) (|:| -3776 *4) (|:| |num| *4)))) - (-4 *4 (-1157 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4)))) + (-12 (-5 *2 (-587 (-2 (|:| -2406 (-698)) (|:| -3779 *4) (|:| |num| *4)))) + (-4 *4 (-1159 *3)) (-4 *3 (-13 (-314) (-120))) (-5 *1 (-344 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3914 #1="void"))) - (-5 *3 (-585 (-859 (-486)))) (-5 *4 (-85)) (-5 *1 (-379)))) + (-12 (-5 *2 (-3 (|:| |fst| (-379)) (|:| -3917 #1="void"))) + (-5 *3 (-587 (-861 (-488)))) (-5 *4 (-85)) (-5 *1 (-381)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3914 #1#))) (-5 *3 (-585 (-1092))) - (-5 *4 (-85)) (-5 *1 (-379)))) - ((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-538 *3)) (-4 *3 (-1131)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-576 *2)) (-4 *2 (-146)))) + (-12 (-5 *2 (-3 (|:| |fst| (-379)) (|:| -3917 #1#))) (-5 *3 (-587 (-1094))) + (-5 *4 (-85)) (-5 *1 (-381)))) + ((*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-540 *3)) (-4 *3 (-1133)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-578 *2)) (-4 *2 (-148)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-5 *1 (-608 *3 *4)) (-4 *4 (-146)))) + (-12 (-5 *2 (-618 *3)) (-4 *3 (-760)) (-5 *1 (-610 *3 *4)) (-4 *4 (-148)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-5 *1 (-608 *3 *4)) (-4 *4 (-146)))) + (-12 (-5 *2 (-618 *3)) (-4 *3 (-760)) (-5 *1 (-610 *3 *4)) (-4 *4 (-148)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-5 *1 (-608 *3 *4)) (-4 *4 (-146)))) + (-12 (-5 *2 (-618 *3)) (-4 *3 (-760)) (-5 *1 (-610 *3 *4)) (-4 *4 (-148)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-758)) (-4 *3 (-1015)) + (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-760)) (-4 *3 (-1017)) (-14 *4 - (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *3)) - (-2 (|:| -2402 *2) (|:| -2403 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1030)) (-5 *1 (-751)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-784 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) + (-1 (-85) (-2 (|:| -2405 *2) (|:| -2406 *3)) + (-2 (|:| -2405 *2) (|:| -2406 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-1032)) (-5 *1 (-753)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-786 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133)))) ((*1 *1 *2) - (-12 (-5 *2 (-585 (-2 (|:| -3864 (-1092)) (|:| |entry| *4)))) (-4 *4 (-1015)) - (-5 *1 (-800 *3 *4)) (-4 *3 (-1015)))) + (-12 (-5 *2 (-587 (-2 (|:| -3867 (-1094)) (|:| |entry| *4)))) (-4 *4 (-1017)) + (-5 *1 (-802 *3 *4)) (-4 *3 (-1017)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-585 *5)) (-4 *5 (-13 (-1015) (-34))) - (-5 *2 (-585 (-1056 *3 *5))) (-5 *1 (-1056 *3 *5)) - (-4 *3 (-13 (-1015) (-34))))) + (-12 (-5 *4 (-587 *5)) (-4 *5 (-13 (-1017) (-34))) + (-5 *2 (-587 (-1058 *3 *5))) (-5 *1 (-1058 *3 *5)) + (-4 *3 (-13 (-1017) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-585 (-2 (|:| |val| *4) (|:| -1601 *5)))) - (-4 *4 (-13 (-1015) (-34))) (-4 *5 (-13 (-1015) (-34))) - (-5 *2 (-585 (-1056 *4 *5))) (-5 *1 (-1056 *4 *5)))) + (-12 (-5 *3 (-587 (-2 (|:| |val| *4) (|:| -1604 *5)))) + (-4 *4 (-13 (-1017) (-34))) (-4 *5 (-13 (-1017) (-34))) + (-5 *2 (-587 (-1058 *4 *5))) (-5 *1 (-1058 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1601 *4))) (-4 *3 (-13 (-1015) (-34))) - (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1056 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1604 *4))) (-4 *3 (-13 (-1017) (-34))) + (-4 *4 (-13 (-1017) (-34))) (-5 *1 (-1058 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) - (-4 *3 (-13 (-1015) (-34))))) + (-12 (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1017) (-34))) + (-4 *3 (-13 (-1017) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) - (-4 *3 (-13 (-1015) (-34))))) + (-12 (-5 *4 (-85)) (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1017) (-34))) + (-4 *3 (-13 (-1017) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-585 *3)) (-4 *3 (-13 (-1015) (-34))) (-5 *1 (-1057 *2 *3)) - (-4 *2 (-13 (-1015) (-34))))) + (-12 (-5 *4 (-587 *3)) (-4 *3 (-13 (-1017) (-34))) (-5 *1 (-1059 *2 *3)) + (-4 *2 (-13 (-1017) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-585 (-1056 *2 *3))) (-4 *2 (-13 (-1015) (-34))) - (-4 *3 (-13 (-1015) (-34))) (-5 *1 (-1057 *2 *3)))) + (-12 (-5 *4 (-587 (-1058 *2 *3))) (-4 *2 (-13 (-1017) (-34))) + (-4 *3 (-13 (-1017) (-34))) (-5 *1 (-1059 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-585 (-1057 *2 *3))) (-5 *1 (-1057 *2 *3)) - (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) + (-12 (-5 *4 (-587 (-1059 *2 *3))) (-5 *1 (-1059 *2 *3)) + (-4 *2 (-13 (-1017) (-34))) (-4 *3 (-13 (-1017) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) - (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1057 *3 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-110)))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-129)))) - ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131)))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-419)))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-530)))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-567)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1015)) (-4 *2 (-13 (-364 *4) (-798 *3) (-555 (-802 *3)))) - (-5 *1 (-989 *3 *4 *2)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-110)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-129)))) - ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131)))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-419)))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-530)))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-567)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1015)) (-4 *2 (-13 (-364 *4) (-798 *3) (-555 (-802 *3)))) - (-5 *1 (-989 *3 *4 *2)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-1082 *3 *2)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-5 *2 (-85)))) - ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) -(((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) -(((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) -(((*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963))))) + (-12 (-5 *2 (-1058 *3 *4)) (-4 *3 (-13 (-1017) (-34))) + (-4 *4 (-13 (-1017) (-34))) (-5 *1 (-1059 *3 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-1084 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-110)))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-129)))) + ((*1 *2 *1) (-12 (-5 *1 (-251 *2)) (-4 *2 (-1133)))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-421)))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-532)))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-569)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1017)) (-4 *2 (-13 (-366 *4) (-800 *3) (-557 (-804 *3)))) + (-5 *1 (-991 *3 *4 *2)) (-4 *4 (-13 (-965) (-800 *3) (-557 (-804 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1017)) (-5 *1 (-1084 *2 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-110)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-129)))) + ((*1 *2 *1) (-12 (-5 *1 (-251 *2)) (-4 *2 (-1133)))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-421)))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-532)))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-569)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1017)) (-4 *2 (-13 (-366 *4) (-800 *3) (-557 (-804 *3)))) + (-5 *1 (-991 *3 *4 *2)) (-4 *4 (-13 (-965) (-800 *3) (-557 (-804 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1017)) (-5 *1 (-1084 *3 *2)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1133)) (-5 *2 (-85)))) + ((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965))))) +(((*1 *1 *1) (-12 (-5 *1 (-1083 *2 *3)) (-14 *2 (-834)) (-4 *3 (-965))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-696)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) -(((*1 *2 *1) (-12 (-4 *3 (-1131)) (-5 *2 (-585 *1)) (-4 *1 (-925 *3)))) + (-12 (-5 *2 (-698)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965))))) +(((*1 *2 *1) (-12 (-4 *3 (-1133)) (-5 *2 (-587 *1)) (-4 *1 (-927 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-585 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) - (-4 *4 (-963))))) + (-12 (-5 *2 (-587 (-1083 *3 *4))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) + (-4 *4 (-965))))) (((*1 *2 *1) - (-12 (-5 *2 (-696)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) -(((*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963))))) -(((*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1131)) (-4 *2 (-758)))) + (-12 (-5 *2 (-698)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965))))) +(((*1 *1 *1) (-12 (-5 *1 (-1083 *2 *3)) (-14 *2 (-834)) (-4 *3 (-965))))) +(((*1 *1 *1) (-12 (-5 *1 (-1083 *2 *3)) (-14 *2 (-834)) (-4 *3 (-965))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-326 *2)) (-4 *2 (-1133)) (-4 *2 (-760)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1131)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-883 *2)) (-4 *2 (-758)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-963)))) - ((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-326 *3)) (-4 *3 (-1133)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-885 *2)) (-4 *2 (-760)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-965)))) + ((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-1052 *3)) (-4 *3 (-965)))) ((*1 *1 *2) - (-12 (-5 *2 (-585 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) - (-4 *4 (-963)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963))))) + (-12 (-5 *2 (-587 (-1083 *3 *4))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) + (-4 *4 (-965)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1083 *2 *3)) (-14 *2 (-834)) (-4 *3 (-965))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-856 *5)) (-4 *5 (-963)) (-5 *2 (-696)) (-5 *1 (-1081 *4 *5)) - (-14 *4 (-832)))) + (-12 (-5 *3 (-858 *5)) (-4 *5 (-965)) (-5 *2 (-698)) (-5 *1 (-1083 *4 *5)) + (-14 *4 (-834)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 (-696))) (-5 *3 (-696)) (-5 *1 (-1081 *4 *5)) - (-14 *4 (-832)) (-4 *5 (-963)))) + (-12 (-5 *2 (-587 (-698))) (-5 *3 (-698)) (-5 *1 (-1083 *4 *5)) + (-14 *4 (-834)) (-4 *5 (-965)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 (-696))) (-5 *3 (-856 *5)) (-4 *5 (-963)) - (-5 *1 (-1081 *4 *5)) (-14 *4 (-832))))) + (-12 (-5 *2 (-587 (-698))) (-5 *3 (-858 *5)) (-4 *5 (-965)) + (-5 *1 (-1083 *4 *5)) (-14 *4 (-834))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-856 *4)) (-4 *4 (-963)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832))))) + (-12 (-5 *2 (-858 *4)) (-4 *4 (-965)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-856 *5)) (-5 *3 (-696)) (-4 *5 (-963)) (-5 *1 (-1081 *4 *5)) - (-14 *4 (-832))))) + (-12 (-5 *2 (-858 *5)) (-5 *3 (-698)) (-4 *5 (-965)) (-5 *1 (-1083 *4 *5)) + (-14 *4 (-834))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-696)) (-5 *3 (-856 *5)) (-4 *5 (-963)) (-5 *1 (-1081 *4 *5)) - (-14 *4 (-832)))) + (-12 (-5 *2 (-698)) (-5 *3 (-858 *5)) (-4 *5 (-965)) (-5 *1 (-1083 *4 *5)) + (-14 *4 (-834)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 (-696))) (-5 *3 (-696)) (-5 *1 (-1081 *4 *5)) - (-14 *4 (-832)) (-4 *5 (-963)))) + (-12 (-5 *2 (-587 (-698))) (-5 *3 (-698)) (-5 *1 (-1083 *4 *5)) + (-14 *4 (-834)) (-4 *5 (-965)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 (-696))) (-5 *3 (-856 *5)) (-4 *5 (-963)) - (-5 *1 (-1081 *4 *5)) (-14 *4 (-832))))) + (-12 (-5 *2 (-587 (-698))) (-5 *3 (-858 *5)) (-4 *5 (-965)) + (-5 *1 (-1083 *4 *5)) (-14 *4 (-834))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 (-696))) (-5 *3 (-85)) (-5 *1 (-1081 *4 *5)) - (-14 *4 (-832)) (-4 *5 (-963))))) + (-12 (-5 *2 (-587 (-698))) (-5 *3 (-85)) (-5 *1 (-1083 *4 *5)) + (-14 *4 (-834)) (-4 *5 (-965))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 (-696))) (-5 *3 (-145)) (-5 *1 (-1081 *4 *5)) - (-14 *4 (-832)) (-4 *5 (-963))))) + (-12 (-5 *2 (-587 (-698))) (-5 *3 (-147)) (-5 *1 (-1083 *4 *5)) + (-14 *4 (-834)) (-4 *5 (-965))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-585 (-696))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) - (-4 *4 (-963))))) + (-12 (-5 *2 (-587 (-698))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) + (-4 *4 (-965))))) (((*1 *2 *1) - (-12 (-5 *2 (-856 *4)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) + (-12 (-5 *2 (-858 *4)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965))))) (((*1 *2 *1) - (-12 (-5 *2 (-696)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) + (-12 (-5 *2 (-698)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965))))) (((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965))))) (((*1 *2 *1) - (-12 (-5 *2 (-145)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) -(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-263)))) + (-12 (-5 *2 (-147)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965))))) +(((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-265)))) ((*1 *2 *1) - (-12 (-5 *2 (-696)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) -(((*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963))))) + (-12 (-5 *2 (-698)) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) (-4 *4 (-965))))) +(((*1 *1 *1) (-12 (-5 *1 (-1083 *2 *3)) (-14 *2 (-834)) (-4 *3 (-965))))) (((*1 *2 *1) - (-12 (-5 *2 (-585 (-856 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-832)) - (-4 *4 (-963))))) + (-12 (-5 *2 (-587 (-858 *4))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-834)) + (-4 *4 (-965))))) (((*1 *1 *1) - (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *2 (-393)))) + (-12 (-4 *1 (-279 *2 *3)) (-4 *2 (-965)) (-4 *3 (-720)) (-4 *2 (-395)))) ((*1 *1 *1) - (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1136)) (-4 *3 (-1157 *2)) - (-4 *4 (-1157 (-350 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-393)))) + (-12 (-4 *1 (-293 *2 *3 *4)) (-4 *2 (-1138)) (-4 *3 (-1159 *2)) + (-4 *4 (-1159 (-352 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-395)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) - (-4 *3 (-393)))) + (-12 (-4 *1 (-865 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)) + (-4 *3 (-395)))) ((*1 *1 *1) - (-12 (-4 *1 (-863 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *2 (-393)))) + (-12 (-4 *1 (-865 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *2 (-395)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-258)) (-4 *3 (-497)) (-5 *1 (-1080 *3 *2)) (-4 *2 (-1157 *3))))) + (-12 (-4 *3 (-260)) (-4 *3 (-499)) (-5 *1 (-1082 *3 *2)) (-4 *2 (-1159 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-871 *3)) (-5 *1 (-1080 *4 *3)) - (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-499)) (-5 *2 (-873 *3)) (-5 *1 (-1082 *4 *3)) + (-4 *3 (-1159 *4))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) - ((*1 *1 *1) (-4 *1 (-434))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) + ((*1 *1 *1) (-4 *1 (-436))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) - ((*1 *1 *1) (-4 *1 (-434))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) + ((*1 *1 *1) (-4 *1 (-436))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) - ((*1 *1 *1) (-4 *1 (-434))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) + ((*1 *1 *1) (-4 *1 (-436))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) - ((*1 *1 *1) (-4 *1 (-434))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) + ((*1 *1 *1) (-4 *1 (-436))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) - ((*1 *1 *1) (-4 *1 (-434))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) + ((*1 *1 *1) (-4 *1 (-436))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) - ((*1 *1 *1) (-4 *1 (-434))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) + ((*1 *1 *1) (-4 *1 (-436))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) -(((*1 *1 *1) (-4 *1 (-66))) ((*1 *1 *1 *1) (-5 *1 (-179))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3))))) +(((*1 *1 *1) (-4 *1 (-66))) ((*1 *1 *1 *1) (-5 *1 (-181))) ((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-330))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-332))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1174 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1145 *3 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1176 *3)) (-5 *1 (-234 *3 *4 *2)) + (-4 *2 (-1147 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *4 (-1143 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1166 *3 *4)) (-4 *5 (-898 *4)))) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *4 (-1145 *3)) + (-5 *1 (-235 *3 *4 *2 *5)) (-4 *2 (-1168 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1078 *3)))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1080 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-38 (-350 (-486)))) (-5 *1 (-1079 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-38 (-352 (-488)))) (-5 *1 (-1081 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-350 (-486)))) - (-5 *2 (-2 (|:| -3493 (-1071 *4)) (|:| -3494 (-1071 *4)))) - (-5 *1 (-1078 *4)) (-5 *3 (-1071 *4))))) + (-12 (-4 *4 (-38 (-352 (-488)))) + (-5 *2 (-2 (|:| -3496 (-1073 *4)) (|:| -3497 (-1073 *4)))) + (-5 *1 (-1080 *4)) (-5 *3 (-1073 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-350 (-486)))) - (-5 *2 (-2 (|:| -3641 (-1071 *4)) (|:| -3637 (-1071 *4)))) - (-5 *1 (-1078 *4)) (-5 *3 (-1071 *4))))) + (-12 (-4 *4 (-38 (-352 (-488)))) + (-5 *2 (-2 (|:| -3644 (-1073 *4)) (|:| -3640 (-1073 *4)))) + (-5 *1 (-1080 *4)) (-5 *3 (-1073 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-312)) (-4 *3 (-963)) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-314)) (-4 *3 (-965)) (-5 *1 (-1079 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-486))) (-5 *5 (-1 (-1071 *4))) (-4 *4 (-312)) - (-4 *4 (-963)) (-5 *2 (-1071 *4)) (-5 *1 (-1077 *4))))) + (-12 (-5 *3 (-1 *4 (-488))) (-5 *5 (-1 (-1073 *4))) (-4 *4 (-314)) + (-4 *4 (-965)) (-5 *2 (-1073 *4)) (-5 *1 (-1079 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-312)) (-4 *3 (-963)) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-314)) (-4 *3 (-965)) (-5 *1 (-1079 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1071 *4)) (-4 *4 (-38 *3)) (-4 *4 (-963)) (-5 *3 (-350 (-486))) - (-5 *1 (-1077 *4))))) + (-12 (-5 *2 (-1073 *4)) (-4 *4 (-38 *3)) (-4 *4 (-965)) (-5 *3 (-352 (-488))) + (-5 *1 (-1079 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1071 (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1077 *4)) - (-4 *4 (-38 (-350 (-486)))) (-4 *4 (-963))))) + (-12 (-5 *3 (-1073 (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1079 *4)) + (-4 *4 (-38 (-352 (-488)))) (-4 *4 (-965))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1071 *3))) (-5 *2 (-1071 *3)) (-5 *1 (-1077 *3)) - (-4 *3 (-38 (-350 (-486)))) (-4 *3 (-963))))) + (-12 (-5 *4 (-1 (-1073 *3))) (-5 *2 (-1073 *3)) (-5 *1 (-1079 *3)) + (-4 *3 (-38 (-352 (-488)))) (-4 *3 (-965))))) (((*1 *2 *3) - (-12 (-5 *3 (-1071 (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1077 *4)) - (-4 *4 (-963))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-806 *2 *3)) (-4 *2 (-1157 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3))))) + (-12 (-5 *3 (-1073 (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1079 *4)) + (-4 *4 (-965))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-965)) (-5 *1 (-808 *2 *3)) (-4 *2 (-1159 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1071 *4)) (-5 *3 (-1 *4 (-486))) (-4 *4 (-963)) - (-5 *1 (-1077 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1073 *4)) (-5 *3 (-1 *4 (-488))) (-4 *4 (-965)) + (-5 *1 (-1079 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) - (-5 *1 (-728 *4 *2)) (-4 *2 (-13 (-29 *4) (-1117) (-873))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1 *1) (-5 *1 (-774))) - ((*1 *1 *1) (-5 *1 (-774))) - ((*1 *2 *3) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-963))))) + (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) + (-5 *1 (-730 *4 *2)) (-4 *2 (-13 (-29 *4) (-1119) (-875))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-776))) ((*1 *1 *1 *1) (-5 *1 (-776))) + ((*1 *1 *1) (-5 *1 (-776))) + ((*1 *2 *3) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-1079 *3)) (-4 *3 (-965))))) (((*1 *2 *3) - (-12 (-5 *2 (-1071 (-486))) (-5 *1 (-1077 *4)) (-4 *4 (-963)) - (-5 *3 (-486))))) + (-12 (-5 *2 (-1073 (-488))) (-5 *1 (-1079 *4)) (-4 *4 (-965)) + (-5 *3 (-488))))) (((*1 *2 *3) - (-12 (-5 *2 (-1071 (-486))) (-5 *1 (-1077 *4)) (-4 *4 (-963)) - (-5 *3 (-486))))) + (-12 (-5 *2 (-1073 (-488))) (-5 *1 (-1079 *4)) (-4 *4 (-965)) + (-5 *3 (-488))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-832)) (-4 *3 (-312)) - (-14 *4 (-908 *2 *3)))) + (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-834)) (-4 *3 (-314)) + (-14 *4 (-910 *2 *3)))) ((*1 *1 *1) - (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (|partial| -12 (-4 *2 (-148)) (-5 *1 (-246 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1159 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-497)))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-318 *2)) (-4 *2 (-148)) (-4 *2 (-499)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-656 *2 *3 *4 *5 *6)) (-4 *2 (-148)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) - ((*1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) - ((*1 *1 *1) (|partial| -4 *1 (-661))) ((*1 *1 *1) (|partial| -4 *1 (-665))) + ((*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-314)))) + ((*1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-314)))) + ((*1 *1 *1) (|partial| -4 *1 (-663))) ((*1 *1 *1) (|partial| -4 *1 (-667))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-701 *5 *6 *7 *3 *4)) - (-4 *4 (-985 *5 *6 *7 *3)))) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-703 *5 *6 *7 *3 *4)) + (-4 *4 (-987 *5 *6 *7 *3)))) ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-982 *3 *2)) (-4 *3 (-13 (-757) (-312))) - (-4 *2 (-1157 *3)))) + (|partial| -12 (-4 *1 (-984 *3 *2)) (-4 *3 (-13 (-759) (-314))) + (-4 *2 (-1159 *3)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3))))) + (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-497)))) + (|partial| -12 (-4 *1 (-141 *2)) (-4 *2 (-148)) (-4 *2 (-499)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)) - (-4 *2 (-497)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-497))) + (|partial| -12 (-4 *1 (-279 *2 *3)) (-4 *2 (-965)) (-4 *3 (-720)) + (-4 *2 (-499)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-499))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) - (-4 *4 (-324 *2)) (-4 *2 (-497)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-696))) + (|partial| -12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) + (-4 *4 (-326 *2)) (-4 *2 (-499)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-698))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-497)))) - ((*1 *1 *1 *1) (-5 *1 (-774))) + (|partial| -12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-499)))) + ((*1 *1 *1 *1) (-5 *1 (-776))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-497)) - (-5 *1 (-884 *3 *4)))) + (-12 (-5 *2 (-1183 *4)) (-4 *4 (-1159 *3)) (-4 *3 (-499)) + (-5 *1 (-886 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-963)) - (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-497)))) + (|partial| -12 (-4 *1 (-969 *3 *4 *2 *5 *6)) (-4 *2 (-965)) + (-4 *5 (-198 *4 *2)) (-4 *6 (-198 *3 *2)) (-4 *2 (-499)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-963)) (-5 *1 (-1077 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3))))) + (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-965)) (-5 *1 (-1079 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1133)) (-5 *1 (-1073 *3))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-585 *4)) (-4 *4 (-1015)) (-4 *4 (-1131)) (-5 *2 (-85)) - (-5 *1 (-1071 *4))))) + (-12 (-5 *3 (-587 *4)) (-4 *4 (-1017)) (-4 *4 (-1133)) (-5 *2 (-85)) + (-5 *1 (-1073 *4))))) (((*1 *2 *3 *1) (-12 - (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2598 (-696)) (|:| |period| (-696)))) - (-5 *1 (-1071 *4)) (-4 *4 (-1131)) (-5 *3 (-696))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-1071 *3))) (-5 *1 (-1071 *3)) (-4 *3 (-1131))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1131)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1071 *2)) (-4 *2 (-1131))))) -(((*1 *1) (-5 *1 (-516))) - ((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-770)))) - ((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-770)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1075)) (-5 *4 (-774)) (-5 *2 (-1187)) (-5 *1 (-770)))) + (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2601 (-698)) (|:| |period| (-698)))) + (-5 *1 (-1073 *4)) (-4 *4 (-1133)) (-5 *3 (-698))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-1073 *3))) (-5 *1 (-1073 *3)) (-4 *3 (-1133))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1133)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1073 *2)) (-4 *2 (-1133))))) +(((*1 *1) (-5 *1 (-518))) + ((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-772)))) + ((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1189)) (-5 *1 (-772)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1077)) (-5 *4 (-776)) (-5 *2 (-1189)) (-5 *1 (-772)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-1071 *4)) (-4 *4 (-1015)) - (-4 *4 (-1131))))) + (-12 (-5 *3 (-488)) (-5 *2 (-1189)) (-5 *1 (-1073 *4)) (-4 *4 (-1017)) + (-4 *4 (-1133))))) (((*1 *2 *1) - (-12 (-5 *2 (-774)) (-5 *1 (-1071 *3)) (-4 *3 (-1015)) (-4 *3 (-1131))))) + (-12 (-5 *2 (-776)) (-5 *1 (-1073 *3)) (-4 *3 (-1017)) (-4 *3 (-1133))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1071 *3)) (-4 *3 (-1015)) (-4 *3 (-1131))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1073 *3)) (-4 *3 (-1017)) (-4 *3 (-1133))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-696)) (-5 *2 (-1181 (-585 (-486)))) (-5 *1 (-421)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-538 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-538 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-538 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1131)) (-5 *1 (-1071 *3))))) + (-12 (-5 *3 (-698)) (-5 *2 (-1183 (-587 (-488)))) (-5 *1 (-423)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1133)) (-5 *1 (-540 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1133)) (-5 *1 (-1073 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1133)) (-5 *1 (-1073 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1133)) (-5 *1 (-540 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1133)) (-5 *1 (-1073 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1133)) (-5 *1 (-540 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1133)) (-5 *1 (-1073 *3))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-486)) (-4 *4 (-13 (-497) (-120))) (-5 *1 (-477 *4 *2)) - (-4 *2 (-1174 *4)))) + (-12 (-5 *3 (-488)) (-4 *4 (-13 (-499) (-120))) (-5 *1 (-479 *4 *2)) + (-4 *2 (-1176 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-486)) (-4 *4 (-13 (-312) (-320) (-555 *3))) (-4 *5 (-1157 *4)) - (-4 *6 (-663 *4 *5)) (-5 *1 (-481 *4 *5 *6 *2)) (-4 *2 (-1174 *6)))) + (-12 (-5 *3 (-488)) (-4 *4 (-13 (-314) (-322) (-557 *3))) (-4 *5 (-1159 *4)) + (-4 *6 (-665 *4 *5)) (-5 *1 (-483 *4 *5 *6 *2)) (-4 *2 (-1176 *6)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-486)) (-4 *4 (-13 (-312) (-320) (-555 *3))) - (-5 *1 (-482 *4 *2)) (-4 *2 (-1174 *4)))) + (-12 (-5 *3 (-488)) (-4 *4 (-13 (-314) (-322) (-557 *3))) + (-5 *1 (-484 *4 *2)) (-4 *2 (-1176 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1071 *4)) (-5 *3 (-486)) (-4 *4 (-13 (-497) (-120))) - (-5 *1 (-1070 *4))))) + (-12 (-5 *2 (-1073 *4)) (-5 *3 (-488)) (-4 *4 (-13 (-499) (-120))) + (-5 *1 (-1072 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-497) (-120))) (-5 *1 (-477 *3 *2)) (-4 *2 (-1174 *3)))) + (-12 (-4 *3 (-13 (-499) (-120))) (-5 *1 (-479 *3 *2)) (-4 *2 (-1176 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-4 *4 (-1157 *3)) - (-4 *5 (-663 *3 *4)) (-5 *1 (-481 *3 *4 *5 *2)) (-4 *2 (-1174 *5)))) + (-12 (-4 *3 (-13 (-314) (-322) (-557 (-488)))) (-4 *4 (-1159 *3)) + (-4 *5 (-665 *3 *4)) (-5 *1 (-483 *3 *4 *5 *2)) (-4 *2 (-1176 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-5 *1 (-482 *3 *2)) - (-4 *2 (-1174 *3)))) + (-12 (-4 *3 (-13 (-314) (-322) (-557 (-488)))) (-5 *1 (-484 *3 *2)) + (-4 *2 (-1176 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-497) (-120))) (-5 *1 (-1070 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-499) (-120))) (-5 *1 (-1072 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-497) (-120))) (-5 *1 (-477 *3 *2)) (-4 *2 (-1174 *3)))) + (-12 (-4 *3 (-13 (-499) (-120))) (-5 *1 (-479 *3 *2)) (-4 *2 (-1176 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-4 *4 (-1157 *3)) - (-4 *5 (-663 *3 *4)) (-5 *1 (-481 *3 *4 *5 *2)) (-4 *2 (-1174 *5)))) + (-12 (-4 *3 (-13 (-314) (-322) (-557 (-488)))) (-4 *4 (-1159 *3)) + (-4 *5 (-665 *3 *4)) (-5 *1 (-483 *3 *4 *5 *2)) (-4 *2 (-1176 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-5 *1 (-482 *3 *2)) - (-4 *2 (-1174 *3)))) + (-12 (-4 *3 (-13 (-314) (-322) (-557 (-488)))) (-5 *1 (-484 *3 *2)) + (-4 *2 (-1176 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-497) (-120))) (-5 *1 (-1070 *3))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-499) (-120))) (-5 *1 (-1072 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-497) (-120))) (-5 *1 (-477 *3 *2)) (-4 *2 (-1174 *3)))) + (-12 (-4 *3 (-13 (-499) (-120))) (-5 *1 (-479 *3 *2)) (-4 *2 (-1176 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-4 *4 (-1157 *3)) - (-4 *5 (-663 *3 *4)) (-5 *1 (-481 *3 *4 *5 *2)) (-4 *2 (-1174 *5)))) + (-12 (-4 *3 (-13 (-314) (-322) (-557 (-488)))) (-4 *4 (-1159 *3)) + (-4 *5 (-665 *3 *4)) (-5 *1 (-483 *3 *4 *5 *2)) (-4 *2 (-1176 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-320) (-555 (-486)))) (-5 *1 (-482 *3 *2)) - (-4 *2 (-1174 *3)))) + (-12 (-4 *3 (-13 (-314) (-322) (-557 (-488)))) (-5 *1 (-484 *3 *2)) + (-4 *2 (-1176 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-497) (-120))) (-5 *1 (-1070 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-465)))) - ((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-634 (-1051))) (-5 *1 (-1069))))) -(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-1069))))) + (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-499) (-120))) (-5 *1 (-1072 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-467)))) + ((*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-1071))))) +(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1071))))) +(((*1 *2 *1) (-12 (-5 *2 (-636 (-1053))) (-5 *1 (-1071))))) +(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1071))))) (((*1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) - ((*1 *1) (-4 *1 (-1068)))) -(((*1 *2 *1) (-12 (-5 *2 (-634 *1)) (-4 *1 (-1068))))) -(((*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1131)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1131)) (-5 *2 (-85))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)))) + ((*1 *1) (-4 *1 (-1070)))) +(((*1 *2 *1) (-12 (-5 *2 (-636 *1)) (-4 *1 (-1070))))) +(((*1 *2 *1) (-12 (-4 *1 (-1068 *3)) (-4 *3 (-1133)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1068 *3)) (-4 *3 (-1133)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-696)) (-4 *1 (-1066 *4)) (-4 *4 (-1131)) (-5 *2 (-85))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-1064 *3))))) + (-12 (-5 *3 (-698)) (-4 *1 (-1068 *4)) (-4 *4 (-1133)) (-5 *2 (-85))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1133)) (-5 *1 (-1066 *3))))) (((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) - (-5 *2 (-585 (-942 *5 *6 *7 *3))) (-5 *1 (-942 *5 *6 *7 *3)) - (-4 *3 (-979 *5 *6 *7)))) + (-12 (-5 *4 (-85)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) + (-5 *2 (-587 (-944 *5 *6 *7 *3))) (-5 *1 (-944 *5 *6 *7 *3)) + (-4 *3 (-981 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-585 *6)) (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) - (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)))) + (-12 (-5 *2 (-587 *6)) (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-395)) + (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-985 *3 *4 *5 *2)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *2 (-979 *3 *4 *5)))) + (-12 (-4 *1 (-987 *3 *4 *5 *2)) (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *2 (-981 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) - (-5 *2 (-585 (-1062 *5 *6 *7 *3))) (-5 *1 (-1062 *5 *6 *7 *3)) - (-4 *3 (-979 *5 *6 *7))))) + (-12 (-5 *4 (-85)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) + (-5 *2 (-587 (-1064 *5 *6 *7 *3))) (-5 *1 (-1064 *5 *6 *7 *3)) + (-4 *3 (-981 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) - (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *8))) - (-5 *1 (-942 *5 *6 *7 *8)))) + (-12 (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-395)) + (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-587 (-944 *5 *6 *7 *8))) + (-5 *1 (-944 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-393)) - (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1062 *5 *6 *7 *8))) - (-5 *1 (-1062 *5 *6 *7 *8))))) + (-12 (-5 *3 (-587 *8)) (-5 *4 (-85)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-395)) + (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-587 (-1064 *5 *6 *7 *8))) + (-5 *1 (-1064 *5 *6 *7 *8))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) - (-4 *8 (-979 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-585 *8)) (|:| |towers| (-585 (-942 *5 *6 *7 *8))))) - (-5 *1 (-942 *5 *6 *7 *8)) (-5 *3 (-585 *8)))) + (-12 (-5 *4 (-85)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) + (-4 *8 (-981 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-587 *8)) (|:| |towers| (-587 (-944 *5 *6 *7 *8))))) + (-5 *1 (-944 *5 *6 *7 *8)) (-5 *3 (-587 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) - (-4 *8 (-979 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-585 *8)) (|:| |towers| (-585 (-1062 *5 *6 *7 *8))))) - (-5 *1 (-1062 *5 *6 *7 *8)) (-5 *3 (-585 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1601 *9)))) (-5 *4 (-696)) - (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) - (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-1187)) - (-5 *1 (-983 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1601 *9)))) (-5 *4 (-696)) - (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) - (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-1187)) - (-5 *1 (-1061 *5 *6 *7 *8 *9))))) + (-12 (-5 *4 (-85)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) + (-4 *8 (-981 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-587 *8)) (|:| |towers| (-587 (-1064 *5 *6 *7 *8))))) + (-5 *1 (-1064 *5 *6 *7 *8)) (-5 *3 (-587 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1604 *9)))) (-5 *4 (-698)) + (-4 *8 (-981 *5 *6 *7)) (-4 *9 (-987 *5 *6 *7 *8)) (-4 *5 (-395)) + (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-1189)) + (-5 *1 (-985 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1604 *9)))) (-5 *4 (-698)) + (-4 *8 (-981 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-395)) + (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-1189)) + (-5 *1 (-1063 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-585 *11)) - (|:| |todo| (-585 (-2 (|:| |val| *3) (|:| -1601 *11)))))) - (-5 *6 (-696)) (-5 *2 (-585 (-2 (|:| |val| (-585 *10)) (|:| -1601 *11)))) - (-5 *3 (-585 *10)) (-5 *4 (-585 *11)) (-4 *10 (-979 *7 *8 *9)) - (-4 *11 (-985 *7 *8 *9 *10)) (-4 *7 (-393)) (-4 *8 (-719)) (-4 *9 (-758)) - (-5 *1 (-983 *7 *8 *9 *10 *11)))) + (-2 (|:| |done| (-587 *11)) + (|:| |todo| (-587 (-2 (|:| |val| *3) (|:| -1604 *11)))))) + (-5 *6 (-698)) (-5 *2 (-587 (-2 (|:| |val| (-587 *10)) (|:| -1604 *11)))) + (-5 *3 (-587 *10)) (-5 *4 (-587 *11)) (-4 *10 (-981 *7 *8 *9)) + (-4 *11 (-987 *7 *8 *9 *10)) (-4 *7 (-395)) (-4 *8 (-721)) (-4 *9 (-760)) + (-5 *1 (-985 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-585 *11)) - (|:| |todo| (-585 (-2 (|:| |val| *3) (|:| -1601 *11)))))) - (-5 *6 (-696)) (-5 *2 (-585 (-2 (|:| |val| (-585 *10)) (|:| -1601 *11)))) - (-5 *3 (-585 *10)) (-5 *4 (-585 *11)) (-4 *10 (-979 *7 *8 *9)) - (-4 *11 (-1022 *7 *8 *9 *10)) (-4 *7 (-393)) (-4 *8 (-719)) (-4 *9 (-758)) - (-5 *1 (-1061 *7 *8 *9 *10 *11))))) + (-2 (|:| |done| (-587 *11)) + (|:| |todo| (-587 (-2 (|:| |val| *3) (|:| -1604 *11)))))) + (-5 *6 (-698)) (-5 *2 (-587 (-2 (|:| |val| (-587 *10)) (|:| -1604 *11)))) + (-5 *3 (-587 *10)) (-5 *4 (-587 *11)) (-4 *10 (-981 *7 *8 *9)) + (-4 *11 (-1024 *7 *8 *9 *10)) (-4 *7 (-395)) (-4 *8 (-721)) (-4 *9 (-760)) + (-5 *1 (-1063 *7 *8 *9 *10 *11))))) (((*1 *2 *1) - (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) + (-12 (-4 *1 (-288 *3 *4 *5 *6)) (-4 *3 (-314)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-4 *6 (-293 *3 *4 *5)) (-5 *2 - (-2 (|:| -2338 (-356 *4 (-350 *4) *5 *6)) (|:| |principalPart| *6))))) + (-2 (|:| -2341 (-358 *4 (-352 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| |poly| *6) (|:| -3092 (-350 *6)) (|:| |special| (-350 *6)))) - (-5 *1 (-668 *5 *6)) (-5 *3 (-350 *6)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1159 *5)) (-4 *5 (-314)) + (-5 *2 (-2 (|:| |poly| *6) (|:| -3095 (-352 *6)) (|:| |special| (-352 *6)))) + (-5 *1 (-670 *5 *6)) (-5 *3 (-352 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-312)) (-5 *2 (-585 *3)) (-5 *1 (-809 *3 *4)) - (-4 *3 (-1157 *4)))) + (-12 (-4 *4 (-314)) (-5 *2 (-587 *3)) (-5 *1 (-811 *3 *4)) + (-4 *3 (-1159 *4)))) ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-696)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| -3141 *3) (|:| -3140 *3))) (-5 *1 (-809 *3 *5)) - (-4 *3 (-1157 *5)))) + (|partial| -12 (-5 *4 (-698)) (-4 *5 (-314)) + (-5 *2 (-2 (|:| -3144 *3) (|:| -3143 *3))) (-5 *1 (-811 *3 *5)) + (-4 *3 (-1159 *5)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) - (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) - (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-85)) + (-4 *8 (-981 *5 *6 *7)) (-4 *9 (-987 *5 *6 *7 *8)) (-4 *5 (-395)) + (-4 *6 (-721)) (-4 *7 (-760)) (-5 *1 (-985 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) - (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) - (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-85)) + (-4 *8 (-981 *5 *6 *7)) (-4 *9 (-987 *5 *6 *7 *8)) (-4 *5 (-395)) + (-4 *6 (-721)) (-4 *7 (-760)) (-5 *1 (-985 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) - (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) - (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-1061 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-85)) + (-4 *8 (-981 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-395)) + (-4 *6 (-721)) (-4 *7 (-760)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) - (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) - (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-1061 *5 *6 *7 *8 *9))))) + (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-85)) + (-4 *8 (-981 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-395)) + (-4 *6 (-721)) (-4 *7 (-760)) (-5 *1 (-1063 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-696)) (-5 *6 (-85)) (-4 *7 (-393)) (-4 *8 (-719)) - (-4 *9 (-758)) (-4 *3 (-979 *7 *8 *9)) + (-12 (-5 *5 (-698)) (-5 *6 (-85)) (-4 *7 (-395)) (-4 *8 (-721)) + (-4 *9 (-760)) (-4 *3 (-981 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-585 *4)) - (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) - (-5 *1 (-983 *7 *8 *9 *3 *4)) (-4 *4 (-985 *7 *8 *9 *3)))) + (-2 (|:| |done| (-587 *4)) + (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) + (-5 *1 (-985 *7 *8 *9 *3 *4)) (-4 *4 (-987 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-696)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) - (-4 *3 (-979 *6 *7 *8)) + (-12 (-5 *5 (-698)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) + (-4 *3 (-981 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-585 *4)) - (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) - (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) + (-2 (|:| |done| (-587 *4)) + (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) + (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-585 *4)) - (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) - (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) + (-2 (|:| |done| (-587 *4)) + (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) + (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-696)) (-5 *6 (-85)) (-4 *7 (-393)) (-4 *8 (-719)) - (-4 *9 (-758)) (-4 *3 (-979 *7 *8 *9)) + (-12 (-5 *5 (-698)) (-5 *6 (-85)) (-4 *7 (-395)) (-4 *8 (-721)) + (-4 *9 (-760)) (-4 *3 (-981 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-585 *4)) - (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) - (-5 *1 (-1061 *7 *8 *9 *3 *4)) (-4 *4 (-1022 *7 *8 *9 *3)))) + (-2 (|:| |done| (-587 *4)) + (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) + (-5 *1 (-1063 *7 *8 *9 *3 *4)) (-4 *4 (-1024 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-696)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) - (-4 *3 (-979 *6 *7 *8)) + (-12 (-5 *5 (-698)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) + (-4 *3 (-981 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-585 *4)) - (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) - (-5 *1 (-1061 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3)))) + (-2 (|:| |done| (-587 *4)) + (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) + (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-585 *4)) - (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) - (-5 *1 (-1061 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3))))) + (-2 (|:| |done| (-587 *4)) + (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) + (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-696)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) - (-4 *3 (-979 *6 *7 *8)) + (-12 (-5 *5 (-698)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) + (-4 *3 (-981 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-585 *4)) - (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) - (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) + (-2 (|:| |done| (-587 *4)) + (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) + (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-585 *4)) - (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) - (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) + (-2 (|:| |done| (-587 *4)) + (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) + (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-696)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) - (-4 *3 (-979 *6 *7 *8)) + (-12 (-5 *5 (-698)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) + (-4 *3 (-981 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-585 *4)) - (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) - (-5 *1 (-1061 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3)))) + (-2 (|:| |done| (-587 *4)) + (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) + (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-585 *4)) - (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) - (-5 *1 (-1061 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3))))) + (-2 (|:| |done| (-587 *4)) + (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) + (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) - (-4 *3 (-979 *6 *7 *8)) + (-12 (-5 *5 (-85)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) + (-4 *3 (-981 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-585 *4)) - (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) - (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) + (-2 (|:| |done| (-587 *4)) + (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) + (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-585 *4)) - (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) - (-5 *1 (-1061 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3))))) + (-2 (|:| |done| (-587 *4)) + (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))))) + (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) - (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) - (-5 *2 (-696)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-981 *5 *6 *7)) + (-4 *9 (-987 *5 *6 *7 *8)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) + (-5 *2 (-698)) (-5 *1 (-985 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) - (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) - (-5 *2 (-696)) (-5 *1 (-1061 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-981 *5 *6 *7)) + (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) + (-5 *2 (-698)) (-5 *1 (-1063 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) - (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) - (-5 *2 (-696)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-981 *5 *6 *7)) + (-4 *9 (-987 *5 *6 *7 *8)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) + (-5 *2 (-698)) (-5 *1 (-985 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) - (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) - (-5 *2 (-696)) (-5 *1 (-1061 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-981 *5 *6 *7)) + (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) + (-5 *2 (-698)) (-5 *1 (-1063 *5 *6 *7 *8 *9))))) (((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117))) - ((*1 *1 *1) (-4 *1 (-1060)))) -(((*1 *1 *1) (-4 *1 (-1060)))) + ((*1 *1 *1) (-4 *1 (-1062)))) +(((*1 *1 *1) (-4 *1 (-1062)))) (((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117))) - ((*1 *1 *1) (-4 *1 (-1060)))) -(((*1 *1 *1) (-4 *1 (-1060)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-85))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-85))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1060)) (-5 *3 (-486)) (-5 *2 (-85))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *6)) (-4 *5 (-1015)) (-4 *6 (-1131)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-587 *5 *6)))) + ((*1 *1 *1) (-4 *1 (-1062)))) +(((*1 *1 *1) (-4 *1 (-1062)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1062)) (-5 *2 (-85))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1062)) (-5 *2 (-85))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1062)) (-5 *3 (-488)) (-5 *2 (-85))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *6)) (-4 *5 (-1017)) (-4 *6 (-1133)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-589 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-4 *5 (-1015)) (-4 *2 (-1131)) - (-5 *1 (-587 *5 *2)))) + (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *2)) (-4 *5 (-1017)) (-4 *2 (-1133)) + (-5 *1 (-589 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 *5)) (-4 *6 (-1015)) (-4 *5 (-1131)) - (-5 *2 (-1 *5 *6)) (-5 *1 (-587 *6 *5)))) + (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 *5)) (-4 *6 (-1017)) (-4 *5 (-1133)) + (-5 *2 (-1 *5 *6)) (-5 *1 (-589 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-4 *5 (-1015)) (-4 *2 (-1131)) - (-5 *1 (-587 *5 *2)))) + (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *2)) (-4 *5 (-1017)) (-4 *2 (-1133)) + (-5 *1 (-589 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-585 *5)) (-5 *4 (-585 *6)) (-4 *5 (-1015)) - (-4 *6 (-1131)) (-5 *1 (-587 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-587 *5)) (-5 *4 (-587 *6)) (-4 *5 (-1017)) + (-4 *6 (-1133)) (-5 *1 (-589 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1015)) - (-4 *2 (-1131)) (-5 *1 (-587 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1060)) (-5 *3 (-117)) (-5 *2 (-696))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1060)) (-5 *3 (-117)) (-5 *2 (-85))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-1148 (-486)))))) -(((*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-696)))) + (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1017)) + (-4 *2 (-1133)) (-5 *1 (-589 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1062)) (-5 *3 (-117)) (-5 *2 (-698))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1062)) (-5 *3 (-117)) (-5 *2 (-85))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1062)) (-5 *2 (-1150 (-488)))))) +(((*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-698)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-486)) (-4 *1 (-324 *3)) (-4 *3 (-1131)) (-4 *3 (-72)))) + (-12 (-5 *2 (-488)) (-4 *1 (-326 *3)) (-4 *3 (-1133)) (-4 *3 (-72)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-324 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-486)))) + (-12 (-4 *1 (-326 *3)) (-4 *3 (-1133)) (-4 *3 (-72)) (-5 *2 (-488)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-324 *4)) (-4 *4 (-1131)) (-5 *2 (-486)))) - ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-469)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-486)) (-5 *3 (-114)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-486))))) -(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1157 (-48))))) + (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-326 *4)) (-4 *4 (-1133)) (-5 *2 (-488)))) + ((*1 *2 *1) (-12 (-5 *2 (-1037)) (-5 *1 (-471)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-488)) (-5 *3 (-114)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-488))))) +(((*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1159 (-48))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) - (-5 *1 (-94 *3)) (-4 *3 (-758)))) - ((*1 *2 *2) - (-12 (-5 *2 (-521 *4)) (-4 *4 (-13 (-29 *3) (-1117))) - (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-523 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-521 (-350 (-859 *3)))) - (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-527 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| -3092 *3) (|:| |special| *3))) (-5 *1 (-668 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1181 *5)) (-4 *5 (-312)) (-4 *5 (-963)) - (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1181 (-1181 *5))) (-4 *5 (-312)) (-4 *5 (-963)) - (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-585 *1)) (-4 *1 (-1060)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-585 *1)) (-4 *1 (-1060))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-117))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-117))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-117))))) + (-5 *1 (-94 *3)) (-4 *3 (-760)))) + ((*1 *2 *2) + (-12 (-5 *2 (-523 *4)) (-4 *4 (-13 (-29 *3) (-1119))) + (-4 *3 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-525 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-523 (-352 (-861 *3)))) + (-4 *3 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-529 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1159 *5)) (-4 *5 (-314)) + (-5 *2 (-2 (|:| -3095 *3) (|:| |special| *3))) (-5 *1 (-670 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1183 *5)) (-4 *5 (-314)) (-4 *5 (-965)) + (-5 *2 (-587 (-587 (-634 *5)))) (-5 *1 (-947 *5)) (-5 *3 (-587 (-634 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1183 (-1183 *5))) (-4 *5 (-314)) (-4 *5 (-965)) + (-5 *2 (-587 (-587 (-634 *5)))) (-5 *1 (-947 *5)) (-5 *3 (-587 (-634 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-587 *1)) (-4 *1 (-1062)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-587 *1)) (-4 *1 (-1062))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-117))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-117))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-117))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-486)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-696)) - (-4 *5 (-146)))) + (-12 (-5 *2 (-488)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-698)) + (-4 *5 (-148)))) ((*1 *1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-488)) (-14 *3 (-698)) (-4 *4 (-148)))) ((*1 *1 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) - (-4 *4 (-324 *2)))) + (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) + (-4 *4 (-326 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-963)) (-4 *1 (-629 *3 *2 *4)) (-4 *2 (-324 *3)) - (-4 *4 (-324 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-1058 *2 *3)) (-14 *2 (-696)) (-4 *3 (-963))))) + (-12 (-4 *3 (-965)) (-4 *1 (-631 *3 *2 *4)) (-4 *2 (-326 *3)) + (-4 *4 (-326 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-1060 *2 *3)) (-14 *2 (-698)) (-4 *3 (-965))))) (((*1 *1 *2) - (-12 (-5 *2 (-632 *4)) (-4 *4 (-963)) (-5 *1 (-1058 *3 *4)) (-14 *3 (-696))))) + (-12 (-5 *2 (-634 *4)) (-4 *4 (-965)) (-5 *1 (-1060 *3 *4)) (-14 *3 (-698))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1015) (-34))) - (-4 *3 (-13 (-1015) (-34)))))) + (|partial| -12 (-5 *1 (-1059 *2 *3)) (-4 *2 (-13 (-1017) (-34))) + (-4 *3 (-13 (-1017) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1015) (-34))) - (-4 *3 (-13 (-1015) (-34)))))) + (-12 (-5 *1 (-1059 *2 *3)) (-4 *2 (-13 (-1017) (-34))) + (-4 *3 (-13 (-1017) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-585 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1015) (-34))) - (-4 *4 (-13 (-1015) (-34)))))) + (-12 (-5 *2 (-587 *4)) (-5 *1 (-1059 *3 *4)) (-4 *3 (-13 (-1017) (-34))) + (-4 *4 (-13 (-1017) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1057 *3 *4)) - (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34)))))) + (-12 (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) (-5 *1 (-1059 *3 *4)) + (-4 *3 (-13 (-1017) (-34))) (-4 *4 (-13 (-1017) (-34)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1056 *4 *5)) (-4 *4 (-13 (-1015) (-34))) - (-4 *5 (-13 (-1015) (-34))) (-5 *2 (-85)) (-5 *1 (-1057 *4 *5))))) + (-12 (-5 *3 (-1058 *4 *5)) (-4 *4 (-13 (-1017) (-34))) + (-4 *5 (-13 (-1017) (-34))) (-5 *2 (-85)) (-5 *1 (-1059 *4 *5))))) (((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1056 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) - (-4 *5 (-13 (-1015) (-34))) (-4 *6 (-13 (-1015) (-34))) (-5 *2 (-85)) - (-5 *1 (-1057 *5 *6))))) + (-12 (-5 *3 (-1058 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) + (-4 *5 (-13 (-1017) (-34))) (-4 *6 (-13 (-1017) (-34))) (-5 *2 (-85)) + (-5 *1 (-1059 *5 *6))))) (((*1 *1 *2 *1) - (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1131)) (-4 *2 (-72)))) + (-12 (-4 *1 (-320 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1133)) (-4 *2 (-72)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-124 *3)) - (-4 *3 (-1131)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-618 *3)) (-4 *3 (-1131)))) + (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-320 *3)) (-4 *1 (-124 *3)) + (-4 *3 (-1133)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-620 *3)) (-4 *3 (-1133)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-486)) (-4 *4 (-1015)) (-5 *1 (-677 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *1 (-677 *2)) (-4 *2 (-1015)))) + (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-488)) (-4 *4 (-1017)) (-5 *1 (-679 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-488)) (-5 *1 (-679 *2)) (-4 *2 (-1017)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) - (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1057 *3 *4))))) + (-12 (-5 *2 (-1058 *3 *4)) (-4 *3 (-13 (-1017) (-34))) + (-4 *4 (-13 (-1017) (-34))) (-5 *1 (-1059 *3 *4))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-193 *3)) - (-4 *3 (-1015)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-193 *2)) (-4 *2 (-1015)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)) (-4 *2 (-72)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) + (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-320 *3)) (-4 *1 (-195 *3)) + (-4 *3 (-1017)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-320 *2)) (-4 *1 (-195 *2)) (-4 *2 (-1017)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1133)) (-4 *2 (-72)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-239 *3)) (-4 *3 (-1133)))) ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-551 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015)))) + (|partial| -12 (-4 *1 (-553 *3 *2)) (-4 *3 (-1017)) (-4 *2 (-1017)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-486)) (-4 *4 (-1015)) (-5 *1 (-677 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *1 (-677 *2)) (-4 *2 (-1015)))) + (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-488)) (-4 *4 (-1017)) (-5 *1 (-679 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-488)) (-5 *1 (-679 *2)) (-4 *2 (-1017)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) - (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1057 *3 *4))))) + (-12 (-5 *2 (-1058 *3 *4)) (-4 *3 (-13 (-1017) (-34))) + (-4 *4 (-13 (-1017) (-34))) (-5 *1 (-1059 *3 *4))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 (-1056 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) - (-4 *4 (-13 (-1015) (-34))) (-4 *5 (-13 (-1015) (-34))) - (-5 *1 (-1057 *4 *5)))) + (-12 (-5 *2 (-587 (-1058 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) + (-4 *4 (-13 (-1017) (-34))) (-4 *5 (-13 (-1017) (-34))) + (-5 *1 (-1059 *4 *5)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-585 (-1056 *3 *4))) (-4 *3 (-13 (-1015) (-34))) - (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1057 *3 *4))))) + (-12 (-5 *2 (-587 (-1058 *3 *4))) (-4 *3 (-13 (-1017) (-34))) + (-4 *4 (-13 (-1017) (-34))) (-5 *1 (-1059 *3 *4))))) (((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *3 (-393)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *2 (-85)) - (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4)))) + (-12 (-4 *3 (-395)) (-4 *4 (-760)) (-4 *5 (-721)) (-5 *2 (-85)) + (-5 *1 (-903 *3 *4 *5 *6)) (-4 *6 (-865 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) - (-4 *4 (-13 (-1015) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-769)))) - ((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-878)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-904)))) - ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-1131)))) + (-12 (-5 *2 (-85)) (-5 *1 (-1058 *3 *4)) (-4 *3 (-13 (-1017) (-34))) + (-4 *4 (-13 (-1017) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-771)))) + ((*1 *2 *1) (-12 (-5 *2 (-1019)) (-5 *1 (-880)))) + ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-906)))) + ((*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1133)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1015) (-34))) (-5 *1 (-1056 *2 *3)) - (-4 *3 (-13 (-1015) (-34)))))) + (-12 (-4 *2 (-13 (-1017) (-34))) (-5 *1 (-1058 *2 *3)) + (-4 *3 (-13 (-1017) (-34)))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-393)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *2 (-85)) - (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4)))) + (|partial| -12 (-4 *3 (-395)) (-4 *4 (-760)) (-4 *5 (-721)) (-5 *2 (-85)) + (-5 *1 (-903 *3 *4 *5 *6)) (-4 *6 (-865 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) - (-4 *4 (-13 (-1015) (-34)))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1058 *3 *4)) (-4 *3 (-13 (-1017) (-34))) + (-4 *4 (-13 (-1017) (-34)))))) (((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-86))) - ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-485))) - ((*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) - ((*1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-963)))) + ((*1 *1 *1) (-5 *1 (-147))) ((*1 *1 *1) (-4 *1 (-487))) + ((*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1017)))) + ((*1 *1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-965)))) ((*1 *1 *1) - (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) - (-4 *3 (-13 (-1015) (-34)))))) + (-12 (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1017) (-34))) + (-4 *3 (-13 (-1017) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) - (-4 *3 (-13 (-1015) (-34)))))) + (-12 (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1017) (-34))) + (-4 *3 (-13 (-1017) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1056 *3 *2)) (-4 *3 (-13 (-1015) (-34))) - (-4 *2 (-13 (-1015) (-34)))))) + (-12 (-5 *1 (-1058 *3 *2)) (-4 *3 (-13 (-1017) (-34))) + (-4 *2 (-13 (-1017) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) - (-4 *4 (-13 (-1015) (-34)))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1058 *3 *4)) (-4 *3 (-13 (-1017) (-34))) + (-4 *4 (-13 (-1017) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) - (-4 *3 (-13 (-1015) (-34)))))) + (-12 (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1017) (-34))) + (-4 *3 (-13 (-1017) (-34)))))) (((*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) - (-4 *5 (-13 (-1015) (-34))) (-4 *6 (-13 (-1015) (-34))) (-5 *2 (-85)) - (-5 *1 (-1056 *5 *6))))) + (-4 *5 (-13 (-1017) (-34))) (-4 *6 (-13 (-1017) (-34))) (-5 *2 (-85)) + (-5 *1 (-1058 *5 *6))))) (((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1015) (-34))) (-5 *2 (-85)) - (-5 *1 (-1056 *4 *5)) (-4 *4 (-13 (-1015) (-34)))))) -(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1) (-4 *1 (-1055)))) -(((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1) (-4 *1 (-1055)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1055)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1055)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1055)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1055)))) -(((*1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1) (-4 *1 (-1055))) ((*1 *1 *1 *1) (-4 *1 (-1055)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-696)) (-5 *1 (-180)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-696)) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1055)))) -(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1) (-4 *1 (-1055)))) -(((*1 *1 *1 *1) (-5 *1 (-179))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-330))) (-5 *1 (-955)))) - ((*1 *1 *1 *1) (-4 *1 (-1055)))) -(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-975)))) - ((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1) (-4 *1 (-716))) - ((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)) (-4 *2 (-975)))) - ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)) (-4 *2 (-975)))) - ((*1 *1 *1) (-4 *1 (-1055)))) -(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-1054)))) - ((*1 *2 *3) (-12 (-5 *3 (-585 (-774))) (-5 *2 (-1187)) (-5 *1 (-1054))))) -(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-1054)))) - ((*1 *2 *3) (-12 (-5 *3 (-585 (-774))) (-5 *2 (-1187)) (-5 *1 (-1054))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1075)) (-5 *4 (-774)) (-5 *2 (-1187)) (-5 *1 (-1054)))) - ((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-1054)))) - ((*1 *2 *3) (-12 (-5 *3 (-585 (-774))) (-5 *2 (-1187)) (-5 *1 (-1054))))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-585 (-1097))) (-5 *1 (-1052))))) -(((*1 *1 *2) (-12 (-5 *2 (-1081 3 *3)) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) - ((*1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-963))))) + (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1017) (-34))) (-5 *2 (-85)) + (-5 *1 (-1058 *4 *5)) (-4 *4 (-13 (-1017) (-34)))))) +(((*1 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) + ((*1 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) + ((*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) + ((*1 *1 *1) (-4 *1 (-1057)))) +(((*1 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) + ((*1 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) + ((*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) + ((*1 *1 *1) (-4 *1 (-1057)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1057)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1057)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1057)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1057)))) +(((*1 *1 *1) (-5 *1 (-181))) ((*1 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) + ((*1 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) + ((*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) + ((*1 *1 *1) (-4 *1 (-1057))) ((*1 *1 *1 *1) (-4 *1 (-1057)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-181)) (-5 *3 (-698)) (-5 *1 (-182)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-144 (-181))) (-5 *3 (-698)) (-5 *1 (-182)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1057)))) +(((*1 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) + ((*1 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) + ((*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) + ((*1 *1 *1) (-4 *1 (-1057)))) +(((*1 *1 *1 *1) (-5 *1 (-181))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1 (-332))) (-5 *1 (-957)))) + ((*1 *1 *1 *1) (-4 *1 (-1057)))) +(((*1 *1 *1) (-12 (-4 *1 (-141 *2)) (-4 *2 (-148)) (-4 *2 (-977)))) + ((*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3)))) + ((*1 *1 *1) (-4 *1 (-718))) + ((*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)) (-4 *2 (-977)))) + ((*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-148)) (-4 *2 (-977)))) + ((*1 *1 *1) (-4 *1 (-1057)))) +(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1189)) (-5 *1 (-1056)))) + ((*1 *2 *3) (-12 (-5 *3 (-587 (-776))) (-5 *2 (-1189)) (-5 *1 (-1056))))) +(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1189)) (-5 *1 (-1056)))) + ((*1 *2 *3) (-12 (-5 *3 (-587 (-776))) (-5 *2 (-1189)) (-5 *1 (-1056))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1077)) (-5 *4 (-776)) (-5 *2 (-1189)) (-5 *1 (-1056)))) + ((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1189)) (-5 *1 (-1056)))) + ((*1 *2 *3) (-12 (-5 *3 (-587 (-776))) (-5 *2 (-1189)) (-5 *1 (-1056))))) +(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-587 (-1099))) (-5 *1 (-1054))))) +(((*1 *1 *2) (-12 (-5 *2 (-1083 3 *3)) (-4 *3 (-965)) (-4 *1 (-1052 *3)))) + ((*1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-965))))) (((*1 *2) - (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) - (-5 *2 (-696)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) + (-12 (-4 *4 (-1138)) (-4 *5 (-1159 *4)) (-4 *6 (-1159 (-352 *5))) + (-5 *2 (-698)) (-5 *1 (-292 *3 *4 *5 *6)) (-4 *3 (-293 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-5 *2 (-696)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-696))))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-696))))) -(((*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-585 *1)) (-4 *1 (-1050 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-585 *1)) (-4 *1 (-1050 *3))))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-5 *2 (-698)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-698))))) +(((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-698))))) +(((*1 *2 *1) (-12 (-4 *3 (-965)) (-5 *2 (-587 *1)) (-4 *1 (-1052 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-965)) (-5 *2 (-587 *1)) (-4 *1 (-1052 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-585 (-856 *4))) (-4 *1 (-1050 *4)) (-4 *4 (-963)) - (-5 *2 (-696))))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-789 *2)) (-4 *2 (-1131)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1131)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) + (-12 (-5 *3 (-587 (-858 *4))) (-4 *1 (-1052 *4)) (-4 *4 (-965)) + (-5 *2 (-698))))) +(((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-85))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1133)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1133)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-587 (-858 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-587 (-858 *3))) (-4 *3 (-965)) (-4 *1 (-1052 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) + (-12 (-5 *2 (-587 (-587 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-965)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-585 (-856 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963))))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) + (-12 (-5 *2 (-587 (-858 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-965))))) +(((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-587 (-858 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-587 (-858 *3))) (-4 *3 (-965)) (-4 *1 (-1052 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) + (-12 (-5 *2 (-587 (-587 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-965)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-585 (-856 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963))))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) + (-12 (-5 *2 (-587 (-858 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-965))))) +(((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-587 (-858 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-587 (-858 *3))) (-4 *3 (-965)) (-4 *1 (-1052 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963)))) + (-12 (-5 *2 (-587 (-587 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-965)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-585 (-856 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-963))))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85))))) + (-12 (-5 *2 (-587 (-858 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-965))))) +(((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-856 *3)))))) + (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-587 (-587 (-858 *3)))))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-585 (-585 (-856 *4)))) (-5 *3 (-85)) (-4 *4 (-963)) - (-4 *1 (-1050 *4)))) + (-12 (-5 *2 (-587 (-587 (-858 *4)))) (-5 *3 (-85)) (-4 *4 (-965)) + (-4 *1 (-1052 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-585 (-585 (-856 *3)))) (-4 *3 (-963)) (-4 *1 (-1050 *3)))) + (-12 (-5 *2 (-587 (-587 (-858 *3)))) (-4 *3 (-965)) (-4 *1 (-1052 *3)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-585 (-585 (-585 *4)))) (-5 *3 (-85)) (-4 *1 (-1050 *4)) - (-4 *4 (-963)))) + (-12 (-5 *2 (-587 (-587 (-587 *4)))) (-5 *3 (-85)) (-4 *1 (-1052 *4)) + (-4 *4 (-965)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-585 (-585 (-856 *4)))) (-5 *3 (-85)) (-4 *1 (-1050 *4)) - (-4 *4 (-963)))) + (-12 (-5 *2 (-587 (-587 (-858 *4)))) (-5 *3 (-85)) (-4 *1 (-1052 *4)) + (-4 *4 (-965)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-585 (-585 (-585 *5)))) (-5 *3 (-585 (-145))) (-5 *4 (-145)) - (-4 *1 (-1050 *5)) (-4 *5 (-963)))) + (-12 (-5 *2 (-587 (-587 (-587 *5)))) (-5 *3 (-587 (-147))) (-5 *4 (-147)) + (-4 *1 (-1052 *5)) (-4 *5 (-965)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-585 (-585 (-856 *5)))) (-5 *3 (-585 (-145))) (-5 *4 (-145)) - (-4 *1 (-1050 *5)) (-4 *5 (-963))))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3)))))) + (-12 (-5 *2 (-587 (-587 (-858 *5)))) (-5 *3 (-587 (-147))) (-5 *4 (-147)) + (-4 *1 (-1052 *5)) (-4 *5 (-965))))) +(((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-587 (-858 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-585 (-696)))))))) + (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-587 (-587 (-587 (-698)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) - (-5 *2 (-585 (-585 (-585 (-856 *3)))))))) + (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) + (-5 *2 (-587 (-587 (-587 (-858 *3)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-145))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-145)))))) + (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-587 (-587 (-147))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 (-587 (-147)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1050 *3)) (-4 *3 (-963)) + (-12 (-4 *1 (-1052 *3)) (-4 *3 (-965)) (-5 *2 - (-2 (|:| -3854 (-696)) (|:| |curves| (-696)) (|:| |polygons| (-696)) - (|:| |constructs| (-696))))))) + (-2 (|:| -3857 (-698)) (|:| |curves| (-698)) (|:| |polygons| (-698)) + (|:| |constructs| (-698))))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-585 (-2 (|:| -3735 (-1087 *6)) (|:| -2403 (-486))))) - (-4 *6 (-258)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) - (-5 *1 (-683 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-963))))) + (-12 (-5 *3 (-587 (-2 (|:| -3738 (-1089 *6)) (|:| -2406 (-488))))) + (-4 *6 (-260)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)) + (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-865 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-965))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-1048 *4 *2)) - (-4 *2 (-13 (-540 (-486) *4) (-318 *4) (-1037 *4))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1133)) (-5 *1 (-1050 *4 *2)) + (-4 *2 (-13 (-542 (-488) *4) (-320 *4) (-1039 *4))))) ((*1 *2 *2) - (-12 (-4 *3 (-758)) (-4 *3 (-1131)) (-5 *1 (-1048 *3 *2)) - (-4 *2 (-13 (-540 (-486) *3) (-318 *3) (-1037 *3)))))) + (-12 (-4 *3 (-760)) (-4 *3 (-1133)) (-5 *1 (-1050 *3 *2)) + (-4 *2 (-13 (-542 (-488) *3) (-320 *3) (-1039 *3)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-1048 *4 *2)) - (-4 *2 (-13 (-540 (-486) *4) (-318 *4) (-1037 *4))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1133)) (-5 *1 (-1050 *4 *2)) + (-4 *2 (-13 (-542 (-488) *4) (-320 *4) (-1039 *4))))) ((*1 *2 *2) - (-12 (-4 *3 (-758)) (-4 *3 (-1131)) (-5 *1 (-1048 *3 *2)) - (-4 *2 (-13 (-540 (-486) *3) (-318 *3) (-1037 *3)))))) + (-12 (-4 *3 (-760)) (-4 *3 (-1133)) (-5 *1 (-1050 *3 *2)) + (-4 *2 (-13 (-542 (-488) *3) (-320 *3) (-1039 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1181 *4)) (-4 *4 (-963)) (-4 *2 (-1157 *4)) - (-5 *1 (-385 *4 *2)))) + (-12 (-5 *3 (-1183 *4)) (-4 *4 (-965)) (-4 *2 (-1159 *4)) + (-5 *1 (-387 *4 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-350 (-1087 (-265 *5)))) (-5 *3 (-1181 (-265 *5))) - (-5 *4 (-486)) (-4 *5 (-497)) (-5 *1 (-1046 *5))))) + (-12 (-5 *2 (-352 (-1089 (-267 *5)))) (-5 *3 (-1183 (-267 *5))) + (-5 *4 (-488)) (-4 *5 (-499)) (-5 *1 (-1048 *5))))) (((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-350 (-1087 (-265 *3)))) (-4 *3 (-497)) (-5 *1 (-1046 *3))))) + (-12 (-5 *2 (-352 (-1089 (-267 *3)))) (-4 *3 (-499)) (-5 *1 (-1048 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-249 (-350 (-859 *5)))) (-5 *4 (-1092)) - (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-1082 (-585 (-265 *5)) (-585 (-249 (-265 *5))))) - (-5 *1 (-1045 *5)))) + (-12 (-5 *3 (-251 (-352 (-861 *5)))) (-5 *4 (-1094)) + (-4 *5 (-13 (-260) (-120))) + (-5 *2 (-1084 (-587 (-267 *5)) (-587 (-251 (-267 *5))))) + (-5 *1 (-1047 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-1082 (-585 (-265 *5)) (-585 (-249 (-265 *5))))) - (-5 *1 (-1045 *5))))) + (-12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-120))) + (-5 *2 (-1084 (-587 (-267 *5)) (-587 (-251 (-267 *5))))) + (-5 *1 (-1047 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-585 (-265 *5))) (-5 *1 (-1045 *5)))) + (-12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-120))) + (-5 *2 (-587 (-267 *5))) (-5 *1 (-1047 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-350 (-859 *5)))) (-5 *4 (-585 (-1092))) - (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-265 *5)))) - (-5 *1 (-1045 *5))))) + (-12 (-5 *3 (-587 (-352 (-861 *5)))) (-5 *4 (-587 (-1094))) + (-4 *5 (-13 (-260) (-120))) (-5 *2 (-587 (-587 (-267 *5)))) + (-5 *1 (-1047 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1045 *5)))) + (-12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-120))) + (-5 *2 (-587 (-251 (-267 *5)))) (-5 *1 (-1047 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1045 *4)))) + (-12 (-5 *3 (-352 (-861 *4))) (-4 *4 (-13 (-260) (-120))) + (-5 *2 (-587 (-251 (-267 *4)))) (-5 *1 (-1047 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-249 (-350 (-859 *5)))) (-5 *4 (-1092)) - (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-249 (-265 *5)))) - (-5 *1 (-1045 *5)))) + (-12 (-5 *3 (-251 (-352 (-861 *5)))) (-5 *4 (-1094)) + (-4 *5 (-13 (-260) (-120))) (-5 *2 (-587 (-251 (-267 *5)))) + (-5 *1 (-1047 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-249 (-350 (-859 *4)))) (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1045 *4)))) + (-12 (-5 *3 (-251 (-352 (-861 *4)))) (-4 *4 (-13 (-260) (-120))) + (-5 *2 (-587 (-251 (-267 *4)))) (-5 *1 (-1047 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-350 (-859 *5)))) (-5 *4 (-585 (-1092))) - (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *5))))) - (-5 *1 (-1045 *5)))) + (-12 (-5 *3 (-587 (-352 (-861 *5)))) (-5 *4 (-587 (-1094))) + (-4 *5 (-13 (-260) (-120))) (-5 *2 (-587 (-587 (-251 (-267 *5))))) + (-5 *1 (-1047 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-585 (-350 (-859 *4)))) (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-585 (-585 (-249 (-265 *4))))) (-5 *1 (-1045 *4)))) + (-12 (-5 *3 (-587 (-352 (-861 *4)))) (-4 *4 (-13 (-260) (-120))) + (-5 *2 (-587 (-587 (-251 (-267 *4))))) (-5 *1 (-1047 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-249 (-350 (-859 *5))))) (-5 *4 (-585 (-1092))) - (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *5))))) - (-5 *1 (-1045 *5)))) + (-12 (-5 *3 (-587 (-251 (-352 (-861 *5))))) (-5 *4 (-587 (-1094))) + (-4 *5 (-13 (-260) (-120))) (-5 *2 (-587 (-587 (-251 (-267 *5))))) + (-5 *1 (-1047 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-585 (-249 (-350 (-859 *4))))) (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-585 (-585 (-249 (-265 *4))))) (-5 *1 (-1045 *4))))) + (-12 (-5 *3 (-587 (-251 (-352 (-861 *4))))) (-4 *4 (-13 (-260) (-120))) + (-5 *2 (-587 (-587 (-251 (-267 *4))))) (-5 *1 (-1047 *4))))) (((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) - (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2))))) + (-12 (-4 *2 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) + (-5 *1 (-1046 *3 *2)) (-4 *3 (-1159 *2))))) (((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) - (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2))))) + (-12 (-4 *2 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) + (-5 *1 (-1046 *3 *2)) (-4 *3 (-1159 *2))))) (((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) - (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2))))) + (-12 (-4 *2 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) + (-5 *1 (-1046 *3 *2)) (-4 *3 (-1159 *2))))) (((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) - (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2))))) + (-12 (-4 *2 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) + (-5 *1 (-1046 *3 *2)) (-4 *3 (-1159 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) - (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4)))) + (-12 (-4 *4 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) + (-5 *2 (-587 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1159 *4)))) ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) - (-5 *2 (-585 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1157 *3))))) + (-12 (-4 *3 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) + (-5 *2 (-587 *3)) (-5 *1 (-1046 *4 *3)) (-4 *4 (-1159 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) - (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4)))) + (-12 (-4 *4 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) + (-5 *2 (-587 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1159 *4)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) - (-5 *2 (-585 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1157 *3))))) + (-12 (-4 *3 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) + (-5 *2 (-587 *3)) (-5 *1 (-1046 *4 *3)) (-4 *4 (-1159 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) - (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4)))) + (-12 (-4 *4 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) + (-5 *2 (-587 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1159 *4)))) ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) - (-5 *2 (-585 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1157 *3))))) + (-12 (-4 *3 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) + (-5 *2 (-587 *3)) (-5 *1 (-1046 *4 *3)) (-4 *4 (-1159 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) - (-5 *2 (-585 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1157 *4)))) + (-12 (-4 *4 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) + (-5 *2 (-587 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1159 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) - (-5 *2 (-585 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1157 *3))))) + (-12 (-4 *3 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) + (-5 *2 (-587 *3)) (-5 *1 (-1046 *4 *3)) (-4 *4 (-1159 *3))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) + (-4 *5 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) (-5 *2 - (-2 (|:| |solns| (-585 *5)) - (|:| |maps| (-585 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1044 *3 *5)) (-4 *3 (-1157 *5))))) + (-2 (|:| |solns| (-587 *5)) + (|:| |maps| (-587 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1046 *3 *5)) (-4 *3 (-1159 *5))))) (((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-324 *4) (-1037 *4))) - (-4 *2 (-13 (-324 *4) (-1037 *4))) (-5 *1 (-611 *4 *5 *2 *3)) - (-4 *3 (-629 *4 *5 *2)))) + (|partial| -12 (-4 *4 (-314)) (-4 *5 (-13 (-326 *4) (-1039 *4))) + (-4 *2 (-13 (-326 *4) (-1039 *4))) (-5 *1 (-613 *4 *5 *2 *3)) + (-4 *3 (-631 *4 *5 *2)))) ((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1181 *4)) (-5 *3 (-632 *4)) (-4 *4 (-312)) - (-5 *1 (-612 *4)))) + (|partial| -12 (-5 *2 (-1183 *4)) (-5 *3 (-634 *4)) (-4 *4 (-314)) + (-5 *1 (-614 *4)))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-585 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) - (-5 *1 (-736 *2 *3)) (-4 *3 (-602 *2)))) + (|partial| -12 (-5 *4 (-587 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-314)) + (-5 *1 (-738 *2 *3)) (-4 *3 (-604 *2)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-486))))))) - (-5 *1 (-1044 *3 *2)) (-4 *3 (-1157 *2))))) + (-12 (-4 *2 (-13 (-314) (-10 -8 (-15 ** ($ $ (-352 (-488))))))) + (-5 *1 (-1046 *3 *2)) (-4 *3 (-1159 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-1071 *7))) (-4 *6 (-758)) - (-4 *7 (-863 *5 (-471 *6) *6)) (-4 *5 (-963)) (-5 *2 (-1 (-1071 *7) *7)) - (-5 *1 (-1042 *5 *6 *7))))) + (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 (-1073 *7))) (-4 *6 (-760)) + (-4 *7 (-865 *5 (-473 *6) *6)) (-4 *5 (-965)) (-5 *2 (-1 (-1073 *7) *7)) + (-5 *1 (-1044 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-258)) (-4 *6 (-324 *5)) (-4 *4 (-324 *5)) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-585 *4)))) - (-5 *1 (-1040 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4))))) + (-12 (-4 *5 (-260)) (-4 *6 (-326 *5)) (-4 *4 (-326 *5)) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2017 (-587 *4)))) + (-5 *1 (-1042 *5 *6 *4 *3)) (-4 *3 (-631 *5 *6 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) + (-12 (-4 *4 (-260)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1040 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6))))) + (-5 *1 (-1042 *4 *5 *6 *3)) (-4 *3 (-631 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-1040 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) + (-12 (-4 *3 (-260)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) + (-5 *1 (-1042 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1040 *4 *5 *6 *3)) - (-4 *3 (-629 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486)))) + (-12 (-4 *4 (-260)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1042 *4 *5 *6 *3)) + (-4 *3 (-631 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-1089 (-488))) (-5 *1 (-857)) (-5 *3 (-488)))) ((*1 *2 *2) - (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-1040 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) + (-12 (-4 *3 (-260)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) + (-5 *1 (-1042 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-696)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)))) + (-12 (-5 *2 (-698)) (-4 *3 (-965)) (-4 *1 (-631 *3 *4 *5)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)))) ((*1 *1 *2) - (-12 (-4 *2 (-963)) (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) - (-4 *5 (-196 *3 *2))))) + (-12 (-4 *2 (-965)) (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-198 *3 *2)) + (-4 *5 (-198 *3 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-585 *1)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) - (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) + (-12 (-5 *2 (-587 *1)) (-4 *3 (-965)) (-4 *1 (-631 *3 *4 *5)) + (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-585 *3)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) - (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-963)) (-5 *1 (-632 *3)))) + (-12 (-5 *2 (-587 *3)) (-4 *3 (-965)) (-4 *1 (-631 *3 *4 *5)) + (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-965)) (-5 *1 (-634 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-585 *4)) (-4 *4 (-963)) (-4 *1 (-1039 *3 *4 *5 *6)) - (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4))))) + (-12 (-5 *2 (-587 *4)) (-4 *4 (-965)) (-4 *1 (-1041 *3 *4 *5 *6)) + (-4 *5 (-198 *3 *4)) (-4 *6 (-198 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1039 *3 *4 *2 *5)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) - (-4 *2 (-196 *3 *4))))) + (-12 (-4 *1 (-1041 *3 *4 *2 *5)) (-4 *4 (-965)) (-4 *5 (-198 *3 *4)) + (-4 *2 (-198 *3 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-832)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) - ((*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-146)))) + (-12 (-5 *2 (-834)) (-4 *1 (-282 *3)) (-4 *3 (-314)) (-4 *3 (-322)))) + ((*1 *2 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-314)))) + ((*1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *3 (-1159 *2)) (-4 *2 (-148)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1181 *4)) (-5 *3 (-832)) (-4 *4 (-299)) (-5 *1 (-468 *4)))) + (-12 (-5 *2 (-1183 *4)) (-5 *3 (-834)) (-4 *4 (-301)) (-5 *1 (-470 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (-4 *2 (-963))))) + (-12 (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-198 *3 *2)) (-4 *5 (-198 *3 *2)) + (-4 *2 (-965))))) (((*1 *2 *3) - (-12 (-5 *3 (-632 *2)) (-4 *4 (-1157 *2)) - (-4 *2 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) - (-5 *1 (-440 *2 *4 *5)) (-4 *5 (-353 *2 *4)))) + (-12 (-5 *3 (-634 *2)) (-4 *4 (-1159 *2)) + (-4 *2 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) + (-5 *1 (-442 *2 *4 *5)) (-4 *5 (-355 *2 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (-4 *2 (-963))))) + (-12 (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-198 *3 *2)) (-4 *5 (-198 *3 *2)) + (-4 *2 (-965))))) (((*1 *2 *3) - (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-312)) - (-5 *1 (-462 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) + (-12 (-4 *4 (-326 *2)) (-4 *5 (-326 *2)) (-4 *2 (-314)) + (-5 *1 (-464 *2 *4 *5 *3)) (-4 *3 (-631 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) - (|has| *2 (-6 (-4000 "*"))) (-4 *2 (-963)))) + (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *3 (-326 *2)) (-4 *4 (-326 *2)) + (|has| *2 (-6 (-4003 "*"))) (-4 *2 (-965)))) ((*1 *2 *3) - (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) - (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) + (-12 (-4 *4 (-326 *2)) (-4 *5 (-326 *2)) (-4 *2 (-148)) + (-5 *1 (-633 *2 *4 *5 *3)) (-4 *3 (-631 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (|has| *2 (-6 (-4000 "*"))) (-4 *2 (-963))))) + (-12 (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-198 *3 *2)) (-4 *5 (-198 *3 *2)) + (|has| *2 (-6 (-4003 "*"))) (-4 *2 (-965))))) (((*1 *2 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) - (|has| *2 (-6 (-4000 "*"))) (-4 *2 (-963)))) + (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *3 (-326 *2)) (-4 *4 (-326 *2)) + (|has| *2 (-6 (-4003 "*"))) (-4 *2 (-965)))) ((*1 *2 *3) - (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) - (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) + (-12 (-4 *4 (-326 *2)) (-4 *5 (-326 *2)) (-4 *2 (-148)) + (-5 *1 (-633 *2 *4 *5 *3)) (-4 *3 (-631 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (|has| *2 (-6 (-4000 "*"))) (-4 *2 (-963))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1037 *3)) (-4 *3 (-1131))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) - ((*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-1131)) (-5 *2 (-696))))) + (-12 (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-198 *3 *2)) (-4 *5 (-198 *3 *2)) + (|has| *2 (-6 (-4003 "*"))) (-4 *2 (-965))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1039 *3)) (-4 *3 (-1133))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) + ((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-1133)) (-5 *2 (-698))))) (((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96))) - ((*1 *1 *1 *1) (-5 *1 (-1035)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1030)) (-5 *1 (-1031))))) -(((*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-382)))) - ((*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-751)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-585 (-1097))) (-5 *3 (-1097)) (-5 *1 (-1030)))) - ((*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-1031))))) -(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-624)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-885)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-987)))) - ((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-1030))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-624)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-1097))) (-5 *1 (-1030))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-393)) (-4 *4 (-742)) (-14 *5 (-1092)) - (-5 *2 (-486)) (-5 *1 (-1029 *4 *5))))) + ((*1 *1 *1 *1) (-5 *1 (-1037)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-1032)) (-5 *1 (-1033))))) +(((*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-174)))) + ((*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-384)))) + ((*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-753)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-587 (-1099))) (-5 *3 (-1099)) (-5 *1 (-1032)))) + ((*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-1033))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-626)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-887)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-989)))) + ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1032))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-1134))) (-5 *1 (-626)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-1099))) (-5 *1 (-1032))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1152 *5 *4)) (-4 *4 (-395)) (-4 *4 (-744)) (-14 *5 (-1094)) + (-5 *2 (-488)) (-5 *1 (-1031 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-393)) (-4 *4 (-742)) (-14 *5 (-1092)) - (-5 *2 (-486)) (-5 *1 (-1029 *4 *5))))) + (-12 (-5 *3 (-1152 *5 *4)) (-4 *4 (-395)) (-4 *4 (-744)) (-14 *5 (-1094)) + (-5 *2 (-488)) (-5 *1 (-1031 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-486)) - (-5 *1 (-1029 *4 *5))))) + (-12 (-5 *3 (-1152 *5 *4)) (-4 *4 (-744)) (-14 *5 (-1094)) (-5 *2 (-488)) + (-5 *1 (-1031 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-486)) - (-5 *1 (-1029 *4 *5))))) + (-12 (-5 *3 (-1152 *5 *4)) (-4 *4 (-744)) (-14 *5 (-1094)) (-5 *2 (-488)) + (-5 *1 (-1031 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-585 *4)) - (-5 *1 (-1029 *4 *5))))) + (-12 (-5 *3 (-1152 *5 *4)) (-4 *4 (-744)) (-14 *5 (-1094)) (-5 *2 (-587 *4)) + (-5 *1 (-1031 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-585 (-1150 *5 *4))) - (-5 *1 (-1029 *4 *5)) (-5 *3 (-1150 *5 *4))))) + (-12 (-4 *4 (-744)) (-14 *5 (-1094)) (-5 *2 (-587 (-1152 *5 *4))) + (-5 *1 (-1031 *4 *5)) (-5 *3 (-1152 *5 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-742)) (-14 *5 (-1092)) (-5 *2 (-585 (-1150 *5 *4))) - (-5 *1 (-1029 *4 *5)) (-5 *3 (-1150 *5 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1024 *3))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-1023)) (-5 *3 (-486))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-1023)) (-5 *3 (-486))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-1023)) (-5 *3 (-486))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-1023))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1181 (-486))) (-5 *3 (-486)) (-5 *1 (-1023)))) + (-12 (-4 *4 (-744)) (-14 *5 (-1094)) (-5 *2 (-587 (-1152 *5 *4))) + (-5 *1 (-1031 *4 *5)) (-5 *3 (-1152 *5 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1026 *3))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-1025)) (-5 *3 (-488))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-1025)) (-5 *3 (-488))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-1025)) (-5 *3 (-488))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-1025))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1183 (-488))) (-5 *3 (-488)) (-5 *1 (-1025)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1181 (-486))) (-5 *3 (-585 (-486))) (-5 *4 (-486)) - (-5 *1 (-1023))))) + (-12 (-5 *2 (-1183 (-488))) (-5 *3 (-587 (-488))) (-5 *4 (-488)) + (-5 *1 (-1025))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-585 (-486))) (-5 *3 (-585 (-832))) (-5 *4 (-85)) - (-5 *1 (-1023))))) + (-12 (-5 *2 (-587 (-488))) (-5 *3 (-587 (-834))) (-5 *4 (-85)) + (-5 *1 (-1025))))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-632 (-486))) (-5 *3 (-585 (-486))) (-5 *1 (-1023))))) + (-12 (-5 *2 (-634 (-488))) (-5 *3 (-587 (-488))) (-5 *1 (-1025))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-832))) (-5 *4 (-585 (-486))) (-5 *2 (-632 (-486))) - (-5 *1 (-1023))))) + (-12 (-5 *3 (-587 (-834))) (-5 *4 (-587 (-488))) (-5 *2 (-634 (-488))) + (-5 *1 (-1025))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 (-832))) (-5 *2 (-585 (-632 (-486)))) (-5 *1 (-1023))))) + (-12 (-5 *3 (-587 (-834))) (-5 *2 (-587 (-634 (-488)))) (-5 *1 (-1025))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-585 (-486))) (-5 *3 (-632 (-486))) (-5 *1 (-1023))))) + (-12 (-5 *2 (-587 (-488))) (-5 *3 (-634 (-488))) (-5 *1 (-1025))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-585 (-486))) (-5 *2 (-632 (-486))) (-5 *1 (-1023))))) + (-12 (-5 *3 (-587 (-488))) (-5 *2 (-634 (-488))) (-5 *1 (-1025))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) - (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) + (-5 *1 (-1023 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-585 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) - (-4 *4 (-985 *5 *6 *7 *3))))) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-587 *4)) (-5 *1 (-1023 *5 *6 *7 *3 *4)) + (-4 *4 (-987 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-85)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-85)) (-5 *1 (-1023 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) - (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-587 (-2 (|:| |val| (-85)) (|:| -1604 *4)))) + (-5 *1 (-1023 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-585 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) - (-4 *4 (-985 *5 *6 *7 *3))))) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-587 *4)) (-5 *1 (-1023 *5 *6 *7 *3 *4)) + (-4 *4 (-987 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) - (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-587 (-2 (|:| |val| (-85)) (|:| -1604 *4)))) + (-5 *1 (-1023 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-585 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) - (-4 *4 (-985 *5 *6 *7 *3))))) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-587 *4)) (-5 *1 (-1023 *5 *6 *7 *3 *4)) + (-4 *4 (-987 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) - (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-587 (-2 (|:| |val| (-85)) (|:| -1604 *4)))) + (-5 *1 (-1023 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) - (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) + (-5 *1 (-1023 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) - (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) + (-5 *1 (-1023 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) - (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) - (-5 *1 (-1021 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) + (-12 (-5 *5 (-85)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) + (-4 *3 (-981 *6 *7 *8)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) + (-5 *1 (-1023 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1601 *9)))) (-5 *5 (-85)) - (-4 *8 (-979 *6 *7 *4)) (-4 *9 (-985 *6 *7 *4 *8)) (-4 *6 (-393)) - (-4 *7 (-719)) (-4 *4 (-758)) - (-5 *2 (-585 (-2 (|:| |val| *8) (|:| -1601 *9)))) - (-5 *1 (-1021 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1604 *9)))) (-5 *5 (-85)) + (-4 *8 (-981 *6 *7 *4)) (-4 *9 (-987 *6 *7 *4 *8)) (-4 *6 (-395)) + (-4 *7 (-721)) (-4 *4 (-760)) + (-5 *2 (-587 (-2 (|:| |val| *8) (|:| -1604 *9)))) + (-5 *1 (-1023 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))) - (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))) + (-5 *1 (-1023 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) (((*1 *2) - (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) - (-5 *2 (-1187)) (-5 *1 (-986 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) + (-12 (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) + (-5 *2 (-1189)) (-5 *1 (-988 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) - (-5 *2 (-1187)) (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6))))) + (-12 (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) + (-5 *2 (-1189)) (-5 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-986 *4 *5 *6 *7 *8)) - (-4 *8 (-985 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1077)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-988 *4 *5 *6 *7 *8)) + (-4 *8 (-987 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) - (-4 *8 (-985 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1077)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) + (-4 *8 (-987 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) - (-5 *2 (-1187)) (-5 *1 (-986 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) + (-12 (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) + (-5 *2 (-1189)) (-5 *1 (-988 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) - (-5 *2 (-1187)) (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6))))) + (-12 (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) + (-5 *2 (-1189)) (-5 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-986 *4 *5 *6 *7 *8)) - (-4 *8 (-985 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1077)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-988 *4 *5 *6 *7 *8)) + (-4 *8 (-987 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) - (-4 *8 (-985 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1077)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) + (-4 *8 (-987 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) - (-4 *9 (-979 *6 *7 *8)) - (-5 *2 (-2 (|:| -3269 (-585 *9)) (|:| -1601 *4) (|:| |ineq| (-585 *9)))) - (-5 *1 (-903 *6 *7 *8 *9 *4)) (-5 *3 (-585 *9)) (-4 *4 (-985 *6 *7 *8 *9)))) + (|partial| -12 (-5 *5 (-85)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) + (-4 *9 (-981 *6 *7 *8)) + (-5 *2 (-2 (|:| -3272 (-587 *9)) (|:| -1604 *4) (|:| |ineq| (-587 *9)))) + (-5 *1 (-905 *6 *7 *8 *9 *4)) (-5 *3 (-587 *9)) (-4 *4 (-987 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) - (-4 *9 (-979 *6 *7 *8)) - (-5 *2 (-2 (|:| -3269 (-585 *9)) (|:| -1601 *4) (|:| |ineq| (-585 *9)))) - (-5 *1 (-1020 *6 *7 *8 *9 *4)) (-5 *3 (-585 *9)) - (-4 *4 (-985 *6 *7 *8 *9))))) + (|partial| -12 (-5 *5 (-85)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) + (-4 *9 (-981 *6 *7 *8)) + (-5 *2 (-2 (|:| -3272 (-587 *9)) (|:| -1604 *4) (|:| |ineq| (-587 *9)))) + (-5 *1 (-1022 *6 *7 *8 *9 *4)) (-5 *3 (-587 *9)) + (-4 *4 (-987 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-585 *10)) (-5 *5 (-85)) (-4 *10 (-985 *6 *7 *8 *9)) - (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-979 *6 *7 *8)) + (-12 (-5 *4 (-587 *10)) (-5 *5 (-85)) (-4 *10 (-987 *6 *7 *8 *9)) + (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) (-4 *9 (-981 *6 *7 *8)) (-5 *2 - (-585 (-2 (|:| -3269 (-585 *9)) (|:| -1601 *10) (|:| |ineq| (-585 *9))))) - (-5 *1 (-903 *6 *7 *8 *9 *10)) (-5 *3 (-585 *9)))) + (-587 (-2 (|:| -3272 (-587 *9)) (|:| -1604 *10) (|:| |ineq| (-587 *9))))) + (-5 *1 (-905 *6 *7 *8 *9 *10)) (-5 *3 (-587 *9)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-585 *10)) (-5 *5 (-85)) (-4 *10 (-985 *6 *7 *8 *9)) - (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-979 *6 *7 *8)) + (-12 (-5 *4 (-587 *10)) (-5 *5 (-85)) (-4 *10 (-987 *6 *7 *8 *9)) + (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) (-4 *9 (-981 *6 *7 *8)) (-5 *2 - (-585 (-2 (|:| -3269 (-585 *9)) (|:| -1601 *10) (|:| |ineq| (-585 *9))))) - (-5 *1 (-1020 *6 *7 *8 *9 *10)) (-5 *3 (-585 *9))))) + (-587 (-2 (|:| -3272 (-587 *9)) (|:| -1604 *10) (|:| |ineq| (-587 *9))))) + (-5 *1 (-1022 *6 *7 *8 *9 *10)) (-5 *3 (-587 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-585 (-2 (|:| |val| (-585 *6)) (|:| -1601 *7)))) - (-4 *6 (-979 *3 *4 *5)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) - (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-587 (-2 (|:| |val| (-587 *6)) (|:| -1604 *7)))) + (-4 *6 (-981 *3 *4 *5)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-395)) + (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-585 (-2 (|:| |val| (-585 *6)) (|:| -1601 *7)))) - (-4 *6 (-979 *3 *4 *5)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) - (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-1020 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-587 (-2 (|:| |val| (-587 *6)) (|:| -1604 *7)))) + (-4 *6 (-981 *3 *4 *5)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-395)) + (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-1022 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1601 *8))) - (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-985 *4 *5 *6 *7)) (-4 *4 (-393)) - (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1604 *8))) + (-4 *7 (-981 *4 *5 *6)) (-4 *8 (-987 *4 *5 *6 *7)) (-4 *4 (-395)) + (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1601 *8))) - (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-985 *4 *5 *6 *7)) (-4 *4 (-393)) - (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8))))) + (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1604 *8))) + (-4 *7 (-981 *4 *5 *6)) (-4 *8 (-987 *4 *5 *6 *7)) (-4 *4 (-395)) + (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) - (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) - (-5 *1 (-903 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-587 *7)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-395)) + (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) + (-5 *1 (-905 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) - (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) - (-5 *1 (-1020 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-587 *7)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-395)) + (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) + (-5 *1 (-1022 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-585 *3)) (-4 *3 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) - (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-85)) - (-5 *1 (-903 *5 *6 *7 *8 *3)))) + (-12 (-5 *4 (-587 *3)) (-4 *3 (-987 *5 *6 *7 *8)) (-4 *5 (-395)) + (-4 *6 (-721)) (-4 *7 (-760)) (-4 *8 (-981 *5 *6 *7)) (-5 *2 (-85)) + (-5 *1 (-905 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-585 *3)) (-4 *3 (-985 *5 *6 *7 *8)) (-4 *5 (-393)) - (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-85)) - (-5 *1 (-1020 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-587 *3)) (-4 *3 (-987 *5 *6 *7 *8)) (-4 *5 (-395)) + (-4 *6 (-721)) (-4 *7 (-760)) (-4 *8 (-981 *5 *6 *7)) (-5 *2 (-85)) + (-5 *1 (-1022 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) - (-4 *3 (-985 *4 *5 *6 *7)))) + (|partial| -12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *3)) + (-4 *3 (-987 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) - (-4 *3 (-985 *4 *5 *6 *7))))) + (|partial| -12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *3)) + (-4 *3 (-987 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) - (-4 *8 (-985 *4 *5 *6 *7)))) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *8)) + (-4 *8 (-987 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) - (-4 *8 (-985 *4 *5 *6 *7))))) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *8)) + (-4 *8 (-987 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) - (-4 *8 (-985 *4 *5 *6 *7)))) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *8)) + (-4 *8 (-987 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) - (-4 *8 (-985 *4 *5 *6 *7))))) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *8)) + (-4 *8 (-987 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) - (-4 *8 (-985 *4 *5 *6 *7)))) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *8)) + (-4 *8 (-987 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) - (-4 *8 (-985 *4 *5 *6 *7))))) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *8)) + (-4 *8 (-987 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7))))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7))))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) - (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) - (-5 *1 (-903 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-587 *7)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-395)) + (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) + (-5 *1 (-905 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) - (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) - (-5 *1 (-1020 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-587 *7)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-395)) + (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) + (-5 *1 (-1022 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7))))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1022 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) - (-5 *2 (-1187)) (-5 *1 (-903 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) + (-12 (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) + (-5 *2 (-1189)) (-5 *1 (-905 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) - (-5 *2 (-1187)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6))))) + (-12 (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) + (-5 *2 (-1189)) (-5 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-903 *4 *5 *6 *7 *8)) - (-4 *8 (-985 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1077)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-905 *4 *5 *6 *7 *8)) + (-4 *8 (-987 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1187)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) - (-4 *8 (-985 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-988)))) + (-12 (-5 *3 (-1077)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *7 (-981 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-1022 *4 *5 *6 *7 *8)) + (-4 *8 (-987 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-990)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) - (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) + (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) - (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) + (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) - (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) + (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) - (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) + (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) - (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) + (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) - (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) + (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) + (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) ((*1 *2 *1) - (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) - (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) - ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-507 *3)) (-4 *3 (-952 (-486))))) + (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) + (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))) + ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-509 *3)) (-4 *3 (-954 (-488))))) ((*1 *2 *1) - (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) - (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) + (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) - (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *3 (-1017)) (-4 *4 (-1017)) + (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *7 (-1017)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-5 *2 (-585 (-2 (|:| -3864 (-1092)) (|:| |entry| *4)))) - (-5 *1 (-800 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) + (-12 (-5 *2 (-587 (-2 (|:| -3867 (-1094)) (|:| |entry| *4)))) + (-5 *1 (-802 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017)))) ((*1 *2 *1) - (-12 (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) - (-4 *7 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-1018 *3 *4 *5 *6 *7))))) + (-12 (-4 *3 (-1017)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) + (-4 *7 (-1017)) (-5 *2 (-587 *1)) (-4 *1 (-1020 *3 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1018 *3 *2 *4 *5 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) - (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015))))) -(((*1 *2 *3) (-12 (-5 *2 (-486)) (-5 *1 (-507 *3)) (-4 *3 (-952 *2)))) + (-12 (-4 *1 (-1020 *3 *2 *4 *5 *6)) (-4 *3 (-1017)) (-4 *4 (-1017)) + (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *2 (-1017))))) +(((*1 *2 *3) (-12 (-5 *2 (-488)) (-5 *1 (-509 *3)) (-4 *3 (-954 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-1018 *3 *4 *2 *5 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) - (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-486)) (-5 *3 (-832)) (-4 *1 (-347)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-486)) (-4 *1 (-347)))) + (-12 (-4 *1 (-1020 *3 *4 *2 *5 *6)) (-4 *3 (-1017)) (-4 *4 (-1017)) + (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *2 (-1017))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-488)) (-5 *3 (-834)) (-4 *1 (-349)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-488)) (-4 *1 (-349)))) ((*1 *2 *1) - (-12 (-4 *1 (-1018 *3 *4 *5 *2 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) - (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015))))) + (-12 (-4 *1 (-1020 *3 *4 *5 *2 *6)) (-4 *3 (-1017)) (-4 *4 (-1017)) + (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *2 (-1017))))) (((*1 *2 *1) - (-12 (-4 *1 (-1018 *3 *4 *5 *6 *2)) (-4 *3 (-1015)) (-4 *4 (-1015)) - (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015))))) + (-12 (-4 *1 (-1020 *3 *4 *5 *6 *2)) (-4 *3 (-1017)) (-4 *4 (-1017)) + (-4 *5 (-1017)) (-4 *6 (-1017)) (-4 *2 (-1017))))) (((*1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4 *5 *6)) (-4 *2 (-1015)) (-4 *3 (-1015)) - (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015))))) + (-12 (-4 *1 (-1020 *2 *3 *4 *5 *6)) (-4 *2 (-1017)) (-4 *3 (-1017)) + (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017))))) (((*1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4 *5 *6)) (-4 *2 (-1015)) (-4 *3 (-1015)) - (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015))))) + (-12 (-4 *1 (-1020 *2 *3 *4 *5 *6)) (-4 *2 (-1017)) (-4 *3 (-1017)) + (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-832)) (-5 *1 (-1016 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) + (|partial| -12 (-5 *2 (-834)) (-5 *1 (-1018 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) (((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-832)) (-5 *1 (-1016 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-615)))) + (|partial| -12 (-5 *2 (-834)) (-5 *1 (-1018 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-1053))) (-5 *1 (-617)))) ((*1 *2 *1) - (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1016 *3 *4)) (-14 *3 (-832)) - (-14 *4 (-832))))) + (-12 (-5 *2 (-587 (-834))) (-5 *1 (-1018 *3 *4)) (-14 *3 (-834)) + (-14 *4 (-834))))) (((*1 *1 *2) - (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1016 *3 *4)) (-14 *3 (-832)) - (-14 *4 (-832))))) + (-12 (-5 *2 (-587 (-834))) (-5 *1 (-1018 *3 *4)) (-14 *3 (-834)) + (-14 *4 (-834))))) (((*1 *2) - (-12 (-5 *2 (-1181 (-1016 *3 *4))) (-5 *1 (-1016 *3 *4)) (-14 *3 (-832)) - (-14 *4 (-832))))) + (-12 (-5 *2 (-1183 (-1018 *3 *4))) (-5 *1 (-1018 *3 *4)) (-14 *3 (-834)) + (-14 *4 (-834))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-318 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-85)))) + (-12 (-4 *1 (-320 *3)) (-4 *3 (-1133)) (-4 *3 (-72)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-815 *4)) (-4 *4 (-1015)) (-5 *2 (-85)) (-5 *1 (-818 *4)))) + (-12 (-5 *3 (-817 *4)) (-4 *4 (-1017)) (-5 *2 (-85)) (-5 *1 (-820 *4)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-832)) (-5 *2 (-85)) (-5 *1 (-1016 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-834)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-832)) (-5 *2 (-696)) (-5 *1 (-1016 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-834)) (-5 *2 (-698)) (-5 *1 (-1018 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-1015)) (-5 *2 (-1035))))) -(((*1 *2 *1) (-12 (-4 *1 (-1015)) (-5 *2 (-1075))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) - ((*1 *1 *1) (-5 *1 (-774))) - ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-1013 *3)))) - ((*1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-1013 *3)))) - ((*1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) +(((*1 *2 *1) (-12 (-4 *1 (-1017)) (-5 *2 (-1037))))) +(((*1 *2 *1) (-12 (-4 *1 (-1017)) (-5 *2 (-1077))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1015 *3)) (-4 *3 (-1017)) (-5 *2 (-85))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) + ((*1 *1 *1) (-5 *1 (-776))) + ((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-4 *1 (-1015 *3)))) + ((*1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1017))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-4 *1 (-1015 *3)))) + ((*1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1017))))) (((*1 *1 *2) - (-12 (-5 *2 (-585 (-445 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-719)) - (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) + (-12 (-5 *2 (-587 (-447 *3 *4 *5 *6))) (-4 *3 (-314)) (-4 *4 (-721)) + (-4 *5 (-760)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *6 (-865 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) - (-4 *5 (-863 *2 *3 *4)))) + (-12 (-4 *2 (-314)) (-4 *3 (-721)) (-4 *4 (-760)) (-5 *1 (-447 *2 *3 *4 *5)) + (-4 *5 (-865 *2 *3 *4)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) - (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)))) + (-12 (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-395)) + (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-985 *4 *5 *6 *7)) - (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)))) + (-12 (-5 *2 (-587 *1)) (-5 *3 (-587 *7)) (-4 *1 (-987 *4 *5 *6 *7)) + (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *7)))) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *7)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) - (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) + (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1017))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1017)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1017))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1017))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1015 *3)) (-4 *3 (-1017)) (-5 *2 (-85))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-585 (-552 *4))) (-4 *4 (-364 *3)) (-4 *3 (-1015)) - (-5 *1 (-511 *3 *4)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-106)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-127)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-619)))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-934)))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-980)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-1010))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-1008 *3)) (-4 *3 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1131)) (-5 *2 (-486))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1075)) (-5 *1 (-904)))) + (-12 (-5 *2 (-587 (-554 *4))) (-4 *4 (-366 *3)) (-4 *3 (-1017)) + (-5 *1 (-513 *3 *4)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-802 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1017)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1017)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1017)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-1053))) (-5 *1 (-106)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-1053))) (-5 *1 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-127)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-1053))) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-174)))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-621)))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-936)))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-982)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-1053))) (-5 *1 (-1012))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-1010 *3)) (-4 *3 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1133)) (-5 *2 (-488))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-251 *2)) (-4 *2 (-1133)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-1077)) (-5 *1 (-906)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1092)) (-4 *4 (-1131)) (-5 *1 (-973 *3 *4)) - (-4 *3 (-1008 *4)))) + (-12 (-5 *2 (-1094)) (-4 *4 (-1133)) (-5 *1 (-975 *3 *4)) + (-4 *3 (-1010 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1092)) (-5 *3 (-1003 *4)) (-4 *4 (-1131)) (-5 *1 (-1006 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-1005))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-856 (-179)) (-856 (-179)))) (-5 *1 (-221)))) + (-12 (-5 *2 (-1094)) (-5 *3 (-1005 *4)) (-4 *4 (-1133)) (-5 *1 (-1008 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-1053))) (-5 *1 (-1007))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-858 (-181)) (-858 (-181)))) (-5 *1 (-223)))) ((*1 *2 *3) - (-12 (-5 *3 (-1181 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-632 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1181 *3)))) + (-12 (-5 *3 (-1183 *1)) (-4 *1 (-282 *4)) (-4 *4 (-314)) (-5 *2 (-634 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-282 *3)) (-4 *3 (-314)) (-5 *2 (-1183 *3)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) + (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *4)) (-4 *4 (-148)) (-5 *2 (-634 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1181 *4)))) + (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *4)) (-4 *4 (-148)) (-5 *2 (-1183 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)))) + (-12 (-5 *3 (-1183 *1)) (-4 *1 (-324 *4 *5)) (-4 *4 (-148)) + (-4 *5 (-1159 *4)) (-5 *2 (-634 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1157 *4)) (-5 *2 (-1181 *4)))) + (-12 (-5 *3 (-1183 *1)) (-4 *1 (-324 *4 *5)) (-4 *4 (-148)) + (-4 *5 (-1159 *4)) (-5 *2 (-1183 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1181 *1)) (-4 *1 (-353 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)))) + (-12 (-5 *3 (-1183 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-148)) + (-4 *5 (-1159 *4)) (-5 *2 (-634 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) - (-5 *2 (-1181 *3)))) + (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-148)) (-4 *4 (-1159 *3)) + (-5 *2 (-1183 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1181 *1)) (-4 *1 (-361 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1181 *3)))) + (-12 (-5 *3 (-1183 *1)) (-4 *1 (-363 *4)) (-4 *4 (-148)) (-5 *2 (-634 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-5 *2 (-1183 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1181 *3)) (-5 *1 (-581 *3 *4)) (-4 *3 (-312)) - (-14 *4 (-585 (-1092))))) + (-12 (-5 *2 (-1183 *3)) (-5 *1 (-583 *3 *4)) (-4 *3 (-314)) + (-14 *4 (-587 (-1094))))) ((*1 *2 *1) - (-12 (-5 *2 (-1181 *3)) (-5 *1 (-583 *3 *4)) (-4 *3 (-312)) - (-14 *4 (-585 (-1092))))) + (-12 (-5 *2 (-1183 *3)) (-5 *1 (-585 *3 *4)) (-4 *3 (-314)) + (-14 *4 (-587 (-1094))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-585 (-632 *5))) (-5 *3 (-632 *5)) (-4 *5 (-312)) - (-5 *2 (-1181 *5)) (-5 *1 (-1000 *5))))) + (-12 (-5 *4 (-587 (-634 *5))) (-5 *3 (-634 *5)) (-4 *5 (-314)) + (-5 *2 (-1183 *5)) (-5 *1 (-1002 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) - (-5 *2 (-1181 (-632 *4))))) + (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *4)) (-4 *4 (-148)) + (-5 *2 (-1183 (-634 *4))))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1181 (-632 *4))) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1181 (-632 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-1092))) (-4 *5 (-312)) - (-5 *2 (-1181 (-632 (-350 (-859 *5))))) (-5 *1 (-1000 *5)) - (-5 *4 (-632 (-350 (-859 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-1092))) (-4 *5 (-312)) (-5 *2 (-1181 (-632 (-859 *5)))) - (-5 *1 (-1000 *5)) (-5 *4 (-632 (-859 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-585 (-632 *4))) (-4 *4 (-312)) (-5 *2 (-1181 (-632 *4))) - (-5 *1 (-1000 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-149))) (-5 *1 (-999))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-78))) (-5 *1 (-149)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-78))) (-5 *1 (-999))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-999))))) -(((*1 *1) (-5 *1 (-999)))) -(((*1 *1) (-5 *1 (-999)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-998 *2)))) + (-12 (-4 *4 (-148)) (-5 *2 (-1183 (-634 *4))) (-5 *1 (-362 *3 *4)) + (-4 *3 (-363 *4)))) + ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-5 *2 (-1183 (-634 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-587 (-1094))) (-4 *5 (-314)) + (-5 *2 (-1183 (-634 (-352 (-861 *5))))) (-5 *1 (-1002 *5)) + (-5 *4 (-634 (-352 (-861 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-587 (-1094))) (-4 *5 (-314)) (-5 *2 (-1183 (-634 (-861 *5)))) + (-5 *1 (-1002 *5)) (-5 *4 (-634 (-861 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-587 (-634 *4))) (-4 *4 (-314)) (-5 *2 (-1183 (-634 *4))) + (-5 *1 (-1002 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-151))) (-5 *1 (-1001))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-450)) (-5 *2 (-636 (-78))) (-5 *1 (-151)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-450)) (-5 *2 (-636 (-78))) (-5 *1 (-1001))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-1001))))) +(((*1 *1) (-5 *1 (-1001)))) +(((*1 *1) (-5 *1 (-1001)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-1000 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-486) *2 *2)) (-4 *2 (-105)) (-5 *1 (-998 *2))))) -(((*1 *2) (-12 (-5 *2 (-585 *3)) (-5 *1 (-998 *3)) (-4 *3 (-105))))) -(((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-998 *3)) (-4 *3 (-105))))) -(((*1 *1) (-5 *1 (-996)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) - (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-585 *3)) (-5 *1 (-529 *5 *6 *7 *8 *3)) - (-4 *3 (-1022 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) - (-5 *1 (-992 *5 *6)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-585 (-2 (|:| -1752 (-1087 *4)) (|:| -3227 (-585 (-859 *4)))))) - (-5 *1 (-992 *4 *5)) (-5 *3 (-585 (-859 *4))) (-14 *5 (-585 (-1092))))) + (-12 (-5 *3 (-1 (-488) *2 *2)) (-4 *2 (-105)) (-5 *1 (-1000 *2))))) +(((*1 *2) (-12 (-5 *2 (-587 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-105))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1000 *3)) (-4 *3 (-105))))) +(((*1 *1) (-5 *1 (-998)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-260) (-120))) (-4 *6 (-721)) (-4 *7 (-760)) + (-4 *8 (-981 *5 *6 *7)) (-5 *2 (-587 *3)) (-5 *1 (-531 *5 *6 *7 *8 *3)) + (-4 *3 (-1024 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-260) (-120))) + (-5 *2 (-587 (-2 (|:| -1755 (-1089 *5)) (|:| -3230 (-587 (-861 *5)))))) + (-5 *1 (-994 *5 *6)) (-5 *3 (-587 (-861 *5))) (-14 *6 (-587 (-1094))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-260) (-120))) + (-5 *2 (-587 (-2 (|:| -1755 (-1089 *4)) (|:| -3230 (-587 (-861 *4)))))) + (-5 *1 (-994 *4 *5)) (-5 *3 (-587 (-861 *4))) (-14 *5 (-587 (-1094))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-585 (-2 (|:| -1752 (-1087 *5)) (|:| -3227 (-585 (-859 *5)))))) - (-5 *1 (-992 *5 *6)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1092)))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-260) (-120))) + (-5 *2 (-587 (-2 (|:| -1755 (-1089 *5)) (|:| -3230 (-587 (-861 *5)))))) + (-5 *1 (-994 *5 *6)) (-5 *3 (-587 (-861 *5))) (-14 *6 (-587 (-1094)))))) (((*1 *1 *2) - (-12 (-5 *2 (-585 (-989 *3 *4 *5))) (-4 *3 (-1015)) - (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) - (-4 *5 (-13 (-364 *4) (-798 *3) (-555 (-802 *3)))) (-5 *1 (-991 *3 *4 *5))))) + (-12 (-5 *2 (-587 (-991 *3 *4 *5))) (-4 *3 (-1017)) + (-4 *4 (-13 (-965) (-800 *3) (-557 (-804 *3)))) + (-4 *5 (-13 (-366 *4) (-800 *3) (-557 (-804 *3)))) (-5 *1 (-993 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) - (-5 *2 (-585 (-989 *3 *4 *5))) (-5 *1 (-991 *3 *4 *5)) - (-4 *5 (-13 (-364 *4) (-798 *3) (-555 (-802 *3))))))) + (-12 (-4 *3 (-1017)) (-4 *4 (-13 (-965) (-800 *3) (-557 (-804 *3)))) + (-5 *2 (-587 (-991 *3 *4 *5))) (-5 *1 (-993 *3 *4 *5)) + (-4 *5 (-13 (-366 *4) (-800 *3) (-557 (-804 *3))))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-585 (-1092))) (-4 *4 (-1015)) - (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-989 *4 *5 *2)) - (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))))) + (-12 (-5 *3 (-587 (-1094))) (-4 *4 (-1017)) + (-4 *5 (-13 (-965) (-800 *4) (-557 (-804 *4)))) (-5 *1 (-991 *4 *5 *2)) + (-4 *2 (-13 (-366 *5) (-800 *4) (-557 (-804 *4)))))) ((*1 *1 *2 *2) - (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) - (-5 *1 (-989 *3 *4 *2)) (-4 *2 (-13 (-364 *4) (-798 *3) (-555 (-802 *3))))))) + (-12 (-4 *3 (-1017)) (-4 *4 (-13 (-965) (-800 *3) (-557 (-804 *3)))) + (-5 *1 (-991 *3 *4 *2)) (-4 *2 (-13 (-366 *4) (-800 *3) (-557 (-804 *3))))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-802 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1015)) (-4 *5 (-1131)) - (-5 *1 (-803 *4 *5)))) + (-12 (-5 *2 (-804 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1017)) (-4 *5 (-1133)) + (-5 *1 (-805 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-802 *4)) (-5 *3 (-585 (-1 (-85) *5))) (-4 *4 (-1015)) - (-4 *5 (-1131)) (-5 *1 (-803 *4 *5)))) + (-12 (-5 *2 (-804 *4)) (-5 *3 (-587 (-1 (-85) *5))) (-4 *4 (-1017)) + (-4 *5 (-1133)) (-5 *1 (-805 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-802 *5)) (-5 *3 (-585 (-1092))) (-5 *4 (-1 (-85) (-585 *6))) - (-4 *5 (-1015)) (-4 *6 (-1131)) (-5 *1 (-803 *5 *6)))) + (-12 (-5 *2 (-804 *5)) (-5 *3 (-587 (-1094))) (-5 *4 (-1 (-85) (-587 *6))) + (-4 *5 (-1017)) (-4 *6 (-1133)) (-5 *1 (-805 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1092)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1131)) - (-5 *2 (-265 (-486))) (-5 *1 (-850 *5)))) + (-12 (-5 *3 (-1094)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1133)) + (-5 *2 (-267 (-488))) (-5 *1 (-852 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1092)) (-5 *4 (-585 (-1 (-85) *5))) (-4 *5 (-1131)) - (-5 *2 (-265 (-486))) (-5 *1 (-850 *5)))) + (-12 (-5 *3 (-1094)) (-5 *4 (-587 (-1 (-85) *5))) (-4 *5 (-1133)) + (-5 *2 (-267 (-488))) (-5 *1 (-852 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1131)) (-4 *4 (-1015)) - (-5 *1 (-851 *4 *2 *5)) (-4 *2 (-364 *4)))) + (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1133)) (-4 *4 (-1017)) + (-5 *1 (-853 *4 *2 *5)) (-4 *2 (-366 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-585 (-1 (-85) *5))) (-4 *5 (-1131)) (-4 *4 (-1015)) - (-5 *1 (-851 *4 *2 *5)) (-4 *2 (-364 *4)))) + (-12 (-5 *3 (-587 (-1 (-85) *5))) (-4 *5 (-1133)) (-4 *4 (-1017)) + (-5 *1 (-853 *4 *2 *5)) (-4 *2 (-366 *4)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-1 (-85) (-585 *6))) - (-4 *6 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))) (-4 *4 (-1015)) - (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-989 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 *2))) - (-5 *2 (-802 *3)) (-5 *1 (-989 *3 *4 *5)) - (-4 *5 (-13 (-364 *4) (-798 *3) (-555 *2)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) - (-5 *2 (-585 (-1092))) (-5 *1 (-989 *3 *4 *5)) - (-4 *5 (-13 (-364 *4) (-798 *3) (-555 (-802 *3))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-263)))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-885)))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-909)))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-950)))) - ((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-987))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) - (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-585 *4)) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-85)) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) - (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) + (-12 (-5 *2 (-587 (-1094))) (-5 *3 (-1 (-85) (-587 *6))) + (-4 *6 (-13 (-366 *5) (-800 *4) (-557 (-804 *4)))) (-4 *4 (-1017)) + (-4 *5 (-13 (-965) (-800 *4) (-557 (-804 *4)))) (-5 *1 (-991 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1017)) (-4 *4 (-13 (-965) (-800 *3) (-557 *2))) + (-5 *2 (-804 *3)) (-5 *1 (-991 *3 *4 *5)) + (-4 *5 (-13 (-366 *4) (-800 *3) (-557 *2)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1017)) (-4 *4 (-13 (-965) (-800 *3) (-557 (-804 *3)))) + (-5 *2 (-587 (-1094))) (-5 *1 (-991 *3 *4 *5)) + (-4 *5 (-13 (-366 *4) (-800 *3) (-557 (-804 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-265)))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-887)))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-911)))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-952)))) + ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-989))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) + (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-587 *4)) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-85)) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-587 (-2 (|:| |val| (-85)) (|:| -1604 *4)))) + (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) - (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) + (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) - (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) + (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-85)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) - (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) - (-5 *1 (-986 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) + (-12 (-5 *5 (-85)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) + (-4 *3 (-981 *6 *7 *8)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) + (-5 *1 (-988 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1601 *9)))) (-5 *5 (-85)) - (-4 *8 (-979 *6 *7 *4)) (-4 *9 (-985 *6 *7 *4 *8)) (-4 *6 (-393)) - (-4 *7 (-719)) (-4 *4 (-758)) - (-5 *2 (-585 (-2 (|:| |val| *8) (|:| -1601 *9)))) - (-5 *1 (-986 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1604 *9)))) (-5 *5 (-85)) + (-4 *8 (-981 *6 *7 *4)) (-4 *9 (-987 *6 *7 *4 *8)) (-4 *6 (-395)) + (-4 *7 (-721)) (-4 *4 (-760)) + (-5 *2 (-587 (-2 (|:| |val| *8) (|:| -1604 *9)))) + (-5 *1 (-988 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))) - (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-587 (-2 (|:| |val| (-587 *3)) (|:| -1604 *4)))) + (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) - (-5 *2 (-3 (-85) (-585 *1))) (-4 *1 (-985 *4 *5 *6 *3))))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) + (-5 *2 (-3 (-85) (-587 *1))) (-4 *1 (-987 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) + (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *3 (-981 *4 *5 *6)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) - (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *1)))) - (-4 *1 (-985 *4 *5 *6 *3))))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) + (-5 *2 (-587 (-2 (|:| |val| (-85)) (|:| -1604 *1)))) + (-4 *1 (-987 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) - (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3))))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) + (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) - (-5 *2 (-3 *3 (-585 *1))) (-4 *1 (-985 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-497)) (-4 *2 (-963)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3)))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) + (-5 *2 (-3 *3 (-587 *1))) (-4 *1 (-987 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-708 *2)) (-4 *2 (-499)) (-4 *2 (-965)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-886 *3 *2)) (-4 *2 (-1159 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *2 (-497)))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *2 (-499)))) ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) - (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *1)))) - (-4 *1 (-985 *4 *5 *6 *3))))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) + (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *1)))) + (-4 *1 (-987 *4 *5 *6 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-985 *4 *5 *6 *7)) - (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)))) + (-12 (-5 *2 (-587 *1)) (-5 *3 (-587 *7)) (-4 *1 (-987 *4 *5 *6 *7)) + (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *7)))) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-393)) - (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)))) + (-12 (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-395)) + (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) - (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3))))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-981 *4 *5 *6)) + (-5 *2 (-587 *1)) (-4 *1 (-987 *4 *5 *6 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) - (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) + (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)) + (-5 *1 (-447 *3 *4 *5 *6)) (-4 *6 (-865 *3 *4 *5)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) + (-12 (-4 *1 (-984 *4 *3)) (-4 *4 (-13 (-759) (-314))) (-4 *3 (-1159 *4)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-495 *3)) (-4 *3 (-13 (-347) (-1117))) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-85)))) + (-12 (-4 *1 (-497 *3)) (-4 *3 (-13 (-349) (-1119))) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) + (-12 (-4 *1 (-984 *4 *3)) (-4 *4 (-13 (-759) (-314))) (-4 *3 (-1159 *4)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-495 *3)) (-4 *3 (-13 (-347) (-1117))) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-85)))) + (-12 (-4 *1 (-497 *3)) (-4 *3 (-13 (-349) (-1119))) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-720)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) + (-12 (-4 *1 (-984 *4 *3)) (-4 *4 (-13 (-759) (-314))) (-4 *3 (-1159 *4)) (-5 *2 (-85))))) (((*1 *2 *2) - (-12 (-4 *3 (-952 (-486))) (-4 *3 (-497)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-364 *3)))) + (-12 (-4 *3 (-954 (-488))) (-4 *3 (-499)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-366 *3)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1087 *4)) (-5 *1 (-138 *3 *4)) - (-4 *3 (-139 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-963)) (-4 *1 (-254)))) - ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1087 *3)))) - ((*1 *2) (-12 (-4 *1 (-663 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1157 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-982 *3 *2)) (-4 *3 (-13 (-757) (-312))) (-4 *2 (-1157 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-859 (-486))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) - ((*1 *2 *3) - (-12 (-5 *3 (-859 (-350 (-486)))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) - ((*1 *2 *3) (-12 (-5 *3 (-859 *1)) (-4 *1 (-927)) (-5 *2 (-585 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1087 (-486))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1087 (-350 (-486)))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) - ((*1 *2 *3) (-12 (-5 *3 (-1087 *1)) (-4 *1 (-927)) (-5 *2 (-585 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1157 *4)) (-5 *2 (-585 *1)) - (-4 *1 (-982 *4 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1087 *1)) (-5 *3 (-1092)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-859 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-4 *1 (-29 *3)) (-4 *3 (-497)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-497)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1087 *2)) (-5 *4 (-1092)) (-4 *2 (-364 *5)) (-5 *1 (-32 *5 *2)) - (-4 *5 (-497)))) + (-12 (-4 *4 (-148)) (-5 *2 (-1089 *4)) (-5 *1 (-140 *3 *4)) + (-4 *3 (-141 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-965)) (-4 *1 (-256)))) + ((*1 *2) (-12 (-4 *1 (-282 *3)) (-4 *3 (-314)) (-5 *2 (-1089 *3)))) + ((*1 *2) (-12 (-4 *1 (-665 *3 *2)) (-4 *3 (-148)) (-4 *2 (-1159 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-984 *3 *2)) (-4 *3 (-13 (-759) (-314))) (-4 *2 (-1159 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-861 (-488))) (-5 *2 (-587 *1)) (-4 *1 (-929)))) + ((*1 *2 *3) + (-12 (-5 *3 (-861 (-352 (-488)))) (-5 *2 (-587 *1)) (-4 *1 (-929)))) + ((*1 *2 *3) (-12 (-5 *3 (-861 *1)) (-4 *1 (-929)) (-5 *2 (-587 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1089 (-488))) (-5 *2 (-587 *1)) (-4 *1 (-929)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1089 (-352 (-488)))) (-5 *2 (-587 *1)) (-4 *1 (-929)))) + ((*1 *2 *3) (-12 (-5 *3 (-1089 *1)) (-4 *1 (-929)) (-5 *2 (-587 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-759) (-314))) (-4 *3 (-1159 *4)) (-5 *2 (-587 *1)) + (-4 *1 (-984 *4 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1089 *1)) (-5 *3 (-1094)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-861 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1094)) (-4 *1 (-29 *3)) (-4 *3 (-499)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-499)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1089 *2)) (-5 *4 (-1094)) (-4 *2 (-366 *5)) (-5 *1 (-32 *5 *2)) + (-4 *5 (-499)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1087 *1)) (-5 *3 (-832)) (-4 *1 (-927)))) + (|partial| -12 (-5 *2 (-1089 *1)) (-5 *3 (-834)) (-4 *1 (-929)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1087 *1)) (-5 *3 (-832)) (-5 *4 (-774)) - (-4 *1 (-927)))) + (|partial| -12 (-5 *2 (-1089 *1)) (-5 *3 (-834)) (-5 *4 (-776)) + (-4 *1 (-929)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-832)) (-4 *4 (-13 (-757) (-312))) - (-4 *1 (-982 *4 *2)) (-4 *2 (-1157 *4))))) + (|partial| -12 (-5 *3 (-834)) (-4 *4 (-13 (-759) (-314))) + (-4 *1 (-984 *4 *2)) (-4 *2 (-1159 *4))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-350 (-486))) (-5 *1 (-939 *3)) - (-4 *3 (-13 (-757) (-312) (-935))))) + (-12 (-5 *2 (-352 (-488))) (-5 *1 (-941 *3)) + (-4 *3 (-13 (-759) (-314) (-937))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2)))) + (-12 (-4 *2 (-13 (-759) (-314))) (-5 *1 (-978 *2 *3)) (-4 *3 (-1159 *2)))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-982 *2 *3)) (-4 *2 (-13 (-757) (-312))) (-4 *3 (-1157 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-127)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-1051))) (-5 *1 (-980))))) + (-12 (-4 *1 (-984 *2 *3)) (-4 *2 (-13 (-759) (-314))) (-4 *3 (-1159 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-1053))) (-5 *1 (-127)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-1053))) (-5 *1 (-982))))) (((*1 *2 *1) - (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) - (-4 *5 (-979 *3 *4 *2)) (-4 *2 (-758)))) + (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-965)) (-4 *4 (-721)) + (-4 *5 (-981 *3 *4 *2)) (-4 *2 (-760)))) ((*1 *2 *1) - (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758))))) + (-12 (-4 *1 (-981 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760))))) (((*1 *2 *1) - (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-5 *2 (-696))))) -(((*1 *2 *1) (-12 (-5 *2 (-424)) (-5 *1 (-172)))) - ((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131)))) - ((*1 *2 *1) (-12 (-5 *2 (-424)) (-5 *1 (-619)))) + (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-5 *2 (-698))))) +(((*1 *2 *1) (-12 (-5 *2 (-426)) (-5 *1 (-174)))) + ((*1 *1 *1) (-12 (-4 *1 (-204 *2)) (-4 *2 (-1133)))) + ((*1 *2 *1) (-12 (-5 *2 (-426)) (-5 *1 (-621)))) ((*1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760))))) (((*1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760))))) (((*1 *2 *1) - (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) - (-4 *1 (-979 *3 *4 *5))))) + (-12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-587 *1)) + (-4 *1 (-981 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) - ((*1 *2 *1) (-12 (-4 *2 (-963)) (-5 *1 (-50 *2 *3)) (-14 *3 (-585 (-1092))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-720)) (-4 *2 (-965)))) + ((*1 *2 *1) (-12 (-4 *2 (-965)) (-5 *1 (-50 *2 *3)) (-14 *3 (-587 (-1094))))) ((*1 *2 *1) - (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) - (-14 *4 (-585 (-1092))))) - ((*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1015)) (-4 *2 (-963)))) + (-12 (-5 *2 (-267 *3)) (-5 *1 (-179 *3 *4)) (-4 *3 (-13 (-965) (-760))) + (-14 *4 (-587 (-1094))))) + ((*1 *2 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-1017)) (-4 *2 (-965)))) ((*1 *2 *1) - (-12 (-14 *3 (-585 (-1092))) (-4 *5 (-196 (-3961 *3) (-696))) + (-12 (-14 *3 (-587 (-1094))) (-4 *5 (-198 (-3964 *3) (-698))) (-14 *6 - (-1 (-85) (-2 (|:| -2402 *4) (|:| -2403 *5)) - (-2 (|:| -2402 *4) (|:| -2403 *5)))) - (-4 *2 (-146)) (-5 *1 (-402 *3 *2 *4 *5 *6 *7)) (-4 *4 (-758)) - (-4 *7 (-863 *2 *5 (-775 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-451 *2 *3)) (-4 *3 (-761)) (-4 *2 (-72)))) - ((*1 *2 *1) (-12 (-4 *2 (-497)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1157 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-963)))) - ((*1 *2 *1) - (-12 (-4 *2 (-963)) (-5 *1 (-676 *2 *3)) (-4 *3 (-758)) (-4 *3 (-665)))) - ((*1 *2 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)))) - ((*1 *2 *1) - (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *3 (-718)) (-4 *4 (-758)) (-4 *2 (-963)))) + (-1 (-85) (-2 (|:| -2405 *4) (|:| -2406 *5)) + (-2 (|:| -2405 *4) (|:| -2406 *5)))) + (-4 *2 (-148)) (-5 *1 (-404 *3 *2 *4 *5 *6 *7)) (-4 *4 (-760)) + (-4 *7 (-865 *2 *5 (-777 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-453 *2 *3)) (-4 *3 (-763)) (-4 *2 (-72)))) + ((*1 *2 *1) (-12 (-4 *2 (-499)) (-5 *1 (-566 *2 *3)) (-4 *3 (-1159 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-965)))) + ((*1 *2 *1) + (-12 (-4 *2 (-965)) (-5 *1 (-678 *2 *3)) (-4 *3 (-760)) (-4 *3 (-667)))) + ((*1 *2 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)))) + ((*1 *2 *1) + (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *3 (-720)) (-4 *4 (-760)) (-4 *2 (-965)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758))))) + (-12 (-4 *1 (-981 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760))))) (((*1 *2 *3) - (-12 (-4 *4 (-963)) (-5 *2 (-85)) (-5 *1 (-385 *4 *3)) (-4 *3 (-1157 *4)))) + (-12 (-4 *4 (-965)) (-5 *2 (-85)) (-5 *1 (-387 *4 *3)) (-4 *3 (-1159 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85))))) (((*1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760))))) (((*1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760))))) (((*1 *2 *1) - (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) - (-4 *1 (-979 *3 *4 *5))))) + (-12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-587 *1)) + (-4 *1 (-981 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) - (-4 *1 (-979 *3 *4 *5))))) + (-12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-587 *1)) + (-4 *1 (-981 *3 *4 *5))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) - (-4 *5 (-758)) (-5 *2 (-85))))) + (|partial| -12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) + (-4 *5 (-760)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) + (-12 (-4 *1 (-981 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) + (-12 (-4 *1 (-981 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) + (-12 (-4 *1 (-981 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) + (-12 (-4 *1 (-981 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) - (-5 *2 (-2 (|:| -3958 *1) (|:| |gap| (-696)) (|:| -2905 *1))) - (-4 *1 (-979 *4 *5 *3)))) + (-12 (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 (-760)) + (-5 *2 (-2 (|:| -3961 *1) (|:| |gap| (-698)) (|:| -2908 *1))) + (-4 *1 (-981 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-5 *2 (-2 (|:| -3958 *1) (|:| |gap| (-696)) (|:| -2905 *1))) - (-4 *1 (-979 *3 *4 *5))))) + (-12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-5 *2 (-2 (|:| -3961 *1) (|:| |gap| (-698)) (|:| -2908 *1))) + (-4 *1 (-981 *3 *4 *5))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3958 *3) (|:| |gap| (-696)) (|:| -1974 (-706 *3)) - (|:| -2905 (-706 *3)))) - (-5 *1 (-706 *3)) (-4 *3 (-963)))) + (-2 (|:| -3961 *3) (|:| |gap| (-698)) (|:| -1977 (-708 *3)) + (|:| -2908 (-708 *3)))) + (-5 *1 (-708 *3)) (-4 *3 (-965)))) ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) - (-5 *2 (-2 (|:| -3958 *1) (|:| |gap| (-696)) (|:| -1974 *1) (|:| -2905 *1))) - (-4 *1 (-979 *4 *5 *3)))) + (-12 (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 (-760)) + (-5 *2 (-2 (|:| -3961 *1) (|:| |gap| (-698)) (|:| -1977 *1) (|:| -2908 *1))) + (-4 *1 (-981 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-5 *2 (-2 (|:| -3958 *1) (|:| |gap| (-696)) (|:| -1974 *1) (|:| -2905 *1))) - (-4 *1 (-979 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-963)))) + (-12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-5 *2 (-2 (|:| -3961 *1) (|:| |gap| (-698)) (|:| -1977 *1) (|:| -2908 *1))) + (-4 *1 (-981 *3 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-708 *2)) (-4 *2 (-965)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| |polnum| (-706 *3)) (|:| |polden| *3) (|:| -3484 (-696)))) - (-5 *1 (-706 *3)) (-4 *3 (-963)))) + (-5 *2 (-2 (|:| |polnum| (-708 *3)) (|:| |polden| *3) (|:| -3487 (-698)))) + (-5 *1 (-708 *3)) (-4 *3 (-965)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3484 (-696)))) - (-4 *1 (-979 *3 *4 *5))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1131)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1157 *5)) - (-5 *2 (-1087 (-1087 *4))) (-5 *1 (-702 *4 *5 *6 *3 *7)) (-4 *3 (-1157 *6)) - (-14 *7 (-832)))) + (-12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3487 (-698)))) + (-4 *1 (-981 *3 *4 *5))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1133)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-301)) (-4 *5 (-282 *4)) (-4 *6 (-1159 *5)) + (-5 *2 (-1089 (-1089 *4))) (-5 *1 (-704 *4 *5 *6 *3 *7)) (-4 *3 (-1159 *6)) + (-14 *7 (-834)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-963)) - (-4 *4 (-719)) (-4 *5 (-758)) (-4 *1 (-891 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1131)))) + (|partial| -12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-965)) + (-4 *4 (-721)) (-4 *5 (-760)) (-4 *1 (-893 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1133)))) ((*1 *1 *2) (|partial| OR - (-12 (-5 *2 (-859 *3)) - (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-2563 (-4 *3 (-38 (-486)))) - (-4 *5 (-555 (-1092)))) - (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) - (-12 (-5 *2 (-859 *3)) - (-12 (-2563 (-4 *3 (-485))) (-2563 (-4 *3 (-38 (-350 (-486))))) - (-4 *3 (-38 (-486))) (-4 *5 (-555 (-1092)))) - (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) - (-12 (-5 *2 (-859 *3)) - (-12 (-2563 (-4 *3 (-906 (-486)))) (-4 *3 (-38 (-350 (-486)))) - (-4 *5 (-555 (-1092)))) - (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))))) + (-12 (-5 *2 (-861 *3)) + (-12 (-2566 (-4 *3 (-38 (-352 (-488))))) (-2566 (-4 *3 (-38 (-488)))) + (-4 *5 (-557 (-1094)))) + (-4 *3 (-965)) (-4 *1 (-981 *3 *4 *5)) (-4 *4 (-721)) (-4 *5 (-760))) + (-12 (-5 *2 (-861 *3)) + (-12 (-2566 (-4 *3 (-487))) (-2566 (-4 *3 (-38 (-352 (-488))))) + (-4 *3 (-38 (-488))) (-4 *5 (-557 (-1094)))) + (-4 *3 (-965)) (-4 *1 (-981 *3 *4 *5)) (-4 *4 (-721)) (-4 *5 (-760))) + (-12 (-5 *2 (-861 *3)) + (-12 (-2566 (-4 *3 (-908 (-488)))) (-4 *3 (-38 (-352 (-488)))) + (-4 *5 (-557 (-1094)))) + (-4 *3 (-965)) (-4 *1 (-981 *3 *4 *5)) (-4 *4 (-721)) (-4 *5 (-760))))) ((*1 *1 *2) (|partial| OR - (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) - (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-4 *3 (-38 (-486))) - (-4 *5 (-555 (-1092)))) - (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))) - (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) - (-4 *4 (-719)) (-4 *5 (-758))))) + (-12 (-5 *2 (-861 (-488))) (-4 *1 (-981 *3 *4 *5)) + (-12 (-2566 (-4 *3 (-38 (-352 (-488))))) (-4 *3 (-38 (-488))) + (-4 *5 (-557 (-1094)))) + (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760))) + (-12 (-5 *2 (-861 (-488))) (-4 *1 (-981 *3 *4 *5)) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *5 (-557 (-1094)))) (-4 *3 (-965)) + (-4 *4 (-721)) (-4 *5 (-760))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-859 (-350 (-486)))) (-4 *1 (-979 *3 *4 *5)) - (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092))) (-4 *3 (-963)) - (-4 *4 (-719)) (-4 *5 (-758))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1131)))) + (|partial| -12 (-5 *2 (-861 (-352 (-488)))) (-4 *1 (-981 *3 *4 *5)) + (-4 *3 (-38 (-352 (-488)))) (-4 *5 (-557 (-1094))) (-4 *3 (-965)) + (-4 *4 (-721)) (-4 *5 (-760))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1133)))) ((*1 *1 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) - (-4 *5 (-758)) (-4 *1 (-891 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1131)))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) + (-4 *5 (-760)) (-4 *1 (-893 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-954 *2)) (-4 *2 (-1133)))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-859 *3)) - (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-2563 (-4 *3 (-38 (-486)))) - (-4 *5 (-555 (-1092)))) - (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) - (-12 (-5 *2 (-859 *3)) - (-12 (-2563 (-4 *3 (-485))) (-2563 (-4 *3 (-38 (-350 (-486))))) - (-4 *3 (-38 (-486))) (-4 *5 (-555 (-1092)))) - (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) - (-12 (-5 *2 (-859 *3)) - (-12 (-2563 (-4 *3 (-906 (-486)))) (-4 *3 (-38 (-350 (-486)))) - (-4 *5 (-555 (-1092)))) - (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))))) + (-12 (-5 *2 (-861 *3)) + (-12 (-2566 (-4 *3 (-38 (-352 (-488))))) (-2566 (-4 *3 (-38 (-488)))) + (-4 *5 (-557 (-1094)))) + (-4 *3 (-965)) (-4 *1 (-981 *3 *4 *5)) (-4 *4 (-721)) (-4 *5 (-760))) + (-12 (-5 *2 (-861 *3)) + (-12 (-2566 (-4 *3 (-487))) (-2566 (-4 *3 (-38 (-352 (-488))))) + (-4 *3 (-38 (-488))) (-4 *5 (-557 (-1094)))) + (-4 *3 (-965)) (-4 *1 (-981 *3 *4 *5)) (-4 *4 (-721)) (-4 *5 (-760))) + (-12 (-5 *2 (-861 *3)) + (-12 (-2566 (-4 *3 (-908 (-488)))) (-4 *3 (-38 (-352 (-488)))) + (-4 *5 (-557 (-1094)))) + (-4 *3 (-965)) (-4 *1 (-981 *3 *4 *5)) (-4 *4 (-721)) (-4 *5 (-760))))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) - (-12 (-2563 (-4 *3 (-38 (-350 (-486))))) (-4 *3 (-38 (-486))) - (-4 *5 (-555 (-1092)))) - (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))) - (-12 (-5 *2 (-859 (-486))) (-4 *1 (-979 *3 *4 *5)) - (-12 (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092)))) (-4 *3 (-963)) - (-4 *4 (-719)) (-4 *5 (-758))))) + (-12 (-5 *2 (-861 (-488))) (-4 *1 (-981 *3 *4 *5)) + (-12 (-2566 (-4 *3 (-38 (-352 (-488))))) (-4 *3 (-38 (-488))) + (-4 *5 (-557 (-1094)))) + (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760))) + (-12 (-5 *2 (-861 (-488))) (-4 *1 (-981 *3 *4 *5)) + (-12 (-4 *3 (-38 (-352 (-488)))) (-4 *5 (-557 (-1094)))) (-4 *3 (-965)) + (-4 *4 (-721)) (-4 *5 (-760))))) ((*1 *1 *2) - (-12 (-5 *2 (-859 (-350 (-486)))) (-4 *1 (-979 *3 *4 *5)) - (-4 *3 (-38 (-350 (-486)))) (-4 *5 (-555 (-1092))) (-4 *3 (-963)) - (-4 *4 (-719)) (-4 *5 (-758))))) + (-12 (-5 *2 (-861 (-352 (-488)))) (-4 *1 (-981 *3 *4 *5)) + (-4 *3 (-38 (-352 (-488)))) (-4 *5 (-557 (-1094))) (-4 *3 (-965)) + (-4 *4 (-721)) (-4 *5 (-760))))) (((*1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *2 (-497))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *2 (-499))))) (((*1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *2 (-497))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *2 (-499))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *2 (-497)))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *2 (-499)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *2 (-497))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *2 (-499))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *2 (-497)))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *2 (-499)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *2 (-497))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *2 (-499))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3147 (-706 *3)) (|:| |coef1| (-706 *3)) (|:| |coef2| (-706 *3)))) - (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963)))) + (-2 (|:| -3150 (-708 *3)) (|:| |coef1| (-708 *3)) (|:| |coef2| (-708 *3)))) + (-5 *1 (-708 *3)) (-4 *3 (-499)) (-4 *3 (-965)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-5 *2 (-2 (|:| -3147 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-979 *3 *4 *5))))) + (-12 (-4 *3 (-499)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-5 *2 (-2 (|:| -3150 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-981 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3147 (-706 *3)) (|:| |coef1| (-706 *3)))) - (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963)))) + (-12 (-5 *2 (-2 (|:| -3150 (-708 *3)) (|:| |coef1| (-708 *3)))) + (-5 *1 (-708 *3)) (-4 *3 (-499)) (-4 *3 (-965)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-5 *2 (-2 (|:| -3147 *1) (|:| |coef1| *1))) (-4 *1 (-979 *3 *4 *5))))) + (-12 (-4 *3 (-499)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-5 *2 (-2 (|:| -3150 *1) (|:| |coef1| *1))) (-4 *1 (-981 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3147 (-706 *3)) (|:| |coef2| (-706 *3)))) - (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963)))) + (-12 (-5 *2 (-2 (|:| -3150 (-708 *3)) (|:| |coef2| (-708 *3)))) + (-5 *1 (-708 *3)) (-4 *3 (-499)) (-4 *3 (-965)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-5 *2 (-2 (|:| -3147 *1) (|:| |coef2| *1))) (-4 *1 (-979 *3 *4 *5))))) + (-12 (-4 *3 (-499)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-5 *2 (-2 (|:| -3150 *1) (|:| |coef2| *1))) (-4 *1 (-981 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-5 *2 (-585 *1)) (-4 *1 (-979 *3 *4 *5))))) + (-12 (-4 *3 (-499)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-5 *2 (-587 *1)) (-4 *1 (-981 *3 *4 *5))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-696)) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) - (-4 *5 (-758)) (-4 *3 (-497))))) + (-12 (-5 *2 (-698)) (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) + (-4 *5 (-760)) (-4 *3 (-499))))) (((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-696)) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) - (-4 *5 (-758)) (-4 *3 (-497))))) + (-12 (-5 *2 (-698)) (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) + (-4 *5 (-760)) (-4 *3 (-499))))) (((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *2 (-497))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-393)))) - ((*1 *1 *1 *1) (-4 *1 (-393))) - ((*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-427 *2)) (-4 *2 (-1157 (-486))))) - ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-637 *2)) (-4 *2 (-1157 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-696))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *2 (-499))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-395)))) + ((*1 *1 *1 *1) (-4 *1 (-395))) + ((*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-5 *1 (-429 *2)) (-4 *2 (-1159 (-488))))) + ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-639 *2)) (-4 *2 (-1159 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-698))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *2)) - (-4 *2 (-863 *5 *3 *4)))) + (-12 (-4 *3 (-721)) (-4 *4 (-760)) (-4 *5 (-260)) (-5 *1 (-831 *3 *4 *5 *2)) + (-4 *2 (-865 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *6 *4 *5)) (-5 *1 (-829 *4 *5 *6 *2)) - (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)))) + (-12 (-5 *3 (-587 *2)) (-4 *2 (-865 *6 *4 *5)) (-5 *1 (-831 *4 *5 *6 *2)) + (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-260)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1087 *6)) (-4 *6 (-863 *5 *3 *4)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1089 *6)) (-4 *6 (-865 *5 *3 *4)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *5 (-260)) (-5 *1 (-831 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-585 (-1087 *7))) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) - (-5 *2 (-1087 *7)) (-5 *1 (-829 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-832))) + (-12 (-5 *3 (-587 (-1089 *7))) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-260)) + (-5 *2 (-1089 *7)) (-5 *1 (-831 *4 *5 *6 *7)) (-4 *7 (-865 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-834))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-393)) (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3)))) + (-12 (-4 *3 (-395)) (-4 *3 (-499)) (-5 *1 (-886 *3 *2)) (-4 *2 (-1159 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *2 (-393))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *2 (-395))))) (((*1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *2 (-393))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *2 (-395))))) (((*1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *2 (-393))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *2 (-395))))) (((*1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *2 (-393))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *2 (-395))))) (((*1 *1 *1) - (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *2 (-393))))) -(((*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-977)))) - ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-977))))) -(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1131)))) - ((*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-758)))) - ((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) - ((*1 *1 *1) (-5 *1 (-774))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1131)))) - ((*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-758)))) - ((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) - ((*1 *1 *1) (-5 *1 (-774))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2))))) + (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *2 (-395))))) +(((*1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-979)))) + ((*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-979))))) +(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1133)))) + ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-760)))) + ((*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-760)))) + ((*1 *1 *1) (-5 *1 (-776))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-776)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-759) (-314))) (-5 *1 (-978 *2 *3)) (-4 *3 (-1159 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1133)))) + ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-760)))) + ((*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-760)))) + ((*1 *1 *1) (-5 *1 (-776))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-776)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-759) (-314))) (-5 *1 (-978 *2 *3)) (-4 *3 (-1159 *2))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1131)) (-5 *2 (-696)) (-5 *1 (-195 *3 *4 *5)) - (-4 *3 (-196 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1133)) (-5 *2 (-698)) (-5 *1 (-197 *3 *4 *5)) + (-4 *3 (-198 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)) (-5 *2 (-696)))) + (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-104)) (-5 *2 (-698)))) ((*1 *2) - (-12 (-4 *4 (-312)) (-5 *2 (-696)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-310 *3)) (-4 *3 (-1015)))) - ((*1 *2) (-12 (-4 *1 (-320)) (-5 *2 (-696)))) - ((*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1015)) (-5 *2 (-696)))) + (-12 (-4 *4 (-314)) (-5 *2 (-698)) (-5 *1 (-281 *3 *4)) (-4 *3 (-282 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-312 *3)) (-4 *3 (-1017)))) + ((*1 *2) (-12 (-4 *1 (-322)) (-5 *2 (-698)))) + ((*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-1017)) (-5 *2 (-698)))) ((*1 *2) - (-12 (-4 *4 (-1015)) (-5 *2 (-696)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) + (-12 (-4 *4 (-1017)) (-5 *2 (-698)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-696)) (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)) (-4 *4 (-23)) + (-12 (-5 *2 (-698)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1017)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-146)) (-4 *5 (-1157 *4)) (-5 *2 (-696)) (-5 *1 (-662 *3 *4 *5)) - (-4 *3 (-663 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-921)))) + (-12 (-4 *4 (-148)) (-4 *5 (-1159 *4)) (-5 *2 (-698)) (-5 *1 (-664 *3 *4 *5)) + (-4 *3 (-665 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-923)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2))))) + (-12 (-4 *2 (-13 (-759) (-314))) (-5 *1 (-978 *2 *3)) (-4 *3 (-1159 *2))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30)))) + (-12 (-4 *2 (-13 (-759) (-314))) (-5 *1 (-978 *2 *3)) (-4 *3 (-1159 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-30)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-348 *4) *4)) (-4 *4 (-497)) (-5 *2 (-348 *4)) - (-5 *1 (-362 *4)))) - ((*1 *1 *1) (-5 *1 (-838))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) + (-12 (-5 *3 (-1 (-350 *4) *4)) (-4 *4 (-499)) (-5 *2 (-350 *4)) + (-5 *1 (-364 *4)))) ((*1 *1 *1) (-5 *1 (-840))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1005 (-181))) (-5 *1 (-840)))) + ((*1 *1 *1) (-5 *1 (-842))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1005 (-181))) (-5 *1 (-842)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) - (-5 *4 (-350 (-486))) (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))))) + (-12 (-5 *2 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) + (-5 *4 (-352 (-488))) (-5 *1 (-938 *3)) (-4 *3 (-1159 (-488))))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) - (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))))) + (-5 *2 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) + (-5 *1 (-938 *3)) (-4 *3 (-1159 (-488))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) - (-5 *4 (-350 (-486))) (-5 *1 (-937 *3)) (-4 *3 (-1157 *4)))) + (-12 (-5 *2 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) + (-5 *4 (-352 (-488))) (-5 *1 (-939 *3)) (-4 *3 (-1159 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) - (-5 *1 (-937 *3)) (-4 *3 (-1157 (-350 (-486)))))) + (-5 *2 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) + (-5 *1 (-939 *3)) (-4 *3 (-1159 (-352 (-488)))))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1157 *2))))) + (-12 (-4 *2 (-13 (-759) (-314))) (-5 *1 (-978 *2 *3)) (-4 *3 (-1159 *2))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-757) (-312))) (-5 *2 (-85)) (-5 *1 (-976 *4 *3)) - (-4 *3 (-1157 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-552 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552 (-48))) (-5 *1 (-48)))) + (-12 (-4 *4 (-13 (-759) (-314))) (-5 *2 (-85)) (-5 *1 (-978 *4 *3)) + (-4 *3 (-1159 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-554 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-554 (-48))) (-5 *1 (-48)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1087 (-48))) (-5 *3 (-585 (-552 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1087 (-48))) (-5 *3 (-552 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) + (-12 (-5 *2 (-1089 (-48))) (-5 *3 (-587 (-554 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1089 (-48))) (-5 *3 (-554 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-141 *2)) (-4 *2 (-148)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1157 (-142 *2))))) + (-12 (-4 *2 (-13 (-314) (-759))) (-5 *1 (-157 *2 *3)) + (-4 *3 (-1159 (-144 *2))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-832)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) - ((*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-146)))) + (-12 (-5 *2 (-834)) (-4 *1 (-282 *3)) (-4 *3 (-314)) (-4 *3 (-322)))) + ((*1 *2 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-314)))) + ((*1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *3 (-1159 *2)) (-4 *2 (-148)))) ((*1 *2 *1) - (-12 (-4 *4 (-1157 *2)) (-4 *2 (-906 *3)) (-5 *1 (-356 *3 *2 *4 *5)) - (-4 *3 (-258)) (-4 *5 (-13 (-353 *2 *4) (-952 *2))))) + (-12 (-4 *4 (-1159 *2)) (-4 *2 (-908 *3)) (-5 *1 (-358 *3 *2 *4 *5)) + (-4 *3 (-260)) (-4 *5 (-13 (-355 *2 *4) (-954 *2))))) ((*1 *2 *1) - (-12 (-4 *4 (-1157 *2)) (-4 *2 (-906 *3)) (-5 *1 (-358 *3 *2 *4 *5 *6)) - (-4 *3 (-258)) (-4 *5 (-353 *2 *4)) (-14 *6 (-1181 *5)))) + (-12 (-4 *4 (-1159 *2)) (-4 *2 (-908 *3)) (-5 *1 (-360 *3 *2 *4 *5 *6)) + (-4 *3 (-260)) (-4 *5 (-355 *2 *4)) (-14 *6 (-1183 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-832)) (-4 *5 (-963)) - (-4 *2 (-13 (-347) (-952 *5) (-312) (-1117) (-239))) (-5 *1 (-384 *5 *3 *2)) - (-4 *3 (-1157 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-552 (-436)))) (-5 *1 (-436)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552 (-436))) (-5 *1 (-436)))) + (-12 (-5 *4 (-834)) (-4 *5 (-965)) + (-4 *2 (-13 (-349) (-954 *5) (-314) (-1119) (-241))) (-5 *1 (-386 *5 *3 *2)) + (-4 *3 (-1159 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-554 (-438)))) (-5 *1 (-438)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-554 (-438))) (-5 *1 (-438)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1087 (-436))) (-5 *3 (-585 (-552 (-436)))) (-5 *1 (-436)))) + (-12 (-5 *2 (-1089 (-438))) (-5 *3 (-587 (-554 (-438)))) (-5 *1 (-438)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1087 (-436))) (-5 *3 (-552 (-436))) (-5 *1 (-436)))) + (-12 (-5 *2 (-1089 (-438))) (-5 *3 (-554 (-438))) (-5 *1 (-438)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1181 *4)) (-5 *3 (-832)) (-4 *4 (-299)) (-5 *1 (-468 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-393)) (-4 *5 (-663 *4 *2)) (-4 *2 (-1157 *4)) - (-5 *1 (-700 *4 *2 *5 *3)) (-4 *3 (-1157 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) - ((*1 *1 *1) (-4 *1 (-975)))) -(((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)) (-4 *2 (-485)))) - ((*1 *1 *1) (-4 *1 (-975)))) -(((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)) (-4 *2 (-485)))) - ((*1 *1 *1) (-4 *1 (-975)))) -(((*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) - ((*1 *2 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258)))) - ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)) (-4 *2 (-258)))) - ((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-486))))) -(((*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-77)))) - ((*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-428)))) - ((*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497)) (-4 *2 (-258)))) - ((*1 *2 *1) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486)))) - ((*1 *1 *1) (-4 *1 (-975)))) -(((*1 *1 *1) (-4 *1 (-975)))) + (-12 (-5 *2 (-1183 *4)) (-5 *3 (-834)) (-4 *4 (-301)) (-5 *1 (-470 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-395)) (-4 *5 (-665 *4 *2)) (-4 *2 (-1159 *4)) + (-5 *1 (-702 *4 *2 *5 *3)) (-4 *3 (-1159 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)))) + ((*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-148)))) + ((*1 *1 *1) (-4 *1 (-977)))) +(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-499)) (-4 *2 (-487)))) + ((*1 *1 *1) (-4 *1 (-977)))) +(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-499)) (-4 *2 (-487)))) + ((*1 *1 *1) (-4 *1 (-977)))) +(((*1 *2 *1) (-12 (-5 *1 (-150 *2)) (-4 *2 (-260)))) + ((*1 *2 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-260)))) + ((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-499)) (-4 *2 (-260)))) + ((*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-488))))) +(((*1 *2 *1) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-77)))) + ((*1 *2 *1) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-173)))) + ((*1 *2 *1) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-430)))) + ((*1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-499)) (-4 *2 (-260)))) + ((*1 *2 *1) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-921 *3)) (-14 *3 (-488)))) + ((*1 *1 *1) (-4 *1 (-977)))) +(((*1 *1 *1) (-4 *1 (-977)))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-696)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) + (-12 (-4 *4 (-148)) (-5 *2 (-698)) (-5 *1 (-140 *3 *4)) (-4 *3 (-141 *4)))) ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1131)) (-5 *2 (-696)) (-5 *1 (-195 *3 *4 *5)) - (-4 *3 (-196 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1133)) (-5 *2 (-698)) (-5 *1 (-197 *3 *4 *5)) + (-4 *3 (-198 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-1015)) (-5 *2 (-696)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))) - ((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-484 *3)) (-4 *3 (-485)))) - ((*1 *2) (-12 (-4 *1 (-689)) (-5 *2 (-696)))) + (-12 (-4 *4 (-1017)) (-5 *2 (-698)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) + ((*1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-486 *3)) (-4 *3 (-487)))) + ((*1 *2) (-12 (-4 *1 (-691)) (-5 *2 (-698)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-696)) (-5 *1 (-721 *3 *4)) (-4 *3 (-722 *4)))) + (-12 (-4 *4 (-148)) (-5 *2 (-698)) (-5 *1 (-723 *3 *4)) (-4 *3 (-724 *4)))) ((*1 *2) - (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-905 *3 *4)) (-4 *3 (-906 *4)))) + (-12 (-4 *4 (-499)) (-5 *2 (-698)) (-5 *1 (-907 *3 *4)) (-4 *3 (-908 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-696)) (-5 *1 (-912 *3 *4)) (-4 *3 (-913 *4)))) - ((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-926 *3)) (-4 *3 (-927)))) - ((*1 *2) (-12 (-4 *1 (-963)) (-5 *2 (-696)))) - ((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-974 *3)) (-4 *3 (-975))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-972)) (-5 *2 (-85))))) + (-12 (-4 *4 (-148)) (-5 *2 (-698)) (-5 *1 (-914 *3 *4)) (-4 *3 (-915 *4)))) + ((*1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-928 *3)) (-4 *3 (-929)))) + ((*1 *2) (-12 (-4 *1 (-965)) (-5 *2 (-698)))) + ((*1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-976 *3)) (-4 *3 (-977))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-974)) (-5 *2 (-85))))) (((*1 *1 *2) - (-12 (-5 *2 (-632 *5)) (-4 *5 (-963)) (-5 *1 (-968 *3 *4 *5)) (-14 *3 (-696)) - (-14 *4 (-696))))) + (-12 (-5 *2 (-634 *5)) (-4 *5 (-965)) (-5 *1 (-970 *3 *4 *5)) (-14 *3 (-698)) + (-14 *4 (-698))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-696)) (-5 *3 (-1 *4 (-486) (-486))) (-4 *4 (-963)) - (-4 *1 (-629 *4 *5 *6)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) + (-12 (-5 *2 (-698)) (-5 *3 (-1 *4 (-488) (-488))) (-4 *4 (-965)) + (-4 *1 (-631 *4 *5 *6)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) - (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-774)))) (-5 *1 (-774)))) + (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-965)) (-4 *1 (-631 *3 *4 *5)) + (-4 *4 (-326 *3)) (-4 *5 (-326 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-776)))) (-5 *1 (-776)))) ((*1 *2 *1) - (-12 (-5 *2 (-1058 *3 *4)) (-5 *1 (-908 *3 *4)) (-14 *3 (-832)) - (-4 *4 (-312)))) + (-12 (-5 *2 (-1060 *3 *4)) (-5 *1 (-910 *3 *4)) (-14 *3 (-834)) + (-4 *4 (-314)))) ((*1 *1 *2) - (-12 (-5 *2 (-585 (-585 *5))) (-4 *5 (-963)) (-4 *1 (-967 *3 *4 *5 *6 *7)) - (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5))))) + (-12 (-5 *2 (-587 (-587 *5))) (-4 *5 (-965)) (-4 *1 (-969 *3 *4 *5 *6 *7)) + (-4 *6 (-198 *4 *5)) (-4 *7 (-198 *3 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-85)))) + (-12 (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) + (-4 *7 (-198 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-85)))) + (-12 (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) + (-4 *7 (-198 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-85)))) + (-12 (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) + (-4 *7 (-198 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-85)))) + (-12 (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) + (-4 *7 (-198 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-486)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)) (-5 *2 (-488)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-486))))) + (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) + (-4 *7 (-198 *3 *5)) (-5 *2 (-488))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-486)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)) (-5 *2 (-488)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-486))))) + (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) + (-4 *7 (-198 *3 *5)) (-5 *2 (-488))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-486)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)) (-5 *2 (-488)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-486))))) + (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) + (-4 *7 (-198 *3 *5)) (-5 *2 (-488))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-486)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)) (-5 *2 (-488)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-486))))) + (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) + (-4 *7 (-198 *3 *5)) (-5 *2 (-488))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-696)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)) (-5 *2 (-698)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-696))))) + (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) + (-4 *7 (-198 *3 *5)) (-5 *2 (-698))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-696)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)) (-5 *2 (-698)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-696))))) + (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) + (-4 *7 (-198 *3 *5)) (-5 *2 (-698))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) - (-4 *5 (-324 *2)) (-4 *2 (-1131)))) + (-12 (-5 *3 (-488)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-326 *2)) + (-4 *5 (-326 *2)) (-4 *2 (-1133)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-696)) (-4 *2 (-1015)) (-5 *1 (-166 *4 *2)) (-14 *4 (-832)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1131)))) + (-12 (-5 *3 (-698)) (-4 *2 (-1017)) (-5 *1 (-168 *4 *2)) (-14 *4 (-834)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-245 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1133)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) - (-4 *7 (-196 *4 *2)) (-4 *2 (-963))))) + (-12 (-5 *3 (-488)) (-4 *1 (-969 *4 *5 *2 *6 *7)) (-4 *6 (-198 *5 *2)) + (-4 *7 (-198 *4 *2)) (-4 *2 (-965))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-486)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1131)) (-4 *5 (-324 *4)) - (-4 *2 (-324 *4)))) + (-12 (-5 *3 (-488)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1133)) (-4 *5 (-326 *4)) + (-4 *2 (-326 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *6 *2 *7)) (-4 *6 (-963)) - (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6))))) + (-12 (-5 *3 (-488)) (-4 *1 (-969 *4 *5 *6 *2 *7)) (-4 *6 (-965)) + (-4 *7 (-198 *4 *6)) (-4 *2 (-198 *5 *6))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-486)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1131)) (-4 *5 (-324 *4)) - (-4 *2 (-324 *4)))) + (-12 (-5 *3 (-488)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1133)) (-4 *5 (-326 *4)) + (-4 *2 (-326 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-486)) (-4 *1 (-967 *4 *5 *6 *7 *2)) (-4 *6 (-963)) - (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6))))) + (-12 (-5 *3 (-488)) (-4 *1 (-969 *4 *5 *6 *7 *2)) (-4 *6 (-965)) + (-4 *7 (-198 *5 *6)) (-4 *2 (-198 *4 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) + (-12 (-4 *3 (-314)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) + (-5 *1 (-464 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-497)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-906 *4)) - (-4 *2 (-629 *7 *8 *9)) (-5 *1 (-463 *4 *5 *6 *3 *7 *8 *9 *2)) - (-4 *3 (-629 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)))) + (-12 (-4 *4 (-499)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) (-4 *7 (-908 *4)) + (-4 *2 (-631 *7 *8 *9)) (-5 *1 (-465 *4 *5 *6 *3 *7 *8 *9 *2)) + (-4 *3 (-631 *4 *5 *6)) (-4 *8 (-326 *7)) (-4 *9 (-326 *7)))) ((*1 *1 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) - (-4 *4 (-324 *2)) (-4 *2 (-258)))) + (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) + (-4 *4 (-326 *2)) (-4 *2 (-260)))) ((*1 *2 *2) - (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3)))) + (-12 (-4 *3 (-260)) (-4 *3 (-148)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) + (-5 *1 (-633 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-634 *3)) (-4 *3 (-260)) (-5 *1 (-642 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-967 *2 *3 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) - (-4 *6 (-196 *2 *4)) (-4 *4 (-258))))) + (-12 (-4 *1 (-969 *2 *3 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-198 *3 *4)) + (-4 *6 (-198 *2 *4)) (-4 *4 (-260))))) (((*1 *2 *1) - (-12 (-5 *2 (-696)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-486)) (-14 *4 *2) - (-4 *5 (-146)))) + (-12 (-5 *2 (-698)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-488)) (-14 *4 *2) + (-4 *5 (-148)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-832)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) - ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-832)))) + (-12 (-4 *4 (-148)) (-5 *2 (-834)) (-5 *1 (-140 *3 *4)) (-4 *3 (-141 *4)))) + ((*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-834)))) ((*1 *2) - (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) (-5 *2 (-832)))) + (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-148)) (-4 *4 (-1159 *3)) (-5 *2 (-834)))) ((*1 *2 *3) - (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-696)) - (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) + (-12 (-4 *4 (-314)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) (-5 *2 (-698)) + (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-631 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1037 *5))) - (-4 *4 (-13 (-324 *5) (-1037 *5))) (-5 *2 (-696)) (-5 *1 (-611 *5 *6 *4 *3)) - (-4 *3 (-629 *5 *6 *4)))) + (-12 (-4 *5 (-314)) (-4 *6 (-13 (-326 *5) (-1039 *5))) + (-4 *4 (-13 (-326 *5) (-1039 *5))) (-5 *2 (-698)) (-5 *1 (-613 *5 *6 *4 *3)) + (-4 *3 (-631 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-632 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-312)) (-5 *2 (-696)) - (-5 *1 (-612 *5)))) + (-12 (-5 *3 (-634 *5)) (-5 *4 (-1183 *5)) (-4 *5 (-314)) (-5 *2 (-698)) + (-5 *1 (-614 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-4 *3 (-497)) (-5 *2 (-696)))) + (-12 (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)) (-4 *3 (-499)) (-5 *2 (-698)))) ((*1 *2 *3) - (-12 (-4 *4 (-497)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *2 (-696)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) + (-12 (-4 *4 (-499)) (-4 *4 (-148)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) + (-5 *2 (-698)) (-5 *1 (-633 *4 *5 *6 *3)) (-4 *3 (-631 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-4 *5 (-497)) (-5 *2 (-696))))) + (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) + (-4 *7 (-198 *3 *5)) (-4 *5 (-499)) (-5 *2 (-698))))) (((*1 *2 *3) - (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-696)) - (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) + (-12 (-4 *4 (-314)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) (-5 *2 (-698)) + (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-631 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-4 *3 (-497)) (-5 *2 (-696)))) + (-12 (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)) (-4 *3 (-499)) (-5 *2 (-698)))) ((*1 *2 *3) - (-12 (-4 *4 (-497)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *2 (-696)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) + (-12 (-4 *4 (-499)) (-4 *4 (-148)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) + (-5 *2 (-698)) (-5 *1 (-633 *4 *5 *6 *3)) (-4 *3 (-631 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-4 *5 (-497)) (-5 *2 (-696))))) + (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) + (-4 *7 (-198 *3 *5)) (-4 *5 (-499)) (-5 *2 (-698))))) (((*1 *2 *3) - (-12 (-4 *6 (-1037 *4)) (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *2 (-585 *6)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) + (-12 (-4 *6 (-1039 *4)) (-4 *4 (-314)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) + (-5 *2 (-587 *6)) (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-631 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-4 *9 (-1037 *7)) (-4 *4 (-497)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-4 *7 (-906 *4)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)) (-5 *2 (-585 *6)) - (-5 *1 (-463 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-629 *4 *5 *6)) - (-4 *10 (-629 *7 *8 *9)))) + (-12 (-4 *9 (-1039 *7)) (-4 *4 (-499)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) + (-4 *7 (-908 *4)) (-4 *8 (-326 *7)) (-4 *9 (-326 *7)) (-5 *2 (-587 *6)) + (-5 *1 (-465 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-631 *4 *5 *6)) + (-4 *10 (-631 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-4 *3 (-497)) (-5 *2 (-585 *5)))) + (-12 (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)) (-4 *3 (-499)) (-5 *2 (-587 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-497)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *2 (-585 *6)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) + (-12 (-4 *4 (-499)) (-4 *4 (-148)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) + (-5 *2 (-587 *6)) (-5 *1 (-633 *4 *5 *6 *3)) (-4 *3 (-631 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-4 *5 (-497)) (-5 *2 (-585 *7))))) + (-12 (-4 *1 (-969 *3 *4 *5 *6 *7)) (-4 *5 (-965)) (-4 *6 (-198 *4 *5)) + (-4 *7 (-198 *3 *5)) (-4 *5 (-499)) (-5 *2 (-587 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1150 *4 *5)) (-5 *3 (-585 *5)) (-14 *4 (-1092)) (-4 *5 (-312)) - (-5 *1 (-835 *4 *5)))) + (-12 (-5 *2 (-1152 *4 *5)) (-5 *3 (-587 *5)) (-14 *4 (-1094)) (-4 *5 (-314)) + (-5 *1 (-837 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-585 *5)) (-4 *5 (-312)) (-5 *2 (-1087 *5)) (-5 *1 (-835 *4 *5)) - (-14 *4 (-1092)))) + (-12 (-5 *3 (-587 *5)) (-4 *5 (-314)) (-5 *2 (-1089 *5)) (-5 *1 (-837 *4 *5)) + (-14 *4 (-1094)))) ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-585 *6)) (-5 *4 (-696)) (-4 *6 (-312)) (-5 *2 (-350 (-859 *6))) - (-5 *1 (-964 *5 *6)) (-14 *5 (-1092))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-961))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-486))) (-5 *1 (-961))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-486))) (-5 *1 (-961))))) + (-12 (-5 *3 (-587 *6)) (-5 *4 (-698)) (-4 *6 (-314)) (-5 *2 (-352 (-861 *6))) + (-5 *1 (-966 *5 *6)) (-14 *5 (-1094))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-963))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-488))) (-5 *1 (-963))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-488))) (-5 *1 (-963))))) (((*1 *1 *1 *1) (-4 *1 (-116))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485)))) - ((*1 *1 *1 *1) (-5 *1 (-774))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-486))) (-5 *1 (-961)) - (-5 *3 (-486))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1011 *4)) (-4 *4 (-1015)) (-5 *2 (-1 *4)) (-5 *1 (-932 *4)))) - ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-955)) (-5 *3 (-330)))) - ((*1 *2 *3) (-12 (-5 *3 (-1003 (-486))) (-5 *2 (-1 (-486))) (-5 *1 (-961))))) -(((*1 *1) (-12 (-4 *1 (-959 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-258)) (-5 *2 (-350 (-348 (-859 *4)))) - (-5 *1 (-957 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-330))) (-5 *1 (-955))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-330))) (-5 *1 (-955))))) -(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-330))) (-5 *1 (-955))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-131 *3 *2)) (-4 *2 (-366 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-487)))) + ((*1 *1 *1 *1) (-5 *1 (-776))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-488))) (-5 *1 (-963)) + (-5 *3 (-488))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1013 *4)) (-4 *4 (-1017)) (-5 *2 (-1 *4)) (-5 *1 (-934 *4)))) + ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-332))) (-5 *1 (-957)) (-5 *3 (-332)))) + ((*1 *2 *3) (-12 (-5 *3 (-1005 (-488))) (-5 *2 (-1 (-488))) (-5 *1 (-963))))) +(((*1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-960 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-960 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-960 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-4 *1 (-960 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-5 *3 (-352 (-861 *4))) (-4 *4 (-260)) (-5 *2 (-352 (-350 (-861 *4)))) + (-5 *1 (-959 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1 (-332))) (-5 *1 (-957))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1 (-332))) (-5 *1 (-957))))) +(((*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1 (-332))) (-5 *1 (-957))))) (((*1 *1 *2) - (-12 (-5 *2 (-1162 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1092)) (-14 *5 *3) - (-5 *1 (-270 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-955)) (-5 *3 (-330))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-955)) (-5 *3 (-330))))) -(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-330)) (-5 *1 (-955))))) -(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-955))))) -(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-955))))) -(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-955))))) + (-12 (-5 *2 (-1164 *3 *4 *5)) (-4 *3 (-314)) (-14 *4 (-1094)) (-14 *5 *3) + (-5 *1 (-272 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-332))) (-5 *1 (-957)) (-5 *3 (-332))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-332))) (-5 *1 (-957)) (-5 *3 (-332))))) +(((*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-332)) (-5 *1 (-957))))) +(((*1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-957))))) +(((*1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-957))))) +(((*1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-957))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1087 (-350 (-1087 *2)))) (-5 *4 (-552 *2)) - (-4 *2 (-13 (-364 *5) (-27) (-1117))) - (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) - (-5 *1 (-500 *5 *2 *6)) (-4 *6 (-1015)))) + (-12 (-5 *3 (-1089 (-352 (-1089 *2)))) (-5 *4 (-554 *2)) + (-4 *2 (-13 (-366 *5) (-27) (-1119))) + (-4 *5 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) + (-5 *1 (-502 *5 *2 *6)) (-4 *6 (-1017)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087 *1)) (-4 *1 (-863 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-719)) - (-4 *3 (-758)))) + (-12 (-5 *2 (-1089 *1)) (-4 *1 (-865 *4 *5 *3)) (-4 *4 (-965)) (-4 *5 (-721)) + (-4 *3 (-760)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087 *4)) (-4 *4 (-963)) (-4 *1 (-863 *4 *5 *3)) (-4 *5 (-719)) - (-4 *3 (-758)))) + (-12 (-5 *2 (-1089 *4)) (-4 *4 (-965)) (-4 *1 (-865 *4 *5 *3)) (-4 *5 (-721)) + (-4 *3 (-760)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-1087 *2))) (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-963)) + (-12 (-5 *3 (-352 (-1089 *2))) (-4 *5 (-721)) (-4 *4 (-760)) (-4 *6 (-965)) (-4 *2 - (-13 (-312) - (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))) - (-5 *1 (-864 *5 *4 *6 *7 *2)) (-4 *7 (-863 *6 *5 *4)))) + (-13 (-314) + (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $))))) + (-5 *1 (-866 *5 *4 *6 *7 *2)) (-4 *7 (-865 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-1087 (-350 (-859 *5))))) (-5 *4 (-1092)) - (-5 *2 (-350 (-859 *5))) (-5 *1 (-954 *5)) (-4 *5 (-497))))) + (-12 (-5 *3 (-352 (-1089 (-352 (-861 *5))))) (-5 *4 (-1094)) + (-5 *2 (-352 (-861 *5))) (-5 *1 (-956 *5)) (-4 *5 (-499))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-552 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1015)) (-4 *4 (-497)) - (-5 *2 (-350 (-1087 *1))))) + (-12 (-5 *3 (-554 *1)) (-4 *1 (-366 *4)) (-4 *4 (-1017)) (-4 *4 (-499)) + (-5 *2 (-352 (-1089 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-552 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1117))) - (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) - (-5 *2 (-1087 (-350 (-1087 *3)))) (-5 *1 (-500 *6 *3 *7)) (-5 *5 (-1087 *3)) - (-4 *7 (-1015)))) + (-12 (-5 *4 (-554 *3)) (-4 *3 (-13 (-366 *6) (-27) (-1119))) + (-4 *6 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) + (-5 *2 (-1089 (-352 (-1089 *3)))) (-5 *1 (-502 *6 *3 *7)) (-5 *5 (-1089 *3)) + (-4 *7 (-1017)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1178 *5)) (-14 *5 (-1092)) (-4 *6 (-963)) - (-5 *2 (-1150 *5 (-859 *6))) (-5 *1 (-861 *5 *6)) (-5 *3 (-859 *6)))) + (-12 (-5 *4 (-1180 *5)) (-14 *5 (-1094)) (-4 *6 (-965)) + (-5 *2 (-1152 *5 (-861 *6))) (-5 *1 (-863 *5 *6)) (-5 *3 (-861 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-5 *2 (-1087 *3)))) + (-12 (-4 *1 (-865 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-5 *2 (-1089 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-1087 *1)) - (-4 *1 (-863 *4 *5 *3)))) + (-12 (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 (-760)) (-5 *2 (-1089 *1)) + (-4 *1 (-865 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *5 *4)) - (-5 *2 (-350 (-1087 *3))) (-5 *1 (-864 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-721)) (-4 *4 (-760)) (-4 *6 (-965)) (-4 *7 (-865 *6 *5 *4)) + (-5 *2 (-352 (-1089 *3))) (-5 *1 (-866 *5 *4 *6 *7 *3)) (-4 *3 - (-13 (-312) - (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))))) + (-13 (-314) + (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1087 *3)) + (-12 (-5 *2 (-1089 *3)) (-4 *3 - (-13 (-312) - (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))) - (-4 *7 (-863 *6 *5 *4)) (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-963)) - (-5 *1 (-864 *5 *4 *6 *7 *3)))) + (-13 (-314) + (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $))))) + (-4 *7 (-865 *6 *5 *4)) (-4 *5 (-721)) (-4 *4 (-760)) (-4 *6 (-965)) + (-5 *1 (-866 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1092)) (-4 *5 (-497)) (-5 *2 (-350 (-1087 (-350 (-859 *5))))) - (-5 *1 (-954 *5)) (-5 *3 (-350 (-859 *5)))))) + (-12 (-5 *4 (-1094)) (-4 *5 (-499)) (-5 *2 (-352 (-1089 (-352 (-861 *5))))) + (-5 *1 (-956 *5)) (-5 *3 (-352 (-861 *5)))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) - (-4 *2 (-758)))) + (|partial| -12 (-4 *1 (-865 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) + (-4 *2 (-760)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-719)) (-4 *5 (-963)) (-4 *6 (-863 *5 *4 *2)) - (-4 *2 (-758)) (-5 *1 (-864 *4 *2 *5 *6 *3)) + (|partial| -12 (-4 *4 (-721)) (-4 *5 (-965)) (-4 *6 (-865 *5 *4 *2)) + (-4 *2 (-760)) (-5 *1 (-866 *4 *2 *5 *6 *3)) (-4 *3 - (-13 (-312) - (-10 -8 (-15 -3950 ($ *6)) (-15 -3001 (*6 $)) (-15 -3000 (*6 $))))))) + (-13 (-314) + (-10 -8 (-15 -3953 ($ *6)) (-15 -3004 (*6 $)) (-15 -3003 (*6 $))))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-5 *2 (-1092)) - (-5 *1 (-954 *4))))) + (|partial| -12 (-5 *3 (-352 (-861 *4))) (-4 *4 (-499)) (-5 *2 (-1094)) + (-5 *1 (-956 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1087 *7)) (-4 *7 (-863 *6 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-963)) (-5 *2 (-585 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1015)) (-5 *2 (-585 (-1092))))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) + (-12 (-5 *3 (-1089 *7)) (-4 *7 (-865 *6 *4 *5)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-965)) (-5 *2 (-587 *5)) (-5 *1 (-274 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1017)) (-5 *2 (-587 (-1094))))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-804 *3))) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) ((*1 *2 *1) - (-12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-5 *2 (-585 *5)))) + (-12 (-4 *1 (-865 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-5 *2 (-587 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *4 *5)) - (-5 *2 (-585 *5)) (-5 *1 (-864 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-965)) (-4 *7 (-865 *6 *4 *5)) + (-5 *2 (-587 *5)) (-5 *1 (-866 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-312) - (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $))))))) + (-13 (-314) + (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-718)) (-4 *5 (-758)) - (-5 *2 (-585 *5)))) + (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-720)) (-4 *5 (-760)) + (-5 *2 (-587 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *5)))) + (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-587 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-5 *2 (-585 (-1092))) - (-5 *1 (-954 *4))))) + (-12 (-5 *3 (-352 (-861 *4))) (-4 *4 (-499)) (-5 *2 (-587 (-1094))) + (-5 *1 (-956 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-859 *6))) (-5 *4 (-585 (-1092))) - (-4 *6 (-13 (-497) (-952 *5))) (-4 *5 (-497)) - (-5 *2 (-585 (-585 (-249 (-350 (-859 *6)))))) (-5 *1 (-953 *5 *6))))) + (-12 (-5 *3 (-587 (-861 *6))) (-5 *4 (-587 (-1094))) + (-4 *6 (-13 (-499) (-954 *5))) (-4 *5 (-499)) + (-5 *2 (-587 (-587 (-251 (-352 (-861 *6)))))) (-5 *1 (-955 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-552 *6)) (-4 *6 (-13 (-364 *5) (-27) (-1117))) - (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) - (-5 *2 (-1087 (-350 (-1087 *6)))) (-5 *1 (-500 *5 *6 *7)) (-5 *3 (-1087 *6)) - (-4 *7 (-1015)))) - ((*1 *2 *1) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-651 *3 *2)) (-4 *3 (-963)))) - ((*1 *2 *1) (-12 (-4 *1 (-663 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1157 *3)))) + (-12 (-5 *4 (-554 *6)) (-4 *6 (-13 (-366 *5) (-27) (-1119))) + (-4 *5 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) + (-5 *2 (-1089 (-352 (-1089 *6)))) (-5 *1 (-502 *5 *6 *7)) (-5 *3 (-1089 *6)) + (-4 *7 (-1017)))) + ((*1 *2 *1) (-12 (-4 *2 (-1159 *3)) (-5 *1 (-653 *3 *2)) (-4 *3 (-965)))) + ((*1 *2 *1) (-12 (-4 *1 (-665 *3 *2)) (-4 *3 (-148)) (-4 *2 (-1159 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1087 *11)) (-5 *6 (-585 *10)) (-5 *7 (-585 (-696))) - (-5 *8 (-585 *11)) (-4 *10 (-758)) (-4 *11 (-258)) (-4 *9 (-719)) - (-4 *5 (-863 *11 *9 *10)) (-5 *2 (-585 (-1087 *5))) - (-5 *1 (-683 *9 *10 *11 *5)) (-5 *3 (-1087 *5)))) + (|partial| -12 (-5 *4 (-1089 *11)) (-5 *6 (-587 *10)) (-5 *7 (-587 (-698))) + (-5 *8 (-587 *11)) (-4 *10 (-760)) (-4 *11 (-260)) (-4 *9 (-721)) + (-4 *5 (-865 *11 *9 *10)) (-5 *2 (-587 (-1089 *5))) + (-5 *1 (-685 *9 *10 *11 *5)) (-5 *3 (-1089 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-863 *3 *4 *5)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *3 (-312)) - (-4 *4 (-719)) (-4 *5 (-758)) (-14 *6 (-585 *2))))) + (-12 (-4 *2 (-865 *3 *4 *5)) (-5 *1 (-951 *3 *4 *5 *2 *6)) (-4 *3 (-314)) + (-4 *4 (-721)) (-4 *5 (-760)) (-14 *6 (-587 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-832)) (-5 *1 (-947 *2)) - (-4 *2 (-13 (-1015) (-10 -8 (-15 * ($ $ $)))))))) + (-12 (-5 *3 (-834)) (-5 *1 (-949 *2)) + (-4 *2 (-13 (-1017) (-10 -8 (-15 * ($ $ $)))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-832)) (-5 *1 (-946 *2)) - (-4 *2 (-13 (-1015) (-10 -8 (-15 -3842 ($ $ $)))))))) + (-12 (-5 *3 (-834)) (-5 *1 (-948 *2)) + (-4 *2 (-13 (-1017) (-10 -8 (-15 -3845 ($ $ $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-1181 *5))) (-5 *4 (-486)) (-5 *2 (-1181 *5)) - (-5 *1 (-945 *5)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-963))))) + (-12 (-5 *3 (-587 (-1183 *5))) (-5 *4 (-488)) (-5 *2 (-1183 *5)) + (-5 *1 (-947 *5)) (-4 *5 (-314)) (-4 *5 (-322)) (-4 *5 (-965))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-85)) (-5 *5 (-486)) (-4 *6 (-312)) (-4 *6 (-320)) - (-4 *6 (-963)) (-5 *2 (-585 (-585 (-632 *6)))) (-5 *1 (-945 *6)) - (-5 *3 (-585 (-632 *6))))) + (-12 (-5 *4 (-85)) (-5 *5 (-488)) (-4 *6 (-314)) (-4 *6 (-322)) + (-4 *6 (-965)) (-5 *2 (-587 (-587 (-634 *6)))) (-5 *1 (-947 *6)) + (-5 *3 (-587 (-634 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-312)) (-4 *4 (-320)) (-4 *4 (-963)) - (-5 *2 (-585 (-585 (-632 *4)))) (-5 *1 (-945 *4)) (-5 *3 (-585 (-632 *4))))) + (-12 (-4 *4 (-314)) (-4 *4 (-322)) (-4 *4 (-965)) + (-5 *2 (-587 (-587 (-634 *4)))) (-5 *1 (-947 *4)) (-5 *3 (-587 (-634 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-963)) - (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) + (-12 (-5 *4 (-85)) (-4 *5 (-314)) (-4 *5 (-322)) (-4 *5 (-965)) + (-5 *2 (-587 (-587 (-634 *5)))) (-5 *1 (-947 *5)) (-5 *3 (-587 (-634 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-832)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-963)) - (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5)))))) + (-12 (-5 *4 (-834)) (-4 *5 (-314)) (-4 *5 (-322)) (-4 *5 (-965)) + (-5 *2 (-587 (-587 (-634 *5)))) (-5 *1 (-947 *5)) (-5 *3 (-587 (-634 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-632 *5))) (-5 *4 (-486)) (-4 *5 (-312)) (-4 *5 (-963)) - (-5 *2 (-85)) (-5 *1 (-945 *5)))) + (-12 (-5 *3 (-587 (-634 *5))) (-5 *4 (-488)) (-4 *5 (-314)) (-4 *5 (-965)) + (-5 *2 (-85)) (-5 *1 (-947 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-585 (-632 *4))) (-4 *4 (-312)) (-4 *4 (-963)) (-5 *2 (-85)) - (-5 *1 (-945 *4))))) + (-12 (-5 *3 (-587 (-634 *4))) (-4 *4 (-314)) (-4 *4 (-965)) (-5 *2 (-85)) + (-5 *1 (-947 *4))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-585 (-632 *6))) (-5 *4 (-85)) (-5 *5 (-486)) (-5 *2 (-632 *6)) - (-5 *1 (-945 *6)) (-4 *6 (-312)) (-4 *6 (-963)))) + (-12 (-5 *3 (-587 (-634 *6))) (-5 *4 (-85)) (-5 *5 (-488)) (-5 *2 (-634 *6)) + (-5 *1 (-947 *6)) (-4 *6 (-314)) (-4 *6 (-965)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-585 (-632 *4))) (-5 *2 (-632 *4)) (-5 *1 (-945 *4)) - (-4 *4 (-312)) (-4 *4 (-963)))) + (-12 (-5 *3 (-587 (-634 *4))) (-5 *2 (-634 *4)) (-5 *1 (-947 *4)) + (-4 *4 (-314)) (-4 *4 (-965)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-585 (-632 *5))) (-5 *4 (-486)) (-5 *2 (-632 *5)) - (-5 *1 (-945 *5)) (-4 *5 (-312)) (-4 *5 (-963))))) + (-12 (-5 *3 (-587 (-634 *5))) (-5 *4 (-488)) (-5 *2 (-634 *5)) + (-5 *1 (-947 *5)) (-4 *5 (-314)) (-4 *5 (-965))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-632 *5))) (-5 *4 (-1181 *5)) (-4 *5 (-258)) - (-4 *5 (-963)) (-5 *2 (-632 *5)) (-5 *1 (-945 *5))))) + (-12 (-5 *3 (-587 (-634 *5))) (-5 *4 (-1183 *5)) (-4 *5 (-260)) + (-4 *5 (-965)) (-5 *2 (-634 *5)) (-5 *1 (-947 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-632 *5))) (-4 *5 (-258)) (-4 *5 (-963)) - (-5 *2 (-1181 (-1181 *5))) (-5 *1 (-945 *5)) (-5 *4 (-1181 *5))))) + (-12 (-5 *3 (-587 (-634 *5))) (-4 *5 (-260)) (-4 *5 (-965)) + (-5 *2 (-1183 (-1183 *5))) (-5 *1 (-947 *5)) (-5 *4 (-1183 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-585 (-632 *4))) (-5 *2 (-632 *4)) (-4 *4 (-963)) - (-5 *1 (-945 *4))))) + (-12 (-5 *3 (-587 (-634 *4))) (-5 *2 (-634 *4)) (-4 *4 (-965)) + (-5 *1 (-947 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1181 (-1181 *4))) (-4 *4 (-963)) (-5 *2 (-632 *4)) - (-5 *1 (-945 *4))))) + (-12 (-5 *3 (-1183 (-1183 *4))) (-4 *4 (-965)) (-5 *2 (-634 *4)) + (-5 *1 (-947 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-815 (-486))) (-5 *4 (-486)) (-5 *2 (-632 *4)) (-5 *1 (-944 *5)) - (-4 *5 (-963)))) + (-12 (-5 *3 (-817 (-488))) (-5 *4 (-488)) (-5 *2 (-634 *4)) (-5 *1 (-946 *5)) + (-4 *5 (-965)))) ((*1 *2 *3) - (-12 (-5 *3 (-585 (-486))) (-5 *2 (-632 (-486))) (-5 *1 (-944 *4)) - (-4 *4 (-963)))) + (-12 (-5 *3 (-587 (-488))) (-5 *2 (-634 (-488))) (-5 *1 (-946 *4)) + (-4 *4 (-965)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-815 (-486)))) (-5 *4 (-486)) (-5 *2 (-585 (-632 *4))) - (-5 *1 (-944 *5)) (-4 *5 (-963)))) + (-12 (-5 *3 (-587 (-817 (-488)))) (-5 *4 (-488)) (-5 *2 (-587 (-634 *4))) + (-5 *1 (-946 *5)) (-4 *5 (-965)))) ((*1 *2 *3) - (-12 (-5 *3 (-585 (-585 (-486)))) (-5 *2 (-585 (-632 (-486)))) - (-5 *1 (-944 *4)) (-4 *4 (-963))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-944 *3)))) + (-12 (-5 *3 (-587 (-587 (-488)))) (-5 *2 (-587 (-634 (-488)))) + (-5 *1 (-946 *4)) (-4 *4 (-965))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-965)) (-5 *1 (-946 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-585 (-632 *3))) (-4 *3 (-963)) (-5 *1 (-944 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-944 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-585 (-632 *3))) (-4 *3 (-963)) (-5 *1 (-944 *3))))) + (-12 (-5 *2 (-587 (-634 *3))) (-4 *3 (-965)) (-5 *1 (-946 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-965)) (-5 *1 (-946 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-587 (-634 *3))) (-4 *3 (-965)) (-5 *1 (-946 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-632 *4)) (-5 *3 (-832)) (-4 *4 (-963)) (-5 *1 (-944 *4)))) + (-12 (-5 *2 (-634 *4)) (-5 *3 (-834)) (-4 *4 (-965)) (-5 *1 (-946 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-585 (-632 *4))) (-5 *3 (-832)) (-4 *4 (-963)) - (-5 *1 (-944 *4))))) + (-12 (-5 *2 (-587 (-634 *4))) (-5 *3 (-834)) (-4 *4 (-965)) + (-5 *1 (-946 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-696)) (-5 *2 (-632 (-859 *4))) (-5 *1 (-944 *4)) - (-4 *4 (-963))))) + (-12 (-5 *3 (-698)) (-5 *2 (-634 (-861 *4))) (-5 *1 (-946 *4)) + (-4 *4 (-965))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-632 *4)) (-5 *3 (-832)) (|has| *4 (-6 (-4000 "*"))) - (-4 *4 (-963)) (-5 *1 (-944 *4)))) + (-12 (-5 *2 (-634 *4)) (-5 *3 (-834)) (|has| *4 (-6 (-4003 "*"))) + (-4 *4 (-965)) (-5 *1 (-946 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-585 (-632 *4))) (-5 *3 (-832)) (|has| *4 (-6 (-4000 "*"))) - (-4 *4 (-963)) (-5 *1 (-944 *4))))) + (-12 (-5 *2 (-587 (-634 *4))) (-5 *3 (-834)) (|has| *4 (-6 (-4003 "*"))) + (-4 *4 (-965)) (-5 *1 (-946 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-632 (-350 (-859 (-486))))) (-5 *2 (-585 (-632 (-265 (-486))))) - (-5 *1 (-943))))) -(((*1 *2 *2) (-12 (-5 *2 (-585 (-632 (-265 (-486))))) (-5 *1 (-943))))) -(((*1 *2 *2) (-12 (-5 *2 (-632 (-265 (-486)))) (-5 *1 (-943))))) + (-12 (-5 *3 (-634 (-352 (-861 (-488))))) (-5 *2 (-587 (-634 (-267 (-488))))) + (-5 *1 (-945))))) +(((*1 *2 *2) (-12 (-5 *2 (-587 (-634 (-267 (-488))))) (-5 *1 (-945))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 (-267 (-488)))) (-5 *1 (-945))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-632 (-350 (-859 (-486))))) - (-5 *2 (-632 (-265 (-486)))) (-5 *1 (-943))))) + (|partial| -12 (-5 *3 (-634 (-352 (-861 (-488))))) + (-5 *2 (-634 (-267 (-488)))) (-5 *1 (-945))))) (((*1 *2 *3) - (-12 (-5 *3 (-632 (-350 (-859 (-486))))) (-5 *2 (-585 (-265 (-486)))) - (-5 *1 (-943))))) + (-12 (-5 *3 (-634 (-352 (-861 (-488))))) (-5 *2 (-587 (-267 (-488)))) + (-5 *1 (-945))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-632 (-350 (-859 (-486))))) (-5 *2 (-585 (-632 (-265 (-486))))) - (-5 *1 (-943)) (-5 *3 (-265 (-486)))))) + (-12 (-5 *4 (-634 (-352 (-861 (-488))))) (-5 *2 (-587 (-634 (-267 (-488))))) + (-5 *1 (-945)) (-5 *3 (-267 (-488)))))) (((*1 *2 *3) - (-12 (-5 *3 (-632 (-350 (-859 (-486))))) + (-12 (-5 *3 (-634 (-352 (-861 (-488))))) (-5 *2 - (-585 - (-2 (|:| |radval| (-265 (-486))) (|:| |radmult| (-486)) - (|:| |radvect| (-585 (-632 (-265 (-486)))))))) - (-5 *1 (-943))))) + (-587 + (-2 (|:| |radval| (-267 (-488))) (|:| |radmult| (-488)) + (|:| |radvect| (-587 (-634 (-267 (-488)))))))) + (-5 *1 (-945))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) - ((*1 *1 *1 *1) (-5 *1 (-774))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-941 *3)) (-4 *3 (-1131))))) -(((*1 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1131))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-940 *3 *2)) (-4 *2 (-602 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3269 *3) (|:| -2516 (-585 *5)))) - (-5 *1 (-940 *5 *3)) (-5 *4 (-585 *5)) (-4 *3 (-602 *5))))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-251 *2)) (-4 *2 (-1133)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))) + ((*1 *1 *1 *1) (-5 *1 (-776))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-943 *3)) (-4 *3 (-1133))))) +(((*1 *1 *2) (-12 (-5 *1 (-943 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-943 *2)) (-4 *2 (-1133))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-314)) (-5 *1 (-942 *3 *2)) (-4 *2 (-604 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-314)) (-5 *2 (-2 (|:| -3272 *3) (|:| -2519 (-587 *5)))) + (-5 *1 (-942 *5 *3)) (-5 *4 (-587 *5)) (-4 *3 (-604 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-976 (-939 *4) (-1087 (-939 *4)))) (-5 *3 (-774)) - (-5 *1 (-939 *4)) (-4 *4 (-13 (-757) (-312) (-935)))))) + (-12 (-5 *2 (-978 (-941 *4) (-1089 (-941 *4)))) (-5 *3 (-776)) + (-5 *1 (-941 *4)) (-4 *4 (-13 (-759) (-314) (-937)))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-976 (-939 *3) (-1087 (-939 *3)))) (-5 *1 (-939 *3)) - (-4 *3 (-13 (-757) (-312) (-935)))))) + (|partial| -12 (-5 *2 (-978 (-941 *3) (-1089 (-941 *3)))) (-5 *1 (-941 *3)) + (-4 *3 (-13 (-759) (-314) (-937)))))) (((*1 *2 *3) - (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) - (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))))) + (-12 (-5 *2 (-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))))) + (-5 *1 (-938 *3)) (-4 *3 (-1159 (-488))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) - (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))) - (-5 *4 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))))) + (-12 (-5 *2 (-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))))) + (-5 *1 (-938 *3)) (-4 *3 (-1159 (-488))) + (-5 *4 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) - (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))) (-5 *4 (-350 (-486))))) + (-12 (-5 *2 (-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))))) + (-5 *1 (-938 *3)) (-4 *3 (-1159 (-488))) (-5 *4 (-352 (-488))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-350 (-486))) (-5 *2 (-585 (-2 (|:| -3141 *5) (|:| -3140 *5)))) - (-5 *1 (-936 *3)) (-4 *3 (-1157 (-486))) - (-5 *4 (-2 (|:| -3141 *5) (|:| -3140 *5))))) + (-12 (-5 *5 (-352 (-488))) (-5 *2 (-587 (-2 (|:| -3144 *5) (|:| -3143 *5)))) + (-5 *1 (-938 *3)) (-4 *3 (-1159 (-488))) + (-5 *4 (-2 (|:| -3144 *5) (|:| -3143 *5))))) ((*1 *2 *3) - (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) - (-5 *1 (-937 *3)) (-4 *3 (-1157 (-350 (-486)))))) + (-12 (-5 *2 (-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))))) + (-5 *1 (-939 *3)) (-4 *3 (-1159 (-352 (-488)))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) - (-5 *1 (-937 *3)) (-4 *3 (-1157 (-350 (-486)))) - (-5 *4 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))))) + (-12 (-5 *2 (-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))))) + (-5 *1 (-939 *3)) (-4 *3 (-1159 (-352 (-488)))) + (-5 *4 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-350 (-486))) (-5 *2 (-585 (-2 (|:| -3141 *4) (|:| -3140 *4)))) - (-5 *1 (-937 *3)) (-4 *3 (-1157 *4)))) + (-12 (-5 *4 (-352 (-488))) (-5 *2 (-587 (-2 (|:| -3144 *4) (|:| -3143 *4)))) + (-5 *1 (-939 *3)) (-4 *3 (-1159 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-350 (-486))) (-5 *2 (-585 (-2 (|:| -3141 *5) (|:| -3140 *5)))) - (-5 *1 (-937 *3)) (-4 *3 (-1157 *5)) - (-5 *4 (-2 (|:| -3141 *5) (|:| -3140 *5)))))) + (-12 (-5 *5 (-352 (-488))) (-5 *2 (-587 (-2 (|:| -3144 *5) (|:| -3143 *5)))) + (-5 *1 (-939 *3)) (-4 *3 (-1159 *5)) + (-5 *4 (-2 (|:| -3144 *5) (|:| -3143 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486)))))) - (-5 *2 (-585 (-350 (-486)))) (-5 *1 (-936 *4)) (-4 *4 (-1157 (-486)))))) + (-12 (-5 *3 (-587 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488)))))) + (-5 *2 (-587 (-352 (-488)))) (-5 *1 (-938 *4)) (-4 *4 (-1159 (-488)))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3141 (-350 (-486))) (|:| -3140 (-350 (-486))))) - (-5 *2 (-350 (-486))) (-5 *1 (-936 *4)) (-4 *4 (-1157 (-486)))))) + (-12 (-5 *3 (-2 (|:| -3144 (-352 (-488))) (|:| -3143 (-352 (-488))))) + (-5 *2 (-352 (-488))) (-5 *1 (-938 *4)) (-4 *4 (-1159 (-488)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1181 *6)) (-5 *4 (-1181 (-486))) (-5 *5 (-486)) (-4 *6 (-1015)) - (-5 *2 (-1 *6)) (-5 *1 (-932 *6))))) + (-12 (-5 *3 (-1183 *6)) (-5 *4 (-1183 (-488))) (-5 *5 (-488)) (-4 *6 (-1017)) + (-5 *2 (-1 *6)) (-5 *1 (-934 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 (-2 (|:| -3405 *4) (|:| -1523 (-486))))) (-4 *4 (-1015)) - (-5 *2 (-1 *4)) (-5 *1 (-932 *4))))) + (-12 (-5 *3 (-587 (-2 (|:| -3408 *4) (|:| -1526 (-488))))) (-4 *4 (-1017)) + (-5 *2 (-1 *4)) (-5 *1 (-934 *4))))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-312) (-120) (-952 (-486)))) (-4 *5 (-1157 *4)) - (-5 *2 (-585 (-350 *5))) (-5 *1 (-931 *4 *5)) (-5 *3 (-350 *5))))) + (|partial| -12 (-4 *4 (-13 (-314) (-120) (-954 (-488)))) (-4 *5 (-1159 *4)) + (-5 *2 (-587 (-352 *5))) (-5 *1 (-933 *4 *5)) (-5 *3 (-352 *5))))) (((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) - (-4 *5 (-13 (-312) (-120) (-952 (-486)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1159 *5)) + (-4 *5 (-13 (-314) (-120) (-954 (-488)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |h| *6) (|:| |c1| (-350 *6)) - (|:| |c2| (-350 *6)) (|:| -3096 *6))) - (-5 *1 (-931 *5 *6)) (-5 *3 (-350 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-352 *6)) (|:| |h| *6) (|:| |c1| (-352 *6)) + (|:| |c2| (-352 *6)) (|:| -3099 *6))) + (-5 *1 (-933 *5 *6)) (-5 *3 (-352 *6))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1157 *6)) - (-4 *6 (-13 (-312) (-120) (-952 *4))) (-5 *4 (-486)) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1159 *6)) + (-4 *6 (-13 (-314) (-120) (-954 *4))) (-5 *4 (-488)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) - (|:| -3269 + (|:| -3272 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) - (-5 *1 (-930 *6 *3))))) + (-5 *1 (-932 *6 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-952 (-486)))) (-4 *5 (-1157 *4)) - (-5 *2 (-2 (|:| |ans| (-350 *5)) (|:| |nosol| (-85)))) (-5 *1 (-930 *4 *5)) - (-5 *3 (-350 *5))))) + (-12 (-4 *4 (-13 (-314) (-120) (-954 (-488)))) (-4 *5 (-1159 *4)) + (-5 *2 (-2 (|:| |ans| (-352 *5)) (|:| |nosol| (-85)))) (-5 *1 (-932 *4 *5)) + (-5 *3 (-352 *5))))) (((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) - (-4 *5 (-13 (-312) (-120) (-952 (-486)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1159 *5)) + (-4 *5 (-13 (-314) (-120) (-954 (-488)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |c| (-350 *6)) (|:| -3096 *6))) - (-5 *1 (-930 *5 *6)) (-5 *3 (-350 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-352 *6)) (|:| |c| (-352 *6)) (|:| -3099 *6))) + (-5 *1 (-932 *5 *6)) (-5 *3 (-352 *6))))) (((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1092)) + (|partial| -12 (-5 *5 (-1094)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-585 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1117) (-27) (-364 *8))) - (-4 *8 (-13 (-393) (-120) (-952 *3) (-582 *3))) (-5 *3 (-486)) - (-5 *2 (-585 *4)) (-5 *1 (-929 *8 *4))))) + *4 (-587 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2141 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1119) (-27) (-366 *8))) + (-4 *8 (-13 (-395) (-120) (-954 *3) (-584 *3))) (-5 *3 (-488)) + (-5 *2 (-587 *4)) (-5 *1 (-931 *8 *4))))) (((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1092)) + (-12 (-5 *5 (-1094)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-585 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1117) (-27) (-364 *8))) - (-4 *8 (-13 (-393) (-120) (-952 *3) (-582 *3))) (-5 *3 (-486)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3140 *4) (|:| |sol?| (-85)))) - (-5 *1 (-928 *8 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486)))) - ((*1 *1 *1) (-4 *1 (-917))) ((*1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-927)))) - ((*1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-4 *1 (-927)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-832)))) - ((*1 *1 *1) (-4 *1 (-927)))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-927)) (-5 *2 (-774))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1087 *1)) (-4 *1 (-927))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1087 *1)) (-4 *1 (-927))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-774))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-774))))) -(((*1 *2 *1) (-12 (-4 *3 (-1131)) (-5 *2 (-585 *1)) (-4 *1 (-925 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-5 *2 (-585 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-5 *2 (-486))))) + *4 (-587 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2141 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1119) (-27) (-366 *8))) + (-4 *8 (-13 (-395) (-120) (-954 *3) (-584 *3))) (-5 *3 (-488)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3143 *4) (|:| |sol?| (-85)))) + (-5 *1 (-930 *8 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-783 *3)) (-5 *2 (-488)))) + ((*1 *1 *1) (-4 *1 (-919))) ((*1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-929)))) + ((*1 *1 *2) (-12 (-5 *2 (-352 (-488))) (-4 *1 (-929)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-929)) (-5 *2 (-834)))) + ((*1 *1 *1) (-4 *1 (-929)))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-929)) (-5 *2 (-776))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1089 *1)) (-4 *1 (-929))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1089 *1)) (-4 *1 (-929))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-929)) (-5 *2 (-776))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-929)) (-5 *2 (-776))))) +(((*1 *2 *1) (-12 (-4 *3 (-1133)) (-5 *2 (-587 *1)) (-4 *1 (-927 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1133)) (-5 *2 (-587 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1133)) (-5 *2 (-488))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-85))))) + (-12 (-4 *1 (-927 *3)) (-4 *3 (-1133)) (-4 *3 (-72)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-925 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-85))))) + (-12 (-4 *1 (-927 *3)) (-4 *3 (-1133)) (-4 *3 (-72)) (-5 *2 (-85))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-585 *1)) (-4 *1 (-1037 *3)) (-4 *1 (-925 *3)) (-4 *3 (-1131))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-925 *2)) (-4 *2 (-1131))))) + (-12 (-5 *2 (-587 *1)) (-4 *1 (-1039 *3)) (-4 *1 (-927 *3)) (-4 *3 (-1133))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-927 *2)) (-4 *2 (-1133))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-485)) - (-5 *2 (-350 (-486))))) + (|partial| -12 (-4 *1 (-141 *3)) (-4 *3 (-148)) (-4 *3 (-487)) + (-5 *2 (-352 (-488))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-350 (-486))) (-5 *1 (-348 *3)) (-4 *3 (-485)) - (-4 *3 (-497)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-485)) (-5 *2 (-350 (-486))))) + (|partial| -12 (-5 *2 (-352 (-488))) (-5 *1 (-350 *3)) (-4 *3 (-487)) + (-4 *3 (-499)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-487)) (-5 *2 (-352 (-488))))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-722 *3)) (-4 *3 (-146)) (-4 *3 (-485)) - (-5 *2 (-350 (-486))))) + (|partial| -12 (-4 *1 (-724 *3)) (-4 *3 (-148)) (-4 *3 (-487)) + (-5 *2 (-352 (-488))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-350 (-486))) (-5 *1 (-745 *3)) (-4 *3 (-485)) - (-4 *3 (-1015)))) + (|partial| -12 (-5 *2 (-352 (-488))) (-5 *1 (-747 *3)) (-4 *3 (-487)) + (-4 *3 (-1017)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-350 (-486))) (-5 *1 (-752 *3)) (-4 *3 (-485)) - (-4 *3 (-1015)))) + (|partial| -12 (-5 *2 (-352 (-488))) (-5 *1 (-754 *3)) (-4 *3 (-487)) + (-4 *3 (-1017)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-913 *3)) (-4 *3 (-146)) (-4 *3 (-485)) - (-5 *2 (-350 (-486))))) + (|partial| -12 (-4 *1 (-915 *3)) (-4 *3 (-148)) (-4 *3 (-487)) + (-5 *2 (-352 (-488))))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-350 (-486))) (-5 *1 (-923 *3)) (-4 *3 (-952 *2))))) + (|partial| -12 (-5 *2 (-352 (-488))) (-5 *1 (-925 *3)) (-4 *3 (-954 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-85)))) + (-12 (-4 *1 (-141 *3)) (-4 *3 (-148)) (-4 *3 (-487)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-348 *3)) (-4 *3 (-485)) (-4 *3 (-497)))) - ((*1 *2 *1) (-12 (-4 *1 (-485)) (-5 *2 (-85)))) + (-12 (-5 *2 (-85)) (-5 *1 (-350 *3)) (-4 *3 (-487)) (-4 *3 (-499)))) + ((*1 *2 *1) (-12 (-4 *1 (-487)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-722 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-85)))) + (-12 (-4 *1 (-724 *3)) (-4 *3 (-148)) (-4 *3 (-487)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-745 *3)) (-4 *3 (-485)) (-4 *3 (-1015)))) + (-12 (-5 *2 (-85)) (-5 *1 (-747 *3)) (-4 *3 (-487)) (-4 *3 (-1017)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-752 *3)) (-4 *3 (-485)) (-4 *3 (-1015)))) + (-12 (-5 *2 (-85)) (-5 *1 (-754 *3)) (-4 *3 (-487)) (-4 *3 (-1017)))) ((*1 *2 *1) - (-12 (-4 *1 (-913 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-85)))) + (-12 (-4 *1 (-915 *3)) (-4 *3 (-148)) (-4 *3 (-487)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *2 (-85)) (-5 *1 (-923 *3)) (-4 *3 (-952 (-350 (-486))))))) + (-12 (-5 *2 (-85)) (-5 *1 (-925 *3)) (-4 *3 (-954 (-352 (-488))))))) (((*1 *2 *1) - (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-350 (-486))))) + (-12 (-4 *1 (-141 *3)) (-4 *3 (-148)) (-4 *3 (-487)) (-5 *2 (-352 (-488))))) ((*1 *2 *1) - (-12 (-5 *2 (-350 (-486))) (-5 *1 (-348 *3)) (-4 *3 (-485)) (-4 *3 (-497)))) - ((*1 *2 *1) (-12 (-4 *1 (-485)) (-5 *2 (-350 (-486))))) + (-12 (-5 *2 (-352 (-488))) (-5 *1 (-350 *3)) (-4 *3 (-487)) (-4 *3 (-499)))) + ((*1 *2 *1) (-12 (-4 *1 (-487)) (-5 *2 (-352 (-488))))) ((*1 *2 *1) - (-12 (-4 *1 (-722 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-350 (-486))))) + (-12 (-4 *1 (-724 *3)) (-4 *3 (-148)) (-4 *3 (-487)) (-5 *2 (-352 (-488))))) ((*1 *2 *1) - (-12 (-5 *2 (-350 (-486))) (-5 *1 (-745 *3)) (-4 *3 (-485)) (-4 *3 (-1015)))) + (-12 (-5 *2 (-352 (-488))) (-5 *1 (-747 *3)) (-4 *3 (-487)) (-4 *3 (-1017)))) ((*1 *2 *1) - (-12 (-5 *2 (-350 (-486))) (-5 *1 (-752 *3)) (-4 *3 (-485)) (-4 *3 (-1015)))) + (-12 (-5 *2 (-352 (-488))) (-5 *1 (-754 *3)) (-4 *3 (-487)) (-4 *3 (-1017)))) ((*1 *2 *1) - (-12 (-4 *1 (-913 *3)) (-4 *3 (-146)) (-4 *3 (-485)) (-5 *2 (-350 (-486))))) - ((*1 *2 *3) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-923 *3)) (-4 *3 (-952 *2))))) -(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-921))))) -(((*1 *2 *3) (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-921))))) -(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-921)))) - ((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-921))))) + (-12 (-4 *1 (-915 *3)) (-4 *3 (-148)) (-4 *3 (-487)) (-5 *2 (-352 (-488))))) + ((*1 *2 *3) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-925 *3)) (-4 *3 (-954 *2))))) +(((*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-923))))) +(((*1 *2 *3) (-12 (-5 *3 (-488)) (-5 *2 (-1189)) (-5 *1 (-923))))) +(((*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-923)))) + ((*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-923))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-486))) (-5 *4 (-486)) (-5 *2 (-51)) (-5 *1 (-920))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486))))) -(((*1 *2 *1) (-12 (-5 *2 (-1071 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-919 *3)) (-14 *3 (-486))))) + (-12 (-5 *3 (-352 (-488))) (-5 *4 (-488)) (-5 *2 (-51)) (-5 *1 (-922))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-921 *3)) (-14 *3 (-488))))) +(((*1 *2 *1) (-12 (-5 *2 (-1073 (-488))) (-5 *1 (-921 *3)) (-14 *3 (-488))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-921 *3)) (-14 *3 (-488))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-921 *3)) (-14 *3 (-488))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-921 *3)) (-14 *3 (-488))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-921 *3)) (-14 *3 (-488))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-348 *5)) (-4 *5 (-497)) - (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3958 *5) (|:| |radicand| (-585 *5)))) - (-5 *1 (-271 *5)) (-5 *4 (-696)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-917)) (-5 *2 (-486))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-915 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) - ((*1 *1 *1 *1) (-4 *1 (-414))) - ((*1 *1 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) - ((*1 *2 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-795)))) - ((*1 *1 *1) (-5 *1 (-886))) - ((*1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131))))) -(((*1 *1 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1131))))) + (-12 (-5 *3 (-350 *5)) (-4 *5 (-499)) + (-5 *2 (-2 (|:| -2406 (-698)) (|:| -3961 *5) (|:| |radicand| (-587 *5)))) + (-5 *1 (-273 *5)) (-5 *4 (-698)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-919)) (-5 *2 (-488))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-5 *1 (-917 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-141 *2)) (-4 *2 (-148)))) + ((*1 *1 *1 *1) (-4 *1 (-416))) + ((*1 *1 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)))) + ((*1 *2 *2) (-12 (-5 *2 (-587 (-834))) (-5 *1 (-797)))) + ((*1 *1 *1) (-5 *1 (-888))) + ((*1 *1 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-148))))) +(((*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)))) + ((*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-148))))) +(((*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)))) + ((*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-148))))) +(((*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)))) + ((*1 *2 *1) (-12 (-4 *1 (-915 *2)) (-4 *2 (-148))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-915 *2)) (-4 *2 (-148))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1133))))) +(((*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1133))))) (((*1 *1 *2) - (-12 (-5 *2 (-1058 *3 *4)) (-14 *3 (-832)) (-4 *4 (-312)) - (-5 *1 (-908 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1041 (-486) (-552 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1060 *3 *4)) (-14 *3 (-834)) (-4 *4 (-314)) + (-5 *1 (-910 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1043 (-488) (-554 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) - (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-952 *4))))) + (-12 (-4 *3 (-260)) (-4 *4 (-908 *3)) (-4 *5 (-1159 *4)) (-5 *2 (-1183 *6)) + (-5 *1 (-358 *3 *4 *5 *6)) (-4 *6 (-13 (-355 *4 *5) (-954 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-963)) (-4 *3 (-1015)) (-5 *2 (-1041 *3 (-552 *1))) - (-4 *1 (-364 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1041 (-486) (-552 (-436)))) (-5 *1 (-436)))) + (-12 (-4 *3 (-965)) (-4 *3 (-1017)) (-5 *2 (-1043 *3 (-554 *1))) + (-4 *1 (-366 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1043 (-488) (-554 (-438)))) (-5 *1 (-438)))) ((*1 *2 *1) - (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-560 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-665) *3)))) + (-12 (-4 *3 (-148)) (-4 *2 (-38 *3)) (-5 *1 (-562 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-667) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-146)) (-4 *2 (-656 *3)) (-5 *1 (-596 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-665) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497))))) -(((*1 *2 *1) (-12 (-5 *2 (-1041 (-486) (-552 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *3 (-148)) (-4 *2 (-658 *3)) (-5 *1 (-598 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-667) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-499))))) +(((*1 *2 *1) (-12 (-5 *2 (-1043 (-488) (-554 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-906 *2)) (-4 *4 (-1157 *3)) (-4 *2 (-258)) - (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-952 *3))))) + (-12 (-4 *3 (-908 *2)) (-4 *4 (-1159 *3)) (-4 *2 (-260)) + (-5 *1 (-358 *2 *3 *4 *5)) (-4 *5 (-13 (-355 *3 *4) (-954 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-497)) (-4 *3 (-1015)) (-5 *2 (-1041 *3 (-552 *1))) - (-4 *1 (-364 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1041 (-486) (-552 (-436)))) (-5 *1 (-436)))) + (-12 (-4 *3 (-499)) (-4 *3 (-1017)) (-5 *2 (-1043 *3 (-554 *1))) + (-4 *1 (-366 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1043 (-488) (-554 (-438)))) (-5 *1 (-438)))) ((*1 *2 *1) - (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-665) *4)) - (-5 *1 (-560 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *4 (-148)) (-4 *2 (|SubsetCategory| (-667) *4)) + (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-665) *4)) - (-5 *1 (-596 *3 *4 *2)) (-4 *3 (-656 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497))))) -(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1015)) (-4 *2 (-963)))) - ((*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497))))) -(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1015)) (-4 *2 (-497)))) - ((*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-497))))) + (-12 (-4 *4 (-148)) (-4 *2 (|SubsetCategory| (-667) *4)) + (-5 *1 (-598 *3 *4 *2)) (-4 *3 (-658 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-499))))) +(((*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1017)) (-4 *2 (-965)))) + ((*1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-499))))) +(((*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1017)) (-4 *2 (-499)))) + ((*1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-499))))) (((*1 *2 *3) - (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) + (-12 (-5 *3 (-834)) (-5 *2 (-1089 *4)) (-5 *1 (-307 *4)) (-4 *4 (-301)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) - ((*1 *1) (-4 *1 (-320))) + (-12 (-5 *3 (-834)) (-5 *2 (-1089 *4)) (-5 *1 (-307 *4)) (-4 *4 (-301)))) + ((*1 *1) (-4 *1 (-322))) ((*1 *2 *3) - (-12 (-5 *3 (-832)) (-5 *2 (-1181 *4)) (-5 *1 (-468 *4)) (-4 *4 (-299)))) - ((*1 *1 *1) (-4 *1 (-485))) ((*1 *1) (-4 *1 (-485))) - ((*1 *1 *1) (-5 *1 (-696))) - ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) + (-12 (-5 *3 (-834)) (-5 *2 (-1183 *4)) (-5 *1 (-470 *4)) (-4 *4 (-301)))) + ((*1 *1 *1) (-4 *1 (-487))) ((*1 *1) (-4 *1 (-487))) + ((*1 *1 *1) (-5 *1 (-698))) + ((*1 *2 *1) (-12 (-5 *2 (-817 *3)) (-5 *1 (-820 *3)) (-4 *3 (-1017)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-486)) (-5 *2 (-815 *4)) (-5 *1 (-818 *4)) (-4 *4 (-1015)))) - ((*1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-485)) (-4 *2 (-497))))) + (-12 (-5 *3 (-488)) (-5 *2 (-817 *4)) (-5 *1 (-820 *4)) (-4 *4 (-1017)))) + ((*1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-487)) (-4 *2 (-499))))) (((*1 *2 *2) (-12 (-5 *2 - (-901 (-350 (-486)) (-775 *3) (-197 *4 (-696)) (-206 *3 (-350 (-486))))) - (-14 *3 (-585 (-1092))) (-14 *4 (-696)) (-5 *1 (-902 *3 *4))))) + (-903 (-352 (-488)) (-777 *3) (-199 *4 (-698)) (-208 *3 (-352 (-488))))) + (-14 *3 (-587 (-1094))) (-14 *4 (-698)) (-5 *1 (-904 *3 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-585 *3)) (-4 *3 (-863 *4 *6 *5)) (-4 *4 (-393)) (-4 *5 (-758)) - (-4 *6 (-719)) (-5 *1 (-901 *4 *5 *6 *3))))) + (-12 (-5 *2 (-587 *3)) (-4 *3 (-865 *4 *6 *5)) (-4 *4 (-395)) (-4 *5 (-760)) + (-4 *6 (-721)) (-5 *1 (-903 *4 *5 *6 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-393)) (-4 *4 (-758)) (-4 *5 (-719)) - (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4))))) + (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-395)) (-4 *4 (-760)) (-4 *5 (-721)) + (-5 *1 (-903 *3 *4 *5 *6)) (-4 *6 (-865 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-393)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *2 (-585 *6)) - (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4))))) + (-12 (-4 *3 (-395)) (-4 *4 (-760)) (-4 *5 (-721)) (-5 *2 (-587 *6)) + (-5 *1 (-903 *3 *4 *5 *6)) (-4 *6 (-865 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-863 *3 *5 *4)) (-5 *1 (-901 *3 *4 *5 *2)) (-4 *3 (-393)) - (-4 *4 (-758)) (-4 *5 (-719))))) + (-12 (-4 *2 (-865 *3 *5 *4)) (-5 *1 (-903 *3 *4 *5 *2)) (-4 *3 (-395)) + (-4 *4 (-760)) (-4 *5 (-721))))) (((*1 *1 *1) - (-12 (-4 *2 (-393)) (-4 *3 (-758)) (-4 *4 (-719)) (-5 *1 (-901 *2 *3 *4 *5)) - (-4 *5 (-863 *2 *4 *3))))) + (-12 (-4 *2 (-395)) (-4 *3 (-760)) (-4 *4 (-721)) (-5 *1 (-903 *2 *3 *4 *5)) + (-4 *5 (-865 *2 *4 *3))))) (((*1 *2 *3) - (-12 (-4 *3 (-1157 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-900 *4 *2 *3 *5)) - (-4 *4 (-299)) (-4 *5 (-663 *2 *3))))) + (-12 (-4 *3 (-1159 *2)) (-4 *2 (-1159 *4)) (-5 *1 (-902 *4 *2 *3 *5)) + (-4 *4 (-301)) (-4 *5 (-665 *2 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-719)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) - (-4 *5 (-497)) (-5 *1 (-673 *4 *3 *5 *2)) - (-4 *2 (-863 (-350 (-859 *5)) *4 *3)))) + (-12 (-4 *4 (-721)) (-4 *3 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $))))) + (-4 *5 (-499)) (-5 *1 (-675 *4 *3 *5 *2)) + (-4 *2 (-865 (-352 (-861 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-963)) (-4 *5 (-719)) + (-12 (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 - (-13 (-758) - (-10 -8 (-15 -3975 ((-1092) $)) - (-15 -3834 ((-3 $ #1="failed") (-1092)))))) - (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-863 (-859 *4) *5 *3)))) + (-13 (-760) + (-10 -8 (-15 -3978 ((-1094) $)) + (-15 -3837 ((-3 $ #1="failed") (-1094)))))) + (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-865 (-861 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-585 *6)) + (-12 (-5 *3 (-587 *6)) (-4 *6 - (-13 (-758) - (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ #1#) (-1092)))))) - (-4 *4 (-963)) (-4 *5 (-719)) (-5 *1 (-899 *4 *5 *6 *2)) - (-4 *2 (-863 (-859 *4) *5 *6))))) + (-13 (-760) + (-10 -8 (-15 -3978 ((-1094) $)) (-15 -3837 ((-3 $ #1#) (-1094)))))) + (-4 *4 (-965)) (-4 *5 (-721)) (-5 *1 (-901 *4 *5 *6 *2)) + (-4 *2 (-865 (-861 *4) *5 *6))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-719)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) - (-4 *5 (-497)) (-5 *1 (-673 *4 *3 *5 *2)) - (-4 *2 (-863 (-350 (-859 *5)) *4 *3)))) + (-12 (-4 *4 (-721)) (-4 *3 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $))))) + (-4 *5 (-499)) (-5 *1 (-675 *4 *3 *5 *2)) + (-4 *2 (-865 (-352 (-861 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-963)) (-4 *5 (-719)) + (-12 (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 - (-13 (-758) - (-10 -8 (-15 -3975 ((-1092) $)) - (-15 -3834 ((-3 $ #1="failed") (-1092)))))) - (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-863 (-859 *4) *5 *3)))) + (-13 (-760) + (-10 -8 (-15 -3978 ((-1094) $)) + (-15 -3837 ((-3 $ #1="failed") (-1094)))))) + (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-865 (-861 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-585 *6)) + (-12 (-5 *3 (-587 *6)) (-4 *6 - (-13 (-758) - (-10 -8 (-15 -3975 ((-1092) $)) (-15 -3834 ((-3 $ #1#) (-1092)))))) - (-4 *4 (-963)) (-4 *5 (-719)) (-5 *1 (-899 *4 *5 *6 *2)) - (-4 *2 (-863 (-859 *4) *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1117))))) + (-13 (-760) + (-10 -8 (-15 -3978 ((-1094) $)) (-15 -3837 ((-3 $ #1#) (-1094)))))) + (-4 *4 (-965)) (-4 *5 (-721)) (-5 *1 (-901 *4 *5 *6 *2)) + (-4 *2 (-865 (-861 *4) *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1119))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-696)) (-4 *1 (-898 *2)) (-4 *2 (-1117))))) -(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-785)))) - ((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) -(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-130)))) - ((*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) - ((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) -(((*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-130)))) - ((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) -(((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) -(((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) -(((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) -(((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) -(((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) -(((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) - (-5 *2 (-585 (-2 (|:| C (-632 *5)) (|:| |g| (-1181 *5))))) (-5 *1 (-893 *5)) - (-5 *3 (-632 *5)) (-5 *4 (-1181 *5))))) + (|partial| -12 (-5 *3 (-698)) (-4 *1 (-900 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-787)))) + ((*1 *2 *3) (-12 (-5 *3 (-858 *2)) (-5 *1 (-899 *2)) (-4 *2 (-965))))) +(((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-130)))) + ((*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-787)))) + ((*1 *2 *3) (-12 (-5 *3 (-858 *2)) (-5 *1 (-899 *2)) (-4 *2 (-965))))) +(((*1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-130)))) + ((*1 *2 *3) (-12 (-5 *3 (-858 *2)) (-5 *1 (-899 *2)) (-4 *2 (-965))))) +(((*1 *2 *3) (-12 (-5 *3 (-858 *2)) (-5 *1 (-899 *2)) (-4 *2 (-965))))) +(((*1 *2 *3) (-12 (-5 *3 (-858 *2)) (-5 *1 (-899 *2)) (-4 *2 (-965))))) +(((*1 *2 *3) (-12 (-5 *3 (-858 *2)) (-5 *1 (-899 *2)) (-4 *2 (-965))))) +(((*1 *2 *3) (-12 (-5 *3 (-858 *2)) (-5 *1 (-899 *2)) (-4 *2 (-965))))) +(((*1 *2 *3) (-12 (-5 *3 (-858 *2)) (-5 *1 (-899 *2)) (-4 *2 (-965))))) +(((*1 *2 *3) (-12 (-5 *3 (-858 *2)) (-5 *1 (-899 *2)) (-4 *2 (-965))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-314)) + (-5 *2 (-587 (-2 (|:| C (-634 *5)) (|:| |g| (-1183 *5))))) (-5 *1 (-895 *5)) + (-5 *3 (-634 *5)) (-5 *4 (-1183 *5))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-632 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) - (-5 *1 (-893 *5))))) + (-12 (-5 *2 (-634 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-314)) + (-5 *1 (-895 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-393)) - (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-388 *4 *5 *6 *2)))) + (-12 (-5 *3 (-587 *2)) (-4 *2 (-865 *4 *5 *6)) (-4 *4 (-314)) (-4 *4 (-395)) + (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-390 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-312)) - (-5 *2 (-2 (|:| R (-632 *6)) (|:| A (-632 *6)) (|:| |Ainv| (-632 *6)))) - (-5 *1 (-893 *6)) (-5 *3 (-632 *6))))) + (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-314)) + (-5 *2 (-2 (|:| R (-634 *6)) (|:| A (-634 *6)) (|:| |Ainv| (-634 *6)))) + (-5 *1 (-895 *6)) (-5 *3 (-634 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) - (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-260)) + (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) - (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-260)) + (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) - (-4 *3 (-497)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-260)) + (-4 *3 (-499)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-393)) (-4 *3 (-497)) - (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-395)) (-4 *3 (-499)) + (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-393)) (-4 *3 (-497)) - (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-395)) (-4 *3 (-499)) + (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-393)) (-4 *3 (-497)) - (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-395)) (-4 *3 (-499)) + (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-393)) (-4 *3 (-497)) - (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-395)) (-4 *3 (-499)) + (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-585 *7)) (-5 *3 (-85)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-393)) - (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *7))))) + (-12 (-5 *2 (-587 *7)) (-5 *3 (-85)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-395)) + (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-894 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-393)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) - (-5 *2 (-585 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6))))) + (-12 (-4 *4 (-395)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) + (-5 *2 (-587 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-981 *4 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) - (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) - (-5 *1 (-892 *5 *6 *7 *8))))) + (-12 (-5 *2 (-587 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) + (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-499)) (-4 *6 (-721)) (-4 *7 (-760)) + (-5 *1 (-894 *5 *6 *7 *8))))) (((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-585 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-979 *6 *7 *8)) (-4 *6 (-497)) (-4 *7 (-719)) - (-4 *8 (-758)) (-5 *1 (-892 *6 *7 *8 *9))))) + (-12 (-5 *2 (-587 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-981 *6 *7 *8)) (-4 *6 (-499)) (-4 *7 (-721)) + (-4 *8 (-760)) (-5 *1 (-894 *6 *7 *8 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) - (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-4 *4 (-721)) + (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *7 (-979 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-417 *4 *5 *6 *7)) (|:| -3326 (-585 *7)))) - (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) + (|partial| -12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *7 (-981 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-419 *4 *5 *6 *7)) (|:| -3329 (-587 *7)))) + (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-587 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) - (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-4 *4 (-721)) + (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-585 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *2))))) + (-12 (-5 *3 (-587 *2)) (-4 *2 (-981 *4 *5 *6)) (-4 *4 (-499)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *1 (-894 *4 *5 *6 *2))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) - (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-4 *4 (-721)) + (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-585 *7)) (-5 *3 (-85)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) - (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *7))))) + (-12 (-5 *2 (-587 *7)) (-5 *3 (-85)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-499)) + (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-894 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) - (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) + (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7)))) + (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-587 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) - (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6))))) + (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) + (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-981 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) - (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) + (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7)))) + (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-587 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) - (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6))))) + (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) + (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-981 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) - (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) + (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7)))) + (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-587 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) - (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6))))) + (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) + (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-981 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) - (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) + (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-981 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7)))) + (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-587 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-1 (-85) *8))) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) - (-4 *6 (-719)) (-4 *7 (-758)) - (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) - (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-585 *8))))) + (-12 (-5 *3 (-587 (-1 (-85) *8))) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-499)) + (-4 *6 (-721)) (-4 *7 (-760)) + (-5 *2 (-2 (|:| |goodPols| (-587 *8)) (|:| |badPols| (-587 *8)))) + (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-587 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-1 (-85) *8))) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) - (-4 *6 (-719)) (-4 *7 (-758)) - (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) - (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-585 *8))))) + (-12 (-5 *3 (-587 (-1 (-85) *8))) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-499)) + (-4 *6 (-721)) (-4 *7 (-760)) + (-5 *2 (-2 (|:| |goodPols| (-587 *8)) (|:| |badPols| (-587 *8)))) + (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-587 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-497)) - (-4 *6 (-719)) (-4 *7 (-758)) - (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) - (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-585 *8))))) + (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-981 *5 *6 *7)) (-4 *5 (-499)) + (-4 *6 (-721)) (-4 *7 (-760)) + (-5 *2 (-2 (|:| |goodPols| (-587 *8)) (|:| |badPols| (-587 *8)))) + (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-587 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *7))))) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-499)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-894 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-585 (-585 *8))) (-5 *3 (-585 *8)) (-4 *8 (-979 *5 *6 *7)) - (-4 *5 (-497)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-85)) - (-5 *1 (-892 *5 *6 *7 *8))))) + (-12 (-5 *4 (-587 (-587 *8))) (-5 *3 (-587 *8)) (-4 *8 (-981 *5 *6 *7)) + (-4 *5 (-499)) (-4 *6 (-721)) (-4 *7 (-760)) (-5 *2 (-85)) + (-5 *1 (-894 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *7))))) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-499)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-85)) (-5 *1 (-894 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) - (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-4 *4 (-721)) + (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *3)) - (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) + (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-587 *3)) + (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-981 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-585 *3)) (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *3)))) + (-12 (-5 *2 (-587 *3)) (-4 *3 (-981 *4 *5 *6)) (-4 *4 (-499)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *1 (-894 *4 *5 *6 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) - (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-4 *4 (-721)) + (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-585 *7) (-585 *7))) (-5 *2 (-585 *7)) - (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) - (-5 *1 (-892 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1 (-587 *7) (-587 *7))) (-5 *2 (-587 *7)) + (-4 *7 (-981 *4 *5 *6)) (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) + (-5 *1 (-894 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-497)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *3)) - (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6))))) + (-12 (-4 *4 (-499)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-587 *3)) + (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-981 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-4 *4 (-719)) - (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-4 *4 (-721)) + (-4 *5 (-760)) (-5 *1 (-894 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *5))))) + (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-587 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-891 *4 *5 *3 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) - (-4 *6 (-979 *4 *5 *3)) (-5 *2 (-85))))) + (-12 (-4 *1 (-893 *4 *5 *3 *6)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 (-760)) + (-4 *6 (-981 *4 *5 *3)) (-5 *2 (-85))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) - (-4 *5 (-979 *3 *4 *2))))) + (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)) + (-4 *5 (-981 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) - (-4 *5 (-979 *3 *4 *2))))) + (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)) + (-4 *5 (-981 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) - (-4 *5 (-979 *3 *4 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1131)) (-4 *2 (-758)))) + (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)) + (-4 *5 (-981 *3 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-326 *2)) (-4 *2 (-1133)) (-4 *2 (-760)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1131)))) - ((*1 *2 *2) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-326 *3)) (-4 *3 (-1133)))) + ((*1 *2 *2) (-12 (-5 *2 (-587 (-817 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1017)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-4 *6 (-979 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3133 *1) (|:| |upper| *1))) - (-4 *1 (-891 *4 *5 *3 *6))))) + (-12 (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 (-760)) (-4 *6 (-981 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3136 *1) (|:| |upper| *1))) + (-4 *1 (-893 *4 *5 *3 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-981 *3 *4 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85))))) + (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85))))) + (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85))))) + (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85))))) + (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-497)) + (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *3 (-981 *4 *5 *6)) (-4 *4 (-499)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-497)) + (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *3 (-981 *4 *5 *6)) (-4 *4 (-499)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-585 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) - (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497))))) + (-12 (-5 *2 (-587 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) + (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-585 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) - (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497))))) -(((*1 *2 *1) - (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-497)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-868)) (-5 *2 (-585 (-585 (-856 (-179))))))) - ((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-585 (-585 (-856 (-179)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-868)) (-5 *2 (-1003 (-179))))) - ((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1003 (-179)))))) -(((*1 *2 *1) (-12 (-4 *1 (-868)) (-5 *2 (-1003 (-179))))) - ((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1003 (-179)))))) -(((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1003 (-179)))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) - ((*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1015)))) - ((*1 *2 *1) - (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) (-4 *6 (-196 (-3961 *3) (-696))) + (-12 (-5 *2 (-587 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) + (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499))))) +(((*1 *2 *1) + (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-981 *3 *4 *5)) (-4 *3 (-499)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-587 (-587 (-858 (-181))))))) + ((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-587 (-587 (-858 (-181)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-1005 (-181))))) + ((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-1005 (-181)))))) +(((*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-1005 (-181))))) + ((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-1005 (-181)))))) +(((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-1005 (-181)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-965)) (-4 *3 (-720)))) + ((*1 *2 *1) (-12 (-4 *1 (-337 *3 *2)) (-4 *3 (-965)) (-4 *2 (-1017)))) + ((*1 *2 *1) + (-12 (-14 *3 (-587 (-1094))) (-4 *4 (-148)) (-4 *6 (-198 (-3964 *3) (-698))) (-14 *7 - (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *6)) - (-2 (|:| -2402 *5) (|:| -2403 *6)))) - (-5 *2 (-652 *5 *6 *7)) (-5 *1 (-402 *3 *4 *5 *6 *7 *8)) (-4 *5 (-758)) - (-4 *8 (-863 *4 *6 (-775 *3))))) + (-1 (-85) (-2 (|:| -2405 *5) (|:| -2406 *6)) + (-2 (|:| -2405 *5) (|:| -2406 *6)))) + (-5 *2 (-654 *5 *6 *7)) (-5 *1 (-404 *3 *4 *5 *6 *7 *8)) (-4 *5 (-760)) + (-4 *8 (-865 *4 *6 (-777 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-665)) (-4 *2 (-758)) (-5 *1 (-676 *3 *2)) (-4 *3 (-963)))) + (-12 (-4 *2 (-667)) (-4 *2 (-760)) (-5 *1 (-678 *3 *2)) (-4 *3 (-965)))) ((*1 *1 *1) - (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *4 (-758))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) + (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-720)) (-4 *4 (-760))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-965)) (-4 *3 (-720)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-585 (-832))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-832)) - (-4 *2 (-312)) (-14 *5 (-908 *4 *2)))) + (-12 (-5 *3 (-587 (-834))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-834)) + (-4 *2 (-314)) (-14 *5 (-910 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-652 *5 *6 *7)) (-4 *5 (-758)) (-4 *6 (-196 (-3961 *4) (-696))) + (-12 (-5 *3 (-654 *5 *6 *7)) (-4 *5 (-760)) (-4 *6 (-198 (-3964 *4) (-698))) (-14 *7 - (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *6)) - (-2 (|:| -2402 *5) (|:| -2403 *6)))) - (-14 *4 (-585 (-1092))) (-4 *2 (-146)) (-5 *1 (-402 *4 *2 *5 *6 *7 *8)) - (-4 *8 (-863 *2 *6 (-775 *4))))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-451 *2 *3)) (-4 *2 (-72)) (-4 *3 (-761)))) + (-1 (-85) (-2 (|:| -2405 *5) (|:| -2406 *6)) + (-2 (|:| -2405 *5) (|:| -2406 *6)))) + (-14 *4 (-587 (-1094))) (-4 *2 (-148)) (-5 *1 (-404 *4 *2 *5 *6 *7 *8)) + (-4 *8 (-865 *2 *6 (-777 *4))))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-72)) (-4 *3 (-763)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-486)) (-4 *2 (-497)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1157 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-647 *2)) (-4 *2 (-963)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-676 *2 *3)) (-4 *2 (-963)) (-4 *3 (-665)))) + (-12 (-5 *3 (-488)) (-4 *2 (-499)) (-5 *1 (-566 *2 *4)) (-4 *4 (-1159 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-698)) (-4 *1 (-649 *2)) (-4 *2 (-965)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-678 *2 *3)) (-4 *2 (-965)) (-4 *3 (-667)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 *5)) (-5 *3 (-585 (-696))) (-4 *1 (-681 *4 *5)) - (-4 *4 (-963)) (-4 *5 (-758)))) + (-12 (-5 *2 (-587 *5)) (-5 *3 (-587 (-698))) (-4 *1 (-683 *4 *5)) + (-4 *4 (-965)) (-4 *5 (-760)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *2)) (-4 *4 (-963)) (-4 *2 (-758)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-763 *2)) (-4 *2 (-963)))) + (-12 (-5 *3 (-698)) (-4 *1 (-683 *4 *2)) (-4 *4 (-965)) (-4 *2 (-760)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-698)) (-4 *1 (-765 *2)) (-4 *2 (-965)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 (-696))) (-4 *1 (-863 *4 *5 *6)) - (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)))) + (-12 (-5 *2 (-587 *6)) (-5 *3 (-587 (-698))) (-4 *1 (-865 *4 *5 *6)) + (-4 *4 (-965)) (-4 *5 (-721)) (-4 *6 (-760)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-696)) (-4 *1 (-863 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-719)) - (-4 *2 (-758)))) + (-12 (-5 *3 (-698)) (-4 *1 (-865 *4 *5 *2)) (-4 *4 (-965)) (-4 *5 (-721)) + (-4 *2 (-760)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 *5)) (-4 *1 (-888 *4 *5 *6)) - (-4 *4 (-963)) (-4 *5 (-718)) (-4 *6 (-758)))) + (-12 (-5 *2 (-587 *6)) (-5 *3 (-587 *5)) (-4 *1 (-890 *4 *5 *6)) + (-4 *4 (-965)) (-4 *5 (-720)) (-4 *6 (-760)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-888 *4 *3 *2)) (-4 *4 (-963)) (-4 *3 (-718)) (-4 *2 (-758))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-533 *3)) (-4 *3 (-963)))) + (-12 (-4 *1 (-890 *4 *3 *2)) (-4 *4 (-965)) (-4 *3 (-720)) (-4 *2 (-760))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-535 *3)) (-4 *3 (-965)))) ((*1 *2 *1) - (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-718)) (-4 *5 (-758)) + (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-720)) (-4 *5 (-760)) (-5 *2 (-85))))) -(((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) - ((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164)))) - ((*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1131)))) - ((*1 *1 *1) (-4 *1 (-781 *2))) +(((*1 *1 *1) (-12 (-5 *1 (-150 *2)) (-4 *2 (-260)))) + ((*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166)))) + ((*1 *1 *1) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1133)))) + ((*1 *1 *1) (-4 *1 (-783 *2))) ((*1 *1 *1) - (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *4 (-758))))) -(((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485)))) - ((*1 *1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-886))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-886))))) -(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1071 (-886))) (-5 *1 (-886))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-784 (-832) (-832)))) (-5 *1 (-886))))) -(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-886))))) + (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-720)) (-4 *4 (-760))))) +(((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-487)))) + ((*1 *1 *2) (-12 (-5 *2 (-587 (-834))) (-5 *1 (-888))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-834))) (-5 *1 (-888))))) +(((*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1073 (-888))) (-5 *1 (-888))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-786 (-834) (-834)))) (-5 *1 (-888))))) +(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-888))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3759 *4))) - (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3762 *4))) + (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-497)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3759 *4))) - (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-497)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1157 *2))))) + (-12 (-4 *4 (-499)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3762 *4))) + (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-499)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1159 *2))))) (((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3))))) + (-12 (-4 *3 (-499)) (-5 *1 (-886 *3 *2)) (-4 *2 (-1159 *3))))) (((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-696)) (-4 *3 (-497)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1157 *3))))) + (-12 (-5 *4 (-698)) (-4 *3 (-499)) (-5 *1 (-886 *3 *2)) (-4 *2 (-1159 *3))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-696)) (-4 *2 (-497)) (-5 *1 (-884 *2 *4)) (-4 *4 (-1157 *2))))) + (-12 (-5 *3 (-698)) (-4 *2 (-499)) (-5 *1 (-886 *2 *4)) (-4 *4 (-1159 *2))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-258)))) + (-12 (-5 *2 (-2 (|:| -1977 *1) (|:| -2908 *1))) (-4 *1 (-260)))) ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1015)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) - (-4 *1 (-336 *3)))) + (|partial| -12 (-4 *3 (-1017)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) + (-4 *1 (-338 *3)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1974 (-696)) (|:| -2905 (-696)))) (-5 *1 (-696)))) + (-12 (-5 *2 (-2 (|:| -1977 (-698)) (|:| -2908 (-698)))) (-5 *1 (-698)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) - (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| -1977 *3) (|:| -2908 *3))) + (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-393)) (-4 *4 (-497)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2879 *4))) (-5 *1 (-884 *4 *3)) - (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-395)) (-4 *4 (-499)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -2882 *4))) (-5 *1 (-886 *4 *3)) + (-4 *3 (-1159 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-393)) (-4 *4 (-497)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2879 *4))) - (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-395)) (-4 *4 (-499)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2882 *4))) + (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-497)) (-4 *2 (-393)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1157 *2))))) + (-12 (-4 *2 (-499)) (-4 *2 (-395)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1159 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-585 (-696))) (-5 *1 (-884 *4 *3)) - (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-499)) (-5 *2 (-587 (-698))) (-5 *1 (-886 *4 *3)) + (-4 *3 (-1159 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-585 *3)) (-5 *1 (-884 *4 *3)) - (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-499)) (-5 *2 (-587 *3)) (-5 *1 (-886 *4 *3)) + (-4 *3 (-1159 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3760 *4))) - (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3763 *4))) + (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3760 *4))) - (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-499)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3763 *4))) + (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3147 *3))) - (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3150 *3))) + (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3147 *3))) - (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3150 *3))) + (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-497)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3147 *3))) - (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-499)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3150 *3))) + (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-497)) + (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) + (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-696)) (-4 *5 (-497)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *5 *3)) - (-4 *3 (-1157 *5))))) + (-12 (-5 *4 (-698)) (-4 *5 (-499)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-886 *5 *3)) + (-4 *3 (-1159 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-696)) (-4 *5 (-497)) + (-12 (-5 *4 (-698)) (-4 *5 (-499)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-884 *5 *3)) (-4 *3 (-1157 *5))))) + (-5 *1 (-886 *5 *3)) (-4 *3 (-1159 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-696)) (-4 *4 (-497)) (-5 *1 (-884 *4 *2)) (-4 *2 (-1157 *4))))) + (-12 (-5 *3 (-698)) (-4 *4 (-499)) (-5 *1 (-886 *4 *2)) (-4 *2 (-1159 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-696)) (-4 *5 (-497)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *5 *3)) - (-4 *3 (-1157 *5))))) + (-12 (-5 *4 (-698)) (-4 *5 (-499)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-886 *5 *3)) + (-4 *3 (-1159 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-696)) (-4 *5 (-497)) + (-12 (-5 *4 (-698)) (-4 *5 (-499)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-884 *5 *3)) (-4 *3 (-1157 *5))))) + (-5 *1 (-886 *5 *3)) (-4 *3 (-1159 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-696)) (-4 *4 (-497)) (-5 *1 (-884 *4 *2)) (-4 *2 (-1157 *4))))) + (-12 (-5 *3 (-698)) (-4 *4 (-499)) (-5 *1 (-886 *4 *2)) (-4 *2 (-1159 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3759 *4))) - (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3762 *4))) + (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3759 *4))) - (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-499)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3762 *4))) + (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-497)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3759 *4))) - (-5 *1 (-884 *4 *3)) (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-499)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3762 *4))) + (-5 *1 (-886 *4 *3)) (-4 *3 (-1159 *4))))) (((*1 *1) - (-12 (-4 *1 (-347)) (-2563 (|has| *1 (-6 -3989))) - (-2563 (|has| *1 (-6 -3981))))) - ((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1015)) (-4 *2 (-758)))) - ((*1 *1) (-4 *1 (-754))) ((*1 *1 *1 *1) (-4 *1 (-761))) - ((*1 *2 *1) (-12 (-4 *1 (-883 *2)) (-4 *2 (-758))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)) (-4 *2 (-758)))) + (-12 (-4 *1 (-349)) (-2566 (|has| *1 (-6 -3992))) + (-2566 (|has| *1 (-6 -3984))))) + ((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-1017)) (-4 *2 (-760)))) + ((*1 *1) (-4 *1 (-756))) ((*1 *1 *1 *1) (-4 *1 (-763))) + ((*1 *2 *1) (-12 (-4 *1 (-885 *2)) (-4 *2 (-760))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1133)) (-4 *2 (-760)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-883 *2)) (-4 *2 (-758))))) -(((*1 *1) (-4 *1 (-882)))) -(((*1 *1) (-4 *1 (-882)))) -(((*1 *1 *1 *1) (-4 *1 (-882)))) -(((*1 *1 *1 *1) (-4 *1 (-882)))) -(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-14 *3 (-585 (-1092))) (-5 *1 (-168 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-585 (-1092))) (-5 *1 (-579 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1015)) (-5 *1 (-880 *3))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1015)) (-5 *2 (-800 *3 *4)) (-5 *1 (-797 *3 *4 *5)) - (-4 *3 (-1015)) (-4 *5 (-610 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-879 *4)) (-4 *4 (-1015)) (-5 *2 (-1011 *4)) (-5 *1 (-880 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-634 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) - (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) - (-4 *3 (-1015))))) -(((*1 *2 *1) - (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) - (-4 *3 (-1015))))) -(((*1 *2 *1) - (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) - (-4 *3 (-1015))))) -(((*1 *2 *1) - (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) - (-4 *3 (-1015))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1015))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1015))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-698))) (-5 *1 (-86)))) - ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1075)) (-5 *2 (-698)) (-5 *1 (-86)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1017)) (-5 *1 (-878))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-877 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-877 *2 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-877 *3 *2)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-774)))) - ((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1187)) (-5 *1 (-876))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-585 *3)) (-5 *1 (-875 *3)) (-4 *3 (-485))))) -(((*1 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-485))))) -(((*1 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-485))))) -(((*1 *1) (-4 *1 (-299))) - ((*1 *2 *3) - (-12 (-5 *3 (-585 *5)) (-4 *5 (-364 *4)) (-4 *4 (-13 (-497) (-120))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-585 (-1087 *5))) - (|:| |prim| (-1087 *5)))) - (-5 *1 (-375 *4 *5)))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-239 *3)) (-4 *3 (-1133)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-885 *2)) (-4 *2 (-760))))) +(((*1 *1) (-4 *1 (-884)))) +(((*1 *1) (-4 *1 (-884)))) +(((*1 *1 *1 *1) (-4 *1 (-884)))) +(((*1 *1 *1 *1) (-4 *1 (-884)))) +(((*1 *1 *2) (-12 (-5 *2 (-581 *3)) (-14 *3 (-587 (-1094))) (-5 *1 (-170 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-170 *3)) (-14 *3 (-587 (-1094))) (-5 *1 (-581 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-1017)) (-5 *1 (-882 *3))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1017)) (-5 *2 (-802 *3 *4)) (-5 *1 (-799 *3 *4 *5)) + (-4 *3 (-1017)) (-4 *5 (-612 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-881 *4)) (-4 *4 (-1017)) (-5 *2 (-1013 *4)) (-5 *1 (-882 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-636 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-636 (-881 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) + (-12 (-5 *2 (-636 (-786 (-881 *3) (-881 *3)))) (-5 *1 (-881 *3)) + (-4 *3 (-1017))))) +(((*1 *2 *1) + (-12 (-5 *2 (-636 (-786 (-881 *3) (-881 *3)))) (-5 *1 (-881 *3)) + (-4 *3 (-1017))))) +(((*1 *2 *1) + (-12 (-5 *2 (-636 (-786 (-881 *3) (-881 *3)))) (-5 *1 (-881 *3)) + (-4 *3 (-1017))))) +(((*1 *2 *1) + (-12 (-5 *2 (-636 (-786 (-881 *3) (-881 *3)))) (-5 *1 (-881 *3)) + (-4 *3 (-1017))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-881 *2)) (-4 *2 (-1017))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-881 *2)) (-4 *2 (-1017))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-450)) (-5 *2 (-636 (-700))) (-5 *1 (-86)))) + ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1077)) (-5 *2 (-700)) (-5 *1 (-86)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-1019)) (-5 *1 (-880))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-4 *2 (-1017)) (-5 *1 (-879 *2 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-4 *2 (-1017)) (-5 *1 (-879 *3 *2)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-776)))) + ((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1189)) (-5 *1 (-878))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-587 *3)) (-5 *1 (-877 *3)) (-4 *3 (-487))))) +(((*1 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-487))))) +(((*1 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-487))))) +(((*1 *1) (-4 *1 (-301))) + ((*1 *2 *3) + (-12 (-5 *3 (-587 *5)) (-4 *5 (-366 *4)) (-4 *4 (-13 (-499) (-120))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-587 (-1089 *5))) + (|:| |prim| (-1089 *5)))) + (-5 *1 (-377 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-497) (-120))) + (-12 (-4 *4 (-13 (-499) (-120))) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1087 *3)) (|:| |pol2| (-1087 *3)) - (|:| |prim| (-1087 *3)))) - (-5 *1 (-375 *4 *3)) (-4 *3 (-27)) (-4 *3 (-364 *4)))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1089 *3)) (|:| |pol2| (-1089 *3)) + (|:| |prim| (-1089 *3)))) + (-5 *1 (-377 *4 *3)) (-4 *3 (-27)) (-4 *3 (-366 *4)))) ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-859 *5)) (-5 *4 (-1092)) (-4 *5 (-13 (-312) (-120))) + (-12 (-5 *3 (-861 *5)) (-5 *4 (-1094)) (-4 *5 (-13 (-314) (-120))) (-5 *2 - (-2 (|:| |coef1| (-486)) (|:| |coef2| (-486)) (|:| |prim| (-1087 *5)))) - (-5 *1 (-874 *5)))) + (-2 (|:| |coef1| (-488)) (|:| |coef2| (-488)) (|:| |prim| (-1089 *5)))) + (-5 *1 (-876 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-585 (-1092))) - (-4 *5 (-13 (-312) (-120))) + (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-587 (-1094))) + (-4 *5 (-13 (-314) (-120))) (-5 *2 - (-2 (|:| -3958 (-585 (-486))) (|:| |poly| (-585 (-1087 *5))) - (|:| |prim| (-1087 *5)))) - (-5 *1 (-874 *5)))) + (-2 (|:| -3961 (-587 (-488))) (|:| |poly| (-587 (-1089 *5))) + (|:| |prim| (-1089 *5)))) + (-5 *1 (-876 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-585 (-859 *6))) (-5 *4 (-585 (-1092))) (-5 *5 (-1092)) - (-4 *6 (-13 (-312) (-120))) + (-12 (-5 *3 (-587 (-861 *6))) (-5 *4 (-587 (-1094))) (-5 *5 (-1094)) + (-4 *6 (-13 (-314) (-120))) (-5 *2 - (-2 (|:| -3958 (-585 (-486))) (|:| |poly| (-585 (-1087 *6))) - (|:| |prim| (-1087 *6)))) - (-5 *1 (-874 *6))))) + (-2 (|:| -3961 (-587 (-488))) (|:| |poly| (-587 (-1089 *6))) + (|:| |prim| (-1089 *6)))) + (-5 *1 (-876 *6))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1092)) (-5 *1 (-521 *2)) (-4 *2 (-952 *3)) (-4 *2 (-312)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-521 *2)) (-4 *2 (-312)))) + (-12 (-5 *3 (-1094)) (-5 *1 (-523 *2)) (-4 *2 (-954 *3)) (-4 *2 (-314)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-523 *2)) (-4 *2 (-314)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *1 (-570 *4 *2)) - (-4 *2 (-13 (-364 *4) (-917) (-1117))))) + (-12 (-5 *3 (-1094)) (-4 *4 (-499)) (-5 *1 (-572 *4 *2)) + (-4 *2 (-13 (-366 *4) (-919) (-1119))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-364 *4) (-917) (-1117))) (-4 *4 (-497)) - (-5 *1 (-570 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-873)) (-5 *2 (-1092)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-873))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-832)) (-4 *5 (-497)) (-5 *2 (-632 *5)) - (-5 *1 (-870 *5 *3)) (-4 *3 (-602 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-867))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-497)) (-4 *3 (-863 *7 *5 *6)) - (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3958 *3) (|:| |radicand| (-585 *3)))) - (-5 *1 (-866 *5 *6 *7 *3 *8)) (-5 *4 (-696)) + (-12 (-5 *3 (-1008 *2)) (-4 *2 (-13 (-366 *4) (-919) (-1119))) (-4 *4 (-499)) + (-5 *1 (-572 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-875)) (-5 *2 (-1094)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1008 *1)) (-4 *1 (-875))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-834)) (-4 *5 (-499)) (-5 *2 (-634 *5)) + (-5 *1 (-872 *5 *3)) (-4 *3 (-604 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-869))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-499)) (-4 *3 (-865 *7 *5 *6)) + (-5 *2 (-2 (|:| -2406 (-698)) (|:| -3961 *3) (|:| |radicand| (-587 *3)))) + (-5 *1 (-868 *5 *6 *7 *3 *8)) (-5 *4 (-698)) (-4 *8 - (-13 (-312) - (-10 -8 (-15 -3950 ($ *3)) (-15 -3001 (*3 $)) (-15 -3000 (*3 $)))))))) + (-13 (-314) + (-10 -8 (-15 -3953 ($ *3)) (-15 -3004 (*3 $)) (-15 -3003 (*3 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-497)) - (-4 *8 (-863 *7 *5 *6)) - (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3958 *3) (|:| |radicand| *3))) - (-5 *1 (-866 *5 *6 *7 *8 *3)) (-5 *4 (-696)) + (-12 (-4 *7 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-499)) + (-4 *8 (-865 *7 *5 *6)) + (-5 *2 (-2 (|:| -2406 (-698)) (|:| -3961 *3) (|:| |radicand| *3))) + (-5 *1 (-868 *5 *6 *7 *8 *3)) (-5 *4 (-698)) (-4 *3 - (-13 (-312) - (-10 -8 (-15 -3950 ($ *8)) (-15 -3001 (*8 $)) (-15 -3000 (*8 $)))))))) + (-13 (-314) + (-10 -8 (-15 -3953 ($ *8)) (-15 -3004 (*8 $)) (-15 -3003 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-486))) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-497)) - (-4 *8 (-863 *7 *5 *6)) - (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3958 *9) (|:| |radicand| *9))) - (-5 *1 (-866 *5 *6 *7 *8 *9)) (-5 *4 (-696)) + (-12 (-5 *3 (-352 (-488))) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-499)) + (-4 *8 (-865 *7 *5 *6)) + (-5 *2 (-2 (|:| -2406 (-698)) (|:| -3961 *9) (|:| |radicand| *9))) + (-5 *1 (-868 *5 *6 *7 *8 *9)) (-5 *4 (-698)) (-4 *9 - (-13 (-312) - (-10 -8 (-15 -3950 ($ *8)) (-15 -3001 (*8 $)) (-15 -3000 (*8 $)))))))) + (-13 (-314) + (-10 -8 (-15 -3953 ($ *8)) (-15 -3004 (*8 $)) (-15 -3003 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-497)) (-4 *7 (-863 *3 *5 *6)) - (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3958 *8) (|:| |radicand| *8))) - (-5 *1 (-866 *5 *6 *3 *7 *8)) (-5 *4 (-696)) + (-12 (-4 *5 (-721)) (-4 *6 (-760)) (-4 *3 (-499)) (-4 *7 (-865 *3 *5 *6)) + (-5 *2 (-2 (|:| -2406 (-698)) (|:| -3961 *8) (|:| |radicand| *8))) + (-5 *1 (-868 *5 *6 *3 *7 *8)) (-5 *4 (-698)) (-4 *8 - (-13 (-312) - (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $)))))))) + (-13 (-314) + (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-963)) (-4 *3 (-1015)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2403 (-486)))) (-4 *1 (-364 *3)))) + (|partial| -12 (-4 *3 (-965)) (-4 *3 (-1017)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2406 (-488)))) (-4 *1 (-366 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-802 *3)) (|:| -2403 (-802 *3)))) - (-5 *1 (-802 *3)) (-4 *3 (-1015)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-804 *3)) (|:| -2406 (-804 *3)))) + (-5 *1 (-804 *3)) (-4 *3 (-1017)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) - (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2403 (-486)))) - (-5 *1 (-864 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-965)) + (-4 *7 (-865 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2406 (-488)))) + (-5 *1 (-866 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-312) - (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $)))))))) + (-13 (-314) + (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $)))))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1092)) (-4 *4 (-963)) (-4 *4 (-1015)) - (-5 *2 (-2 (|:| |var| (-552 *1)) (|:| -2403 (-486)))) (-4 *1 (-364 *4)))) + (|partial| -12 (-5 *3 (-1094)) (-4 *4 (-965)) (-4 *4 (-1017)) + (-5 *2 (-2 (|:| |var| (-554 *1)) (|:| -2406 (-488)))) (-4 *1 (-366 *4)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-86)) (-4 *4 (-963)) (-4 *4 (-1015)) - (-5 *2 (-2 (|:| |var| (-552 *1)) (|:| -2403 (-486)))) (-4 *1 (-364 *4)))) + (|partial| -12 (-5 *3 (-86)) (-4 *4 (-965)) (-4 *4 (-1017)) + (-5 *2 (-2 (|:| |var| (-554 *1)) (|:| -2406 (-488)))) (-4 *1 (-366 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1027)) (-4 *3 (-1015)) - (-5 *2 (-2 (|:| |var| (-552 *1)) (|:| -2403 (-486)))) (-4 *1 (-364 *3)))) + (|partial| -12 (-4 *3 (-1029)) (-4 *3 (-1017)) + (-5 *2 (-2 (|:| |var| (-554 *1)) (|:| -2406 (-488)))) (-4 *1 (-366 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-802 *3)) (|:| -2403 (-696)))) - (-5 *1 (-802 *3)) (-4 *3 (-1015)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-804 *3)) (|:| -2406 (-698)))) + (-5 *1 (-804 *3)) (-4 *3 (-1017)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) - (-4 *5 (-758)) (-5 *2 (-2 (|:| |var| *5) (|:| -2403 (-696)))))) + (|partial| -12 (-4 *1 (-865 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) + (-4 *5 (-760)) (-5 *2 (-2 (|:| |var| *5) (|:| -2406 (-698)))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) - (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2403 (-486)))) - (-5 *1 (-864 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-965)) + (-4 *7 (-865 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2406 (-488)))) + (-5 *1 (-866 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-312) - (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $)))))))) + (-13 (-314) + (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1027)) (-4 *3 (-1015)) (-5 *2 (-585 *1)) - (-4 *1 (-364 *3)))) + (|partial| -12 (-4 *3 (-1029)) (-4 *3 (-1017)) (-5 *2 (-587 *1)) + (-4 *1 (-366 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) + (|partial| -12 (-5 *2 (-587 (-804 *3))) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) - (-4 *1 (-863 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-587 *1)) + (-4 *1 (-865 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) - (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-585 *3)) (-5 *1 (-864 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-965)) + (-4 *7 (-865 *6 *4 *5)) (-5 *2 (-587 *3)) (-5 *1 (-866 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-312) - (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $)))))))) + (-13 (-314) + (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1015)) (-5 *2 (-585 *1)) - (-4 *1 (-364 *3)))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1017)) (-5 *2 (-587 *1)) + (-4 *1 (-366 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) + (|partial| -12 (-5 *2 (-587 (-804 *3))) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) - (-4 *1 (-863 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-587 *1)) + (-4 *1 (-865 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) - (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-585 *3)) (-5 *1 (-864 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-965)) + (-4 *7 (-865 *6 *4 *5)) (-5 *2 (-587 *3)) (-5 *1 (-866 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-312) - (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $)))))))) + (-13 (-314) + (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-335 *3 *4)))) + (-12 (-4 *3 (-965)) (-4 *4 (-1017)) (-5 *2 (-587 *1)) (-4 *1 (-337 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-585 (-676 *3 *4))) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) - (-4 *4 (-665)))) + (-12 (-5 *2 (-587 (-678 *3 *4))) (-5 *1 (-678 *3 *4)) (-4 *3 (-965)) + (-4 *4 (-667)))) ((*1 *2 *1) - (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) - (-4 *1 (-863 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) - ((*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) - ((*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) + (-12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-587 *1)) + (-4 *1 (-865 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-965)) (-4 *2 (-720)))) + ((*1 *2 *1) (-12 (-4 *1 (-649 *3)) (-4 *3 (-965)) (-5 *2 (-698)))) + ((*1 *2 *1) (-12 (-4 *1 (-765 *3)) (-4 *3 (-965)) (-5 *2 (-698)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-585 *6)) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-585 (-696))))) + (-12 (-5 *3 (-587 *6)) (-4 *1 (-865 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-587 (-698))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-863 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) - (-5 *2 (-696))))) + (-12 (-4 *1 (-865 *4 *5 *3)) (-4 *4 (-965)) (-4 *5 (-721)) (-4 *3 (-760)) + (-5 *2 (-698))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-585 *6)) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-696)))) + (-12 (-5 *3 (-587 *6)) (-4 *1 (-865 *4 *5 *6)) (-4 *4 (-965)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-698)))) ((*1 *2 *1) - (-12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-5 *2 (-696))))) + (-12 (-4 *1 (-865 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-5 *2 (-698))))) (((*1 *2 *1) - (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) - (-4 *1 (-863 *3 *4 *5))))) + (-12 (-4 *3 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-587 *1)) + (-4 *1 (-865 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)) (-4 *2 (-393)))) + (-12 (-4 *1 (-279 *2 *3)) (-4 *3 (-720)) (-4 *2 (-965)) (-4 *2 (-395)))) ((*1 *2 *3) - (-12 (-5 *3 (-585 *4)) (-4 *4 (-1157 (-486))) (-5 *2 (-585 (-486))) - (-5 *1 (-427 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-393)))) + (-12 (-5 *3 (-587 *4)) (-4 *4 (-1159 (-488))) (-5 *2 (-587 (-488))) + (-5 *1 (-429 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-395)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) - (-4 *3 (-393))))) + (-12 (-4 *1 (-865 *3 *4 *2)) (-4 *3 (-965)) (-4 *4 (-721)) (-4 *2 (-760)) + (-4 *3 (-395))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-585 *5)) (-5 *4 (-486)) (-4 *5 (-757)) (-4 *5 (-312)) - (-5 *2 (-696)) (-5 *1 (-858 *5 *6)) (-4 *6 (-1157 *5))))) + (-12 (-5 *3 (-587 *5)) (-5 *4 (-488)) (-4 *5 (-759)) (-4 *5 (-314)) + (-5 *2 (-698)) (-5 *1 (-860 *5 *6)) (-4 *6 (-1159 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 *4)) (-4 *4 (-757)) (-4 *4 (-312)) (-5 *2 (-696)) - (-5 *1 (-858 *4 *5)) (-4 *5 (-1157 *4))))) + (-12 (-5 *3 (-587 *4)) (-4 *4 (-759)) (-4 *4 (-314)) (-5 *2 (-698)) + (-5 *1 (-860 *4 *5)) (-4 *5 (-1159 *4))))) (((*1 *2 *3) - (-12 (-4 *2 (-312)) (-4 *2 (-757)) (-5 *1 (-858 *2 *3)) (-4 *3 (-1157 *2))))) + (-12 (-4 *2 (-314)) (-4 *2 (-759)) (-5 *1 (-860 *2 *3)) (-4 *3 (-1159 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-312)) (-5 *2 (-585 *3)) (-5 *1 (-858 *4 *3)) - (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-314)) (-5 *2 (-587 *3)) (-5 *1 (-860 *4 *3)) + (-4 *3 (-1159 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-312)) (-5 *2 (-585 *3)) (-5 *1 (-858 *4 *3)) - (-4 *3 (-1157 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-859 *5)) (-4 *5 (-963)) (-5 *2 (-206 *4 *5)) - (-5 *1 (-857 *4 *5)) (-14 *4 (-585 (-1092)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-963)) - (-5 *2 (-859 *5)) (-5 *1 (-857 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-422 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-963)) - (-5 *2 (-859 *5)) (-5 *1 (-857 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-859 *5)) (-4 *5 (-963)) (-5 *2 (-422 *4 *5)) - (-5 *1 (-857 *4 *5)) (-14 *4 (-585 (-1092)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-422 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-963)) - (-5 *2 (-206 *4 *5)) (-5 *1 (-857 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-963)) - (-5 *2 (-422 *4 *5)) (-5 *1 (-857 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) - ((*1 *2 *3) (-12 (-5 *2 (-1087 (-350 (-486)))) (-5 *1 (-855)) (-5 *3 (-486))))) -(((*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486))))) -(((*1 *2 *3) (-12 (-5 *3 (-1087 (-486))) (-5 *2 (-486)) (-5 *1 (-855))))) -(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501)))) - ((*1 *2 *3) (-12 (-5 *2 (-1087 (-350 (-486)))) (-5 *1 (-855)) (-5 *3 (-486))))) -(((*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-165)) (-5 *3 (-486)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-708 *2)) (-4 *2 (-146)))) - ((*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) - ((*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) - ((*1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *1 (-855)) (-5 *3 (-486))))) -(((*1 *2 *3) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-501)) (-5 *3 (-486)))) - ((*1 *2 *3) (-12 (-5 *2 (-1087 (-350 (-486)))) (-5 *1 (-855)) (-5 *3 (-486))))) + (-12 (-4 *4 (-314)) (-5 *2 (-587 *3)) (-5 *1 (-860 *4 *3)) + (-4 *3 (-1159 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-861 *5)) (-4 *5 (-965)) (-5 *2 (-208 *4 *5)) + (-5 *1 (-859 *4 *5)) (-14 *4 (-587 (-1094)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-208 *4 *5)) (-14 *4 (-587 (-1094))) (-4 *5 (-965)) + (-5 *2 (-861 *5)) (-5 *1 (-859 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-424 *4 *5)) (-14 *4 (-587 (-1094))) (-4 *5 (-965)) + (-5 *2 (-861 *5)) (-5 *1 (-859 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-861 *5)) (-4 *5 (-965)) (-5 *2 (-424 *4 *5)) + (-5 *1 (-859 *4 *5)) (-14 *4 (-587 (-1094)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-424 *4 *5)) (-14 *4 (-587 (-1094))) (-4 *5 (-965)) + (-5 *2 (-208 *4 *5)) (-5 *1 (-859 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-208 *4 *5)) (-14 *4 (-587 (-1094))) (-4 *5 (-965)) + (-5 *2 (-424 *4 *5)) (-5 *1 (-859 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-503)))) + ((*1 *2 *3) (-12 (-5 *2 (-1089 (-352 (-488)))) (-5 *1 (-857)) (-5 *3 (-488))))) +(((*1 *2 *3) (-12 (-5 *2 (-1089 (-488))) (-5 *1 (-857)) (-5 *3 (-488))))) +(((*1 *2 *3) (-12 (-5 *3 (-1089 (-488))) (-5 *2 (-488)) (-5 *1 (-857))))) +(((*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-503)))) + ((*1 *2 *3) (-12 (-5 *2 (-1089 (-352 (-488)))) (-5 *1 (-857)) (-5 *3 (-488))))) +(((*1 *2 *3) (-12 (-5 *2 (-1089 (-488))) (-5 *1 (-167)) (-5 *3 (-488)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-698)) (-5 *1 (-710 *2)) (-4 *2 (-148)))) + ((*1 *2 *3) (-12 (-5 *2 (-1089 (-488))) (-5 *1 (-857)) (-5 *3 (-488))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-698)) (-5 *1 (-769 *2)) (-4 *2 (-148)))) + ((*1 *2 *3) (-12 (-5 *2 (-1089 (-488))) (-5 *1 (-857)) (-5 *3 (-488))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-698)) (-5 *1 (-769 *2)) (-4 *2 (-148)))) + ((*1 *2 *3) (-12 (-5 *2 (-1089 (-488))) (-5 *1 (-857)) (-5 *3 (-488))))) +(((*1 *2 *3) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-503)) (-5 *3 (-488)))) + ((*1 *2 *3) (-12 (-5 *2 (-1089 (-352 (-488)))) (-5 *1 (-857)) (-5 *3 (-488))))) (((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-802 *6))) - (-5 *5 (-1 (-800 *6 *8) *8 (-802 *6) (-800 *6 *8))) (-4 *6 (-1015)) - (-4 *8 (-13 (-963) (-555 (-802 *6)) (-952 *7))) (-5 *2 (-800 *6 *8)) - (-4 *7 (-963)) (-5 *1 (-854 *6 *7 *8))))) + (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 (-804 *6))) + (-5 *5 (-1 (-802 *6 *8) *8 (-804 *6) (-802 *6 *8))) (-4 *6 (-1017)) + (-4 *8 (-13 (-965) (-557 (-804 *6)) (-954 *7))) (-5 *2 (-802 *6 *8)) + (-4 *7 (-965)) (-5 *1 (-856 *6 *7 *8))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-800 *5 *3)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *3 (-139 *6)) - (-4 (-859 *6) (-798 *5)) (-4 *6 (-13 (-798 *5) (-146))) - (-5 *1 (-152 *5 *6 *3)))) + (-12 (-5 *2 (-802 *5 *3)) (-5 *4 (-804 *5)) (-4 *5 (-1017)) (-4 *3 (-141 *6)) + (-4 (-861 *6) (-800 *5)) (-4 *6 (-13 (-800 *5) (-148))) + (-5 *1 (-154 *5 *6 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-800 *4 *1)) (-5 *3 (-802 *4)) (-4 *1 (-798 *4)) - (-4 *4 (-1015)))) + (-12 (-5 *2 (-802 *4 *1)) (-5 *3 (-804 *4)) (-4 *1 (-800 *4)) + (-4 *4 (-1017)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-800 *5 *6)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) - (-4 *6 (-13 (-1015) (-952 *3))) (-4 *3 (-798 *5)) (-5 *1 (-844 *5 *3 *6)))) + (-12 (-5 *2 (-802 *5 *6)) (-5 *4 (-804 *5)) (-4 *5 (-1017)) + (-4 *6 (-13 (-1017) (-954 *3))) (-4 *3 (-800 *5)) (-5 *1 (-846 *5 *3 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-800 *5 *3)) (-4 *5 (-1015)) - (-4 *3 (-13 (-364 *6) (-555 *4) (-798 *5) (-952 (-552 $)))) - (-5 *4 (-802 *5)) (-4 *6 (-13 (-497) (-798 *5))) (-5 *1 (-845 *5 *6 *3)))) + (-12 (-5 *2 (-802 *5 *3)) (-4 *5 (-1017)) + (-4 *3 (-13 (-366 *6) (-557 *4) (-800 *5) (-954 (-554 $)))) + (-5 *4 (-804 *5)) (-4 *6 (-13 (-499) (-800 *5))) (-5 *1 (-847 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-800 (-486) *3)) (-5 *4 (-802 (-486))) (-4 *3 (-485)) - (-5 *1 (-846 *3)))) + (-12 (-5 *2 (-802 (-488) *3)) (-5 *4 (-804 (-488))) (-4 *3 (-487)) + (-5 *1 (-848 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-800 *5 *6)) (-5 *3 (-552 *6)) (-4 *5 (-1015)) - (-4 *6 (-13 (-1015) (-952 (-552 $)) (-555 *4) (-798 *5))) (-5 *4 (-802 *5)) - (-5 *1 (-847 *5 *6)))) + (-12 (-5 *2 (-802 *5 *6)) (-5 *3 (-554 *6)) (-4 *5 (-1017)) + (-4 *6 (-13 (-1017) (-954 (-554 $)) (-557 *4) (-800 *5))) (-5 *4 (-804 *5)) + (-5 *1 (-849 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-797 *5 *6 *3)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) - (-4 *6 (-798 *5)) (-4 *3 (-610 *6)) (-5 *1 (-848 *5 *6 *3)))) + (-12 (-5 *2 (-799 *5 *6 *3)) (-5 *4 (-804 *5)) (-4 *5 (-1017)) + (-4 *6 (-800 *5)) (-4 *3 (-612 *6)) (-5 *1 (-850 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-800 *6 *3) *8 (-802 *6) (-800 *6 *3))) (-4 *8 (-758)) - (-5 *2 (-800 *6 *3)) (-5 *4 (-802 *6)) (-4 *6 (-1015)) - (-4 *3 (-13 (-863 *9 *7 *8) (-555 *4))) (-4 *7 (-719)) - (-4 *9 (-13 (-963) (-798 *6))) (-5 *1 (-849 *6 *7 *8 *9 *3)))) + (-12 (-5 *5 (-1 (-802 *6 *3) *8 (-804 *6) (-802 *6 *3))) (-4 *8 (-760)) + (-5 *2 (-802 *6 *3)) (-5 *4 (-804 *6)) (-4 *6 (-1017)) + (-4 *3 (-13 (-865 *9 *7 *8) (-557 *4))) (-4 *7 (-721)) + (-4 *9 (-13 (-965) (-800 *6))) (-5 *1 (-851 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-800 *5 *3)) (-4 *5 (-1015)) - (-4 *3 (-13 (-863 *8 *6 *7) (-555 *4))) (-5 *4 (-802 *5)) (-4 *7 (-798 *5)) - (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-13 (-963) (-798 *5))) - (-5 *1 (-849 *5 *6 *7 *8 *3)))) + (-12 (-5 *2 (-802 *5 *3)) (-4 *5 (-1017)) + (-4 *3 (-13 (-865 *8 *6 *7) (-557 *4))) (-5 *4 (-804 *5)) (-4 *7 (-800 *5)) + (-4 *6 (-721)) (-4 *7 (-760)) (-4 *8 (-13 (-965) (-800 *5))) + (-5 *1 (-851 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-800 *5 *3)) (-4 *5 (-1015)) (-4 *3 (-906 *6)) - (-4 *6 (-13 (-497) (-798 *5) (-555 *4))) (-5 *4 (-802 *5)) - (-5 *1 (-852 *5 *6 *3)))) + (-12 (-5 *2 (-802 *5 *3)) (-4 *5 (-1017)) (-4 *3 (-908 *6)) + (-4 *6 (-13 (-499) (-800 *5) (-557 *4))) (-5 *4 (-804 *5)) + (-5 *1 (-854 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-800 *5 (-1092))) (-5 *3 (-1092)) (-5 *4 (-802 *5)) - (-4 *5 (-1015)) (-5 *1 (-853 *5)))) + (-12 (-5 *2 (-802 *5 (-1094))) (-5 *3 (-1094)) (-5 *4 (-804 *5)) + (-4 *5 (-1017)) (-5 *1 (-855 *5)))) ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-585 (-802 *7))) (-5 *5 (-1 *9 (-585 *9))) - (-5 *6 (-1 (-800 *7 *9) *9 (-802 *7) (-800 *7 *9))) (-4 *7 (-1015)) - (-4 *9 (-13 (-963) (-555 (-802 *7)) (-952 *8))) (-5 *2 (-800 *7 *9)) - (-5 *3 (-585 *9)) (-4 *8 (-963)) (-5 *1 (-854 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1015) (-952 *5))) (-4 *5 (-798 *4)) - (-4 *4 (-1015)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-844 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-265 (-486))) (-5 *1 (-842)))) - ((*1 *2 *2) (-12 (-4 *3 (-1015)) (-5 *1 (-843 *3 *2)) (-4 *2 (-364 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-265 (-486))) (-5 *1 (-842)))) - ((*1 *2 *2) (-12 (-4 *3 (-1015)) (-5 *1 (-843 *3 *2)) (-4 *2 (-364 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-86)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1092)) (-5 *4 (-448)) (-5 *2 (-265 (-486))) (-5 *1 (-842)))) + (-12 (-5 *4 (-587 (-804 *7))) (-5 *5 (-1 *9 (-587 *9))) + (-5 *6 (-1 (-802 *7 *9) *9 (-804 *7) (-802 *7 *9))) (-4 *7 (-1017)) + (-4 *9 (-13 (-965) (-557 (-804 *7)) (-954 *8))) (-5 *2 (-802 *7 *9)) + (-5 *3 (-587 *9)) (-4 *8 (-965)) (-5 *1 (-856 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1017) (-954 *5))) (-4 *5 (-800 *4)) + (-4 *4 (-1017)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-846 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-267 (-488))) (-5 *1 (-844)))) + ((*1 *2 *2) (-12 (-4 *3 (-1017)) (-5 *1 (-845 *3 *2)) (-4 *2 (-366 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-267 (-488))) (-5 *1 (-844)))) + ((*1 *2 *2) (-12 (-4 *3 (-1017)) (-5 *1 (-845 *3 *2)) (-4 *2 (-366 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-450)) (-5 *1 (-86)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1094)) (-5 *4 (-450)) (-5 *2 (-267 (-488))) (-5 *1 (-844)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-448)) (-4 *4 (-1015)) (-5 *1 (-843 *4 *2)) (-4 *2 (-364 *4))))) + (-12 (-5 *3 (-450)) (-4 *4 (-1017)) (-5 *1 (-845 *4 *2)) (-4 *2 (-366 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *2 (-585 (-1003 (-179)))) - (-5 *1 (-841))))) + (-12 (-5 *3 (-587 (-587 (-858 (-181))))) (-5 *2 (-587 (-1005 (-181)))) + (-5 *1 (-843))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) - (-5 *1 (-838)))) + (-12 (-5 *2 (-1 (-858 (-181)) (-181))) (-5 *3 (-1005 (-181))) + (-5 *1 (-840)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) - (-5 *1 (-838)))) - ((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) + (-12 (-5 *2 (-1 (-858 (-181)) (-181))) (-5 *3 (-1005 (-181))) (-5 *1 (-840)))) + ((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-858 (-181)) (-181))) (-5 *3 (-1005 (-181))) + (-5 *1 (-842)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) - (-5 *1 (-840))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) + (-12 (-5 *2 (-1 (-858 (-181)) (-181))) (-5 *3 (-1005 (-181))) + (-5 *1 (-842))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1005 (-181))) (-5 *1 (-840)))) ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) + (-12 (-5 *2 (-1 (-181) (-181))) (-5 *3 (-1005 (-181))) (-5 *1 (-840)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) + (-12 (-5 *2 (-1 (-181) (-181))) (-5 *3 (-1005 (-181))) (-5 *1 (-840)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-585 (-1 (-179) (-179)))) (-5 *3 (-1003 (-179))) - (-5 *1 (-838)))) + (-12 (-5 *2 (-587 (-1 (-181) (-181)))) (-5 *3 (-1005 (-181))) + (-5 *1 (-840)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-585 (-1 (-179) (-179)))) (-5 *3 (-1003 (-179))) - (-5 *1 (-838)))) + (-12 (-5 *2 (-587 (-1 (-181) (-181)))) (-5 *3 (-1005 (-181))) + (-5 *1 (-840)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) + (-12 (-5 *2 (-1 (-181) (-181))) (-5 *3 (-1005 (-181))) (-5 *1 (-840)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) + (-12 (-5 *2 (-1 (-181) (-181))) (-5 *3 (-1005 (-181))) (-5 *1 (-840)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1092)) (-5 *5 (-1003 (-179))) (-5 *2 (-838)) (-5 *1 (-839 *3)) - (-4 *3 (-555 (-475))))) + (-12 (-5 *4 (-1094)) (-5 *5 (-1005 (-181))) (-5 *2 (-840)) (-5 *1 (-841 *3)) + (-4 *3 (-557 (-477))))) ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1092)) (-5 *5 (-1003 (-179))) (-5 *2 (-838)) (-5 *1 (-839 *3)) - (-4 *3 (-555 (-475))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) + (-12 (-5 *4 (-1094)) (-5 *5 (-1005 (-181))) (-5 *2 (-840)) (-5 *1 (-841 *3)) + (-4 *3 (-557 (-477))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1005 (-181))) (-5 *1 (-842)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-840)))) + (-12 (-5 *2 (-1 (-181) (-181))) (-5 *3 (-1005 (-181))) (-5 *1 (-842)))) ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-840))))) -(((*1 *2 *1) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) - ((*1 *2 *1) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-179)))) (-5 *1 (-840))))) -(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840))))) -(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840))))) -(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840))))) -(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840))))) -(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840))))) -(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840))))) + (-12 (-5 *2 (-1 (-181) (-181))) (-5 *3 (-1005 (-181))) (-5 *1 (-842))))) +(((*1 *2 *1) (-12 (-5 *2 (-1005 (-181))) (-5 *1 (-840)))) + ((*1 *2 *1) (-12 (-5 *2 (-1005 (-181))) (-5 *1 (-842))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-181)))) (-5 *1 (-842))))) +(((*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-842))))) +(((*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-842))))) +(((*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-842))))) +(((*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-842))))) +(((*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-842))))) +(((*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-842))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-842))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-842))))) +(((*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-842))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-842))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-181) (-181))) (-5 *1 (-840)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-181) (-181))) (-5 *3 (-1005 (-181))) (-5 *1 (-840)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1094)) (-5 *5 (-1005 (-181))) (-5 *2 (-840)) (-5 *1 (-841 *3)) + (-4 *3 (-557 (-477))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1094)) (-5 *2 (-840)) (-5 *1 (-841 *3)) (-4 *3 (-557 (-477)))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-840))))) +(((*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-410)))) + ((*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-410)))) + ((*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-840))))) +(((*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-840))))) +(((*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-410)))) + ((*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-410)))) + ((*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-840))))) +(((*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-840))))) +(((*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-410)))) + ((*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-410)))) + ((*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-840))))) +(((*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-840))))) (((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840))))) (((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840))))) -(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-840))))) +(((*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-840))))) (((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-838)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1092)) (-5 *5 (-1003 (-179))) (-5 *2 (-838)) (-5 *1 (-839 *3)) - (-4 *3 (-555 (-475))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1092)) (-5 *2 (-838)) (-5 *1 (-839 *3)) (-4 *3 (-555 (-475)))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) -(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) - ((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) - ((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838))))) -(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838))))) -(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) - ((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) - ((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838))))) -(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838))))) -(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) - ((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-408)))) - ((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838))))) -(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) -(((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-838))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) -(((*1 *2 *3) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-85)) - (-5 *1 (-837 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-85)) - (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-758) (-555 (-1092)))) - (-4 *5 (-719)) (-5 *1 (-837 *3 *4 *5 *2)) (-4 *2 (-863 *3 *5 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-865 *4 *6 *5)) (-4 *4 (-13 (-260) (-120))) + (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *2 (-85)) + (-5 *1 (-839 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-587 (-861 *4))) (-4 *4 (-13 (-260) (-120))) + (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *2 (-85)) + (-5 *1 (-839 *4 *5 *6 *7)) (-4 *7 (-865 *4 *6 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-260) (-120))) (-4 *4 (-13 (-760) (-557 (-1094)))) + (-4 *5 (-721)) (-5 *1 (-839 *3 *4 *5 *2)) (-4 *2 (-865 *3 *5 *4))))) (((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486))))) - (-5 *4 (-632 *12)) (-5 *5 (-585 (-350 (-859 *9)))) (-5 *6 (-585 (-585 *12))) - (-5 *7 (-696)) (-5 *8 (-486)) (-4 *9 (-13 (-258) (-120))) - (-4 *12 (-863 *9 *11 *10)) (-4 *10 (-13 (-758) (-555 (-1092)))) - (-4 *11 (-719)) - (-5 *2 - (-2 (|:| |eqzro| (-585 *12)) (|:| |neqzro| (-585 *12)) - (|:| |wcond| (-585 (-859 *9))) + (-2 (|:| |det| *12) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488))))) + (-5 *4 (-634 *12)) (-5 *5 (-587 (-352 (-861 *9)))) (-5 *6 (-587 (-587 *12))) + (-5 *7 (-698)) (-5 *8 (-488)) (-4 *9 (-13 (-260) (-120))) + (-4 *12 (-865 *9 *11 *10)) (-4 *10 (-13 (-760) (-557 (-1094)))) + (-4 *11 (-721)) + (-5 *2 + (-2 (|:| |eqzro| (-587 *12)) (|:| |neqzro| (-587 *12)) + (|:| |wcond| (-587 (-861 *9))) (|:| |bsoln| - (-2 (|:| |partsol| (-1181 (-350 (-859 *9)))) - (|:| -2014 (-585 (-1181 (-350 (-859 *9))))))))) - (-5 *1 (-837 *9 *10 *11 *12))))) + (-2 (|:| |partsol| (-1183 (-352 (-861 *9)))) + (|:| -2017 (-587 (-1183 (-352 (-861 *9))))))))) + (-5 *1 (-839 *9 *10 *11 *12))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-632 *7)) (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *6 *5)) - (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) - (-4 *6 (-719)) (-5 *1 (-837 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-632 *8)) (-5 *4 (-696)) (-4 *8 (-863 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) - (-4 *7 (-719)) - (-5 *2 - (-585 - (-2 (|:| |det| *8) (|:| |rows| (-585 (-486))) - (|:| |cols| (-585 (-486)))))) - (-5 *1 (-837 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-585 (-585 *8))) (-5 *3 (-585 *8)) (-4 *8 (-863 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) - (-4 *7 (-719)) (-5 *2 (-85)) (-5 *1 (-837 *5 *6 *7 *8))))) + (-12 (-5 *2 (-634 *7)) (-5 *3 (-587 *7)) (-4 *7 (-865 *4 *6 *5)) + (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) + (-4 *6 (-721)) (-5 *1 (-839 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-634 *8)) (-5 *4 (-698)) (-4 *8 (-865 *5 *7 *6)) + (-4 *5 (-13 (-260) (-120))) (-4 *6 (-13 (-760) (-557 (-1094)))) + (-4 *7 (-721)) + (-5 *2 + (-587 + (-2 (|:| |det| *8) (|:| |rows| (-587 (-488))) + (|:| |cols| (-587 (-488)))))) + (-5 *1 (-839 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-587 (-587 *8))) (-5 *3 (-587 *8)) (-4 *8 (-865 *5 *7 *6)) + (-4 *5 (-13 (-260) (-120))) (-4 *6 (-13 (-760) (-557 (-1094)))) + (-4 *7 (-721)) (-5 *2 (-85)) (-5 *1 (-839 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) - (-4 *6 (-719)) (-5 *2 (-585 (-585 (-486)))) (-5 *1 (-837 *4 *5 *6 *7)) - (-5 *3 (-486)) (-4 *7 (-863 *4 *6 *5))))) + (-12 (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) + (-4 *6 (-721)) (-5 *2 (-587 (-587 (-488)))) (-5 *1 (-839 *4 *5 *6 *7)) + (-5 *3 (-488)) (-4 *7 (-865 *4 *6 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-585 (-585 *6))) (-4 *6 (-863 *3 *5 *4)) - (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-758) (-555 (-1092)))) - (-4 *5 (-719)) (-5 *1 (-837 *3 *4 *5 *6))))) + (-12 (-5 *2 (-587 (-587 *6))) (-4 *6 (-865 *3 *5 *4)) + (-4 *3 (-13 (-260) (-120))) (-4 *4 (-13 (-760) (-557 (-1094)))) + (-4 *5 (-721)) (-5 *1 (-839 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-585 - (-2 (|:| -3111 (-696)) + (-587 + (-2 (|:| -3114 (-698)) (|:| |eqns| - (-585 - (-2 (|:| |det| *7) (|:| |rows| (-585 (-486))) - (|:| |cols| (-585 (-486)))))) - (|:| |fgb| (-585 *7))))) - (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-696)) - (-5 *1 (-837 *4 *5 *6 *7))))) + (-587 + (-2 (|:| |det| *7) (|:| |rows| (-587 (-488))) + (|:| |cols| (-587 (-488)))))) + (|:| |fgb| (-587 *7))))) + (-4 *7 (-865 *4 *6 *5)) (-4 *4 (-13 (-260) (-120))) + (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *2 (-698)) + (-5 *1 (-839 *4 *5 *6 *7))))) (((*1 *2 *3) (-12 (-5 *3 - (-585 - (-2 (|:| -3111 (-696)) + (-587 + (-2 (|:| -3114 (-698)) (|:| |eqns| - (-585 - (-2 (|:| |det| *7) (|:| |rows| (-585 (-486))) - (|:| |cols| (-585 (-486)))))) - (|:| |fgb| (-585 *7))))) - (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) (-5 *2 (-696)) - (-5 *1 (-837 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) - (-4 *6 (-719)) (-5 *2 (-585 *3)) (-5 *1 (-837 *4 *5 *6 *3)) - (-4 *3 (-863 *4 *6 *5))))) + (-587 + (-2 (|:| |det| *7) (|:| |rows| (-587 (-488))) + (|:| |cols| (-587 (-488)))))) + (|:| |fgb| (-587 *7))))) + (-4 *7 (-865 *4 *6 *5)) (-4 *4 (-13 (-260) (-120))) + (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *2 (-698)) + (-5 *1 (-839 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) + (-4 *6 (-721)) (-5 *2 (-587 *3)) (-5 *1 (-839 *4 *5 *6 *3)) + (-4 *3 (-865 *4 *6 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |mat| (-632 (-350 (-859 *4)))) (|:| |vec| (-585 (-350 (-859 *4)))) - (|:| -3111 (-696)) (|:| |rows| (-585 (-486))) (|:| |cols| (-585 (-486))))) - (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) - (-4 *6 (-719)) - (-5 *2 - (-2 (|:| |partsol| (-1181 (-350 (-859 *4)))) - (|:| -2014 (-585 (-1181 (-350 (-859 *4))))))) - (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5))))) + (-2 (|:| |mat| (-634 (-352 (-861 *4)))) (|:| |vec| (-587 (-352 (-861 *4)))) + (|:| -3114 (-698)) (|:| |rows| (-587 (-488))) (|:| |cols| (-587 (-488))))) + (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) + (-4 *6 (-721)) + (-5 *2 + (-2 (|:| |partsol| (-1183 (-352 (-861 *4)))) + (|:| -2017 (-587 (-1183 (-352 (-861 *4))))))) + (-5 *1 (-839 *4 *5 *6 *7)) (-4 *7 (-865 *4 *6 *5))))) (((*1 *2 *2 *3) (-12 (-5 *2 - (-2 (|:| |partsol| (-1181 (-350 (-859 *4)))) - (|:| -2014 (-585 (-1181 (-350 (-859 *4))))))) - (-5 *3 (-585 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-863 *4 *6 *5)) - (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) - (-5 *1 (-837 *4 *5 *6 *7))))) + (-2 (|:| |partsol| (-1183 (-352 (-861 *4)))) + (|:| -2017 (-587 (-1183 (-352 (-861 *4))))))) + (-5 *3 (-587 *7)) (-4 *4 (-13 (-260) (-120))) (-4 *7 (-865 *4 *6 *5)) + (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) + (-5 *1 (-839 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-632 *8)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) - (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) + (-12 (-5 *3 (-634 *8)) (-4 *8 (-865 *5 *7 *6)) (-4 *5 (-13 (-260) (-120))) + (-4 *6 (-13 (-760) (-557 (-1094)))) (-4 *7 (-721)) (-5 *2 - (-585 - (-2 (|:| -3111 (-696)) + (-587 + (-2 (|:| -3114 (-698)) (|:| |eqns| - (-585 - (-2 (|:| |det| *8) (|:| |rows| (-585 (-486))) - (|:| |cols| (-585 (-486)))))) - (|:| |fgb| (-585 *8))))) - (-5 *1 (-837 *5 *6 *7 *8)) (-5 *4 (-696))))) + (-587 + (-2 (|:| |det| *8) (|:| |rows| (-587 (-488))) + (|:| |cols| (-587 (-488)))))) + (|:| |fgb| (-587 *8))))) + (-5 *1 (-839 *5 *6 *7 *8)) (-5 *4 (-698))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) - (-4 *6 (-719)) (-4 *7 (-863 *4 *6 *5)) - (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-585 *7)) (|:| |n0| (-585 *7)))) - (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-859 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-863 *4 *6 *5)) - (-5 *1 (-837 *4 *5 *6 *2)) (-4 *5 (-13 (-758) (-555 (-1092)))) - (-4 *6 (-719))))) -(((*1 *2 *3) - (-12 (-5 *3 (-585 (-1092))) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) - (-5 *2 (-585 (-350 (-859 *4)))) (-5 *1 (-837 *4 *5 *6 *7)) - (-4 *7 (-863 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1092)))) - (-4 *6 (-719)) (-5 *2 (-350 (-859 *4))) (-5 *1 (-837 *4 *5 *6 *3)) - (-4 *3 (-863 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-632 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) - (-5 *2 (-632 (-350 (-859 *4)))) (-5 *1 (-837 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) - (-5 *2 (-585 (-350 (-859 *4)))) (-5 *1 (-837 *4 *5 *6 *7))))) + (-12 (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) + (-4 *6 (-721)) (-4 *7 (-865 *4 *6 *5)) + (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-587 *7)) (|:| |n0| (-587 *7)))) + (-5 *1 (-839 *4 *5 *6 *7)) (-5 *3 (-587 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-861 *4)) (-4 *4 (-13 (-260) (-120))) (-4 *2 (-865 *4 *6 *5)) + (-5 *1 (-839 *4 *5 *6 *2)) (-4 *5 (-13 (-760) (-557 (-1094)))) + (-4 *6 (-721))))) +(((*1 *2 *3) + (-12 (-5 *3 (-587 (-1094))) (-4 *4 (-13 (-260) (-120))) + (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) + (-5 *2 (-587 (-352 (-861 *4)))) (-5 *1 (-839 *4 *5 *6 *7)) + (-4 *7 (-865 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-260) (-120))) (-4 *5 (-13 (-760) (-557 (-1094)))) + (-4 *6 (-721)) (-5 *2 (-352 (-861 *4))) (-5 *1 (-839 *4 *5 *6 *3)) + (-4 *3 (-865 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-634 *7)) (-4 *7 (-865 *4 *6 *5)) (-4 *4 (-13 (-260) (-120))) + (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) + (-5 *2 (-634 (-352 (-861 *4)))) (-5 *1 (-839 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-865 *4 *6 *5)) (-4 *4 (-13 (-260) (-120))) + (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) + (-5 *2 (-587 (-352 (-861 *4)))) (-5 *1 (-839 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-632 *11)) (-5 *4 (-585 (-350 (-859 *8)))) (-5 *5 (-696)) - (-5 *6 (-1075)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-863 *8 *10 *9)) - (-4 *9 (-13 (-758) (-555 (-1092)))) (-4 *10 (-719)) + (-12 (-5 *3 (-634 *11)) (-5 *4 (-587 (-352 (-861 *8)))) (-5 *5 (-698)) + (-5 *6 (-1077)) (-4 *8 (-13 (-260) (-120))) (-4 *11 (-865 *8 *10 *9)) + (-4 *9 (-13 (-760) (-557 (-1094)))) (-4 *10 (-721)) (-5 *2 (-2 (|:| |rgl| - (-585 - (-2 (|:| |eqzro| (-585 *11)) (|:| |neqzro| (-585 *11)) - (|:| |wcond| (-585 (-859 *8))) + (-587 + (-2 (|:| |eqzro| (-587 *11)) (|:| |neqzro| (-587 *11)) + (|:| |wcond| (-587 (-861 *8))) (|:| |bsoln| - (-2 (|:| |partsol| (-1181 (-350 (-859 *8)))) - (|:| -2014 (-585 (-1181 (-350 (-859 *8)))))))))) - (|:| |rgsz| (-486)))) - (-5 *1 (-837 *8 *9 *10 *11)) (-5 *7 (-486))))) + (-2 (|:| |partsol| (-1183 (-352 (-861 *8)))) + (|:| -2017 (-587 (-1183 (-352 (-861 *8)))))))))) + (|:| |rgsz| (-488)))) + (-5 *1 (-839 *8 *9 *10 *11)) (-5 *7 (-488))))) (((*1 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) + (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-260) (-120))) + (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *2 - (-585 - (-2 (|:| |eqzro| (-585 *7)) (|:| |neqzro| (-585 *7)) - (|:| |wcond| (-585 (-859 *4))) + (-587 + (-2 (|:| |eqzro| (-587 *7)) (|:| |neqzro| (-587 *7)) + (|:| |wcond| (-587 (-861 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1181 (-350 (-859 *4)))) - (|:| -2014 (-585 (-1181 (-350 (-859 *4)))))))))) - (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5))))) + (-2 (|:| |partsol| (-1183 (-352 (-861 *4)))) + (|:| -2017 (-587 (-1183 (-352 (-861 *4)))))))))) + (-5 *1 (-839 *4 *5 *6 *7)) (-4 *7 (-865 *4 *6 *5))))) (((*1 *2 *3 *4) (-12 (-5 *3 - (-585 - (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) - (|:| |wcond| (-585 (-859 *5))) + (-587 + (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8)) + (|:| |wcond| (-587 (-861 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1181 (-350 (-859 *5)))) - (|:| -2014 (-585 (-1181 (-350 (-859 *5)))))))))) - (-5 *4 (-1075)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-863 *5 *7 *6)) - (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) (-5 *2 (-486)) - (-5 *1 (-837 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-632 *8)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) - (-4 *6 (-13 (-758) (-555 (-1092)))) (-4 *7 (-719)) - (-5 *2 - (-585 - (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) - (|:| |wcond| (-585 (-859 *5))) + (-2 (|:| |partsol| (-1183 (-352 (-861 *5)))) + (|:| -2017 (-587 (-1183 (-352 (-861 *5)))))))))) + (-5 *4 (-1077)) (-4 *5 (-13 (-260) (-120))) (-4 *8 (-865 *5 *7 *6)) + (-4 *6 (-13 (-760) (-557 (-1094)))) (-4 *7 (-721)) (-5 *2 (-488)) + (-5 *1 (-839 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-634 *8)) (-4 *8 (-865 *5 *7 *6)) (-4 *5 (-13 (-260) (-120))) + (-4 *6 (-13 (-760) (-557 (-1094)))) (-4 *7 (-721)) + (-5 *2 + (-587 + (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8)) + (|:| |wcond| (-587 (-861 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1181 (-350 (-859 *5)))) - (|:| -2014 (-585 (-1181 (-350 (-859 *5)))))))))) - (-5 *1 (-837 *5 *6 *7 *8)) (-5 *4 (-585 *8)))) + (-2 (|:| |partsol| (-1183 (-352 (-861 *5)))) + (|:| -2017 (-587 (-1183 (-352 (-861 *5)))))))))) + (-5 *1 (-839 *5 *6 *7 *8)) (-5 *4 (-587 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-632 *8)) (-5 *4 (-585 (-1092))) (-4 *8 (-863 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) - (-4 *7 (-719)) + (-12 (-5 *3 (-634 *8)) (-5 *4 (-587 (-1094))) (-4 *8 (-865 *5 *7 *6)) + (-4 *5 (-13 (-260) (-120))) (-4 *6 (-13 (-760) (-557 (-1094)))) + (-4 *7 (-721)) (-5 *2 - (-585 - (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) - (|:| |wcond| (-585 (-859 *5))) + (-587 + (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8)) + (|:| |wcond| (-587 (-861 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1181 (-350 (-859 *5)))) - (|:| -2014 (-585 (-1181 (-350 (-859 *5)))))))))) - (-5 *1 (-837 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1183 (-352 (-861 *5)))) + (|:| -2017 (-587 (-1183 (-352 (-861 *5)))))))))) + (-5 *1 (-839 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-632 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-758) (-555 (-1092)))) (-4 *6 (-719)) + (-12 (-5 *3 (-634 *7)) (-4 *7 (-865 *4 *6 *5)) (-4 *4 (-13 (-260) (-120))) + (-4 *5 (-13 (-760) (-557 (-1094)))) (-4 *6 (-721)) (-5 *2 - (-585 - (-2 (|:| |eqzro| (-585 *7)) (|:| |neqzro| (-585 *7)) - (|:| |wcond| (-585 (-859 *4))) + (-587 + (-2 (|:| |eqzro| (-587 *7)) (|:| |neqzro| (-587 *7)) + (|:| |wcond| (-587 (-861 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1181 (-350 (-859 *4)))) - (|:| -2014 (-585 (-1181 (-350 (-859 *4)))))))))) - (-5 *1 (-837 *4 *5 *6 *7)))) + (-2 (|:| |partsol| (-1183 (-352 (-861 *4)))) + (|:| -2017 (-587 (-1183 (-352 (-861 *4)))))))))) + (-5 *1 (-839 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-632 *9)) (-5 *5 (-832)) (-4 *9 (-863 *6 *8 *7)) - (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1092)))) - (-4 *8 (-719)) + (-12 (-5 *3 (-634 *9)) (-5 *5 (-834)) (-4 *9 (-865 *6 *8 *7)) + (-4 *6 (-13 (-260) (-120))) (-4 *7 (-13 (-760) (-557 (-1094)))) + (-4 *8 (-721)) (-5 *2 - (-585 - (-2 (|:| |eqzro| (-585 *9)) (|:| |neqzro| (-585 *9)) - (|:| |wcond| (-585 (-859 *6))) + (-587 + (-2 (|:| |eqzro| (-587 *9)) (|:| |neqzro| (-587 *9)) + (|:| |wcond| (-587 (-861 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1181 (-350 (-859 *6)))) - (|:| -2014 (-585 (-1181 (-350 (-859 *6)))))))))) - (-5 *1 (-837 *6 *7 *8 *9)) (-5 *4 (-585 *9)))) + (-2 (|:| |partsol| (-1183 (-352 (-861 *6)))) + (|:| -2017 (-587 (-1183 (-352 (-861 *6)))))))))) + (-5 *1 (-839 *6 *7 *8 *9)) (-5 *4 (-587 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-632 *9)) (-5 *4 (-585 (-1092))) (-5 *5 (-832)) - (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) - (-4 *7 (-13 (-758) (-555 (-1092)))) (-4 *8 (-719)) + (-12 (-5 *3 (-634 *9)) (-5 *4 (-587 (-1094))) (-5 *5 (-834)) + (-4 *9 (-865 *6 *8 *7)) (-4 *6 (-13 (-260) (-120))) + (-4 *7 (-13 (-760) (-557 (-1094)))) (-4 *8 (-721)) (-5 *2 - (-585 - (-2 (|:| |eqzro| (-585 *9)) (|:| |neqzro| (-585 *9)) - (|:| |wcond| (-585 (-859 *6))) + (-587 + (-2 (|:| |eqzro| (-587 *9)) (|:| |neqzro| (-587 *9)) + (|:| |wcond| (-587 (-861 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1181 (-350 (-859 *6)))) - (|:| -2014 (-585 (-1181 (-350 (-859 *6)))))))))) - (-5 *1 (-837 *6 *7 *8 *9)))) + (-2 (|:| |partsol| (-1183 (-352 (-861 *6)))) + (|:| -2017 (-587 (-1183 (-352 (-861 *6)))))))))) + (-5 *1 (-839 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-632 *8)) (-5 *4 (-832)) (-4 *8 (-863 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) - (-4 *7 (-719)) + (-12 (-5 *3 (-634 *8)) (-5 *4 (-834)) (-4 *8 (-865 *5 *7 *6)) + (-4 *5 (-13 (-260) (-120))) (-4 *6 (-13 (-760) (-557 (-1094)))) + (-4 *7 (-721)) (-5 *2 - (-585 - (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) - (|:| |wcond| (-585 (-859 *5))) + (-587 + (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8)) + (|:| |wcond| (-587 (-861 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1181 (-350 (-859 *5)))) - (|:| -2014 (-585 (-1181 (-350 (-859 *5)))))))))) - (-5 *1 (-837 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1183 (-352 (-861 *5)))) + (|:| -2017 (-587 (-1183 (-352 (-861 *5)))))))))) + (-5 *1 (-839 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-632 *9)) (-5 *4 (-585 *9)) (-5 *5 (-1075)) - (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) - (-4 *7 (-13 (-758) (-555 (-1092)))) (-4 *8 (-719)) (-5 *2 (-486)) - (-5 *1 (-837 *6 *7 *8 *9)))) + (-12 (-5 *3 (-634 *9)) (-5 *4 (-587 *9)) (-5 *5 (-1077)) + (-4 *9 (-865 *6 *8 *7)) (-4 *6 (-13 (-260) (-120))) + (-4 *7 (-13 (-760) (-557 (-1094)))) (-4 *8 (-721)) (-5 *2 (-488)) + (-5 *1 (-839 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-632 *9)) (-5 *4 (-585 (-1092))) (-5 *5 (-1075)) - (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) - (-4 *7 (-13 (-758) (-555 (-1092)))) (-4 *8 (-719)) (-5 *2 (-486)) - (-5 *1 (-837 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-632 *8)) (-5 *4 (-1075)) (-4 *8 (-863 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1092)))) - (-4 *7 (-719)) (-5 *2 (-486)) (-5 *1 (-837 *5 *6 *7 *8)))) + (-12 (-5 *3 (-634 *9)) (-5 *4 (-587 (-1094))) (-5 *5 (-1077)) + (-4 *9 (-865 *6 *8 *7)) (-4 *6 (-13 (-260) (-120))) + (-4 *7 (-13 (-760) (-557 (-1094)))) (-4 *8 (-721)) (-5 *2 (-488)) + (-5 *1 (-839 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-634 *8)) (-5 *4 (-1077)) (-4 *8 (-865 *5 *7 *6)) + (-4 *5 (-13 (-260) (-120))) (-4 *6 (-13 (-760) (-557 (-1094)))) + (-4 *7 (-721)) (-5 *2 (-488)) (-5 *1 (-839 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-632 *10)) (-5 *4 (-585 *10)) (-5 *5 (-832)) (-5 *6 (-1075)) - (-4 *10 (-863 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) - (-4 *8 (-13 (-758) (-555 (-1092)))) (-4 *9 (-719)) (-5 *2 (-486)) - (-5 *1 (-837 *7 *8 *9 *10)))) + (-12 (-5 *3 (-634 *10)) (-5 *4 (-587 *10)) (-5 *5 (-834)) (-5 *6 (-1077)) + (-4 *10 (-865 *7 *9 *8)) (-4 *7 (-13 (-260) (-120))) + (-4 *8 (-13 (-760) (-557 (-1094)))) (-4 *9 (-721)) (-5 *2 (-488)) + (-5 *1 (-839 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-632 *10)) (-5 *4 (-585 (-1092))) (-5 *5 (-832)) (-5 *6 (-1075)) - (-4 *10 (-863 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) - (-4 *8 (-13 (-758) (-555 (-1092)))) (-4 *9 (-719)) (-5 *2 (-486)) - (-5 *1 (-837 *7 *8 *9 *10)))) + (-12 (-5 *3 (-634 *10)) (-5 *4 (-587 (-1094))) (-5 *5 (-834)) (-5 *6 (-1077)) + (-4 *10 (-865 *7 *9 *8)) (-4 *7 (-13 (-260) (-120))) + (-4 *8 (-13 (-760) (-557 (-1094)))) (-4 *9 (-721)) (-5 *2 (-488)) + (-5 *1 (-839 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-632 *9)) (-5 *4 (-832)) (-5 *5 (-1075)) (-4 *9 (-863 *6 *8 *7)) - (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1092)))) - (-4 *8 (-719)) (-5 *2 (-486)) (-5 *1 (-837 *6 *7 *8 *9))))) + (-12 (-5 *3 (-634 *9)) (-5 *4 (-834)) (-5 *5 (-1077)) (-4 *9 (-865 *6 *8 *7)) + (-4 *6 (-13 (-260) (-120))) (-4 *7 (-13 (-760) (-557 (-1094)))) + (-4 *8 (-721)) (-5 *2 (-488)) (-5 *1 (-839 *6 *7 *8 *9))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-585 *4)) (-4 *4 (-312)) (-4 *2 (-1157 *4)) - (-5 *1 (-836 *4 *2))))) + (-12 (-5 *3 (-587 *4)) (-4 *4 (-314)) (-4 *2 (-1159 *4)) + (-5 *1 (-838 *4 *2))))) (((*1 *2 *3) - (-12 (-4 *1 (-834)) (-5 *2 (-2 (|:| -3958 (-585 *1)) (|:| -2411 *1))) - (-5 *3 (-585 *1))))) + (-12 (-4 *1 (-836)) (-5 *2 (-2 (|:| -3961 (-587 *1)) (|:| -2414 *1))) + (-5 *3 (-587 *1))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-834)) (-5 *2 (-634 (-585 *1))) (-5 *3 (-585 *1))))) + (-12 (-4 *1 (-836)) (-5 *2 (-636 (-587 *1))) (-5 *3 (-587 *1))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-585 (-859 *4))) (-5 *3 (-585 (-1092))) (-4 *4 (-393)) - (-5 *1 (-831 *4))))) + (-12 (-5 *2 (-587 (-861 *4))) (-5 *3 (-587 (-1094))) (-4 *4 (-395)) + (-5 *1 (-833 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-585 (-859 *4))) (-5 *3 (-585 (-1092))) (-4 *4 (-393)) - (-5 *1 (-831 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) - ((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-818 (-486))) (-5 *1 (-830))))) -(((*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830))))) -(((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) - ((*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830))))) -(((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) - ((*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830))))) -(((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) - ((*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830))))) -(((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) - ((*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830))))) -(((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) - ((*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830))))) -(((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) - ((*1 *2) (-12 (-5 *2 (-818 (-486))) (-5 *1 (-830))))) -(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) - ((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830))))) -(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) - ((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830))))) -(((*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-818 (-486))) (-5 *1 (-830))))) -(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) - ((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830))))) -(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-486))) (-5 *1 (-830)))) - ((*1 *2 *3) (-12 (-5 *3 (-585 (-486))) (-5 *2 (-818 (-486))) (-5 *1 (-830))))) + (-12 (-5 *2 (-587 (-861 *4))) (-5 *3 (-587 (-1094))) (-4 *4 (-395)) + (-5 *1 (-833 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) + ((*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-820 (-488))) (-5 *1 (-832))))) +(((*1 *2) (-12 (-5 *2 (-820 (-488))) (-5 *1 (-832))))) +(((*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) + ((*1 *2) (-12 (-5 *2 (-820 (-488))) (-5 *1 (-832))))) +(((*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) + ((*1 *2) (-12 (-5 *2 (-820 (-488))) (-5 *1 (-832))))) +(((*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) + ((*1 *2) (-12 (-5 *2 (-820 (-488))) (-5 *1 (-832))))) +(((*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) + ((*1 *2) (-12 (-5 *2 (-820 (-488))) (-5 *1 (-832))))) +(((*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) + ((*1 *2) (-12 (-5 *2 (-820 (-488))) (-5 *1 (-832))))) +(((*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) + ((*1 *2) (-12 (-5 *2 (-820 (-488))) (-5 *1 (-832))))) +(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) + ((*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832))))) +(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) + ((*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832))))) +(((*1 *2 *3) (-12 (-5 *3 (-587 (-834))) (-5 *2 (-820 (-488))) (-5 *1 (-832))))) +(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) + ((*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832))))) +(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-820 (-488))) (-5 *1 (-832)))) + ((*1 *2 *3) (-12 (-5 *3 (-587 (-488))) (-5 *2 (-820 (-488))) (-5 *1 (-832))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *2)) - (-4 *2 (-863 *5 *3 *4)))) + (-12 (-4 *3 (-721)) (-4 *4 (-760)) (-4 *5 (-260)) (-5 *1 (-831 *3 *4 *5 *2)) + (-4 *2 (-865 *5 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1087 *6)) (-4 *6 (-863 *5 *3 *4)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1089 *6)) (-4 *6 (-865 *5 *3 *4)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *5 (-260)) (-5 *1 (-831 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *6 *4 *5)) (-5 *1 (-829 *4 *5 *6 *2)) - (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-348 *2)) (-4 *2 (-258)) (-5 *1 (-827 *2)))) + (-12 (-5 *3 (-587 *2)) (-4 *2 (-865 *6 *4 *5)) (-5 *1 (-831 *4 *5 *6 *2)) + (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-260))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-350 *2)) (-4 *2 (-260)) (-5 *1 (-829 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-51)) (-5 *1 (-828 *5)))) + (-12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-120))) + (-5 *2 (-51)) (-5 *1 (-830 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-348 (-859 *6))) (-5 *5 (-1092)) (-5 *3 (-859 *6)) - (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-828 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-827 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-827 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-827 *3)) (-4 *3 (-258))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-827 *3)) (-4 *3 (-258))))) -(((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1157 (-350 (-486)))) (-5 *1 (-826 *3 *2)) - (-4 *2 (-1157 (-350 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1157 (-350 *2))) (-5 *2 (-486)) (-5 *1 (-826 *4 *3)) - (-4 *3 (-1157 (-350 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-585 (-2 (|:| |den| (-486)) (|:| |gcdnum| (-486))))) - (-4 *4 (-1157 (-350 *2))) (-5 *2 (-486)) (-5 *1 (-826 *4 *5)) - (-4 *5 (-1157 (-350 *4)))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1157 (-350 (-486)))) - (-5 *2 (-2 (|:| |den| (-486)) (|:| |gcdnum| (-486)))) (-5 *1 (-826 *3 *4)) - (-4 *4 (-1157 (-350 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1157 (-350 *2))) (-5 *2 (-486)) (-5 *1 (-826 *4 *3)) - (-4 *3 (-1157 (-350 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-486)) (-4 *4 (-1157 (-350 *3))) (-5 *2 (-832)) - (-5 *1 (-826 *4 *5)) (-4 *5 (-1157 (-350 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) - (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) - (-4 *4 (-13 (-497) (-952 (-486)))) - (-5 *2 (-2 (|:| -3775 (-696)) (|:| -2385 *8))) - (-5 *1 (-824 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-283 (-350 (-486)) *4 *5 *6)) - (-4 *4 (-1157 (-350 (-486)))) (-4 *5 (-1157 (-350 *4))) - (-4 *6 (-291 (-350 (-486)) *4 *5)) - (-5 *2 (-2 (|:| -3775 (-696)) (|:| -2385 *6))) (-5 *1 (-825 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1157 *5)) - (-4 *7 (-1157 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) - (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-85)) - (-5 *1 (-824 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-283 (-350 (-486)) *4 *5 *6)) (-4 *4 (-1157 (-350 (-486)))) - (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 (-350 (-486)) *4 *5)) (-5 *2 (-85)) - (-5 *1 (-825 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-393)))) + (-12 (-5 *4 (-350 (-861 *6))) (-5 *5 (-1094)) (-5 *3 (-861 *6)) + (-4 *6 (-13 (-260) (-120))) (-5 *2 (-51)) (-5 *1 (-830 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-260))))) +(((*1 *2 *1) (-12 (-5 *2 (-350 *3)) (-5 *1 (-829 *3)) (-4 *3 (-260))))) +(((*1 *2 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-260))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-829 *3)) (-4 *3 (-260))))) +(((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-829 *3)) (-4 *3 (-260))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1089 *3)) (-5 *1 (-829 *3)) (-4 *3 (-260))))) +(((*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-260))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1159 (-352 (-488)))) (-5 *1 (-828 *3 *2)) + (-4 *2 (-1159 (-352 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1159 (-352 *2))) (-5 *2 (-488)) (-5 *1 (-828 *4 *3)) + (-4 *3 (-1159 (-352 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-587 (-2 (|:| |den| (-488)) (|:| |gcdnum| (-488))))) + (-4 *4 (-1159 (-352 *2))) (-5 *2 (-488)) (-5 *1 (-828 *4 *5)) + (-4 *5 (-1159 (-352 *4)))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1159 (-352 (-488)))) + (-5 *2 (-2 (|:| |den| (-488)) (|:| |gcdnum| (-488)))) (-5 *1 (-828 *3 *4)) + (-4 *4 (-1159 (-352 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1159 (-352 *2))) (-5 *2 (-488)) (-5 *1 (-828 *4 *3)) + (-4 *3 (-1159 (-352 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-488)) (-4 *4 (-1159 (-352 *3))) (-5 *2 (-834)) + (-5 *1 (-828 *4 *5)) (-4 *5 (-1159 (-352 *4)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-285 *5 *6 *7 *8)) (-4 *5 (-366 *4)) + (-4 *6 (-1159 *5)) (-4 *7 (-1159 (-352 *6))) (-4 *8 (-293 *5 *6 *7)) + (-4 *4 (-13 (-499) (-954 (-488)))) + (-5 *2 (-2 (|:| -3778 (-698)) (|:| -2388 *8))) + (-5 *1 (-826 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-285 (-352 (-488)) *4 *5 *6)) + (-4 *4 (-1159 (-352 (-488)))) (-4 *5 (-1159 (-352 *4))) + (-4 *6 (-293 (-352 (-488)) *4 *5)) + (-5 *2 (-2 (|:| -3778 (-698)) (|:| -2388 *6))) (-5 *1 (-827 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-285 *5 *6 *7 *8)) (-4 *5 (-366 *4)) (-4 *6 (-1159 *5)) + (-4 *7 (-1159 (-352 *6))) (-4 *8 (-293 *5 *6 *7)) + (-4 *4 (-13 (-499) (-954 (-488)))) (-5 *2 (-85)) + (-5 *1 (-826 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-285 (-352 (-488)) *4 *5 *6)) (-4 *4 (-1159 (-352 (-488)))) + (-4 *5 (-1159 (-352 *4))) (-4 *6 (-293 (-352 (-488)) *4 *5)) (-5 *2 (-85)) + (-5 *1 (-827 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-395)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1087 *6)) (-4 *6 (-863 *5 *3 *4)) (-4 *3 (-719)) (-4 *4 (-758)) - (-4 *5 (-823)) (-5 *1 (-398 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-823))))) -(((*1 *2 *3) - (-12 (-5 *2 (-348 (-1087 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1087 *1)) - (-4 *4 (-393)) (-4 *4 (-497)) (-4 *4 (-1015)))) - ((*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *2 (-348 (-1087 *1))) (-5 *3 (-1087 *1))))) -(((*1 *2 *3) - (-12 (-5 *2 (-348 (-1087 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1087 *1)) - (-4 *4 (-393)) (-4 *4 (-497)) (-4 *4 (-1015)))) - ((*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *2 (-348 (-1087 *1))) (-5 *3 (-1087 *1))))) -(((*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *2 (-348 (-1087 *1))) (-5 *3 (-1087 *1))))) + (-12 (-5 *2 (-1089 *6)) (-4 *6 (-865 *5 *3 *4)) (-4 *3 (-721)) (-4 *4 (-760)) + (-4 *5 (-825)) (-5 *1 (-400 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-825))))) +(((*1 *2 *3) + (-12 (-5 *2 (-350 (-1089 *1))) (-5 *1 (-267 *4)) (-5 *3 (-1089 *1)) + (-4 *4 (-395)) (-4 *4 (-499)) (-4 *4 (-1017)))) + ((*1 *2 *3) (-12 (-4 *1 (-825)) (-5 *2 (-350 (-1089 *1))) (-5 *3 (-1089 *1))))) +(((*1 *2 *3) + (-12 (-5 *2 (-350 (-1089 *1))) (-5 *1 (-267 *4)) (-5 *3 (-1089 *1)) + (-4 *4 (-395)) (-4 *4 (-499)) (-4 *4 (-1017)))) + ((*1 *2 *3) (-12 (-4 *1 (-825)) (-5 *2 (-350 (-1089 *1))) (-5 *3 (-1089 *1))))) +(((*1 *2 *3) (-12 (-4 *1 (-825)) (-5 *2 (-350 (-1089 *1))) (-5 *3 (-1089 *1))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-585 (-1087 *5))) (-5 *3 (-1087 *5)) (-4 *5 (-139 *4)) - (-4 *4 (-485)) (-5 *1 (-122 *4 *5)))) + (|partial| -12 (-5 *2 (-587 (-1089 *5))) (-5 *3 (-1089 *5)) (-4 *5 (-141 *4)) + (-4 *4 (-487)) (-5 *1 (-122 *4 *5)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-585 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-1157 *4)) - (-4 *4 (-299)) (-5 *1 (-307 *4 *5 *3)))) + (|partial| -12 (-5 *2 (-587 *3)) (-4 *3 (-1159 *5)) (-4 *5 (-1159 *4)) + (-4 *4 (-301)) (-5 *1 (-309 *4 *5 *3)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-585 (-1087 (-486)))) (-5 *3 (-1087 (-486))) - (-5 *1 (-510)))) + (|partial| -12 (-5 *2 (-587 (-1089 (-488)))) (-5 *3 (-1089 (-488))) + (-5 *1 (-512)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-585 (-1087 *1))) (-5 *3 (-1087 *1)) (-4 *1 (-823))))) + (|partial| -12 (-5 *2 (-587 (-1089 *1))) (-5 *3 (-1089 *1)) (-4 *1 (-825))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-299)) (-5 *2 (-1181 *1)))) + (|partial| -12 (-5 *3 (-634 *1)) (-4 *1 (-301)) (-5 *2 (-1183 *1)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-118)) (-4 *1 (-823)) - (-5 *2 (-1181 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-634 *1)) (-4 *1 (-118)))) - ((*1 *1 *1) (-4 *1 (-299))) - ((*1 *2 *1) (-12 (-5 *2 (-634 *1)) (-4 *1 (-118)) (-4 *1 (-823))))) + (|partial| -12 (-5 *3 (-634 *1)) (-4 *1 (-118)) (-4 *1 (-825)) + (-5 *2 (-1183 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-636 *1)) (-4 *1 (-118)))) + ((*1 *1 *1) (-4 *1 (-301))) + ((*1 *2 *1) (-12 (-5 *2 (-636 *1)) (-4 *1 (-118)) (-4 *1 (-825))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-758)) (-4 *5 (-823)) (-4 *6 (-719)) - (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-348 (-1087 *8))) (-5 *1 (-820 *5 *6 *7 *8)) - (-5 *4 (-1087 *8)))) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-760)) (-4 *5 (-825)) (-4 *6 (-721)) + (-4 *8 (-865 *5 *6 *7)) (-5 *2 (-350 (-1089 *8))) (-5 *1 (-822 *5 *6 *7 *8)) + (-5 *4 (-1089 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-823)) (-4 *5 (-1157 *4)) (-5 *2 (-348 (-1087 *5))) - (-5 *1 (-821 *4 *5)) (-5 *3 (-1087 *5))))) + (-12 (-4 *4 (-825)) (-4 *5 (-1159 *4)) (-5 *2 (-350 (-1089 *5))) + (-5 *1 (-823 *4 *5)) (-5 *3 (-1089 *5))))) (((*1 *2) - (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-823)) (-5 *1 (-398 *3 *4 *2 *5)) - (-4 *5 (-863 *2 *3 *4)))) + (-12 (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-825)) (-5 *1 (-400 *3 *4 *2 *5)) + (-4 *5 (-865 *2 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-823)) (-5 *1 (-820 *2 *3 *4 *5)) - (-4 *5 (-863 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-823)) (-5 *1 (-821 *2 *3)) (-4 *3 (-1157 *2))))) + (-12 (-4 *3 (-721)) (-4 *4 (-760)) (-4 *2 (-825)) (-5 *1 (-822 *2 *3 *4 *5)) + (-4 *5 (-865 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-825)) (-5 *1 (-823 *2 *3)) (-4 *3 (-1159 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-823)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) - (-5 *2 (-348 (-1087 *7))) (-5 *1 (-820 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) + (-12 (-4 *4 (-825)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-865 *4 *5 *6)) + (-5 *2 (-350 (-1089 *7))) (-5 *1 (-822 *4 *5 *6 *7)) (-5 *3 (-1089 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-823)) (-4 *5 (-1157 *4)) (-5 *2 (-348 (-1087 *5))) - (-5 *1 (-821 *4 *5)) (-5 *3 (-1087 *5))))) + (-12 (-4 *4 (-825)) (-4 *5 (-1159 *4)) (-5 *2 (-350 (-1089 *5))) + (-5 *1 (-823 *4 *5)) (-5 *3 (-1089 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-823)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) - (-5 *2 (-348 (-1087 *7))) (-5 *1 (-820 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) + (-12 (-4 *4 (-825)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-865 *4 *5 *6)) + (-5 *2 (-350 (-1089 *7))) (-5 *1 (-822 *4 *5 *6 *7)) (-5 *3 (-1089 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-823)) (-4 *5 (-1157 *4)) (-5 *2 (-348 (-1087 *5))) - (-5 *1 (-821 *4 *5)) (-5 *3 (-1087 *5))))) + (-12 (-4 *4 (-825)) (-4 *5 (-1159 *4)) (-5 *2 (-350 (-1089 *5))) + (-5 *1 (-823 *4 *5)) (-5 *3 (-1089 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-585 (-1087 *7))) (-5 *3 (-1087 *7)) - (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-823)) (-4 *5 (-719)) (-4 *6 (-758)) - (-5 *1 (-820 *4 *5 *6 *7)))) + (|partial| -12 (-5 *2 (-587 (-1089 *7))) (-5 *3 (-1089 *7)) + (-4 *7 (-865 *4 *5 *6)) (-4 *4 (-825)) (-4 *5 (-721)) (-4 *6 (-760)) + (-5 *1 (-822 *4 *5 *6 *7)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-585 (-1087 *5))) (-5 *3 (-1087 *5)) - (-4 *5 (-1157 *4)) (-4 *4 (-823)) (-5 *1 (-821 *4 *5))))) + (|partial| -12 (-5 *2 (-587 (-1089 *5))) (-5 *3 (-1089 *5)) + (-4 *5 (-1159 *4)) (-4 *4 (-825)) (-5 *1 (-823 *4 *5))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-585 (-1087 *7))) (-5 *3 (-1087 *7)) - (-4 *7 (-863 *5 *6 *4)) (-4 *5 (-823)) (-4 *6 (-719)) (-4 *4 (-758)) - (-5 *1 (-820 *5 *6 *4 *7))))) -(((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *6)) - (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-832)))) ((*1 *1) (-4 *1 (-485))) - ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) - (-12 (-5 *2 (-585 (-585 (-696)))) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 (-815 *3))) (-4 *3 (-1015)) (-5 *1 (-818 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-817 *3)) (-4 *3 (-1015)) (-5 *2 (-1011 *3)))) + (|partial| -12 (-5 *2 (-587 (-1089 *7))) (-5 *3 (-1089 *7)) + (-4 *7 (-865 *5 *6 *4)) (-4 *5 (-825)) (-4 *6 (-721)) (-4 *4 (-760)) + (-5 *1 (-822 *5 *6 *4 *7))))) +(((*1 *2 *1) + (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-587 *6)) + (-5 *1 (-447 *3 *4 *5 *6)) (-4 *6 (-865 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-817 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-834)))) ((*1 *1) (-4 *1 (-487))) + ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-820 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-817 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) + (-12 (-5 *2 (-587 (-587 (-698)))) (-5 *1 (-820 *3)) (-4 *3 (-1017))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 (-817 *3))) (-4 *3 (-1017)) (-5 *1 (-820 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-819 *3)) (-4 *3 (-1017)) (-5 *2 (-1013 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1015)) (-5 *2 (-1011 (-585 *4))) (-5 *1 (-818 *4)) - (-5 *3 (-585 *4)))) + (-12 (-4 *4 (-1017)) (-5 *2 (-1013 (-587 *4))) (-5 *1 (-820 *4)) + (-5 *3 (-587 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1015)) (-5 *2 (-1011 (-1011 *4))) (-5 *1 (-818 *4)) - (-5 *3 (-1011 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *2 (-1011 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) + (-12 (-4 *4 (-1017)) (-5 *2 (-1013 (-1013 *4))) (-5 *1 (-820 *4)) + (-5 *3 (-1013 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *2 (-1013 *3)) (-5 *1 (-820 *3)) (-4 *3 (-1017))))) (((*1 *2 *1) - (-12 (-5 *2 (-1011 (-1011 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) + (-12 (-5 *2 (-1013 (-1013 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1017))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-815 *4)) (-4 *4 (-1015)) (-5 *2 (-585 (-696))) - (-5 *1 (-818 *4))))) + (-12 (-5 *3 (-817 *4)) (-4 *4 (-1017)) (-5 *2 (-587 (-698))) + (-5 *1 (-820 *4))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-815 *4)) (-4 *4 (-1015)) (-5 *2 (-585 (-696))) - (-5 *1 (-818 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-817 *3)) (-4 *3 (-1015)) (-5 *2 (-1011 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1011 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-774))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-817 *3)) (-4 *3 (-1015)) (-5 *2 (-85)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-774))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) + (-12 (-5 *3 (-817 *4)) (-4 *4 (-1017)) (-5 *2 (-587 (-698))) + (-5 *1 (-820 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-819 *3)) (-4 *3 (-1017)) (-5 *2 (-1013 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1013 *3)) (-5 *1 (-820 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-763)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-776))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-819 *3)) (-4 *3 (-1017)) (-5 *2 (-85)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-820 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-763)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-776))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-820 *3)) (-4 *3 (-1017))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-486)) (-5 *2 (-1187)) (-5 *1 (-818 *4)) (-4 *4 (-1015)))) - ((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-817 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-4 *1 (-817 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1058 *4 *2)) (-14 *4 (-832)) - (-4 *2 (-13 (-963) (-10 -7 (-6 (-4000 "*"))))) (-5 *1 (-816 *4 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-585 *3)) (|:| |image| (-585 *3)))) - (-5 *1 (-815 *3)) (-4 *3 (-1015))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-815 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-815 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-815 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-815 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-4 *1 (-952 (-486))) (-4 *1 (-254)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-485)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-815 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-4 *1 (-952 (-486))) (-4 *1 (-254)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-485)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-815 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1011 *3)) (-5 *1 (-815 *3)) (-4 *3 (-320)) (-4 *3 (-1015))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-815 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1015)))) - ((*1 *1 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1015))))) -(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1131)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-696)))) + (-12 (-5 *3 (-488)) (-5 *2 (-1189)) (-5 *1 (-820 *4)) (-4 *4 (-1017)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-820 *3)) (-4 *3 (-1017))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-4 *1 (-819 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1017)) (-4 *1 (-819 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1060 *4 *2)) (-14 *4 (-834)) + (-4 *2 (-13 (-965) (-10 -7 (-6 (-4003 "*"))))) (-5 *1 (-818 *4 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-587 *3)) (|:| |image| (-587 *3)))) + (-5 *1 (-817 *3)) (-4 *3 (-1017))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1017)) (-5 *1 (-817 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1017)) (-5 *1 (-817 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-817 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-817 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-4 *1 (-954 (-488))) (-4 *1 (-256)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-487)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-4 *1 (-954 (-488))) (-4 *1 (-256)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-487)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1013 *3)) (-5 *1 (-817 *3)) (-4 *3 (-322)) (-4 *3 (-1017))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-5 *1 (-817 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1017)))) + ((*1 *1 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1017))))) +(((*1 *2 *1) (-12 (-4 *1 (-188 *2)) (-4 *2 (-1133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-191)) (-5 *2 (-698)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-696)) (-4 *1 (-225 *4)) (-4 *4 (-1131)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1131)))) - ((*1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-808 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1131)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-698)) (-4 *1 (-227 *4)) (-4 *4 (-1133)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1133)))) + ((*1 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-965)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-810 *2 *3)) (-4 *3 (-1133)) (-4 *2 (-1133)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 (-696))) (-4 *1 (-813 *4)) + (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 (-698))) (-4 *1 (-815 *4)) (-4 *4 (-72)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-813 *2)) (-4 *2 (-72)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-813 *3)) (-4 *3 (-72))))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-698)) (-4 *1 (-815 *2)) (-4 *2 (-72)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *1 (-815 *3)) (-4 *3 (-72))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-696)) (-4 *4 (-312)) (-5 *1 (-809 *2 *4)) (-4 *2 (-1157 *4))))) + (-12 (-5 *3 (-698)) (-4 *4 (-314)) (-5 *1 (-811 *2 *4)) (-4 *2 (-1159 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-312)) (-5 *1 (-809 *2 *3)) (-4 *2 (-1157 *3))))) -(((*1 *1) (-12 (-4 *1 (-406 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-475))) ((*1 *1) (-4 *1 (-661))) ((*1 *1) (-4 *1 (-665))) - ((*1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) - ((*1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-758))))) -(((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) - (-5 *2 (-585 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-585 (-2 (|:| |k| (-805 *3)) (|:| |c| *4)))) - (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) - (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-616 *3))) (-5 *1 (-805 *3)) (-4 *3 (-758))))) -(((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) - (-14 *4 (-585 (-1092))))) - ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1131)))) - ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) - (-14 *4 (-585 (-1092))))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-805 *3)) (-4 *3 (-758))))) -(((*1 *2 *3) - (-12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-5 *2 (-585 *5)) (-5 *1 (-803 *4 *5)) - (-4 *5 (-1131))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) + (|partial| -12 (-4 *3 (-314)) (-5 *1 (-811 *2 *3)) (-4 *2 (-1159 *3))))) +(((*1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-148)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-477))) ((*1 *1) (-4 *1 (-663))) ((*1 *1) (-4 *1 (-667))) + ((*1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1017)))) + ((*1 *1) (-12 (-5 *1 (-807 *2)) (-4 *2 (-760))))) +(((*1 *2 *1) + (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-965)) (-4 *4 (-1017)) + (-5 *2 (-587 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-587 (-2 (|:| |k| (-807 *3)) (|:| |c| *4)))) + (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-760)) + (-4 *4 (-13 (-148) (-658 (-352 (-488))))) (-14 *5 (-834)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-618 *3))) (-5 *1 (-807 *3)) (-4 *3 (-760))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-965)) + (-14 *4 (-587 (-1094))))) + ((*1 *2 *3) + (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1133)))) + ((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-179 *3 *4)) (-4 *3 (-13 (-965) (-760))) + (-14 *4 (-587 (-1094))))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-760)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-622 *3)) (-4 *3 (-760)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-807 *3)) (-4 *3 (-760))))) +(((*1 *2 *3) + (-12 (-5 *3 (-804 *4)) (-4 *4 (-1017)) (-5 *2 (-587 *5)) (-5 *1 (-805 *4 *5)) + (-4 *5 (-1133))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-804 *3)) (-4 *3 (-1017)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-803 *4 *3)) (-4 *3 (-1131))))) + (-12 (-5 *2 (-804 *4)) (-4 *4 (-1017)) (-5 *1 (-805 *4 *3)) (-4 *3 (-1133))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-5 *2 (-85)) - (-5 *1 (-800 *4 *5)) (-4 *5 (-1015)))) + (|partial| -12 (-5 *3 (-804 *4)) (-4 *4 (-1017)) (-5 *2 (-85)) + (-5 *1 (-802 *4 *5)) (-4 *5 (-1017)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-803 *5 *3)) - (-4 *3 (-1131)))) + (-12 (-5 *4 (-804 *5)) (-4 *5 (-1017)) (-5 *2 (-85)) (-5 *1 (-805 *5 *3)) + (-4 *3 (-1133)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *6)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *6 (-1131)) - (-5 *2 (-85)) (-5 *1 (-803 *5 *6))))) + (-12 (-5 *3 (-587 *6)) (-5 *4 (-804 *5)) (-4 *5 (-1017)) (-4 *6 (-1133)) + (-5 *2 (-85)) (-5 *1 (-805 *5 *6))))) (((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-411 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-475))) ((*1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015))))) + ((*1 *1) (-12 (-4 *1 (-413 *2 *3)) (-4 *2 (-148)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-477))) ((*1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1017))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| -2516 (-86)) (|:| |arg| (-585 (-802 *3))))) - (-5 *1 (-802 *3)) (-4 *3 (-1015)))) + (|partial| -12 (-5 *2 (-2 (|:| -2519 (-86)) (|:| |arg| (-587 (-804 *3))))) + (-5 *1 (-804 *3)) (-4 *3 (-1017)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-86)) (-5 *2 (-585 (-802 *4))) (-5 *1 (-802 *4)) - (-4 *4 (-1015))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |num| (-802 *3)) (|:| |den| (-802 *3)))) - (-5 *1 (-802 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-587 (-804 *4))) (-5 *1 (-804 *4)) + (-4 *4 (-1017))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |num| (-804 *3)) (|:| |den| (-804 *3)))) + (-5 *1 (-804 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-587 (-804 *3))) (-5 *1 (-804 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-51))) (-5 *1 (-804 *3)) (-4 *3 (-1017))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-51))) (-5 *1 (-804 *3)) (-4 *3 (-1017))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-51))) (-5 *1 (-804 *3)) (-4 *3 (-1017))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1092)) (-5 *3 (-85)) (-5 *1 (-802 *4)) (-4 *4 (-1015))))) + (-12 (-5 *2 (-1094)) (-5 *3 (-85)) (-5 *1 (-804 *4)) (-4 *4 (-1017))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-51)) (-5 *1 (-802 *4)) (-4 *4 (-1015))))) + (-12 (-5 *2 (-587 (-1094))) (-5 *3 (-51)) (-5 *1 (-804 *4)) (-4 *4 (-1017))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-585 (-1092))) (|:| |pred| (-51)))) - (-5 *1 (-802 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) -(((*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) + (-12 (-5 *2 (-2 (|:| |var| (-587 (-1094))) (|:| |pred| (-51)))) + (-5 *1 (-804 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-1017))))) +(((*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-51))) (-5 *1 (-804 *3)) (-4 *3 (-1017))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) + (|partial| -12 (-5 *2 (-587 (-804 *3))) (-5 *1 (-804 *3)) (-4 *3 (-1017))))) (((*1 *2 *1) - (-12 (-4 *4 (-1015)) (-5 *2 (-85)) (-5 *1 (-797 *3 *4 *5)) (-4 *3 (-1015)) - (-4 *5 (-610 *4)))) + (-12 (-4 *4 (-1017)) (-5 *2 (-85)) (-5 *1 (-799 *3 *4 *5)) (-4 *3 (-1017)) + (-4 *5 (-612 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-800 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) + (-12 (-5 *2 (-85)) (-5 *1 (-802 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017))))) (((*1 *1) - (-12 (-4 *3 (-1015)) (-5 *1 (-797 *2 *3 *4)) (-4 *2 (-1015)) - (-4 *4 (-610 *3)))) - ((*1 *1) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) + (-12 (-4 *3 (-1017)) (-5 *1 (-799 *2 *3 *4)) (-4 *2 (-1017)) + (-4 *4 (-612 *3)))) + ((*1 *1) (-12 (-5 *1 (-802 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1017))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-4 *2 (-1015)) - (-5 *1 (-800 *4 *2))))) + (|partial| -12 (-5 *3 (-804 *4)) (-4 *4 (-1017)) (-4 *2 (-1017)) + (-5 *1 (-802 *4 *2))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1015))))) + (-12 (-5 *2 (-804 *4)) (-4 *4 (-1017)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1017))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1015))))) + (-12 (-5 *2 (-804 *4)) (-4 *4 (-1017)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1017))))) (((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1015))))) + (-12 (-5 *2 (-804 *4)) (-4 *4 (-1017)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1017))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1015)) (-4 *6 (-798 *5)) (-5 *2 (-797 *5 *6 (-585 *6))) - (-5 *1 (-799 *5 *6 *4)) (-5 *3 (-585 *6)) (-4 *4 (-555 (-802 *5))))) + (-12 (-4 *5 (-1017)) (-4 *6 (-800 *5)) (-5 *2 (-799 *5 *6 (-587 *6))) + (-5 *1 (-801 *5 *6 *4)) (-5 *3 (-587 *6)) (-4 *4 (-557 (-804 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1015)) (-5 *2 (-585 (-249 *3))) (-5 *1 (-799 *5 *3 *4)) - (-4 *3 (-952 (-1092))) (-4 *3 (-798 *5)) (-4 *4 (-555 (-802 *5))))) + (-12 (-4 *5 (-1017)) (-5 *2 (-587 (-251 *3))) (-5 *1 (-801 *5 *3 *4)) + (-4 *3 (-954 (-1094))) (-4 *3 (-800 *5)) (-4 *4 (-557 (-804 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1015)) (-5 *2 (-585 (-249 (-859 *3)))) (-5 *1 (-799 *5 *3 *4)) - (-4 *3 (-963)) (-2563 (-4 *3 (-952 (-1092)))) (-4 *3 (-798 *5)) - (-4 *4 (-555 (-802 *5))))) + (-12 (-4 *5 (-1017)) (-5 *2 (-587 (-251 (-861 *3)))) (-5 *1 (-801 *5 *3 *4)) + (-4 *3 (-965)) (-2566 (-4 *3 (-954 (-1094)))) (-4 *3 (-800 *5)) + (-4 *4 (-557 (-804 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1015)) (-5 *2 (-800 *5 *3)) (-5 *1 (-799 *5 *3 *4)) - (-2563 (-4 *3 (-952 (-1092)))) (-2563 (-4 *3 (-963))) (-4 *3 (-798 *5)) - (-4 *4 (-555 (-802 *5)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1092)) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) + (-12 (-4 *5 (-1017)) (-5 *2 (-802 *5 *3)) (-5 *1 (-801 *5 *3 *4)) + (-2566 (-4 *3 (-954 (-1094)))) (-2566 (-4 *3 (-965))) (-4 *3 (-800 *5)) + (-4 *4 (-557 (-804 *5)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-256)) (-5 *3 (-1094)) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-256)) (-5 *3 (-86)) (-5 *2 (-85)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1092)) (-5 *2 (-85)) (-5 *1 (-552 *4)) (-4 *4 (-1015)))) + (-12 (-5 *3 (-1094)) (-5 *2 (-85)) (-5 *1 (-554 *4)) (-4 *4 (-1017)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-552 *4)) (-4 *4 (-1015)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-749 *3)) (-4 *3 (-1015)) (-5 *2 (-85)))) + (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-554 *4)) (-4 *4 (-1017)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-751 *3)) (-4 *3 (-1017)) (-5 *2 (-85)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-799 *5 *3 *4)) (-4 *3 (-798 *5)) - (-4 *4 (-555 (-802 *5))))) + (-12 (-4 *5 (-1017)) (-5 *2 (-85)) (-5 *1 (-801 *5 *3 *4)) (-4 *3 (-800 *5)) + (-4 *4 (-557 (-804 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *6)) (-4 *6 (-798 *5)) (-4 *5 (-1015)) (-5 *2 (-85)) - (-5 *1 (-799 *5 *6 *4)) (-4 *4 (-555 (-802 *5)))))) + (-12 (-5 *3 (-587 *6)) (-4 *6 (-800 *5)) (-4 *5 (-1017)) (-5 *2 (-85)) + (-5 *1 (-801 *5 *6 *4)) (-4 *4 (-557 (-804 *5)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-800 *4 *5)) (-5 *3 (-800 *4 *6)) (-4 *4 (-1015)) - (-4 *5 (-1015)) (-4 *6 (-610 *5)) (-5 *1 (-797 *4 *5 *6))))) + (-12 (-5 *2 (-802 *4 *5)) (-5 *3 (-802 *4 *6)) (-4 *4 (-1017)) + (-4 *5 (-1017)) (-4 *6 (-612 *5)) (-5 *1 (-799 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *4 (-1015)) (-5 *2 (-800 *3 *5)) (-5 *1 (-797 *3 *4 *5)) - (-4 *3 (-1015)) (-4 *5 (-610 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *1 (-795)) (-5 *3 (-486))))) + (-12 (-4 *4 (-1017)) (-5 *2 (-802 *3 *5)) (-5 *1 (-799 *3 *4 *5)) + (-4 *3 (-1017)) (-4 *5 (-612 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1073 (-587 (-488)))) (-5 *1 (-797)) (-5 *3 (-488))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *1 (-795)) (-5 *3 (-585 (-486))))) + (-12 (-5 *2 (-1073 (-587 (-488)))) (-5 *1 (-797)) (-5 *3 (-587 (-488))))) ((*1 *2 *3) - (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *1 (-795)) (-5 *3 (-585 (-486)))))) + (-12 (-5 *2 (-1073 (-587 (-488)))) (-5 *1 (-797)) (-5 *3 (-587 (-488)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *3 (-585 (-486))) (-5 *1 (-795))))) + (-12 (-5 *2 (-1073 (-587 (-488)))) (-5 *3 (-587 (-488))) (-5 *1 (-797))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1071 (-585 (-486)))) (-5 *1 (-795)) (-5 *3 (-585 (-486)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1071 (-585 (-832)))) (-5 *1 (-795))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-789 *2)) (-4 *2 (-1131)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-791 *2)) (-4 *2 (-1131)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-794 *2)) (-4 *2 (-1131))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1131))))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-585 (-1097))) (-5 *1 (-792))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785))))) -(((*1 *2 *3) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-199)) (-5 *3 (-1075)))) - ((*1 *2 *2) (-12 (-5 *2 (-585 (-1075))) (-5 *1 (-199)))) - ((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-784 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131))))) -(((*1 *2 *1) - (-12 (-5 *2 (-148 (-350 (-486)))) (-5 *1 (-90 *3)) (-14 *3 (-486)))) - ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1071 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3)))) - ((*1 *2 *3) (-12 (-5 *2 (-148 (-486))) (-5 *1 (-691 *3)) (-4 *3 (-347)))) - ((*1 *2 *1) - (-12 (-5 *2 (-148 (-350 (-486)))) (-5 *1 (-782 *3)) (-14 *3 (-486)))) - ((*1 *2 *1) - (-12 (-14 *3 (-486)) (-5 *2 (-148 (-350 (-486)))) (-5 *1 (-783 *3 *4)) - (-4 *4 (-781 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-346 *3)) (-4 *3 (-347)))) - ((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-346 *3)) (-4 *3 (-347)))) - ((*1 *2 *2) (-12 (-5 *2 (-832)) (|has| *1 (-6 -3989)) (-4 *1 (-347)))) - ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-832)))) - ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-5 *2 (-1071 (-486)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1157 *3)) (-14 *5 (-1 *4 *4 *2)) + (-12 (-5 *2 (-1073 (-587 (-488)))) (-5 *1 (-797)) (-5 *3 (-587 (-488)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1073 (-587 (-834)))) (-5 *1 (-797))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-5 *1 (-791 *2)) (-4 *2 (-1133)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-5 *1 (-793 *2)) (-4 *2 (-1133)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-5 *1 (-796 *2)) (-4 *2 (-1133))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-796 *2)) (-4 *2 (-1133))))) +(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-587 (-1099))) (-5 *1 (-794))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-787))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-787))))) +(((*1 *2 *3) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-201)) (-5 *3 (-1077)))) + ((*1 *2 *2) (-12 (-5 *2 (-587 (-1077))) (-5 *1 (-201)))) + ((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-787))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-787))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-787))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-786 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133))))) +(((*1 *2 *1) + (-12 (-5 *2 (-150 (-352 (-488)))) (-5 *1 (-90 *3)) (-14 *3 (-488)))) + ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1073 *2)) (-4 *2 (-260)) (-5 *1 (-150 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-352 *3)) (-4 *3 (-260)) (-5 *1 (-150 *3)))) + ((*1 *2 *3) (-12 (-5 *2 (-150 (-488))) (-5 *1 (-693 *3)) (-4 *3 (-349)))) + ((*1 *2 *1) + (-12 (-5 *2 (-150 (-352 (-488)))) (-5 *1 (-784 *3)) (-14 *3 (-488)))) + ((*1 *2 *1) + (-12 (-14 *3 (-488)) (-5 *2 (-150 (-352 (-488)))) (-5 *1 (-785 *3 *4)) + (-4 *4 (-783 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-348 *3)) (-4 *3 (-349)))) + ((*1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-348 *3)) (-4 *3 (-349)))) + ((*1 *2 *2) (-12 (-5 *2 (-834)) (|has| *1 (-6 -3992)) (-4 *1 (-349)))) + ((*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-834)))) + ((*1 *2 *1) (-12 (-4 *1 (-783 *3)) (-5 *2 (-1073 (-488)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-148)) (-4 *2 (-23)) (-5 *1 (-246 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1159 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-650 *3 *2 *4 *5 *6)) (-4 *3 (-146)) + (-12 (-4 *2 (-23)) (-5 *1 (-652 *3 *2 *4 *5 *6)) (-4 *3 (-148)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-651 *3 *2)) (-4 *3 (-963)))) + ((*1 *2) (-12 (-4 *2 (-1159 *3)) (-5 *1 (-653 *3 *2)) (-4 *3 (-965)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-654 *3 *2 *4 *5 *6)) (-4 *3 (-146)) + (-12 (-4 *2 (-23)) (-5 *1 (-656 *3 *2 *4 *5 *6)) (-4 *3 (-148)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486))))) -(((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-5 *2 (-486))))) -(((*1 *1 *1) (-4 *1 (-781 *2)))) -(((*1 *1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1) (-5 *1 (-774))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1087 (-486))) (-5 *3 (-486)) (-4 *1 (-781 *4))))) + ((*1 *2) (-12 (-4 *1 (-783 *3)) (-5 *2 (-488))))) +(((*1 *2 *1) (-12 (-4 *1 (-783 *3)) (-5 *2 (-488))))) +(((*1 *1 *1) (-4 *1 (-783 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-776))) ((*1 *1 *1) (-5 *1 (-776))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1089 (-488))) (-5 *3 (-488)) (-4 *1 (-783 *4))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-696)) (-4 *5 (-312)) (-5 *2 (-350 *6)) - (-5 *1 (-778 *5 *4 *6)) (-4 *4 (-1174 *5)) (-4 *6 (-1157 *5)))) + (|partial| -12 (-5 *3 (-698)) (-4 *5 (-314)) (-5 *2 (-352 *6)) + (-5 *1 (-780 *5 *4 *6)) (-4 *4 (-1176 *5)) (-4 *6 (-1159 *5)))) ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-696)) (-5 *4 (-1171 *5 *6 *7)) (-4 *5 (-312)) - (-14 *6 (-1092)) (-14 *7 *5) (-5 *2 (-350 (-1150 *6 *5))) - (-5 *1 (-779 *5 *6 *7)))) + (|partial| -12 (-5 *3 (-698)) (-5 *4 (-1173 *5 *6 *7)) (-4 *5 (-314)) + (-14 *6 (-1094)) (-14 *7 *5) (-5 *2 (-352 (-1152 *6 *5))) + (-5 *1 (-781 *5 *6 *7)))) ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-696)) (-5 *4 (-1171 *5 *6 *7)) (-4 *5 (-312)) - (-14 *6 (-1092)) (-14 *7 *5) (-5 *2 (-350 (-1150 *6 *5))) - (-5 *1 (-779 *5 *6 *7))))) + (|partial| -12 (-5 *3 (-698)) (-5 *4 (-1173 *5 *6 *7)) (-4 *5 (-314)) + (-14 *6 (-1094)) (-14 *7 *5) (-5 *2 (-352 (-1152 *6 *5))) + (-5 *1 (-781 *5 *6 *7))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-696)) (-4 *5 (-312)) (-5 *2 (-148 *6)) - (-5 *1 (-778 *5 *4 *6)) (-4 *4 (-1174 *5)) (-4 *6 (-1157 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1131)) (-5 *2 (-585 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-382))) (-5 *1 (-776))))) -(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-774))))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-774))))) -(((*1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-774))))) -(((*1 *2 *1) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117))))) - ((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) - ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-774))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1131)) (-5 *2 (-696)))) - ((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-696)))) - ((*1 *2 *3) - (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) - (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) - ((*1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774)))) - ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-774))))) -(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-774))))) -(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-774))))) -(((*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774))))) -(((*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-774))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) - ((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) - ((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-774))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) -(((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-774))))) -(((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-254)))) - ((*1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) -(((*1 *1) (-5 *1 (-117))) ((*1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-774)))) - ((*1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1 *1) (-5 *1 (-774))) - ((*1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) - ((*1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-254)))) - ((*1 *1 *1) (-4 *1 (-254))) - ((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) - ((*1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) + (|partial| -12 (-5 *3 (-698)) (-4 *5 (-314)) (-5 *2 (-150 *6)) + (-5 *1 (-780 *5 *4 *6)) (-4 *4 (-1176 *5)) (-4 *6 (-1159 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-1133)) (-5 *2 (-587 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-384))) (-5 *1 (-778))))) +(((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-776))))) +(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-776))))) +(((*1 *2 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-776))))) +(((*1 *2 *1) (-12 (-4 *1 (-497 *2)) (-4 *2 (-13 (-349) (-1119))))) + ((*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-776)))) + ((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-776))))) +(((*1 *2 *1) (-12 (-4 *1 (-216 *3)) (-4 *3 (-1133)) (-5 *2 (-698)))) + ((*1 *2 *1) (-12 (-4 *1 (-256)) (-5 *2 (-698)))) + ((*1 *2 *3) + (-12 (-4 *4 (-965)) (-4 *2 (-13 (-349) (-954 *4) (-314) (-1119) (-241))) + (-5 *1 (-386 *4 *3 *2)) (-4 *3 (-1159 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-554 *3)) (-4 *3 (-1017)))) + ((*1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-776)))) + ((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-776))))) +(((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-776))))) +(((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-776))))) +(((*1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-776))))) +(((*1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-776))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-776))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) + ((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) + ((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-776))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776))))) +(((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-776))))) +(((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-256)))) + ((*1 *1 *1) (-4 *1 (-256))) ((*1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776))))) +(((*1 *1) (-5 *1 (-117))) ((*1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-776)))) + ((*1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1 *1 *1) (-5 *1 (-776))) ((*1 *1 *1 *1) (-5 *1 (-776))) + ((*1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) + ((*1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-256)))) + ((*1 *1 *1) (-4 *1 (-256))) + ((*1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776)))) + ((*1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 (-776))) (-5 *1 (-776))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-774)))) + ((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-763)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-763)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-776)))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-741 *3)) (|:| |rm| (-741 *3)))) - (-5 *1 (-741 *3)) (-4 *3 (-758)))) - ((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-696))) - ((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-696))) - ((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1) (-5 *1 (-774)))) -(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-773)))) - ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-773))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-469)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-515)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-773))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *2 (-634 (-101))) (-5 *3 (-101))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *2 (-634 (-490))) (-5 *3 (-490))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *2 (-634 (-1140))) (-5 *3 (-1140))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *3 (-102)) (-5 *2 (-696))))) -(((*1 *2 *3) (-12 (-5 *3 (-585 (-51))) (-5 *2 (-1187)) (-5 *1 (-770))))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-743 *3)) (|:| |rm| (-743 *3)))) + (-5 *1 (-743 *3)) (-4 *3 (-760)))) + ((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1 *1) (-4 *1 (-260))) ((*1 *1 *1 *1) (-5 *1 (-698))) + ((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1 *1) (-4 *1 (-260))) ((*1 *1 *1 *1) (-5 *1 (-698))) + ((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1) (-5 *1 (-776)))) +(((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-775)))) + ((*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-775))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-471)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-517)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-775))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-774)) (-5 *2 (-636 (-101))) (-5 *3 (-101))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-774)) (-5 *2 (-636 (-492))) (-5 *3 (-492))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-774)) (-5 *2 (-636 (-1142))) (-5 *3 (-1142))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-774)) (-5 *3 (-102)) (-5 *2 (-698))))) +(((*1 *2 *3) (-12 (-5 *3 (-587 (-51))) (-5 *2 (-1189)) (-5 *1 (-772))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-38 (-350 (-486)))) - (-4 *2 (-146))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) - ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146))))) + (-12 (-5 *3 (-698)) (-5 *1 (-769 *2)) (-4 *2 (-38 (-352 (-488)))) + (-4 *2 (-148))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-698)) (-5 *1 (-769 *2)) (-4 *2 (-148)))) + ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-698)) (-5 *1 (-769 *2)) (-4 *2 (-148))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-698)) (-5 *1 (-769 *2)) (-4 *2 (-148))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) - (-4 *1 (-763 *3)))) + (-12 (-4 *3 (-314)) (-4 *3 (-965)) (-5 *2 (-2 (|:| -1977 *1) (|:| -2908 *1))) + (-4 *1 (-765 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-963)) - (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-764 *5 *3)) - (-4 *3 (-763 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-314)) (-4 *5 (-965)) + (-5 *2 (-2 (|:| -1977 *3) (|:| -2908 *3))) (-5 *1 (-766 *5 *3)) + (-4 *3 (-765 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) - (-5 *1 (-692 *3 *4)) (-4 *3 (-647 *4)))) + (-12 (-4 *4 (-314)) (-5 *2 (-2 (|:| -1977 *3) (|:| -2908 *3))) + (-5 *1 (-694 *3 *4)) (-4 *3 (-649 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) - (-4 *1 (-763 *3)))) + (-12 (-4 *3 (-314)) (-4 *3 (-965)) (-5 *2 (-2 (|:| -1977 *1) (|:| -2908 *1))) + (-4 *1 (-765 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-963)) - (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-764 *5 *3)) - (-4 *3 (-763 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-314)) (-4 *5 (-965)) + (-5 *2 (-2 (|:| -1977 *3) (|:| -2908 *3))) (-5 *1 (-766 *5 *3)) + (-4 *3 (-765 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) - (-4 *1 (-763 *3)))) + (-12 (-4 *3 (-499)) (-4 *3 (-965)) (-5 *2 (-2 (|:| -1977 *1) (|:| -2908 *1))) + (-4 *1 (-765 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-497)) (-4 *5 (-963)) - (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-764 *5 *3)) - (-4 *3 (-763 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-499)) (-4 *5 (-965)) + (-5 *2 (-2 (|:| -1977 *3) (|:| -2908 *3))) (-5 *1 (-766 *5 *3)) + (-4 *3 (-765 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-497)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) - (-4 *1 (-763 *3)))) + (-12 (-4 *3 (-499)) (-4 *3 (-965)) (-5 *2 (-2 (|:| -1977 *1) (|:| -2908 *1))) + (-4 *1 (-765 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-497)) (-4 *5 (-963)) - (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-764 *5 *3)) - (-4 *3 (-763 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-499)) (-4 *5 (-965)) + (-5 *2 (-2 (|:| -1977 *3) (|:| -2908 *3))) (-5 *1 (-766 *5 *3)) + (-4 *3 (-765 *5))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-592 *5)) (-4 *5 (-963)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-763 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-632 *3)) (-4 *1 (-361 *3)) (-4 *3 (-146)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-594 *5)) (-4 *5 (-965)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-765 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-634 *3)) (-4 *1 (-363 *3)) (-4 *3 (-148)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-963)) (-5 *1 (-764 *2 *3)) - (-4 *3 (-763 *2))))) + (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-965)) (-5 *1 (-766 *2 *3)) + (-4 *3 (-765 *2))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-963)) (-5 *1 (-764 *5 *2)) - (-4 *2 (-763 *5))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) + (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-965)) (-5 *1 (-766 *5 *2)) + (-4 *2 (-765 *5))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-314)) (-5 *1 (-694 *2 *3)) (-4 *2 (-649 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-314)) (-5 *1 (-694 *2 *3)) (-4 *2 (-649 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) + (|partial| -12 (-4 *3 (-314)) (-5 *1 (-694 *2 *3)) (-4 *2 (-649 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) + (|partial| -12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-314)) (-5 *1 (-694 *2 *3)) (-4 *2 (-649 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *3 (-963)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) - (-4 *1 (-763 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) + (-12 (-4 *3 (-314)) (-4 *3 (-965)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2414 *1))) + (-4 *1 (-765 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) + (|partial| -12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *3 (-963)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) - (-4 *1 (-763 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) + (-12 (-4 *3 (-314)) (-4 *3 (-965)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2414 *1))) + (-4 *1 (-765 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-314)) (-5 *1 (-694 *2 *3)) (-4 *2 (-649 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-965)) (-4 *2 (-314))))) (((*1 *1) - (-12 (-4 *1 (-347)) (-2563 (|has| *1 (-6 -3989))) - (-2563 (|has| *1 (-6 -3981))))) - ((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1015)) (-4 *2 (-758)))) - ((*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-758)))) ((*1 *1) (-4 *1 (-754))) - ((*1 *1 *1 *1) (-4 *1 (-761)))) + (-12 (-4 *1 (-349)) (-2566 (|has| *1 (-6 -3992))) + (-2566 (|has| *1 (-6 -3984))))) + ((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-1017)) (-4 *2 (-760)))) + ((*1 *2 *1) (-12 (-4 *1 (-746 *2)) (-4 *2 (-760)))) ((*1 *1) (-4 *1 (-756))) + ((*1 *1 *1 *1) (-4 *1 (-763)))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1181 *5)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-755 *4 *5)) - (-14 *4 (-696))))) + (-12 (-5 *3 (-1183 *5)) (-4 *5 (-720)) (-5 *2 (-85)) (-5 *1 (-757 *4 *5)) + (-14 *4 (-698))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1181 *5)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-755 *4 *5)) - (-14 *4 (-696))))) + (-12 (-5 *3 (-1183 *5)) (-4 *5 (-720)) (-5 *2 (-85)) (-5 *1 (-757 *4 *5)) + (-14 *4 (-698))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1181 *5)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-755 *4 *5)) - (-14 *4 (-696))))) -(((*1 *2) (-12 (-5 *2 (-752 (-486))) (-5 *1 (-474)))) - ((*1 *1) (-12 (-5 *1 (-752 *2)) (-4 *2 (-1015))))) -(((*1 *2) (-12 (-5 *2 (-752 (-486))) (-5 *1 (-474)))) - ((*1 *1) (-12 (-5 *1 (-752 *2)) (-4 *2 (-1015))))) + (-12 (-5 *3 (-1183 *5)) (-4 *5 (-720)) (-5 *2 (-85)) (-5 *1 (-757 *4 *5)) + (-14 *4 (-698))))) +(((*1 *2) (-12 (-5 *2 (-754 (-488))) (-5 *1 (-476)))) + ((*1 *1) (-12 (-5 *1 (-754 *2)) (-4 *2 (-1017))))) +(((*1 *2) (-12 (-5 *2 (-754 (-488))) (-5 *1 (-476)))) + ((*1 *1) (-12 (-5 *1 (-754 *2)) (-4 *2 (-1017))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-745 *3)) (-4 *3 (-1015)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-752 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-745 *3)) (-4 *3 (-1015)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-752 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-752 *3)) (-4 *3 (-1015))))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-167 (-443))) (-5 *1 (-750))))) -(((*1 *2 *1) (-12 (-4 *1 (-749 *3)) (-4 *3 (-1015)) (-5 *2 (-55))))) -(((*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)))) - ((*1 *2 *3) - (-12 (-4 *4 (-497)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-631 *4 *5 *6 *3)) - (-4 *3 (-629 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-747 *3)) (-4 *3 (-1017)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-754 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-747 *3)) (-4 *3 (-1017)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-754 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-1037)) (-5 *1 (-754 *3)) (-4 *3 (-1017))))) +(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-169 (-445))) (-5 *1 (-752))))) +(((*1 *2 *1) (-12 (-4 *1 (-751 *3)) (-4 *3 (-1017)) (-5 *2 (-55))))) +(((*1 *1 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-965)))) + ((*1 *2 *3) + (-12 (-4 *4 (-499)) (-4 *4 (-148)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) + (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-633 *4 *5 *6 *3)) + (-4 *3 (-631 *4 *5 *6)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-146)) (-4 *2 (-963)) (-5 *1 (-653 *2 *3)) (-4 *3 (-592 *2)))) + (-12 (-4 *2 (-148)) (-4 *2 (-965)) (-5 *1 (-655 *2 *3)) (-4 *3 (-594 *2)))) ((*1 *1 *1) - (-12 (-4 *2 (-146)) (-4 *2 (-963)) (-5 *1 (-653 *2 *3)) (-4 *3 (-592 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-146)) (-4 *2 (-963)))) - ((*1 *1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-146)) (-4 *2 (-963))))) + (-12 (-4 *2 (-148)) (-4 *2 (-965)) (-5 *1 (-655 *2 *3)) (-4 *3 (-594 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-148)) (-4 *2 (-965)))) + ((*1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-148)) (-4 *2 (-965))))) (((*1 *2 *2) - (-12 (-4 *2 (-146)) (-4 *2 (-963)) (-5 *1 (-653 *2 *3)) (-4 *3 (-592 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-747 *2)) (-4 *2 (-146)) (-4 *2 (-963))))) + (-12 (-4 *2 (-148)) (-4 *2 (-965)) (-5 *1 (-655 *2 *3)) (-4 *3 (-594 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-148)) (-4 *2 (-965))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-86)) (-5 *4 (-585 *2)) (-5 *1 (-87 *2)) - (-4 *2 (-1015)))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-587 *2)) (-5 *1 (-87 *2)) + (-4 *2 (-1017)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-585 *4))) (-4 *4 (-1015)) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-587 *4))) (-4 *4 (-1017)) (-5 *1 (-87 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1017)) (-5 *1 (-87 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-585 *4))) (-5 *1 (-87 *4)) - (-4 *4 (-1015)))) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-587 *4))) (-5 *1 (-87 *4)) + (-4 *4 (-1017)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-592 *3)) (-4 *3 (-963)) - (-5 *1 (-653 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-747 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-965)) + (-5 *1 (-655 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-965)) (-5 *1 (-749 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-592 *3)) (-4 *3 (-963)) - (-5 *1 (-653 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-747 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-965)) + (-5 *1 (-655 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-965)) (-5 *1 (-749 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-86)) (-4 *4 (-963)) (-5 *1 (-653 *4 *2)) (-4 *2 (-592 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-747 *2)) (-4 *2 (-963))))) + (-12 (-5 *3 (-86)) (-4 *4 (-965)) (-5 *1 (-655 *4 *2)) (-4 *2 (-594 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-749 *2)) (-4 *2 (-965))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-310 (-86))) (-4 *2 (-963)) (-5 *1 (-653 *2 *4)) - (-4 *4 (-592 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-747 *2)) (-4 *2 (-963))))) -(((*1 *2) (-12 (-5 *2 (-745 (-486))) (-5 *1 (-474)))) - ((*1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1015))))) -(((*1 *1 *2) (-12 (-4 *3 (-963)) (-5 *1 (-743 *2 *3)) (-4 *2 (-647 *3))))) -(((*1 *2 *1) (-12 (-4 *2 (-647 *3)) (-5 *1 (-743 *2 *3)) (-4 *3 (-963))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-741 *3)) (-4 *3 (-758))))) + (-12 (-5 *3 (-312 (-86))) (-4 *2 (-965)) (-5 *1 (-655 *2 *4)) + (-4 *4 (-594 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-312 (-86))) (-5 *1 (-749 *2)) (-4 *2 (-965))))) +(((*1 *2) (-12 (-5 *2 (-747 (-488))) (-5 *1 (-476)))) + ((*1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1017))))) +(((*1 *1 *2) (-12 (-4 *3 (-965)) (-5 *1 (-745 *2 *3)) (-4 *2 (-649 *3))))) +(((*1 *2 *1) (-12 (-4 *2 (-649 *3)) (-5 *1 (-745 *2 *3)) (-4 *3 (-965))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-760)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-622 *3)) (-4 *3 (-760)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-760))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-585 *4)) (-4 *4 (-312)) (-5 *2 (-1181 *4)) - (-5 *1 (-736 *4 *3)) (-4 *3 (-602 *4))))) + (|partial| -12 (-5 *5 (-587 *4)) (-4 *4 (-314)) (-5 *2 (-1183 *4)) + (-5 *1 (-738 *4 *3)) (-4 *3 (-604 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 *4)) (-4 *4 (-312)) (-5 *2 (-632 *4)) (-5 *1 (-736 *4 *5)) - (-4 *5 (-602 *4)))) + (-12 (-5 *3 (-587 *4)) (-4 *4 (-314)) (-5 *2 (-634 *4)) (-5 *1 (-738 *4 *5)) + (-4 *5 (-604 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *5)) (-5 *4 (-696)) (-4 *5 (-312)) (-5 *2 (-632 *5)) - (-5 *1 (-736 *5 *6)) (-4 *6 (-602 *5))))) + (-12 (-5 *3 (-587 *5)) (-5 *4 (-698)) (-4 *5 (-314)) (-5 *2 (-634 *5)) + (-5 *1 (-738 *5 *6)) (-4 *6 (-604 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-585 (-1092))) (-4 *5 (-497)) - (-5 *2 (-585 (-585 (-249 (-350 (-859 *5)))))) (-5 *1 (-695 *5)))) + (-12 (-5 *3 (-587 (-861 *5))) (-5 *4 (-587 (-1094))) (-4 *5 (-499)) + (-5 *2 (-587 (-587 (-251 (-352 (-861 *5)))))) (-5 *1 (-697 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-497)) - (-5 *2 (-585 (-585 (-249 (-350 (-859 *4)))))) (-5 *1 (-695 *4)))) + (-12 (-5 *3 (-587 (-861 *4))) (-4 *4 (-499)) + (-5 *2 (-587 (-587 (-251 (-352 (-861 *4)))))) (-5 *1 (-697 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-632 *7)) + (-12 (-5 *3 (-634 *7)) (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2014 (-585 *6))) *7 *6)) - (-4 *6 (-312)) (-4 *7 (-602 *6)) + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2017 (-587 *6))) *7 *6)) + (-4 *6 (-314)) (-4 *7 (-604 *6)) (-5 *2 - (-2 (|:| |particular| (-3 (-1181 *6) "failed")) - (|:| -2014 (-585 (-1181 *6))))) - (-5 *1 (-735 *6 *7)) (-5 *4 (-1181 *6))))) + (-2 (|:| |particular| (-3 (-1183 *6) "failed")) + (|:| -2017 (-587 (-1183 *6))))) + (-5 *1 (-737 *6 *7)) (-5 *4 (-1183 *6))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) + (-12 (-4 *5 (-314)) (-5 *2 - (-2 (|:| A (-632 *5)) + (-2 (|:| A (-634 *5)) (|:| |eqs| - (-585 - (-2 (|:| C (-632 *5)) (|:| |g| (-1181 *5)) (|:| -3269 *6) + (-587 + (-2 (|:| C (-634 *5)) (|:| |g| (-1183 *5)) (|:| -3272 *6) (|:| |rh| *5)))))) - (-5 *1 (-735 *5 *6)) (-5 *3 (-632 *5)) (-5 *4 (-1181 *5)) - (-4 *6 (-602 *5)))) + (-5 *1 (-737 *5 *6)) (-5 *3 (-634 *5)) (-5 *4 (-1183 *5)) + (-4 *6 (-604 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-602 *5)) - (-5 *2 (-2 (|:| |mat| (-632 *6)) (|:| |vec| (-1181 *5)))) - (-5 *1 (-735 *5 *6)) (-5 *3 (-632 *6)) (-5 *4 (-1181 *5))))) + (-12 (-4 *5 (-314)) (-4 *6 (-604 *5)) + (-5 *2 (-2 (|:| |mat| (-634 *6)) (|:| |vec| (-1183 *5)))) + (-5 *1 (-737 *5 *6)) (-5 *3 (-634 *6)) (-5 *4 (-1183 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-350 *6))) (-5 *4 (-1 (-585 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) - (-4 *6 (-1157 *5)) (-5 *2 (-585 (-350 *6))) (-5 *1 (-734 *5 *6)))) + (-12 (-5 *3 (-601 (-352 *6))) (-5 *4 (-1 (-587 *5) *6)) + (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) + (-4 *6 (-1159 *5)) (-5 *2 (-587 (-352 *6))) (-5 *1 (-736 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-599 (-350 *7))) (-5 *4 (-1 (-585 *6) *7)) - (-5 *5 (-1 (-348 *7) *7)) - (-4 *6 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) - (-4 *7 (-1157 *6)) (-5 *2 (-585 (-350 *7))) (-5 *1 (-734 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-600 *6 (-350 *6))) (-5 *4 (-1 (-585 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) - (-4 *6 (-1157 *5)) (-5 *2 (-585 (-350 *6))) (-5 *1 (-734 *5 *6)))) + (-12 (-5 *3 (-601 (-352 *7))) (-5 *4 (-1 (-587 *6) *7)) + (-5 *5 (-1 (-350 *7) *7)) + (-4 *6 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) + (-4 *7 (-1159 *6)) (-5 *2 (-587 (-352 *7))) (-5 *1 (-736 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-602 *6 (-352 *6))) (-5 *4 (-1 (-587 *5) *6)) + (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) + (-4 *6 (-1159 *5)) (-5 *2 (-587 (-352 *6))) (-5 *1 (-736 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-600 *7 (-350 *7))) (-5 *4 (-1 (-585 *6) *7)) - (-5 *5 (-1 (-348 *7) *7)) - (-4 *6 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) - (-4 *7 (-1157 *6)) (-5 *2 (-585 (-350 *7))) (-5 *1 (-734 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-599 (-350 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) - (-5 *2 (-585 (-350 *5))) (-5 *1 (-734 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) - (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) - (-5 *2 (-585 (-350 *6))) (-5 *1 (-734 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-600 *5 (-350 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) - (-5 *2 (-585 (-350 *5))) (-5 *1 (-734 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-600 *6 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) - (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) - (-5 *2 (-585 (-350 *6))) (-5 *1 (-734 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-585 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) - (-5 *2 (-585 (-2 (|:| |poly| *6) (|:| -3269 *3)))) - (-5 *1 (-731 *5 *6 *3 *7)) (-4 *3 (-602 *6)) (-4 *7 (-602 (-350 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-585 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) - (-4 *6 (-1157 *5)) - (-5 *2 (-585 (-2 (|:| |poly| *6) (|:| -3269 (-600 *6 (-350 *6)))))) - (-5 *1 (-734 *5 *6)) (-5 *3 (-600 *6 (-350 *6)))))) + (-12 (-5 *3 (-602 *7 (-352 *7))) (-5 *4 (-1 (-587 *6) *7)) + (-5 *5 (-1 (-350 *7) *7)) + (-4 *6 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) + (-4 *7 (-1159 *6)) (-5 *2 (-587 (-352 *7))) (-5 *1 (-736 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-601 (-352 *5))) (-4 *5 (-1159 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) + (-5 *2 (-587 (-352 *5))) (-5 *1 (-736 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-601 (-352 *6))) (-5 *4 (-1 (-350 *6) *6)) (-4 *6 (-1159 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) + (-5 *2 (-587 (-352 *6))) (-5 *1 (-736 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-602 *5 (-352 *5))) (-4 *5 (-1159 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) + (-5 *2 (-587 (-352 *5))) (-5 *1 (-736 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-602 *6 (-352 *6))) (-5 *4 (-1 (-350 *6) *6)) (-4 *6 (-1159 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) + (-5 *2 (-587 (-352 *6))) (-5 *1 (-736 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-587 *5) *6)) + (-4 *5 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *6 (-1159 *5)) + (-5 *2 (-587 (-2 (|:| |poly| *6) (|:| -3272 *3)))) + (-5 *1 (-733 *5 *6 *3 *7)) (-4 *3 (-604 *6)) (-4 *7 (-604 (-352 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-587 *5) *6)) + (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) + (-4 *6 (-1159 *5)) + (-5 *2 (-587 (-2 (|:| |poly| *6) (|:| -3272 (-602 *6 (-352 *6)))))) + (-5 *1 (-736 *5 *6)) (-5 *3 (-602 *6 (-352 *6)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-585 *7) *7 (-1087 *7))) (-5 *5 (-1 (-348 *7) *7)) - (-4 *7 (-1157 *6)) (-4 *6 (-13 (-312) (-120) (-952 (-350 (-486))))) - (-5 *2 (-585 (-2 (|:| |frac| (-350 *7)) (|:| -3269 *3)))) - (-5 *1 (-731 *6 *7 *3 *8)) (-4 *3 (-602 *7)) (-4 *8 (-602 (-350 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) - (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) - (-5 *2 (-585 (-2 (|:| |frac| (-350 *6)) (|:| -3269 (-600 *6 (-350 *6)))))) - (-5 *1 (-734 *5 *6)) (-5 *3 (-600 *6 (-350 *6)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *7 (-1157 *5)) (-4 *4 (-663 *5 *7)) - (-5 *2 (-2 (|:| |mat| (-632 *6)) (|:| |vec| (-1181 *5)))) - (-5 *1 (-733 *5 *6 *7 *4 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-599 (-350 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-732 *4 *2)) - (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-600 *2 (-350 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-732 *4 *2)) - (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1157 *5)) - (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-585 *4)))) - (-5 *1 (-732 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 (-350 *6))) (-4 *6 (-1157 *5)) - (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) - (-5 *2 (-2 (|:| -2014 (-585 (-350 *6))) (|:| |mat| (-632 *5)))) - (-5 *1 (-732 *5 *6)) (-5 *4 (-585 (-350 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-600 *6 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1157 *5)) - (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-585 *4)))) - (-5 *1 (-732 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-600 *6 (-350 *6))) (-4 *6 (-1157 *5)) - (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) - (-5 *2 (-2 (|:| -2014 (-585 (-350 *6))) (|:| |mat| (-632 *5)))) - (-5 *1 (-732 *5 *6)) (-5 *4 (-585 (-350 *6)))))) + (-12 (-5 *4 (-1 (-587 *7) *7 (-1089 *7))) (-5 *5 (-1 (-350 *7) *7)) + (-4 *7 (-1159 *6)) (-4 *6 (-13 (-314) (-120) (-954 (-352 (-488))))) + (-5 *2 (-587 (-2 (|:| |frac| (-352 *7)) (|:| -3272 *3)))) + (-5 *1 (-733 *6 *7 *3 *8)) (-4 *3 (-604 *7)) (-4 *8 (-604 (-352 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-350 *6) *6)) (-4 *6 (-1159 *5)) + (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) + (-5 *2 (-587 (-2 (|:| |frac| (-352 *6)) (|:| -3272 (-602 *6 (-352 *6)))))) + (-5 *1 (-736 *5 *6)) (-5 *3 (-602 *6 (-352 *6)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-314)) (-4 *7 (-1159 *5)) (-4 *4 (-665 *5 *7)) + (-5 *2 (-2 (|:| |mat| (-634 *6)) (|:| |vec| (-1183 *5)))) + (-5 *1 (-735 *5 *6 *7 *4 *3)) (-4 *6 (-604 *5)) (-4 *3 (-604 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-601 (-352 *2))) (-4 *2 (-1159 *4)) (-5 *1 (-734 *4 *2)) + (-4 *4 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-602 *2 (-352 *2))) (-4 *2 (-1159 *4)) (-5 *1 (-734 *4 *2)) + (-4 *4 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-601 (-352 *6))) (-5 *4 (-352 *6)) (-4 *6 (-1159 *5)) + (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2017 (-587 *4)))) + (-5 *1 (-734 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-601 (-352 *6))) (-4 *6 (-1159 *5)) + (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) + (-5 *2 (-2 (|:| -2017 (-587 (-352 *6))) (|:| |mat| (-634 *5)))) + (-5 *1 (-734 *5 *6)) (-5 *4 (-587 (-352 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-602 *6 (-352 *6))) (-5 *4 (-352 *6)) (-4 *6 (-1159 *5)) + (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2017 (-587 *4)))) + (-5 *1 (-734 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-602 *6 (-352 *6))) (-4 *6 (-1159 *5)) + (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) + (-5 *2 (-2 (|:| -2017 (-587 (-352 *6))) (|:| |mat| (-634 *5)))) + (-5 *1 (-734 *5 *6)) (-5 *4 (-587 (-352 *6)))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *3 (-1157 *4)) - (-5 *1 (-731 *4 *3 *2 *5)) (-4 *2 (-602 *3)) (-4 *5 (-602 (-350 *3))))) + (-12 (-4 *4 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *3 (-1159 *4)) + (-5 *1 (-733 *4 *3 *2 *5)) (-4 *2 (-604 *3)) (-4 *5 (-604 (-352 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-350 *5)) (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) - (-4 *5 (-1157 *4)) (-5 *1 (-731 *4 *5 *2 *6)) (-4 *2 (-602 *5)) - (-4 *6 (-602 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-585 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *6 (-1157 *5)) - (-5 *2 (-585 (-2 (|:| -3956 *5) (|:| -3269 *3)))) (-5 *1 (-731 *5 *6 *3 *7)) - (-4 *3 (-602 *6)) (-4 *7 (-602 (-350 *6)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) - (-5 *2 (-585 (-2 (|:| |deg| (-696)) (|:| -3269 *5)))) - (-5 *1 (-731 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-602 (-350 *5)))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1157 *4)) (-5 *1 (-731 *4 *2 *3 *5)) - (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *3 (-602 *2)) - (-4 *5 (-602 (-350 *2)))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1157 *4)) (-5 *1 (-730 *4 *2 *3 *5)) - (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *3 (-602 *2)) - (-4 *5 (-602 (-350 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1157 *4)) (-5 *1 (-730 *4 *2 *5 *3)) - (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *5 (-602 *2)) - (-4 *3 (-602 (-350 *2)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) - (-5 *2 (-585 (-2 (|:| -3776 *5) (|:| -3229 *5)))) (-5 *1 (-730 *4 *5 *3 *6)) - (-4 *3 (-602 *5)) (-4 *6 (-602 (-350 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *4 (-1157 *5)) - (-5 *2 (-585 (-2 (|:| -3776 *4) (|:| -3229 *4)))) (-5 *1 (-730 *5 *4 *3 *6)) - (-4 *3 (-602 *4)) (-4 *6 (-602 (-350 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *5 (-1157 *4)) - (-5 *2 (-585 (-2 (|:| -3776 *5) (|:| -3229 *5)))) (-5 *1 (-730 *4 *5 *6 *3)) - (-4 *6 (-602 *5)) (-4 *3 (-602 (-350 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *4 (-1157 *5)) - (-5 *2 (-585 (-2 (|:| -3776 *4) (|:| -3229 *4)))) (-5 *1 (-730 *5 *4 *6 *3)) - (-4 *6 (-602 *4)) (-4 *3 (-602 (-350 *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-350 *2)) (-4 *2 (-1157 *5)) - (-5 *1 (-730 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) - (-4 *3 (-602 *2)) (-4 *6 (-602 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-585 (-350 *2))) (-4 *2 (-1157 *5)) (-5 *1 (-730 *5 *2 *3 *6)) - (-4 *5 (-13 (-312) (-120) (-952 (-350 (-486))))) (-4 *3 (-602 *2)) - (-4 *6 (-602 (-350 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *4)) (-4 *4 (-291 *5 *6 *7)) - (-4 *5 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) - (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-350 *6))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-585 *4)))) - (-5 *1 (-729 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-728 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1117) (-873)))))) + (-12 (-5 *3 (-352 *5)) (-4 *4 (-13 (-314) (-120) (-954 (-352 (-488))))) + (-4 *5 (-1159 *4)) (-5 *1 (-733 *4 *5 *2 *6)) (-4 *2 (-604 *5)) + (-4 *6 (-604 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-587 *5) *6)) + (-4 *5 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *6 (-1159 *5)) + (-5 *2 (-587 (-2 (|:| -3959 *5) (|:| -3272 *3)))) (-5 *1 (-733 *5 *6 *3 *7)) + (-4 *3 (-604 *6)) (-4 *7 (-604 (-352 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *5 (-1159 *4)) + (-5 *2 (-587 (-2 (|:| |deg| (-698)) (|:| -3272 *5)))) + (-5 *1 (-733 *4 *5 *3 *6)) (-4 *3 (-604 *5)) (-4 *6 (-604 (-352 *5)))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1159 *4)) (-5 *1 (-733 *4 *2 *3 *5)) + (-4 *4 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *3 (-604 *2)) + (-4 *5 (-604 (-352 *2)))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1159 *4)) (-5 *1 (-732 *4 *2 *3 *5)) + (-4 *4 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *3 (-604 *2)) + (-4 *5 (-604 (-352 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1159 *4)) (-5 *1 (-732 *4 *2 *5 *3)) + (-4 *4 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *5 (-604 *2)) + (-4 *3 (-604 (-352 *2)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *5 (-1159 *4)) + (-5 *2 (-587 (-2 (|:| -3779 *5) (|:| -3232 *5)))) (-5 *1 (-732 *4 *5 *3 *6)) + (-4 *3 (-604 *5)) (-4 *6 (-604 (-352 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *4 (-1159 *5)) + (-5 *2 (-587 (-2 (|:| -3779 *4) (|:| -3232 *4)))) (-5 *1 (-732 *5 *4 *3 *6)) + (-4 *3 (-604 *4)) (-4 *6 (-604 (-352 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *5 (-1159 *4)) + (-5 *2 (-587 (-2 (|:| -3779 *5) (|:| -3232 *5)))) (-5 *1 (-732 *4 *5 *6 *3)) + (-4 *6 (-604 *5)) (-4 *3 (-604 (-352 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *4 (-1159 *5)) + (-5 *2 (-587 (-2 (|:| -3779 *4) (|:| -3232 *4)))) (-5 *1 (-732 *5 *4 *6 *3)) + (-4 *6 (-604 *4)) (-4 *3 (-604 (-352 *4)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-352 *2)) (-4 *2 (-1159 *5)) + (-5 *1 (-732 *5 *2 *3 *6)) (-4 *5 (-13 (-314) (-120) (-954 (-352 (-488))))) + (-4 *3 (-604 *2)) (-4 *6 (-604 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-587 (-352 *2))) (-4 *2 (-1159 *5)) (-5 *1 (-732 *5 *2 *3 *6)) + (-4 *5 (-13 (-314) (-120) (-954 (-352 (-488))))) (-4 *3 (-604 *2)) + (-4 *6 (-604 (-352 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-601 *4)) (-4 *4 (-293 *5 *6 *7)) + (-4 *5 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) + (-4 *6 (-1159 *5)) (-4 *7 (-1159 (-352 *6))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2017 (-587 *4)))) + (-5 *1 (-731 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-730 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1119) (-875)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) - (-5 *1 (-728 *4 *2)) (-4 *2 (-13 (-29 *4) (-1117) (-873)))))) + (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) + (-5 *1 (-730 *4 *2)) (-4 *2 (-13 (-29 *4) (-1119) (-875)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1092)) (-4 *6 (-13 (-258) (-952 (-486)) (-582 (-486)) (-120))) - (-4 *4 (-13 (-29 *6) (-1117) (-873))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2014 (-585 *4)))) - (-5 *1 (-726 *6 *4 *3)) (-4 *3 (-602 *4))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-911 *3)) (-4 *3 (-146)) (-5 *1 (-724 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146))))) -(((*1 *1 *1) (-4 *1 (-201))) + (-12 (-5 *5 (-1094)) (-4 *6 (-13 (-260) (-954 (-488)) (-584 (-488)) (-120))) + (-4 *4 (-13 (-29 *6) (-1119) (-875))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2017 (-587 *4)))) + (-5 *1 (-728 *6 *4 *3)) (-4 *3 (-604 *4))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-913 *3)) (-4 *3 (-148)) (-5 *1 (-726 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148))))) +(((*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148))))) +(((*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148))))) +(((*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148))))) +(((*1 *1 *1) (-4 *1 (-203))) ((*1 *1 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *2)) + (-12 (-4 *2 (-148)) (-5 *1 (-246 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1159 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1131))) - (-12 (-5 *1 (-249 *2)) (-4 *2 (-414)) (-4 *2 (-1131))))) - ((*1 *1 *1) (-4 *1 (-414))) - ((*1 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-299)) (-5 *1 (-468 *3)))) + (OR (-12 (-5 *1 (-251 *2)) (-4 *2 (-314)) (-4 *2 (-1133))) + (-12 (-5 *1 (-251 *2)) (-4 *2 (-416)) (-4 *2 (-1133))))) + ((*1 *1 *1) (-4 *1 (-416))) + ((*1 *2 *2) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-301)) (-5 *1 (-470 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (-12 (-5 *1 (-656 *2 *3 *4 *5 *6)) (-4 *2 (-148)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) -(((*1 *2 *1) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117))))) - ((*1 *1 *1 *1) (-4 *1 (-719)))) + ((*1 *1 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-148)) (-4 *2 (-314))))) +(((*1 *2 *1) (-12 (-4 *1 (-497 *2)) (-4 *2 (-13 (-349) (-1119))))) + ((*1 *1 *1 *1) (-4 *1 (-721)))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) + (-12 (-5 *3 (-1 (-332) (-332))) (-5 *4 (-332)) (-5 *2 - (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-486)) + (-2 (|:| -3408 *4) (|:| -1600 *4) (|:| |totalpts| (-488)) (|:| |success| (-85)))) - (-5 *1 (-713)) (-5 *5 (-486))))) + (-5 *1 (-715)) (-5 *5 (-488))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) + (-12 (-5 *3 (-1 (-332) (-332))) (-5 *4 (-332)) (-5 *2 - (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-486)) + (-2 (|:| -3408 *4) (|:| -1600 *4) (|:| |totalpts| (-488)) (|:| |success| (-85)))) - (-5 *1 (-713)) (-5 *5 (-486))))) + (-5 *1 (-715)) (-5 *5 (-488))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) + (-12 (-5 *3 (-1 (-332) (-332))) (-5 *4 (-332)) (-5 *2 - (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-486)) + (-2 (|:| -3408 *4) (|:| -1600 *4) (|:| |totalpts| (-488)) (|:| |success| (-85)))) - (-5 *1 (-713)) (-5 *5 (-486))))) + (-5 *1 (-715)) (-5 *5 (-488))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) + (-12 (-5 *3 (-1 (-332) (-332))) (-5 *4 (-332)) (-5 *2 - (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-486)) + (-2 (|:| -3408 *4) (|:| -1600 *4) (|:| |totalpts| (-488)) (|:| |success| (-85)))) - (-5 *1 (-713)) (-5 *5 (-486))))) + (-5 *1 (-715)) (-5 *5 (-488))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) + (-12 (-5 *3 (-1 (-332) (-332))) (-5 *4 (-332)) (-5 *2 - (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-486)) + (-2 (|:| -3408 *4) (|:| -1600 *4) (|:| |totalpts| (-488)) (|:| |success| (-85)))) - (-5 *1 (-713)) (-5 *5 (-486))))) + (-5 *1 (-715)) (-5 *5 (-488))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) + (-12 (-5 *3 (-1 (-332) (-332))) (-5 *4 (-332)) (-5 *2 - (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-486)) + (-2 (|:| -3408 *4) (|:| -1600 *4) (|:| |totalpts| (-488)) (|:| |success| (-85)))) - (-5 *1 (-713)) (-5 *5 (-486))))) + (-5 *1 (-715)) (-5 *5 (-488))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) + (-12 (-5 *3 (-1 (-332) (-332))) (-5 *4 (-332)) (-5 *2 - (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-486)) + (-2 (|:| -3408 *4) (|:| -1600 *4) (|:| |totalpts| (-488)) (|:| |success| (-85)))) - (-5 *1 (-713)) (-5 *5 (-486))))) + (-5 *1 (-715)) (-5 *5 (-488))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) + (-12 (-5 *3 (-1 (-332) (-332))) (-5 *4 (-332)) (-5 *2 - (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-486)) + (-2 (|:| -3408 *4) (|:| -1600 *4) (|:| |totalpts| (-488)) (|:| |success| (-85)))) - (-5 *1 (-713)) (-5 *5 (-486))))) + (-5 *1 (-715)) (-5 *5 (-488))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) + (-12 (-5 *3 (-1 (-332) (-332))) (-5 *4 (-332)) (-5 *2 - (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-486)) + (-2 (|:| -3408 *4) (|:| -1600 *4) (|:| |totalpts| (-488)) (|:| |success| (-85)))) - (-5 *1 (-713)) (-5 *5 (-486))))) + (-5 *1 (-715)) (-5 *5 (-488))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-486)) (-5 *6 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) - (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712))))) + (-12 (-5 *4 (-488)) (-5 *6 (-1 (-1189) (-1183 *5) (-1183 *5) (-332))) + (-5 *3 (-1183 (-332))) (-5 *5 (-332)) (-5 *2 (-1189)) (-5 *1 (-714))))) (((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-486)) - (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330)))) - (-5 *7 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) (-5 *3 (-1181 (-330))) - (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712)))) + (-12 (-5 *4 (-488)) + (-5 *6 (-2 (|:| |tryValue| (-332)) (|:| |did| (-332)) (|:| -1479 (-332)))) + (-5 *7 (-1 (-1189) (-1183 *5) (-1183 *5) (-332))) (-5 *3 (-1183 (-332))) + (-5 *5 (-332)) (-5 *2 (-1189)) (-5 *1 (-714)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-486)) - (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330)))) - (-5 *7 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) (-5 *3 (-1181 (-330))) - (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712))))) + (-12 (-5 *4 (-488)) + (-5 *6 (-2 (|:| |tryValue| (-332)) (|:| |did| (-332)) (|:| -1479 (-332)))) + (-5 *7 (-1 (-1189) (-1183 *5) (-1183 *5) (-332))) (-5 *3 (-1183 (-332))) + (-5 *5 (-332)) (-5 *2 (-1189)) (-5 *1 (-714))))) (((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-486)) (-5 *6 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) - (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712))))) + (-12 (-5 *4 (-488)) (-5 *6 (-1 (-1189) (-1183 *5) (-1183 *5) (-332))) + (-5 *3 (-1183 (-332))) (-5 *5 (-332)) (-5 *2 (-1189)) (-5 *1 (-714))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-486)) (-5 *6 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) - (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712)))) + (-12 (-5 *4 (-488)) (-5 *6 (-1 (-1189) (-1183 *5) (-1183 *5) (-332))) + (-5 *3 (-1183 (-332))) (-5 *5 (-332)) (-5 *2 (-1189)) (-5 *1 (-714)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-486)) (-5 *6 (-1 (-1187) (-1181 *5) (-1181 *5) (-330))) - (-5 *3 (-1181 (-330))) (-5 *5 (-330)) (-5 *2 (-1187)) (-5 *1 (-712))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1075)) (-5 *2 (-330)) (-5 *1 (-711))))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-330)) (-5 *1 (-711))))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-832)) (-5 *1 (-711))))) -(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1075)) (-5 *1 (-711))))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-832)) (-5 *1 (-711))))) -(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1075)) (-5 *1 (-711))))) + (-12 (-5 *4 (-488)) (-5 *6 (-1 (-1189) (-1183 *5) (-1183 *5) (-332))) + (-5 *3 (-1183 (-332))) (-5 *5 (-332)) (-5 *2 (-1189)) (-5 *1 (-714))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1077)) (-5 *2 (-332)) (-5 *1 (-713))))) +(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-332)) (-5 *1 (-713))))) +(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-834)) (-5 *1 (-713))))) +(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1077)) (-5 *1 (-713))))) +(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-834)) (-5 *1 (-713))))) +(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1077)) (-5 *1 (-713))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-859 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-555 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) + (|partial| -12 (-5 *3 (-861 (-144 *4))) (-4 *4 (-148)) (-4 *4 (-557 (-332))) + (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-859 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-146)) - (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) + (|partial| -12 (-5 *3 (-861 (-144 *5))) (-5 *4 (-834)) (-4 *5 (-148)) + (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) + (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-965)) (-4 *4 (-557 (-332))) + (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) - (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) + (|partial| -12 (-5 *3 (-861 *5)) (-5 *4 (-834)) (-4 *5 (-965)) + (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-4 *4 (-555 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) + (|partial| -12 (-5 *3 (-352 (-861 *4))) (-4 *4 (-499)) (-4 *4 (-557 (-332))) + (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-497)) - (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) + (|partial| -12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-834)) (-4 *5 (-499)) + (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-350 (-859 (-142 *4)))) (-4 *4 (-497)) - (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) + (|partial| -12 (-5 *3 (-352 (-861 (-144 *4)))) (-4 *4 (-499)) + (-4 *4 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-350 (-859 (-142 *5)))) (-5 *4 (-832)) (-4 *5 (-497)) - (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) + (|partial| -12 (-5 *3 (-352 (-861 (-144 *5)))) (-5 *4 (-834)) (-4 *5 (-499)) + (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-497)) (-4 *4 (-758)) - (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) + (|partial| -12 (-5 *3 (-267 *4)) (-4 *4 (-499)) (-4 *4 (-760)) + (-4 *4 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) - (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) + (|partial| -12 (-5 *3 (-267 *5)) (-5 *4 (-834)) (-4 *5 (-499)) (-4 *5 (-760)) + (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-497)) (-4 *4 (-758)) - (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) + (|partial| -12 (-5 *3 (-267 (-144 *4))) (-4 *4 (-499)) (-4 *4 (-760)) + (-4 *4 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-497)) - (-4 *5 (-758)) (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) - (-5 *1 (-710 *5))))) + (|partial| -12 (-5 *3 (-267 (-144 *5))) (-5 *4 (-834)) (-4 *5 (-499)) + (-4 *5 (-760)) (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) + (-5 *1 (-712 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 *2)) - (-5 *2 (-330)) (-5 *1 (-710 *4)))) + (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-965)) (-4 *4 (-557 *2)) + (-5 *2 (-332)) (-5 *1 (-712 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) - (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5)))) + (|partial| -12 (-5 *3 (-861 *5)) (-5 *4 (-834)) (-4 *5 (-965)) + (-4 *5 (-557 *2)) (-5 *2 (-332)) (-5 *1 (-712 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-4 *4 (-555 *2)) - (-5 *2 (-330)) (-5 *1 (-710 *4)))) + (|partial| -12 (-5 *3 (-352 (-861 *4))) (-4 *4 (-499)) (-4 *4 (-557 *2)) + (-5 *2 (-332)) (-5 *1 (-712 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-497)) - (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5)))) + (|partial| -12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-834)) (-4 *5 (-499)) + (-4 *5 (-557 *2)) (-5 *2 (-332)) (-5 *1 (-712 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-497)) (-4 *4 (-758)) - (-4 *4 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *4)))) + (|partial| -12 (-5 *3 (-267 *4)) (-4 *4 (-499)) (-4 *4 (-760)) + (-4 *4 (-557 *2)) (-5 *2 (-332)) (-5 *1 (-712 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) - (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5))))) + (|partial| -12 (-5 *3 (-267 *5)) (-5 *4 (-834)) (-4 *5 (-499)) (-4 *5 (-760)) + (-4 *5 (-557 *2)) (-5 *2 (-332)) (-5 *1 (-712 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-142 (-330))) (-5 *1 (-710 *3)) (-4 *3 (-555 (-330))))) + (-12 (-5 *2 (-144 (-332))) (-5 *1 (-712 *3)) (-4 *3 (-557 (-332))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-832)) (-5 *2 (-142 (-330))) (-5 *1 (-710 *3)) - (-4 *3 (-555 (-330))))) + (-12 (-5 *4 (-834)) (-5 *2 (-144 (-332))) (-5 *1 (-712 *3)) + (-4 *3 (-557 (-332))))) ((*1 *2 *3) - (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-555 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) + (-12 (-5 *3 (-144 *4)) (-4 *4 (-148)) (-4 *4 (-557 (-332))) + (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-142 *5)) (-5 *4 (-832)) (-4 *5 (-146)) (-4 *5 (-555 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) + (-12 (-5 *3 (-144 *5)) (-5 *4 (-834)) (-4 *5 (-148)) (-4 *5 (-557 (-332))) + (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-859 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-555 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) + (-12 (-5 *3 (-861 (-144 *4))) (-4 *4 (-148)) (-4 *4 (-557 (-332))) + (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-859 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-146)) - (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) + (-12 (-5 *3 (-861 (-144 *5))) (-5 *4 (-834)) (-4 *5 (-148)) + (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) + (-12 (-5 *3 (-861 *4)) (-4 *4 (-965)) (-4 *4 (-557 (-332))) + (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) (-4 *5 (-555 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) + (-12 (-5 *3 (-861 *5)) (-5 *4 (-834)) (-4 *5 (-965)) (-4 *5 (-557 (-332))) + (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-4 *4 (-555 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) + (-12 (-5 *3 (-352 (-861 *4))) (-4 *4 (-499)) (-4 *4 (-557 (-332))) + (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-497)) - (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) + (-12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-834)) (-4 *5 (-499)) + (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-350 (-859 (-142 *4)))) (-4 *4 (-497)) (-4 *4 (-555 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) + (-12 (-5 *3 (-352 (-861 (-144 *4)))) (-4 *4 (-499)) (-4 *4 (-557 (-332))) + (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-859 (-142 *5)))) (-5 *4 (-832)) (-4 *5 (-497)) - (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) + (-12 (-5 *3 (-352 (-861 (-144 *5)))) (-5 *4 (-834)) (-4 *5 (-499)) + (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-265 *4)) (-4 *4 (-497)) (-4 *4 (-758)) (-4 *4 (-555 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) + (-12 (-5 *3 (-267 *4)) (-4 *4 (-499)) (-4 *4 (-760)) (-4 *4 (-557 (-332))) + (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) - (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5)))) + (-12 (-5 *3 (-267 *5)) (-5 *4 (-834)) (-4 *5 (-499)) (-4 *5 (-760)) + (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-497)) (-4 *4 (-758)) - (-4 *4 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *4)))) + (-12 (-5 *3 (-267 (-144 *4))) (-4 *4 (-499)) (-4 *4 (-760)) + (-4 *4 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) - (-4 *5 (-555 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-710 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-330)) (-5 *1 (-710 *3)) (-4 *3 (-555 *2)))) + (-12 (-5 *3 (-267 (-144 *5))) (-5 *4 (-834)) (-4 *5 (-499)) (-4 *5 (-760)) + (-4 *5 (-557 (-332))) (-5 *2 (-144 (-332))) (-5 *1 (-712 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-332)) (-5 *1 (-712 *3)) (-4 *3 (-557 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-832)) (-5 *2 (-330)) (-5 *1 (-710 *3)) (-4 *3 (-555 *2)))) + (-12 (-5 *4 (-834)) (-5 *2 (-332)) (-5 *1 (-712 *3)) (-4 *3 (-557 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 *2)) (-5 *2 (-330)) - (-5 *1 (-710 *4)))) + (-12 (-5 *3 (-861 *4)) (-4 *4 (-965)) (-4 *4 (-557 *2)) (-5 *2 (-332)) + (-5 *1 (-712 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) (-4 *5 (-555 *2)) - (-5 *2 (-330)) (-5 *1 (-710 *5)))) + (-12 (-5 *3 (-861 *5)) (-5 *4 (-834)) (-4 *5 (-965)) (-4 *5 (-557 *2)) + (-5 *2 (-332)) (-5 *1 (-712 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-350 (-859 *4))) (-4 *4 (-497)) (-4 *4 (-555 *2)) (-5 *2 (-330)) - (-5 *1 (-710 *4)))) + (-12 (-5 *3 (-352 (-861 *4))) (-4 *4 (-499)) (-4 *4 (-557 *2)) (-5 *2 (-332)) + (-5 *1 (-712 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-555 *2)) - (-5 *2 (-330)) (-5 *1 (-710 *5)))) + (-12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-834)) (-4 *5 (-499)) (-4 *5 (-557 *2)) + (-5 *2 (-332)) (-5 *1 (-712 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-265 *4)) (-4 *4 (-497)) (-4 *4 (-758)) (-4 *4 (-555 *2)) - (-5 *2 (-330)) (-5 *1 (-710 *4)))) + (-12 (-5 *3 (-267 *4)) (-4 *4 (-499)) (-4 *4 (-760)) (-4 *4 (-557 *2)) + (-5 *2 (-332)) (-5 *1 (-712 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-497)) (-4 *5 (-758)) - (-4 *5 (-555 *2)) (-5 *2 (-330)) (-5 *1 (-710 *5))))) + (-12 (-5 *3 (-267 *5)) (-5 *4 (-834)) (-4 *5 (-499)) (-4 *5 (-760)) + (-4 *5 (-557 *2)) (-5 *2 (-332)) (-5 *1 (-712 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-696)) (-5 *1 (-708 *2)) (-4 *2 (-38 (-350 (-486)))) - (-4 *2 (-146))))) + (-12 (-5 *3 (-698)) (-5 *1 (-710 *2)) (-4 *2 (-38 (-352 (-488)))) + (-4 *2 (-148))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-696)) (-5 *1 (-708 *2)) (-4 *2 (-38 (-350 (-486)))) - (-4 *2 (-146))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-963))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-963))))) + (-12 (-5 *3 (-698)) (-5 *1 (-710 *2)) (-4 *2 (-38 (-352 (-488)))) + (-4 *2 (-148))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-708 *2)) (-4 *2 (-965))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-708 *2)) (-4 *2 (-965))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-585 (-706 *3))) (-5 *1 (-706 *3)) (-4 *3 (-497)) - (-4 *3 (-963))))) + (-12 (-5 *2 (-587 (-708 *3))) (-5 *1 (-708 *3)) (-4 *3 (-499)) + (-4 *3 (-965))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| -3759 *3) (|:| |coef1| (-706 *3)) (|:| |coef2| (-706 *3)))) - (-5 *1 (-706 *3)) (-4 *3 (-497)) (-4 *3 (-963))))) + (-5 *2 (-2 (|:| -3762 *3) (|:| |coef1| (-708 *3)) (|:| |coef2| (-708 *3)))) + (-5 *1 (-708 *3)) (-4 *3 (-499)) (-4 *3 (-965))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3759 *3) (|:| |coef1| (-706 *3)))) (-5 *1 (-706 *3)) - (-4 *3 (-497)) (-4 *3 (-963))))) + (-12 (-5 *2 (-2 (|:| -3762 *3) (|:| |coef1| (-708 *3)))) (-5 *1 (-708 *3)) + (-4 *3 (-499)) (-4 *3 (-965))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3759 *3) (|:| |coef2| (-706 *3)))) (-5 *1 (-706 *3)) - (-4 *3 (-497)) (-4 *3 (-963))))) + (-12 (-5 *2 (-2 (|:| -3762 *3) (|:| |coef2| (-708 *3)))) (-5 *1 (-708 *3)) + (-4 *3 (-499)) (-4 *3 (-965))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-632 (-350 (-486)))) + (-12 (-5 *3 (-634 (-352 (-488)))) (-5 *2 - (-585 - (-2 (|:| |outval| *4) (|:| |outmult| (-486)) - (|:| |outvect| (-585 (-632 *4)))))) - (-5 *1 (-704 *4)) (-4 *4 (-13 (-312) (-757)))))) + (-587 + (-2 (|:| |outval| *4) (|:| |outmult| (-488)) + (|:| |outvect| (-587 (-634 *4)))))) + (-5 *1 (-706 *4)) (-4 *4 (-13 (-314) (-759)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-632 (-350 (-486)))) (-5 *2 (-585 *4)) (-5 *1 (-704 *4)) - (-4 *4 (-13 (-312) (-757)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-632 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2)))) + (-12 (-5 *3 (-634 (-352 (-488)))) (-5 *2 (-587 *4)) (-5 *1 (-706 *4)) + (-4 *4 (-13 (-314) (-759)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-634 *2)) (-4 *2 (-148)) (-5 *1 (-119 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-146)) (-4 *2 (-1157 *4)) (-5 *1 (-151 *4 *2 *3)) - (-4 *3 (-663 *4 *2)))) + (-12 (-4 *4 (-148)) (-4 *2 (-1159 *4)) (-5 *1 (-153 *4 *2 *3)) + (-4 *3 (-665 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-632 (-350 (-859 *5)))) (-5 *4 (-1092)) (-5 *2 (-859 *5)) - (-5 *1 (-248 *5)) (-4 *5 (-393)))) + (-12 (-5 *3 (-634 (-352 (-861 *5)))) (-5 *4 (-1094)) (-5 *2 (-861 *5)) + (-5 *1 (-250 *5)) (-4 *5 (-395)))) ((*1 *2 *3) - (-12 (-5 *3 (-632 (-350 (-859 *4)))) (-5 *2 (-859 *4)) (-5 *1 (-248 *4)) - (-4 *4 (-393)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1157 *3)))) + (-12 (-5 *3 (-634 (-352 (-861 *4)))) (-5 *2 (-861 *4)) (-5 *1 (-250 *4)) + (-4 *4 (-395)))) + ((*1 *2 *1) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-148)) (-4 *2 (-1159 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-632 (-142 (-350 (-486))))) (-5 *2 (-859 (-142 (-350 (-486))))) - (-5 *1 (-690 *4)) (-4 *4 (-13 (-312) (-757))))) + (-12 (-5 *3 (-634 (-144 (-352 (-488))))) (-5 *2 (-861 (-144 (-352 (-488))))) + (-5 *1 (-692 *4)) (-4 *4 (-13 (-314) (-759))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-632 (-142 (-350 (-486))))) (-5 *4 (-1092)) - (-5 *2 (-859 (-142 (-350 (-486))))) (-5 *1 (-690 *5)) - (-4 *5 (-13 (-312) (-757))))) + (-12 (-5 *3 (-634 (-144 (-352 (-488))))) (-5 *4 (-1094)) + (-5 *2 (-861 (-144 (-352 (-488))))) (-5 *1 (-692 *5)) + (-4 *5 (-13 (-314) (-759))))) ((*1 *2 *3) - (-12 (-5 *3 (-632 (-350 (-486)))) (-5 *2 (-859 (-350 (-486)))) - (-5 *1 (-704 *4)) (-4 *4 (-13 (-312) (-757))))) + (-12 (-5 *3 (-634 (-352 (-488)))) (-5 *2 (-861 (-352 (-488)))) + (-5 *1 (-706 *4)) (-4 *4 (-13 (-314) (-759))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-632 (-350 (-486)))) (-5 *4 (-1092)) - (-5 *2 (-859 (-350 (-486)))) (-5 *1 (-704 *5)) (-4 *5 (-13 (-312) (-757)))))) + (-12 (-5 *3 (-634 (-352 (-488)))) (-5 *4 (-1094)) + (-5 *2 (-861 (-352 (-488)))) (-5 *1 (-706 *5)) (-4 *5 (-13 (-314) (-759)))))) (((*1 *2 *3) - (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-585 (-696))) - (-5 *1 (-703 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *6)) (-4 *7 (-863 *6 *4 *5))))) + (-12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-260)) (-5 *2 (-587 (-698))) + (-5 *1 (-705 *3 *4 *5 *6 *7)) (-4 *3 (-1159 *6)) (-4 *7 (-865 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1157 *9)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-258)) - (-4 *10 (-863 *9 *7 *8)) + (-12 (-4 *6 (-1159 *9)) (-4 *7 (-721)) (-4 *8 (-760)) (-4 *9 (-260)) + (-4 *10 (-865 *9 *7 *8)) (-5 *2 - (-2 (|:| |deter| (-585 (-1087 *10))) - (|:| |dterm| (-585 (-585 (-2 (|:| -3081 (-696)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-585 *6)) (|:| |nlead| (-585 *10)))) - (-5 *1 (-703 *6 *7 *8 *9 *10)) (-5 *3 (-1087 *10)) (-5 *4 (-585 *6)) - (-5 *5 (-585 *10))))) + (-2 (|:| |deter| (-587 (-1089 *10))) + (|:| |dterm| (-587 (-587 (-2 (|:| -3084 (-698)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-587 *6)) (|:| |nlead| (-587 *10)))) + (-5 *1 (-705 *6 *7 *8 *9 *10)) (-5 *3 (-1089 *10)) (-5 *4 (-587 *6)) + (-5 *5 (-587 *10))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1157 *5)) (-5 *2 (-585 *3)) - (-5 *1 (-702 *4 *5 *6 *3 *7)) (-4 *3 (-1157 *6)) (-14 *7 (-832))))) + (-12 (-4 *4 (-301)) (-4 *5 (-282 *4)) (-4 *6 (-1159 *5)) (-5 *2 (-587 *3)) + (-5 *1 (-704 *4 *5 *6 *3 *7)) (-4 *3 (-1159 *6)) (-14 *7 (-834))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) - (-5 *1 (-701 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-587 (-2 (|:| |val| (-85)) (|:| -1604 *4)))) + (-5 *1 (-703 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1075)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) - (-4 *4 (-979 *6 *7 *8)) (-5 *2 (-1187)) (-5 *1 (-701 *6 *7 *8 *4 *5)) - (-4 *5 (-985 *6 *7 *8 *4))))) + (-12 (-5 *3 (-1077)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) + (-4 *4 (-981 *6 *7 *8)) (-5 *2 (-1189)) (-5 *1 (-703 *6 *7 *8 *4 *5)) + (-4 *5 (-987 *6 *7 *8 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *3 *2)) - (-4 *2 (-13 (-27) (-1117) (-364 *3))))) + (-12 (-4 *3 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *1 (-233 *3 *2)) + (-4 *2 (-13 (-27) (-1119) (-366 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) - (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4))))) - ((*1 *1 *1) (-5 *1 (-330))) + (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-499) (-954 (-488)) (-584 (-488)))) + (-5 *1 (-233 *4 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *4))))) + ((*1 *1 *1) (-5 *1 (-332))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) - (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) - (-5 *1 (-701 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) + (-12 (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *3 (-981 *5 *6 *7)) + (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1604 *4)))) + (-5 *1 (-703 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *2 (-979 *4 *5 *6)) - (-5 *1 (-701 *4 *5 *6 *2 *3)) (-4 *3 (-985 *4 *5 *6 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-330)))) - ((*1 *1 *1 *1) (-4 *1 (-485))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) - ((*1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-696))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-432)) (-5 *4 (-867)) (-5 *2 (-634 (-473))) (-5 *1 (-473)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-867)) (-4 *3 (-1015)) (-5 *2 (-634 *1)) (-4 *1 (-693 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-632 (-142 (-350 (-486))))) - (-5 *2 - (-585 - (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-486)) - (|:| |outvect| (-585 (-632 (-142 *4))))))) - (-5 *1 (-690 *4)) (-4 *4 (-13 (-312) (-757)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-632 (-142 (-350 (-486))))) (-5 *2 (-585 (-142 *4))) - (-5 *1 (-690 *4)) (-4 *4 (-13 (-312) (-757)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-687)))) -(((*1 *1 *1 *1) (-4 *1 (-414))) ((*1 *1 *1 *1) (-4 *1 (-687)))) -(((*1 *1 *1 *1) (-4 *1 (-687)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-685 *3)) (-4 *3 (-146))))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *2 (-981 *4 *5 *6)) + (-5 *1 (-703 *4 *5 *6 *2 *3)) (-4 *3 (-987 *4 *5 *6 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-332)))) + ((*1 *1 *1 *1) (-4 *1 (-487))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-659 *2)) (-4 *2 (-314)))) + ((*1 *1 *2) (-12 (-5 *1 (-659 *2)) (-4 *2 (-314)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-698))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-434)) (-5 *4 (-869)) (-5 *2 (-636 (-475))) (-5 *1 (-475)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-869)) (-4 *3 (-1017)) (-5 *2 (-636 *1)) (-4 *1 (-695 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1017)) (-5 *2 (-85))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-634 (-144 (-352 (-488))))) + (-5 *2 + (-587 + (-2 (|:| |outval| (-144 *4)) (|:| |outmult| (-488)) + (|:| |outvect| (-587 (-634 (-144 *4))))))) + (-5 *1 (-692 *4)) (-4 *4 (-13 (-314) (-759)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-634 (-144 (-352 (-488))))) (-5 *2 (-587 (-144 *4))) + (-5 *1 (-692 *4)) (-4 *4 (-13 (-314) (-759)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-689)))) +(((*1 *1 *1 *1) (-4 *1 (-416))) ((*1 *1 *1 *1) (-4 *1 (-689)))) +(((*1 *1 *1 *1) (-4 *1 (-689)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-834)) (-4 *1 (-687 *3)) (-4 *3 (-148))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1087 *6)) (-5 *3 (-486)) (-4 *6 (-258)) (-4 *4 (-719)) - (-4 *5 (-758)) (-5 *1 (-683 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5))))) + (-12 (-5 *2 (-1089 *6)) (-5 *3 (-488)) (-4 *6 (-260)) (-4 *4 (-721)) + (-4 *5 (-760)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-865 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1087 *9)) (-5 *4 (-585 *7)) (-4 *7 (-758)) - (-4 *9 (-863 *8 *6 *7)) (-4 *6 (-719)) (-4 *8 (-258)) (-5 *2 (-585 (-696))) - (-5 *1 (-683 *6 *7 *8 *9)) (-5 *5 (-696))))) + (-12 (-5 *3 (-1089 *9)) (-5 *4 (-587 *7)) (-4 *7 (-760)) + (-4 *9 (-865 *8 *6 *7)) (-4 *6 (-721)) (-4 *8 (-260)) (-5 *2 (-587 (-698))) + (-5 *1 (-685 *6 *7 *8 *9)) (-5 *5 (-698))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-486)) (-5 *4 (-348 *2)) (-4 *2 (-863 *7 *5 *6)) - (-5 *1 (-683 *5 *6 *7 *2)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-258))))) + (-12 (-5 *3 (-488)) (-5 *4 (-350 *2)) (-4 *2 (-865 *7 *5 *6)) + (-5 *1 (-685 *5 *6 *7 *2)) (-4 *5 (-721)) (-4 *6 (-760)) (-4 *7 (-260))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1087 *9)) (-5 *4 (-585 *7)) (-5 *5 (-585 (-585 *8))) - (-4 *7 (-758)) (-4 *8 (-258)) (-4 *9 (-863 *8 *6 *7)) (-4 *6 (-719)) + (-12 (-5 *3 (-1089 *9)) (-5 *4 (-587 *7)) (-5 *5 (-587 (-587 *8))) + (-4 *7 (-760)) (-4 *8 (-260)) (-4 *9 (-865 *8 *6 *7)) (-4 *6 (-721)) (-5 *2 - (-2 (|:| |upol| (-1087 *8)) (|:| |Lval| (-585 *8)) - (|:| |Lfact| (-585 (-2 (|:| -3735 (-1087 *8)) (|:| -2403 (-486))))) + (-2 (|:| |upol| (-1089 *8)) (|:| |Lval| (-587 *8)) + (|:| |Lfact| (-587 (-2 (|:| -3738 (-1089 *8)) (|:| -2406 (-488))))) (|:| |ctpol| *8))) - (-5 *1 (-683 *6 *7 *8 *9))))) + (-5 *1 (-685 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-585 *7)) (-5 *5 (-585 (-585 *8))) (-4 *7 (-758)) (-4 *8 (-258)) - (-4 *6 (-719)) (-4 *9 (-863 *8 *6 *7)) + (-12 (-5 *4 (-587 *7)) (-5 *5 (-587 (-587 *8))) (-4 *7 (-760)) (-4 *8 (-260)) + (-4 *6 (-721)) (-4 *9 (-865 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) - (|:| |suPart| (-585 (-2 (|:| -3735 (-1087 *9)) (|:| -2403 (-486))))))) - (-5 *1 (-683 *6 *7 *8 *9)) (-5 *3 (-1087 *9))))) + (|:| |suPart| (-587 (-2 (|:| -3738 (-1089 *9)) (|:| -2406 (-488))))))) + (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1089 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-486)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-258)) - (-4 *9 (-863 *8 *6 *7)) - (-5 *2 (-2 (|:| -2006 (-1087 *9)) (|:| |polval| (-1087 *8)))) - (-5 *1 (-683 *6 *7 *8 *9)) (-5 *3 (-1087 *9)) (-5 *4 (-1087 *8))))) + (-12 (-5 *5 (-488)) (-4 *6 (-721)) (-4 *7 (-760)) (-4 *8 (-260)) + (-4 *9 (-865 *8 *6 *7)) + (-5 *2 (-2 (|:| -2009 (-1089 *9)) (|:| |polval| (-1089 *8)))) + (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1089 *9)) (-5 *4 (-1089 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-258)) (-5 *2 (-348 *3)) - (-5 *1 (-683 *5 *4 *6 *3)) (-4 *3 (-863 *6 *5 *4))))) + (-12 (-4 *5 (-721)) (-4 *4 (-760)) (-4 *6 (-260)) (-5 *2 (-350 *3)) + (-5 *1 (-685 *5 *4 *6 *3)) (-4 *3 (-865 *6 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 (-2 (|:| -3735 (-1087 *6)) (|:| -2403 (-486))))) - (-4 *6 (-258)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-486)) - (-5 *1 (-683 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5))))) + (-12 (-5 *3 (-587 (-2 (|:| -3738 (-1089 *6)) (|:| -2406 (-488))))) + (-4 *6 (-260)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-488)) + (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-865 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-348 *3)) - (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-863 *6 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-680 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-679))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-677 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1015)))) - ((*1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1015))))) + (-12 (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-260)) (-5 *2 (-350 *3)) + (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-865 *6 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-760)) (-5 *1 (-682 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-681))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-5 *1 (-679 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-1017)))) + ((*1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-679 *3)) (-4 *3 (-1017))))) (((*1 *2 *1) - (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-696)))) + (-12 (-4 *1 (-279 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720)) (-5 *2 (-698)))) ((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-696)))) + (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-965)) (-4 *4 (-1017)) (-5 *2 (-698)))) ((*1 *2 *1) - (-12 (-5 *2 (-696)) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665))))) + (-12 (-5 *2 (-698)) (-5 *1 (-678 *3 *4)) (-4 *3 (-965)) (-4 *4 (-667))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-497)) (-4 *2 (-863 *3 *5 *4)) (-5 *1 (-673 *5 *4 *6 *2)) - (-5 *3 (-350 (-859 *6))) (-4 *5 (-719)) - (-4 *4 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)))))))) + (-12 (-4 *6 (-499)) (-4 *2 (-865 *3 *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) + (-5 *3 (-352 (-861 *6))) (-4 *5 (-721)) + (-4 *4 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1087 (-859 *6))) (-4 *6 (-497)) - (-4 *2 (-863 (-350 (-859 *6)) *5 *4)) (-5 *1 (-673 *5 *4 *6 *2)) - (-4 *5 (-719)) (-4 *4 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $)))))))) + (-12 (-5 *3 (-1089 (-861 *6))) (-4 *6 (-499)) + (-4 *2 (-865 (-352 (-861 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) + (-4 *5 (-721)) (-4 *4 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1087 *2)) (-4 *2 (-863 (-350 (-859 *6)) *5 *4)) - (-5 *1 (-673 *5 *4 *6 *2)) (-4 *5 (-719)) - (-4 *4 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) (-4 *6 (-497))))) + (-12 (-5 *3 (-1089 *2)) (-4 *2 (-865 (-352 (-861 *6)) *5 *4)) + (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-721)) + (-4 *4 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $))))) (-4 *6 (-499))))) (((*1 *2 *3) - (-12 (-4 *4 (-719)) (-4 *5 (-13 (-758) (-10 -8 (-15 -3975 ((-1092) $))))) - (-4 *6 (-497)) (-5 *2 (-2 (|:| -2486 (-859 *6)) (|:| -2060 (-859 *6)))) - (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-863 (-350 (-859 *6)) *4 *5))))) + (-12 (-4 *4 (-721)) (-4 *5 (-13 (-760) (-10 -8 (-15 -3978 ((-1094) $))))) + (-4 *6 (-499)) (-5 *2 (-2 (|:| -2489 (-861 *6)) (|:| -2063 (-861 *6)))) + (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-865 (-352 (-861 *6)) *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-486)) - (-14 *6 (-696)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) + (-12 (-5 *3 (-587 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-488)) + (-14 *6 (-698)) (-4 *7 (-148)) (-4 *8 (-148)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *9)) (-4 *9 (-963)) (-4 *5 (-758)) (-4 *6 (-719)) - (-4 *8 (-963)) (-4 *2 (-863 *9 *7 *5)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-719)) (-4 *4 (-863 *8 *6 *5))))) + (-12 (-5 *3 (-587 *9)) (-4 *9 (-965)) (-4 *5 (-760)) (-4 *6 (-721)) + (-4 *8 (-965)) (-4 *2 (-865 *9 *7 *5)) (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-721)) (-4 *4 (-865 *8 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-350 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1157 *5)) - (-5 *1 (-668 *5 *2)) (-4 *5 (-312))))) + (-12 (-5 *3 (-352 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1159 *5)) + (-5 *1 (-670 *5 *2)) (-4 *5 (-314))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| -3092 (-348 *3)) (|:| |special| (-348 *3)))) - (-5 *1 (-668 *5 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-72))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-666 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1159 *5)) (-4 *5 (-314)) + (-5 *2 (-2 (|:| -3095 (-350 *3)) (|:| |special| (-350 *3)))) + (-5 *1 (-670 *5 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-72))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-668 *3))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) - (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-661)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-665)) (-5 *2 (-85))))) + (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)) + (-5 *1 (-447 *3 *4 *5 *6)) (-4 *6 (-865 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-663)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-667)) (-5 *2 (-85))))) (((*1 *1 *2) - (-12 (-5 *2 (-696)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) - (-14 *4 (-585 (-1092))))) + (-12 (-5 *2 (-698)) (-5 *1 (-50 *3 *4)) (-4 *3 (-965)) + (-14 *4 (-587 (-1094))))) ((*1 *1 *2) - (-12 (-5 *2 (-696)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) - (-14 *4 (-585 (-1092))))) - ((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) + (-12 (-5 *2 (-698)) (-5 *1 (-179 *3 *4)) (-4 *3 (-13 (-965) (-760))) + (-14 *4 (-587 (-1094))))) + ((*1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-322)) (-4 *2 (-314)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-4 *2 (-291 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-288 *3 *4 *5 *2)) (-4 *3 (-314)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-4 *2 (-293 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-696)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-146)))) - ((*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-663 *2 *3)) (-4 *3 (-1157 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1181 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) - (-4 *1 (-663 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1157 *5)) (-5 *2 (-632 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-832)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-696))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-832)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-696))))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-497)))) - ((*1 *1 *1) (|partial| -4 *1 (-661)))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-497)))) - ((*1 *1 *1) (|partial| -4 *1 (-661)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312))))) + (-12 (-5 *2 (-698)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-148)))) + ((*1 *1) (-12 (-4 *2 (-148)) (-4 *1 (-665 *2 *3)) (-4 *3 (-1159 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1183 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-314)) + (-4 *1 (-665 *5 *6)) (-4 *5 (-148)) (-4 *6 (-1159 *5)) (-5 *2 (-634 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-834)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-698))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-834)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-698))))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-318 *2)) (-4 *2 (-148)) (-4 *2 (-499)))) + ((*1 *1 *1) (|partial| -4 *1 (-663)))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-318 *2)) (-4 *2 (-148)) (-4 *2 (-499)))) + ((*1 *1 *1) (|partial| -4 *1 (-663)))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-659 *2)) (-4 *2 (-314))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (|partial| -12 (-4 *2 (-148)) (-5 *1 (-246 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1159 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-148)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-656 *2 *3 *4 *5 *6)) (-4 *2 (-148)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1162 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) - (-14 *4 (-1092)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-486)))) - ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-348 *3)) (-4 *3 (-497)))) + (-12 (-5 *2 (-1164 *3 *4 *5)) (-5 *1 (-272 *3 *4 *5)) (-4 *3 (-314)) + (-14 *4 (-1094)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-488)))) + ((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-350 *3)) (-4 *3 (-499)))) ((*1 *2 *1) - (-12 (-4 *2 (-1015)) (-5 *1 (-652 *3 *2 *4)) (-4 *3 (-758)) + (-12 (-4 *2 (-1017)) (-5 *1 (-654 *3 *2 *4)) (-4 *3 (-760)) (-14 *4 - (-1 (-85) (-2 (|:| -2402 *3) (|:| -2403 *2)) - (-2 (|:| -2402 *3) (|:| -2403 *2))))))) -(((*1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-320)))) - ((*1 *2 *1) (-12 (-4 *2 (-761)) (-5 *1 (-455 *3 *2)) (-4 *3 (-72)))) + (-1 (-85) (-2 (|:| -2405 *3) (|:| -2406 *2)) + (-2 (|:| -2405 *3) (|:| -2406 *2))))))) +(((*1 *1 *2) (-12 (-5 *2 (-834)) (-4 *1 (-322)))) + ((*1 *2 *1) (-12 (-4 *2 (-763)) (-5 *1 (-457 *3 *2)) (-4 *3 (-72)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-832)) (-5 *2 (-1181 *4)) (-5 *1 (-468 *4)) (-4 *4 (-299)))) + (-12 (-5 *3 (-834)) (-5 *2 (-1183 *4)) (-5 *1 (-470 *4)) (-4 *4 (-301)))) ((*1 *2 *1) - (-12 (-4 *2 (-758)) (-5 *1 (-652 *2 *3 *4)) (-4 *3 (-1015)) + (-12 (-4 *2 (-760)) (-5 *1 (-654 *2 *3 *4)) (-4 *3 (-1017)) (-14 *4 - (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *3)) - (-2 (|:| -2402 *2) (|:| -2403 *3))))))) -(((*1 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-651 *3 *2)) (-4 *2 (-1157 *3))))) + (-1 (-85) (-2 (|:| -2405 *2) (|:| -2406 *3)) + (-2 (|:| -2405 *2) (|:| -2406 *3))))))) +(((*1 *2 *2) (-12 (-4 *3 (-965)) (-5 *1 (-653 *3 *2)) (-4 *2 (-1159 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-963)) (-5 *2 (-1181 *3)) (-5 *1 (-651 *3 *4)) - (-4 *4 (-1157 *3))))) + (-12 (-4 *3 (-965)) (-5 *2 (-1183 *3)) (-5 *1 (-653 *3 *4)) + (-4 *4 (-1159 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-1181 *3)) (-4 *3 (-963)) (-5 *1 (-651 *3 *4)) - (-4 *4 (-1157 *3))))) + (-12 (-5 *2 (-1183 *3)) (-4 *3 (-965)) (-5 *1 (-653 *3 *4)) + (-4 *4 (-1159 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-963)) (-5 *2 (-1181 *3)) (-5 *1 (-651 *3 *4)) - (-4 *4 (-1157 *3))))) + (-12 (-4 *3 (-965)) (-5 *2 (-1183 *3)) (-5 *1 (-653 *3 *4)) + (-4 *4 (-1159 *3))))) (((*1 *2) - (-12 (-4 *3 (-963)) (-5 *2 (-871 (-651 *3 *4))) (-5 *1 (-651 *3 *4)) - (-4 *4 (-1157 *3))))) + (-12 (-4 *3 (-965)) (-5 *2 (-873 (-653 *3 *4))) (-5 *1 (-653 *3 *4)) + (-4 *4 (-1159 *3))))) (((*1 *2) - (-12 (-4 *3 (-963)) (-5 *2 (-871 (-651 *3 *4))) (-5 *1 (-651 *3 *4)) - (-4 *4 (-1157 *3))))) + (-12 (-4 *3 (-965)) (-5 *2 (-873 (-653 *3 *4))) (-5 *1 (-653 *3 *4)) + (-4 *4 (-1159 *3))))) (((*1 *1 *1) - (-12 (-4 *2 (-299)) (-4 *2 (-963)) (-5 *1 (-651 *2 *3)) (-4 *3 (-1157 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1075)) (-5 *1 (-649))))) -(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1075)) (-5 *1 (-649))))) -(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1075)) (-5 *1 (-649))))) + (-12 (-4 *2 (-301)) (-4 *2 (-965)) (-5 *1 (-653 *2 *3)) (-4 *3 (-1159 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1077)) (-5 *1 (-651))))) +(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1077)) (-5 *1 (-651))))) +(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1077)) (-5 *1 (-651))))) (((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-585 (-1087 *13))) (-5 *3 (-1087 *13)) - (-5 *4 (-585 *12)) (-5 *5 (-585 *10)) (-5 *6 (-585 *13)) - (-5 *7 (-585 (-585 (-2 (|:| -3081 (-696)) (|:| |pcoef| *13))))) - (-5 *8 (-585 (-696))) (-5 *9 (-1181 (-585 (-1087 *10)))) (-4 *12 (-758)) - (-4 *10 (-258)) (-4 *13 (-863 *10 *11 *12)) (-4 *11 (-719)) - (-5 *1 (-646 *11 *12 *10 *13))))) + (|partial| -12 (-5 *2 (-587 (-1089 *13))) (-5 *3 (-1089 *13)) + (-5 *4 (-587 *12)) (-5 *5 (-587 *10)) (-5 *6 (-587 *13)) + (-5 *7 (-587 (-587 (-2 (|:| -3084 (-698)) (|:| |pcoef| *13))))) + (-5 *8 (-587 (-698))) (-5 *9 (-1183 (-587 (-1089 *10)))) (-4 *12 (-760)) + (-4 *10 (-260)) (-4 *13 (-865 *10 *11 *12)) (-4 *11 (-721)) + (-5 *1 (-648 *11 *12 *10 *13))))) (((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-585 *11)) (-5 *5 (-585 (-1087 *9))) (-5 *6 (-585 *9)) - (-5 *7 (-585 *12)) (-5 *8 (-585 (-696))) (-4 *11 (-758)) (-4 *9 (-258)) - (-4 *12 (-863 *9 *10 *11)) (-4 *10 (-719)) (-5 *2 (-585 (-1087 *12))) - (-5 *1 (-646 *10 *11 *9 *12)) (-5 *3 (-1087 *12))))) + (|partial| -12 (-5 *4 (-587 *11)) (-5 *5 (-587 (-1089 *9))) (-5 *6 (-587 *9)) + (-5 *7 (-587 *12)) (-5 *8 (-587 (-698))) (-4 *11 (-760)) (-4 *9 (-260)) + (-4 *12 (-865 *9 *10 *11)) (-4 *10 (-721)) (-5 *2 (-587 (-1089 *12))) + (-5 *1 (-648 *10 *11 *9 *12)) (-5 *3 (-1089 *12))))) (((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-585 (-1087 *11))) (-5 *3 (-1087 *11)) - (-5 *4 (-585 *10)) (-5 *5 (-585 *8)) (-5 *6 (-585 (-696))) - (-5 *7 (-1181 (-585 (-1087 *8)))) (-4 *10 (-758)) (-4 *8 (-258)) - (-4 *11 (-863 *8 *9 *10)) (-4 *9 (-719)) (-5 *1 (-646 *9 *10 *8 *11))))) + (|partial| -12 (-5 *2 (-587 (-1089 *11))) (-5 *3 (-1089 *11)) + (-5 *4 (-587 *10)) (-5 *5 (-587 *8)) (-5 *6 (-587 (-698))) + (-5 *7 (-1183 (-587 (-1089 *8)))) (-4 *10 (-760)) (-4 *8 (-260)) + (-4 *11 (-865 *8 *9 *10)) (-4 *9 (-721)) (-5 *1 (-648 *9 *10 *8 *11))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1092)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *3 *5 *6 *7)) - (-4 *3 (-555 (-475))) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)))) + (-12 (-5 *4 (-1094)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-643 *3 *5 *6 *7)) + (-4 *3 (-557 (-477))) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *3 *5 *6)) - (-4 *3 (-555 (-475))) (-4 *5 (-1131)) (-4 *6 (-1131))))) + (-12 (-5 *4 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-647 *3 *5 *6)) + (-4 *3 (-557 (-477))) (-4 *5 (-1133)) (-4 *6 (-1133))))) (((*1 *2 *3) - (-12 (-5 *3 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *4 *5 *6)) - (-4 *4 (-555 (-475))) (-4 *5 (-1131)) (-4 *6 (-1131))))) + (-12 (-5 *3 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-647 *4 *5 *6)) + (-4 *4 (-557 (-477))) (-4 *5 (-1133)) (-4 *6 (-1133))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-644 *3 *4)) - (-4 *3 (-1131)) (-4 *4 (-1131))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1092))) (-5 *3 (-1092)) (-5 *1 (-475)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-475))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-646 *3 *4)) + (-4 *3 (-1133)) (-4 *4 (-1133))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-1094))) (-5 *3 (-1094)) (-5 *1 (-477)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-645 *3)) (-4 *3 (-557 (-477))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1092)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-475))))) + (-12 (-5 *2 (-1094)) (-5 *1 (-645 *3)) (-4 *3 (-557 (-477))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1092)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-475))))) + (-12 (-5 *2 (-1094)) (-5 *1 (-645 *3)) (-4 *3 (-557 (-477))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-585 (-1092))) (-5 *2 (-1092)) (-5 *1 (-643 *3)) - (-4 *3 (-555 (-475)))))) + (-12 (-5 *4 (-587 (-1094))) (-5 *2 (-1094)) (-5 *1 (-645 *3)) + (-4 *3 (-557 (-477)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1092)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-642 *3)) - (-4 *3 (-555 (-475))))) + (-12 (-5 *4 (-1094)) (-5 *2 (-1 (-181) (-181))) (-5 *1 (-644 *3)) + (-4 *3 (-557 (-477))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1092)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-642 *3)) - (-4 *3 (-555 (-475)))))) + (-12 (-5 *4 (-1094)) (-5 *2 (-1 (-181) (-181) (-181))) (-5 *1 (-644 *3)) + (-4 *3 (-557 (-477)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1092)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *4 *5 *6 *7)) - (-4 *4 (-555 (-475))) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131))))) + (-12 (-5 *3 (-1094)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-643 *4 *5 *6 *7)) + (-4 *4 (-557 (-477))) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-631 *3 *4 *5 *6)) - (-4 *6 (-629 *3 *4 *5)))) + (-12 (-4 *3 (-260)) (-4 *3 (-148)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) + (-5 *2 (-2 (|:| -1977 *3) (|:| -2908 *3))) (-5 *1 (-633 *3 *4 *5 *6)) + (-4 *6 (-631 *3 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-640 *3)) - (-4 *3 (-258))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3))))) + (-12 (-5 *2 (-2 (|:| -1977 *3) (|:| -2908 *3))) (-5 *1 (-642 *3)) + (-4 *3 (-260))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-634 *3)) (-4 *3 (-260)) (-5 *1 (-642 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-634 *3)) (-4 *3 (-260)) (-5 *1 (-642 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-260)) (-5 *1 (-642 *3))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) - (-5 *4 (-1 (-179) (-179) (-179) (-179))) - (-5 *2 (-1 (-856 (-179)) (-179) (-179))) (-5 *1 (-638))))) + (-12 (-5 *3 (-1 (-181) (-181) (-181))) + (-5 *4 (-1 (-181) (-181) (-181) (-181))) + (-5 *2 (-1 (-858 (-181)) (-181) (-181))) (-5 *1 (-640))))) (((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) - (-5 *6 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-638))))) + (-12 (-5 *3 (-267 (-488))) (-5 *4 (-1 (-181) (-181))) (-5 *5 (-1005 (-181))) + (-5 *6 (-587 (-223))) (-5 *2 (-1051 (-181))) (-5 *1 (-640))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) - (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined")) - (-5 *5 (-1003 (-179))) (-5 *6 (-585 (-221))) (-5 *2 (-1049 (-179))) - (-5 *1 (-638))))) + (-12 (-5 *3 (-1 (-181) (-181) (-181))) + (-5 *4 (-3 (-1 (-181) (-181) (-181) (-181)) "undefined")) + (-5 *5 (-1005 (-181))) (-5 *6 (-587 (-223))) (-5 *2 (-1051 (-181))) + (-5 *1 (-640))))) (((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) - (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined")) - (-5 *5 (-1003 (-179))) (-5 *6 (-585 (-221))) (-5 *2 (-1049 (-179))) - (-5 *1 (-638)))) + (-12 (-5 *3 (-1 (-181) (-181) (-181))) + (-5 *4 (-3 (-1 (-181) (-181) (-181) (-181)) "undefined")) + (-5 *5 (-1005 (-181))) (-5 *6 (-587 (-223))) (-5 *2 (-1051 (-181))) + (-5 *1 (-640)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-179))) - (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-638)))) + (-12 (-5 *3 (-1 (-858 (-181)) (-181) (-181))) (-5 *4 (-1005 (-181))) + (-5 *5 (-587 (-223))) (-5 *2 (-1051 (-181))) (-5 *1 (-640)))) ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1049 (-179))) (-5 *3 (-1 (-856 (-179)) (-179) (-179))) - (-5 *4 (-1003 (-179))) (-5 *5 (-585 (-221))) (-5 *1 (-638))))) + (-12 (-5 *2 (-1051 (-181))) (-5 *3 (-1 (-858 (-181)) (-181) (-181))) + (-5 *4 (-1005 (-181))) (-5 *5 (-587 (-223))) (-5 *1 (-640))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1157 *4)))) + (-12 (-5 *3 (-698)) (-4 *4 (-301)) (-5 *1 (-172 *4 *2)) (-4 *2 (-1159 *4)))) ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-486)) (-5 *1 (-637 *2)) (-4 *2 (-1157 *3))))) + (-12 (-5 *3 (-488)) (-5 *1 (-639 *2)) (-4 *2 (-1159 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 (-2 (|:| |deg| (-696)) (|:| -2578 *5)))) (-4 *5 (-1157 *4)) - (-4 *4 (-299)) (-5 *2 (-585 *5)) (-5 *1 (-170 *4 *5)))) + (-12 (-5 *3 (-587 (-2 (|:| |deg| (-698)) (|:| -2581 *5)))) (-4 *5 (-1159 *4)) + (-4 *4 (-301)) (-5 *2 (-587 *5)) (-5 *1 (-172 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-2 (|:| -3735 *5) (|:| -3952 (-486))))) (-5 *4 (-486)) - (-4 *5 (-1157 *4)) (-5 *2 (-585 *5)) (-5 *1 (-637 *5))))) + (-12 (-5 *3 (-587 (-2 (|:| -3738 *5) (|:| -3955 (-488))))) (-5 *4 (-488)) + (-4 *5 (-1159 *4)) (-5 *2 (-587 *5)) (-5 *1 (-639 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-486)) (-5 *2 (-585 (-2 (|:| -3735 *3) (|:| -3952 *4)))) - (-5 *1 (-637 *3)) (-4 *3 (-1157 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-637 *2)) (-4 *2 (-1157 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1131)) (-4 *2 (-72)))) - ((*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1015))))) + (-12 (-5 *4 (-488)) (-5 *2 (-587 (-2 (|:| -3738 *3) (|:| -3955 *4)))) + (-5 *1 (-639 *3)) (-4 *3 (-1159 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-639 *2)) (-4 *2 (-1159 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1133)) (-4 *2 (-72)))) + ((*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1017))))) (((*1 *2 *1) - (-12 (-4 *1 (-636 *3)) (-4 *3 (-1015)) - (-5 *2 (-585 (-2 (|:| |entry| *3) (|:| -1732 (-696)))))))) -(((*1 *1 *2) (-12 (-5 *1 (-634 *2)) (-4 *2 (-554 (-774)))))) -(((*1 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-554 (-774)))))) + (-12 (-4 *1 (-638 *3)) (-4 *3 (-1017)) + (-5 *2 (-587 (-2 (|:| |entry| *3) (|:| -1735 (-698)))))))) +(((*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-556 (-776)))))) +(((*1 *1) (-12 (-5 *1 (-636 *2)) (-4 *2 (-556 (-776)))))) (((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-632 *4)) (-5 *3 (-696)) (-4 *4 (-963)) (-5 *1 (-633 *4))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) - ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-497)) (-4 *3 (-146)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-497)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) + (-12 (-5 *2 (-634 *4)) (-5 *3 (-698)) (-4 *4 (-965)) (-5 *1 (-635 *4))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-965)) (-5 *1 (-635 *3))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-634 *3)) (-4 *3 (-965)) (-5 *1 (-635 *3))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-965)) (-5 *1 (-635 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-965)) (-5 *1 (-635 *3)))) + ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-965)) (-5 *1 (-635 *3))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-965)) (-5 *1 (-635 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-965)) (-5 *1 (-635 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-499)) (-4 *3 (-148)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3)) (-5 *1 (-633 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-499)) (-4 *3 (-148)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) + (-5 *1 (-633 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-486)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) - (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-629 *3 *5 *6))))) + (-12 (-5 *4 (-488)) (-4 *3 (-148)) (-4 *5 (-326 *3)) (-4 *6 (-326 *3)) + (-5 *1 (-633 *3 *5 *6 *2)) (-4 *2 (-631 *3 *5 *6))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-486)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) - (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-629 *3 *5 *6))))) + (-12 (-5 *4 (-488)) (-4 *3 (-148)) (-4 *5 (-326 *3)) (-4 *6 (-326 *3)) + (-5 *1 (-633 *3 *5 *6 *2)) (-4 *2 (-631 *3 *5 *6))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-486)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *1 (-631 *4 *5 *6 *2)) (-4 *2 (-629 *4 *5 *6))))) + (-12 (-5 *3 (-488)) (-4 *4 (-148)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4)) + (-5 *1 (-633 *4 *5 *6 *2)) (-4 *2 (-631 *4 *5 *6))))) (((*1 *1 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) - (-4 *4 (-324 *2))))) + (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) + (-4 *4 (-326 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) - (-4 *4 (-324 *2))))) + (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) + (-4 *4 (-326 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-324 *2)) - (-4 *4 (-324 *2))))) + (-12 (-4 *1 (-631 *2 *3 *4)) (-4 *2 (-965)) (-4 *3 (-326 *2)) + (-4 *4 (-326 *2))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3))))) + (-12 (-5 *2 (-488)) (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3))))) + (-12 (-5 *2 (-488)) (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3))))) (((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3))))) + (-12 (-5 *2 (-488)) (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3))))) (((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-486)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3))))) + (-12 (-5 *2 (-488)) (-4 *1 (-631 *3 *4 *5)) (-4 *3 (-965)) (-4 *4 (-326 *3)) + (-4 *5 (-326 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) - (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-627 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) + (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-629 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-627 *4 *5 *6)) (-4 *4 (-1015))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-629 *4 *5 *6)) (-4 *4 (-1017))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-1015))))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1017)) (-4 *6 (-1017)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-629 *4 *5 *6)) (-4 *5 (-1017))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-4 *6 (-1017)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-629 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1015)) (-4 *4 (-1015)) (-4 *6 (-1015)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *5 *4 *6))))) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1017)) (-4 *4 (-1017)) (-4 *6 (-1017)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-629 *5 *4 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-626 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-628 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-5 *2 (-1 *5)) - (-5 *1 (-626 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1017)) (-4 *5 (-1017)) (-5 *2 (-1 *5)) + (-5 *1 (-628 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-626 *4 *3)) (-4 *4 (-1015)) - (-4 *3 (-1015))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-628 *4 *3)) (-4 *4 (-1017)) + (-4 *3 (-1017))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-696) *2)) (-5 *4 (-696)) (-4 *2 (-1015)) - (-5 *1 (-621 *2)))) - ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-696) *3)) (-4 *3 (-1015)) (-5 *1 (-625 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1015))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-625 *2)) (-4 *2 (-1015)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-585 *5) (-585 *5))) (-5 *4 (-486)) (-5 *2 (-585 *5)) - (-5 *1 (-625 *5)) (-4 *5 (-1015))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1015))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-585 (-1132))) (-5 *3 (-1132)) (-5 *1 (-624))))) + (-12 (-5 *3 (-1 *2 (-698) *2)) (-5 *4 (-698)) (-4 *2 (-1017)) + (-5 *1 (-623 *2)))) + ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-698) *3)) (-4 *3 (-1017)) (-5 *1 (-627 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1017))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-627 *2)) (-4 *2 (-1017)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-587 *5) (-587 *5))) (-5 *4 (-488)) (-5 *2 (-587 *5)) + (-5 *1 (-627 *5)) (-4 *5 (-1017))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-627 *3)) (-4 *3 (-1017))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-587 (-1134))) (-5 *3 (-1134)) (-5 *1 (-626))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) - (-4 *2 (-1015)) (-5 *1 (-623 *5 *6 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *1 (-622 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015))))) -(((*1 *2 *2 *3) (-12 (-5 *1 (-622 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1017)) (-4 *6 (-1017)) + (-4 *2 (-1017)) (-5 *1 (-625 *5 *6 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *1 (-624 *3 *2)) (-4 *3 (-1017)) (-4 *2 (-1017))))) +(((*1 *2 *2 *3) (-12 (-5 *1 (-624 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1017))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-696)) (-4 *2 (-1015)) (-5 *1 (-621 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1131)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1131)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1131)) (-5 *2 (-85))))) -(((*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1131))))) -(((*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1131)) (-5 *2 (-696))))) -(((*1 *2 *3) - (-12 (-5 *3 (-741 *4)) (-4 *4 (-758)) (-5 *2 (-85)) (-5 *1 (-616 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-741 *3)) (-4 *3 (-758)) (-5 *1 (-616 *3))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-698)) (-4 *2 (-1017)) (-5 *1 (-623 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-620 *3)) (-4 *3 (-1133)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-620 *3)) (-4 *3 (-1133)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-620 *3)) (-4 *3 (-1133)) (-5 *2 (-85))))) +(((*1 *1 *1) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1133))))) +(((*1 *1 *1) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-620 *3)) (-4 *3 (-1133)) (-5 *2 (-698))))) +(((*1 *2 *3) + (-12 (-5 *3 (-743 *4)) (-4 *4 (-760)) (-5 *2 (-85)) (-5 *1 (-618 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-743 *3)) (-4 *3 (-760)) (-5 *1 (-618 *3))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-741 *3)) (-4 *3 (-758)) (-5 *1 (-616 *3))))) + (|partial| -12 (-5 *2 (-743 *3)) (-4 *3 (-760)) (-5 *1 (-618 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *5)) (-5 *4 (-832)) (-4 *5 (-758)) - (-5 *2 (-58 (-585 (-616 *5)))) (-5 *1 (-616 *5))))) + (-12 (-5 *3 (-587 *5)) (-5 *4 (-834)) (-4 *5 (-760)) + (-5 *2 (-58 (-587 (-618 *5)))) (-5 *1 (-618 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *5)) (-5 *4 (-832)) (-4 *5 (-758)) (-5 *2 (-585 (-616 *5))) - (-5 *1 (-616 *5))))) + (-12 (-5 *3 (-587 *5)) (-5 *4 (-834)) (-4 *5 (-760)) (-5 *2 (-587 (-618 *5))) + (-5 *1 (-618 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *7)) (-4 *7 (-758)) - (-4 *8 (-863 *5 *6 *7)) (-4 *5 (-497)) (-4 *6 (-719)) + (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *7)) (-4 *7 (-760)) + (-4 *8 (-865 *5 *6 *7)) (-4 *5 (-499)) (-4 *6 (-721)) (-5 *2 - (-2 (|:| |particular| (-3 (-1181 (-350 *8)) "failed")) - (|:| -2014 (-585 (-1181 (-350 *8)))))) - (-5 *1 (-613 *5 *6 *7 *8))))) + (-2 (|:| |particular| (-3 (-1183 (-352 *8)) "failed")) + (|:| -2017 (-587 (-1183 (-352 *8)))))) + (-5 *1 (-615 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1037 *5))) - (-4 *4 (-13 (-324 *5) (-1037 *5))) (-5 *2 (-85)) (-5 *1 (-611 *5 *6 *4 *3)) - (-4 *3 (-629 *5 *6 *4)))) + (-12 (-4 *5 (-314)) (-4 *6 (-13 (-326 *5) (-1039 *5))) + (-4 *4 (-13 (-326 *5) (-1039 *5))) (-5 *2 (-85)) (-5 *1 (-613 *5 *6 *4 *3)) + (-4 *3 (-631 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-632 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-312)) (-5 *2 (-85)) - (-5 *1 (-612 *5))))) + (-12 (-5 *3 (-634 *5)) (-5 *4 (-1183 *5)) (-4 *5 (-314)) (-5 *2 (-85)) + (-5 *1 (-614 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-585 (-1087 *4))) (-5 *3 (-1087 *4)) (-4 *4 (-823)) - (-5 *1 (-607 *4))))) -(((*1 *1 *1) (-4 *1 (-606)))) -(((*1 *1 *1 *1) (-4 *1 (-606)))) -(((*1 *1 *1 *1) (-4 *1 (-606)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) + (|partial| -12 (-5 *2 (-587 (-1089 *4))) (-5 *3 (-1089 *4)) (-4 *4 (-825)) + (-5 *1 (-609 *4))))) +(((*1 *1 *1) (-4 *1 (-608)))) +(((*1 *1 *1 *1) (-4 *1 (-608)))) +(((*1 *1 *1 *1) (-4 *1 (-608)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-965)) (-4 *2 (-314)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-604 *4 *2)) - (-4 *2 (-602 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-314)) (-5 *1 (-606 *4 *2)) + (-4 *2 (-604 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-696)) (-4 *1 (-602 *3)) (-4 *3 (-963)) (-4 *3 (-312)))) + (-12 (-5 *2 (-698)) (-4 *1 (-604 *3)) (-4 *3 (-965)) (-4 *3 (-314)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-696)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-604 *5 *2)) - (-4 *2 (-602 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) + (-12 (-5 *3 (-698)) (-5 *4 (-1 *5 *5)) (-4 *5 (-314)) (-5 *1 (-606 *5 *2)) + (-4 *2 (-604 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-965)) (-4 *2 (-314)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-604 *4 *2)) - (-4 *2 (-602 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-314)) (-5 *1 (-606 *4 *2)) + (-4 *2 (-604 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-312) (-120) (-952 (-486)) (-952 (-350 (-486))))) - (-4 *5 (-1157 *4)) (-5 *2 (-585 (-599 (-350 *5)))) (-5 *1 (-603 *4 *5)) - (-5 *3 (-599 (-350 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-486))) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-595 *3)) (-4 *3 (-1131))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-595 *3)) (-4 *3 (-1131)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-595 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) - (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3947 *4)))) - (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)) (-4 *4 (-23)) (-14 *5 *4)))) + (-4 *4 (-13 (-314) (-120) (-954 (-488)) (-954 (-352 (-488))))) + (-4 *5 (-1159 *4)) (-5 *2 (-587 (-601 (-352 *5)))) (-5 *1 (-605 *4 *5)) + (-5 *3 (-601 (-352 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-965)) (-4 *2 (-314))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1150 (-488))) (-4 *1 (-597 *3)) (-4 *3 (-1133)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-597 *3)) (-4 *3 (-1133))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-597 *3)) (-4 *3 (-1133)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-488)) (-4 *1 (-597 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) + (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3950 *4)))) + (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1017)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1017)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2) - (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3947 *4)))) (-4 *3 (-1015)) - (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-593 *3 *4 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-310 *3)) (-4 *3 (-1015)))) + (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3950 *4)))) (-4 *3 (-1017)) + (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-595 *3 *4 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-312 *3)) (-4 *3 (-1017)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-486)) (-4 *1 (-336 *4)) (-4 *4 (-1015)) (-5 *2 (-696)))) + (-12 (-5 *3 (-488)) (-4 *1 (-338 *4)) (-4 *4 (-1017)) (-5 *2 (-698)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-486)) (-4 *2 (-23)) (-5 *1 (-593 *4 *2 *5)) (-4 *4 (-1015)) + (-12 (-5 *3 (-488)) (-4 *2 (-23)) (-5 *1 (-595 *4 *2 *5)) (-4 *4 (-1017)) (-14 *5 *2)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-486)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1015)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *1 (-310 *2)) (-4 *2 (-1015)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-4 *1 (-336 *2)) (-4 *2 (-1015)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497)))) + (-12 (-5 *3 (-488)) (-4 *1 (-276 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1017)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-5 *1 (-312 *2)) (-4 *2 (-1017)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-4 *1 (-338 *2)) (-4 *2 (-1017)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-488)) (-5 *1 (-350 *2)) (-4 *2 (-499)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-486)) (-4 *2 (-1015)) (-5 *1 (-593 *2 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *3 (-488)) (-4 *2 (-1017)) (-5 *1 (-595 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1131)))) - ((*1 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-385 *3 *2)) (-4 *2 (-1157 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-326 *2)) (-4 *2 (-1133)))) + ((*1 *2 *2) (-12 (-4 *3 (-965)) (-5 *1 (-387 *3 *2)) (-4 *2 (-1159 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131)))) - ((*1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1131)))) + (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1017)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-216 *2)) (-4 *2 (-1133)))) + ((*1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-326 *2)) (-4 *2 (-1133)))) ((*1 *1 *1) - (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1017)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1) - (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1017)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1017)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2 *1) - (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1017)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) + (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1017)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1017)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)) (-4 *4 (-23)) + (-12 (-5 *2 (-85)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1017)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-486) (-486))) (-5 *1 (-310 *3)) (-4 *3 (-1015)))) + (-12 (-5 *2 (-1 (-488) (-488))) (-5 *1 (-312 *3)) (-4 *3 (-1017)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-696) (-696))) (-4 *1 (-336 *3)) (-4 *3 (-1015)))) + (-12 (-5 *2 (-1 (-698) (-698))) (-4 *1 (-338 *3)) (-4 *3 (-1017)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-593 *3 *4 *5)) - (-4 *3 (-1015))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-595 *3 *4 *5)) + (-4 *3 (-1017))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1015)) (-5 *1 (-310 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-336 *3)) (-4 *3 (-1015)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-276 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-104)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1017)) (-5 *1 (-312 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1017)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1015)) (-5 *1 (-593 *3 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1017)) (-5 *1 (-595 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-591 *3)) (-4 *3 (-1015))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1015))))) -(((*1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-585 *3)) (-4 *3 (-1131))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1131))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-1131))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-1131))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-593 *3)) (-4 *3 (-1017))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1017))))) +(((*1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-587 *3)) (-4 *3 (-1133))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1133))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1017)) (-4 *2 (-1133))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1017)) (-4 *2 (-1133))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1017)) (-4 *2 (-1133))))) (((*1 *1 *2) - (-12 (-5 *2 (-585 *3)) (-4 *3 (-312)) (-5 *1 (-583 *3 *4)) - (-14 *4 (-585 (-1092)))))) + (-12 (-5 *2 (-587 *3)) (-4 *3 (-314)) (-5 *1 (-585 *3 *4)) + (-14 *4 (-587 (-1094)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1181 *1)) (-4 *1 (-582 *4)) (-4 *4 (-963)) - (-5 *2 (-2 (|:| |mat| (-632 *4)) (|:| |vec| (-1181 *4)))))) + (-12 (-5 *3 (-1183 *1)) (-4 *1 (-584 *4)) (-4 *4 (-965)) + (-5 *2 (-2 (|:| |mat| (-634 *4)) (|:| |vec| (-1183 *4)))))) ((*1 *2 *3) - (-12 (-5 *3 (-1181 *1)) (-4 *1 (-582 *4)) (-4 *4 (-963)) (-5 *2 (-632 *4))))) + (-12 (-5 *3 (-1183 *1)) (-4 *1 (-584 *4)) (-4 *4 (-965)) (-5 *2 (-634 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-632 *1)) (-5 *4 (-1181 *1)) (-4 *1 (-582 *5)) (-4 *5 (-963)) - (-5 *2 (-2 (|:| |mat| (-632 *5)) (|:| |vec| (-1181 *5)))))) + (-12 (-5 *3 (-634 *1)) (-5 *4 (-1183 *1)) (-4 *1 (-584 *5)) (-4 *5 (-965)) + (-5 *2 (-2 (|:| |mat| (-634 *5)) (|:| |vec| (-1183 *5)))))) ((*1 *2 *3) - (-12 (-5 *3 (-632 *1)) (-4 *1 (-582 *4)) (-4 *4 (-963)) (-5 *2 (-632 *4))))) + (-12 (-5 *3 (-634 *1)) (-4 *1 (-584 *4)) (-4 *4 (-965)) (-5 *2 (-634 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-585 *3)) (-4 *3 (-312)) (-5 *1 (-581 *3 *4)) - (-14 *4 (-585 (-1092)))))) + (-12 (-5 *2 (-587 *3)) (-4 *3 (-314)) (-5 *1 (-583 *3 *4)) + (-14 *4 (-587 (-1094)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 *5))) - (-4 *5 (-312)) (-4 *5 (-497)) (-5 *2 (-1181 *5)) (-5 *1 (-580 *5 *4)))) + (|partial| -12 (-5 *3 (-1183 *4)) (-4 *4 (-13 (-965) (-584 *5))) + (-4 *5 (-314)) (-4 *5 (-499)) (-5 *2 (-1183 *5)) (-5 *1 (-582 *5 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-963) (-582 *5))) - (-2563 (-4 *5 (-312))) (-4 *5 (-497)) (-5 *2 (-1181 (-350 *5))) - (-5 *1 (-580 *5 *4))))) + (|partial| -12 (-5 *3 (-1183 *4)) (-4 *4 (-13 (-965) (-584 *5))) + (-2566 (-4 *5 (-314))) (-4 *5 (-499)) (-5 *2 (-1183 (-352 *5))) + (-5 *1 (-582 *5 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1181 *5)) (-4 *5 (-13 (-963) (-582 *4))) - (-4 *4 (-497)) (-5 *2 (-1181 *4)) (-5 *1 (-580 *4 *5))))) + (|partial| -12 (-5 *3 (-1183 *5)) (-4 *5 (-13 (-965) (-584 *4))) + (-4 *4 (-499)) (-5 *2 (-1183 *4)) (-5 *1 (-582 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1181 *5)) (-4 *5 (-13 (-963) (-582 *4))) (-4 *4 (-497)) - (-5 *2 (-85)) (-5 *1 (-580 *4 *5))))) + (-12 (-5 *3 (-1183 *5)) (-4 *5 (-13 (-965) (-584 *4))) (-4 *4 (-499)) + (-5 *2 (-85)) (-5 *1 (-582 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-752 *3))) (-4 *3 (-13 (-27) (-1117) (-364 *5))) - (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) + (-12 (-5 *4 (-251 (-754 *3))) (-4 *3 (-13 (-27) (-1119) (-366 *5))) + (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 - (-3 (-752 *3) - (-2 (|:| |leftHandLimit| (-3 (-752 *3) #1="failed")) - (|:| |rightHandLimit| (-3 (-752 *3) #1#))) + (-3 (-754 *3) + (-2 (|:| |leftHandLimit| (-3 (-754 *3) #1="failed")) + (|:| |rightHandLimit| (-3 (-754 *3) #1#))) "failed")) - (-5 *1 (-577 *5 *3)))) + (-5 *1 (-579 *5 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1075)) - (-4 *3 (-13 (-27) (-1117) (-364 *6))) - (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-752 *3)) - (-5 *1 (-577 *6 *3)))) + (|partial| -12 (-5 *4 (-251 *3)) (-5 *5 (-1077)) + (-4 *3 (-13 (-27) (-1119) (-366 *6))) + (-4 *6 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-754 *3)) + (-5 *1 (-579 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-752 (-859 *5)))) (-4 *5 (-393)) + (-12 (-5 *4 (-251 (-754 (-861 *5)))) (-4 *5 (-395)) (-5 *2 - (-3 (-752 (-350 (-859 *5))) - (-2 (|:| |leftHandLimit| (-3 (-752 (-350 (-859 *5))) #2="failed")) - (|:| |rightHandLimit| (-3 (-752 (-350 (-859 *5))) #2#))) + (-3 (-754 (-352 (-861 *5))) + (-2 (|:| |leftHandLimit| (-3 (-754 (-352 (-861 *5))) #2="failed")) + (|:| |rightHandLimit| (-3 (-754 (-352 (-861 *5))) #2#))) #3="failed")) - (-5 *1 (-578 *5)) (-5 *3 (-350 (-859 *5))))) + (-5 *1 (-580 *5)) (-5 *3 (-352 (-861 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-350 (-859 *5)))) (-5 *3 (-350 (-859 *5))) (-4 *5 (-393)) + (-12 (-5 *4 (-251 (-352 (-861 *5)))) (-5 *3 (-352 (-861 *5))) (-4 *5 (-395)) (-5 *2 - (-3 (-752 *3) - (-2 (|:| |leftHandLimit| (-3 (-752 *3) #2#)) - (|:| |rightHandLimit| (-3 (-752 *3) #2#))) + (-3 (-754 *3) + (-2 (|:| |leftHandLimit| (-3 (-754 *3) #2#)) + (|:| |rightHandLimit| (-3 (-754 *3) #2#))) #3#)) - (-5 *1 (-578 *5)))) + (-5 *1 (-580 *5)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-249 (-350 (-859 *6)))) (-5 *5 (-1075)) - (-5 *3 (-350 (-859 *6))) (-4 *6 (-393)) (-5 *2 (-752 *3)) - (-5 *1 (-578 *6))))) + (|partial| -12 (-5 *4 (-251 (-352 (-861 *6)))) (-5 *5 (-1077)) + (-5 *3 (-352 (-861 *6))) (-4 *6 (-395)) (-5 *2 (-754 *3)) + (-5 *1 (-580 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-249 (-745 *3))) - (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-745 *3)) - (-5 *1 (-577 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) + (|partial| -12 (-5 *4 (-251 (-747 *3))) + (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-747 *3)) + (-5 *1 (-579 *5 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-745 (-859 *5)))) (-4 *5 (-393)) - (-5 *2 (-745 (-350 (-859 *5)))) (-5 *1 (-578 *5)) (-5 *3 (-350 (-859 *5))))) + (-12 (-5 *4 (-251 (-747 (-861 *5)))) (-4 *5 (-395)) + (-5 *2 (-747 (-352 (-861 *5)))) (-5 *1 (-580 *5)) (-5 *3 (-352 (-861 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-350 (-859 *5)))) (-5 *3 (-350 (-859 *5))) (-4 *5 (-393)) - (-5 *2 (-745 *3)) (-5 *1 (-578 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-573))))) -(((*1 *1 *1) (-12 (-5 *1 (-549 *2)) (-4 *2 (-1015)))) - ((*1 *1 *1) (-5 *1 (-573)))) + (-12 (-5 *4 (-251 (-352 (-861 *5)))) (-5 *3 (-352 (-861 *5))) (-4 *5 (-395)) + (-5 *2 (-747 *3)) (-5 *1 (-580 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-575))))) +(((*1 *1 *1) (-12 (-5 *1 (-551 *2)) (-4 *2 (-1017)))) + ((*1 *1 *1) (-5 *1 (-575)))) (((*1 *2 *3) - (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-585 (-1092))) (-4 *5 (-393)) - (-5 *2 (-422 *4 *5)) (-5 *1 (-572 *4 *5))))) + (-12 (-5 *3 (-208 *4 *5)) (-14 *4 (-587 (-1094))) (-4 *5 (-395)) + (-5 *2 (-424 *4 *5)) (-5 *1 (-574 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-585 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-585 (-1092))) - (-4 *5 (-393)) (-5 *1 (-572 *4 *5))))) + (-12 (-5 *3 (-587 (-208 *4 *5))) (-5 *2 (-208 *4 *5)) (-14 *4 (-587 (-1094))) + (-4 *5 (-395)) (-5 *1 (-574 *4 *5))))) (((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-585 (-422 *4 *5))) (-5 *3 (-775 *4)) (-14 *4 (-585 (-1092))) - (-4 *5 (-393)) (-5 *1 (-572 *4 *5))))) + (-12 (-5 *2 (-587 (-424 *4 *5))) (-5 *3 (-777 *4)) (-14 *4 (-587 (-1094))) + (-4 *5 (-395)) (-5 *1 (-574 *4 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-206 *5 *6))) (-4 *6 (-393)) - (-5 *2 (-206 *5 *6)) (-14 *5 (-585 (-1092))) (-5 *1 (-572 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-856 (-179)) (-856 (-179)))) (-5 *1 (-221)))) + (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 (-208 *5 *6))) (-4 *6 (-395)) + (-5 *2 (-208 *5 *6)) (-14 *5 (-587 (-1094))) (-5 *1 (-574 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-858 (-181)) (-858 (-181)))) (-5 *1 (-223)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-856 (-179)) (-856 (-179)))) (-5 *3 (-585 (-221))) - (-5 *1 (-222)))) + (-12 (-5 *2 (-1 (-858 (-181)) (-858 (-181)))) (-5 *3 (-587 (-223))) + (-5 *1 (-224)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-585 (-422 *5 *6))) (-5 *3 (-422 *5 *6)) (-14 *5 (-585 (-1092))) - (-4 *6 (-393)) (-5 *2 (-1181 *6)) (-5 *1 (-572 *5 *6))))) + (-12 (-5 *4 (-587 (-424 *5 *6))) (-5 *3 (-424 *5 *6)) (-14 *5 (-587 (-1094))) + (-4 *6 (-395)) (-5 *2 (-1183 *6)) (-5 *1 (-574 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-585 (-422 *3 *4))) (-14 *3 (-585 (-1092))) (-4 *4 (-393)) - (-5 *1 (-572 *3 *4))))) + (-12 (-5 *2 (-587 (-424 *3 *4))) (-14 *3 (-587 (-1094))) (-4 *4 (-395)) + (-5 *1 (-574 *3 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-585 (-422 *5 *6))) (-5 *4 (-775 *5)) (-14 *5 (-585 (-1092))) - (-5 *2 (-422 *5 *6)) (-5 *1 (-572 *5 *6)) (-4 *6 (-393)))) + (-12 (-5 *3 (-587 (-424 *5 *6))) (-5 *4 (-777 *5)) (-14 *5 (-587 (-1094))) + (-5 *2 (-424 *5 *6)) (-5 *1 (-574 *5 *6)) (-4 *6 (-395)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-422 *5 *6))) (-5 *4 (-775 *5)) (-14 *5 (-585 (-1092))) - (-5 *2 (-422 *5 *6)) (-5 *1 (-572 *5 *6)) (-4 *6 (-393))))) + (-12 (-5 *3 (-587 (-424 *5 *6))) (-5 *4 (-777 *5)) (-14 *5 (-587 (-1094))) + (-5 *2 (-424 *5 *6)) (-5 *1 (-574 *5 *6)) (-4 *6 (-395))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 (-422 *4 *5))) (-14 *4 (-585 (-1092))) (-4 *5 (-393)) - (-5 *2 (-585 (-206 *4 *5))) (-5 *1 (-572 *4 *5))))) + (-12 (-5 *3 (-587 (-424 *4 *5))) (-14 *4 (-587 (-1094))) (-4 *5 (-395)) + (-5 *2 (-587 (-208 *4 *5))) (-5 *1 (-574 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-585 (-1092))) (-4 *5 (-393)) - (-5 *2 (-2 (|:| |glbase| (-585 (-206 *4 *5))) (|:| |glval| (-585 (-486))))) - (-5 *1 (-572 *4 *5)) (-5 *3 (-585 (-206 *4 *5)))))) + (-12 (-14 *4 (-587 (-1094))) (-4 *5 (-395)) + (-5 *2 (-2 (|:| |glbase| (-587 (-208 *4 *5))) (|:| |glval| (-587 (-488))))) + (-5 *1 (-574 *4 *5)) (-5 *3 (-587 (-208 *4 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 (-422 *4 *5))) (-14 *4 (-585 (-1092))) (-4 *5 (-393)) - (-5 *2 (-2 (|:| |gblist| (-585 (-206 *4 *5))) (|:| |gvlist| (-585 (-486))))) - (-5 *1 (-572 *4 *5))))) + (-12 (-5 *3 (-587 (-424 *4 *5))) (-14 *4 (-587 (-1094))) (-4 *5 (-395)) + (-5 *2 (-2 (|:| |gblist| (-587 (-208 *4 *5))) (|:| |gvlist| (-587 (-488))))) + (-5 *1 (-574 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) - (-4 *2 (-13 (-364 *3) (-917) (-1117))))) - ((*1 *1 *1) (-4 *1 (-571)))) + (-12 (-4 *3 (-499)) (-5 *1 (-572 *3 *2)) + (-4 *2 (-13 (-366 *3) (-919) (-1119))))) + ((*1 *1 *1) (-4 *1 (-573)))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) - (-4 *2 (-13 (-364 *3) (-917) (-1117))))) - ((*1 *1 *1) (-4 *1 (-571)))) + (-12 (-4 *3 (-499)) (-5 *1 (-572 *3 *2)) + (-4 *2 (-13 (-366 *3) (-919) (-1119))))) + ((*1 *1 *1) (-4 *1 (-573)))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) - (-4 *2 (-13 (-364 *3) (-917) (-1117))))) - ((*1 *1 *1) (-4 *1 (-571)))) + (-12 (-4 *3 (-499)) (-5 *1 (-572 *3 *2)) + (-4 *2 (-13 (-366 *3) (-919) (-1119))))) + ((*1 *1 *1) (-4 *1 (-573)))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) - (-4 *2 (-13 (-364 *3) (-917) (-1117))))) - ((*1 *1 *1) (-4 *1 (-571)))) + (-12 (-4 *3 (-499)) (-5 *1 (-572 *3 *2)) + (-4 *2 (-13 (-366 *3) (-919) (-1119))))) + ((*1 *1 *1) (-4 *1 (-573)))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) - (-4 *2 (-13 (-364 *3) (-917) (-1117))))) - ((*1 *1 *1) (-4 *1 (-571)))) + (-12 (-4 *3 (-499)) (-5 *1 (-572 *3 *2)) + (-4 *2 (-13 (-366 *3) (-919) (-1119))))) + ((*1 *1 *1) (-4 *1 (-573)))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-570 *3 *2)) - (-4 *2 (-13 (-364 *3) (-917) (-1117))))) - ((*1 *1 *1) (-4 *1 (-571)))) + (-12 (-4 *3 (-499)) (-5 *1 (-572 *3 *2)) + (-4 *2 (-13 (-366 *3) (-919) (-1119))))) + ((*1 *1 *1) (-4 *1 (-573)))) (((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-364 *4)))) + (-12 (-5 *3 (-86)) (-4 *4 (-499)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-366 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) - (-4 *5 (-364 *4)))) + (-12 (-5 *3 (-86)) (-4 *4 (-499)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) + (-4 *5 (-366 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) - (-4 *5 (-13 (-364 *4) (-917))))) + (-12 (-5 *3 (-86)) (-4 *4 (-499)) (-5 *2 (-85)) (-5 *1 (-232 *4 *5)) + (-4 *5 (-13 (-366 *4) (-919))))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-253 *4)) (-4 *4 (-254)))) - ((*1 *2 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) + (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-255 *4)) (-4 *4 (-256)))) + ((*1 *2 *3) (-12 (-4 *1 (-256)) (-5 *3 (-86)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-363 *4 *5)) - (-4 *4 (-364 *5)))) + (-12 (-5 *3 (-86)) (-4 *5 (-1017)) (-5 *2 (-85)) (-5 *1 (-365 *4 *5)) + (-4 *4 (-366 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5)) - (-4 *5 (-364 *4)))) + (-12 (-5 *3 (-86)) (-4 *4 (-499)) (-5 *2 (-85)) (-5 *1 (-376 *4 *5)) + (-4 *5 (-366 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-570 *4 *5)) - (-4 *5 (-13 (-364 *4) (-917) (-1117)))))) + (-12 (-5 *3 (-86)) (-4 *4 (-499)) (-5 *2 (-85)) (-5 *1 (-572 *4 *5)) + (-4 *5 (-13 (-366 *4) (-919) (-1119)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) - (-14 *6 (-585 (-1092))) - (-5 *2 (-585 (-1062 *5 (-471 (-775 *6)) (-775 *6) (-705 *5 (-775 *6))))) - (-5 *1 (-569 *5 *6))))) + (-12 (-5 *3 (-587 (-707 *5 (-777 *6)))) (-5 *4 (-85)) (-4 *5 (-395)) + (-14 *6 (-587 (-1094))) + (-5 *2 (-587 (-1064 *5 (-473 (-777 *6)) (-777 *6) (-707 *5 (-777 *6))))) + (-5 *1 (-571 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-393)) - (-14 *6 (-585 (-1092))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-569 *5 *6))))) + (-12 (-5 *3 (-587 (-707 *5 (-777 *6)))) (-5 *4 (-85)) (-4 *5 (-395)) + (-14 *6 (-587 (-1094))) (-5 *2 (-587 (-962 *5 *6))) (-5 *1 (-571 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-585 (-859 *3))) (-4 *3 (-393)) (-5 *1 (-309 *3 *4)) - (-14 *4 (-585 (-1092))))) + (-12 (-5 *2 (-587 (-861 *3))) (-4 *3 (-395)) (-5 *1 (-311 *3 *4)) + (-14 *4 (-587 (-1094))))) ((*1 *2 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-393)) (-4 *4 (-719)) - (-4 *5 (-758)) (-5 *1 (-388 *3 *4 *5 *6)))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-865 *3 *4 *5)) (-4 *3 (-395)) (-4 *4 (-721)) + (-4 *5 (-760)) (-5 *1 (-390 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-585 *7)) (-5 *3 (-1075)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) - (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-388 *4 *5 *6 *7)))) + (-12 (-5 *2 (-587 *7)) (-5 *3 (-1077)) (-4 *7 (-865 *4 *5 *6)) (-4 *4 (-395)) + (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-390 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-585 *7)) (-5 *3 (-1075)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) - (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-388 *4 *5 *6 *7)))) + (-12 (-5 *2 (-587 *7)) (-5 *3 (-1077)) (-4 *7 (-865 *4 *5 *6)) (-4 *4 (-395)) + (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-390 *4 *5 *6 *7)))) ((*1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) - (-4 *5 (-863 *2 *3 *4)))) + (-12 (-4 *2 (-314)) (-4 *3 (-721)) (-4 *4 (-760)) (-5 *1 (-447 *2 *3 *4 *5)) + (-4 *5 (-865 *2 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-585 (-705 *3 (-775 *4)))) (-4 *3 (-393)) - (-14 *4 (-585 (-1092))) (-5 *1 (-569 *3 *4))))) + (-12 (-5 *2 (-587 (-707 *3 (-777 *4)))) (-4 *3 (-395)) + (-14 *4 (-587 (-1094))) (-5 *1 (-571 *3 *4))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-585 (-859 *3))) (-4 *3 (-393)) (-5 *1 (-309 *3 *4)) - (-14 *4 (-585 (-1092))))) + (|partial| -12 (-5 *2 (-587 (-861 *3))) (-4 *3 (-395)) (-5 *1 (-311 *3 *4)) + (-14 *4 (-587 (-1094))))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-585 (-705 *3 (-775 *4)))) (-4 *3 (-393)) - (-14 *4 (-585 (-1092))) (-5 *1 (-569 *3 *4))))) + (|partial| -12 (-5 *2 (-587 (-707 *3 (-777 *4)))) (-4 *3 (-395)) + (-14 *4 (-587 (-1094))) (-5 *1 (-571 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-393)) (-5 *2 (-85)) - (-5 *1 (-309 *4 *5)) (-14 *5 (-585 (-1092))))) + (-12 (-5 *3 (-587 (-861 *4))) (-4 *4 (-395)) (-5 *2 (-85)) + (-5 *1 (-311 *4 *5)) (-14 *5 (-587 (-1094))))) ((*1 *2 *3) - (-12 (-5 *3 (-585 (-705 *4 (-775 *5)))) (-4 *4 (-393)) - (-14 *5 (-585 (-1092))) (-5 *2 (-85)) (-5 *1 (-569 *4 *5))))) + (-12 (-5 *3 (-587 (-707 *4 (-777 *5)))) (-4 *4 (-395)) + (-14 *5 (-587 (-1094))) (-5 *2 (-85)) (-5 *1 (-571 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 *4)) (-4 *4 (-758)) (-5 *2 (-585 (-608 *4 *5))) - (-5 *1 (-568 *4 *5 *6)) (-4 *5 (-13 (-146) (-656 (-350 (-486))))) - (-14 *6 (-832))))) + (-12 (-5 *3 (-587 *4)) (-4 *4 (-760)) (-5 *2 (-587 (-610 *4 *5))) + (-5 *1 (-570 *4 *5 *6)) (-4 *5 (-13 (-148) (-658 (-352 (-488))))) + (-14 *6 (-834))))) (((*1 *2 *1) - (-12 (-5 *2 (-585 (-2 (|:| |k| (-616 *3)) (|:| |c| *4)))) - (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) - (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832))))) + (-12 (-5 *2 (-587 (-2 (|:| |k| (-618 *3)) (|:| |c| *4)))) + (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-760)) + (-4 *4 (-13 (-148) (-658 (-352 (-488))))) (-14 *5 (-834))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-585 (-249 *4))) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) - (-4 *4 (-13 (-146) (-656 (-350 (-486))))) (-14 *5 (-832))))) + (-12 (-5 *2 (-587 (-251 *4))) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-760)) + (-4 *4 (-13 (-148) (-658 (-352 (-488))))) (-14 *5 (-834))))) (((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) - (|:| -1784 (-585 (-2 (|:| |irr| *10) (|:| -2397 (-486))))))) - (-5 *6 (-585 *3)) (-5 *7 (-585 *8)) (-4 *8 (-758)) (-4 *3 (-258)) - (-4 *10 (-863 *3 *9 *8)) (-4 *9 (-719)) + (|:| -1787 (-587 (-2 (|:| |irr| *10) (|:| -2400 (-488))))))) + (-5 *6 (-587 *3)) (-5 *7 (-587 *8)) (-4 *8 (-760)) (-4 *3 (-260)) + (-4 *10 (-865 *3 *9 *8)) (-4 *9 (-721)) (-5 *2 - (-2 (|:| |polfac| (-585 *10)) (|:| |correct| *3) - (|:| |corrfact| (-585 (-1087 *3))))) - (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-585 (-1087 *3)))))) + (-2 (|:| |polfac| (-587 *10)) (|:| |correct| *3) + (|:| |corrfact| (-587 (-1089 *3))))) + (-5 *1 (-568 *8 *9 *3 *10)) (-5 *4 (-587 (-1089 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-696)) (-5 *5 (-585 *3)) (-4 *3 (-258)) (-4 *6 (-758)) - (-4 *7 (-719)) (-5 *2 (-85)) (-5 *1 (-566 *6 *7 *3 *8)) - (-4 *8 (-863 *3 *7 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) - (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-985 *3 *4 *5 *6)) - (-4 *2 (-1022 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *2 (-497)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1157 *2))))) + (-12 (-5 *4 (-698)) (-5 *5 (-587 *3)) (-4 *3 (-260)) (-4 *6 (-760)) + (-4 *7 (-721)) (-5 *2 (-85)) (-5 *1 (-568 *6 *7 *3 *8)) + (-4 *8 (-865 *3 *7 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *6 (-981 *3 *4 *5)) + (-5 *1 (-567 *3 *4 *5 *6 *7 *2)) (-4 *7 (-987 *3 *4 *5 *6)) + (-4 *2 (-1024 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *2 (-499)) (-5 *1 (-566 *2 *3)) (-4 *3 (-1159 *2))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) - (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1117) (-873) (-29 *4)))))) -(((*1 *1) (-5 *1 (-558)))) + (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) + (-5 *1 (-565 *4 *2)) (-4 *2 (-13 (-1119) (-875) (-29 *4)))))) +(((*1 *1) (-5 *1 (-560)))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-120) (-27) (-952 (-486)) (-952 (-350 (-486))))) - (-4 *5 (-1157 *4)) (-5 *2 (-1087 (-350 *5))) (-5 *1 (-556 *4 *5)) - (-5 *3 (-350 *5)))) + (|partial| -12 (-4 *4 (-13 (-120) (-27) (-954 (-488)) (-954 (-352 (-488))))) + (-4 *5 (-1159 *4)) (-5 *2 (-1089 (-352 *5))) (-5 *1 (-558 *4 *5)) + (-5 *3 (-352 *5)))) ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1157 *5)) - (-4 *5 (-13 (-120) (-27) (-952 (-486)) (-952 (-350 (-486))))) - (-5 *2 (-1087 (-350 *6))) (-5 *1 (-556 *5 *6)) (-5 *3 (-350 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-552 *4)) (-4 *4 (-1015)) (-4 *2 (-1015)) - (-5 *1 (-553 *2 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-552 *4)) (-5 *1 (-553 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) -(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1117)))) - ((*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-758)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-552 *3)) (-4 *3 (-1015))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-585 *1)) (-4 *1 (-254)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) - ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) + (|partial| -12 (-5 *4 (-1 (-350 *6) *6)) (-4 *6 (-1159 *5)) + (-4 *5 (-13 (-120) (-27) (-954 (-488)) (-954 (-352 (-488))))) + (-5 *2 (-1089 (-352 *6))) (-5 *1 (-558 *5 *6)) (-5 *3 (-352 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-554 *4)) (-4 *4 (-1017)) (-4 *2 (-1017)) + (-5 *1 (-555 *2 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-554 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017))))) +(((*1 *2 *1) (-12 (-4 *1 (-141 *2)) (-4 *2 (-148)) (-4 *2 (-1119)))) + ((*1 *2 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-760)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-554 *3)) (-4 *3 (-1017))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-587 *1)) (-4 *1 (-256)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-256)) (-5 *2 (-86)))) + ((*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-554 *3)) (-4 *3 (-1017)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-86)) (-5 *3 (-585 *5)) (-5 *4 (-696)) (-4 *5 (-1015)) - (-5 *1 (-552 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-552 *3)) (-4 *3 (-1015))))) + (-12 (-5 *2 (-86)) (-5 *3 (-587 *5)) (-5 *4 (-698)) (-4 *5 (-1017)) + (-5 *1 (-554 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1094)) (-5 *1 (-554 *3)) (-4 *3 (-1017))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-551 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-85))))) + (-12 (-4 *1 (-553 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-551 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-585 *3))))) + (-12 (-4 *1 (-553 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-5 *2 (-587 *3))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-551 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015))))) -(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547)))) -(((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547)))) -(((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547)))) -(((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547)))) -(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547)))) + (|partial| -12 (-4 *1 (-553 *3 *2)) (-4 *3 (-1017)) (-4 *2 (-1017))))) +(((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-5 *1 (-549)))) +(((*1 *1) (-5 *1 (-548))) ((*1 *1) (-5 *1 (-549)))) +(((*1 *1) (-5 *1 (-548))) ((*1 *1) (-5 *1 (-549)))) +(((*1 *1) (-5 *1 (-548))) ((*1 *1) (-5 *1 (-549)))) +(((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-5 *1 (-549)))) +(((*1 *1) (-5 *1 (-549)))) +(((*1 *1) (-5 *1 (-549)))) +(((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-549)))) +(((*1 *1) (-5 *1 (-549)))) +(((*1 *1) (-5 *1 (-548)))) +(((*1 *1) (-5 *1 (-548)))) +(((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-547)))) (((*1 *1) (-5 *1 (-547)))) (((*1 *1) (-5 *1 (-547)))) -(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-547)))) (((*1 *1) (-5 *1 (-547)))) (((*1 *1) (-5 *1 (-546)))) (((*1 *1) (-5 *1 (-546)))) -(((*1 *1) (-5 *1 (-545)))) -(((*1 *1) (-5 *1 (-545)))) -(((*1 *1) (-5 *1 (-545)))) -(((*1 *1) (-5 *1 (-545)))) -(((*1 *1) (-5 *1 (-545)))) -(((*1 *1) (-5 *1 (-545)))) -(((*1 *1) (-5 *1 (-545)))) -(((*1 *1) (-5 *1 (-545)))) -(((*1 *1) (-5 *1 (-545)))) -(((*1 *1) (-5 *1 (-545)))) -(((*1 *1) (-5 *1 (-545)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *2 *1) (-12 (-5 *2 (-871 (-158 (-112)))) (-5 *1 (-282)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-541))))) -(((*1 *2 *1) - (-12 (-4 *1 (-540 *3 *4)) (-4 *3 (-72)) (-4 *4 (-1131)) (-5 *2 (-585 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-873 (-160 (-112)))) (-5 *1 (-284)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-1134))) (-5 *1 (-543))))) +(((*1 *2 *1) + (-12 (-4 *1 (-542 *3 *4)) (-4 *3 (-72)) (-4 *4 (-1133)) (-5 *2 (-587 *4))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-540 *3 *4)) (-4 *3 (-72)) (-4 *4 (-1131)) (-5 *2 (-85))))) + (-12 (-4 *1 (-542 *3 *4)) (-4 *3 (-72)) (-4 *4 (-1133)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-540 *3 *4)) (-4 *3 (-72)) (-4 *4 (-1131)) (-5 *2 (-585 *3))))) + (-12 (-4 *1 (-542 *3 *4)) (-4 *3 (-72)) (-4 *4 (-1133)) (-5 *2 (-587 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-318 *3)) (-4 *3 (-72)) (-4 *1 (-540 *4 *3)) (-4 *4 (-72)) - (-4 *3 (-1131)) (-5 *2 (-85))))) + (-12 (-4 *1 (-320 *3)) (-4 *3 (-72)) (-4 *1 (-542 *4 *3)) (-4 *4 (-72)) + (-4 *3 (-1133)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-540 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-72)) (-4 *2 (-758))))) + (-12 (-4 *1 (-542 *2 *3)) (-4 *3 (-1133)) (-4 *2 (-72)) (-4 *2 (-760))))) (((*1 *2 *1) - (-12 (-4 *1 (-540 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-72)) (-4 *2 (-758))))) + (-12 (-4 *1 (-542 *2 *3)) (-4 *3 (-1133)) (-4 *2 (-72)) (-4 *2 (-760))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-324 *2)) - (-4 *4 (-324 *2)))) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-326 *2)) + (-4 *4 (-326 *2)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1037 *2)) (-4 *1 (-540 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1131))))) + (-12 (-4 *1 (-1039 *2)) (-4 *1 (-542 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1133))))) (((*1 *2 *1 *3 *3) - (-12 (-4 *1 (-1037 *4)) (-4 *1 (-540 *3 *4)) (-4 *3 (-72)) (-4 *4 (-1131)) - (-5 *2 (-1187))))) + (-12 (-4 *1 (-1039 *4)) (-4 *1 (-542 *3 *4)) (-4 *3 (-72)) (-4 *4 (-1133)) + (-5 *2 (-1189))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-585 (-552 *2))) (-5 *4 (-585 (-1092))) - (-4 *2 (-13 (-364 (-142 *5)) (-917) (-1117))) (-4 *5 (-497)) - (-5 *1 (-537 *5 *6 *2)) (-4 *6 (-13 (-364 *5) (-917) (-1117)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-142 *5)) (-5 *1 (-537 *4 *5 *3)) - (-4 *5 (-13 (-364 *4) (-917) (-1117))) - (-4 *3 (-13 (-364 (-142 *4)) (-917) (-1117)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-497)) (-4 *2 (-13 (-364 (-142 *4)) (-917) (-1117))) - (-5 *1 (-537 *4 *3 *2)) (-4 *3 (-13 (-364 *4) (-917) (-1117)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-497)) (-4 *2 (-13 (-364 *4) (-917) (-1117))) - (-5 *1 (-537 *4 *2 *3)) (-4 *3 (-13 (-364 (-142 *4)) (-917) (-1117)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-364 *4) (-917) (-1117))) (-4 *4 (-497)) - (-4 *2 (-13 (-364 (-142 *4)) (-917) (-1117))) (-5 *1 (-537 *4 *5 *2))))) -(((*1 *1) (-5 *1 (-534)))) -(((*1 *1) (-5 *1 (-534)))) -(((*1 *1) (-5 *1 (-534)))) -(((*1 *1) (-5 *1 (-534)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-534))) (-5 *1 (-534))))) + (-12 (-5 *3 (-587 (-554 *2))) (-5 *4 (-587 (-1094))) + (-4 *2 (-13 (-366 (-144 *5)) (-919) (-1119))) (-4 *5 (-499)) + (-5 *1 (-539 *5 *6 *2)) (-4 *6 (-13 (-366 *5) (-919) (-1119)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-499)) (-5 *2 (-144 *5)) (-5 *1 (-539 *4 *5 *3)) + (-4 *5 (-13 (-366 *4) (-919) (-1119))) + (-4 *3 (-13 (-366 (-144 *4)) (-919) (-1119)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-499)) (-4 *2 (-13 (-366 (-144 *4)) (-919) (-1119))) + (-5 *1 (-539 *4 *3 *2)) (-4 *3 (-13 (-366 *4) (-919) (-1119)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-499)) (-4 *2 (-13 (-366 *4) (-919) (-1119))) + (-5 *1 (-539 *4 *2 *3)) (-4 *3 (-13 (-366 (-144 *4)) (-919) (-1119)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-144 *5)) (-4 *5 (-13 (-366 *4) (-919) (-1119))) (-4 *4 (-499)) + (-4 *2 (-13 (-366 (-144 *4)) (-919) (-1119))) (-5 *1 (-539 *4 *5 *2))))) +(((*1 *1) (-5 *1 (-536)))) +(((*1 *1) (-5 *1 (-536)))) +(((*1 *1) (-5 *1 (-536)))) +(((*1 *1) (-5 *1 (-536)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-536))) (-5 *1 (-536))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-941 (-752 (-486)))) - (-5 *3 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *4)))) (-4 *4 (-963)) - (-5 *1 (-532 *4))))) + (-12 (-5 *2 (-943 (-754 (-488)))) + (-5 *3 (-1073 (-2 (|:| |k| (-488)) (|:| |c| *4)))) (-4 *4 (-965)) + (-5 *1 (-534 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-941 (-752 (-486)))) (-5 *1 (-532 *3)) (-4 *3 (-963))))) + (-12 (-5 *2 (-943 (-754 (-488)))) (-5 *1 (-534 *3)) (-4 *3 (-965))))) (((*1 *2 *1) - (-12 (-5 *2 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *3)))) (-5 *1 (-532 *3)) - (-4 *3 (-963))))) + (-12 (-5 *2 (-1073 (-2 (|:| |k| (-488)) (|:| |c| *3)))) (-5 *1 (-534 *3)) + (-4 *3 (-965))))) (((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-85)) (-5 *1 (-532 *3)) (-4 *3 (-963))))) -(((*1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-963))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-532 *2)) (-4 *2 (-963))))) + (|partial| -12 (-5 *2 (-85)) (-5 *1 (-534 *3)) (-4 *3 (-965))))) +(((*1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-965))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-965))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1071 (-2 (|:| |k| (-486)) (|:| |c| *6)))) - (-5 *4 (-941 (-752 (-486)))) (-5 *5 (-1092)) (-5 *7 (-350 (-486))) - (-4 *6 (-963)) (-5 *2 (-774)) (-5 *1 (-532 *6))))) + (-12 (-5 *3 (-1073 (-2 (|:| |k| (-488)) (|:| |c| *6)))) + (-5 *4 (-943 (-754 (-488)))) (-5 *5 (-1094)) (-5 *7 (-352 (-488))) + (-4 *6 (-965)) (-5 *2 (-776)) (-5 *1 (-534 *6))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-350 (-486))) (-5 *1 (-532 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-963))))) + (-12 (-5 *2 (-352 (-488))) (-5 *1 (-534 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *1 *1) - (-12 (-5 *1 (-532 *2)) (-4 *2 (-38 (-350 (-486)))) (-4 *2 (-963))))) + (-12 (-5 *1 (-534 *2)) (-4 *2 (-38 (-352 (-488)))) (-4 *2 (-965))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-585 *3)) (-4 *3 (-1022 *5 *6 *7 *8)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) - (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-529 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-587 *3)) (-4 *3 (-1024 *5 *6 *7 *8)) + (-4 *5 (-13 (-260) (-120))) (-4 *6 (-721)) (-4 *7 (-760)) + (-4 *8 (-981 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-531 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-832))) (-5 *4 (-815 (-486))) (-5 *2 (-632 (-486))) - (-5 *1 (-528)))) + (-12 (-5 *3 (-587 (-834))) (-5 *4 (-817 (-488))) (-5 *2 (-634 (-488))) + (-5 *1 (-530)))) ((*1 *2 *3) - (-12 (-5 *3 (-585 (-832))) (-5 *2 (-585 (-632 (-486)))) (-5 *1 (-528)))) + (-12 (-5 *3 (-587 (-834))) (-5 *2 (-587 (-634 (-488)))) (-5 *1 (-530)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-832))) (-5 *4 (-585 (-815 (-486)))) - (-5 *2 (-585 (-632 (-486)))) (-5 *1 (-528))))) -(((*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-696)) (-5 *1 (-528))))) + (-12 (-5 *3 (-587 (-834))) (-5 *4 (-587 (-817 (-488)))) + (-5 *2 (-587 (-634 (-488)))) (-5 *1 (-530))))) +(((*1 *2 *3) (-12 (-5 *3 (-587 (-834))) (-5 *2 (-698)) (-5 *1 (-530))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) - (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-1117) (-29 *4))))) + (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) + (-5 *1 (-373 *4 *2)) (-4 *2 (-13 (-1119) (-29 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-859 *5))) (-5 *4 (-1092)) (-4 *5 (-120)) - (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-265 *5)) - (-5 *1 (-527 *5))))) + (-12 (-5 *3 (-352 (-861 *5))) (-5 *4 (-1094)) (-4 *5 (-120)) + (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-267 *5)) + (-5 *1 (-529 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-521 *2)) (-4 *2 (-13 (-29 *4) (-1117))) (-5 *1 (-523 *4 *2)) - (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))))) + (-12 (-5 *3 (-523 *2)) (-4 *2 (-13 (-29 *4) (-1119))) (-5 *1 (-525 *4 *2)) + (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))))) ((*1 *2 *3) - (-12 (-5 *3 (-521 (-350 (-859 *4)))) - (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *2 (-265 *4)) - (-5 *1 (-527 *4))))) + (-12 (-5 *3 (-523 (-352 (-861 *4)))) + (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 (-267 *4)) + (-5 *1 (-529 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-526 *4)) (-4 *4 (-299))))) -(((*1 *2 *2) (-12 (-5 *1 (-525 *2)) (-4 *2 (-485))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-525 *2)) (-4 *2 (-485))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-525 *3)) (-4 *3 (-485))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-696)) (-5 *1 (-525 *2)) (-4 *2 (-485))))) + (-12 (-5 *3 (-834)) (-5 *2 (-1089 *4)) (-5 *1 (-528 *4)) (-4 *4 (-301))))) +(((*1 *2 *2) (-12 (-5 *1 (-527 *2)) (-4 *2 (-487))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-527 *2)) (-4 *2 (-487))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-527 *3)) (-4 *3 (-487))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-698)) (-5 *1 (-527 *2)) (-4 *2 (-487))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-696)) (-5 *1 (-525 *2)) (-4 *2 (-485)))) + (|partial| -12 (-5 *3 (-698)) (-5 *1 (-527 *2)) (-4 *2 (-487)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2697 *3) (|:| -2403 (-696)))) (-5 *1 (-525 *3)) - (-4 *3 (-485))))) + (-12 (-5 *2 (-2 (|:| -2700 *3) (|:| -2406 (-698)))) (-5 *1 (-527 *3)) + (-4 *3 (-487))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-696)) (-5 *2 (-85)) (-5 *1 (-525 *3)) (-4 *3 (-485))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-534)) (-5 *1 (-524))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-534)) (-5 *1 (-524))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-534)) (-5 *1 (-524))))) + (-12 (-5 *4 (-698)) (-5 *2 (-85)) (-5 *1 (-527 *3)) (-4 *3 (-487))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-536)) (-5 *1 (-526))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-536)) (-5 *1 (-526))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-450)) (-5 *3 (-536)) (-5 *1 (-526))))) (((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-585 - (-2 (|:| |scalar| (-350 (-486))) (|:| |coeff| (-1087 *2)) - (|:| |logand| (-1087 *2))))) - (-5 *4 (-585 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) - (-5 *1 (-521 *2))))) -(((*1 *2 *1) (-12 (-5 *1 (-521 *2)) (-4 *2 (-312))))) + (-587 + (-2 (|:| |scalar| (-352 (-488))) (|:| |coeff| (-1089 *2)) + (|:| |logand| (-1089 *2))))) + (-5 *4 (-587 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-314)) + (-5 *1 (-523 *2))))) +(((*1 *2 *1) (-12 (-5 *1 (-523 *2)) (-4 *2 (-314))))) (((*1 *2 *1) (-12 (-5 *2 - (-585 - (-2 (|:| |scalar| (-350 (-486))) (|:| |coeff| (-1087 *3)) - (|:| |logand| (-1087 *3))))) - (-5 *1 (-521 *3)) (-4 *3 (-312))))) -(((*1 *2 *1) - (-12 (-5 *2 (-585 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-521 *3)) (-4 *3 (-312))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-521 *3)) (-4 *3 (-312))))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-520))))) -(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-517))))) -(((*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-517))))) -(((*1 *2 *3) (-12 (-5 *3 (-432)) (-5 *2 (-634 (-517))) (-5 *1 (-517))))) -(((*1 *2 *1) (-12 (-5 *2 (-634 (-1 (-475) (-585 (-475))))) (-5 *1 (-86)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-475) (-585 (-475)))) (-5 *1 (-86)))) - ((*1 *1) (-5 *1 (-516)))) -(((*1 *1) (-5 *1 (-516)))) -(((*1 *1) (-5 *1 (-516)))) -(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-515)))) - ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-515))))) + (-587 + (-2 (|:| |scalar| (-352 (-488))) (|:| |coeff| (-1089 *3)) + (|:| |logand| (-1089 *3))))) + (-5 *1 (-523 *3)) (-4 *3 (-314))))) +(((*1 *2 *1) + (-12 (-5 *2 (-587 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-523 *3)) (-4 *3 (-314))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-314))))) +(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-522))))) +(((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-519))))) +(((*1 *2 *1) (-12 (-5 *2 (-168 4 (-101))) (-5 *1 (-519))))) +(((*1 *2 *3) (-12 (-5 *3 (-434)) (-5 *2 (-636 (-519))) (-5 *1 (-519))))) +(((*1 *2 *1) (-12 (-5 *2 (-636 (-1 (-477) (-587 (-477))))) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-477) (-587 (-477)))) (-5 *1 (-86)))) + ((*1 *1) (-5 *1 (-518)))) +(((*1 *1) (-5 *1 (-518)))) +(((*1 *1) (-5 *1 (-518)))) +(((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-517)))) + ((*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-517))))) (((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1092)) - (-4 *4 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) (-5 *1 (-513 *4 *2)) - (-4 *2 (-13 (-1117) (-873) (-1055) (-29 *4)))))) + (|partial| -12 (-5 *3 (-1094)) + (-4 *4 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) (-5 *1 (-515 *4 *2)) + (-4 *2 (-13 (-1119) (-875) (-1057) (-29 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-512 *5 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1159 *5)) (-4 *5 (-314)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-514 *5 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1159 *5)) (-4 *5 (-314)) (-5 *2 - (-2 (|:| |ir| (-521 (-350 *6))) (|:| |specpart| (-350 *6)) + (-2 (|:| |ir| (-523 (-352 *6))) (|:| |specpart| (-352 *6)) (|:| |polypart| *6))) - (-5 *1 (-512 *5 *6)) (-5 *3 (-350 *6))))) + (-5 *1 (-514 *5 *6)) (-5 *3 (-352 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-564 *4 *5)) - (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3140 *4) (|:| |sol?| (-85))) (-486) *4)) - (-4 *4 (-312)) (-4 *5 (-1157 *4)) (-5 *1 (-512 *4 *5))))) + (|partial| -12 (-5 *2 (-566 *4 *5)) + (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3143 *4) (|:| |sol?| (-85))) (-488) *4)) + (-4 *4 (-314)) (-4 *5 (-1159 *4)) (-5 *1 (-514 *4 *5))))) (((*1 *2 *2 *3 *4) (|partial| -12 - (-5 *3 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-312)) (-5 *1 (-512 *4 *2)) (-4 *2 (-1157 *4))))) + (-5 *3 (-1 (-3 (-2 (|:| -2141 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-314)) (-5 *1 (-514 *4 *2)) (-4 *2 (-1159 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-585 (-350 *7))) (-4 *7 (-1157 *6)) - (-5 *3 (-350 *7)) (-4 *6 (-312)) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-587 (-352 *7))) (-4 *7 (-1159 *6)) + (-5 *3 (-352 *7)) (-4 *6 (-314)) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-512 *6 *7))))) + (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-514 *6 *7))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| -2138 (-350 *6)) (|:| |coeff| (-350 *6)))) - (-5 *1 (-512 *5 *6)) (-5 *3 (-350 *6))))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1159 *5)) (-4 *5 (-314)) + (-5 *2 (-2 (|:| -2141 (-352 *6)) (|:| |coeff| (-352 *6)))) + (-5 *1 (-514 *5 *6)) (-5 *3 (-352 *6))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3140 *7) (|:| |sol?| (-85))) (-486) *7)) - (-5 *6 (-585 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1157 *7)) (-5 *3 (-350 *8)) + (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3143 *7) (|:| |sol?| (-85))) (-488) *7)) + (-5 *6 (-587 (-352 *8))) (-4 *7 (-314)) (-4 *8 (-1159 *7)) (-5 *3 (-352 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-512 *7 *8))))) + (-5 *1 (-514 *7 *8))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-3 (-2 (|:| -2138 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-585 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1157 *7)) (-5 *3 (-350 *8)) + (-5 *5 (-1 (-3 (-2 (|:| -2141 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-587 (-352 *8))) (-4 *7 (-314)) (-4 *8 (-1159 *7)) (-5 *3 (-352 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-512 *7 *8))))) + (-5 *1 (-514 *7 *8))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3140 *6) (|:| |sol?| (-85))) (-486) *6)) - (-4 *6 (-312)) (-4 *7 (-1157 *6)) + (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3143 *6) (|:| |sol?| (-85))) (-488) *6)) + (-4 *6 (-314)) (-4 *7 (-1159 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) - (-2 (|:| -2138 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) - (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7))))) + (-3 (-2 (|:| |answer| (-352 *7)) (|:| |a0| *6)) + (-2 (|:| -2141 (-352 *7)) (|:| |coeff| (-352 *7))) "failed")) + (-5 *1 (-514 *6 *7)) (-5 *3 (-352 *7))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2138 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-312)) (-4 *7 (-1157 *6)) + (-5 *5 (-1 (-3 (-2 (|:| -2141 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-314)) (-4 *7 (-1159 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) - (-2 (|:| -2138 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) - (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7))))) + (-3 (-2 (|:| |answer| (-352 *7)) (|:| |a0| *6)) + (-2 (|:| -2141 (-352 *7)) (|:| |coeff| (-352 *7))) "failed")) + (-5 *1 (-514 *6 *7)) (-5 *3 (-352 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-585 *6) "failed") (-486) *6 *6)) - (-4 *6 (-312)) (-4 *7 (-1157 *6)) - (-5 *2 (-2 (|:| |answer| (-521 (-350 *7))) (|:| |a0| *6))) - (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7))))) + (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-587 *6) "failed") (-488) *6 *6)) + (-4 *6 (-314)) (-4 *7 (-1159 *6)) + (-5 *2 (-2 (|:| |answer| (-523 (-352 *7))) (|:| |a0| *6))) + (-5 *1 (-514 *6 *7)) (-5 *3 (-352 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3140 *6) (|:| |sol?| (-85))) (-486) *6)) - (-4 *6 (-312)) (-4 *7 (-1157 *6)) - (-5 *2 (-2 (|:| |answer| (-521 (-350 *7))) (|:| |a0| *6))) - (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7))))) + (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3143 *6) (|:| |sol?| (-85))) (-488) *6)) + (-4 *6 (-314)) (-4 *7 (-1159 *6)) + (-5 *2 (-2 (|:| |answer| (-523 (-352 *7))) (|:| |a0| *6))) + (-5 *1 (-514 *6 *7)) (-5 *3 (-352 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2138 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-312)) (-4 *7 (-1157 *6)) - (-5 *2 (-2 (|:| |answer| (-521 (-350 *7))) (|:| |a0| *6))) - (-5 *1 (-512 *6 *7)) (-5 *3 (-350 *7))))) + (-5 *5 (-1 (-3 (-2 (|:| -2141 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-314)) (-4 *7 (-1159 *6)) + (-5 *2 (-2 (|:| |answer| (-523 (-352 *7))) (|:| |a0| *6))) + (-5 *1 (-514 *6 *7)) (-5 *3 (-352 *7))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-521 *3) *3 (-1092))) + (-12 (-5 *5 (-1 (-523 *3) *3 (-1094))) (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1092))) - (-4 *3 (-239)) (-4 *3 (-571)) (-4 *3 (-952 *4)) (-4 *3 (-364 *7)) - (-5 *4 (-1092)) (-4 *7 (-555 (-802 (-486)))) (-4 *7 (-393)) - (-4 *7 (-798 (-486))) (-4 *7 (-1015)) (-5 *2 (-521 *3)) - (-5 *1 (-511 *7 *3))))) + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1094))) + (-4 *3 (-241)) (-4 *3 (-573)) (-4 *3 (-954 *4)) (-4 *3 (-366 *7)) + (-5 *4 (-1094)) (-4 *7 (-557 (-804 (-488)))) (-4 *7 (-395)) + (-4 *7 (-800 (-488))) (-4 *7 (-1017)) (-5 *2 (-523 *3)) + (-5 *1 (-513 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-393)) (-4 *4 (-1015)) (-5 *1 (-511 *4 *2)) - (-4 *2 (-239)) (-4 *2 (-364 *4))))) + (-12 (-5 *3 (-1094)) (-4 *4 (-395)) (-4 *4 (-1017)) (-5 *1 (-513 *4 *2)) + (-4 *2 (-241)) (-4 *2 (-366 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-4 *4 (-1015)) (-5 *1 (-511 *4 *2)) - (-4 *2 (-364 *4))))) + (-12 (-5 *3 (-1094)) (-4 *4 (-499)) (-4 *4 (-1017)) (-5 *1 (-513 *4 *2)) + (-4 *2 (-366 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *6)) (-5 *4 (-1092)) (-4 *6 (-364 *5)) (-4 *5 (-1015)) - (-5 *2 (-585 (-552 *6))) (-5 *1 (-511 *5 *6))))) + (-12 (-5 *3 (-587 *6)) (-5 *4 (-1094)) (-4 *6 (-366 *5)) (-4 *5 (-1017)) + (-5 *2 (-587 (-554 *6))) (-5 *1 (-513 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-585 (-552 *6))) (-5 *4 (-1092)) (-5 *2 (-552 *6)) - (-4 *6 (-364 *5)) (-4 *5 (-1015)) (-5 *1 (-511 *5 *6))))) + (-12 (-5 *3 (-587 (-554 *6))) (-5 *4 (-1094)) (-5 *2 (-554 *6)) + (-4 *6 (-366 *5)) (-4 *5 (-1017)) (-5 *1 (-513 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 (-552 *5))) (-4 *4 (-1015)) (-5 *2 (-552 *5)) - (-5 *1 (-511 *4 *5)) (-4 *5 (-364 *4))))) + (-12 (-5 *3 (-587 (-554 *5))) (-4 *4 (-1017)) (-5 *2 (-554 *5)) + (-5 *1 (-513 *4 *5)) (-4 *5 (-366 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-585 (-552 *5))) (-5 *3 (-1092)) (-4 *5 (-364 *4)) - (-4 *4 (-1015)) (-5 *1 (-511 *4 *5))))) + (-12 (-5 *2 (-587 (-554 *5))) (-5 *3 (-1094)) (-4 *5 (-366 *4)) + (-4 *4 (-1017)) (-5 *1 (-513 *4 *5))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)) (-120))) - (-5 *2 (-2 (|:| -2138 (-350 (-859 *5))) (|:| |coeff| (-350 (-859 *5))))) - (-5 *1 (-508 *5)) (-5 *3 (-350 (-859 *5)))))) + (|partial| -12 (-5 *4 (-1094)) (-4 *5 (-13 (-499) (-954 (-488)) (-120))) + (-5 *2 (-2 (|:| -2141 (-352 (-861 *5))) (|:| |coeff| (-352 (-861 *5))))) + (-5 *1 (-510 *5)) (-5 *3 (-352 (-861 *5)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-585 (-350 (-859 *6)))) - (-5 *3 (-350 (-859 *6))) (-4 *6 (-13 (-497) (-952 (-486)) (-120))) + (|partial| -12 (-5 *4 (-1094)) (-5 *5 (-587 (-352 (-861 *6)))) + (-5 *3 (-352 (-861 *6))) (-4 *6 (-13 (-499) (-954 (-488)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-508 *6))))) + (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-510 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-350 (-859 *4))) (-5 *3 (-1092)) - (-4 *4 (-13 (-497) (-952 (-486)) (-120))) (-5 *1 (-508 *4))))) + (|partial| -12 (-5 *2 (-352 (-861 *4))) (-5 *3 (-1094)) + (-4 *4 (-13 (-499) (-954 (-488)) (-120))) (-5 *1 (-510 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) - (-5 *2 (-521 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1117) (-29 *5))))) + (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) + (-5 *2 (-523 *3)) (-5 *1 (-373 *5 *3)) (-4 *3 (-13 (-1119) (-29 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)) (-120))) - (-5 *2 (-521 (-350 (-859 *5)))) (-5 *1 (-508 *5)) (-5 *3 (-350 (-859 *5)))))) + (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-499) (-954 (-488)) (-120))) + (-5 *2 (-523 (-352 (-861 *5)))) (-5 *1 (-510 *5)) (-5 *3 (-352 (-861 *5)))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-486)) (-5 *1 (-507 *3)) (-4 *3 (-952 *2))))) + (|partial| -12 (-5 *2 (-488)) (-5 *1 (-509 *3)) (-4 *3 (-954 *2))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-585 (-350 *6))) (-5 *3 (-350 *6)) (-4 *6 (-1157 *5)) - (-4 *5 (-13 (-312) (-120) (-952 (-486)))) + (|partial| -12 (-5 *4 (-587 (-352 *6))) (-5 *3 (-352 *6)) (-4 *6 (-1159 *5)) + (-4 *5 (-13 (-314) (-120) (-954 (-488)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-506 *5 *6))))) + (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-508 *5 *6))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-312) (-120) (-952 (-486)))) (-4 *5 (-1157 *4)) - (-5 *2 (-2 (|:| -2138 (-350 *5)) (|:| |coeff| (-350 *5)))) - (-5 *1 (-506 *4 *5)) (-5 *3 (-350 *5))))) + (|partial| -12 (-4 *4 (-13 (-314) (-120) (-954 (-488)))) (-4 *5 (-1159 *4)) + (-5 *2 (-2 (|:| -2141 (-352 *5)) (|:| |coeff| (-352 *5)))) + (-5 *1 (-508 *4 *5)) (-5 *3 (-352 *5))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1157 *3)) - (-4 *3 (-13 (-312) (-120) (-952 (-486)))) (-5 *1 (-506 *3 *4))))) + (|partial| -12 (-5 *2 (-352 *4)) (-4 *4 (-1159 *3)) + (-4 *3 (-13 (-314) (-120) (-954 (-488)))) (-5 *1 (-508 *3 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-555 (-802 (-486)))) - (-4 *5 (-798 (-486))) (-4 *5 (-13 (-952 (-486)) (-393) (-582 (-486)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-505 *5 *3)) - (-4 *3 (-571)) (-4 *3 (-13 (-27) (-1117) (-364 *5))))) + (|partial| -12 (-5 *4 (-1094)) (-4 *5 (-557 (-804 (-488)))) + (-4 *5 (-800 (-488))) (-4 *5 (-13 (-954 (-488)) (-395) (-584 (-488)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-507 *5 *3)) + (-4 *3 (-573)) (-4 *3 (-13 (-27) (-1119) (-366 *5))))) ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1092)) (-5 *4 (-752 *2)) (-4 *2 (-1055)) - (-4 *2 (-13 (-27) (-1117) (-364 *5))) (-4 *5 (-555 (-802 (-486)))) - (-4 *5 (-798 (-486))) (-4 *5 (-13 (-952 (-486)) (-393) (-582 (-486)))) - (-5 *1 (-505 *5 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-555 (-802 (-486)))) - (-4 *5 (-798 (-486))) (-4 *5 (-13 (-952 (-486)) (-393) (-582 (-486)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-505 *5 *3)) - (-4 *3 (-571)) (-4 *3 (-13 (-27) (-1117) (-364 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-952 (-486)) (-393) (-582 (-486)))) - (-5 *2 (-2 (|:| -2340 *3) (|:| |nconst| *3))) (-5 *1 (-505 *5 *3)) - (-4 *3 (-13 (-27) (-1117) (-364 *5)))))) + (|partial| -12 (-5 *3 (-1094)) (-5 *4 (-754 *2)) (-4 *2 (-1057)) + (-4 *2 (-13 (-27) (-1119) (-366 *5))) (-4 *5 (-557 (-804 (-488)))) + (-4 *5 (-800 (-488))) (-4 *5 (-13 (-954 (-488)) (-395) (-584 (-488)))) + (-5 *1 (-507 *5 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1094)) (-4 *5 (-557 (-804 (-488)))) + (-4 *5 (-800 (-488))) (-4 *5 (-13 (-954 (-488)) (-395) (-584 (-488)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-507 *5 *3)) + (-4 *3 (-573)) (-4 *3 (-13 (-27) (-1119) (-366 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-954 (-488)) (-395) (-584 (-488)))) + (-5 *2 (-2 (|:| -2343 *3) (|:| |nconst| *3))) (-5 *1 (-507 *5 *3)) + (-4 *3 (-13 (-27) (-1119) (-366 *5)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-552 *4)) (-5 *6 (-1092)) (-4 *4 (-13 (-364 *7) (-27) (-1117))) - (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-585 *4)))) - (-5 *1 (-504 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1015))))) + (-12 (-5 *5 (-554 *4)) (-5 *6 (-1094)) (-4 *4 (-13 (-366 *7) (-27) (-1119))) + (-4 *7 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2017 (-587 *4)))) + (-5 *1 (-506 *7 *4 *3)) (-4 *3 (-604 *4)) (-4 *3 (-1017))))) (((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-552 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1092))) - (-4 *2 (-13 (-364 *5) (-27) (-1117))) - (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) - (-5 *1 (-504 *5 *2 *6)) (-4 *6 (-1015))))) + (|partial| -12 (-5 *3 (-554 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1094))) + (-4 *2 (-13 (-366 *5) (-27) (-1119))) + (-4 *5 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) + (-5 *1 (-506 *5 *2 *6)) (-4 *6 (-1017))))) (((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-585 *3)) - (-4 *3 (-13 (-364 *6) (-27) (-1117))) - (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) + (|partial| -12 (-5 *4 (-554 *3)) (-5 *5 (-587 *3)) + (-4 *3 (-13 (-366 *6) (-27) (-1119))) + (-4 *6 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-504 *6 *3 *7)) (-4 *7 (-1015))))) + (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-506 *6 *3 *7)) (-4 *7 (-1017))))) (((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-552 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1117))) - (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) - (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-504 *5 *3 *6)) - (-4 *6 (-1015))))) + (|partial| -12 (-5 *4 (-554 *3)) (-4 *3 (-13 (-366 *5) (-27) (-1119))) + (-4 *5 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) + (-5 *2 (-2 (|:| -2141 *3) (|:| |coeff| *3))) (-5 *1 (-506 *5 *3 *6)) + (-4 *6 (-1017))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-552 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1117))) - (-4 *5 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-521 *3)) - (-5 *1 (-504 *5 *3 *6)) (-4 *6 (-1015))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) - (-4 *7 (-1157 (-350 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2137 *3))) - (-5 *1 (-502 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-312)) - (-5 *2 - (-2 (|:| |answer| (-350 *6)) (|:| -2137 (-350 *6)) - (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) - (-5 *1 (-503 *5 *6)) (-5 *3 (-350 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-486)) (-5 *3 (-696)) (-5 *1 (-501))))) -(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501))))) -(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501))))) -(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501))))) -(((*1 *2 *3) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-501)) (-5 *3 (-486))))) -(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501))))) -(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501))))) -(((*1 *2 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-501)) (-5 *3 (-486))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) + (-12 (-5 *4 (-554 *3)) (-4 *3 (-13 (-366 *5) (-27) (-1119))) + (-4 *5 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-523 *3)) + (-5 *1 (-506 *5 *3 *6)) (-4 *6 (-1017))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1159 *5)) (-4 *5 (-314)) + (-4 *7 (-1159 (-352 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2140 *3))) + (-5 *1 (-504 *5 *6 *7 *3)) (-4 *3 (-293 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1159 *5)) (-4 *5 (-314)) + (-5 *2 + (-2 (|:| |answer| (-352 *6)) (|:| -2140 (-352 *6)) + (|:| |specpart| (-352 *6)) (|:| |polypart| *6))) + (-5 *1 (-505 *5 *6)) (-5 *3 (-352 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-488)) (-5 *3 (-698)) (-5 *1 (-503))))) +(((*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-503))))) +(((*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-503))))) +(((*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-503))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-503))))) +(((*1 *2 *3) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-503)) (-5 *3 (-488))))) +(((*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-503))))) +(((*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-503))))) +(((*1 *2 *3) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-503)) (-5 *3 (-488))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-587 *2)) (-5 *1 (-155 *2)) (-4 *2 (-260)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-585 (-585 *4))) (-5 *2 (-585 *4)) (-4 *4 (-258)) - (-5 *1 (-153 *4)))) + (-12 (-5 *3 (-587 (-587 *4))) (-5 *2 (-587 *4)) (-4 *4 (-260)) + (-5 *1 (-155 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-585 *8)) + (-12 (-5 *3 (-587 *8)) (-5 *4 - (-585 - (-2 (|:| -2014 (-632 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-632 *7))))) - (-5 *5 (-696)) (-4 *8 (-1157 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-299)) - (-5 *2 - (-2 (|:| -2014 (-632 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-632 *7)))) - (-5 *1 (-439 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-501))))) + (-587 + (-2 (|:| -2017 (-634 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-634 *7))))) + (-5 *5 (-698)) (-4 *8 (-1159 *7)) (-4 *7 (-1159 *6)) (-4 *6 (-301)) + (-5 *2 + (-2 (|:| -2017 (-634 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-634 *7)))) + (-5 *1 (-441 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-503))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-552 *4)) (-5 *6 (-1087 *4)) - (-4 *4 (-13 (-364 *7) (-27) (-1117))) - (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-585 *4)))) - (-5 *1 (-500 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1015)))) + (-12 (-5 *5 (-554 *4)) (-5 *6 (-1089 *4)) + (-4 *4 (-13 (-366 *7) (-27) (-1119))) + (-4 *7 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2017 (-587 *4)))) + (-5 *1 (-502 *7 *4 *3)) (-4 *3 (-604 *4)) (-4 *3 (-1017)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-552 *4)) (-5 *6 (-350 (-1087 *4))) - (-4 *4 (-13 (-364 *7) (-27) (-1117))) - (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-585 *4)))) - (-5 *1 (-500 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1015))))) + (-12 (-5 *5 (-554 *4)) (-5 *6 (-352 (-1089 *4))) + (-4 *4 (-13 (-366 *7) (-27) (-1119))) + (-4 *7 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2017 (-587 *4)))) + (-5 *1 (-502 *7 *4 *3)) (-4 *3 (-604 *4)) (-4 *3 (-1017))))) (((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-552 *2)) - (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1092))) (-5 *5 (-1087 *2)) - (-4 *2 (-13 (-364 *6) (-27) (-1117))) - (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) - (-5 *1 (-500 *6 *2 *7)) (-4 *7 (-1015)))) + (|partial| -12 (-5 *3 (-554 *2)) + (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1094))) (-5 *5 (-1089 *2)) + (-4 *2 (-13 (-366 *6) (-27) (-1119))) + (-4 *6 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) + (-5 *1 (-502 *6 *2 *7)) (-4 *7 (-1017)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-552 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1092))) - (-5 *5 (-350 (-1087 *2))) (-4 *2 (-13 (-364 *6) (-27) (-1117))) - (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) - (-5 *1 (-500 *6 *2 *7)) (-4 *7 (-1015))))) + (|partial| -12 (-5 *3 (-554 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1094))) + (-5 *5 (-352 (-1089 *2))) (-4 *2 (-13 (-366 *6) (-27) (-1119))) + (-4 *6 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) + (-5 *1 (-502 *6 *2 *7)) (-4 *7 (-1017))))) (((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-585 *3)) (-5 *6 (-1087 *3)) - (-4 *3 (-13 (-364 *7) (-27) (-1117))) - (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) + (|partial| -12 (-5 *4 (-554 *3)) (-5 *5 (-587 *3)) (-5 *6 (-1089 *3)) + (-4 *3 (-13 (-366 *7) (-27) (-1119))) + (-4 *7 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-500 *7 *3 *8)) (-4 *8 (-1015)))) + (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-502 *7 *3 *8)) (-4 *8 (-1017)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-585 *3)) (-5 *6 (-350 (-1087 *3))) - (-4 *3 (-13 (-364 *7) (-27) (-1117))) - (-4 *7 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) + (|partial| -12 (-5 *4 (-554 *3)) (-5 *5 (-587 *3)) (-5 *6 (-352 (-1089 *3))) + (-4 *3 (-13 (-366 *7) (-27) (-1119))) + (-4 *7 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-500 *7 *3 *8)) (-4 *8 (-1015))))) + (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-502 *7 *3 *8)) (-4 *8 (-1017))))) (((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-1087 *3)) - (-4 *3 (-13 (-364 *6) (-27) (-1117))) - (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) - (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-500 *6 *3 *7)) - (-4 *7 (-1015)))) + (|partial| -12 (-5 *4 (-554 *3)) (-5 *5 (-1089 *3)) + (-4 *3 (-13 (-366 *6) (-27) (-1119))) + (-4 *6 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) + (-5 *2 (-2 (|:| -2141 *3) (|:| |coeff| *3))) (-5 *1 (-502 *6 *3 *7)) + (-4 *7 (-1017)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-350 (-1087 *3))) - (-4 *3 (-13 (-364 *6) (-27) (-1117))) - (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) - (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-500 *6 *3 *7)) - (-4 *7 (-1015))))) + (|partial| -12 (-5 *4 (-554 *3)) (-5 *5 (-352 (-1089 *3))) + (-4 *3 (-13 (-366 *6) (-27) (-1119))) + (-4 *6 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) + (-5 *2 (-2 (|:| -2141 *3) (|:| |coeff| *3))) (-5 *1 (-502 *6 *3 *7)) + (-4 *7 (-1017))))) (((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-552 *3)) (-5 *5 (-1087 *3)) - (-4 *3 (-13 (-364 *6) (-27) (-1117))) - (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-521 *3)) - (-5 *1 (-500 *6 *3 *7)) (-4 *7 (-1015)))) + (-12 (-5 *4 (-554 *3)) (-5 *5 (-1089 *3)) + (-4 *3 (-13 (-366 *6) (-27) (-1119))) + (-4 *6 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-523 *3)) + (-5 *1 (-502 *6 *3 *7)) (-4 *7 (-1017)))) ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-552 *3)) (-5 *5 (-350 (-1087 *3))) - (-4 *3 (-13 (-364 *6) (-27) (-1117))) - (-4 *6 (-13 (-393) (-952 (-486)) (-120) (-582 (-486)))) (-5 *2 (-521 *3)) - (-5 *1 (-500 *6 *3 *7)) (-4 *7 (-1015))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-499 *2)) (-4 *2 (-485))))) -(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-499 *3)) (-4 *3 (-485))))) + (-12 (-5 *4 (-554 *3)) (-5 *5 (-352 (-1089 *3))) + (-4 *3 (-13 (-366 *6) (-27) (-1119))) + (-4 *6 (-13 (-395) (-954 (-488)) (-120) (-584 (-488)))) (-5 *2 (-523 *3)) + (-5 *1 (-502 *6 *3 *7)) (-4 *7 (-1017))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-501 *2)) (-4 *2 (-487))))) +(((*1 *2 *3) (-12 (-5 *2 (-350 *3)) (-5 *1 (-501 *3)) (-4 *3 (-487))))) (((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1092)) (-5 *6 (-585 (-552 *3))) (-5 *5 (-552 *3)) - (-4 *3 (-13 (-27) (-1117) (-364 *7))) - (-4 *7 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) - (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-498 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) - (-5 *2 (-521 *3)) (-5 *1 (-498 *5 *3)) - (-4 *3 (-13 (-27) (-1117) (-364 *5)))))) + (|partial| -12 (-5 *4 (-1094)) (-5 *6 (-587 (-554 *3))) (-5 *5 (-554 *3)) + (-4 *3 (-13 (-27) (-1119) (-366 *7))) + (-4 *7 (-13 (-395) (-120) (-954 (-488)) (-584 (-488)))) + (-5 *2 (-2 (|:| -2141 *3) (|:| |coeff| *3))) (-5 *1 (-500 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-395) (-120) (-954 (-488)) (-584 (-488)))) + (-5 *2 (-523 *3)) (-5 *1 (-500 *5 *3)) + (-4 *3 (-13 (-27) (-1119) (-366 *5)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1092)) - (-4 *4 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) (-5 *1 (-498 *4 *2)) - (-4 *2 (-13 (-27) (-1117) (-364 *4)))))) + (|partial| -12 (-5 *3 (-1094)) + (-4 *4 (-13 (-395) (-120) (-954 (-488)) (-584 (-488)))) (-5 *1 (-500 *4 *2)) + (-4 *2 (-13 (-27) (-1119) (-366 *4)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-585 *3)) - (-4 *3 (-13 (-27) (-1117) (-364 *6))) - (-4 *6 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) + (|partial| -12 (-5 *4 (-1094)) (-5 *5 (-587 *3)) + (-4 *3 (-13 (-27) (-1119) (-366 *6))) + (-4 *6 (-13 (-395) (-120) (-954 (-488)) (-584 (-488)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-498 *6 *3))))) + (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-500 *6 *3))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1092)) - (-4 *5 (-13 (-393) (-120) (-952 (-486)) (-582 (-486)))) - (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-498 *5 *3)) - (-4 *3 (-13 (-27) (-1117) (-364 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1777 *1) (|:| -3985 *1) (|:| |associate| *1))) - (-4 *1 (-497))))) -(((*1 *1 *1) (-4 *1 (-497)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-497)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-497)) (-5 *2 (-85))))) + (|partial| -12 (-5 *4 (-1094)) + (-4 *5 (-13 (-395) (-120) (-954 (-488)) (-584 (-488)))) + (-5 *2 (-2 (|:| -2141 *3) (|:| |coeff| *3))) (-5 *1 (-500 *5 *3)) + (-4 *3 (-13 (-27) (-1119) (-366 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -1780 *1) (|:| -3988 *1) (|:| |associate| *1))) + (-4 *1 (-499))))) +(((*1 *1 *1) (-4 *1 (-499)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-499)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-499)) (-5 *2 (-85))))) (((*1 *1 *2) - (-12 (-5 *2 (-350 (-486))) (-4 *1 (-495 *3)) (-4 *3 (-13 (-347) (-1117))))) - ((*1 *1 *2) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117)))))) -(((*1 *2 *1) (-12 (-4 *1 (-495 *2)) (-4 *2 (-13 (-347) (-1117)))))) + (-12 (-5 *2 (-352 (-488))) (-4 *1 (-497 *3)) (-4 *3 (-13 (-349) (-1119))))) + ((*1 *1 *2) (-12 (-4 *1 (-497 *2)) (-4 *2 (-13 (-349) (-1119))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-497 *2)) (-4 *2 (-13 (-349) (-1119)))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-497 *2)) (-4 *2 (-13 (-349) (-1119)))))) +(((*1 *2 *1) (-12 (-4 *1 (-497 *2)) (-4 *2 (-13 (-349) (-1119)))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-495 *3)) (-4 *3 (-13 (-347) (-1117))) (-5 *2 (-85))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-486)) (-5 *2 (-85)) (-5 *1 (-494))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-494))))) -(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-494))))) + (-12 (-4 *1 (-497 *3)) (-4 *3 (-13 (-349) (-1119))) (-5 *2 (-85))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-488)) (-5 *2 (-85)) (-5 *1 (-496))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-496))))) +(((*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-496))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1157 *5)) - (-4 *5 (-13 (-27) (-364 *4))) (-4 *4 (-13 (-497) (-952 (-486)))) - (-4 *7 (-1157 (-350 *6))) (-5 *1 (-493 *4 *5 *6 *7 *2)) - (-4 *2 (-291 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-13 (-27) (-364 *5))) - (-4 *5 (-13 (-497) (-952 (-486)))) (-4 *8 (-1157 (-350 *7))) - (-5 *2 (-521 *3)) (-5 *1 (-493 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-13 (-27) (-364 *5))) - (-4 *5 (-13 (-497) (-952 (-486)))) (-4 *8 (-1157 (-350 *7))) - (-5 *2 (-521 *3)) (-5 *1 (-493 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1159 *5)) + (-4 *5 (-13 (-27) (-366 *4))) (-4 *4 (-13 (-499) (-954 (-488)))) + (-4 *7 (-1159 (-352 *6))) (-5 *1 (-495 *4 *5 *6 *7 *2)) + (-4 *2 (-293 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1159 *6)) (-4 *6 (-13 (-27) (-366 *5))) + (-4 *5 (-13 (-499) (-954 (-488)))) (-4 *8 (-1159 (-352 *7))) + (-5 *2 (-523 *3)) (-5 *1 (-495 *5 *6 *7 *8 *3)) (-4 *3 (-293 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1159 *6)) (-4 *6 (-13 (-27) (-366 *5))) + (-4 *5 (-13 (-499) (-954 (-488)))) (-4 *8 (-1159 (-352 *7))) + (-5 *2 (-523 *3)) (-5 *1 (-495 *5 *6 *7 *8 *3)) (-4 *3 (-293 *6 *7 *8))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-552 *3)) (-5 *5 (-1 (-1087 *3) (-1087 *3))) - (-4 *3 (-13 (-27) (-364 *6))) (-4 *6 (-497)) (-5 *2 (-521 *3)) - (-5 *1 (-492 *6 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-485)) (-5 *2 (-85))))) -(((*1 *1 *1 *1) (-4 *1 (-485)))) -(((*1 *1 *1 *1) (-4 *1 (-485)))) -(((*1 *1 *1) (-4 *1 (-485)))) -(((*1 *1 *1) (-4 *1 (-485)))) -(((*1 *1 *1) (-4 *1 (-485)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-485)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-485)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-485)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-485)))) -(((*1 *1 *1 *1) (-4 *1 (-485)))) + (-12 (-5 *4 (-554 *3)) (-5 *5 (-1 (-1089 *3) (-1089 *3))) + (-4 *3 (-13 (-27) (-366 *6))) (-4 *6 (-499)) (-5 *2 (-523 *3)) + (-5 *1 (-494 *6 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-487)) (-5 *2 (-85))))) +(((*1 *1 *1 *1) (-4 *1 (-487)))) +(((*1 *1 *1 *1) (-4 *1 (-487)))) +(((*1 *1 *1) (-4 *1 (-487)))) +(((*1 *1 *1) (-4 *1 (-487)))) +(((*1 *1 *1) (-4 *1 (-487)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-487)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-487)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-487)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-487)))) +(((*1 *1 *1 *1) (-4 *1 (-487)))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-486) #1="failed") *5)) (-4 *5 (-963)) - (-5 *2 (-486)) (-5 *1 (-483 *5 *3)) (-4 *3 (-1157 *5)))) + (|partial| -12 (-5 *4 (-1 (-3 (-488) #1="failed") *5)) (-4 *5 (-965)) + (-5 *2 (-488)) (-5 *1 (-485 *5 *3)) (-4 *3 (-1159 *5)))) ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-486) #1#) *4)) (-4 *4 (-963)) (-5 *2 (-486)) - (-5 *1 (-483 *4 *3)) (-4 *3 (-1157 *4)))) + (|partial| -12 (-5 *5 (-1 (-3 (-488) #1#) *4)) (-4 *4 (-965)) (-5 *2 (-488)) + (-5 *1 (-485 *4 *3)) (-4 *3 (-1159 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-486) #1#) *4)) (-4 *4 (-963)) (-5 *2 (-486)) - (-5 *1 (-483 *4 *3)) (-4 *3 (-1157 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-396 *3 *2)) (-4 *2 (-1157 *3)))) - ((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-401 *3 *2)) (-4 *2 (-1157 *3)))) + (|partial| -12 (-5 *5 (-1 (-3 (-488) #1#) *4)) (-4 *4 (-965)) (-5 *2 (-488)) + (-5 *1 (-485 *4 *3)) (-4 *3 (-1159 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-260)) (-5 *1 (-398 *3 *2)) (-4 *2 (-1159 *3)))) + ((*1 *2 *2 *3) (-12 (-4 *3 (-260)) (-5 *1 (-403 *3 *2)) (-4 *2 (-1159 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-696))) - (-5 *1 (-479 *3 *2 *4 *5)) (-4 *2 (-1157 *3))))) + (-12 (-4 *3 (-260)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-698))) + (-5 *1 (-481 *3 *2 *4 *5)) (-4 *2 (-1159 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-479 *4 *2 *5 *6)) - (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-696)))))) + (-12 (-5 *3 (-587 *2)) (-4 *2 (-1159 *4)) (-5 *1 (-481 *4 *2 *5 *6)) + (-4 *4 (-260)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-698)))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-479 *4 *2 *5 *6)) - (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-696)))))) + (-12 (-5 *3 (-587 *2)) (-4 *2 (-1159 *4)) (-5 *1 (-481 *4 *2 *5 *6)) + (-4 *4 (-260)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-698)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-1092))) (-4 *6 (-312)) - (-5 *2 (-585 (-249 (-859 *6)))) (-5 *1 (-478 *5 *6 *7)) (-4 *5 (-393)) - (-4 *7 (-13 (-312) (-757)))))) + (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 (-1094))) (-4 *6 (-314)) + (-5 *2 (-587 (-251 (-861 *6)))) (-5 *1 (-480 *5 *6 *7)) (-4 *5 (-395)) + (-4 *7 (-13 (-314) (-759)))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-585 (-859 *6))) (-5 *4 (-585 (-1092))) (-4 *6 (-393)) - (-5 *2 (-585 (-585 *7))) (-5 *1 (-478 *6 *7 *5)) (-4 *7 (-312)) - (-4 *5 (-13 (-312) (-757)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1087 *5)) (-4 *5 (-393)) (-5 *2 (-585 *6)) - (-5 *1 (-478 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-757))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-859 *5)) (-4 *5 (-393)) (-5 *2 (-585 *6)) - (-5 *1 (-478 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-757)))))) -(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-475)))) - ((*1 *2 *3) (-12 (-5 *3 (-475)) (-5 *1 (-476 *2)) (-4 *2 (-1131))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1092)) (-5 *2 (-475)) (-5 *1 (-476 *4)) (-4 *4 (-1131))))) -(((*1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-77)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-475))) (-5 *1 (-475))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1092))) (-5 *1 (-475))))) -(((*1 *1 *1) (-5 *1 (-475)))) -(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-475))))) -(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-475))))) -(((*1 *2 *3) (-12 (-5 *3 (-585 (-475))) (-5 *2 (-1092)) (-5 *1 (-475))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-585 (-475))) (-5 *1 (-475))))) + (-12 (-5 *3 (-587 (-861 *6))) (-5 *4 (-587 (-1094))) (-4 *6 (-395)) + (-5 *2 (-587 (-587 *7))) (-5 *1 (-480 *6 *7 *5)) (-4 *7 (-314)) + (-4 *5 (-13 (-314) (-759)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1089 *5)) (-4 *5 (-395)) (-5 *2 (-587 *6)) + (-5 *1 (-480 *5 *6 *4)) (-4 *6 (-314)) (-4 *4 (-13 (-314) (-759))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-861 *5)) (-4 *5 (-395)) (-5 *2 (-587 *6)) + (-5 *1 (-480 *5 *6 *4)) (-4 *6 (-314)) (-4 *4 (-13 (-314) (-759)))))) +(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-477)))) + ((*1 *2 *3) (-12 (-5 *3 (-477)) (-5 *1 (-478 *2)) (-4 *2 (-1133))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1094)) (-5 *2 (-477)) (-5 *1 (-478 *4)) (-4 *4 (-1133))))) +(((*1 *1 *2) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-77)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-477))) (-5 *1 (-477))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-1094))) (-5 *1 (-477))))) +(((*1 *1 *1) (-5 *1 (-477)))) +(((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-477))))) +(((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-477))))) +(((*1 *2 *3) (-12 (-5 *3 (-587 (-477))) (-5 *2 (-1094)) (-5 *1 (-477))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-587 (-477))) (-5 *1 (-477))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-632 *6)) (-5 *5 (-1 (-348 (-1087 *6)) (-1087 *6))) - (-4 *6 (-312)) + (-12 (-5 *3 (-634 *6)) (-5 *5 (-1 (-350 (-1089 *6)) (-1089 *6))) + (-4 *6 (-314)) (-5 *2 - (-585 - (-2 (|:| |outval| *7) (|:| |outmult| (-486)) - (|:| |outvect| (-585 (-632 *7)))))) - (-5 *1 (-472 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-757)))))) + (-587 + (-2 (|:| |outval| *7) (|:| |outmult| (-488)) + (|:| |outvect| (-587 (-634 *7)))))) + (-5 *1 (-474 *6 *7 *4)) (-4 *7 (-314)) (-4 *4 (-13 (-314) (-759)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1087 *5)) (-4 *5 (-312)) (-5 *2 (-585 *6)) - (-5 *1 (-472 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-757)))))) + (-12 (-5 *3 (-1089 *5)) (-4 *5 (-314)) (-5 *2 (-587 *6)) + (-5 *1 (-474 *5 *6 *4)) (-4 *6 (-314)) (-4 *4 (-13 (-314) (-759)))))) (((*1 *2 *3) - (-12 (-5 *3 (-632 *4)) (-4 *4 (-312)) (-5 *2 (-1087 *4)) - (-5 *1 (-472 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-757)))))) + (-12 (-5 *3 (-634 *4)) (-4 *4 (-314)) (-5 *2 (-1089 *4)) + (-5 *1 (-474 *4 *5 *6)) (-4 *5 (-314)) (-4 *6 (-13 (-314) (-759)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-470 *3)) (-4 *3 (-13 (-665) (-25)))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-472 *3)) (-4 *3 (-13 (-667) (-25)))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-470 *3)) (-4 *3 (-13 (-665) (-25)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-469)))) - ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-469))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-469))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-469))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-472 *3)) (-4 *3 (-13 (-667) (-25)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-471)))) + ((*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-471))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-471))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-471))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-832)) (-4 *4 (-320)) (-4 *4 (-312)) (-5 *2 (-1087 *1)) - (-4 *1 (-280 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1087 *3)))) + (-12 (-5 *3 (-834)) (-4 *4 (-322)) (-4 *4 (-314)) (-5 *2 (-1089 *1)) + (-4 *1 (-282 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-282 *3)) (-4 *3 (-314)) (-5 *2 (-1089 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1157 *3)))) + (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-148)) (-4 *3 (-314)) (-4 *2 (-1159 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1181 *4)) (-4 *4 (-299)) (-5 *2 (-1087 *4)) (-5 *1 (-468 *4))))) -(((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) + (-12 (-5 *3 (-1183 *4)) (-4 *4 (-301)) (-5 *2 (-1089 *4)) (-5 *1 (-470 *4))))) +(((*1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-322)) (-4 *2 (-314)))) ((*1 *2 *3) - (-12 (-5 *3 (-832)) (-5 *2 (-1181 *4)) (-5 *1 (-468 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-834)) (-5 *2 (-1183 *4)) (-5 *1 (-470 *4)) (-4 *4 (-301))))) (((*1 *2 *2) - (-12 (-5 *2 (-1181 *4)) (-4 *4 (-361 *3)) (-4 *3 (-258)) (-4 *3 (-497)) + (-12 (-5 *2 (-1183 *4)) (-4 *4 (-363 *3)) (-4 *3 (-260)) (-4 *3 (-499)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-832)) (-4 *4 (-312)) (-5 *2 (-1181 *1)) (-4 *1 (-280 *4)))) - ((*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1181 *1)) (-4 *1 (-280 *3)))) + (-12 (-5 *3 (-834)) (-4 *4 (-314)) (-5 *2 (-1183 *1)) (-4 *1 (-282 *4)))) + ((*1 *2) (-12 (-4 *3 (-314)) (-5 *2 (-1183 *1)) (-4 *1 (-282 *3)))) ((*1 *2) - (-12 (-4 *3 (-146)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *1)) - (-4 *1 (-353 *3 *4)))) + (-12 (-4 *3 (-148)) (-4 *4 (-1159 *3)) (-5 *2 (-1183 *1)) + (-4 *1 (-355 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) - (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-952 *4))))) + (-12 (-4 *3 (-260)) (-4 *4 (-908 *3)) (-4 *5 (-1159 *4)) (-5 *2 (-1183 *6)) + (-5 *1 (-358 *3 *4 *5 *6)) (-4 *6 (-13 (-355 *4 *5) (-954 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) - (-5 *1 (-358 *3 *4 *5 *6 *7)) (-4 *6 (-353 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1181 *1)) (-4 *1 (-361 *3)))) + (-12 (-4 *3 (-260)) (-4 *4 (-908 *3)) (-4 *5 (-1159 *4)) (-5 *2 (-1183 *6)) + (-5 *1 (-360 *3 *4 *5 *6 *7)) (-4 *6 (-355 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-148)) (-5 *2 (-1183 *1)) (-4 *1 (-363 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-832)) (-5 *2 (-1181 (-1181 *4))) (-5 *1 (-468 *4)) - (-4 *4 (-299))))) + (-12 (-5 *3 (-834)) (-5 *2 (-1183 (-1183 *4))) (-5 *1 (-470 *4)) + (-4 *4 (-301))))) (((*1 *2 *1) - (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-85)))) + (-12 (-4 *1 (-282 *3)) (-4 *3 (-314)) (-4 *3 (-322)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) + (-12 (-5 *3 (-1089 *4)) (-4 *4 (-301)) (-5 *2 (-85)) (-5 *1 (-307 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1181 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-468 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-320)) (-5 *2 (-832)))) + (-12 (-5 *3 (-1183 *4)) (-4 *4 (-301)) (-5 *2 (-85)) (-5 *1 (-470 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-322)) (-5 *2 (-834)))) ((*1 *2 *3) - (-12 (-5 *3 (-1181 *4)) (-4 *4 (-299)) (-5 *2 (-832)) (-5 *1 (-468 *4))))) + (-12 (-5 *3 (-1183 *4)) (-4 *4 (-301)) (-5 *2 (-834)) (-5 *1 (-470 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1181 *4)) (-5 *3 (-486)) (-4 *4 (-299)) (-5 *1 (-468 *4))))) + (-12 (-5 *2 (-1183 *4)) (-5 *3 (-488)) (-4 *4 (-301)) (-5 *1 (-470 *4))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1035)) (-4 *4 (-299)) (-5 *1 (-468 *4))))) + (-12 (-5 *2 (-1183 *4)) (-5 *3 (-1037)) (-4 *4 (-301)) (-5 *1 (-470 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1181 *4)) (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-468 *4))))) + (-12 (-5 *2 (-1183 *4)) (-5 *3 (-698)) (-4 *4 (-301)) (-5 *1 (-470 *4))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1181 *5)) (-5 *3 (-696)) (-5 *4 (-1035)) (-4 *5 (-299)) - (-5 *1 (-468 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-696)) (-5 *2 (-1087 *4)) (-5 *1 (-468 *4)) (-4 *4 (-299))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1181 *4)) (-4 *4 (-299)) (-5 *2 (-1087 *4)) (-5 *1 (-468 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) - (-4 *4 (-299)) (-5 *2 (-1187)) (-5 *1 (-468 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-101)))))) -(((*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-490)))))) -(((*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-1140)))))) -(((*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-487)))))) -(((*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-1137)))))) -(((*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-488)))))) -(((*1 *2 *1) (-12 (-4 *1 (-467)) (-5 *2 (-634 (-1138)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-467)) (-5 *3 (-102)) (-5 *2 (-696))))) -(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-465))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-1132))) (-5 *1 (-464))))) -(((*1 *2 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-460))))) -(((*1 *2 *1) (-12 (-5 *2 (-1051)) (-5 *1 (-460))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-278 *3)))) + (-12 (-5 *2 (-1183 *5)) (-5 *3 (-698)) (-5 *4 (-1037)) (-4 *5 (-301)) + (-5 *1 (-470 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-698)) (-5 *2 (-1089 *4)) (-5 *1 (-470 *4)) (-4 *4 (-301))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1183 *4)) (-4 *4 (-301)) (-5 *2 (-1089 *4)) (-5 *1 (-470 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1183 (-587 (-2 (|:| -3408 *4) (|:| -2405 (-1037)))))) + (-4 *4 (-301)) (-5 *2 (-1189)) (-5 *1 (-470 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-469)) (-5 *2 (-636 (-101)))))) +(((*1 *2 *1) (-12 (-4 *1 (-469)) (-5 *2 (-636 (-492)))))) +(((*1 *2 *1) (-12 (-4 *1 (-469)) (-5 *2 (-636 (-1142)))))) +(((*1 *2 *1) (-12 (-4 *1 (-469)) (-5 *2 (-636 (-489)))))) +(((*1 *2 *1) (-12 (-4 *1 (-469)) (-5 *2 (-636 (-1139)))))) +(((*1 *2 *1) (-12 (-4 *1 (-469)) (-5 *2 (-636 (-490)))))) +(((*1 *2 *1) (-12 (-4 *1 (-469)) (-5 *2 (-636 (-1140)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-469)) (-5 *3 (-102)) (-5 *2 (-698))))) +(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-467))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-1134))) (-5 *1 (-466))))) +(((*1 *2 *2) + (-12 (-4 *3 (-314)) (-4 *4 (-326 *3)) (-4 *5 (-326 *3)) + (-5 *1 (-464 *3 *4 *5 *2)) (-4 *2 (-631 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-462))))) +(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-462))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1133)) (-5 *1 (-280 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-459 *3 *4)) (-14 *4 (-486))))) -(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-278 *3)) (-4 *3 (-1131)))) + (-12 (-5 *2 (-587 *3)) (-4 *3 (-1133)) (-5 *1 (-461 *3 *4)) (-14 *4 (-488))))) +(((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-280 *3)) (-4 *3 (-1133)))) ((*1 *2 *1) - (-12 (-5 *2 (-696)) (-5 *1 (-459 *3 *4)) (-4 *3 (-1131)) (-14 *4 (-486))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-278 *3)) (-4 *3 (-1131)))) + (-12 (-5 *2 (-698)) (-5 *1 (-461 *3 *4)) (-4 *3 (-1133)) (-14 *4 (-488))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-280 *3)) (-4 *3 (-1133)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-486)) (-5 *1 (-459 *3 *4)) (-4 *3 (-1131)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1131)))) + (-12 (-5 *2 (-488)) (-5 *1 (-461 *3 *4)) (-4 *3 (-1133)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-280 *3)) (-4 *3 (-1133)))) ((*1 *2 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-459 *3 *4)) (-4 *3 (-1131)) (-14 *4 (-486))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-455 *3 *2)) (-4 *3 (-72)) (-4 *2 (-761))))) + (-12 (-5 *2 (-85)) (-5 *1 (-461 *3 *4)) (-4 *3 (-1133)) (-14 *4 (-488))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-457 *3 *2)) (-4 *3 (-72)) (-4 *2 (-763))))) (((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72)) - (-5 *1 (-452 *4 *5)) (-4 *5 (-761))))) -(((*1 *2 *1) (-12 (-4 *1 (-451 *3 *2)) (-4 *3 (-72)) (-4 *2 (-761))))) -(((*1 *1) (-5 *1 (-448)))) + (-5 *1 (-454 *4 *5)) (-4 *5 (-763))))) +(((*1 *2 *1) (-12 (-4 *1 (-453 *3 *2)) (-4 *3 (-72)) (-4 *2 (-763))))) +(((*1 *1) (-5 *1 (-450)))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-486)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-696)) - (-4 *5 (-146)))) + (-12 (-5 *2 (-488)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-698)) + (-4 *5 (-148)))) ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-486)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-696)) - (-4 *5 (-146)))) + (-12 (-5 *2 (-488)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-698)) + (-4 *5 (-148)))) ((*1 *2 *2 *3) (-12 (-5 *2 - (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486))))) - (-5 *3 (-585 (-775 *4))) (-14 *4 (-585 (-1092))) (-14 *5 (-696)) - (-5 *1 (-446 *4 *5))))) + (-447 (-352 (-488)) (-199 *5 (-698)) (-777 *4) (-208 *4 (-352 (-488))))) + (-5 *3 (-587 (-777 *4))) (-14 *4 (-587 (-1094))) (-14 *5 (-698)) + (-5 *1 (-448 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-585 (-1092))) (-14 *5 (-696)) + (-12 (-14 *4 (-587 (-1094))) (-14 *5 (-698)) (-5 *2 - (-585 - (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486)))))) - (-5 *1 (-446 *4 *5)) + (-587 + (-447 (-352 (-488)) (-199 *5 (-698)) (-777 *4) (-208 *4 (-352 (-488)))))) + (-5 *1 (-448 *4 *5)) (-5 *3 - (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486)))))))) + (-447 (-352 (-488)) (-199 *5 (-698)) (-777 *4) (-208 *4 (-352 (-488)))))))) (((*1 *2 *2) (-12 (-5 *2 - (-445 (-350 (-486)) (-197 *4 (-696)) (-775 *3) (-206 *3 (-350 (-486))))) - (-14 *3 (-585 (-1092))) (-14 *4 (-696)) (-5 *1 (-446 *3 *4))))) + (-447 (-352 (-488)) (-199 *4 (-698)) (-777 *3) (-208 *3 (-352 (-488))))) + (-14 *3 (-587 (-1094))) (-14 *4 (-698)) (-5 *1 (-448 *3 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486))))) - (-14 *4 (-585 (-1092))) (-14 *5 (-696)) (-5 *2 (-85)) (-5 *1 (-446 *4 *5))))) + (-447 (-352 (-488)) (-199 *5 (-698)) (-777 *4) (-208 *4 (-352 (-488))))) + (-14 *4 (-587 (-1094))) (-14 *5 (-698)) (-5 *2 (-85)) (-5 *1 (-448 *4 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-445 (-350 (-486)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-350 (-486))))) - (-14 *4 (-585 (-1092))) (-14 *5 (-696)) (-5 *2 (-85)) (-5 *1 (-446 *4 *5))))) + (-447 (-352 (-488)) (-199 *5 (-698)) (-777 *4) (-208 *4 (-352 (-488))))) + (-14 *4 (-587 (-1094))) (-14 *5 (-698)) (-5 *2 (-85)) (-5 *1 (-448 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-312)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) - (-5 *1 (-445 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6))))) + (-12 (-4 *4 (-314)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) + (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-865 *4 *5 *6))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) - (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5))))) + (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)) + (-5 *1 (-447 *3 *4 *5 *6)) (-4 *6 (-865 *3 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-312)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) - (-5 *1 (-445 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6))))) + (-12 (-4 *4 (-314)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-85)) + (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-865 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) - (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) + (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)) + (-5 *1 (-447 *3 *4 *5 *6)) (-4 *6 (-865 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) - (-5 *2 (-85)) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6))))) + (-12 (-5 *3 (-587 *6)) (-4 *6 (-760)) (-4 *4 (-314)) (-4 *5 (-721)) + (-5 *2 (-85)) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *7 (-865 *4 *5 *6))))) (((*1 *1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *2)) - (-4 *2 (-863 *3 *4 *5)))) + (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-447 *3 *4 *5 *2)) + (-4 *2 (-865 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) - (-4 *5 (-863 *2 *3 *4))))) + (-12 (-4 *2 (-314)) (-4 *3 (-721)) (-4 *4 (-760)) (-5 *1 (-447 *2 *3 *4 *5)) + (-4 *5 (-865 *2 *3 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) + (-12 (-5 *3 (-587 *6)) (-4 *6 (-760)) (-4 *4 (-314)) (-4 *5 (-721)) (-5 *2 - (-2 (|:| |mval| (-632 *4)) (|:| |invmval| (-632 *4)) - (|:| |genIdeal| (-445 *4 *5 *6 *7)))) - (-5 *1 (-445 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6))))) + (-2 (|:| |mval| (-634 *4)) (|:| |invmval| (-634 *4)) + (|:| |genIdeal| (-447 *4 *5 *6 *7)))) + (-5 *1 (-447 *4 *5 *6 *7)) (-4 *7 (-865 *4 *5 *6))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |mval| (-632 *3)) (|:| |invmval| (-632 *3)) - (|:| |genIdeal| (-445 *3 *4 *5 *6)))) - (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *6 (-863 *3 *4 *5))))) + (-2 (|:| |mval| (-634 *3)) (|:| |invmval| (-634 *3)) + (|:| |genIdeal| (-447 *3 *4 *5 *6)))) + (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *6 (-865 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-445 *2 *3 *4 *5)) - (-4 *5 (-863 *2 *3 *4))))) + (-12 (-4 *2 (-314)) (-4 *3 (-721)) (-4 *4 (-760)) (-5 *1 (-447 *2 *3 *4 *5)) + (-4 *5 (-865 *2 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) - (-5 *2 (-356 *4 (-350 *4) *5 *6)))) + (-12 (-4 *1 (-288 *3 *4 *5 *6)) (-4 *3 (-314)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-4 *6 (-293 *3 *4 *5)) + (-5 *2 (-358 *4 (-352 *4) *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-1181 *6)) (-4 *6 (-13 (-353 *4 *5) (-952 *4))) - (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-4 *3 (-258)) - (-5 *1 (-356 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1183 *6)) (-4 *6 (-13 (-355 *4 *5) (-954 *4))) + (-4 *4 (-908 *3)) (-4 *5 (-1159 *4)) (-4 *3 (-260)) + (-5 *1 (-358 *3 *4 *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-719)) - (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6))))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-865 *3 *4 *5)) (-4 *3 (-314)) (-4 *4 (-721)) + (-4 *5 (-760)) (-5 *1 (-447 *3 *4 *5 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-719)) - (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *6))))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-865 *3 *4 *5)) (-4 *3 (-314)) (-4 *4 (-721)) + (-4 *5 (-760)) (-5 *1 (-447 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) - (-5 *1 (-445 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5))))) + (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *2 (-85)) + (-5 *1 (-447 *3 *4 *5 *6)) (-4 *6 (-865 *3 *4 *5))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) - (-5 *1 (-445 *4 *5 *6 *2)) (-4 *2 (-863 *4 *5 *6)))) + (-12 (-5 *3 (-587 *6)) (-4 *6 (-760)) (-4 *4 (-314)) (-4 *5 (-721)) + (-5 *1 (-447 *4 *5 *6 *2)) (-4 *2 (-865 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-445 *3 *4 *5 *2)) - (-4 *2 (-863 *3 *4 *5))))) + (-12 (-4 *3 (-314)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-447 *3 *4 *5 *2)) + (-4 *2 (-865 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *5 *6)) (-4 *6 (-555 (-1092))) - (-4 *4 (-312)) (-4 *5 (-719)) (-4 *6 (-758)) - (-5 *2 (-1082 (-585 (-859 *4)) (-585 (-249 (-859 *4))))) - (-5 *1 (-445 *4 *5 *6 *7))))) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-865 *4 *5 *6)) (-4 *6 (-557 (-1094))) + (-4 *4 (-314)) (-4 *5 (-721)) (-4 *6 (-760)) + (-5 *2 (-1084 (-587 (-861 *4)) (-587 (-251 (-861 *4))))) + (-5 *1 (-447 *4 *5 *6 *7))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-832)) (-5 *2 (-1187)) (-5 *1 (-167 *4)) + (-12 (-5 *3 (-834)) (-5 *2 (-1189)) (-5 *1 (-169 *4)) (-4 *4 - (-13 (-758) - (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 (*2 $)) - (-15 -1965 (*2 $))))))) + (-13 (-760) + (-10 -8 (-15 -3806 ((-1077) $ (-1094))) (-15 -3623 (*2 $)) + (-15 -1968 (*2 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-1187)) (-5 *1 (-167 *3)) + (-12 (-5 *2 (-1189)) (-5 *1 (-169 *3)) (-4 *3 - (-13 (-758) - (-10 -8 (-15 -3803 ((-1075) $ (-1092))) (-15 -3620 (*2 $)) - (-15 -1965 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-443))))) + (-13 (-760) + (-10 -8 (-15 -3806 ((-1077) $ (-1094))) (-15 -3623 (*2 $)) + (-15 -1968 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-445))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *6 (-1157 *5)) - (-5 *2 (-1087 (-1087 *7))) (-5 *1 (-442 *5 *6 *4 *7)) (-4 *4 (-1157 *6))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-965)) (-4 *7 (-965)) (-4 *6 (-1159 *5)) + (-5 *2 (-1089 (-1089 *7))) (-5 *1 (-444 *5 *6 *4 *7)) (-4 *4 (-1159 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-632 (-1087 *8))) - (-4 *5 (-963)) (-4 *8 (-963)) (-4 *6 (-1157 *5)) (-5 *2 (-632 *6)) - (-5 *1 (-442 *5 *6 *7 *8)) (-4 *7 (-1157 *6))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-634 (-1089 *8))) + (-4 *5 (-965)) (-4 *8 (-965)) (-4 *6 (-1159 *5)) (-5 *2 (-634 *6)) + (-5 *1 (-444 *5 *6 *7 *8)) (-4 *7 (-1159 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1087 *7)) - (-4 *5 (-963)) (-4 *7 (-963)) (-4 *2 (-1157 *5)) (-5 *1 (-442 *5 *2 *6 *7)) - (-4 *6 (-1157 *2))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1089 *7)) + (-4 *5 (-965)) (-4 *7 (-965)) (-4 *2 (-1159 *5)) (-5 *1 (-444 *5 *2 *6 *7)) + (-4 *6 (-1159 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1087 *7)) (-4 *5 (-963)) (-4 *7 (-963)) - (-4 *2 (-1157 *5)) (-5 *1 (-442 *5 *2 *6 *7)) (-4 *6 (-1157 *2)))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1089 *7)) (-4 *5 (-965)) (-4 *7 (-965)) + (-4 *2 (-1159 *5)) (-5 *1 (-444 *5 *2 *6 *7)) (-4 *6 (-1159 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *4 (-1157 *5)) - (-5 *2 (-1087 *7)) (-5 *1 (-442 *5 *4 *6 *7)) (-4 *6 (-1157 *4))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-965)) (-4 *7 (-965)) (-4 *4 (-1159 *5)) + (-5 *2 (-1089 *7)) (-5 *1 (-444 *5 *4 *6 *7)) (-4 *6 (-1159 *4))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) - (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *4 (-1157 *3)) - (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) + (-2 (|:| -2017 (-634 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-634 *3)))) + (-4 *3 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) (-4 *4 (-1159 *3)) + (-5 *1 (-442 *3 *4 *5)) (-4 *5 (-355 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) - (-4 *4 (-1157 *3)) (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) + (-12 (-5 *2 (-634 *3)) (-4 *3 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) + (-4 *4 (-1159 *3)) (-5 *1 (-442 *3 *4 *5)) (-4 *5 (-355 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) - (-4 *4 (-1157 *3)) (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) + (-12 (-5 *2 (-634 *3)) (-4 *3 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) + (-4 *4 (-1159 *3)) (-5 *1 (-442 *3 *4 *5)) (-4 *5 (-355 *3 *4)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) - (-4 *4 (-1157 *3)) (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) + (-12 (-5 *2 (-634 *3)) (-4 *3 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) + (-4 *4 (-1159 *3)) (-5 *1 (-442 *3 *4 *5)) (-4 *5 (-355 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-696)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) - (-4 *4 (-1157 *3)) (-5 *1 (-440 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) + (-12 (-5 *2 (-698)) (-4 *3 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) + (-4 *4 (-1159 *3)) (-5 *1 (-442 *3 *4 *5)) (-4 *5 (-355 *3 *4))))) (((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-632 *2)) (-5 *4 (-486)) - (-4 *2 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *5 (-1157 *2)) - (-5 *1 (-440 *2 *5 *6)) (-4 *6 (-353 *2 *5))))) + (-12 (-5 *3 (-634 *2)) (-5 *4 (-488)) + (-4 *2 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) (-4 *5 (-1159 *2)) + (-5 *1 (-442 *2 *5 *6)) (-4 *6 (-355 *2 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-632 *2)) (-5 *4 (-696)) - (-4 *2 (-13 (-258) (-10 -8 (-15 -3974 ((-348 $) $))))) (-4 *5 (-1157 *2)) - (-5 *1 (-440 *2 *5 *6)) (-4 *6 (-353 *2 *5))))) + (-12 (-5 *3 (-634 *2)) (-5 *4 (-698)) + (-4 *2 (-13 (-260) (-10 -8 (-15 -3977 ((-350 $) $))))) (-4 *5 (-1159 *2)) + (-5 *1 (-442 *2 *5 *6)) (-4 *6 (-355 *2 *5))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-696)) (-4 *5 (-299)) (-4 *6 (-1157 *5)) + (-12 (-5 *4 (-698)) (-4 *5 (-301)) (-4 *6 (-1159 *5)) (-5 *2 - (-585 - (-2 (|:| -2014 (-632 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-632 *6))))) - (-5 *1 (-439 *5 *6 *7)) + (-587 + (-2 (|:| -2017 (-634 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-634 *6))))) + (-5 *1 (-441 *5 *6 *7)) (-5 *3 - (-2 (|:| -2014 (-632 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-632 *6)))) - (-4 *7 (-1157 *6))))) + (-2 (|:| -2017 (-634 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-634 *6)))) + (-4 *7 (-1159 *6))))) (((*1 *2 *1) (-12 (-5 *2 - (-585 + (-587 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-486))))) - (-5 *1 (-348 *3)) (-4 *3 (-497)))) + (|:| |xpnt| (-488))))) + (-5 *1 (-350 *3)) (-4 *3 (-499)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-696)) (-4 *3 (-299)) (-4 *5 (-1157 *3)) - (-5 *2 (-585 (-1087 *3))) (-5 *1 (-439 *3 *5 *6)) (-4 *6 (-1157 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-436))))) -(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-432))))) -(((*1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-428))))) -(((*1 *2 *3) - (-12 (-5 *3 (-585 (-486))) (-5 *2 (-486)) (-5 *1 (-427 *4)) - (-4 *4 (-1157 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1157 (-486))) (-5 *1 (-427 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1157 (-486))) (-5 *1 (-427 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-427 *2)) (-4 *2 (-1157 (-486)))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-425 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-585 (-787))) (-5 *1 (-424))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-448))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-787))) (-5 *1 (-424))))) + (-12 (-5 *4 (-698)) (-4 *3 (-301)) (-4 *5 (-1159 *3)) + (-5 *2 (-587 (-1089 *3))) (-5 *1 (-441 *3 *5 *6)) (-4 *6 (-1159 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-438))))) +(((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-434))))) +(((*1 *1 *2) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-430))))) +(((*1 *2 *3) + (-12 (-5 *3 (-587 (-488))) (-5 *2 (-488)) (-5 *1 (-429 *4)) + (-4 *4 (-1159 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1159 (-488))) (-5 *1 (-429 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1159 (-488))) (-5 *1 (-429 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-5 *1 (-429 *2)) (-4 *2 (-1159 (-488)))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-760)) (-5 *1 (-427 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-587 (-789))) (-5 *1 (-426))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-450))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-789))) (-5 *1 (-426))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-585 (-486))) (-5 *1 (-206 *3 *4)) (-14 *3 (-585 (-1092))) - (-4 *4 (-963)))) + (-12 (-5 *2 (-587 (-488))) (-5 *1 (-208 *3 *4)) (-14 *3 (-587 (-1094))) + (-4 *4 (-965)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-585 (-486))) (-14 *3 (-585 (-1092))) (-5 *1 (-395 *3 *4 *5)) - (-4 *4 (-963)) (-4 *5 (-196 (-3961 *3) (-696))))) + (-12 (-5 *2 (-587 (-488))) (-14 *3 (-587 (-1094))) (-5 *1 (-397 *3 *4 *5)) + (-4 *4 (-965)) (-4 *5 (-198 (-3964 *3) (-698))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-585 (-486))) (-5 *1 (-422 *3 *4)) (-14 *3 (-585 (-1092))) - (-4 *4 (-963))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-486)) (-5 *2 (-85)) (-5 *1 (-421))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-421))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-585 (-775 *5))) (-14 *5 (-585 (-1092))) (-4 *6 (-393)) - (-5 *2 (-2 (|:| |dpolys| (-585 (-206 *5 *6))) (|:| |coords| (-585 (-486))))) - (-5 *1 (-412 *5 *6 *7)) (-5 *3 (-585 (-206 *5 *6))) (-4 *7 (-393))))) + (-12 (-5 *2 (-587 (-488))) (-5 *1 (-424 *3 *4)) (-14 *3 (-587 (-1094))) + (-4 *4 (-965))))) +(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-488)) (-5 *2 (-85)) (-5 *1 (-423))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-423))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-587 (-777 *5))) (-14 *5 (-587 (-1094))) (-4 *6 (-395)) + (-5 *2 (-2 (|:| |dpolys| (-587 (-208 *5 *6))) (|:| |coords| (-587 (-488))))) + (-5 *1 (-414 *5 *6 *7)) (-5 *3 (-587 (-208 *5 *6))) (-4 *7 (-395))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-585 (-422 *4 *5))) (-5 *3 (-585 (-775 *4))) - (-14 *4 (-585 (-1092))) (-4 *5 (-393)) (-5 *1 (-412 *4 *5 *6)) - (-4 *6 (-393))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-585 (-775 *5))) (-14 *5 (-585 (-1092))) (-4 *6 (-393)) - (-5 *2 (-585 (-585 (-206 *5 *6)))) (-5 *1 (-412 *5 *6 *7)) - (-5 *3 (-585 (-206 *5 *6))) (-4 *7 (-393))))) -(((*1 *1) (-5 *1 (-409)))) + (|partial| -12 (-5 *2 (-587 (-424 *4 *5))) (-5 *3 (-587 (-777 *4))) + (-14 *4 (-587 (-1094))) (-4 *5 (-395)) (-5 *1 (-414 *4 *5 *6)) + (-4 *6 (-395))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-587 (-777 *5))) (-14 *5 (-587 (-1094))) (-4 *6 (-395)) + (-5 *2 (-587 (-587 (-208 *5 *6)))) (-5 *1 (-414 *5 *6 *7)) + (-5 *3 (-587 (-208 *5 *6))) (-4 *7 (-395))))) +(((*1 *1) (-5 *1 (-411)))) (((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *3 (-585 (-785))) - (-5 *4 (-585 (-832))) (-5 *5 (-585 (-221))) (-5 *1 (-409)))) + (-12 (-5 *2 (-587 (-587 (-858 (-181))))) (-5 *3 (-587 (-787))) + (-5 *4 (-587 (-834))) (-5 *5 (-587 (-223))) (-5 *1 (-411)))) ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *3 (-585 (-785))) - (-5 *4 (-585 (-832))) (-5 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-409)))) - ((*1 *1 *1) (-5 *1 (-409)))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-409))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-221)))) + (-12 (-5 *2 (-587 (-587 (-858 (-181))))) (-5 *3 (-587 (-787))) + (-5 *4 (-587 (-834))) (-5 *1 (-411)))) + ((*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-858 (-181))))) (-5 *1 (-411)))) + ((*1 *1 *1) (-5 *1 (-411)))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-858 (-181))))) (-5 *1 (-411))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 (-1005 (-332)))) (-5 *1 (-223)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-409)))) - ((*1 *2 *1) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-409))))) + (-12 (-5 *2 (-587 (-1005 (-332)))) (-5 *3 (-587 (-223))) (-5 *1 (-224)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1005 (-332)))) (-5 *1 (-411)))) + ((*1 *2 *1) (-12 (-5 *2 (-587 (-1005 (-332)))) (-5 *1 (-411))))) (((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-856 (-179))) (-5 *4 (-785)) (-5 *5 (-832)) (-5 *2 (-1187)) - (-5 *1 (-409)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-856 (-179))) (-5 *2 (-1187)) (-5 *1 (-409)))) + (-12 (-5 *3 (-858 (-181))) (-5 *4 (-787)) (-5 *5 (-834)) (-5 *2 (-1189)) + (-5 *1 (-411)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-858 (-181))) (-5 *2 (-1189)) (-5 *1 (-411)))) ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-585 (-856 (-179)))) (-5 *4 (-785)) (-5 *5 (-832)) - (-5 *2 (-1187)) (-5 *1 (-409))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-856 (-179))) (-5 *2 (-1187)) (-5 *1 (-409))))) + (-12 (-5 *3 (-587 (-858 (-181)))) (-5 *4 (-787)) (-5 *5 (-834)) + (-5 *2 (-1189)) (-5 *1 (-411))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-858 (-181))) (-5 *2 (-1189)) (-5 *1 (-411))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *3 (-585 (-785))) - (-5 *1 (-409))))) -(((*1 *2 *3) - (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *2 (-585 (-179))) - (-5 *1 (-409))))) -(((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) - ((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408)))) - ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408)))) - ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408)))) - ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-408))))) -(((*1 *2 *3) - (-12 (-5 *3 (-832)) (-5 *2 (-1181 (-1181 (-486)))) (-5 *1 (-407))))) + (-12 (-5 *2 (-587 (-587 (-858 (-181))))) (-5 *3 (-587 (-787))) + (-5 *1 (-411))))) +(((*1 *2 *3) + (-12 (-5 *3 (-587 (-587 (-858 (-181))))) (-5 *2 (-587 (-181))) + (-5 *1 (-411))))) +(((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-223)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-587 (-223))) (-5 *1 (-224)))) + ((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-410)))) + ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-410))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-410)))) + ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-410))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-410)))) + ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-410))))) +(((*1 *2 *3) + (-12 (-5 *3 (-834)) (-5 *2 (-1183 (-1183 (-488)))) (-5 *1 (-409))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1181 (-1181 (-486)))) (-5 *3 (-832)) (-5 *1 (-407))))) + (-12 (-5 *2 (-1183 (-1183 (-488)))) (-5 *3 (-834)) (-5 *1 (-409))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-758)) (-4 *5 (-719)) (-4 *6 (-497)) - (-4 *7 (-863 *6 *5 *3)) (-5 *1 (-403 *5 *3 *6 *7 *2)) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-760)) (-4 *5 (-721)) (-4 *6 (-499)) + (-4 *7 (-865 *6 *5 *3)) (-5 *1 (-405 *5 *3 *6 *7 *2)) (-4 *2 - (-13 (-952 (-350 (-486))) (-312) - (-10 -8 (-15 -3950 ($ *7)) (-15 -3001 (*7 $)) (-15 -3000 (*7 $)))))))) + (-13 (-954 (-352 (-488))) (-314) + (-10 -8 (-15 -3953 ($ *7)) (-15 -3004 (*7 $)) (-15 -3003 (*7 $)))))))) (((*1 *2 *1) - (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) + (-12 (-14 *3 (-587 (-1094))) (-4 *4 (-148)) (-14 *6 - (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *2)) - (-2 (|:| -2402 *5) (|:| -2403 *2)))) - (-4 *2 (-196 (-3961 *3) (-696))) (-5 *1 (-402 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-758)) (-4 *7 (-863 *4 *2 (-775 *3)))))) + (-1 (-85) (-2 (|:| -2405 *5) (|:| -2406 *2)) + (-2 (|:| -2405 *5) (|:| -2406 *2)))) + (-4 *2 (-198 (-3964 *3) (-698))) (-5 *1 (-404 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-760)) (-4 *7 (-865 *4 *2 (-777 *3)))))) (((*1 *2 *1) - (-12 (-14 *3 (-585 (-1092))) (-4 *4 (-146)) (-4 *5 (-196 (-3961 *3) (-696))) + (-12 (-14 *3 (-587 (-1094))) (-4 *4 (-148)) (-4 *5 (-198 (-3964 *3) (-698))) (-14 *6 - (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *5)) - (-2 (|:| -2402 *2) (|:| -2403 *5)))) - (-4 *2 (-758)) (-5 *1 (-402 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-863 *4 *5 (-775 *3)))))) + (-1 (-85) (-2 (|:| -2405 *2) (|:| -2406 *5)) + (-2 (|:| -2405 *2) (|:| -2406 *5)))) + (-4 *2 (-760)) (-5 *1 (-404 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-865 *4 *5 (-777 *3)))))) (((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-585 (-1092))) (-4 *2 (-146)) (-4 *4 (-196 (-3961 *5) (-696))) + (-12 (-14 *5 (-587 (-1094))) (-4 *2 (-148)) (-4 *4 (-198 (-3964 *5) (-698))) (-14 *6 - (-1 (-85) (-2 (|:| -2402 *3) (|:| -2403 *4)) - (-2 (|:| -2402 *3) (|:| -2403 *4)))) - (-5 *1 (-402 *5 *2 *3 *4 *6 *7)) (-4 *3 (-758)) - (-4 *7 (-863 *2 *4 (-775 *5)))))) + (-1 (-85) (-2 (|:| -2405 *3) (|:| -2406 *4)) + (-2 (|:| -2405 *3) (|:| -2406 *4)))) + (-5 *1 (-404 *5 *2 *3 *4 *6 *7)) (-4 *3 (-760)) + (-4 *7 (-865 *2 *4 (-777 *5)))))) (((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-585 (-1092))) (-4 *2 (-146)) (-4 *3 (-196 (-3961 *4) (-696))) + (-12 (-14 *4 (-587 (-1094))) (-4 *2 (-148)) (-4 *3 (-198 (-3964 *4) (-698))) (-14 *6 - (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *3)) - (-2 (|:| -2402 *5) (|:| -2403 *3)))) - (-5 *1 (-402 *4 *2 *5 *3 *6 *7)) (-4 *5 (-758)) - (-4 *7 (-863 *2 *3 (-775 *4)))))) + (-1 (-85) (-2 (|:| -2405 *5) (|:| -2406 *3)) + (-2 (|:| -2405 *5) (|:| -2406 *3)))) + (-5 *1 (-404 *4 *2 *5 *3 *6 *7)) (-4 *5 (-760)) + (-4 *7 (-865 *2 *3 (-777 *4)))))) (((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-585 *3)) (-5 *5 (-832)) (-4 *3 (-1157 *4)) (-4 *4 (-258)) - (-5 *1 (-401 *4 *3))))) + (-12 (-5 *2 (-587 *3)) (-5 *5 (-834)) (-4 *3 (-1159 *4)) (-4 *4 (-260)) + (-5 *1 (-403 *4 *3))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-832)) (-4 *5 (-258)) (-4 *3 (-1157 *5)) - (-5 *2 (-2 (|:| |plist| (-585 *3)) (|:| |modulo| *5))) (-5 *1 (-401 *5 *3)) - (-5 *4 (-585 *3))))) + (-12 (-5 *6 (-834)) (-4 *5 (-260)) (-4 *3 (-1159 *5)) + (-5 *2 (-2 (|:| |plist| (-587 *3)) (|:| |modulo| *5))) (-5 *1 (-403 *5 *3)) + (-5 *4 (-587 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-585 *5)) (-4 *5 (-1157 *3)) (-4 *3 (-258)) (-5 *2 (-85)) - (-5 *1 (-396 *3 *5))))) + (-12 (-5 *4 (-587 *5)) (-4 *5 (-1159 *3)) (-4 *3 (-260)) (-5 *2 (-85)) + (-5 *1 (-398 *3 *5))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1181 (-585 *3))) (-4 *4 (-258)) (-5 *2 (-585 *3)) - (-5 *1 (-396 *4 *3)) (-4 *3 (-1157 *4))))) + (|partial| -12 (-5 *5 (-1183 (-587 *3))) (-4 *4 (-260)) (-5 *2 (-587 *3)) + (-5 *1 (-398 *4 *3)) (-4 *3 (-1159 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-696)) (-4 *4 (-258)) (-4 *6 (-1157 *4)) - (-5 *2 (-1181 (-585 *6))) (-5 *1 (-396 *4 *6)) (-5 *5 (-585 *6))))) + (|partial| -12 (-5 *3 (-698)) (-4 *4 (-260)) (-4 *6 (-1159 *4)) + (-5 *2 (-1183 (-587 *6))) (-5 *1 (-398 *4 *6)) (-5 *5 (-587 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-585 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-258)) (-5 *2 (-696)) - (-5 *1 (-396 *5 *3))))) + (-12 (-5 *4 (-587 *3)) (-4 *3 (-1159 *5)) (-4 *5 (-260)) (-5 *2 (-698)) + (-5 *1 (-398 *5 *3))))) (((*1 *2) - (|partial| -12 (-4 *3 (-497)) (-4 *3 (-146)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2014 (-585 *1)))) (-4 *1 (-316 *3)))) + (|partial| -12 (-4 *3 (-499)) (-4 *3 (-148)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2017 (-587 *1)))) (-4 *1 (-318 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-394 *3 *4 *5 *6)) - (|:| -2014 (-585 (-394 *3 *4 *5 *6))))) - (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) - (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3)))))) + (-2 (|:| |particular| (-396 *3 *4 *5 *6)) + (|:| -2017 (-587 (-396 *3 *4 *5 *6))))) + (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-148)) (-14 *4 (-834)) + (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3)))))) (((*1 *2) - (|partial| -12 (-4 *3 (-497)) (-4 *3 (-146)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2014 (-585 *1)))) (-4 *1 (-316 *3)))) + (|partial| -12 (-4 *3 (-499)) (-4 *3 (-148)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2017 (-587 *1)))) (-4 *1 (-318 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-394 *3 *4 *5 *6)) - (|:| -2014 (-585 (-394 *3 *4 *5 *6))))) - (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) - (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3)))))) + (-2 (|:| |particular| (-396 *3 *4 *5 *6)) + (|:| -2017 (-587 (-396 *3 *4 *5 *6))))) + (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-148)) (-14 *4 (-834)) + (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1181 (-1092))) (-5 *3 (-1181 (-394 *4 *5 *6 *7))) - (-5 *1 (-394 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-832)) - (-14 *6 (-585 (-1092))) (-14 *7 (-1181 (-632 *4))))) + (-12 (-5 *2 (-1183 (-1094))) (-5 *3 (-1183 (-396 *4 *5 *6 *7))) + (-5 *1 (-396 *4 *5 *6 *7)) (-4 *4 (-148)) (-14 *5 (-834)) + (-14 *6 (-587 (-1094))) (-14 *7 (-1183 (-634 *4))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1092)) (-5 *3 (-1181 (-394 *4 *5 *6 *7))) - (-5 *1 (-394 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-832)) (-14 *6 (-585 *2)) - (-14 *7 (-1181 (-632 *4))))) + (-12 (-5 *2 (-1094)) (-5 *3 (-1183 (-396 *4 *5 *6 *7))) + (-5 *1 (-396 *4 *5 *6 *7)) (-4 *4 (-148)) (-14 *5 (-834)) (-14 *6 (-587 *2)) + (-14 *7 (-1183 (-634 *4))))) ((*1 *1 *2) - (-12 (-5 *2 (-1181 (-394 *3 *4 *5 *6))) (-5 *1 (-394 *3 *4 *5 *6)) - (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) - (-14 *6 (-1181 (-632 *3))))) + (-12 (-5 *2 (-1183 (-396 *3 *4 *5 *6))) (-5 *1 (-396 *3 *4 *5 *6)) + (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) + (-14 *6 (-1183 (-634 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1181 (-1092))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-146)) - (-14 *4 (-832)) (-14 *5 (-585 (-1092))) (-14 *6 (-1181 (-632 *3))))) + (-12 (-5 *2 (-1183 (-1094))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-148)) + (-14 *4 (-834)) (-14 *5 (-587 (-1094))) (-14 *6 (-1183 (-634 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1092)) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-146)) - (-14 *4 (-832)) (-14 *5 (-585 *2)) (-14 *6 (-1181 (-632 *3))))) + (-12 (-5 *2 (-1094)) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-148)) + (-14 *4 (-834)) (-14 *5 (-587 *2)) (-14 *6 (-1183 (-634 *3))))) ((*1 *1) - (-12 (-5 *1 (-394 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-832)) - (-14 *4 (-585 (-1092))) (-14 *5 (-1181 (-632 *2)))))) + (-12 (-5 *1 (-396 *2 *3 *4 *5)) (-4 *2 (-148)) (-14 *3 (-834)) + (-14 *4 (-587 (-1094))) (-14 *5 (-1183 (-634 *2)))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1087 (-859 *4))) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) + (-12 (-4 *4 (-148)) (-5 *2 (-1089 (-861 *4))) (-5 *1 (-362 *3 *4)) + (-4 *3 (-363 *4)))) ((*1 *2) - (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) - (-5 *2 (-1087 (-859 *3))))) + (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-4 *3 (-314)) + (-5 *2 (-1089 (-861 *3))))) ((*1 *2) - (-12 (-5 *2 (-1087 (-350 (-859 *3)))) (-5 *1 (-394 *3 *4 *5 *6)) - (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) - (-14 *6 (-1181 (-632 *3)))))) + (-12 (-5 *2 (-1089 (-352 (-861 *3)))) (-5 *1 (-396 *3 *4 *5 *6)) + (-4 *3 (-499)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) + (-14 *6 (-1183 (-634 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1087 (-350 (-859 *3)))) (-5 *1 (-394 *3 *4 *5 *6)) - (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) - (-14 *6 (-1181 (-632 *3)))))) + (-12 (-5 *2 (-1089 (-352 (-861 *3)))) (-5 *1 (-396 *3 *4 *5 *6)) + (-4 *3 (-499)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) + (-14 *6 (-1183 (-634 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) - (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) - (-14 *6 (-1181 (-632 *3)))))) + (-12 (-5 *2 (-352 (-861 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) + (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) + (-14 *6 (-1183 (-634 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) - (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) - (-14 *6 (-1181 (-632 *3)))))) + (-12 (-5 *2 (-352 (-861 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) + (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) + (-14 *6 (-1183 (-634 *3)))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1087 (-859 *4))) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) + (-12 (-4 *4 (-148)) (-5 *2 (-1089 (-861 *4))) (-5 *1 (-362 *3 *4)) + (-4 *3 (-363 *4)))) ((*1 *2) - (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) - (-5 *2 (-1087 (-859 *3))))) + (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-4 *3 (-314)) + (-5 *2 (-1089 (-861 *3))))) ((*1 *2) - (-12 (-5 *2 (-1087 (-350 (-859 *3)))) (-5 *1 (-394 *3 *4 *5 *6)) - (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) - (-14 *6 (-1181 (-632 *3)))))) + (-12 (-5 *2 (-1089 (-352 (-861 *3)))) (-5 *1 (-396 *3 *4 *5 *6)) + (-4 *3 (-499)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) + (-14 *6 (-1183 (-634 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1087 (-350 (-859 *3)))) (-5 *1 (-394 *3 *4 *5 *6)) - (-4 *3 (-497)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) - (-14 *6 (-1181 (-632 *3)))))) + (-12 (-5 *2 (-1089 (-352 (-861 *3)))) (-5 *1 (-396 *3 *4 *5 *6)) + (-4 *3 (-499)) (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) + (-14 *6 (-1183 (-634 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) - (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) - (-14 *6 (-1181 (-632 *3)))))) + (-12 (-5 *2 (-352 (-861 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) + (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) + (-14 *6 (-1183 (-634 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) - (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) - (-14 *6 (-1181 (-632 *3)))))) + (-12 (-5 *2 (-352 (-861 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) + (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) + (-14 *6 (-1183 (-634 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) - (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) - (-14 *6 (-1181 (-632 *3)))))) + (-12 (-5 *2 (-352 (-861 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) + (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) + (-14 *6 (-1183 (-634 *3)))))) (((*1 *2) - (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) - (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) - (-14 *6 (-1181 (-632 *3)))))) + (-12 (-5 *2 (-352 (-861 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) + (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) + (-14 *6 (-1183 (-634 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) - (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) - (-14 *6 (-1181 (-632 *3)))))) + (-12 (-5 *2 (-352 (-861 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) + (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) + (-14 *6 (-1183 (-634 *3)))))) (((*1 *2) - (-12 (-5 *2 (-350 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) - (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) - (-14 *6 (-1181 (-632 *3)))))) + (-12 (-5 *2 (-352 (-861 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) + (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) + (-14 *6 (-1183 (-634 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) - (-5 *2 (-585 (-859 *4))))) + (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *4)) (-4 *4 (-148)) + (-5 *2 (-587 (-861 *4))))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-585 (-859 *4))) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-585 (-859 *3))))) + (-12 (-4 *4 (-148)) (-5 *2 (-587 (-861 *4))) (-5 *1 (-362 *3 *4)) + (-4 *3 (-363 *4)))) + ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-5 *2 (-587 (-861 *3))))) ((*1 *2) - (-12 (-5 *2 (-585 (-859 *3))) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *3 (-497)) - (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1092))) - (-14 *6 (-1181 (-632 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1181 (-394 *4 *5 *6 *7))) (-5 *2 (-585 (-859 *4))) - (-5 *1 (-394 *4 *5 *6 *7)) (-4 *4 (-497)) (-4 *4 (-146)) (-14 *5 (-832)) - (-14 *6 (-585 (-1092))) (-14 *7 (-1181 (-632 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-393)))) - ((*1 *1 *1 *1) (-4 *1 (-393)))) -(((*1 *2 *3) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-696)) - (-5 *1 (-391 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6))))) + (-12 (-5 *2 (-587 (-861 *3))) (-5 *1 (-396 *3 *4 *5 *6)) (-4 *3 (-499)) + (-4 *3 (-148)) (-14 *4 (-834)) (-14 *5 (-587 (-1094))) + (-14 *6 (-1183 (-634 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1183 (-396 *4 *5 *6 *7))) (-5 *2 (-587 (-861 *4))) + (-5 *1 (-396 *4 *5 *6 *7)) (-4 *4 (-499)) (-4 *4 (-148)) (-14 *5 (-834)) + (-14 *6 (-587 (-1094))) (-14 *7 (-1183 (-634 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-395)))) + ((*1 *1 *1 *1) (-4 *1 (-395)))) +(((*1 *2 *3) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-698)) + (-5 *1 (-393 *4 *5 *6 *3)) (-4 *3 (-865 *4 *5 *6))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-696)) (|:| -2006 *4))) (-5 *5 (-696)) - (-4 *4 (-863 *6 *7 *8)) (-4 *6 (-393)) (-4 *7 (-719)) (-4 *8 (-758)) + (-12 (-5 *3 (-2 (|:| |totdeg| (-698)) (|:| -2009 *4))) (-5 *5 (-698)) + (-4 *4 (-865 *6 *7 *8)) (-4 *6 (-395)) (-4 *7 (-721)) (-4 *8 (-760)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) - (-5 *1 (-391 *6 *7 *8 *4))))) + (-5 *1 (-393 *6 *7 *8 *4))))) (((*1 *2 *3 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-698)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-719)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *6 (-758)) - (-5 *2 (-85)) (-5 *1 (-391 *4 *5 *6 *7))))) + (-4 *5 (-721)) (-4 *7 (-865 *4 *5 *6)) (-4 *4 (-395)) (-4 *6 (-760)) + (-5 *2 (-85)) (-5 *1 (-393 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-486)) (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) - (-5 *2 (-1187)) (-5 *1 (-391 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6))))) + (-12 (-5 *3 (-488)) (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) + (-5 *2 (-1189)) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *7 (-865 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *2 (-1187)) (-5 *1 (-391 *4 *5 *6 *7))))) + (-12 (-5 *3 (-587 *7)) (-4 *7 (-865 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *2 (-1189)) (-5 *1 (-393 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-486)) + (-12 (-5 *2 (-488)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-696)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-698)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-719)) (-4 *4 (-863 *5 *6 *7)) (-4 *5 (-393)) (-4 *7 (-758)) - (-5 *1 (-391 *5 *6 *7 *4))))) + (-4 *6 (-721)) (-4 *4 (-865 *5 *6 *7)) (-4 *5 (-395)) (-4 *7 (-760)) + (-5 *1 (-393 *5 *6 *7 *4))))) (((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-486)) + (-12 (-5 *2 (-488)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-696)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-698)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-719)) (-4 *4 (-863 *5 *6 *7)) (-4 *5 (-393)) (-4 *7 (-758)) - (-5 *1 (-391 *5 *6 *7 *4))))) + (-4 *6 (-721)) (-4 *4 (-865 *5 *6 *7)) (-4 *5 (-395)) (-4 *7 (-760)) + (-5 *1 (-393 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1187)) - (-5 *1 (-391 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6))))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-1189)) + (-5 *1 (-393 *4 *5 *6 *3)) (-4 *3 (-865 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-393)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-486)) - (-5 *1 (-391 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6))))) + (-12 (-4 *4 (-395)) (-4 *5 (-721)) (-4 *6 (-760)) (-5 *2 (-488)) + (-5 *1 (-393 *4 *5 *6 *3)) (-4 *3 (-865 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-393)) (-4 *4 (-719)) - (-4 *5 (-758)) (-5 *1 (-391 *3 *4 *5 *6))))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-865 *3 *4 *5)) (-4 *3 (-395)) (-4 *4 (-721)) + (-4 *5 (-760)) (-5 *1 (-393 *3 *4 *5 *6))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-585 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-696)) (|:| |poli| *6) + (-587 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-698)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-719)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-393)) (-4 *5 (-758)) - (-5 *1 (-391 *3 *4 *5 *6))))) + (-4 *4 (-721)) (-4 *6 (-865 *3 *4 *5)) (-4 *3 (-395)) (-4 *5 (-760)) + (-5 *1 (-393 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *2) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-698)) (|:| |poli| *2) (|:| |polj| *2))) - (-4 *5 (-719)) (-4 *2 (-863 *4 *5 *6)) (-5 *1 (-391 *4 *5 *6 *2)) - (-4 *4 (-393)) (-4 *6 (-758))))) + (-4 *5 (-721)) (-4 *2 (-865 *4 *5 *6)) (-5 *1 (-393 *4 *5 *6 *2)) + (-4 *4 (-395)) (-4 *6 (-760))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-585 (-2 (|:| |totdeg| (-696)) (|:| -2006 *3)))) (-5 *4 (-696)) - (-4 *3 (-863 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) (-4 *7 (-758)) - (-5 *1 (-391 *5 *6 *7 *3))))) + (-12 (-5 *2 (-587 (-2 (|:| |totdeg| (-698)) (|:| -2009 *3)))) (-5 *4 (-698)) + (-4 *3 (-865 *5 *6 *7)) (-4 *5 (-395)) (-4 *6 (-721)) (-4 *7 (-760)) + (-5 *1 (-393 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-393)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-391 *3 *4 *5 *2)) - (-4 *2 (-863 *3 *4 *5))))) + (-12 (-4 *3 (-395)) (-4 *4 (-721)) (-4 *5 (-760)) (-5 *1 (-393 *3 *4 *5 *2)) + (-4 *2 (-865 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-585 *3)) (-4 *3 (-863 *5 *6 *7)) (-4 *5 (-393)) (-4 *6 (-719)) - (-4 *7 (-758)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-391 *5 *6 *7 *3))))) + (-12 (-5 *4 (-587 *3)) (-4 *3 (-865 *5 *6 *7)) (-4 *5 (-395)) (-4 *6 (-721)) + (-4 *7 (-760)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-393 *5 *6 *7 *3))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-585 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-696)) (|:| |poli| *6) + (-587 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-698)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *3 (-719)) (-4 *6 (-863 *4 *3 *5)) (-4 *4 (-393)) (-4 *5 (-758)) - (-5 *1 (-391 *4 *3 *5 *6))))) + (-4 *3 (-721)) (-4 *6 (-865 *4 *3 *5)) (-4 *4 (-395)) (-4 *5 (-760)) + (-5 *1 (-393 *4 *3 *5 *6))))) (((*1 *2 *2) (-12 (-5 *2 - (-585 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-696)) (|:| |poli| *6) + (-587 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-698)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-719)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-393)) (-4 *5 (-758)) - (-5 *1 (-391 *3 *4 *5 *6))))) + (-4 *4 (-721)) (-4 *6 (-865 *3 *4 *5)) (-4 *3 (-395)) (-4 *5 (-760)) + (-5 *1 (-393 *3 *4 *5 *6))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-585 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *3) + (-587 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-698)) (|:| |poli| *3) (|:| |polj| *3)))) - (-4 *5 (-719)) (-4 *3 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *6 (-758)) - (-5 *1 (-391 *4 *5 *6 *3))))) + (-4 *5 (-721)) (-4 *3 (-865 *4 *5 *6)) (-4 *4 (-395)) (-4 *6 (-760)) + (-5 *1 (-393 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-393)) (-4 *3 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) - (-5 *1 (-391 *4 *3 *5 *6)) (-4 *6 (-863 *4 *3 *5))))) + (-12 (-4 *4 (-395)) (-4 *3 (-721)) (-4 *5 (-760)) (-5 *2 (-85)) + (-5 *1 (-393 *4 *3 *5 *6)) (-4 *6 (-865 *4 *3 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-393)) (-4 *3 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) - (-5 *1 (-391 *4 *3 *5 *6)) (-4 *6 (-863 *4 *3 *5))))) + (-12 (-4 *4 (-395)) (-4 *3 (-721)) (-4 *5 (-760)) (-5 *2 (-85)) + (-5 *1 (-393 *4 *3 *5 *6)) (-4 *6 (-865 *4 *3 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-698)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-719)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *6 (-758)) - (-5 *2 (-85)) (-5 *1 (-391 *4 *5 *6 *7))))) + (-4 *5 (-721)) (-4 *7 (-865 *4 *5 *6)) (-4 *4 (-395)) (-4 *6 (-760)) + (-5 *2 (-85)) (-5 *1 (-393 *4 *5 *6 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-585 *7)) (-5 *3 (-486)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-393)) - (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-391 *4 *5 *6 *7))))) + (-12 (-5 *2 (-587 *7)) (-5 *3 (-488)) (-4 *7 (-865 *4 *5 *6)) (-4 *4 (-395)) + (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-393 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *1 (-391 *4 *5 *6 *2))))) + (-12 (-5 *3 (-587 *2)) (-4 *2 (-865 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *1 (-393 *4 *5 *6 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-393)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *1 (-391 *4 *5 *6 *2))))) + (-12 (-5 *3 (-587 *2)) (-4 *2 (-865 *4 *5 *6)) (-4 *4 (-395)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *1 (-393 *4 *5 *6 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-390 *4 *5 *6 *7)) - (-5 *3 (-585 *7)))) + (-12 (-4 *4 (-13 (-260) (-120))) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *7 (-865 *4 *5 *6)) (-5 *2 (-587 (-587 *7))) (-5 *1 (-392 *4 *5 *6 *7)) + (-5 *3 (-587 *7)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) - (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-390 *5 *6 *7 *8)) - (-5 *3 (-585 *8)))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-260) (-120))) (-4 *6 (-721)) (-4 *7 (-760)) + (-4 *8 (-865 *5 *6 *7)) (-5 *2 (-587 (-587 *8))) (-5 *1 (-392 *5 *6 *7 *8)) + (-5 *3 (-587 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-390 *4 *5 *6 *7)) - (-5 *3 (-585 *7)))) + (-12 (-4 *4 (-13 (-260) (-120))) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *7 (-865 *4 *5 *6)) (-5 *2 (-587 (-587 *7))) (-5 *1 (-392 *4 *5 *6 *7)) + (-5 *3 (-587 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) - (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-390 *5 *6 *7 *8)) - (-5 *3 (-585 *8))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-260) (-120))) (-4 *6 (-721)) (-4 *7 (-760)) + (-4 *8 (-865 *5 *6 *7)) (-5 *2 (-587 (-587 *8))) (-5 *1 (-392 *5 *6 *7 *8)) + (-5 *3 (-587 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-719)) (-4 *6 (-758)) - (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-390 *4 *5 *6 *7)) - (-5 *3 (-585 *7)))) + (-12 (-4 *4 (-13 (-260) (-120))) (-4 *5 (-721)) (-4 *6 (-760)) + (-4 *7 (-865 *4 *5 *6)) (-5 *2 (-587 (-587 *7))) (-5 *1 (-392 *4 *5 *6 *7)) + (-5 *3 (-587 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) - (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-390 *5 *6 *7 *8)) - (-5 *3 (-585 *8))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-260) (-120))) (-4 *6 (-721)) (-4 *7 (-760)) + (-4 *8 (-865 *5 *6 *7)) (-5 *2 (-587 (-587 *8))) (-5 *1 (-392 *5 *6 *7 *8)) + (-5 *3 (-587 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-719)) - (-4 *5 (-758)) (-5 *1 (-389 *3 *4 *5 *6)))) + (-12 (-5 *2 (-587 *6)) (-4 *6 (-865 *3 *4 *5)) (-4 *3 (-260)) (-4 *4 (-721)) + (-4 *5 (-760)) (-5 *1 (-391 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-585 *7)) (-5 *3 (-1075)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-258)) - (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-389 *4 *5 *6 *7)))) + (-12 (-5 *2 (-587 *7)) (-5 *3 (-1077)) (-4 *7 (-865 *4 *5 *6)) (-4 *4 (-260)) + (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-391 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-585 *7)) (-5 *3 (-1075)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-258)) - (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-389 *4 *5 *6 *7))))) + (-12 (-5 *2 (-587 *7)) (-5 *3 (-1077)) (-4 *7 (-865 *4 *5 *6)) (-4 *4 (-260)) + (-4 *5 (-721)) (-4 *6 (-760)) (-5 *1 (-391 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-719)) - (-4 *6 (-758)) (-5 *1 (-389 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-387)) (-5 *3 (-486))))) + (-12 (-5 *3 (-587 *2)) (-4 *2 (-865 *4 *5 *6)) (-4 *4 (-260)) (-4 *5 (-721)) + (-4 *6 (-760)) (-5 *1 (-391 *4 *5 *6 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-389)) (-5 *3 (-488))))) (((*1 *2 *2) - (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-347)) (-4 *3 (-963)))) - ((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-347)) (-4 *3 (-963))))) + (-12 (-5 *2 (-698)) (-5 *1 (-388 *3)) (-4 *3 (-349)) (-4 *3 (-965)))) + ((*1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-388 *3)) (-4 *3 (-349)) (-4 *3 (-965))))) (((*1 *2 *3) - (-12 (-5 *2 (-486)) (-5 *1 (-386 *3)) (-4 *3 (-347)) (-4 *3 (-963))))) + (-12 (-5 *2 (-488)) (-5 *1 (-388 *3)) (-4 *3 (-349)) (-4 *3 (-965))))) (((*1 *2 *3) - (-12 (-5 *2 (-486)) (-5 *1 (-386 *3)) (-4 *3 (-347)) (-4 *3 (-963))))) -(((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-386 *3)) (-4 *3 (-963))))) -(((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-963))))) -(((*1 *2 *2) (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-963)))) - ((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-386 *3)) (-4 *3 (-963))))) + (-12 (-5 *2 (-488)) (-5 *1 (-388 *3)) (-4 *3 (-349)) (-4 *3 (-965))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-388 *3)) (-4 *3 (-965))))) +(((*1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-388 *3)) (-4 *3 (-965))))) +(((*1 *2 *2) (-12 (-5 *2 (-698)) (-5 *1 (-388 *3)) (-4 *3 (-965)))) + ((*1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-388 *3)) (-4 *3 (-965))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-696)) (-5 *4 (-486)) (-5 *1 (-386 *2)) (-4 *2 (-963))))) + (-12 (-5 *3 (-698)) (-5 *4 (-488)) (-5 *1 (-388 *2)) (-4 *2 (-965))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-832)) (-5 *4 (-348 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-963)) - (-5 *2 (-585 *6)) (-5 *1 (-385 *5 *6))))) + (-12 (-5 *3 (-834)) (-5 *4 (-350 *6)) (-4 *6 (-1159 *5)) (-4 *5 (-965)) + (-5 *2 (-587 *6)) (-5 *1 (-387 *5 *6))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-832)) (-5 *1 (-383 *2)) (-4 *2 (-1157 (-486))))) + (|partial| -12 (-5 *3 (-834)) (-5 *1 (-385 *2)) (-4 *2 (-1159 (-488))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-832)) (-5 *4 (-696)) (-5 *1 (-383 *2)) - (-4 *2 (-1157 (-486))))) + (|partial| -12 (-5 *3 (-834)) (-5 *4 (-698)) (-5 *1 (-385 *2)) + (-4 *2 (-1159 (-488))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-832)) (-5 *4 (-585 (-696))) (-5 *1 (-383 *2)) - (-4 *2 (-1157 (-486))))) + (|partial| -12 (-5 *3 (-834)) (-5 *4 (-587 (-698))) (-5 *1 (-385 *2)) + (-4 *2 (-1159 (-488))))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-832)) (-5 *4 (-585 (-696))) (-5 *5 (-696)) - (-5 *1 (-383 *2)) (-4 *2 (-1157 (-486))))) + (|partial| -12 (-5 *3 (-834)) (-5 *4 (-587 (-698))) (-5 *5 (-698)) + (-5 *1 (-385 *2)) (-4 *2 (-1159 (-488))))) ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-832)) (-5 *4 (-585 (-696))) (-5 *5 (-696)) - (-5 *6 (-85)) (-5 *1 (-383 *2)) (-4 *2 (-1157 (-486))))) + (|partial| -12 (-5 *3 (-834)) (-5 *4 (-587 (-698))) (-5 *5 (-698)) + (-5 *6 (-85)) (-5 *1 (-385 *2)) (-4 *2 (-1159 (-488))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-832)) (-5 *4 (-348 *2)) (-4 *2 (-1157 *5)) (-5 *1 (-385 *5 *2)) - (-4 *5 (-963))))) + (-12 (-5 *3 (-834)) (-5 *4 (-350 *2)) (-4 *2 (-1159 *5)) (-5 *1 (-387 *5 *2)) + (-4 *5 (-965))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 (-2 (|:| -3735 *4) (|:| -3952 (-486))))) - (-4 *4 (-1157 (-486))) (-5 *2 (-677 (-696))) (-5 *1 (-383 *4)))) + (-12 (-5 *3 (-587 (-2 (|:| -3738 *4) (|:| -3955 (-488))))) + (-4 *4 (-1159 (-488))) (-5 *2 (-679 (-698))) (-5 *1 (-385 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-348 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-963)) - (-5 *2 (-677 (-696))) (-5 *1 (-385 *4 *5))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-963)) (-5 *1 (-385 *3 *2)) (-4 *2 (-1157 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-963)) (-5 *1 (-385 *3 *2)) (-4 *2 (-1157 *3))))) + (-12 (-5 *3 (-350 *5)) (-4 *5 (-1159 *4)) (-4 *4 (-965)) + (-5 *2 (-679 (-698))) (-5 *1 (-387 *4 *5))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-965)) (-5 *1 (-387 *3 *2)) (-4 *2 (-1159 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-965)) (-5 *1 (-387 *3 *2)) (-4 *2 (-1159 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) - (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-965)) (-4 *2 (-13 (-349) (-954 *4) (-314) (-1119) (-241))) + (-5 *1 (-386 *4 *3 *2)) (-4 *3 (-1159 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) - (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-965)) (-4 *2 (-13 (-349) (-954 *4) (-314) (-1119) (-241))) + (-5 *1 (-386 *4 *3 *2)) (-4 *3 (-1159 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-696)) (-4 *5 (-963)) (-5 *2 (-486)) (-5 *1 (-384 *5 *3 *6)) - (-4 *3 (-1157 *5)) (-4 *6 (-13 (-347) (-952 *5) (-312) (-1117) (-239))))) + (-12 (-5 *4 (-698)) (-4 *5 (-965)) (-5 *2 (-488)) (-5 *1 (-386 *5 *3 *6)) + (-4 *3 (-1159 *5)) (-4 *6 (-13 (-349) (-954 *5) (-314) (-1119) (-241))))) ((*1 *2 *3) - (-12 (-4 *4 (-963)) (-5 *2 (-486)) (-5 *1 (-384 *4 *3 *5)) (-4 *3 (-1157 *4)) - (-4 *5 (-13 (-347) (-952 *4) (-312) (-1117) (-239)))))) + (-12 (-4 *4 (-965)) (-5 *2 (-488)) (-5 *1 (-386 *4 *3 *5)) (-4 *3 (-1159 *4)) + (-4 *5 (-13 (-349) (-954 *4) (-314) (-1119) (-241)))))) (((*1 *2 *3) - (-12 (-4 *4 (-963)) (-5 *2 (-486)) (-5 *1 (-384 *4 *3 *5)) (-4 *3 (-1157 *4)) - (-4 *5 (-13 (-347) (-952 *4) (-312) (-1117) (-239)))))) + (-12 (-4 *4 (-965)) (-5 *2 (-488)) (-5 *1 (-386 *4 *3 *5)) (-4 *3 (-1159 *4)) + (-4 *5 (-13 (-349) (-954 *4) (-314) (-1119) (-241)))))) (((*1 *2 *3) - (-12 (-4 *4 (-963)) (-4 *2 (-13 (-347) (-952 *4) (-312) (-1117) (-239))) - (-5 *1 (-384 *4 *3 *2)) (-4 *3 (-1157 *4)))) + (-12 (-4 *4 (-965)) (-4 *2 (-13 (-349) (-954 *4) (-314) (-1119) (-241))) + (-5 *1 (-386 *4 *3 *2)) (-4 *3 (-1159 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-832)) (-4 *5 (-963)) - (-4 *2 (-13 (-347) (-952 *5) (-312) (-1117) (-239))) (-5 *1 (-384 *5 *3 *2)) - (-4 *3 (-1157 *5))))) + (-12 (-5 *4 (-834)) (-4 *5 (-965)) + (-4 *2 (-13 (-349) (-954 *5) (-314) (-1119) (-241))) (-5 *1 (-386 *5 *3 *2)) + (-4 *3 (-1159 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-963)) (-5 *2 (-486)) (-5 *1 (-384 *4 *3 *5)) (-4 *3 (-1157 *4)) - (-4 *5 (-13 (-347) (-952 *4) (-312) (-1117) (-239)))))) + (-12 (-4 *4 (-965)) (-5 *2 (-488)) (-5 *1 (-386 *4 *3 *5)) (-4 *3 (-1159 *4)) + (-4 *5 (-13 (-349) (-954 *4) (-314) (-1119) (-241)))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-85)) (-5 *5 (-1011 (-696))) (-5 *6 (-696)) - (-5 *2 - (-2 (|:| |contp| (-486)) - (|:| -1784 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-486))))))) - (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2581 (-486)) (|:| -1784 (-585 *3)))) (-5 *1 (-383 *3)) - (-4 *3 (-1157 (-486)))))) -(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-348 *3)) (-4 *3 (-497)))) - ((*1 *2 *3) - (-12 (-5 *3 (-585 (-2 (|:| -3735 *4) (|:| -3952 (-486))))) - (-4 *4 (-1157 (-486))) (-5 *2 (-696)) (-5 *1 (-383 *4))))) -(((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) - ((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) -(((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486))))) - ((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-383 *3)) (-4 *3 (-1157 (-486)))))) + (-12 (-5 *4 (-85)) (-5 *5 (-1013 (-698))) (-5 *6 (-698)) + (-5 *2 + (-2 (|:| |contp| (-488)) + (|:| -1787 (-587 (-2 (|:| |irr| *3) (|:| -2400 (-488))))))) + (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488)))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2584 (-488)) (|:| -1787 (-587 *3)))) (-5 *1 (-385 *3)) + (-4 *3 (-1159 (-488)))))) +(((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-350 *3)) (-4 *3 (-499)))) + ((*1 *2 *3) + (-12 (-5 *3 (-587 (-2 (|:| -3738 *4) (|:| -3955 (-488))))) + (-4 *4 (-1159 (-488))) (-5 *2 (-698)) (-5 *1 (-385 *4))))) +(((*1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) + ((*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488)))))) +(((*1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488))))) + ((*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-385 *3)) (-4 *3 (-1159 (-488)))))) (((*1 *1 *2 *3) (-12 (-5 *3 - (-585 + (-587 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-486))))) - (-4 *2 (-497)) (-5 *1 (-348 *2)))) + (|:| |xpnt| (-488))))) + (-4 *2 (-499)) (-5 *1 (-350 *2)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |contp| (-486)) - (|:| -1784 (-585 (-2 (|:| |irr| *4) (|:| -2397 (-486))))))) - (-4 *4 (-1157 (-486))) (-5 *2 (-348 *4)) (-5 *1 (-383 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3914 "void"))) (-5 *1 (-379))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-859 (-486)))) (-5 *1 (-379))))) + (-2 (|:| |contp| (-488)) + (|:| -1787 (-587 (-2 (|:| |irr| *4) (|:| -2400 (-488))))))) + (-4 *4 (-1159 (-488))) (-5 *2 (-350 *4)) (-5 *1 (-385 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-379)) (|:| -3917 "void"))) (-5 *1 (-381))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-861 (-488)))) (-5 *1 (-381))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-381))))) +(((*1 *1) (-5 *1 (-381)))) +(((*1 *1) (-5 *1 (-381)))) +(((*1 *1) (-5 *1 (-381)))) +(((*1 *1) (-5 *1 (-381)))) +(((*1 *1) (-5 *1 (-381)))) +(((*1 *1) (-5 *1 (-381)))) +(((*1 *1) (-5 *1 (-381)))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-954 (-48))) (-4 *4 (-13 (-499) (-954 (-488)))) + (-4 *5 (-366 *4)) (-5 *2 (-350 (-1089 (-48)))) (-5 *1 (-380 *4 *5 *3)) + (-4 *3 (-1159 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-499) (-954 (-488)))) (-4 *5 (-366 *4)) + (-5 *2 + (-3 (|:| |overq| (-1089 (-352 (-488)))) (|:| |overan| (-1089 (-48))) + (|:| -2645 (-85)))) + (-5 *1 (-380 *4 *5 *3)) (-4 *3 (-1159 *5))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-499) (-954 (-488)))) (-4 *5 (-366 *4)) + (-5 *2 (-350 (-1089 (-352 (-488))))) (-5 *1 (-380 *4 *5 *3)) + (-4 *3 (-1159 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-499) (-954 (-488)))) (-4 *5 (-366 *4)) (-5 *2 (-350 *3)) + (-5 *1 (-380 *4 *5 *3)) (-4 *3 (-1159 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379))))) -(((*1 *1) (-5 *1 (-379)))) -(((*1 *1) (-5 *1 (-379)))) -(((*1 *1) (-5 *1 (-379)))) -(((*1 *1) (-5 *1 (-379)))) -(((*1 *1) (-5 *1 (-379)))) -(((*1 *1) (-5 *1 (-379)))) -(((*1 *1) (-5 *1 (-379)))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-952 (-48))) (-4 *4 (-13 (-497) (-952 (-486)))) - (-4 *5 (-364 *4)) (-5 *2 (-348 (-1087 (-48)))) (-5 *1 (-378 *4 *5 *3)) - (-4 *3 (-1157 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-4 *5 (-364 *4)) - (-5 *2 - (-3 (|:| |overq| (-1087 (-350 (-486)))) (|:| |overan| (-1087 (-48))) - (|:| -2642 (-85)))) - (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1157 *5))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-497) (-952 (-486)))) (-4 *5 (-364 *4)) - (-5 *2 (-348 (-1087 (-350 (-486))))) (-5 *1 (-378 *4 *5 *3)) - (-4 *3 (-1157 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-4 *5 (-364 *4)) (-5 *2 (-348 *3)) - (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1157 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) (((*1 *2) - (-12 (-4 *3 (-13 (-497) (-952 (-486)))) (-5 *2 (-1187)) (-5 *1 (-376 *3 *4)) - (-4 *4 (-364 *3))))) + (-12 (-4 *3 (-13 (-499) (-954 (-488)))) (-5 *2 (-1189)) (-5 *1 (-378 *3 *4)) + (-4 *4 (-366 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-497) (-952 (-486)))) (-5 *2 (-350 (-486))) - (-5 *1 (-376 *4 *3)) (-4 *3 (-364 *4)))) + (-12 (-4 *4 (-13 (-499) (-954 (-488)))) (-5 *2 (-352 (-488))) + (-5 *1 (-378 *4 *3)) (-4 *3 (-366 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-552 *3)) (-4 *3 (-364 *5)) (-4 *5 (-13 (-497) (-952 (-486)))) - (-5 *2 (-1087 (-350 (-486)))) (-5 *1 (-376 *5 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))) + (-12 (-5 *4 (-554 *3)) (-4 *3 (-366 *5)) (-4 *5 (-13 (-499) (-954 (-488)))) + (-5 *2 (-1089 (-352 (-488)))) (-5 *1 (-378 *5 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-376 *3 *2)) (-4 *2 (-366 *3))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-486))))) - (-4 *2 (-13 (-758) (-21)))))) + (-12 (-5 *1 (-374 *3 *2)) (-4 *3 (-13 (-148) (-38 (-352 (-488))))) + (-4 *2 (-13 (-760) (-21)))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-486))))) - (-4 *2 (-13 (-758) (-21)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) - (-5 *2 (-521 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1117) (-29 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1015)) (-5 *2 (-696))))) -(((*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1015)) (-4 *2 (-320))))) -(((*1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-320)) (-4 *2 (-1015))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) - (-5 *1 (-366 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1117) (-364 *3))) - (-14 *4 (-1092)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-393) (-952 (-486)) (-582 (-486)))) - (-4 *2 (-13 (-27) (-1117) (-364 *3) (-10 -8 (-15 -3950 ($ *4))))) - (-4 *4 (-757)) + (-12 (-5 *1 (-374 *3 *2)) (-4 *3 (-13 (-148) (-38 (-352 (-488))))) + (-4 *2 (-13 (-760) (-21)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) + (-5 *2 (-523 *3)) (-5 *1 (-373 *5 *3)) (-4 *3 (-13 (-1119) (-29 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-1017)) (-5 *2 (-698))))) +(((*1 *1 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-1017)) (-4 *2 (-322))))) +(((*1 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-322)) (-4 *2 (-1017))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-395) (-954 (-488)) (-584 (-488)))) + (-5 *1 (-368 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1119) (-366 *3))) + (-14 *4 (-1094)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-395) (-954 (-488)) (-584 (-488)))) + (-4 *2 (-13 (-27) (-1119) (-366 *3) (-10 -8 (-15 -3953 ($ *4))))) + (-4 *4 (-759)) (-4 *5 - (-13 (-1160 *2 *4) (-312) (-1117) - (-10 -8 (-15 -3761 ($ $)) (-15 -3815 ($ $))))) - (-5 *1 (-367 *3 *2 *4 *5 *6 *7)) (-4 *6 (-898 *5)) (-14 *7 (-1092))))) + (-13 (-1162 *2 *4) (-314) (-1119) + (-10 -8 (-15 -3764 ($ $)) (-15 -3818 ($ $))))) + (-5 *1 (-369 *3 *2 *4 *5 *6 *7)) (-4 *6 (-900 *5)) (-14 *7 (-1094))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-85)) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) - (-4 *3 (-13 (-27) (-1117) (-364 *6) (-10 -8 (-15 -3950 ($ *7))))) - (-4 *7 (-757)) + (-12 (-5 *4 (-85)) (-4 *6 (-13 (-395) (-954 (-488)) (-584 (-488)))) + (-4 *3 (-13 (-27) (-1119) (-366 *6) (-10 -8 (-15 -3953 ($ *7))))) + (-4 *7 (-759)) (-4 *8 - (-13 (-1160 *3 *7) (-312) (-1117) - (-10 -8 (-15 -3761 ($ $)) (-15 -3815 ($ $))))) + (-13 (-1162 *3 *7) (-314) (-1119) + (-10 -8 (-15 -3764 ($ $)) (-15 -3818 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075)))))) - (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1075)) (-4 *9 (-898 *8)) - (-14 *10 (-1092))))) + (|:| |%problem| (-2 (|:| |func| (-1077)) (|:| |prob| (-1077)))))) + (-5 *1 (-369 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1077)) (-4 *9 (-900 *8)) + (-14 *10 (-1094))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-85)) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) - (-4 *3 (-13 (-27) (-1117) (-364 *6) (-10 -8 (-15 -3950 ($ *7))))) - (-4 *7 (-757)) + (-12 (-5 *4 (-85)) (-4 *6 (-13 (-395) (-954 (-488)) (-584 (-488)))) + (-4 *3 (-13 (-27) (-1119) (-366 *6) (-10 -8 (-15 -3953 ($ *7))))) + (-4 *7 (-759)) (-4 *8 - (-13 (-1160 *3 *7) (-312) (-1117) - (-10 -8 (-15 -3761 ($ $)) (-15 -3815 ($ $))))) + (-13 (-1162 *3 *7) (-314) (-1119) + (-10 -8 (-15 -3764 ($ $)) (-15 -3818 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075)))))) - (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1075)) (-4 *9 (-898 *8)) - (-14 *10 (-1092))))) + (|:| |%problem| (-2 (|:| |func| (-1077)) (|:| |prob| (-1077)))))) + (-5 *1 (-369 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1077)) (-4 *9 (-900 *8)) + (-14 *10 (-1094))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *2 - (-3 (|:| |%expansion| (-264 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075)))))) - (-5 *1 (-366 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1117) (-364 *5))) - (-14 *6 (-1092)) (-14 *7 *3)))) + (-3 (|:| |%expansion| (-266 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1077)) (|:| |prob| (-1077)))))) + (-5 *1 (-368 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1119) (-366 *5))) + (-14 *6 (-1094)) (-14 *7 *3)))) (((*1 *2 *1) - (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) - ((*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1015))))) + (-12 (-4 *1 (-279 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1017)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-279 *2 *3)) (-4 *3 (-720)) (-4 *2 (-965)))) + ((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1017))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1092)) (-5 *3 (-585 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1015)))) + (-12 (-5 *2 (-1094)) (-5 *3 (-587 *1)) (-4 *1 (-366 *4)) (-4 *4 (-1017)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015)))) - ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-364 *3)) (-4 *3 (-1015))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1015)) - (-5 *2 (-2 (|:| -3958 (-486)) (|:| |var| (-552 *1)))) (-4 *1 (-364 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-497)) (-5 *1 (-362 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) + (-12 (-5 *2 (-1094)) (-4 *1 (-366 *3)) (-4 *3 (-1017)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1094)) (-4 *1 (-366 *3)) (-4 *3 (-1017)))) + ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1094)) (-4 *1 (-366 *3)) (-4 *3 (-1017)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1094)) (-4 *1 (-366 *3)) (-4 *3 (-1017))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1017)) + (-5 *2 (-2 (|:| -3961 (-488)) (|:| |var| (-554 *1)))) (-4 *1 (-366 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-499)) (-5 *1 (-364 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-314)) (-4 *1 (-282 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1136)) - (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1157 (-350 *3))))) + (-12 (-5 *2 (-1183 *3)) (-4 *3 (-1159 *4)) (-4 *4 (-1138)) + (-4 *1 (-293 *4 *3 *5)) (-4 *5 (-1159 (-352 *3))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) + (-12 (-5 *2 (-1183 *4)) (-5 *3 (-1183 *1)) (-4 *4 (-148)) (-4 *1 (-318 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-146)) - (-4 *1 (-322 *4 *5)) (-4 *5 (-1157 *4)))) + (-12 (-5 *2 (-1183 *4)) (-5 *3 (-1183 *1)) (-4 *4 (-148)) + (-4 *1 (-324 *4 *5)) (-4 *5 (-1159 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1181 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) - (-4 *4 (-1157 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) - ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) - ((*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146))))) -(((*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) - ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) - ((*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) + (-12 (-5 *2 (-1183 *3)) (-4 *3 (-148)) (-4 *1 (-355 *3 *4)) + (-4 *4 (-1159 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1183 *3)) (-4 *3 (-148)) (-4 *1 (-363 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *2)) (-4 *2 (-148)))) + ((*1 *2) (-12 (-4 *2 (-148)) (-5 *1 (-362 *3 *2)) (-4 *3 (-363 *2)))) + ((*1 *2) (-12 (-4 *1 (-363 *2)) (-4 *2 (-148))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *2)) (-4 *2 (-148)))) + ((*1 *2) (-12 (-4 *2 (-148)) (-5 *1 (-362 *3 *2)) (-4 *3 (-363 *2)))) + ((*1 *2) (-12 (-4 *1 (-363 *2)) (-4 *2 (-148))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *4)) (-4 *4 (-148)) (-5 *2 (-634 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-632 *4)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3))))) + (-12 (-4 *4 (-148)) (-5 *2 (-634 *4)) (-5 *1 (-362 *3 *4)) + (-4 *3 (-363 *4)))) + ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-5 *2 (-634 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) + (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *4)) (-4 *4 (-148)) (-5 *2 (-634 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-632 *4)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3))))) + (-12 (-4 *4 (-148)) (-5 *2 (-634 *4)) (-5 *1 (-362 *3 *4)) + (-4 *3 (-363 *4)))) + ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-5 *2 (-634 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3))))) + (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *4)) (-4 *4 (-148)) (-5 *2 (-634 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-5 *2 (-634 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1181 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3))))) + (-12 (-5 *3 (-1183 *1)) (-4 *1 (-318 *4)) (-4 *4 (-148)) (-5 *2 (-634 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-148)) (-5 *2 (-634 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-356 *3 *4 *5 *6)) (-4 *6 (-952 *4)) (-4 *3 (-258)) - (-4 *4 (-906 *3)) (-4 *5 (-1157 *4)) (-4 *6 (-353 *4 *5)) - (-14 *7 (-1181 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-358 *3 *4 *5 *6)) (-4 *6 (-954 *4)) (-4 *3 (-260)) + (-4 *4 (-908 *3)) (-4 *5 (-1159 *4)) (-4 *6 (-355 *4 *5)) + (-14 *7 (-1183 *6)) (-5 *1 (-360 *3 *4 *5 *6 *7)))) ((*1 *1 *2) - (-12 (-5 *2 (-1181 *6)) (-4 *6 (-353 *4 *5)) (-4 *4 (-906 *3)) - (-4 *5 (-1157 *4)) (-4 *3 (-258)) (-5 *1 (-358 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-1183 *6)) (-4 *6 (-355 *4 *5)) (-4 *4 (-908 *3)) + (-4 *5 (-1159 *4)) (-4 *3 (-260)) (-5 *1 (-360 *3 *4 *5 *6 *7)) (-14 *7 *2)))) (((*1 *1 *1) - (-12 (-4 *2 (-258)) (-4 *3 (-906 *2)) (-4 *4 (-1157 *3)) - (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-952 *3)))))) + (-12 (-4 *2 (-260)) (-4 *3 (-908 *2)) (-4 *4 (-1159 *3)) + (-5 *1 (-358 *2 *3 *4 *5)) (-4 *5 (-13 (-355 *3 *4) (-954 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-696)) (-5 *4 (-1181 *2)) (-4 *5 (-258)) (-4 *6 (-906 *5)) - (-4 *2 (-13 (-353 *6 *7) (-952 *6))) (-5 *1 (-356 *5 *6 *7 *2)) - (-4 *7 (-1157 *6))))) + (-12 (-5 *3 (-698)) (-5 *4 (-1183 *2)) (-4 *5 (-260)) (-4 *6 (-908 *5)) + (-4 *2 (-13 (-355 *6 *7) (-954 *6))) (-5 *1 (-358 *5 *6 *7 *2)) + (-4 *7 (-1159 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)))) + (-12 (-5 *3 (-1183 *1)) (-4 *1 (-324 *4 *5)) (-4 *4 (-148)) + (-4 *5 (-1159 *4)) (-5 *2 (-634 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)) - (-5 *1 (-352 *3 *4 *5)) (-4 *3 (-353 *4 *5)))) + (-12 (-4 *4 (-148)) (-4 *5 (-1159 *4)) (-5 *2 (-634 *4)) + (-5 *1 (-354 *3 *4 *5)) (-4 *3 (-355 *4 *5)))) ((*1 *2) - (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) - (-5 *2 (-632 *3))))) + (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-148)) (-4 *4 (-1159 *3)) + (-5 *2 (-634 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1181 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1157 *4)) (-5 *2 (-632 *4)))) + (-12 (-5 *3 (-1183 *1)) (-4 *1 (-324 *4 *5)) (-4 *4 (-148)) + (-4 *5 (-1159 *4)) (-5 *2 (-634 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1157 *3)) - (-5 *2 (-632 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497))))) + (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-148)) (-4 *4 (-1159 *3)) + (-5 *2 (-634 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-350 *2)) (-4 *2 (-499))))) (((*1 *2 *1) - (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3947 (-486))))) (-5 *1 (-310 *3)) - (-4 *3 (-1015)))) + (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3950 (-488))))) (-5 *1 (-312 *3)) + (-4 *3 (-1017)))) ((*1 *2 *1) - (-12 (-4 *1 (-336 *3)) (-4 *3 (-1015)) - (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3947 (-696))))))) + (-12 (-4 *1 (-338 *3)) (-4 *3 (-1017)) + (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3950 (-698))))))) ((*1 *2 *1) - (-12 (-5 *2 (-585 (-2 (|:| -3735 *3) (|:| -2403 (-486))))) (-5 *1 (-348 *3)) - (-4 *3 (-497))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-348 *3)) (-4 *3 (-497))))) + (-12 (-5 *2 (-587 (-2 (|:| -3738 *3) (|:| -2406 (-488))))) (-5 *1 (-350 *3)) + (-4 *3 (-499))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-350 *2)) (-4 *2 (-499))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-350 *3)) (-4 *3 (-499))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-486)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-348 *4)) (-4 *4 (-497))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-486)) (-5 *1 (-348 *2)) (-4 *2 (-497))))) + (-12 (-5 *3 (-488)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-350 *4)) (-4 *4 (-499))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-350 *2)) (-4 *2 (-499))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-350 *2)) (-4 *2 (-499))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-486)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-348 *2)) (-4 *2 (-497))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 (-330))) (-5 *1 (-221)))) - ((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-497)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-497))))) -(((*1 *1 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-497))))) -(((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-486))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *3 (-85)) (-5 *1 (-81)))) - ((*1 *2 *2) (-12 (-5 *2 (-832)) (|has| *1 (-6 -3989)) (-4 *1 (-347)))) - ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-832))))) -(((*1 *2 *2) (-12 (-5 *2 (-832)) (|has| *1 (-6 -3989)) (-4 *1 (-347)))) - ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-832))))) -(((*1 *2 *3) - (-12 (-5 *3 (-486)) (|has| *1 (-6 -3989)) (-4 *1 (-347)) (-5 *2 (-832))))) -(((*1 *2 *3) - (-12 (-5 *3 (-486)) (|has| *1 (-6 -3989)) (-4 *1 (-347)) (-5 *2 (-832))))) -(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-696)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-345)) (-5 *2 (-696))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-696)))) - ((*1 *1 *1) (-4 *1 (-345)))) + (-12 (-5 *3 (-488)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-350 *2)) (-4 *2 (-499))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 (-332))) (-5 *1 (-223)))) + ((*1 *1) (|partial| -12 (-4 *1 (-318 *2)) (-4 *2 (-499)) (-4 *2 (-148)))) + ((*1 *2 *1) (-12 (-5 *1 (-350 *2)) (-4 *2 (-499))))) +(((*1 *1 *1) (-12 (-5 *1 (-350 *2)) (-4 *2 (-499))))) +(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-488))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-698)) (-5 *3 (-85)) (-5 *1 (-81)))) + ((*1 *2 *2) (-12 (-5 *2 (-834)) (|has| *1 (-6 -3992)) (-4 *1 (-349)))) + ((*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-834))))) +(((*1 *2 *2) (-12 (-5 *2 (-834)) (|has| *1 (-6 -3992)) (-4 *1 (-349)))) + ((*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-834))))) +(((*1 *2 *3) + (-12 (-5 *3 (-488)) (|has| *1 (-6 -3992)) (-4 *1 (-349)) (-5 *2 (-834))))) +(((*1 *2 *3) + (-12 (-5 *3 (-488)) (|has| *1 (-6 -3992)) (-4 *1 (-349)) (-5 *2 (-834))))) +(((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-698)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-347)) (-5 *2 (-698))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-698)))) + ((*1 *1 *1) (-4 *1 (-347)))) (((*1 *1 *2) - (-12 (-5 *2 (-350 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-312) (-120))) - (-5 *1 (-342 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1157 *3)) (-5 *1 (-342 *3 *2)) (-4 *3 (-13 (-312) (-120)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-312) (-120))) - (-5 *2 (-585 (-2 (|:| -2403 (-696)) (|:| -3776 *4) (|:| |num| *4)))) - (-5 *1 (-342 *3 *4)) (-4 *4 (-1157 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-774)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-696)) (-14 *4 (-696)) - (-4 *5 (-146))))) -(((*1 *2 *1) - (-12 (-5 *2 (-774)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-696)) (-14 *4 (-696)) - (-4 *5 (-146))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-339))))) -(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1075))))) -(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1075))))) -(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1015))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1015))))) + (-12 (-5 *2 (-352 *4)) (-4 *4 (-1159 *3)) (-4 *3 (-13 (-314) (-120))) + (-5 *1 (-344 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1159 *3)) (-5 *1 (-344 *3 *2)) (-4 *3 (-13 (-314) (-120)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-314) (-120))) + (-5 *2 (-587 (-2 (|:| -2406 (-698)) (|:| -3779 *4) (|:| |num| *4)))) + (-5 *1 (-344 *3 *4)) (-4 *4 (-1159 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-776)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 (-698)) (-14 *4 (-698)) + (-4 *5 (-148))))) +(((*1 *2 *1) + (-12 (-5 *2 (-776)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 (-698)) (-14 *4 (-698)) + (-4 *5 (-148))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1077)) (-4 *1 (-341))))) +(((*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-1077))))) +(((*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-1077))))) +(((*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-85))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-1017))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-1017))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-1015)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-336 *3))))) + (-12 (-4 *3 (-1017)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-338 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) + (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-965)) (-4 *4 (-1017)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-585 (-350 (-859 (-486))))) (-5 *4 (-585 (-1092))) - (-5 *2 (-585 (-585 *5))) (-5 *1 (-332 *5)) (-4 *5 (-13 (-757) (-312))))) + (-12 (-5 *3 (-587 (-352 (-861 (-488))))) (-5 *4 (-587 (-1094))) + (-5 *2 (-587 (-587 *5))) (-5 *1 (-334 *5)) (-4 *5 (-13 (-759) (-314))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-859 (-486)))) (-5 *2 (-585 *4)) (-5 *1 (-332 *4)) - (-4 *4 (-13 (-757) (-312)))))) + (-12 (-5 *3 (-352 (-861 (-488)))) (-5 *2 (-587 *4)) (-5 *1 (-334 *4)) + (-4 *4 (-13 (-759) (-314)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-859 (-142 (-486))))) (-5 *2 (-585 (-142 *4))) - (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-757))))) + (-12 (-5 *3 (-352 (-861 (-144 (-488))))) (-5 *2 (-587 (-144 *4))) + (-5 *1 (-333 *4)) (-4 *4 (-13 (-314) (-759))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-585 (-350 (-859 (-142 (-486)))))) (-5 *4 (-585 (-1092))) - (-5 *2 (-585 (-585 (-142 *5)))) (-5 *1 (-331 *5)) - (-4 *5 (-13 (-312) (-757)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-350 (-859 (-142 (-486)))))) - (-5 *2 (-585 (-585 (-249 (-859 (-142 *4)))))) (-5 *1 (-331 *4)) - (-4 *4 (-13 (-312) (-757))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-249 (-350 (-859 (-142 (-486))))))) - (-5 *2 (-585 (-585 (-249 (-859 (-142 *4)))))) (-5 *1 (-331 *4)) - (-4 *4 (-13 (-312) (-757))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-859 (-142 (-486))))) - (-5 *2 (-585 (-249 (-859 (-142 *4))))) (-5 *1 (-331 *4)) - (-4 *4 (-13 (-312) (-757))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-249 (-350 (-859 (-142 (-486)))))) - (-5 *2 (-585 (-249 (-859 (-142 *4))))) (-5 *1 (-331 *4)) - (-4 *4 (-13 (-312) (-757)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-486)) (-5 *1 (-330))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-350 (-486))) (-5 *1 (-179)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-350 (-486))) (-5 *1 (-179)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-350 (-486))) (-5 *1 (-330)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-350 (-486))) (-5 *1 (-330))))) -(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-330))) - ((*1 *1) (-5 *1 (-330)))) -(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-330))) - ((*1 *1) (-5 *1 (-330)))) -(((*1 *1) (-5 *1 (-179))) ((*1 *1) (-5 *1 (-330)))) -(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-330)))) - ((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-330))))) -(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-330)))) - ((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-330))))) -(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-330)))) - ((*1 *2) (-12 (-5 *2 (-1187)) (-5 *1 (-330))))) -(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1187)) (-5 *1 (-330))))) + (-12 (-5 *3 (-587 (-352 (-861 (-144 (-488)))))) (-5 *4 (-587 (-1094))) + (-5 *2 (-587 (-587 (-144 *5)))) (-5 *1 (-333 *5)) + (-4 *5 (-13 (-314) (-759)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-587 (-352 (-861 (-144 (-488)))))) + (-5 *2 (-587 (-587 (-251 (-861 (-144 *4)))))) (-5 *1 (-333 *4)) + (-4 *4 (-13 (-314) (-759))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-587 (-251 (-352 (-861 (-144 (-488))))))) + (-5 *2 (-587 (-587 (-251 (-861 (-144 *4)))))) (-5 *1 (-333 *4)) + (-4 *4 (-13 (-314) (-759))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-352 (-861 (-144 (-488))))) + (-5 *2 (-587 (-251 (-861 (-144 *4))))) (-5 *1 (-333 *4)) + (-4 *4 (-13 (-314) (-759))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-251 (-352 (-861 (-144 (-488)))))) + (-5 *2 (-587 (-251 (-861 (-144 *4))))) (-5 *1 (-333 *4)) + (-4 *4 (-13 (-314) (-759)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-488)) (-5 *1 (-332))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-698)) (-5 *2 (-352 (-488))) (-5 *1 (-181)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-5 *2 (-352 (-488))) (-5 *1 (-181)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-698)) (-5 *2 (-352 (-488))) (-5 *1 (-332)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-698)) (-5 *2 (-352 (-488))) (-5 *1 (-332))))) +(((*1 *1 *1) (-5 *1 (-181))) ((*1 *1 *1) (-5 *1 (-332))) + ((*1 *1) (-5 *1 (-332)))) +(((*1 *1 *1) (-5 *1 (-181))) ((*1 *1 *1) (-5 *1 (-332))) + ((*1 *1) (-5 *1 (-332)))) +(((*1 *1) (-5 *1 (-181))) ((*1 *1) (-5 *1 (-332)))) +(((*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1189)) (-5 *1 (-332)))) + ((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-332))))) +(((*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1189)) (-5 *1 (-332)))) + ((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-332))))) +(((*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1189)) (-5 *1 (-332)))) + ((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-332))))) +(((*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1189)) (-5 *1 (-332))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-327 *4 *2)) - (-4 *2 (-13 (-324 *4) (-1037 *4)))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1133)) (-5 *1 (-329 *4 *2)) + (-4 *2 (-13 (-326 *4) (-1039 *4)))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-327 *4 *2)) - (-4 *2 (-13 (-324 *4) (-1037 *4)))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1133)) (-5 *1 (-329 *4 *2)) + (-4 *2 (-13 (-326 *4) (-1039 *4)))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-327 *4 *2)) - (-4 *2 (-13 (-324 *4) (-1037 *4)))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1133)) (-5 *1 (-329 *4 *2)) + (-4 *2 (-13 (-326 *4) (-1039 *4)))))) (((*1 *1 *2) - (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-4 *1 (-326 *3 *4)) (-4 *4 (-146))))) + (-12 (-5 *2 (-618 *3)) (-4 *3 (-760)) (-4 *1 (-328 *3 *4)) (-4 *4 (-148))))) (((*1 *2 *1) - (-12 (-4 *1 (-324 *3)) (-4 *3 (-1131)) (-4 *3 (-758)) (-5 *2 (-85)))) + (-12 (-4 *1 (-326 *3)) (-4 *3 (-1133)) (-4 *3 (-760)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-324 *4)) (-4 *4 (-1131)) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-326 *4)) (-4 *4 (-1133)) (-5 *2 (-85))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-486)) (-4 *1 (-1037 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1131))))) + (-12 (-5 *2 (-488)) (-4 *1 (-1039 *3)) (-4 *1 (-326 *3)) (-4 *3 (-1133))))) (((*1 *1 *1) - (-12 (-4 *1 (-1037 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1131)) (-4 *2 (-758)))) + (-12 (-4 *1 (-1039 *2)) (-4 *1 (-326 *2)) (-4 *2 (-1133)) (-4 *2 (-760)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-1037 *3)) (-4 *1 (-324 *3)) - (-4 *3 (-1131))))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-1039 *3)) (-4 *1 (-326 *3)) + (-4 *3 (-1133))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1131)) (-5 *2 (-85))))) + (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-320 *4)) (-4 *4 (-1133)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1131)) (-5 *2 (-85))))) + (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-320 *4)) (-4 *4 (-1133)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-318 *3)) (-4 *3 (-1131)) (-4 *3 (-72)) (-5 *2 (-696)))) + (-12 (-4 *1 (-320 *3)) (-4 *3 (-1133)) (-4 *3 (-72)) (-5 *2 (-698)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1131)) (-5 *2 (-696))))) + (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-320 *4)) (-4 *4 (-1133)) (-5 *2 (-698))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-318 *2)) (-4 *2 (-1131))))) -(((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1181 *1)) (-4 *1 (-316 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1087 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1087 *3))))) + (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-320 *2)) (-4 *2 (-1133))))) +(((*1 *2) (-12 (-4 *3 (-148)) (-5 *2 (-1183 *1)) (-4 *1 (-318 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *2 (-148))))) +(((*1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *2 (-148))))) +(((*1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *2 (-148))))) +(((*1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *2 (-148))))) +(((*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-1089 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-1089 *3))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) - ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) + ((*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) - ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) + ((*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) - ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) + ((*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) - ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) + ((*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) - ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) + ((*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) - ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) + ((*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) - ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) + ((*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) - ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) -(((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) + ((*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85))))) +(((*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) - ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) + ((*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) - ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) + ((*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) - ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) + ((*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) - ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) + ((*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) - ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) + ((*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) - ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-148)) (-5 *2 (-85)) (-5 *1 (-317 *3 *4)) (-4 *3 (-318 *4)))) + ((*1 *2) (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-585 (-1181 *4))) (-5 *1 (-315 *3 *4)) - (-4 *3 (-316 *4)))) + (-12 (-4 *4 (-148)) (-5 *2 (-587 (-1183 *4))) (-5 *1 (-317 *3 *4)) + (-4 *3 (-318 *4)))) ((*1 *2) - (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-497)) - (-5 *2 (-585 (-1181 *3)))))) + (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-4 *3 (-499)) + (-5 *2 (-587 (-1183 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-497)) (-5 *2 (-1087 *3))))) + (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-4 *3 (-499)) (-5 *2 (-1089 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-497)) (-5 *2 (-1087 *3))))) -(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-497)) (-4 *2 (-146))))) -(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-497)) (-4 *2 (-146))))) + (-12 (-4 *1 (-318 *3)) (-4 *3 (-148)) (-4 *3 (-499)) (-5 *2 (-1089 *3))))) +(((*1 *1) (|partial| -12 (-4 *1 (-318 *2)) (-4 *2 (-499)) (-4 *2 (-148))))) +(((*1 *1) (|partial| -12 (-4 *1 (-318 *2)) (-4 *2 (-499)) (-4 *2 (-148))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1015)) (-4 *4 (-1015)))) - ((*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) + (-12 (-5 *3 (-1077)) (-4 *1 (-316 *2 *4)) (-4 *2 (-1017)) (-4 *4 (-1017)))) + ((*1 *1 *2) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1017))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1075)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) -(((*1 *1 *1) (-4 *1 (-147))) - ((*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) + (-12 (-5 *2 (-1077)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017))))) +(((*1 *1 *1) (-4 *1 (-149))) + ((*1 *1 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-1017))))) (((*1 *2 *1) - (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-1075))))) -(((*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015))))) + (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017)) (-5 *2 (-1077))))) +(((*1 *2 *1) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1017)) (-4 *2 (-1017))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1017)) (-4 *2 (-1017))))) (((*1 *2 *3) - (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) + (-12 (-5 *3 (-1089 *4)) (-4 *4 (-301)) (-4 *2 - (-13 (-345) - (-10 -7 (-15 -3950 (*2 *4)) (-15 -2012 ((-832) *2)) - (-15 -2014 ((-1181 *2) (-832))) (-15 -3932 (*2 *2))))) - (-5 *1 (-306 *2 *4))))) + (-13 (-347) + (-10 -7 (-15 -3953 (*2 *4)) (-15 -2015 ((-834) *2)) + (-15 -2017 ((-1183 *2) (-834))) (-15 -3935 (*2 *2))))) + (-5 *1 (-308 *2 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-871 (-1087 *4))) (-5 *1 (-305 *4)) - (-5 *3 (-1087 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (-12 (-4 *4 (-301)) (-5 *2 (-873 (-1089 *4))) (-5 *1 (-307 *4)) + (-5 *3 (-1089 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1089 *3)) (-4 *3 (-301)) (-5 *1 (-307 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1089 *3)) (-4 *3 (-301)) (-5 *1 (-307 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1089 *3)) (-4 *3 (-301)) (-5 *1 (-307 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1089 *3)) (-4 *3 (-301)) (-5 *1 (-307 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1089 *3)) (-4 *3 (-301)) (-5 *1 (-307 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1089 *3)) (-4 *3 (-301)) (-5 *1 (-307 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-834)) (-5 *2 (-1089 *4)) (-5 *1 (-307 *4)) (-4 *4 (-301))))) (((*1 *2 *3) - (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-834)) (-5 *2 (-1089 *4)) (-5 *1 (-307 *4)) (-4 *4 (-301))))) (((*1 *2 *3) - (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-834)) (-5 *2 (-1089 *4)) (-5 *1 (-307 *4)) (-4 *4 (-301))))) (((*1 *2 *3) - (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-834)) (-5 *2 (-1089 *4)) (-5 *1 (-307 *4)) (-4 *4 (-301))))) (((*1 *2 *3) - (-12 (-5 *3 (-832)) (-5 *2 (-1087 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) -(((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) -(((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) -(((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) -(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-85)))) + (-12 (-5 *3 (-834)) (-5 *2 (-1089 *4)) (-5 *1 (-307 *4)) (-4 *4 (-301))))) +(((*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-307 *3)) (-4 *3 (-301))))) +(((*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-307 *3)) (-4 *3 (-301))))) +(((*1 *2 *2) (-12 (-5 *2 (-834)) (-5 *1 (-307 *3)) (-4 *3 (-301))))) +(((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))) + (-12 (-5 *3 (-1089 *4)) (-4 *4 (-301)) (-5 *2 (-85)) (-5 *1 (-307 *4))))) (((*1 *2) - (-12 (-5 *2 (-1181 (-585 (-2 (|:| -3405 (-819 *3)) (|:| -2402 (-1035)))))) - (-5 *1 (-301 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) + (-12 (-5 *2 (-1183 (-587 (-2 (|:| -3408 (-821 *3)) (|:| -2405 (-1037)))))) + (-5 *1 (-303 *3 *4)) (-14 *3 (-834)) (-14 *4 (-834)))) ((*1 *2) - (-12 (-5 *2 (-1181 (-585 (-2 (|:| -3405 *3) (|:| -2402 (-1035)))))) - (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1087 *3) *2)))) + (-12 (-5 *2 (-1183 (-587 (-2 (|:| -3408 *3) (|:| -2405 (-1037)))))) + (-5 *1 (-304 *3 *4)) (-4 *3 (-301)) (-14 *4 (-3 (-1089 *3) *2)))) ((*1 *2) - (-12 (-5 *2 (-1181 (-585 (-2 (|:| -3405 *3) (|:| -2402 (-1035)))))) - (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832))))) + (-12 (-5 *2 (-1183 (-587 (-2 (|:| -3408 *3) (|:| -2405 (-1037)))))) + (-5 *1 (-305 *3 *4)) (-4 *3 (-301)) (-14 *4 (-834))))) (((*1 *2) - (-12 (-5 *2 (-632 (-819 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-832)) - (-14 *4 (-832)))) + (-12 (-5 *2 (-634 (-821 *3))) (-5 *1 (-303 *3 *4)) (-14 *3 (-834)) + (-14 *4 (-834)))) ((*1 *2) - (-12 (-5 *2 (-632 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) + (-12 (-5 *2 (-634 *3)) (-5 *1 (-304 *3 *4)) (-4 *3 (-301)) (-14 *4 - (-3 (-1087 *3) (-1181 (-585 (-2 (|:| -3405 *3) (|:| -2402 (-1035))))))))) + (-3 (-1089 *3) (-1183 (-587 (-2 (|:| -3408 *3) (|:| -2405 (-1037))))))))) ((*1 *2) - (-12 (-5 *2 (-632 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832))))) + (-12 (-5 *2 (-634 *3)) (-5 *1 (-305 *3 *4)) (-4 *3 (-301)) (-14 *4 (-834))))) (((*1 *2 *3) - (-12 (-5 *3 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) - (-4 *4 (-299)) (-5 *2 (-696)) (-5 *1 (-296 *4)))) + (-12 (-5 *3 (-1183 (-587 (-2 (|:| -3408 *4) (|:| -2405 (-1037)))))) + (-4 *4 (-301)) (-5 *2 (-698)) (-5 *1 (-298 *4)))) ((*1 *2) - (-12 (-5 *2 (-696)) (-5 *1 (-301 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) + (-12 (-5 *2 (-698)) (-5 *1 (-303 *3 *4)) (-14 *3 (-834)) (-14 *4 (-834)))) ((*1 *2) - (-12 (-5 *2 (-696)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) + (-12 (-5 *2 (-698)) (-5 *1 (-304 *3 *4)) (-4 *3 (-301)) (-14 *4 - (-3 (-1087 *3) (-1181 (-585 (-2 (|:| -3405 *3) (|:| -2402 (-1035))))))))) + (-3 (-1089 *3) (-1183 (-587 (-2 (|:| -3408 *3) (|:| -2405 (-1037))))))))) ((*1 *2) - (-12 (-5 *2 (-696)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832))))) + (-12 (-5 *2 (-698)) (-5 *1 (-305 *3 *4)) (-4 *3 (-301)) (-14 *4 (-834))))) (((*1 *2) - (-12 (-4 *1 (-299)) - (-5 *2 (-585 (-2 (|:| -3735 (-486)) (|:| -2403 (-486)))))))) -(((*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-486)) (-5 *2 (-1104 (-832) (-696)))))) -(((*1 *1) (-4 *1 (-299)))) + (-12 (-4 *1 (-301)) + (-5 *2 (-587 (-2 (|:| -3738 (-488)) (|:| -2406 (-488)))))))) +(((*1 *2 *3) (-12 (-4 *1 (-301)) (-5 *3 (-488)) (-5 *2 (-1106 (-834) (-698)))))) +(((*1 *1) (-4 *1 (-301)))) (((*1 *2) - (-12 (-4 *1 (-299)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) + (-12 (-4 *1 (-301)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *3) - (-12 (-5 *3 (-832)) + (-12 (-5 *3 (-834)) (-5 *2 - (-3 (-1087 *4) (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035))))))) - (-5 *1 (-296 *4)) (-4 *4 (-299))))) + (-3 (-1089 *4) (-1183 (-587 (-2 (|:| -3408 *4) (|:| -2405 (-1037))))))) + (-5 *1 (-298 *4)) (-4 *4 (-301))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-832)) - (-5 *2 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) - (-5 *1 (-296 *4)) (-4 *4 (-299))))) + (|partial| -12 (-5 *3 (-834)) + (-5 *2 (-1183 (-587 (-2 (|:| -3408 *4) (|:| -2405 (-1037)))))) + (-5 *1 (-298 *4)) (-4 *4 (-301))))) (((*1 *2 *3) - (-12 (-5 *3 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) - (-4 *4 (-299)) (-5 *2 (-632 *4)) (-5 *1 (-296 *4))))) + (-12 (-5 *3 (-1183 (-587 (-2 (|:| -3408 *4) (|:| -2405 (-1037)))))) + (-4 *4 (-301)) (-5 *2 (-634 *4)) (-5 *1 (-298 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) - (-5 *2 (-1181 (-585 (-2 (|:| -3405 *4) (|:| -2402 (-1035)))))) - (-5 *1 (-296 *4))))) + (-12 (-5 *3 (-1089 *4)) (-4 *4 (-301)) + (-5 *2 (-1183 (-587 (-2 (|:| -3408 *4) (|:| -2405 (-1037)))))) + (-5 *1 (-298 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1087 *4)) (-4 *4 (-299)) (-5 *2 (-871 (-1035))) - (-5 *1 (-296 *4))))) + (-12 (-5 *3 (-1089 *4)) (-4 *4 (-301)) (-5 *2 (-873 (-1037))) + (-5 *1 (-298 *4))))) (((*1 *2) - (-12 (-5 *2 (-871 (-1035))) (-5 *1 (-293 *3 *4)) (-14 *3 (-832)) - (-14 *4 (-832)))) + (-12 (-5 *2 (-873 (-1037))) (-5 *1 (-295 *3 *4)) (-14 *3 (-834)) + (-14 *4 (-834)))) ((*1 *2) - (-12 (-5 *2 (-871 (-1035))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) - (-14 *4 (-1087 *3)))) + (-12 (-5 *2 (-873 (-1037))) (-5 *1 (-296 *3 *4)) (-4 *3 (-301)) + (-14 *4 (-1089 *3)))) ((*1 *2) - (-12 (-5 *2 (-871 (-1035))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) - (-14 *4 (-832))))) + (-12 (-5 *2 (-873 (-1037))) (-5 *1 (-297 *3 *4)) (-4 *3 (-301)) + (-14 *4 (-834))))) (((*1 *2) - (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) - (-5 *2 (-696)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) + (-12 (-4 *4 (-1138)) (-4 *5 (-1159 *4)) (-4 *6 (-1159 (-352 *5))) + (-5 *2 (-698)) (-5 *1 (-292 *3 *4 *5 *6)) (-4 *3 (-293 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-5 *2 (-696))))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-5 *2 (-698))))) (((*1 *2) - (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) - (-5 *2 (-85)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) + (-12 (-4 *4 (-1138)) (-4 *5 (-1159 *4)) (-4 *6 (-1159 (-352 *5))) + (-5 *2 (-85)) (-5 *1 (-292 *3 *4 *5 *6)) (-4 *3 (-293 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-1136)) (-4 *5 (-1157 *3)) (-4 *6 (-1157 (-350 *5))) - (-5 *2 (-85)) (-5 *1 (-290 *4 *3 *5 *6)) (-4 *4 (-291 *3 *5 *6)))) + (-12 (-4 *3 (-1138)) (-4 *5 (-1159 *3)) (-4 *6 (-1159 (-352 *5))) + (-5 *2 (-85)) (-5 *1 (-292 *4 *3 *5 *6)) (-4 *4 (-293 *3 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1136)) (-4 *3 (-1157 *4)) - (-4 *5 (-1157 (-350 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-293 *4 *3 *5)) (-4 *4 (-1138)) (-4 *3 (-1159 *4)) + (-4 *5 (-1159 (-352 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1136)) (-4 *3 (-1157 *4)) - (-4 *5 (-1157 (-350 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-293 *4 *3 *5)) (-4 *4 (-1138)) (-4 *3 (-1159 *4)) + (-4 *5 (-1159 (-352 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1136)) (-4 *3 (-1157 *4)) - (-4 *5 (-1157 (-350 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-293 *4 *3 *5)) (-4 *4 (-1138)) (-4 *3 (-1159 *4)) + (-4 *5 (-1159 (-352 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *3 (-1136)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) - (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5))))) + (-12 (-4 *3 (-1138)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) + (-5 *2 (-1183 *1)) (-4 *1 (-293 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1136)) (-4 *3 (-1157 *4)) - (-4 *5 (-1157 (-350 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-293 *4 *3 *5)) (-4 *4 (-1138)) (-4 *3 (-1159 *4)) + (-4 *5 (-1159 (-352 *3))) (-5 *2 (-85)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85)))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-5 *2 (-85))))) (((*1 *2 *2) - (-12 (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) - (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4)))))) + (-12 (-5 *2 (-1183 *1)) (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) + (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) - (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4)))))) + (-12 (-5 *2 (-1183 *1)) (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) + (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1181 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) - (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4)))))) + (-12 (-5 *2 (-1183 *1)) (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) + (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4)))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-5 *2 (-632 (-350 *4)))))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-5 *2 (-634 (-352 *4)))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-5 *2 (-632 (-350 *4)))))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-5 *2 (-634 (-352 *4)))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-5 *2 (-632 (-350 *4)))))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-5 *2 (-634 (-352 *4)))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-5 *2 (-632 (-350 *4)))))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-5 *2 (-634 (-352 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) - (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) + (-5 *2 (-2 (|:| |num| (-1183 *4)) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) - (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) + (-5 *2 (-2 (|:| |num| (-1183 *4)) (|:| |den| *4)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1136)) - (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1157 (-350 *3)))))) + (-12 (-5 *2 (-1183 *3)) (-4 *3 (-1159 *4)) (-4 *4 (-1138)) + (-4 *1 (-293 *4 *3 *5)) (-4 *5 (-1159 (-352 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1136)) - (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) - (-5 *2 (-2 (|:| |num| (-632 *5)) (|:| |den| *5)))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-293 *4 *5 *6)) (-4 *4 (-1138)) + (-4 *5 (-1159 *4)) (-4 *6 (-1159 (-352 *5))) + (-5 *2 (-2 (|:| |num| (-634 *5)) (|:| |den| *5)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1117) (-917))))) + (-12 (-5 *2 (-1 (-858 *3) (-858 *3))) (-5 *1 (-152 *3)) + (-4 *3 (-13 (-314) (-1119) (-919))))) ((*1 *2) - (|partial| -12 (-4 *4 (-1136)) (-4 *5 (-1157 (-350 *2))) (-4 *2 (-1157 *4)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) + (|partial| -12 (-4 *4 (-1138)) (-4 *5 (-1159 (-352 *2))) (-4 *2 (-1159 *4)) + (-5 *1 (-292 *3 *4 *2 *5)) (-4 *3 (-293 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1136)) - (-4 *4 (-1157 (-350 *2))) (-4 *2 (-1157 *3))))) + (|partial| -12 (-4 *1 (-293 *3 *2 *4)) (-4 *3 (-1138)) + (-4 *4 (-1159 (-352 *2))) (-4 *2 (-1159 *3))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1136)) (-4 *5 (-1157 (-350 *2))) (-4 *2 (-1157 *4)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) + (|partial| -12 (-4 *4 (-1138)) (-4 *5 (-1159 (-352 *2))) (-4 *2 (-1159 *4)) + (-5 *1 (-292 *3 *4 *2 *5)) (-4 *3 (-293 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1136)) - (-4 *4 (-1157 (-350 *2))) (-4 *2 (-1157 *3))))) + (|partial| -12 (-4 *1 (-293 *3 *2 *4)) (-4 *3 (-1138)) + (-4 *4 (-1159 (-352 *2))) (-4 *2 (-1159 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-1136)) - (-4 *6 (-1157 (-350 *5))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1159 *4)) (-4 *4 (-1138)) + (-4 *6 (-1159 (-352 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) - (-4 *1 (-291 *4 *5 *6))))) + (-4 *1 (-293 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *5 (-1136)) (-4 *6 (-1157 *5)) - (-4 *7 (-1157 (-350 *6))) (-5 *2 (-585 (-859 *5))) - (-5 *1 (-290 *4 *5 *6 *7)) (-4 *4 (-291 *5 *6 *7)))) + (-12 (-5 *3 (-1094)) (-4 *5 (-1138)) (-4 *6 (-1159 *5)) + (-4 *7 (-1159 (-352 *6))) (-5 *2 (-587 (-861 *5))) + (-5 *1 (-292 *4 *5 *6 *7)) (-4 *4 (-293 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1136)) - (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) (-4 *4 (-312)) - (-5 *2 (-585 (-859 *4)))))) + (-12 (-5 *3 (-1094)) (-4 *1 (-293 *4 *5 *6)) (-4 *4 (-1138)) + (-4 *5 (-1159 *4)) (-4 *6 (-1159 (-352 *5))) (-4 *4 (-314)) + (-5 *2 (-587 (-861 *4)))))) (((*1 *2) - (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-350 *5))) - (-5 *2 (-585 (-585 *4))) (-5 *1 (-290 *3 *4 *5 *6)) - (-4 *3 (-291 *4 *5 *6)))) + (-12 (-4 *4 (-1138)) (-4 *5 (-1159 *4)) (-4 *6 (-1159 (-352 *5))) + (-5 *2 (-587 (-587 *4))) (-5 *1 (-292 *3 *4 *5 *6)) + (-4 *3 (-293 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1136)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-4 *3 (-320)) (-5 *2 (-585 (-585 *3)))))) + (-12 (-4 *1 (-293 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-4 *3 (-322)) (-5 *2 (-587 (-587 *3)))))) (((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-312)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-350 *3))) - (-4 *1 (-286 *4 *3 *5 *2)) (-4 *2 (-291 *4 *3 *5)))) + (-12 (-4 *4 (-314)) (-4 *3 (-1159 *4)) (-4 *5 (-1159 (-352 *3))) + (-4 *1 (-288 *4 *3 *5 *2)) (-4 *2 (-293 *4 *3 *5)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-486)) (-4 *2 (-312)) (-4 *4 (-1157 *2)) - (-4 *5 (-1157 (-350 *4))) (-4 *1 (-286 *2 *4 *5 *6)) - (-4 *6 (-291 *2 *4 *5)))) + (-12 (-5 *3 (-488)) (-4 *2 (-314)) (-4 *4 (-1159 *2)) + (-4 *5 (-1159 (-352 *4))) (-4 *1 (-288 *2 *4 *5 *6)) + (-4 *6 (-293 *2 *4 *5)))) ((*1 *1 *2 *2) - (-12 (-4 *2 (-312)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-350 *3))) - (-4 *1 (-286 *2 *3 *4 *5)) (-4 *5 (-291 *2 *3 *4)))) + (-12 (-4 *2 (-314)) (-4 *3 (-1159 *2)) (-4 *4 (-1159 (-352 *3))) + (-4 *1 (-288 *2 *3 *4 *5)) (-4 *5 (-293 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) - (-4 *1 (-286 *3 *4 *5 *2)) (-4 *2 (-291 *3 *4 *5)))) + (-12 (-4 *3 (-314)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) + (-4 *1 (-288 *3 *4 *5 *2)) (-4 *2 (-293 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-356 *4 (-350 *4) *5 *6)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) - (-4 *1 (-286 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1157 *3)) - (-4 *5 (-1157 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85))))) -(((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) - (-5 *2 (-1181 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-350 *4))) - (-5 *2 (-1181 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-784 (-1097) (-696)))) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-871 (-696))) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-448)) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-758))))) -(((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312))))) + (-12 (-5 *2 (-358 *4 (-352 *4) *5 *6)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-4 *6 (-293 *3 *4 *5)) (-4 *3 (-314)) + (-4 *1 (-288 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-288 *3 *4 *5 *6)) (-4 *3 (-314)) (-4 *4 (-1159 *3)) + (-4 *5 (-1159 (-352 *4))) (-4 *6 (-293 *3 *4 *5)) (-5 *2 (-85))))) +(((*1 *2 *1) + (-12 (-4 *3 (-314)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) + (-5 *2 (-1183 *6)) (-5 *1 (-285 *3 *4 *5 *6)) (-4 *6 (-293 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-314)) (-4 *4 (-1159 *3)) (-4 *5 (-1159 (-352 *4))) + (-5 *2 (-1183 *6)) (-5 *1 (-285 *3 *4 *5 *6)) (-4 *6 (-293 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-211)) (-5 *1 (-284))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-786 (-1099) (-698)))) (-5 *1 (-284))))) +(((*1 *2 *1) (-12 (-5 *2 (-873 (-698))) (-5 *1 (-284))))) +(((*1 *2 *1) (-12 (-5 *2 (-450)) (-5 *1 (-284))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-283 *3)) (-4 *3 (-760))))) +(((*1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-322)) (-4 *2 (-314))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1087 *3)) (-4 *3 (-320)) (-4 *1 (-280 *3)) (-4 *3 (-312))))) + (-12 (-5 *2 (-1089 *3)) (-4 *3 (-322)) (-4 *1 (-282 *3)) (-4 *3 (-314))))) (((*1 *2 *1) - (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1087 *3))))) + (-12 (-4 *1 (-282 *3)) (-4 *3 (-314)) (-4 *3 (-322)) (-5 *2 (-1089 *3))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) - (-5 *2 (-1087 *3)))) + (|partial| -12 (-4 *1 (-282 *3)) (-4 *3 (-314)) (-4 *3 (-322)) + (-5 *2 (-1089 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1087 *3))))) + (-12 (-4 *1 (-282 *3)) (-4 *3 (-314)) (-4 *3 (-322)) (-5 *2 (-1089 *3))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-279 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-279 *2 *3)) (-4 *2 (-965)) (-4 *3 (-720))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-696)) (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) - (-4 *3 (-146))))) + (-12 (-5 *2 (-698)) (-4 *1 (-279 *3 *4)) (-4 *3 (-965)) (-4 *4 (-720)) + (-4 *3 (-148))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-486)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1015)) (-4 *2 (-104))))) + (-12 (-5 *3 (-488)) (-4 *1 (-276 *4 *2)) (-4 *4 (-1017)) (-4 *2 (-104))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-276 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-104))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-104)) (-4 *3 (-718))))) + (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-1017)) (-4 *3 (-104)) (-4 *3 (-720))))) (((*1 *2 *3) - (-12 (-5 *3 (-486)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-963)) - (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-863 *2 *4 *5))))) + (-12 (-5 *3 (-488)) (-4 *4 (-721)) (-4 *5 (-760)) (-4 *2 (-965)) + (-5 *1 (-274 *4 *5 *2 *6)) (-4 *6 (-865 *2 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1087 *7)) (-5 *3 (-486)) (-4 *7 (-863 *6 *4 *5)) (-4 *4 (-719)) - (-4 *5 (-758)) (-4 *6 (-963)) (-5 *1 (-272 *4 *5 *6 *7))))) + (-12 (-5 *2 (-1089 *7)) (-5 *3 (-488)) (-4 *7 (-865 *6 *4 *5)) (-4 *4 (-721)) + (-4 *5 (-760)) (-4 *6 (-965)) (-5 *1 (-274 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1087 *6)) (-4 *6 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) - (-5 *2 (-1087 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5))))) + (-12 (-5 *3 (-1089 *6)) (-4 *6 (-965)) (-4 *4 (-721)) (-4 *5 (-760)) + (-5 *2 (-1089 *7)) (-5 *1 (-274 *4 *5 *6 *7)) (-4 *7 (-865 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1087 *7)) (-4 *7 (-863 *6 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758)) - (-4 *6 (-963)) (-5 *2 (-1087 *6)) (-5 *1 (-272 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1089 *7)) (-4 *7 (-865 *6 *4 *5)) (-4 *4 (-721)) (-4 *5 (-760)) + (-4 *6 (-965)) (-5 *2 (-1089 *6)) (-5 *1 (-274 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1087 *9)) (-5 *4 (-585 *7)) (-5 *5 (-585 *8)) (-4 *7 (-758)) - (-4 *8 (-963)) (-4 *9 (-863 *8 *6 *7)) (-4 *6 (-719)) (-5 *2 (-1087 *8)) - (-5 *1 (-272 *6 *7 *8 *9))))) + (-12 (-5 *3 (-1089 *9)) (-5 *4 (-587 *7)) (-5 *5 (-587 *8)) (-4 *7 (-760)) + (-4 *8 (-965)) (-4 *9 (-865 *8 *6 *7)) (-4 *6 (-721)) (-5 *2 (-1089 *8)) + (-5 *1 (-274 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-5 *2 (-350 (-486))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) - (-14 *4 (-1092)) (-14 *5 *3)))) + (-12 (-5 *2 (-352 (-488))) (-5 *1 (-272 *3 *4 *5)) (-4 *3 (-314)) + (-14 *4 (-1094)) (-14 *5 *3)))) (((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) - (-5 *6 (-486)) (-5 *2 (-1127 (-840))) (-5 *1 (-269)))) + (-12 (-5 *3 (-267 (-488))) (-5 *4 (-1 (-181) (-181))) (-5 *5 (-1005 (-181))) + (-5 *6 (-488)) (-5 *2 (-1129 (-842))) (-5 *1 (-271)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) - (-5 *6 (-486)) (-5 *7 (-1075)) (-5 *2 (-1127 (-840))) (-5 *1 (-269)))) + (-12 (-5 *3 (-267 (-488))) (-5 *4 (-1 (-181) (-181))) (-5 *5 (-1005 (-181))) + (-5 *6 (-488)) (-5 *7 (-1077)) (-5 *2 (-1129 (-842))) (-5 *1 (-271)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) - (-5 *6 (-179)) (-5 *7 (-486)) (-5 *2 (-1127 (-840))) (-5 *1 (-269)))) + (-12 (-5 *3 (-267 (-488))) (-5 *4 (-1 (-181) (-181))) (-5 *5 (-1005 (-181))) + (-5 *6 (-181)) (-5 *7 (-488)) (-5 *2 (-1129 (-842))) (-5 *1 (-271)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-265 (-486))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) - (-5 *6 (-179)) (-5 *7 (-486)) (-5 *8 (-1075)) (-5 *2 (-1127 (-840))) - (-5 *1 (-269))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-269)) (-5 *3 (-179))))) + (-12 (-5 *3 (-267 (-488))) (-5 *4 (-1 (-181) (-181))) (-5 *5 (-1005 (-181))) + (-5 *6 (-181)) (-5 *7 (-488)) (-5 *8 (-1077)) (-5 *2 (-1129 (-842))) + (-5 *1 (-271))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-181) (-181))) (-5 *1 (-271)) (-5 *3 (-181))))) (((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-364 *5)) - (-4 *5 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6)))) + (-12 (-5 *3 (-251 *6)) (-5 *4 (-86)) (-4 *6 (-366 *5)) + (-4 *5 (-13 (-499) (-557 (-477)))) (-5 *2 (-51)) (-5 *1 (-270 *5 *6)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-585 *7)) (-4 *7 (-364 *6)) - (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) + (-12 (-5 *3 (-251 *7)) (-5 *4 (-86)) (-5 *5 (-587 *7)) (-4 *7 (-366 *6)) + (-4 *6 (-13 (-499) (-557 (-477)))) (-5 *2 (-51)) (-5 *1 (-270 *6 *7)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-585 (-249 *7))) (-5 *4 (-585 (-86))) (-5 *5 (-249 *7)) - (-4 *7 (-364 *6)) (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) - (-5 *1 (-268 *6 *7)))) + (-12 (-5 *3 (-587 (-251 *7))) (-5 *4 (-587 (-86))) (-5 *5 (-251 *7)) + (-4 *7 (-366 *6)) (-4 *6 (-13 (-499) (-557 (-477)))) (-5 *2 (-51)) + (-5 *1 (-270 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-585 (-249 *8))) (-5 *4 (-585 (-86))) (-5 *5 (-249 *8)) - (-5 *6 (-585 *8)) (-4 *8 (-364 *7)) (-4 *7 (-13 (-497) (-555 (-475)))) - (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) + (-12 (-5 *3 (-587 (-251 *8))) (-5 *4 (-587 (-86))) (-5 *5 (-251 *8)) + (-5 *6 (-587 *8)) (-4 *8 (-366 *7)) (-4 *7 (-13 (-499) (-557 (-477)))) + (-5 *2 (-51)) (-5 *1 (-270 *7 *8)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-585 *7)) (-5 *4 (-585 (-86))) (-5 *5 (-249 *7)) - (-4 *7 (-364 *6)) (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) - (-5 *1 (-268 *6 *7)))) + (-12 (-5 *3 (-587 *7)) (-5 *4 (-587 (-86))) (-5 *5 (-251 *7)) + (-4 *7 (-366 *6)) (-4 *6 (-13 (-499) (-557 (-477)))) (-5 *2 (-51)) + (-5 *1 (-270 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-86))) (-5 *6 (-585 (-249 *8))) - (-4 *8 (-364 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-497) (-555 (-475)))) - (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) + (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 (-86))) (-5 *6 (-587 (-251 *8))) + (-4 *8 (-366 *7)) (-5 *5 (-251 *8)) (-4 *7 (-13 (-499) (-557 (-477)))) + (-5 *2 (-51)) (-5 *1 (-270 *7 *8)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-364 *6)) - (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) + (-12 (-5 *3 (-251 *5)) (-5 *4 (-86)) (-4 *5 (-366 *6)) + (-4 *6 (-13 (-499) (-557 (-477)))) (-5 *2 (-51)) (-5 *1 (-270 *6 *5)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) - (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) + (-12 (-5 *4 (-86)) (-5 *5 (-251 *3)) (-4 *3 (-366 *6)) + (-4 *6 (-13 (-499) (-557 (-477)))) (-5 *2 (-51)) (-5 *1 (-270 *6 *3)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) - (-4 *6 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) + (-12 (-5 *4 (-86)) (-5 *5 (-251 *3)) (-4 *3 (-366 *6)) + (-4 *6 (-13 (-499) (-557 (-477)))) (-5 *2 (-51)) (-5 *1 (-270 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-585 *3)) (-4 *3 (-364 *7)) - (-4 *7 (-13 (-497) (-555 (-475)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3))))) + (-12 (-5 *4 (-86)) (-5 *5 (-251 *3)) (-5 *6 (-587 *3)) (-4 *3 (-366 *7)) + (-4 *7 (-13 (-499) (-557 (-477)))) (-5 *2 (-51)) (-5 *1 (-270 *7 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-497)) (-4 *3 (-1015))))) + (-12 (-5 *2 (-85)) (-5 *1 (-267 *3)) (-4 *3 (-499)) (-4 *3 (-1017))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-486)) (-5 *1 (-265 *3)) (-4 *3 (-497)) (-4 *3 (-1015))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-258)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-696))))) + (-12 (-5 *2 (-488)) (-5 *1 (-267 *3)) (-4 *3 (-499)) (-4 *3 (-1017))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-260)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-260)) (-5 *2 (-698))))) (((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-258)))) + (-4 *1 (-260)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) - (-4 *1 (-258))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-585 *1)) (-4 *1 (-258))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1131)))) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2414 *1))) + (-4 *1 (-260))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-587 *1)) (-4 *1 (-260))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-251 *2)) (-4 *2 (-256)) (-4 *2 (-1133)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-585 (-552 *1))) (-5 *3 (-585 *1)) (-4 *1 (-254)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-249 *1))) (-4 *1 (-254)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-249 *1)) (-4 *1 (-254))))) -(((*1 *1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-4 *1 (-254)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-552 *1)) (-4 *1 (-254))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-552 *1))) (-4 *1 (-254))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-552 *1))) (-4 *1 (-254))))) -(((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-585 (-86)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1092)) (-5 *2 (-85)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-85))))) -(((*1 *2 *3) - (-12 (-5 *3 (-552 *5)) (-4 *5 (-364 *4)) (-4 *4 (-952 (-486))) (-4 *4 (-497)) - (-5 *2 (-1087 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-552 *1)) (-4 *1 (-963)) (-4 *1 (-254)) (-5 *2 (-1087 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-262)) (-5 *1 (-252)))) - ((*1 *2 *3) (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-262)) (-5 *1 (-252)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-262)) (-5 *1 (-252)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-585 (-1075))) (-5 *3 (-1075)) (-5 *2 (-262)) (-5 *1 (-252))))) -(((*1 *2 *2) - (-12 (-4 *3 (-963)) (-4 *4 (-1157 *3)) (-5 *1 (-137 *3 *4 *2)) - (-4 *2 (-1157 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1131))))) -(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1131))))) -(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1131))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-665)) (-4 *2 (-1131))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-665)) (-4 *2 (-1131))))) -(((*1 *2 *1) - (-12 (-5 *2 (-585 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-497)) - (-4 *3 (-1131))))) -(((*1 *2 *3) - (-12 (-4 *4 (-393)) - (-5 *2 - (-585 - (-2 (|:| |eigval| (-3 (-350 (-859 *4)) (-1082 (-1092) (-859 *4)))) - (|:| |eigmult| (-696)) (|:| |eigvec| (-585 (-632 (-350 (-859 *4)))))))) - (-5 *1 (-248 *4)) (-5 *3 (-632 (-350 (-859 *4))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-393)) - (-5 *2 - (-585 - (-2 (|:| |eigval| (-3 (-350 (-859 *4)) (-1082 (-1092) (-859 *4)))) - (|:| |geneigvec| (-585 (-632 (-350 (-859 *4)))))))) - (-5 *1 (-248 *4)) (-5 *3 (-632 (-350 (-859 *4))))))) + (-12 (-5 *2 (-587 (-554 *1))) (-5 *3 (-587 *1)) (-4 *1 (-256)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-251 *1))) (-4 *1 (-256)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-251 *1)) (-4 *1 (-256))))) +(((*1 *1 *1 *1) (-4 *1 (-256))) ((*1 *1 *1) (-4 *1 (-256)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-554 *1)) (-4 *1 (-256))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-554 *1))) (-4 *1 (-256))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-554 *1))) (-4 *1 (-256))))) +(((*1 *2 *1) (-12 (-4 *1 (-256)) (-5 *2 (-587 (-86)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-256)) (-5 *3 (-1094)) (-5 *2 (-85)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-256)) (-5 *2 (-85))))) +(((*1 *2 *3) + (-12 (-5 *3 (-554 *5)) (-4 *5 (-366 *4)) (-4 *4 (-954 (-488))) (-4 *4 (-499)) + (-5 *2 (-1089 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-554 *1)) (-4 *1 (-965)) (-4 *1 (-256)) (-5 *2 (-1089 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-264)) (-5 *1 (-254)))) + ((*1 *2 *3) (-12 (-5 *3 (-587 (-1077))) (-5 *2 (-264)) (-5 *1 (-254)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-264)) (-5 *1 (-254)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-587 (-1077))) (-5 *3 (-1077)) (-5 *2 (-264)) (-5 *1 (-254))))) +(((*1 *2 *2) + (-12 (-4 *3 (-965)) (-4 *4 (-1159 *3)) (-5 *1 (-137 *3 *4 *2)) + (-4 *2 (-1159 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-251 *2)) (-4 *2 (-1133))))) +(((*1 *1 *1) (-12 (-5 *1 (-251 *2)) (-4 *2 (-21)) (-4 *2 (-1133))))) +(((*1 *1 *1) (-12 (-5 *1 (-251 *2)) (-4 *2 (-21)) (-4 *2 (-1133))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-251 *2)) (-4 *2 (-667)) (-4 *2 (-1133))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-251 *2)) (-4 *2 (-667)) (-4 *2 (-1133))))) +(((*1 *2 *1) + (-12 (-5 *2 (-587 (-251 *3))) (-5 *1 (-251 *3)) (-4 *3 (-499)) + (-4 *3 (-1133))))) +(((*1 *2 *3) + (-12 (-4 *4 (-395)) + (-5 *2 + (-587 + (-2 (|:| |eigval| (-3 (-352 (-861 *4)) (-1084 (-1094) (-861 *4)))) + (|:| |eigmult| (-698)) (|:| |eigvec| (-587 (-634 (-352 (-861 *4)))))))) + (-5 *1 (-250 *4)) (-5 *3 (-634 (-352 (-861 *4))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-395)) + (-5 *2 + (-587 + (-2 (|:| |eigval| (-3 (-352 (-861 *4)) (-1084 (-1094) (-861 *4)))) + (|:| |geneigvec| (-587 (-634 (-352 (-861 *4)))))))) + (-5 *1 (-250 *4)) (-5 *3 (-634 (-352 (-861 *4))))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-350 (-859 *6)) (-1082 (-1092) (-859 *6)))) (-5 *5 (-696)) - (-4 *6 (-393)) (-5 *2 (-585 (-632 (-350 (-859 *6))))) (-5 *1 (-248 *6)) - (-5 *4 (-632 (-350 (-859 *6)))))) + (-12 (-5 *3 (-3 (-352 (-861 *6)) (-1084 (-1094) (-861 *6)))) (-5 *5 (-698)) + (-4 *6 (-395)) (-5 *2 (-587 (-634 (-352 (-861 *6))))) (-5 *1 (-250 *6)) + (-5 *4 (-634 (-352 (-861 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |eigval| (-3 (-350 (-859 *5)) (-1082 (-1092) (-859 *5)))) - (|:| |eigmult| (-696)) (|:| |eigvec| (-585 *4)))) - (-4 *5 (-393)) (-5 *2 (-585 (-632 (-350 (-859 *5))))) (-5 *1 (-248 *5)) - (-5 *4 (-632 (-350 (-859 *5))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-350 (-859 *5)) (-1082 (-1092) (-859 *5)))) (-4 *5 (-393)) - (-5 *2 (-585 (-632 (-350 (-859 *5))))) (-5 *1 (-248 *5)) - (-5 *4 (-632 (-350 (-859 *5))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-632 (-350 (-859 *4)))) (-4 *4 (-393)) - (-5 *2 (-585 (-3 (-350 (-859 *4)) (-1082 (-1092) (-859 *4))))) - (-5 *1 (-248 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-999))) (-5 *1 (-247))))) -(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-1017))) (-5 *1 (-247))))) -(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1017)) (-5 *1 (-247))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-585 (-878))) (-5 *1 (-247))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-585 (-878))) (-5 *1 (-247))))) -(((*1 *1) (-5 *1 (-247)))) -(((*1 *1) (-5 *1 (-247)))) -(((*1 *1) (-5 *1 (-247)))) + (-2 (|:| |eigval| (-3 (-352 (-861 *5)) (-1084 (-1094) (-861 *5)))) + (|:| |eigmult| (-698)) (|:| |eigvec| (-587 *4)))) + (-4 *5 (-395)) (-5 *2 (-587 (-634 (-352 (-861 *5))))) (-5 *1 (-250 *5)) + (-5 *4 (-634 (-352 (-861 *5))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-352 (-861 *5)) (-1084 (-1094) (-861 *5)))) (-4 *5 (-395)) + (-5 *2 (-587 (-634 (-352 (-861 *5))))) (-5 *1 (-250 *5)) + (-5 *4 (-634 (-352 (-861 *5))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-634 (-352 (-861 *4)))) (-4 *4 (-395)) + (-5 *2 (-587 (-3 (-352 (-861 *4)) (-1084 (-1094) (-861 *4))))) + (-5 *1 (-250 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-1001))) (-5 *1 (-249))))) +(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-450)) (-5 *2 (-636 (-1019))) (-5 *1 (-249))))) +(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-450)) (-5 *3 (-1019)) (-5 *1 (-249))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-450)) (-5 *2 (-587 (-880))) (-5 *1 (-249))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-450)) (-5 *3 (-587 (-880))) (-5 *1 (-249))))) +(((*1 *1) (-5 *1 (-249)))) +(((*1 *1) (-5 *1 (-249)))) +(((*1 *1) (-5 *1 (-249)))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-486)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1131)) (-4 *4 (-324 *2)) - (-4 *5 (-324 *2)))) + (-12 (-5 *3 (-488)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1133)) (-4 *4 (-326 *2)) + (-4 *5 (-326 *2)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1037 *2)) (-4 *1 (-243 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1131))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-312)) (-5 *2 (-585 (-1071 *4))) (-5 *1 (-240 *4 *5)) - (-5 *3 (-1071 *4)) (-4 *5 (-1174 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1174 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1174 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1174 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-486))) (-4 *1 (-237 *3)) (-4 *3 (-1131)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-486)) (-4 *1 (-237 *3)) (-4 *3 (-1131))))) + (-12 (-4 *1 (-1039 *2)) (-4 *1 (-245 *3 *2)) (-4 *3 (-72)) (-4 *2 (-1133))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-314)) (-5 *2 (-587 (-1073 *4))) (-5 *1 (-242 *4 *5)) + (-5 *3 (-1073 *4)) (-4 *5 (-1176 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-314)) (-5 *1 (-242 *3 *2)) (-4 *2 (-1176 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-314)) (-5 *1 (-242 *3 *2)) (-4 *2 (-1176 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-314)) (-5 *1 (-242 *3 *2)) (-4 *2 (-1176 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1150 (-488))) (-4 *1 (-239 *3)) (-4 *3 (-1133)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-488)) (-4 *1 (-239 *3)) (-4 *3 (-1133))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-193 *3)) - (-4 *3 (-1015)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1131))))) + (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-320 *3)) (-4 *1 (-195 *3)) + (-4 *3 (-1017)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-239 *3)) (-4 *3 (-1133))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-524)) (-5 *3 (-534)) (-5 *4 (-247)) (-5 *1 (-235))))) -(((*1 *2 *1) (-12 (-5 *2 (-524)) (-5 *1 (-235))))) -(((*1 *2 *1) (-12 (-5 *2 (-534)) (-5 *1 (-235))))) -(((*1 *2 *1) (-12 (-5 *2 (-247)) (-5 *1 (-235))))) -(((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-234))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1017)) (-5 *1 (-234))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-448)) (-5 *1 (-234))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234))))) + (-12 (-5 *2 (-526)) (-5 *3 (-536)) (-5 *4 (-249)) (-5 *1 (-237))))) +(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-237))))) +(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-237))))) +(((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-237))))) +(((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-236))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1019)) (-5 *1 (-236))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-236))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-450)) (-5 *1 (-236))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-236))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-350 (-486))) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) - (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4)))))) + (-12 (-5 *3 (-352 (-488))) (-4 *4 (-13 (-499) (-954 (-488)) (-584 (-488)))) + (-5 *1 (-233 *4 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *4)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-552 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4))) - (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *4 *2))))) + (-12 (-5 *3 (-554 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *4))) + (-4 *4 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *1 (-233 *4 *2))))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-585 (-552 *2))) (-5 *4 (-1092)) - (-4 *2 (-13 (-27) (-1117) (-364 *5))) - (-4 *5 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *5 *2))))) + (|partial| -12 (-5 *3 (-587 (-554 *2))) (-5 *4 (-1094)) + (-4 *2 (-13 (-27) (-1119) (-366 *5))) + (-4 *5 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *1 (-233 *5 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-497) (-952 (-486)) (-582 (-486)))) (-5 *1 (-231 *3 *2)) - (-4 *2 (-13 (-27) (-1117) (-364 *3))))) + (-12 (-4 *3 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *1 (-233 *3 *2)) + (-4 *2 (-13 (-27) (-1119) (-366 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-497) (-952 (-486)) (-582 (-486)))) - (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-364 *4)))))) + (-12 (-5 *3 (-1094)) (-4 *4 (-13 (-499) (-954 (-488)) (-584 (-488)))) + (-5 *1 (-233 *4 *2)) (-4 *2 (-13 (-27) (-1119) (-366 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-497) (-952 (-486)) (-582 (-486)))) + (-12 (-5 *4 (-1094)) (-4 *5 (-13 (-499) (-954 (-488)) (-584 (-488)))) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-585 (-552 *3))) (|:| |vals| (-585 *3)))) - (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-364 *5)))))) + (-2 (|:| |func| *3) (|:| |kers| (-587 (-554 *3))) (|:| |vals| (-587 *3)))) + (-5 *1 (-233 *5 *3)) (-4 *3 (-13 (-27) (-1119) (-366 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) - (-4 *3 (-13 (-364 *4) (-917)))))) + (-12 (-4 *4 (-499)) (-5 *2 (-85)) (-5 *1 (-232 *4 *3)) + (-4 *3 (-13 (-366 *4) (-919)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-585 (-2 (|:| |func| *2) (|:| |pole| (-85))))) - (-4 *2 (-13 (-364 *4) (-917))) (-4 *4 (-497)) (-5 *1 (-230 *4 *2))))) + (|partial| -12 (-5 *3 (-587 (-2 (|:| |func| *2) (|:| |pole| (-85))))) + (-4 *2 (-13 (-366 *4) (-919))) (-4 *4 (-499)) (-5 *1 (-232 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-917)))))) + (-12 (-4 *3 (-499)) (-5 *1 (-232 *3 *2)) (-4 *2 (-13 (-366 *3) (-919)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-364 *3) (-917))) (-5 *1 (-230 *3 *2)) (-4 *3 (-497))))) + (-12 (-4 *2 (-13 (-366 *3) (-919))) (-5 *1 (-232 *3 *2)) (-4 *3 (-499))))) (((*1 *2) - (-12 (-4 *2 (-13 (-364 *3) (-917))) (-5 *1 (-230 *3 *2)) (-4 *3 (-497))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-486))) (-5 *1 (-229))))) -(((*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-229))))) -(((*1 *2 *1) - (-12 (-4 *3 (-190)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) - (-4 *6 (-719)) (-5 *2 (-1 *1 (-696))) (-4 *1 (-213 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-963)) (-4 *3 (-758)) (-4 *5 (-228 *3)) (-4 *6 (-719)) - (-5 *2 (-1 *1 (-696))) (-4 *1 (-213 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-228 *2)) (-4 *2 (-758))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-86)))) - ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-86)))) + (-12 (-4 *2 (-13 (-366 *3) (-919))) (-5 *1 (-232 *3 *2)) (-4 *3 (-499))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-488))) (-5 *1 (-231))))) +(((*1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-231))))) +(((*1 *2 *1) + (-12 (-4 *3 (-192)) (-4 *3 (-965)) (-4 *4 (-760)) (-4 *5 (-230 *4)) + (-4 *6 (-721)) (-5 *2 (-1 *1 (-698))) (-4 *1 (-215 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-965)) (-4 *3 (-760)) (-4 *5 (-230 *3)) (-4 *6 (-721)) + (-5 *2 (-1 *1 (-698))) (-4 *1 (-215 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-698)) (-4 *1 (-230 *2)) (-4 *2 (-760))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-86)))) + ((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-86)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) - (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-696)))) - ((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) - (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-696)))) - ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-758)) (-5 *2 (-696))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-585 (-221))) (-5 *4 (-1092)) (-5 *2 (-51)) - (-5 *1 (-221)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-585 (-221))) (-5 *4 (-1092)) (-5 *1 (-223 *2)) - (-4 *2 (-1131))))) -(((*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-330)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) + (-12 (-4 *1 (-215 *4 *3 *5 *6)) (-4 *4 (-965)) (-4 *3 (-760)) + (-4 *5 (-230 *3)) (-4 *6 (-721)) (-5 *2 (-698)))) + ((*1 *2 *1) + (-12 (-4 *1 (-215 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-760)) + (-4 *5 (-230 *4)) (-4 *6 (-721)) (-5 *2 (-698)))) + ((*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-760)) (-5 *2 (-698))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-587 (-223))) (-5 *4 (-1094)) (-5 *2 (-51)) + (-5 *1 (-223)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-587 (-223))) (-5 *4 (-1094)) (-5 *1 (-225 *2)) + (-4 *2 (-1133))))) +(((*1 *1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-223)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-332)) (-5 *3 (-587 (-223))) (-5 *1 (-224))))) +(((*1 *1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-223)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-834)) (-5 *3 (-587 (-223))) (-5 *1 (-224))))) (((*1 *1) (-5 *1 (-117))) - ((*1 *1 *2) (-12 (-5 *2 (-1049 (-179))) (-5 *1 (-221)))) - ((*1 *2 *3) (-12 (-5 *3 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-785)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-785)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) -(((*1 *2 *3) - (-12 (-5 *3 (-838)) - (-5 *2 - (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) - (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) + ((*1 *1 *2) (-12 (-5 *2 (-1051 (-181))) (-5 *1 (-223)))) + ((*1 *2 *3) (-12 (-5 *3 (-587 (-223))) (-5 *2 (-1051 (-181))) (-5 *1 (-224))))) +(((*1 *1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-223)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-834)) (-5 *3 (-587 (-223))) (-5 *1 (-224))))) +(((*1 *1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-223)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-834)) (-5 *3 (-587 (-223))) (-5 *1 (-224))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-587 (-223))) (-5 *1 (-224))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-587 (-223))) (-5 *1 (-224))))) +(((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-223)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-587 (-223))) (-5 *1 (-224))))) +(((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-223)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1077)) (-5 *3 (-587 (-223))) (-5 *1 (-224))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-587 (-223))) (-5 *1 (-224))))) +(((*1 *2 *3) + (-12 (-5 *3 (-840)) + (-5 *2 + (-2 (|:| |brans| (-587 (-587 (-858 (-181))))) + (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181))))) (-5 *1 (-126)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-838)) (-5 *4 (-350 (-486))) + (-12 (-5 *3 (-840)) (-5 *4 (-352 (-488))) (-5 *2 - (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) - (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) + (-2 (|:| |brans| (-587 (-587 (-858 (-181))))) + (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181))))) (-5 *1 (-126)))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) - (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) - (-5 *1 (-126)) (-5 *3 (-585 (-856 (-179)))))) + (-2 (|:| |brans| (-587 (-587 (-858 (-181))))) + (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181))))) + (-5 *1 (-126)) (-5 *3 (-587 (-858 (-181)))))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) - (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) - (-5 *1 (-126)) (-5 *3 (-585 (-585 (-856 (-179))))))) - ((*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-221)))) - ((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-221)))) - ((*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-221)))) - ((*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-350 (-486))))) (-5 *1 (-221)))) - ((*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-330)))) (-5 *1 (-221))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-221))) (-5 *4 (-1092)) (-5 *2 (-85)) (-5 *1 (-221))))) + (-2 (|:| |brans| (-587 (-587 (-858 (-181))))) + (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181))))) + (-5 *1 (-126)) (-5 *3 (-587 (-587 (-858 (-181))))))) + ((*1 *1 *2) (-12 (-5 *2 (-587 (-1005 (-332)))) (-5 *1 (-223)))) + ((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-223))))) +(((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-223)))) + ((*1 *1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-223))))) +(((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-223)))) + ((*1 *1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-223))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-181) (-181) (-181) (-181))) (-5 *1 (-223)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-181) (-181) (-181))) (-5 *1 (-223)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-181) (-181))) (-5 *1 (-223))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 (-1005 (-352 (-488))))) (-5 *1 (-223)))) + ((*1 *1 *2) (-12 (-5 *2 (-587 (-1005 (-332)))) (-5 *1 (-223))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-587 (-223))) (-5 *4 (-1094)) (-5 *2 (-85)) (-5 *1 (-223))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1184)) - (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-475)) (-1015))))) + (-12 (-5 *4 (-1008 (-332))) (-5 *5 (-587 (-223))) (-5 *2 (-1186)) + (-5 *1 (-217 *3)) (-4 *3 (-13 (-557 (-477)) (-1017))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1006 (-330))) (-5 *2 (-1184)) (-5 *1 (-215 *3)) - (-4 *3 (-13 (-555 (-475)) (-1015))))) + (-12 (-5 *4 (-1008 (-332))) (-5 *2 (-1186)) (-5 *1 (-217 *3)) + (-4 *3 (-13 (-557 (-477)) (-1017))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-789 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) - (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1184)) (-5 *1 (-215 *6)))) + (-12 (-5 *3 (-791 *6)) (-5 *4 (-1008 (-332))) (-5 *5 (-587 (-223))) + (-4 *6 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1186)) (-5 *1 (-217 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-789 *5)) (-5 *4 (-1006 (-330))) - (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1184)) (-5 *1 (-215 *5)))) + (-12 (-5 *3 (-791 *5)) (-5 *4 (-1008 (-332))) + (-4 *5 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1186)) (-5 *1 (-217 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-791 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) - (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1185)) (-5 *1 (-215 *6)))) + (-12 (-5 *3 (-793 *6)) (-5 *4 (-1008 (-332))) (-5 *5 (-587 (-223))) + (-4 *6 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1187)) (-5 *1 (-217 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-791 *5)) (-5 *4 (-1006 (-330))) - (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1185)) (-5 *1 (-215 *5)))) + (-12 (-5 *3 (-793 *5)) (-5 *4 (-1008 (-332))) + (-4 *5 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1187)) (-5 *1 (-217 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1185)) - (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-475)) (-1015))))) + (-12 (-5 *4 (-1008 (-332))) (-5 *5 (-587 (-223))) (-5 *2 (-1187)) + (-5 *1 (-217 *3)) (-4 *3 (-13 (-557 (-477)) (-1017))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1006 (-330))) (-5 *2 (-1185)) (-5 *1 (-215 *3)) - (-4 *3 (-13 (-555 (-475)) (-1015))))) + (-12 (-5 *4 (-1008 (-332))) (-5 *2 (-1187)) (-5 *1 (-217 *3)) + (-4 *3 (-13 (-557 (-477)) (-1017))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-794 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) - (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1185)) (-5 *1 (-215 *6)))) + (-12 (-5 *3 (-796 *6)) (-5 *4 (-1008 (-332))) (-5 *5 (-587 (-223))) + (-4 *6 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1187)) (-5 *1 (-217 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-794 *5)) (-5 *4 (-1006 (-330))) - (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1185)) (-5 *1 (-215 *5)))) + (-12 (-5 *3 (-796 *5)) (-5 *4 (-1008 (-332))) + (-4 *5 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1187)) (-5 *1 (-217 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *5 (-585 (-221))) - (-5 *2 (-1184)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-181) (-181))) (-5 *4 (-1005 (-332))) (-5 *5 (-587 (-223))) + (-5 *2 (-1186)) (-5 *1 (-218)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1184)) - (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-181) (-181))) (-5 *4 (-1005 (-332))) (-5 *2 (-1186)) + (-5 *1 (-218)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) - (-5 *5 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) + (-12 (-5 *3 (-791 (-1 (-181) (-181)))) (-5 *4 (-1005 (-332))) + (-5 *5 (-587 (-223))) (-5 *2 (-1186)) (-5 *1 (-218)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *2 (-1184)) - (-5 *1 (-216)))) + (-12 (-5 *3 (-791 (-1 (-181) (-181)))) (-5 *4 (-1005 (-332))) (-5 *2 (-1186)) + (-5 *1 (-218)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) - (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) + (-12 (-5 *3 (-793 (-1 (-181) (-181)))) (-5 *4 (-1005 (-332))) + (-5 *5 (-587 (-223))) (-5 *2 (-1187)) (-5 *1 (-218)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) (-5 *2 (-1185)) - (-5 *1 (-216)))) + (-12 (-5 *3 (-793 (-1 (-181) (-181)))) (-5 *4 (-1005 (-332))) (-5 *2 (-1187)) + (-5 *1 (-218)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-330))) - (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-858 (-181)) (-181))) (-5 *4 (-1005 (-332))) + (-5 *5 (-587 (-223))) (-5 *2 (-1187)) (-5 *1 (-218)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1185)) - (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-858 (-181)) (-181))) (-5 *4 (-1005 (-332))) (-5 *2 (-1187)) + (-5 *1 (-218)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-330))) - (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-181) (-181) (-181))) (-5 *4 (-1005 (-332))) + (-5 *5 (-587 (-223))) (-5 *2 (-1187)) (-5 *1 (-218)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-330))) (-5 *2 (-1185)) - (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-181) (-181) (-181))) (-5 *4 (-1005 (-332))) (-5 *2 (-1187)) + (-5 *1 (-218)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-330))) - (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-858 (-181)) (-181) (-181))) (-5 *4 (-1005 (-332))) + (-5 *5 (-587 (-223))) (-5 *2 (-1187)) (-5 *1 (-218)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-330))) - (-5 *2 (-1185)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-858 (-181)) (-181) (-181))) (-5 *4 (-1005 (-332))) + (-5 *2 (-1187)) (-5 *1 (-218)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-330))) - (-5 *5 (-585 (-221))) (-5 *2 (-1185)) (-5 *1 (-216)))) + (-12 (-5 *3 (-796 (-1 (-181) (-181) (-181)))) (-5 *4 (-1005 (-332))) + (-5 *5 (-587 (-223))) (-5 *2 (-1187)) (-5 *1 (-218)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-330))) - (-5 *2 (-1185)) (-5 *1 (-216)))) + (-12 (-5 *3 (-796 (-1 (-181) (-181) (-181)))) (-5 *4 (-1005 (-332))) + (-5 *2 (-1187)) (-5 *1 (-218)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-249 *7)) (-5 *4 (-1092)) (-5 *5 (-585 (-221))) - (-4 *7 (-364 *6)) (-4 *6 (-13 (-497) (-758) (-952 (-486)))) (-5 *2 (-1184)) - (-5 *1 (-217 *6 *7)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-585 (-179))) (-5 *2 (-1184)) (-5 *1 (-220)))) + (-12 (-5 *3 (-251 *7)) (-5 *4 (-1094)) (-5 *5 (-587 (-223))) + (-4 *7 (-366 *6)) (-4 *6 (-13 (-499) (-760) (-954 (-488)))) (-5 *2 (-1186)) + (-5 *1 (-219 *6 *7)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-587 (-181))) (-5 *2 (-1186)) (-5 *1 (-222)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-585 (-179))) (-5 *4 (-585 (-221))) (-5 *2 (-1184)) - (-5 *1 (-220)))) - ((*1 *2 *3) (-12 (-5 *3 (-585 (-856 (-179)))) (-5 *2 (-1184)) (-5 *1 (-220)))) + (-12 (-5 *3 (-587 (-181))) (-5 *4 (-587 (-223))) (-5 *2 (-1186)) + (-5 *1 (-222)))) + ((*1 *2 *3) (-12 (-5 *3 (-587 (-858 (-181)))) (-5 *2 (-1186)) (-5 *1 (-222)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-585 (-856 (-179)))) (-5 *4 (-585 (-221))) (-5 *2 (-1184)) - (-5 *1 (-220)))) - ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-585 (-179))) (-5 *2 (-1185)) (-5 *1 (-220)))) + (-12 (-5 *3 (-587 (-858 (-181)))) (-5 *4 (-587 (-223))) (-5 *2 (-1186)) + (-5 *1 (-222)))) + ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-587 (-181))) (-5 *2 (-1187)) (-5 *1 (-222)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-585 (-179))) (-5 *4 (-585 (-221))) (-5 *2 (-1185)) - (-5 *1 (-220))))) -(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218))))) -(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-218))))) -(((*1 *2 *2) (-12 (-5 *2 (-486)) (-5 *1 (-218))))) + (-12 (-5 *3 (-587 (-181))) (-5 *4 (-587 (-223))) (-5 *2 (-1187)) + (-5 *1 (-222))))) +(((*1 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-220))))) +(((*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-220))))) +(((*1 *2 *2) (-12 (-5 *2 (-488)) (-5 *1 (-220))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1003 (-179))) - (-5 *2 (-1185)) (-5 *1 (-218))))) + (-12 (-5 *3 (-1 (-144 (-181)) (-144 (-181)))) (-5 *4 (-1005 (-181))) + (-5 *2 (-1187)) (-5 *1 (-220))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1003 (-179))) - (-5 *5 (-85)) (-5 *2 (-1185)) (-5 *1 (-218))))) + (-12 (-5 *3 (-1 (-144 (-181)) (-144 (-181)))) (-5 *4 (-1005 (-181))) + (-5 *5 (-85)) (-5 *2 (-1187)) (-5 *1 (-220))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-856 (-179)) (-179) (-179))) - (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216))))) + (-12 (-5 *2 (-1 (-858 (-181)) (-181) (-181))) + (-5 *3 (-1 (-181) (-181) (-181) (-181))) (-5 *1 (-218))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-791 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) - (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1049 (-179))) - (-5 *1 (-215 *6)))) + (-12 (-5 *3 (-793 *6)) (-5 *4 (-1008 (-332))) (-5 *5 (-587 (-223))) + (-4 *6 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1051 (-181))) + (-5 *1 (-217 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-791 *5)) (-5 *4 (-1006 (-330))) - (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1049 (-179))) - (-5 *1 (-215 *5)))) + (-12 (-5 *3 (-793 *5)) (-5 *4 (-1008 (-332))) + (-4 *5 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1051 (-181))) + (-5 *1 (-217 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) - (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-475)) (-1015))))) + (-12 (-5 *4 (-1008 (-332))) (-5 *5 (-587 (-223))) (-5 *2 (-1051 (-181))) + (-5 *1 (-217 *3)) (-4 *3 (-13 (-557 (-477)) (-1017))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1006 (-330))) (-5 *2 (-1049 (-179))) (-5 *1 (-215 *3)) - (-4 *3 (-13 (-555 (-475)) (-1015))))) + (-12 (-5 *4 (-1008 (-332))) (-5 *2 (-1051 (-181))) (-5 *1 (-217 *3)) + (-4 *3 (-13 (-557 (-477)) (-1017))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-794 *6)) (-5 *4 (-1006 (-330))) (-5 *5 (-585 (-221))) - (-4 *6 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1049 (-179))) - (-5 *1 (-215 *6)))) + (-12 (-5 *3 (-796 *6)) (-5 *4 (-1008 (-332))) (-5 *5 (-587 (-223))) + (-4 *6 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1051 (-181))) + (-5 *1 (-217 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-794 *5)) (-5 *4 (-1006 (-330))) - (-4 *5 (-13 (-555 (-475)) (-1015))) (-5 *2 (-1049 (-179))) - (-5 *1 (-215 *5)))) + (-12 (-5 *3 (-796 *5)) (-5 *4 (-1008 (-332))) + (-4 *5 (-13 (-557 (-477)) (-1017))) (-5 *2 (-1051 (-181))) + (-5 *1 (-217 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) - (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-793 (-1 (-181) (-181)))) (-5 *4 (-1005 (-332))) + (-5 *5 (-587 (-223))) (-5 *2 (-1051 (-181))) (-5 *1 (-218)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-330))) - (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-793 (-1 (-181) (-181)))) (-5 *4 (-1005 (-332))) + (-5 *2 (-1051 (-181))) (-5 *1 (-218)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-330))) - (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-858 (-181)) (-181))) (-5 *4 (-1005 (-332))) + (-5 *5 (-587 (-223))) (-5 *2 (-1051 (-181))) (-5 *1 (-218)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-330))) - (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-858 (-181)) (-181))) (-5 *4 (-1005 (-332))) + (-5 *2 (-1051 (-181))) (-5 *1 (-218)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-330))) - (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-181) (-181) (-181))) (-5 *4 (-1005 (-332))) + (-5 *5 (-587 (-223))) (-5 *2 (-1051 (-181))) (-5 *1 (-218)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-330))) - (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-181) (-181) (-181))) (-5 *4 (-1005 (-332))) + (-5 *2 (-1051 (-181))) (-5 *1 (-218)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-330))) - (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-858 (-181)) (-181) (-181))) (-5 *4 (-1005 (-332))) + (-5 *5 (-587 (-223))) (-5 *2 (-1051 (-181))) (-5 *1 (-218)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-330))) - (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-858 (-181)) (-181) (-181))) (-5 *4 (-1005 (-332))) + (-5 *2 (-1051 (-181))) (-5 *1 (-218)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-330))) - (-5 *5 (-585 (-221))) (-5 *2 (-1049 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-796 (-1 (-181) (-181) (-181)))) (-5 *4 (-1005 (-332))) + (-5 *5 (-587 (-223))) (-5 *2 (-1051 (-181))) (-5 *1 (-218)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-330))) - (-5 *2 (-1049 (-179))) (-5 *1 (-216))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-176 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-4 *1 (-214 *3)))) - ((*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) - (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-585 *4))))) + (-12 (-5 *3 (-796 (-1 (-181) (-181) (-181)))) (-5 *4 (-1005 (-332))) + (-5 *2 (-1051 (-181))) (-5 *1 (-218))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-5 *1 (-178 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1133)) (-4 *1 (-216 *3)))) + ((*1 *1) (-12 (-4 *1 (-216 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-216 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-216 *2)) (-4 *2 (-1133))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-216 *2)) (-4 *2 (-1133))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-216 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-216 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-216 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) + (-12 (-4 *1 (-215 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-760)) + (-4 *5 (-230 *4)) (-4 *6 (-721)) (-5 *2 (-587 *4))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) - (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-585 (-696))))) + (-12 (-4 *1 (-215 *4 *3 *5 *6)) (-4 *4 (-965)) (-4 *3 (-760)) + (-4 *5 (-230 *3)) (-4 *6 (-721)) (-5 *2 (-587 (-698))))) ((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) - (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-585 (-696)))))) + (-12 (-4 *1 (-215 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-760)) + (-4 *5 (-230 *4)) (-4 *6 (-721)) (-5 *2 (-587 (-698)))))) (((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) - (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-85))))) + (-12 (-4 *1 (-215 *3 *4 *5 *6)) (-4 *3 (-965)) (-4 *4 (-760)) + (-4 *5 (-230 *4)) (-4 *6 (-721)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-719)) - (-4 *2 (-228 *4))))) + (-12 (-4 *1 (-215 *3 *4 *2 *5)) (-4 *3 (-965)) (-4 *4 (-760)) (-4 *5 (-721)) + (-4 *2 (-230 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-963)) (-4 *3 (-758)) - (-4 *4 (-228 *3)) (-4 *5 (-719))))) + (-12 (-4 *1 (-215 *2 *3 *4 *5)) (-4 *2 (-965)) (-4 *3 (-760)) + (-4 *4 (-230 *3)) (-4 *5 (-721))))) (((*1 *1 *1) - (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-963)) (-4 *3 (-758)) - (-4 *4 (-228 *3)) (-4 *5 (-719))))) -(((*1 *2 *1) (-12 (-5 *2 (-282)) (-5 *1 (-208))))) + (-12 (-4 *1 (-215 *2 *3 *4 *5)) (-4 *2 (-965)) (-4 *3 (-760)) + (-4 *4 (-230 *3)) (-4 *5 (-721))))) +(((*1 *2 *1) (-12 (-5 *2 (-284)) (-5 *1 (-210))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) - ((*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) - ((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207))))) -(((*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207))))) -(((*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207))))) -(((*1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-207))))) + ((*1 *2 *1) (-12 (-5 *1 (-160 *2)) (-4 *2 (-162)))) + ((*1 *2 *1) (-12 (-5 *2 (-210)) (-5 *1 (-209))))) +(((*1 *2 *1) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-209))))) +(((*1 *1 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-209))))) +(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-209))))) (((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-696)) - (-4 *3 (-13 (-665) (-320) (-10 -7 (-15 ** (*3 *3 (-486)))))) - (-5 *1 (-204 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-203 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131))))) -(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1131))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1131))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1131))))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-486)) (-5 *1 (-199)))) - ((*1 *2 *3) (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-486)) (-5 *1 (-199))))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1187)) (-5 *1 (-199)))) - ((*1 *2 *3) (-12 (-5 *3 (-585 (-1075))) (-5 *2 (-1187)) (-5 *1 (-199))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-486)) (-5 *1 (-199))))) -(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-199))))) -(((*1 *1 *2) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1131)) (-4 *1 (-196 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-249 (-859 (-486)))) - (-5 *2 - (-2 (|:| |varOrder| (-585 (-1092))) - (|:| |inhom| (-3 (-585 (-1181 (-696))) "failed")) - (|:| |hom| (-585 (-1181 (-696)))))) - (-5 *1 (-194))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-193 *3)))) - ((*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1015))))) -(((*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117)))))) -(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117)))))) -(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117)))))) -(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1117)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))) -(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) + (|partial| -12 (-5 *2 (-698)) + (-4 *3 (-13 (-667) (-322) (-10 -7 (-15 ** (*3 *3 (-488)))))) + (-5 *1 (-206 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-760)) (-5 *1 (-205 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-204 *2)) (-4 *2 (-1133))))) +(((*1 *1 *1) (-12 (-4 *1 (-204 *2)) (-4 *2 (-1133))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-204 *2)) (-4 *2 (-1133))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-204 *2)) (-4 *2 (-1133))))) +(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-488)) (-5 *1 (-201)))) + ((*1 *2 *3) (-12 (-5 *3 (-587 (-1077))) (-5 *2 (-488)) (-5 *1 (-201))))) +(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1189)) (-5 *1 (-201)))) + ((*1 *2 *3) (-12 (-5 *3 (-587 (-1077))) (-5 *2 (-1189)) (-5 *1 (-201))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1077)) (-5 *3 (-488)) (-5 *1 (-201))))) +(((*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-201))))) +(((*1 *1 *2) (-12 (-5 *2 (-1183 *4)) (-4 *4 (-1133)) (-4 *1 (-198 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-251 (-861 (-488)))) + (-5 *2 + (-2 (|:| |varOrder| (-587 (-1094))) + (|:| |inhom| (-3 (-587 (-1183 (-698))) "failed")) + (|:| |hom| (-587 (-1183 (-698)))))) + (-5 *1 (-196))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-4 *1 (-195 *3)))) + ((*1 *1) (-12 (-4 *1 (-195 *2)) (-4 *2 (-1017))))) +(((*1 *1) (-12 (-5 *1 (-183 *2)) (-4 *2 (-13 (-314) (-1119)))))) +(((*1 *1 *2) (-12 (-5 *1 (-183 *2)) (-4 *2 (-13 (-314) (-1119)))))) +(((*1 *1 *2) (-12 (-5 *1 (-183 *2)) (-4 *2 (-13 (-314) (-1119)))))) +(((*1 *1 *2) (-12 (-5 *1 (-183 *2)) (-4 *2 (-13 (-314) (-1119)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182))))) +(((*1 *2 *2) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) + ((*1 *2 *2) (-12 (-5 *2 (-144 (-181))) (-5 *1 (-182))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-181))))) (((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-85)) (-5 *3 (-859 *6)) (-5 *4 (-1092)) - (-5 *5 (-752 *7)) (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) - (-4 *7 (-13 (-1117) (-29 *6))) (-5 *1 (-178 *6 *7)))) + (|partial| -12 (-5 *2 (-85)) (-5 *3 (-861 *6)) (-5 *4 (-1094)) + (-5 *5 (-754 *7)) (-4 *6 (-13 (-395) (-954 (-488)) (-584 (-488)))) + (-4 *7 (-13 (-1119) (-29 *6))) (-5 *1 (-180 *6 *7)))) ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1087 *6)) (-5 *4 (-752 *6)) - (-4 *6 (-13 (-1117) (-29 *5))) - (-4 *5 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-178 *5 *6))))) + (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1089 *6)) (-5 *4 (-754 *6)) + (-4 *6 (-13 (-1119) (-29 *5))) + (-4 *5 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-180 *5 *6))))) (((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-752 *4)) (-5 *3 (-552 *4)) (-5 *5 (-85)) - (-4 *4 (-13 (-1117) (-29 *6))) - (-4 *6 (-13 (-393) (-952 (-486)) (-582 (-486)))) (-5 *1 (-178 *6 *4))))) + (|partial| -12 (-5 *2 (-754 *4)) (-5 *3 (-554 *4)) (-5 *5 (-85)) + (-4 *4 (-13 (-1119) (-29 *6))) + (-4 *6 (-13 (-395) (-954 (-488)) (-584 (-488)))) (-5 *1 (-180 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-393) (-952 (-486)) (-582 (-486)))) - (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1117) (-29 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-963)) (-14 *3 (-585 (-1092))))) + (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-395) (-954 (-488)) (-584 (-488)))) + (-5 *2 (-85)) (-5 *1 (-180 *4 *5)) (-4 *5 (-13 (-1119) (-29 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-965)) (-14 *3 (-587 (-1094))))) ((*1 *1 *1) - (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-963) (-758))) - (-14 *3 (-585 (-1092)))))) + (-12 (-5 *1 (-179 *2 *3)) (-4 *2 (-13 (-965) (-760))) + (-14 *3 (-587 (-1094)))))) (((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) - (-14 *4 (-585 (-1092))))) + (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-965)) + (-14 *4 (-587 (-1094))))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) - (-14 *4 (-585 (-1092)))))) + (-12 (-5 *2 (-85)) (-5 *1 (-179 *3 *4)) (-4 *3 (-13 (-965) (-760))) + (-14 *4 (-587 (-1094)))))) (((*1 *1 *2) - (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-963) (-758))) (-5 *1 (-177 *3 *4)) - (-14 *4 (-585 (-1092)))))) + (-12 (-5 *2 (-267 *3)) (-4 *3 (-13 (-965) (-760))) (-5 *1 (-179 *3 *4)) + (-14 *4 (-587 (-1094)))))) (((*1 *1 *1) - (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-963) (-758))) - (-14 *3 (-585 (-1092)))))) + (-12 (-5 *1 (-179 *2 *3)) (-4 *2 (-13 (-965) (-760))) + (-14 *3 (-587 (-1094)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1092)) (-5 *6 (-85)) - (-4 *7 (-13 (-258) (-120) (-952 (-486)) (-582 (-486)))) - (-4 *3 (-13 (-1117) (-873) (-29 *7))) + (-12 (-5 *4 (-1094)) (-5 *6 (-85)) + (-4 *7 (-13 (-260) (-120) (-954 (-488)) (-584 (-488)))) + (-4 *3 (-13 (-1119) (-875) (-29 *7))) (-5 *2 - (-3 (|:| |f1| (-752 *3)) (|:| |f2| (-585 (-752 *3))) (|:| |fail| "failed") + (-3 (|:| |f1| (-754 *3)) (|:| |f2| (-587 (-754 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-173 *7 *3)) (-5 *5 (-752 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-350 (-486))) (-5 *1 (-171))))) + (-5 *1 (-175 *7 *3)) (-5 *5 (-754 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-352 (-488))) (-5 *1 (-173))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-301)) (-5 *2 (-85)) (-5 *1 (-172 *4 *3)) (-4 *3 (-1159 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1157 *4))))) + (-12 (-5 *3 (-698)) (-4 *4 (-301)) (-5 *1 (-172 *4 *2)) (-4 *2 (-1159 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1157 *4))))) + (-12 (-5 *3 (-698)) (-4 *4 (-301)) (-5 *1 (-172 *4 *2)) (-4 *2 (-1159 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-585 (-2 (|:| |deg| (-696)) (|:| -2578 *3)))) - (-5 *1 (-170 *4 *3)) (-4 *3 (-1157 *4))))) + (-12 (-4 *4 (-301)) (-5 *2 (-587 (-2 (|:| |deg| (-698)) (|:| -2581 *3)))) + (-5 *1 (-172 *4 *3)) (-4 *3 (-1159 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-299)) + (-12 (-5 *4 (-85)) (-4 *5 (-301)) (-5 *2 (-2 (|:| |cont| *5) - (|:| -1784 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-486))))))) - (-5 *1 (-170 *5 *3)) (-4 *3 (-1157 *5))))) + (|:| -1787 (-587 (-2 (|:| |irr| *3) (|:| -2400 (-488))))))) + (-5 *1 (-172 *5 *3)) (-4 *3 (-1159 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1157 (-350 *2))) - (-4 *2 (-1157 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-314)) (-4 *6 (-1159 (-352 *2))) + (-4 *2 (-1159 *5)) (-5 *1 (-171 *5 *2 *6 *3)) (-4 *3 (-293 *5 *2 *6))))) (((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-696)) (-5 *1 (-166 *4 *2)) (-14 *4 (-832)) (-4 *2 (-1015))))) -(((*1 *2 *3) (-12 (-5 *2 (-348 (-1087 (-486)))) (-5 *1 (-165)) (-5 *3 (-486))))) -(((*1 *2 *3) (-12 (-5 *2 (-585 (-1087 (-486)))) (-5 *1 (-165)) (-5 *3 (-486))))) + (-12 (-5 *3 (-698)) (-5 *1 (-168 *4 *2)) (-14 *4 (-834)) (-4 *2 (-1017))))) +(((*1 *2 *3) (-12 (-5 *2 (-350 (-1089 (-488)))) (-5 *1 (-167)) (-5 *3 (-488))))) +(((*1 *2 *3) (-12 (-5 *2 (-587 (-1089 (-488)))) (-5 *1 (-167)) (-5 *3 (-488))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-585 (-486))) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) + (-12 (-5 *3 (-587 (-488))) (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 (-832))) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) + (-12 (-5 *3 (-587 (-834))) (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1094 (-350 (-486)))) (-5 *2 (-350 (-486))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1094 (-350 (-486)))) (-5 *1 (-164))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1181 (-632 *4))) (-4 *4 (-146)) - (-5 *2 (-1181 (-632 (-859 *4)))) (-5 *1 (-163 *4))))) -(((*1 *1) (-5 *1 (-161)))) -(((*1 *1) (-5 *1 (-161)))) -(((*1 *1) (-5 *1 (-161)))) -(((*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161))))) -(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-585 (-85)))))) -(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-585 (-776)))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-1097))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) -(((*1 *2 *3) (-12 (-5 *3 (-448)) (-5 *2 (-634 (-157))) (-5 *1 (-157))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1131)) (-5 *1 (-156 *3 *2)) (-4 *2 (-618 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1131)) (-5 *2 (-696)) (-5 *1 (-156 *4 *3)) (-4 *3 (-618 *4))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1131)) (-5 *1 (-156 *3 *2)) (-4 *2 (-618 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-757))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1784 (-348 *3)))) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1157 (-142 *4)))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1157 (-142 *2)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-757))) - (-4 *3 (-1157 *2))))) + (-12 (-5 *3 (-1096 (-352 (-488)))) (-5 *2 (-352 (-488))) (-5 *1 (-166))))) +(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166))))) +(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166))))) +(((*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166))))) +(((*1 *2 *3) (-12 (-5 *3 (-698)) (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166))))) +(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1096 (-352 (-488)))) (-5 *1 (-166))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1183 (-634 *4))) (-4 *4 (-148)) + (-5 *2 (-1183 (-634 (-861 *4)))) (-5 *1 (-165 *4))))) +(((*1 *1) (-5 *1 (-163)))) +(((*1 *1) (-5 *1 (-163)))) +(((*1 *1) (-5 *1 (-163)))) +(((*1 *2 *1) (-12 (-5 *2 (-163)) (-5 *1 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-162)) (-5 *2 (-163))))) +(((*1 *2 *1) (-12 (-4 *1 (-162)) (-5 *2 (-587 (-85)))))) +(((*1 *2 *1) (-12 (-4 *1 (-162)) (-5 *2 (-587 (-778)))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-1099))) (-5 *1 (-160 *3)) (-4 *3 (-162))))) +(((*1 *2 *3) (-12 (-5 *3 (-450)) (-5 *2 (-636 (-159))) (-5 *1 (-159))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1133)) (-5 *1 (-158 *3 *2)) (-4 *2 (-620 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1133)) (-5 *2 (-698)) (-5 *1 (-158 *4 *3)) (-4 *3 (-620 *4))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1133)) (-5 *1 (-158 *3 *2)) (-4 *2 (-620 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-314) (-759))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1787 (-350 *3)))) (-5 *1 (-157 *4 *3)) + (-4 *3 (-1159 (-144 *4)))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-314) (-759))) (-5 *1 (-157 *2 *3)) + (-4 *3 (-1159 (-144 *2)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-144 *4)) (-5 *1 (-157 *4 *3)) (-4 *4 (-13 (-314) (-759))) + (-4 *3 (-1159 *2))))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1157 (-142 *2))))) + (-12 (-4 *2 (-13 (-314) (-759))) (-5 *1 (-157 *2 *3)) + (-4 *3 (-1159 (-144 *2))))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1157 (-142 *2)))))) + (-12 (-4 *2 (-13 (-314) (-759))) (-5 *1 (-157 *2 *3)) + (-4 *3 (-1159 (-144 *2)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-757))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-1157 (-142 *3)))))) + (-12 (-4 *3 (-13 (-314) (-759))) (-5 *1 (-157 *3 *2)) + (-4 *2 (-1159 (-144 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) + (-12 (-5 *5 (-85)) (-4 *4 (-13 (-314) (-759))) (-5 *2 (-350 *3)) + (-5 *1 (-157 *4 *3)) (-4 *3 (-1159 (-144 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1157 (-142 *4)))))) + (-12 (-4 *4 (-13 (-314) (-759))) (-5 *2 (-350 *3)) (-5 *1 (-157 *4 *3)) + (-4 *3 (-1159 (-144 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-757))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-1157 (-142 *3)))))) + (-12 (-4 *3 (-13 (-314) (-759))) (-5 *1 (-157 *3 *2)) + (-4 *2 (-1159 (-144 *3)))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-757))) - (-5 *2 (-585 (-2 (|:| -1784 (-585 *3)) (|:| -1597 *5)))) - (-5 *1 (-155 *5 *3)) (-4 *3 (-1157 (-142 *5))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-314) (-759))) + (-5 *2 (-587 (-2 (|:| -1787 (-587 *3)) (|:| -1600 *5)))) + (-5 *1 (-157 *5 *3)) (-4 *3 (-1159 (-144 *5))))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-312) (-757))) - (-5 *2 (-585 (-2 (|:| -1784 (-585 *3)) (|:| -1597 *4)))) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4)))))) + (-12 (-4 *4 (-13 (-314) (-759))) + (-5 *2 (-587 (-2 (|:| -1787 (-587 *3)) (|:| -1600 *4)))) + (-5 *1 (-157 *4 *3)) (-4 *3 (-1159 (-144 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-585 (-142 *4))) (-5 *1 (-128 *3 *4)) - (-4 *3 (-1157 (-142 (-486)))) (-4 *4 (-13 (-312) (-757))))) + (-12 (-5 *2 (-587 (-144 *4))) (-5 *1 (-128 *3 *4)) + (-4 *3 (-1159 (-144 (-488)))) (-4 *4 (-13 (-314) (-759))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-585 (-142 *4))) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4))))) + (-12 (-4 *4 (-13 (-314) (-759))) (-5 *2 (-587 (-144 *4))) + (-5 *1 (-157 *4 *3)) (-4 *3 (-1159 (-144 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-585 (-142 *4))) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1157 (-142 *4)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-585 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) + (-12 (-4 *4 (-13 (-314) (-759))) (-5 *2 (-587 (-144 *4))) + (-5 *1 (-157 *4 *3)) (-4 *3 (-1159 (-144 *4)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-587 *3)) (-4 *3 (-260)) (-5 *1 (-155 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-260)) (-5 *1 (-155 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1117) (-917)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1117) (-917)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1117) (-917)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1117) (-917)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1117) (-917)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1117) (-917)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1117) (-917)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) - (-5 *1 (-150 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) - (-5 *1 (-150 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) - (-5 *1 (-150 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) - (-5 *1 (-150 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) - (-5 *1 (-150 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) - (-5 *1 (-150 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1117) (-917))) - (-5 *1 (-150 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-78))) (-5 *1 (-149))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1071 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1071 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1071 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1051)) (-5 *3 (-247)) (-5 *1 (-141))))) -(((*1 *2 *3) (-12 (-5 *3 (-1051)) (-5 *2 (-634 (-235))) (-5 *1 (-141))))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-585 (-634 (-235)))) (-5 *1 (-141))))) -(((*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) - (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-975)) (-4 *3 (-1117)) + (-12 (-5 *2 (-1 (-858 *3) (-858 *3))) (-5 *1 (-152 *3)) + (-4 *3 (-13 (-314) (-1119) (-919)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-858 *3) (-858 *3))) (-5 *1 (-152 *3)) + (-4 *3 (-13 (-314) (-1119) (-919)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-858 *3) (-858 *3))) (-5 *1 (-152 *3)) + (-4 *3 (-13 (-314) (-1119) (-919)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-858 *3) (-858 *3))) (-5 *1 (-152 *3)) + (-4 *3 (-13 (-314) (-1119) (-919)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-858 *3) (-858 *3))) (-5 *1 (-152 *3)) + (-4 *3 (-13 (-314) (-1119) (-919)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-858 *3) (-858 *3))) (-5 *1 (-152 *3)) + (-4 *3 (-13 (-314) (-1119) (-919)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-858 *3) (-858 *3))) (-5 *1 (-152 *3)) + (-4 *3 (-13 (-314) (-1119) (-919)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-858 *3)) (-4 *3 (-13 (-314) (-1119) (-919))) + (-5 *1 (-152 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-858 *3)) (-4 *3 (-13 (-314) (-1119) (-919))) + (-5 *1 (-152 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-858 *3)) (-4 *3 (-13 (-314) (-1119) (-919))) + (-5 *1 (-152 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-858 *3)) (-4 *3 (-13 (-314) (-1119) (-919))) + (-5 *1 (-152 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-858 *3)) (-4 *3 (-13 (-314) (-1119) (-919))) + (-5 *1 (-152 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-858 *3)) (-4 *3 (-13 (-314) (-1119) (-919))) + (-5 *1 (-152 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-858 *3)) (-4 *3 (-13 (-314) (-1119) (-919))) + (-5 *1 (-152 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-78))) (-5 *1 (-151))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-151))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1073 *2)) (-4 *2 (-260)) (-5 *1 (-150 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-150 *3)) (-4 *3 (-260))))) +(((*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-150 *3)) (-4 *3 (-260))))) +(((*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-150 *3)) (-4 *3 (-260))))) +(((*1 *1 *1) (-12 (-5 *1 (-150 *2)) (-4 *2 (-260))))) +(((*1 *2 *1) (-12 (-5 *2 (-1073 (-352 *3))) (-5 *1 (-150 *3)) (-4 *3 (-260))))) +(((*1 *2 *1) (-12 (-5 *2 (-1073 (-352 *3))) (-5 *1 (-150 *3)) (-4 *3 (-260))))) +(((*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-150 *3)) (-4 *3 (-260))))) +(((*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-150 *3)) (-4 *3 (-260))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-147))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-147))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1053)) (-5 *3 (-249)) (-5 *1 (-143))))) +(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-636 (-237))) (-5 *1 (-143))))) +(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-587 (-636 (-237)))) (-5 *1 (-143))))) +(((*1 *1) (-12 (-4 *1 (-141 *2)) (-4 *2 (-148))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-141 *2)) (-4 *2 (-148))))) +(((*1 *2 *1) + (-12 (-4 *1 (-141 *3)) (-4 *3 (-148)) (-4 *3 (-977)) (-4 *3 (-1119)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-138 *3))))) (((*1 *1 *1 *1) (-5 *1 (-134))) - ((*1 *1 *2) (-12 (-5 *2 (-486)) (-5 *1 (-134))))) -(((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-488)) (-5 *1 (-134))))) +(((*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-131 *3 *2)) (-4 *2 (-366 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1092)))) + (-12 (-5 *3 (-1094)) (-4 *4 (-499)) (-5 *1 (-131 *4 *2)) (-4 *2 (-366 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1094)))) ((*1 *1 *1) (-4 *1 (-133)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) + (-12 (-5 *3 (-1094)) (-4 *4 (-499)) (-5 *1 (-131 *4 *2)) (-4 *2 (-366 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1006 *2)) (-4 *2 (-364 *4)) (-4 *4 (-497)) + (-12 (-5 *3 (-1008 *2)) (-4 *2 (-366 *4)) (-4 *4 (-499)) (-5 *1 (-131 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-133)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1092))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1008 *1)) (-4 *1 (-133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1094))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-487))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-487))))) (((*1 *1 *1 *1) (-4 *1 (-116))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-485)) (-5 *1 (-132 *2))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-131 *3 *2)) (-4 *2 (-366 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-487))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-487)) (-5 *1 (-132 *2))))) (((*1 *1 *1) (-4 *1 (-116))) - ((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-485))))) + ((*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-131 *3 *2)) (-4 *2 (-366 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-487))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-497))))) + (-12 (-5 *3 (-587 *2)) (-4 *2 (-366 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-499))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-497))))) + (-12 (-5 *3 (-587 *2)) (-4 *2 (-366 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-499))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-497))))) + (-12 (-5 *3 (-587 *2)) (-4 *2 (-366 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-499))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-497))))) + (-12 (-5 *3 (-587 *2)) (-4 *2 (-366 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-499))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-497))))) + (-12 (-5 *3 (-587 *2)) (-4 *2 (-366 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-499))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-497))))) -(((*1 *2 *2) (-12 (-4 *3 (-497)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))) + (-12 (-5 *3 (-587 *2)) (-4 *2 (-366 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-499))))) +(((*1 *2 *2) (-12 (-4 *3 (-499)) (-5 *1 (-131 *3 *2)) (-4 *2 (-366 *3))))) (((*1 *1) (-5 *1 (-130)))) -(((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-130))))) +(((*1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-130))))) (((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-179)) + (-12 (-5 *4 (-181)) (-5 *2 - (-2 (|:| |brans| (-585 (-585 (-856 *4)))) (|:| |xValues| (-1003 *4)) - (|:| |yValues| (-1003 *4)))) - (-5 *1 (-126)) (-5 *3 (-585 (-585 (-856 *4))))))) + (-2 (|:| |brans| (-587 (-587 (-858 *4)))) (|:| |xValues| (-1005 *4)) + (|:| |yValues| (-1005 *4)))) + (-5 *1 (-126)) (-5 *3 (-587 (-587 (-858 *4))))))) (((*1 *2 *3) - (-12 (-5 *3 (-838)) + (-12 (-5 *3 (-840)) (-5 *2 - (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) - (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) + (-2 (|:| |brans| (-587 (-587 (-858 (-181))))) + (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181))))) (-5 *1 (-126)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-838)) (-5 *4 (-350 (-486))) + (-12 (-5 *3 (-840)) (-5 *4 (-352 (-488))) (-5 *2 - (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) - (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) + (-2 (|:| |brans| (-587 (-587 (-858 (-181))))) + (|:| |xValues| (-1005 (-181))) (|:| |yValues| (-1005 (-181))))) (-5 *1 (-126))))) (((*1 *1 *2) - (-12 (-5 *2 (-832)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) - (-14 *5 (-908 *3 *4))))) + (-12 (-5 *2 (-834)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-314)) + (-14 *5 (-910 *3 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1131)) (-4 *2 (-72))))) + (-12 (-4 *1 (-320 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1133)) (-4 *2 (-72))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) + (-12 (-4 *4 (-1138)) (-4 *5 (-1159 *4)) (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-350 *5)) - (|:| |c2| (-350 *5)) (|:| |deg| (-696)))) - (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1157 (-350 *5)))))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-352 *5)) + (|:| |c2| (-352 *5)) (|:| |deg| (-698)))) + (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1159 (-352 *5)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1157 *2)) (-4 *2 (-1136)) (-5 *1 (-121 *2 *4 *3)) - (-4 *3 (-1157 (-350 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-350 *6)) (-4 *5 (-1136)) (-4 *6 (-1157 *5)) - (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3958 *3) (|:| |radicand| *6))) - (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-696)) (-4 *7 (-1157 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) - (-5 *2 (-2 (|:| |radicand| (-350 *5)) (|:| |deg| (-696)))) - (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1157 (-350 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1136)) (-4 *5 (-1157 *4)) - (-5 *2 (-2 (|:| -3958 (-350 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) - (-4 *3 (-1157 (-350 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-117))))) -(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-117)))) - ((*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-117))))) + (-12 (-4 *4 (-1159 *2)) (-4 *2 (-1138)) (-5 *1 (-121 *2 *4 *3)) + (-4 *3 (-1159 (-352 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-352 *6)) (-4 *5 (-1138)) (-4 *6 (-1159 *5)) + (-5 *2 (-2 (|:| -2406 (-698)) (|:| -3961 *3) (|:| |radicand| *6))) + (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-698)) (-4 *7 (-1159 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1138)) (-4 *5 (-1159 *4)) + (-5 *2 (-2 (|:| |radicand| (-352 *5)) (|:| |deg| (-698)))) + (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1159 (-352 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1138)) (-4 *5 (-1159 *4)) + (-5 *2 (-2 (|:| -3961 (-352 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) + (-4 *3 (-1159 (-352 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-117))))) +(((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-117)))) + ((*1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-117))))) (((*1 *1) (-5 *1 (-117)))) (((*1 *1) (-5 *1 (-117)))) (((*1 *1) (-5 *1 (-117)))) @@ -13110,998 +13111,998 @@ (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 (-117))) (-5 *1 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-114))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 (-117))) (-5 *1 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-114))))) (((*1 *1) (-5 *1 (-114)))) (((*1 *1) (-5 *1 (-114)))) (((*1 *1) (-5 *1 (-114)))) (((*1 *1) (-5 *1 (-114)))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-751))) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-158 (-112)))) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-158 (-112)))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-753))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-160 (-112)))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-160 (-112)))) (-5 *1 (-113))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-585 (-486))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-486)) - (-14 *4 (-696)) (-4 *5 (-146))))) + (-12 (-5 *2 (-587 (-488))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-488)) + (-14 *4 (-698)) (-4 *5 (-148))))) (((*1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146))))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-488)) (-14 *3 (-698)) (-4 *4 (-148))))) (((*1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-486)) (-14 *3 (-696)) (-4 *4 (-146))))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-488)) (-14 *3 (-698)) (-4 *4 (-148))))) (((*1 *2 *1) - (-12 (-5 *2 (-585 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-486)) - (-14 *4 (-696)) (-4 *5 (-146))))) + (-12 (-5 *2 (-587 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-488)) + (-14 *4 (-698)) (-4 *5 (-148))))) (((*1 *1 *2) - (-12 (-5 *2 (-585 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-486)) - (-14 *4 (-696))))) -(((*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-107))))) + (-12 (-5 *2 (-587 *5)) (-4 *5 (-148)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-488)) + (-14 *4 (-698))))) +(((*1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-107))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) (((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) (((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-696)) (-5 *2 (-1187))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-698)) (-5 *2 (-1189))))) (((*1 *1 *1 *1) (|partial| -4 *1 (-104)))) (((*1 *1) (-5 *1 (-103)))) (((*1 *1) (-5 *1 (-103)))) (((*1 *1) (-5 *1 (-103)))) -(((*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-102))))) -(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-102))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-102))))) -(((*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-101))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1015)))) - ((*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1015))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-99 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1015))))) +(((*1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-102))))) +(((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-102))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-102))))) +(((*1 *1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-101))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1017)))) + ((*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1017))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-760)) (-5 *1 (-99 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1017))))) (((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96)))) (((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96)))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-94 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-758))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486)))))) -(((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486))))) - ((*1 *2 *2) (-12 (-5 *2 (-696)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486)))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486))))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1157 (-486)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1131))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1131))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-952 (-350 *2)))) (-5 *2 (-486)) (-5 *1 (-88 *4 *3)) - (-4 *3 (-1157 *4))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1015))))) -(((*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1015))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-760)) (-5 *1 (-94 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-760))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1159 (-488)))))) +(((*1 *2) (-12 (-5 *2 (-698)) (-5 *1 (-93 *3)) (-4 *3 (-1159 (-488))))) + ((*1 *2 *2) (-12 (-5 *2 (-698)) (-5 *1 (-93 *3)) (-4 *3 (-1159 (-488)))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1159 (-488))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1159 (-488)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1133))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1133))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-314) (-954 (-352 *2)))) (-5 *2 (-488)) (-5 *1 (-88 *4 *3)) + (-4 *3 (-1159 *4))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1017))))) +(((*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1017))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-585 (-1 *4 (-585 *4)))) (-4 *4 (-1015)) + (-12 (-5 *2 (-86)) (-5 *3 (-587 (-1 *4 (-587 *4)))) (-4 *4 (-1017)) (-5 *1 (-87 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1017)) (-5 *1 (-87 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-86)) (-5 *2 (-585 (-1 *4 (-585 *4)))) - (-5 *1 (-87 *4)) (-4 *4 (-1015))))) -(((*1 *2 *1) (-12 (-5 *2 (-585 (-878))) (-5 *1 (-78)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1075) (-698))) (-5 *1 (-86))))) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-587 (-1 *4 (-587 *4)))) + (-5 *1 (-87 *4)) (-4 *4 (-1017))))) +(((*1 *2 *1) (-12 (-5 *2 (-587 (-880))) (-5 *1 (-78)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1077) (-700))) (-5 *1 (-86))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-448)) (-5 *2 (-85)) (-5 *1 (-86))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-86)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-86))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-698)) (-5 *1 (-86)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-698)) (-5 *1 (-86))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1075) (-698))) (-5 *1 (-86))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-79 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-585 (-878))) (-5 *1 (-78))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-4 *1 (-76 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1131))))) -(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1131))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4000 "*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) - (-4 *2 (-963)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2)) - (-4 *4 (-629 *2 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-450)) (-5 *2 (-85)) (-5 *1 (-86))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-450)) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-86))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-700)) (-5 *1 (-86)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-700)) (-5 *1 (-86))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1077) (-700))) (-5 *1 (-86))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1133)) (-5 *1 (-79 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-587 (-880))) (-5 *1 (-78))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1133)) (-4 *1 (-76 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1133))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4003 "*"))) (-4 *5 (-326 *2)) (-4 *6 (-326 *2)) + (-4 *2 (-965)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1159 *2)) + (-4 *4 (-631 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4000 "*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) - (-4 *2 (-963)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2)) - (-4 *4 (-629 *2 *5 *6))))) + (-12 (|has| *2 (-6 (-4003 "*"))) (-4 *5 (-326 *2)) (-4 *6 (-326 *2)) + (-4 *2 (-965)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1159 *2)) + (-4 *4 (-631 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-963)) (-4 *2 (-629 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) - (-4 *3 (-1157 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))))) + (-12 (-4 *4 (-965)) (-4 *2 (-631 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) + (-4 *3 (-1159 *4)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-963)) (-4 *2 (-629 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) - (-4 *3 (-1157 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-73 *3)) (-4 *3 (-1015))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-73 *3))))) + (-12 (-4 *4 (-965)) (-4 *2 (-631 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) + (-4 *3 (-1159 *4)) (-4 *5 (-326 *4)) (-4 *6 (-326 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-698)) (-5 *1 (-73 *3)) (-4 *3 (-1017))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-5 *1 (-73 *3))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1015)) (-5 *1 (-73 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1015))))) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1017)) (-5 *1 (-73 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1017))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-585 *2) *2 *2 *2)) (-4 *2 (-1015)) (-5 *1 (-73 *2)))) + (-12 (-5 *3 (-1 (-587 *2) *2 *2 *2)) (-4 *2 (-1017)) (-5 *1 (-73 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1015)) (-5 *1 (-73 *2))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1017)) (-5 *1 (-73 *2))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-393) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *4 *3)) - (-4 *3 (-1157 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-585 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-13 (-393) (-120))) - (-5 *2 (-348 *3)) (-5 *1 (-70 *5 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-486))) (-4 *3 (-963)) (-5 *1 (-69 *3)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-69 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-69 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-62 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *5 (-497)) - (-5 *2 - (-2 (|:| |minor| (-585 (-832))) (|:| -3269 *3) - (|:| |minors| (-585 (-585 (-832)))) (|:| |ops| (-585 *3)))) - (-5 *1 (-61 *5 *3)) (-5 *4 (-832)) (-4 *3 (-602 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-1181 (-632 *4))) (-5 *1 (-61 *4 *5)) - (-5 *3 (-632 *4)) (-4 *5 (-602 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-497)) - (-5 *2 (-2 (|:| |mat| (-632 *5)) (|:| |vec| (-1181 (-585 (-832)))))) - (-5 *1 (-61 *5 *3)) (-5 *4 (-832)) (-4 *3 (-602 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-58 *3)) (-4 *3 (-1131)))) - ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1131)) (-5 *1 (-58 *3))))) + (-12 (-4 *4 (-13 (-395) (-120))) (-5 *2 (-350 *3)) (-5 *1 (-70 *4 *3)) + (-4 *3 (-1159 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-587 *3)) (-4 *3 (-1159 *5)) (-4 *5 (-13 (-395) (-120))) + (-5 *2 (-350 *3)) (-5 *1 (-70 *5 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-488))) (-4 *3 (-965)) (-5 *1 (-69 *3)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-965)) (-5 *1 (-69 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-965)) (-5 *1 (-69 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1017)) (-5 *1 (-62 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-314)) (-4 *5 (-499)) + (-5 *2 + (-2 (|:| |minor| (-587 (-834))) (|:| -3272 *3) + (|:| |minors| (-587 (-587 (-834)))) (|:| |ops| (-587 *3)))) + (-5 *1 (-61 *5 *3)) (-5 *4 (-834)) (-4 *3 (-604 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-499)) (-5 *2 (-1183 (-634 *4))) (-5 *1 (-61 *4 *5)) + (-5 *3 (-634 *4)) (-4 *5 (-604 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-499)) + (-5 *2 (-2 (|:| |mat| (-634 *5)) (|:| |vec| (-1183 (-587 (-834)))))) + (-5 *1 (-61 *5 *3)) (-5 *4 (-834)) (-4 *3 (-604 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-698)) (-5 *1 (-58 *3)) (-4 *3 (-1133)))) + ((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1133)) (-5 *1 (-58 *3))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-486)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1131)) (-4 *3 (-324 *4)) - (-4 *5 (-324 *4))))) + (-12 (-5 *2 (-488)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-326 *4)) + (-4 *5 (-326 *4))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-486)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1131)) (-4 *5 (-324 *4)) - (-4 *3 (-324 *4))))) + (-12 (-5 *2 (-488)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1133)) (-4 *5 (-326 *4)) + (-4 *3 (-326 *4))))) (((*1 *1) (-5 *1 (-55)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-585 (-1092))) (-4 *4 (-1015)) - (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4))))))) + (-12 (-5 *3 (-587 (-1094))) (-4 *4 (-1017)) + (-4 *5 (-13 (-965) (-800 *4) (-557 (-804 *4)))) (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-366 *5) (-800 *4) (-557 (-804 *4))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-585 (-989 *4 *5 *2))) (-4 *4 (-1015)) - (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) - (-4 *2 (-13 (-364 *5) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-54 *4 *5 *2)))) + (-12 (-5 *3 (-587 (-991 *4 *5 *2))) (-4 *4 (-1017)) + (-4 *5 (-13 (-965) (-800 *4) (-557 (-804 *4)))) + (-4 *2 (-13 (-366 *5) (-800 *4) (-557 (-804 *4)))) (-5 *1 (-54 *4 *5 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-585 (-989 *5 *6 *2))) (-5 *4 (-832)) (-4 *5 (-1015)) - (-4 *6 (-13 (-963) (-798 *5) (-555 (-802 *5)))) - (-4 *2 (-13 (-364 *6) (-798 *5) (-555 (-802 *5)))) (-5 *1 (-54 *5 *6 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1017)) (-5 *3 (-698)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-51))))) + (-12 (-5 *3 (-587 (-991 *5 *6 *2))) (-5 *4 (-834)) (-4 *5 (-1017)) + (-4 *6 (-13 (-965) (-800 *5) (-557 (-804 *5)))) + (-4 *2 (-13 (-366 *6) (-800 *5) (-557 (-804 *5)))) (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1019)) (-5 *3 (-700)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-1019)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-700)) (-5 *1 (-51))))) (((*1 *2) - (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-499)) (-5 *2 (-587 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-363 *3))))) (((*1 *2) - (-12 (-4 *3 (-497)) (-5 *2 (-585 (-632 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-499)) (-5 *2 (-587 (-634 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-363 *3))))) (((*1 *2) - (-12 (-4 *3 (-497)) (-5 *2 (-585 (-632 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-499)) (-5 *2 (-587 (-634 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-363 *3))))) (((*1 *2) - (-12 (-4 *3 (-497)) (-5 *2 (-585 (-632 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-499)) (-5 *2 (-587 (-634 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-363 *3))))) (((*1 *2) - (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-499)) (-5 *2 (-587 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-363 *3))))) (((*1 *2) - (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-499)) (-5 *2 (-587 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-363 *3))))) (((*1 *2) - (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-499)) (-5 *2 (-587 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-363 *3))))) (((*1 *2) - (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-499)) (-5 *2 (-587 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-363 *3))))) (((*1 *2) - (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-499)) (-5 *2 (-587 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-363 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-585 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-499)) (-5 *2 (-587 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-363 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-585 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-499)) (-5 *2 (-587 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-363 *4))))) (((*1 *2) - (-12 (-4 *3 (-497)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-499)) (-5 *2 (-587 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-363 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-499)) (-5 *2 (-698)) (-5 *1 (-43 *4 *3)) (-4 *3 (-363 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-499)) (-5 *2 (-698)) (-5 *1 (-43 *4 *3)) (-4 *3 (-363 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-499)) (-5 *2 (-698)) (-5 *1 (-43 *4 *3)) (-4 *3 (-363 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-499)) (-5 *2 (-698)) (-5 *1 (-43 *4 *3)) (-4 *3 (-363 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-499)) (-5 *2 (-698)) (-5 *1 (-43 *4 *3)) (-4 *3 (-363 *4))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-86)) (-5 *4 (-696)) (-4 *5 (-13 (-393) (-952 (-486)))) - (-4 *5 (-497)) (-5 *1 (-41 *5 *2)) (-4 *2 (-364 *5)) + (-12 (-5 *3 (-86)) (-5 *4 (-698)) (-4 *5 (-13 (-395) (-954 (-488)))) + (-4 *5 (-499)) (-5 *1 (-41 *5 *2)) (-4 *2 (-366 *5)) (-4 *2 - (-13 (-312) (-254) - (-10 -8 (-15 -3001 ((-1041 *5 (-552 $)) $)) - (-15 -3000 ((-1041 *5 (-552 $)) $)) - (-15 -3950 ($ (-1041 *5 (-552 $)))))))))) + (-13 (-314) (-256) + (-10 -8 (-15 -3004 ((-1043 *5 (-554 $)) $)) + (-15 -3003 ((-1043 *5 (-554 $)) $)) + (-15 -3953 ($ (-1043 *5 (-554 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-393) (-952 (-486)))) (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-364 *3)) + (-12 (-4 *3 (-13 (-395) (-954 (-488)))) (-4 *3 (-499)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-366 *3)) (-4 *2 - (-13 (-312) (-254) - (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) - (-15 -3000 ((-1041 *3 (-552 $)) $)) - (-15 -3950 ($ (-1041 *3 (-552 $)))))))))) + (-13 (-314) (-256) + (-10 -8 (-15 -3004 ((-1043 *3 (-554 $)) $)) + (-15 -3003 ((-1043 *3 (-554 $)) $)) + (-15 -3953 ($ (-1043 *3 (-554 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-393) (-952 (-486)))) (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-364 *3)) + (-12 (-4 *3 (-13 (-395) (-954 (-488)))) (-4 *3 (-499)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-366 *3)) (-4 *2 - (-13 (-312) (-254) - (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) - (-15 -3000 ((-1041 *3 (-552 $)) $)) - (-15 -3950 ($ (-1041 *3 (-552 $)))))))))) + (-13 (-314) (-256) + (-10 -8 (-15 -3004 ((-1043 *3 (-554 $)) $)) + (-15 -3003 ((-1043 *3 (-554 $)) $)) + (-15 -3953 ($ (-1043 *3 (-554 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-393) (-952 (-486)))) (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-364 *3)) + (-12 (-4 *3 (-13 (-395) (-954 (-488)))) (-4 *3 (-499)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-366 *3)) (-4 *2 - (-13 (-312) (-254) - (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) - (-15 -3000 ((-1041 *3 (-552 $)) $)) - (-15 -3950 ($ (-1041 *3 (-552 $)))))))))) + (-13 (-314) (-256) + (-10 -8 (-15 -3004 ((-1043 *3 (-554 $)) $)) + (-15 -3003 ((-1043 *3 (-554 $)) $)) + (-15 -3953 ($ (-1043 *3 (-554 $)))))))))) (((*1 *2 *3) - (-12 (-4 *4 (-497)) (-5 *2 (-1087 *3)) (-5 *1 (-41 *4 *3)) + (-12 (-4 *4 (-499)) (-5 *2 (-1089 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 - (-13 (-312) (-254) - (-10 -8 (-15 -3001 ((-1041 *4 (-552 $)) $)) - (-15 -3000 ((-1041 *4 (-552 $)) $)) - (-15 -3950 ($ (-1041 *4 (-552 $)))))))))) + (-13 (-314) (-256) + (-10 -8 (-15 -3004 ((-1043 *4 (-554 $)) $)) + (-15 -3003 ((-1043 *4 (-554 $)) $)) + (-15 -3953 ($ (-1043 *4 (-554 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-499)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-312) (-254) - (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) - (-15 -3000 ((-1041 *3 (-552 $)) $)) - (-15 -3950 ($ (-1041 *3 (-552 $))))))))) + (-13 (-314) (-256) + (-10 -8 (-15 -3004 ((-1043 *3 (-554 $)) $)) + (-15 -3003 ((-1043 *3 (-554 $)) $)) + (-15 -3953 ($ (-1043 *3 (-554 $))))))))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-499)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-312) (-254) - (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) - (-15 -3000 ((-1041 *3 (-552 $)) $)) - (-15 -3950 ($ (-1041 *3 (-552 $))))))))) + (-13 (-314) (-256) + (-10 -8 (-15 -3004 ((-1043 *3 (-554 $)) $)) + (-15 -3003 ((-1043 *3 (-554 $)) $)) + (-15 -3953 ($ (-1043 *3 (-554 $))))))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-585 *2)) + (-12 (-5 *3 (-587 *2)) (-4 *2 - (-13 (-312) (-254) - (-10 -8 (-15 -3001 ((-1041 *4 (-552 $)) $)) - (-15 -3000 ((-1041 *4 (-552 $)) $)) - (-15 -3950 ($ (-1041 *4 (-552 $))))))) - (-4 *4 (-497)) (-5 *1 (-41 *4 *2)))) + (-13 (-314) (-256) + (-10 -8 (-15 -3004 ((-1043 *4 (-554 $)) $)) + (-15 -3003 ((-1043 *4 (-554 $)) $)) + (-15 -3953 ($ (-1043 *4 (-554 $))))))) + (-4 *4 (-499)) (-5 *1 (-41 *4 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-585 (-552 *2))) + (-12 (-5 *3 (-587 (-554 *2))) (-4 *2 - (-13 (-312) (-254) - (-10 -8 (-15 -3001 ((-1041 *4 (-552 $)) $)) - (-15 -3000 ((-1041 *4 (-552 $)) $)) - (-15 -3950 ($ (-1041 *4 (-552 $))))))) - (-4 *4 (-497)) (-5 *1 (-41 *4 *2))))) + (-13 (-314) (-256) + (-10 -8 (-15 -3004 ((-1043 *4 (-554 $)) $)) + (-15 -3003 ((-1043 *4 (-554 $)) $)) + (-15 -3953 ($ (-1043 *4 (-554 $))))))) + (-4 *4 (-499)) (-5 *1 (-41 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-497)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-499)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-312) (-254) - (-10 -8 (-15 -3001 ((-1041 *3 (-552 $)) $)) - (-15 -3000 ((-1041 *3 (-552 $)) $)) - (-15 -3950 ($ (-1041 *3 (-552 $)))))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-696)) (-4 *4 (-312)) (-4 *5 (-1157 *4)) (-5 *2 (-1187)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1157 (-350 *5))) (-14 *7 *6)))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1157 (-48)))))) + (-13 (-314) (-256) + (-10 -8 (-15 -3004 ((-1043 *3 (-554 $)) $)) + (-15 -3003 ((-1043 *3 (-554 $)) $)) + (-15 -3953 ($ (-1043 *3 (-554 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-698)) (-4 *4 (-314)) (-4 *5 (-1159 *4)) (-5 *2 (-1189)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1159 (-352 *5))) (-14 *7 *6)))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1159 (-48)))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) - (-5 *2 (-634 (-2 (|:| -3864 *3) (|:| |entry| *4))))))) + (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1017)) (-4 *4 (-1017)) + (-5 *2 (-636 (-2 (|:| -3867 *3) (|:| |entry| *4))))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-486)) (-4 *2 (-364 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-952 *4)) - (-4 *3 (-497))))) + (-12 (-5 *4 (-488)) (-4 *2 (-366 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-954 *4)) + (-4 *3 (-499))))) (((*1 *2 *3) - (-12 (-5 *3 (-585 *5)) (-4 *5 (-364 *4)) (-4 *4 (-497)) (-5 *2 (-774)) + (-12 (-5 *3 (-587 *5)) (-4 *5 (-366 *4)) (-4 *4 (-499)) (-5 *2 (-776)) (-5 *1 (-32 *4 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1087 *2)) (-4 *2 (-364 *4)) (-4 *4 (-497)) + (-12 (-5 *3 (-1089 *2)) (-4 *2 (-366 *4)) (-4 *4 (-499)) (-5 *1 (-32 *4 *2))))) (((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-859 (-486))) (-5 *3 (-1092)) (-5 *4 (-1003 (-350 (-486)))) + (-12 (-5 *2 (-861 (-488))) (-5 *3 (-1094)) (-5 *4 (-1005 (-352 (-488)))) (-5 *1 (-30))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1087 *1)) (-5 *4 (-1092)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1087 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-859 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) + (-12 (-5 *3 (-1089 *1)) (-5 *4 (-1094)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1089 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-861 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *2 (-585 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-497)) (-5 *2 (-585 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1087 *1)) (-5 *3 (-1092)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-859 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-4 *1 (-29 *3)) (-4 *3 (-497)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-497))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1087 *1)) (-5 *4 (-1092)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1087 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-859 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) + (-12 (-5 *3 (-1094)) (-4 *4 (-499)) (-5 *2 (-587 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-499)) (-5 *2 (-587 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1089 *1)) (-5 *3 (-1094)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-861 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1094)) (-4 *1 (-29 *3)) (-4 *3 (-499)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-499))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1089 *1)) (-5 *4 (-1094)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1089 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-861 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1092)) (-4 *4 (-497)) (-5 *2 (-585 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-497)) (-5 *2 (-585 *1)) (-4 *1 (-29 *3))))) + (-12 (-5 *3 (-1094)) (-4 *4 (-499)) (-5 *2 (-587 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-499)) (-5 *2 (-587 *1)) (-4 *1 (-29 *3))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85))))) -((-1216 . 628585) (-1217 . 628189) (-1218 . 627887) (-1219 . 627491) - (-1220 . 627370) (-1221 . 627268) (-1222 . 627155) (-1223 . 627039) - (-1224 . 626986) (-1225 . 626852) (-1226 . 626777) (-1227 . 626621) - (-1228 . 626393) (-1229 . 625429) (-1230 . 625182) (-1231 . 624898) - (-1232 . 624614) (-1233 . 624330) (-1234 . 624011) (-1235 . 623919) - (-1236 . 623827) (-1237 . 623735) (-1238 . 623643) (-1239 . 623551) - (-1240 . 623459) (-1241 . 623364) (-1242 . 623269) (-1243 . 623177) - (-1244 . 623085) (-1245 . 622993) (-1246 . 622901) (-1247 . 622809) - (-1248 . 622707) (-1249 . 622605) (-1250 . 622503) (-1251 . 622411) - (-1252 . 622360) (-1253 . 622308) (-1254 . 622238) (-1255 . 621818) - (-1256 . 621624) (-1257 . 621597) (-1258 . 621474) (-1259 . 621351) - (-1260 . 621207) (-1261 . 621037) (-1262 . 620913) (-1263 . 620674) - (-1264 . 620601) (-1265 . 620376) (-1266 . 620130) (-1267 . 620077) - (-1268 . 619899) (-1269 . 619730) (-1270 . 619654) (-1271 . 619581) - (-1272 . 619428) (-1273 . 619275) (-1274 . 619091) (-1275 . 618910) - (-1276 . 618855) (-1277 . 618800) (-1278 . 618727) (-1279 . 618651) - (-1280 . 618574) (-1281 . 618506) (-1282 . 618363) (-1283 . 618256) - (-1284 . 618188) (-1285 . 618118) (-1286 . 618048) (-1287 . 617998) - (-1288 . 617948) (-1289 . 617898) (-1290 . 617777) (-1291 . 617461) - (-1292 . 617392) (-1293 . 617313) (-1294 . 617194) (-1295 . 617117) - (-1296 . 617040) (-1297 . 616887) (-1298 . 616738) (-1299 . 616662) - (-1300 . 616605) (-1301 . 616533) (-1302 . 616470) (-1303 . 616407) - (-1304 . 616346) (-1305 . 616274) (-1306 . 616158) (-1307 . 616106) - (-1308 . 616051) (-1309 . 615999) (-1310 . 615947) (-1311 . 615919) - (-1312 . 615891) (-1313 . 615863) (-1314 . 615819) (-1315 . 615748) - (-1316 . 615697) (-1317 . 615649) (-1318 . 615598) (-1319 . 615546) - (-1320 . 615430) (-1321 . 615314) (-1322 . 615222) (-1323 . 615130) - (-1324 . 615007) (-1325 . 614941) (-1326 . 614875) (-1327 . 614816) - (-1328 . 614788) (-1329 . 614760) (-1330 . 614732) (-1331 . 614704) - (-1332 . 614594) (-1333 . 614543) (-1334 . 614492) (-1335 . 614441) - (-1336 . 614390) (-1337 . 614339) (-1338 . 614288) (-1339 . 614260) - (-1340 . 614232) (-1341 . 614204) (-1342 . 614176) (-1343 . 614148) - (-1344 . 614120) (-1345 . 614092) (-1346 . 614064) (-1347 . 614036) - (-1348 . 613933) (-1349 . 613881) (-1350 . 613715) (-1351 . 613531) - (-1352 . 613320) (-1353 . 613205) (-1354 . 612972) (-1355 . 612882) - (-1356 . 612767) (-1357 . 612369) (-1358 . 612151) (-1359 . 612102) - (-1360 . 612074) (-1361 . 611998) (-1362 . 611899) (-1363 . 611800) - (-1364 . 611701) (-1365 . 611602) (-1366 . 611503) (-1367 . 611404) - (-1368 . 611246) (-1369 . 611170) (-1370 . 611003) (-1371 . 610945) - (-1372 . 610887) (-1373 . 610578) (-1374 . 610324) (-1375 . 610240) - (-1376 . 610108) (-1377 . 610050) (-1378 . 609998) (-1379 . 609916) - (-1380 . 609841) (-1381 . 609770) (-1382 . 609716) (-1383 . 609665) - (-1384 . 609591) (-1385 . 609517) (-1386 . 609436) (-1387 . 609355) - (-1388 . 609300) (-1389 . 609226) (-1390 . 609152) (-1391 . 609078) - (-1392 . 609001) (-1393 . 608947) (-1394 . 608889) (-1395 . 608790) - (-1396 . 608691) (-1397 . 608592) (-1398 . 608493) (-1399 . 608394) - (-1400 . 608295) (-1401 . 608196) (-1402 . 608082) (-1403 . 607968) - (-1404 . 607854) (-1405 . 607740) (-1406 . 607626) (-1407 . 607512) - (-1408 . 607395) (-1409 . 607319) (-1410 . 607243) (-1411 . 606856) - (-1412 . 606511) (-1413 . 606409) (-1414 . 606148) (-1415 . 606046) - (-1416 . 605841) (-1417 . 605728) (-1418 . 605626) (-1419 . 605469) - (-1420 . 605380) (-1421 . 605286) (-1422 . 605206) (-1423 . 605132) - (-1424 . 605054) (-1425 . 604995) (-1426 . 604937) (-1427 . 604835) - (-7 . 604807) (-8 . 604779) (-9 . 604751) (-1431 . 604632) (-1432 . 604550) - (-1433 . 604468) (-1434 . 604386) (-1435 . 604304) (-1436 . 604222) - (-1437 . 604128) (-1438 . 604058) (-1439 . 603988) (-1440 . 603897) - (-1441 . 603803) (-1442 . 603721) (-1443 . 603639) (-1444 . 603541) - (-1445 . 603381) (-1446 . 603183) (-1447 . 603047) (-1448 . 602947) - (-1449 . 602847) (-1450 . 602754) (-1451 . 602695) (-1452 . 602362) - (-1453 . 602262) (-1454 . 602144) (-1455 . 601932) (-1456 . 601753) - (-1457 . 601595) (-1458 . 601392) (-1459 . 600974) (-1460 . 600923) - (-1461 . 600814) (-1462 . 600699) (-1463 . 600630) (-1464 . 600561) - (-1465 . 600492) (-1466 . 600426) (-1467 . 600301) (-1468 . 600084) - (-1469 . 600006) (-1470 . 599956) (-1471 . 599885) (-1472 . 599742) - (-1473 . 599601) (-1474 . 599523) (-1475 . 599445) (-1476 . 599389) - (-1477 . 599333) (-1478 . 599260) (-1479 . 599120) (-1480 . 599067) - (-1481 . 599008) (-1482 . 598949) (-1483 . 598794) (-1484 . 598742) - (-1485 . 598625) (-1486 . 598508) (-1487 . 598391) (-1488 . 598260) - (-1489 . 597981) (-1490 . 597846) (-1491 . 597790) (-1492 . 597734) - (-1493 . 597675) (-1494 . 597616) (-1495 . 597560) (-1496 . 597504) - (-1497 . 597307) (-1498 . 594965) (-1499 . 594838) (-1500 . 594693) - (-1501 . 594565) (-1502 . 594513) (-1503 . 594461) (-1504 . 594409) - (-1505 . 590371) (-1506 . 590277) (-1507 . 590138) (-1508 . 589929) - (-1509 . 589827) (-1510 . 589725) (-1511 . 588810) (-1512 . 588734) - (-1513 . 588605) (-1514 . 588480) (-1515 . 588403) (-1516 . 588326) - (-1517 . 588199) (-1518 . 588072) (-1519 . 587906) (-1520 . 587779) - (-1521 . 587652) (-1522 . 587435) (-1523 . 587001) (-1524 . 586637) - (-1525 . 586585) (-1526 . 586526) (-1527 . 586438) (-1528 . 586350) - (-1529 . 586259) (-1530 . 586168) (-1531 . 586077) (-1532 . 585986) - (-1533 . 585895) (-1534 . 585804) (-1535 . 585713) (-1536 . 585622) - (-1537 . 585531) (-1538 . 585440) (-1539 . 585349) (-1540 . 585258) - (-1541 . 585167) (-1542 . 585076) (-1543 . 584985) (-1544 . 584894) - (-1545 . 584803) (-1546 . 584712) (-1547 . 584621) (-1548 . 584530) - (-1549 . 584439) (-1550 . 584348) (-1551 . 584257) (-1552 . 584166) - (-1553 . 584075) (-1554 . 583984) (-1555 . 583822) (-1556 . 583714) - (-1557 . 583471) (-1558 . 583184) (-1559 . 582989) (-1560 . 582833) - (-1561 . 582673) (-1562 . 582622) (-1563 . 582560) (-1564 . 582509) - (-1565 . 582446) (-1566 . 582393) (-1567 . 582341) (-1568 . 582289) - (-1569 . 582237) (-1570 . 582147) (-1571 . 581964) (-1572 . 581810) - (-1573 . 581730) (-1574 . 581650) (-1575 . 581570) (-1576 . 581440) - (-1577 . 581216) (-1578 . 581188) (-1579 . 581160) (-1580 . 581132) - (-1581 . 581052) (-1582 . 580975) (-1583 . 580898) (-1584 . 580817) - (-1585 . 580758) (-1586 . 580600) (-1587 . 580407) (-1588 . 579922) - (-1589 . 579680) (-1590 . 579418) (-1591 . 579317) (-1592 . 579236) - (-1593 . 579155) (-1594 . 579085) (-1595 . 579015) (-1596 . 578857) - (-1597 . 578553) (-1598 . 578325) (-1599 . 578203) (-1600 . 578145) - (-1601 . 578083) (-1602 . 578021) (-1603 . 577956) (-1604 . 577894) - (-1605 . 577615) (-1606 . 577547) (-1607 . 577337) (-1608 . 577285) - (-1609 . 577231) (-1610 . 577140) (-1611 . 577053) (-1612 . 575306) - (-1613 . 575227) (-1614 . 574482) (-1615 . 574365) (-1616 . 574159) - (-1617 . 573998) (-1618 . 573837) (-1619 . 573677) (-1620 . 573539) - (-1621 . 573445) (-1622 . 573347) (-1623 . 573253) (-1624 . 573139) - (-1625 . 573057) (-1626 . 572960) (-1627 . 572764) (-1628 . 572673) - (-1629 . 572579) (-1630 . 572512) (-1631 . 572443) (-1632 . 572391) - (-1633 . 572332) (-1634 . 572258) (-1635 . 572206) (-1636 . 572049) - (-1637 . 571892) (-1638 . 571740) (-1639 . 570982) (-1640 . 570671) - (-1641 . 570319) (-1642 . 570102) (-1643 . 569839) (-1644 . 569464) - (-1645 . 569280) (-1646 . 569146) (-1647 . 568980) (-1648 . 568814) - (-1649 . 568680) (-1650 . 568546) (-1651 . 568412) (-1652 . 568278) - (-1653 . 568147) (-1654 . 568016) (-1655 . 567885) (-1656 . 567505) - (-1657 . 567379) (-1658 . 567251) (-1659 . 567001) (-1660 . 566878) - (-1661 . 566628) (-1662 . 566505) (-1663 . 566255) (-1664 . 566132) - (-1665 . 565849) (-1666 . 565578) (-1667 . 565305) (-1668 . 565007) - (-1669 . 564905) (-1670 . 564760) (-1671 . 564619) (-1672 . 564468) - (-1673 . 564307) (-1674 . 564219) (-1675 . 564191) (-1676 . 564109) - (-1677 . 564012) (-1678 . 563544) (-1679 . 563193) (-1680 . 562760) - (-1681 . 562621) (-1682 . 562551) (-1683 . 562481) (-1684 . 562411) - (-1685 . 562320) (-1686 . 562229) (-1687 . 562138) (-1688 . 562047) - (-1689 . 561956) (-1690 . 561870) (-1691 . 561784) (-1692 . 561698) - (-1693 . 561612) (-1694 . 561526) (-1695 . 561452) (-1696 . 561347) - (-1697 . 561121) (-1698 . 561043) (-1699 . 560968) (-1700 . 560875) - (-1701 . 560771) (-1702 . 560675) (-1703 . 560506) (-1704 . 560429) - (-1705 . 560352) (-1706 . 560261) (-1707 . 560170) (-1708 . 559970) - (-1709 . 559817) (-1710 . 559664) (-1711 . 559511) (-1712 . 559358) - (-1713 . 559205) (-1714 . 559052) (-1715 . 558986) (-1716 . 558833) - (-1717 . 558680) (-1718 . 558527) (-1719 . 558374) (-1720 . 558221) - (-1721 . 558068) (-1722 . 557915) (-1723 . 557762) (-1724 . 557688) - (-1725 . 557614) (-1726 . 557559) (-1727 . 557504) (-1728 . 557449) - (-1729 . 557394) (-1730 . 557323) (-1731 . 557230) (-1732 . 557044) - (-1733 . 556947) (-1734 . 556850) (-1735 . 556652) (-1736 . 556554) - (-1737 . 556366) (-1738 . 556273) (-1739 . 556146) (-1740 . 556019) - (-1741 . 555892) (-1742 . 555824) (-1743 . 555708) (-1744 . 555592) - (-1745 . 555476) (-1746 . 555423) (-1747 . 555338) (-1748 . 555253) - (-1749 . 554945) (-1750 . 554890) (-1751 . 554238) (-1752 . 553923) - (-1753 . 553639) (-1754 . 553521) (-1755 . 553402) (-1756 . 553343) - (-1757 . 553284) (-1758 . 553233) (-1759 . 553182) (-1760 . 553131) - (-1761 . 553078) (-1762 . 553025) (-1763 . 552966) (-1764 . 552853) - (-1765 . 552740) (-1766 . 552573) (-1767 . 552481) (-1768 . 552368) - (-1769 . 552284) (-1770 . 552169) (-1771 . 552078) (-1772 . 551987) - (-1773 . 551866) (-1774 . 551679) (-1775 . 551627) (-1776 . 551572) - (-1777 . 551385) (-1778 . 551262) (-1779 . 551189) (-1780 . 551116) - (-1781 . 550996) (-1782 . 550923) (-1783 . 550850) (-1784 . 550510) - (-1785 . 550437) (-1786 . 550217) (-1787 . 549884) (-1788 . 549701) - (-1789 . 549558) (-1790 . 549198) (-1791 . 549030) (-1792 . 548862) - (-1793 . 548606) (-1794 . 548350) (-1795 . 548155) (-1796 . 547960) - (-1797 . 547366) (-1798 . 547290) (-1799 . 547151) (-1800 . 546744) - (-1801 . 546617) (-1802 . 546460) (-1803 . 546143) (-1804 . 545663) - (-1805 . 545183) (-1806 . 544681) (-1807 . 544613) (-1808 . 544542) - (-1809 . 544471) (-1810 . 544299) (-1811 . 544180) (-1812 . 544061) - (-1813 . 543985) (-1814 . 543909) (-1815 . 543636) (-1816 . 543522) - (-1817 . 543471) (-1818 . 543420) (-1819 . 543369) (-1820 . 543318) - (-1821 . 543267) (-1822 . 543126) (-1823 . 542953) (-1824 . 542722) - (-1825 . 542536) (-1826 . 542508) (-1827 . 542480) (-1828 . 542452) - (-1829 . 542424) (-1830 . 542396) (-1831 . 542368) (-1832 . 542340) - (-1833 . 542289) (-1834 . 542223) (-1835 . 542133) (-1836 . 541762) - (-1837 . 541611) (-1838 . 541460) (-1839 . 541255) (-1840 . 541133) - (-1841 . 541059) (-1842 . 540982) (-1843 . 540908) (-1844 . 540831) - (-1845 . 540754) (-1846 . 540680) (-1847 . 540603) (-1848 . 540370) - (-1849 . 540217) (-1850 . 539922) (-1851 . 539769) (-1852 . 539447) - (-1853 . 539309) (-1854 . 539171) (-1855 . 539091) (-1856 . 539011) - (-1857 . 538747) (-1858 . 538016) (-1859 . 537880) (-1860 . 537790) - (-1861 . 537655) (-1862 . 537588) (-1863 . 537520) (-1864 . 537433) - (-1865 . 537346) (-1866 . 537179) (-1867 . 537105) (-1868 . 536961) - (-1869 . 536501) (-1870 . 536122) (-1871 . 535360) (-1872 . 535216) - (-1873 . 535072) (-1874 . 534910) (-1875 . 534673) (-1876 . 534533) - (-1877 . 534387) (-1878 . 534148) (-1879 . 533912) (-1880 . 533673) - (-1881 . 533481) (-1882 . 533358) (-1883 . 533154) (-1884 . 532931) - (-1885 . 532692) (-1886 . 532551) (-1887 . 532413) (-1888 . 532274) - (-1889 . 532021) (-1890 . 531765) (-1891 . 531608) (-1892 . 531454) - (-1893 . 531214) (-1894 . 530929) (-1895 . 530791) (-1896 . 530704) - (-1897 . 530038) (-1898 . 529862) (-1899 . 529680) (-1900 . 529504) - (-1901 . 529322) (-1902 . 529143) (-1903 . 528964) (-1904 . 528777) - (-1905 . 528395) (-1906 . 528216) (-1907 . 528037) (-1908 . 527850) - (-1909 . 527468) (-1910 . 526475) (-1911 . 526091) (-1912 . 525707) - (-1913 . 525589) (-1914 . 525432) (-1915 . 525290) (-1916 . 525173) - (-1917 . 524991) (-1918 . 524867) (-1919 . 524578) (-1920 . 524289) - (-1921 . 524006) (-1922 . 523723) (-1923 . 523445) (-1924 . 523357) - (-1925 . 523272) (-1926 . 523175) (-1927 . 523078) (-1928 . 522858) - (-1929 . 522758) (-1930 . 522655) (-1931 . 522577) (-1932 . 522252) - (-1933 . 521960) (-1934 . 521887) (-1935 . 521502) (-1936 . 521474) - (-1937 . 521275) (-1938 . 521101) (-1939 . 520860) (-1940 . 520805) - (-1941 . 520730) (-1942 . 520362) (-1943 . 520247) (-1944 . 520170) - (-1945 . 520097) (-1946 . 520016) (-1947 . 519935) (-1948 . 519854) - (-1949 . 519753) (-1950 . 519694) (-1951 . 519641) (-1952 . 519587) - (-1953 . 519255) (-1954 . 518931) (-1955 . 518743) (-1956 . 518552) - (-1957 . 518388) (-1958 . 518053) (-1959 . 517886) (-1960 . 517645) - (-1961 . 517321) (-1962 . 517131) (-1963 . 516916) (-1964 . 516745) - (-1965 . 516323) (-1966 . 516096) (-1967 . 515825) (-1968 . 515688) - (-1969 . 515547) (-1970 . 515070) (-1971 . 514947) (-1972 . 514711) - (-1973 . 514457) (-1974 . 514207) (-1975 . 513914) (-1976 . 513774) - (-1977 . 513634) (-1978 . 513494) (-1979 . 513305) (-1980 . 513116) - (-1981 . 512941) (-1982 . 512667) (-1983 . 512232) (-1984 . 512204) - (-1985 . 512132) (-1986 . 511999) (-1987 . 511924) (-1988 . 511765) - (-1989 . 511602) (-1990 . 511441) (-1991 . 511274) (-1992 . 511221) - (-1993 . 511168) (-1994 . 511039) (-1995 . 510979) (-1996 . 510926) - (-1997 . 510856) (-1998 . 510796) (-1999 . 510737) (-2000 . 510677) - (-2001 . 510618) (-2002 . 510558) (-2003 . 510499) (-2004 . 510440) - (-2005 . 510298) (-2006 . 510203) (-2007 . 510112) (-2008 . 509996) - (-2009 . 509902) (-2010 . 509804) (-2011 . 509710) (-2012 . 509569) - (-2013 . 509307) (-2014 . 508451) (-2015 . 508295) (-2016 . 507926) - (-2017 . 507870) (-2018 . 507819) (-2019 . 507716) (-2020 . 507631) - (-2021 . 507543) (-2022 . 507397) (-2023 . 507248) (-2024 . 506958) - (-2025 . 506880) (-2026 . 506805) (-2027 . 506752) (-2028 . 506699) - (-2029 . 506668) (-2030 . 506605) (-2031 . 506487) (-2032 . 506398) - (-2033 . 506278) (-2034 . 505983) (-2035 . 505789) (-2036 . 505601) - (-2037 . 505456) (-2038 . 505311) (-2039 . 505025) (-2040 . 504583) - (-2041 . 504549) (-2042 . 504512) (-2043 . 504475) (-2044 . 504438) - (-2045 . 504401) (-2046 . 504370) (-2047 . 504339) (-2048 . 504308) - (-2049 . 504274) (-2050 . 504240) (-2051 . 504186) (-2052 . 504010) - (-2053 . 503776) (-2054 . 503542) (-2055 . 503313) (-2056 . 503261) - (-2057 . 503206) (-2058 . 503137) (-2059 . 503049) (-2060 . 502980) - (-2061 . 502908) (-2062 . 502678) (-2063 . 502627) (-2064 . 502573) - (-2065 . 502542) (-2066 . 502436) (-2067 . 502211) (-2068 . 501901) - (-2069 . 501727) (-2070 . 501545) (-2071 . 501274) (-2072 . 501201) - (-2073 . 501136) (-2074 . 500660) (-2075 . 500098) (-2076 . 499372) - (-2077 . 498811) (-2078 . 498183) (-2079 . 497604) (-2080 . 497530) - (-2081 . 497478) (-2082 . 497426) (-2083 . 497352) (-2084 . 497297) - (-2085 . 497245) (-2086 . 497193) (-2087 . 497141) (-2088 . 497071) - (-2089 . 496623) (-2090 . 496417) (-2091 . 496168) (-2092 . 495834) - (-2093 . 495580) (-2094 . 495278) (-2095 . 495075) (-2096 . 494786) - (-2097 . 494238) (-2098 . 494101) (-2099 . 493899) (-2100 . 493619) - (-2101 . 493534) (-2102 . 493201) (-2103 . 493060) (-2104 . 492769) - (-2105 . 492549) (-2106 . 492423) (-2107 . 492298) (-2108 . 492151) - (-2109 . 492007) (-2110 . 491891) (-2111 . 491760) (-2112 . 491388) - (-2113 . 491128) (-2114 . 490858) (-2115 . 490618) (-2116 . 490288) - (-2117 . 489948) (-2118 . 489540) (-2119 . 489122) (-2120 . 488925) - (-2121 . 488650) (-2122 . 488482) (-2123 . 488286) (-2124 . 488064) - (-2125 . 487909) (-2126 . 487724) (-2127 . 487621) (-2128 . 487593) - (-2129 . 487565) (-2130 . 487391) (-2131 . 487317) (-2132 . 487256) - (-2133 . 487203) (-2134 . 487134) (-2135 . 487065) (-2136 . 486946) - (-2137 . 486768) (-2138 . 486713) (-2139 . 486467) (-2140 . 486394) - (-2141 . 486324) (-2142 . 486254) (-2143 . 486165) (-2144 . 485975) - (-2145 . 485902) (-2146 . 485833) (-2147 . 485768) (-2148 . 485713) - (-2149 . 485622) (-2150 . 485331) (-2151 . 485005) (-2152 . 484931) - (-2153 . 484609) (-2154 . 484404) (-2155 . 484319) (-2156 . 484234) - (-2157 . 484149) (-2158 . 484064) (-2159 . 483979) (-2160 . 483894) - (-2161 . 483809) (-2162 . 483724) (-2163 . 483639) (-2164 . 483554) - (-2165 . 483469) (-2166 . 483384) (-2167 . 483299) (-2168 . 483214) - (-2169 . 483129) (-2170 . 483044) (-2171 . 482959) (-2172 . 482874) - (-2173 . 482789) (-2174 . 482704) (-2175 . 482619) (-2176 . 482534) - (-2177 . 482449) (-2178 . 482364) (-2179 . 482279) (-2180 . 482194) - (-2181 . 482092) (-2182 . 482004) (-2183 . 481796) (-2184 . 481738) - (-2185 . 481683) (-2186 . 481596) (-2187 . 481485) (-2188 . 481399) - (-2189 . 481253) (-2190 . 481191) (-2191 . 481163) (-2192 . 481135) - (-2193 . 481107) (-2194 . 481079) (-2195 . 480910) (-2196 . 480759) - (-2197 . 480608) (-2198 . 480436) (-2199 . 480228) (-2200 . 480109) - (-2201 . 479909) (-2202 . 479819) (-2203 . 479729) (-2204 . 479602) - (-2205 . 479509) (-2206 . 479417) (-2207 . 479324) (-2208 . 479200) - (-2209 . 479172) (-2210 . 479144) (-2211 . 479116) (-2212 . 479088) - (-2213 . 479060) (-2214 . 479032) (-2215 . 479004) (-2216 . 478976) - (-2217 . 478948) (-2218 . 478920) (-2219 . 478892) (-2220 . 478864) - (-2221 . 478836) (-2222 . 478808) (-2223 . 478780) (-2224 . 478752) - (-2225 . 478699) (-2226 . 478671) (-2227 . 478643) (-2228 . 478565) - (-2229 . 478512) (-2230 . 478459) (-2231 . 478406) (-2232 . 478328) - (-2233 . 478238) (-2234 . 478143) (-2235 . 478049) (-2236 . 477967) - (-2237 . 477661) (-2238 . 477465) (-2239 . 477370) (-2240 . 477262) - (-2241 . 476851) (-2242 . 476823) (-2243 . 476659) (-2244 . 476582) - (-2245 . 476395) (-2246 . 476216) (-2247 . 475792) (-2248 . 475640) - (-2249 . 475460) (-2250 . 475287) (-2251 . 475027) (-2252 . 474775) - (-2253 . 473964) (-2254 . 473797) (-2255 . 473579) (-2256 . 472755) - (-2257 . 472624) (-2258 . 472493) (-2259 . 472362) (-2260 . 472231) - (-2261 . 472100) (-2262 . 471969) (-2263 . 471774) (-2264 . 471580) - (-2265 . 471437) (-2266 . 471122) (-2267 . 471007) (-2268 . 470667) - (-2269 . 470507) (-2270 . 470368) (-2271 . 470229) (-2272 . 470100) - (-2273 . 470015) (-2274 . 469963) (-2275 . 469483) (-2276 . 468221) - (-2277 . 468094) (-2278 . 467952) (-2279 . 467616) (-2280 . 467511) - (-2281 . 467262) (-2282 . 467030) (-2283 . 466925) (-2284 . 466850) - (-2285 . 466775) (-2286 . 466700) (-2287 . 466641) (-2288 . 466571) - (-2289 . 466518) (-2290 . 466456) (-2291 . 466386) (-2292 . 466023) - (-2293 . 465736) (-2294 . 465626) (-2295 . 465439) (-2296 . 465346) - (-2297 . 465253) (-2298 . 465166) (-2299 . 464949) (-2300 . 464730) - (-2301 . 464312) (-2302 . 464040) (-2303 . 463897) (-2304 . 463804) - (-2305 . 463661) (-2306 . 463509) (-2307 . 463355) (-2308 . 463285) - (-2309 . 463078) (-2310 . 462901) (-2311 . 462692) (-2312 . 462515) - (-2313 . 462481) (-2314 . 462447) (-2315 . 462416) (-2316 . 462298) - (-2317 . 462003) (-2318 . 461725) (-2319 . 461604) (-2320 . 461477) - (-2321 . 461392) (-2322 . 461319) (-2323 . 461230) (-2324 . 461159) - (-2325 . 461103) (-2326 . 461047) (-2327 . 460991) (-2328 . 460921) - (-2329 . 460851) (-2330 . 460781) (-2331 . 460683) (-2332 . 460605) - (-2333 . 460527) (-2334 . 460384) (-2335 . 460305) (-2336 . 460233) - (-2337 . 460030) (-2338 . 459974) (-2339 . 459786) (-2340 . 459687) - (-2341 . 459569) (-2342 . 459448) (-2343 . 459305) (-2344 . 459162) - (-2345 . 459022) (-2346 . 458882) (-2347 . 458739) (-2348 . 458613) - (-2349 . 458484) (-2350 . 458361) (-2351 . 458238) (-2352 . 458133) - (-2353 . 458028) (-2354 . 457926) (-2355 . 457776) (-2356 . 457623) - (-2357 . 457470) (-2358 . 457326) (-2359 . 457172) (-2360 . 457096) - (-2361 . 457017) (-2362 . 456864) (-2363 . 456785) (-2364 . 456706) - (-2365 . 456627) (-2366 . 456525) (-2367 . 456466) (-2368 . 456404) - (-2369 . 456287) (-2370 . 456163) (-2371 . 456086) (-2372 . 455954) - (-2373 . 455648) (-2374 . 455465) (-2375 . 454920) (-2376 . 454700) - (-2377 . 454526) (-2378 . 454356) (-2379 . 454283) (-2380 . 454207) - (-2381 . 454128) (-2382 . 453831) (-2383 . 453669) (-2384 . 453435) - (-2385 . 452993) (-2386 . 452863) (-2387 . 452723) (-2388 . 452414) - (-2389 . 452112) (-2390 . 451796) (-2391 . 451390) (-2392 . 451322) - (-2393 . 451254) (-2394 . 451186) (-2395 . 451092) (-2396 . 450985) - (-2397 . 450878) (-2398 . 450777) (-2399 . 450676) (-2400 . 450575) - (-2401 . 450498) (-2402 . 450105) (-2403 . 449688) (-2404 . 449061) - (-2405 . 448997) (-2406 . 448878) (-2407 . 448759) (-2408 . 448651) - (-2409 . 448543) (-2410 . 448387) (-2411 . 447787) (-2412 . 447504) - (-2413 . 447425) (-2414 . 447371) (-2415 . 447203) (-2416 . 447081) - (-2417 . 446685) (-2418 . 446449) (-2419 . 446248) (-2420 . 446040) - (-2421 . 445847) (-2422 . 445580) (-2423 . 445506) (-2424 . 445327) - (-2425 . 445258) (-2426 . 445182) (-2427 . 445041) (-2428 . 444838) - (-2429 . 444694) (-2430 . 444444) (-2431 . 444136) (-2432 . 443780) - (-2433 . 443621) (-2434 . 443415) (-2435 . 443255) (-2436 . 443182) - (-2437 . 443148) (-2438 . 443083) (-2439 . 443046) (-2440 . 442909) - (-2441 . 442671) (-2442 . 442601) (-2443 . 442415) (-2444 . 442166) - (-2445 . 442010) (-2446 . 441487) (-2447 . 441290) (-2448 . 441078) - (-2449 . 440916) (-2450 . 440517) (-2451 . 440350) (-2452 . 439275) - (-2453 . 439152) (-2454 . 438935) (-2455 . 438805) (-2456 . 438675) - (-2457 . 438518) (-2458 . 438415) (-2459 . 438357) (-2460 . 438299) - (-2461 . 438193) (-2462 . 438087) (-2463 . 437171) (-2464 . 435044) - (-2465 . 434230) (-2466 . 432427) (-2467 . 432359) (-2468 . 432291) - (-2469 . 432223) (-2470 . 432155) (-2471 . 432087) (-2472 . 432009) - (-2473 . 431653) (-2474 . 431471) (-2475 . 430932) (-2476 . 430756) - (-2477 . 430535) (-2478 . 430314) (-2479 . 430093) (-2480 . 429875) - (-2481 . 429657) (-2482 . 429439) (-2483 . 429221) (-2484 . 429003) - (-2485 . 428785) (-2486 . 428684) (-2487 . 427951) (-2488 . 427896) - (-2489 . 427841) (-2490 . 427786) (-2491 . 427731) (-2492 . 427581) - (-2493 . 427333) (-2494 . 427172) (-2495 . 426992) (-2496 . 426705) - (-2497 . 426319) (-2498 . 425447) (-2499 . 425107) (-2500 . 424939) - (-2501 . 424717) (-2502 . 424467) (-2503 . 424119) (-2504 . 423109) - (-2505 . 422798) (-2506 . 422586) (-2507 . 422022) (-2508 . 421509) - (-2509 . 419753) (-2510 . 419281) (-2511 . 418682) (-2512 . 418432) - (-2513 . 418298) (-2514 . 418086) (-2515 . 418010) (-2516 . 417934) - (-2517 . 417827) (-2518 . 417645) (-2519 . 417480) (-2520 . 417302) - (-2521 . 416721) (-2522 . 416560) (-2523 . 415987) (-2524 . 415917) - (-2525 . 415842) (-2526 . 415770) (-2527 . 415632) (-2528 . 415445) - (-2529 . 415338) (-2530 . 415231) (-2531 . 415116) (-2532 . 415001) - (-2533 . 414886) (-2534 . 414608) (-2535 . 414458) (-2536 . 414315) - (-2537 . 414242) (-2538 . 414157) (-2539 . 414084) (-2540 . 414011) - (-2541 . 413938) (-2542 . 413795) (-2543 . 413645) (-2544 . 413471) - (-2545 . 413321) (-2546 . 413171) (-2547 . 413045) (-2548 . 412659) - (-2549 . 412375) (-2550 . 412091) (-2551 . 411682) (-2552 . 411398) - (-2553 . 411325) (-2554 . 411178) (-2555 . 411072) (-2556 . 410998) - (-2557 . 410928) (-2558 . 410849) (-2559 . 410772) (-2560 . 410695) - (-2561 . 410546) (-2562 . 410443) (-2563 . 410385) (-2564 . 410321) - (-2565 . 410257) (-2566 . 410160) (-2567 . 410063) (-2568 . 409903) - (-2569 . 409817) (-2570 . 409731) (-2571 . 409646) (-2572 . 409587) - (-2573 . 409528) (-2574 . 409469) (-2575 . 409410) (-2576 . 409240) - (-2577 . 409152) (-2578 . 409055) (-2579 . 409021) (-2580 . 408990) - (-2581 . 408906) (-2582 . 408850) (-2583 . 408788) (-2584 . 408754) - (-2585 . 408720) (-2586 . 408686) (-2587 . 408652) (-2588 . 408618) - (-2589 . 408584) (-2590 . 408550) (-2591 . 408516) (-2592 . 408482) - (-2593 . 408370) (-2594 . 408336) (-2595 . 408285) (-2596 . 408251) - (-2597 . 408154) (-2598 . 408092) (-2599 . 408001) (-2600 . 407910) - (-2601 . 407855) (-2602 . 407803) (-2603 . 407751) (-2604 . 407699) - (-2605 . 407647) (-2606 . 407224) (-2607 . 407058) (-2608 . 407005) - (-2609 . 406936) (-2610 . 406883) (-2611 . 406752) (-2612 . 406596) - (-2613 . 406075) (-2614 . 405934) (-2615 . 405900) (-2616 . 405845) - (-2617 . 405135) (-2618 . 404820) (-2619 . 404316) (-2620 . 404238) - (-2621 . 404186) (-2622 . 404134) (-2623 . 403950) (-2624 . 403898) - (-2625 . 403846) (-2626 . 403770) (-2627 . 403708) (-2628 . 403490) - (-2629 . 403423) (-2630 . 403329) (-2631 . 403235) (-2632 . 403052) - (-2633 . 402970) (-2634 . 402848) (-2635 . 402702) (-2636 . 402051) - (-2637 . 401349) (-2638 . 401245) (-2639 . 401144) (-2640 . 401043) - (-2641 . 400932) (-2642 . 400764) (-2643 . 400560) (-2644 . 400467) - (-2645 . 400390) (-2646 . 400334) (-2647 . 400264) (-2648 . 400144) - (-2649 . 400043) (-2650 . 399946) (-2651 . 399866) (-2652 . 399786) - (-2653 . 399709) (-2654 . 399639) (-2655 . 399569) (-2656 . 399499) - (-2657 . 399429) (-2658 . 399359) (-2659 . 399289) (-2660 . 399196) - (-2661 . 399068) (-2662 . 398826) (-2663 . 398656) (-2664 . 398287) - (-2665 . 398118) (-2666 . 398002) (-2667 . 397506) (-2668 . 397125) - (-2669 . 396879) (-2670 . 396787) (-2671 . 396690) (-2672 . 396034) - (-2673 . 395921) (-2674 . 395847) (-2675 . 395755) (-2676 . 395565) - (-2677 . 395375) (-2678 . 395304) (-2679 . 395233) (-2680 . 395152) - (-2681 . 395071) (-2682 . 394946) (-2683 . 394813) (-2684 . 394732) - (-2685 . 394658) (-2686 . 394493) (-2687 . 394336) (-2688 . 394108) - (-2689 . 393960) (-2690 . 393856) (-2691 . 393752) (-2692 . 393667) - (-2693 . 393299) (-2694 . 393218) (-2695 . 393131) (-2696 . 393050) - (-2697 . 392854) (-2698 . 392634) (-2699 . 392447) (-2700 . 392125) - (-2701 . 391832) (-2702 . 391539) (-2703 . 391229) (-2704 . 390912) - (-2705 . 390760) (-2706 . 390572) (-2707 . 390099) (-2708 . 390017) - (-2709 . 389801) (-2710 . 389585) (-2711 . 389326) (-2712 . 388905) - (-2713 . 388392) (-2714 . 388262) (-2715 . 387988) (-2716 . 387809) - (-2717 . 387694) (-2718 . 387590) (-2719 . 387535) (-2720 . 387458) - (-2721 . 387388) (-2722 . 387315) (-2723 . 387260) (-2724 . 387187) - (-2725 . 387132) (-2726 . 386777) (-2727 . 386369) (-2728 . 386216) - (-2729 . 386063) (-2730 . 385982) (-2731 . 385829) (-2732 . 385676) - (-2733 . 385541) (-2734 . 385406) (-2735 . 385271) (-2736 . 385136) - (-2737 . 385001) (-2738 . 384866) (-2739 . 384810) (-2740 . 384657) - (-2741 . 384546) (-2742 . 384435) (-2743 . 384350) (-2744 . 384240) - (-2745 . 384137) (-2746 . 379986) (-2747 . 379538) (-2748 . 379111) - (-2749 . 378494) (-2750 . 377893) (-2751 . 377675) (-2752 . 377497) - (-2753 . 377238) (-2754 . 376827) (-2755 . 376533) (-2756 . 376090) - (-2757 . 375912) (-2758 . 375519) (-2759 . 375126) (-2760 . 374941) - (-2761 . 374734) (-2762 . 374514) (-2763 . 374208) (-2764 . 374009) - (-2765 . 373380) (-2766 . 373223) (-2767 . 372834) (-2768 . 372783) - (-2769 . 372734) (-2770 . 372683) (-2771 . 372635) (-2772 . 372583) - (-2773 . 372437) (-2774 . 372385) (-2775 . 372239) (-2776 . 372187) - (-2777 . 372041) (-2778 . 371990) (-2779 . 371615) (-2780 . 371564) - (-2781 . 371515) (-2782 . 371464) (-2783 . 371416) (-2784 . 371364) - (-2785 . 371315) (-2786 . 371263) (-2787 . 371214) (-2788 . 371162) - (-2789 . 371113) (-2790 . 371047) (-2791 . 370929) (-2792 . 369767) - (-2793 . 369350) (-2794 . 369242) (-2795 . 369000) (-2796 . 368850) - (-2797 . 368700) (-2798 . 368539) (-2799 . 366332) (-2800 . 366071) - (-2801 . 365917) (-2802 . 365771) (-2803 . 365625) (-2804 . 365406) - (-2805 . 365274) (-2806 . 365199) (-2807 . 365124) (-2808 . 364989) - (-2809 . 364860) (-2810 . 364731) (-2811 . 364605) (-2812 . 364479) - (-2813 . 364353) (-2814 . 364227) (-2815 . 364124) (-2816 . 364024) - (-2817 . 363930) (-2818 . 363800) (-2819 . 363649) (-2820 . 363273) - (-2821 . 363159) (-2822 . 362918) (-2823 . 362460) (-2824 . 362150) - (-2825 . 361583) (-2826 . 361014) (-2827 . 360004) (-2828 . 359462) - (-2829 . 359149) (-2830 . 358811) (-2831 . 358480) (-2832 . 358160) - (-2833 . 358107) (-2834 . 357980) (-2835 . 357478) (-2836 . 356335) - (-2837 . 356280) (-2838 . 356225) (-2839 . 356149) (-2840 . 356030) - (-2841 . 355955) (-2842 . 355880) (-2843 . 355802) (-2844 . 355579) - (-2845 . 355520) (-2846 . 355461) (-2847 . 355358) (-2848 . 355255) - (-2849 . 355152) (-2850 . 355049) (-2851 . 354968) (-2852 . 354894) - (-2853 . 354679) (-2854 . 354445) (-2855 . 354411) (-2856 . 354377) - (-2857 . 354349) (-2858 . 354321) (-2859 . 354104) (-2860 . 353826) - (-2861 . 353676) (-2862 . 353546) (-2863 . 353416) (-2864 . 353316) - (-2865 . 353139) (-2866 . 352979) (-2867 . 352879) (-2868 . 352702) - (-2869 . 352542) (-2870 . 352383) (-2871 . 352244) (-2872 . 352094) - (-2873 . 351964) (-2874 . 351834) (-2875 . 351687) (-2876 . 351560) - (-2877 . 351457) (-2878 . 351350) (-2879 . 351253) (-2880 . 351088) - (-2881 . 350940) (-2882 . 350525) (-2883 . 350425) (-2884 . 350322) - (-2885 . 350234) (-2886 . 350154) (-2887 . 350004) (-2888 . 349874) - (-2889 . 349822) (-2890 . 349749) (-2891 . 349674) (-2892 . 349615) - (-2893 . 349503) (-2894 . 349191) (-2895 . 349014) (-2896 . 347416) - (-2897 . 346788) (-2898 . 346728) (-2899 . 346610) (-2900 . 346492) - (-2901 . 346348) (-2902 . 346196) (-2903 . 346037) (-2904 . 345878) - (-2905 . 345672) (-2906 . 345485) (-2907 . 345333) (-2908 . 345178) - (-2909 . 345023) (-2910 . 344871) (-2911 . 344734) (-2912 . 344311) - (-2913 . 344185) (-2914 . 344059) (-2915 . 343933) (-2916 . 343793) - (-2917 . 343652) (-2918 . 343511) (-2919 . 343367) (-2920 . 342619) - (-2921 . 342461) (-2922 . 342275) (-2923 . 342120) (-2924 . 341882) - (-2925 . 341637) (-2926 . 341392) (-2927 . 341182) (-2928 . 341045) - (-2929 . 340835) (-2930 . 340698) (-2931 . 340488) (-2932 . 340351) - (-2933 . 340141) (-2934 . 339838) (-2935 . 339694) (-2936 . 339553) - (-2937 . 339330) (-2938 . 339189) (-2939 . 338967) (-2940 . 338770) - (-2941 . 338614) (-2942 . 338287) (-2943 . 338128) (-2944 . 337969) - (-2945 . 337810) (-2946 . 337639) (-2947 . 337468) (-2948 . 337294) - (-2949 . 336942) (-2950 . 336819) (-2951 . 336657) (-2952 . 336584) - (-2953 . 336511) (-2954 . 336438) (-2955 . 336365) (-2956 . 336292) - (-2957 . 336219) (-2958 . 336096) (-2959 . 335923) (-2960 . 335800) - (-2961 . 335714) (-2962 . 335648) (-2963 . 335582) (-2964 . 335516) - (-2965 . 335450) (-2966 . 335384) (-2967 . 335318) (-2968 . 335252) - (-2969 . 335186) (-2970 . 335120) (-2971 . 335054) (-2972 . 334988) - (-2973 . 334922) (-2974 . 334856) (-2975 . 334790) (-2976 . 334724) - (-2977 . 334658) (-2978 . 334592) (-2979 . 334526) (-2980 . 334460) - (-2981 . 334394) (-2982 . 334328) (-2983 . 334262) (-2984 . 334196) - (-2985 . 334130) (-2986 . 334064) (-2987 . 333998) (-2988 . 333351) - (-2989 . 332704) (-2990 . 332576) (-2991 . 332453) (-2992 . 332330) - (-2993 . 332189) (-2994 . 332035) (-2995 . 331891) (-2996 . 331716) - (-2997 . 331106) (-2998 . 330982) (-2999 . 330858) (-3000 . 330180) - (-3001 . 329483) (-3002 . 329382) (-3003 . 329326) (-3004 . 329270) - (-3005 . 329214) (-3006 . 329158) (-3007 . 329099) (-3008 . 329035) - (-3009 . 328927) (-3010 . 328819) (-3011 . 328711) (-3012 . 328432) - (-3013 . 328358) (-3014 . 328132) (-3015 . 328051) (-3016 . 327973) - (-3017 . 327895) (-3018 . 327817) (-3019 . 327738) (-3020 . 327660) - (-3021 . 327567) (-3022 . 327468) (-3023 . 327400) (-3024 . 327351) - (-3025 . 326660) (-3026 . 326020) (-3027 . 325229) (-3028 . 325151) - (-3029 . 325053) (-3030 . 324964) (-3031 . 324875) (-3032 . 324801) - (-3033 . 324727) (-3034 . 324653) (-3035 . 324598) (-3036 . 324543) - (-3037 . 324477) (-3038 . 324411) (-3039 . 324349) (-3040 . 324074) - (-3041 . 323582) (-3042 . 323124) (-3043 . 322871) (-3044 . 322683) - (-3045 . 322342) (-3046 . 322046) (-3047 . 321878) (-3048 . 321747) - (-3049 . 321607) (-3050 . 321452) (-3051 . 321283) (-3052 . 319897) - (-3053 . 319764) (-3054 . 319623) (-3055 . 319394) (-3056 . 319335) - (-3057 . 319279) (-3058 . 319223) (-3059 . 318958) (-3060 . 318746) - (-3061 . 318607) (-3062 . 318500) (-3063 . 318383) (-3064 . 318317) - (-3065 . 318244) (-3066 . 318130) (-3067 . 317877) (-3068 . 317777) - (-3069 . 317583) (-3070 . 317275) (-3071 . 316809) (-3072 . 316704) - (-3073 . 316598) (-3074 . 316449) (-3075 . 316309) (-3076 . 315897) - (-3077 . 315653) (-3078 . 314995) (-3079 . 314842) (-3080 . 314728) - (-3081 . 314618) (-3082 . 313798) (-3083 . 313604) (-3084 . 312578) - (-3085 . 312130) (-3086 . 310741) (-3087 . 309890) (-3088 . 309841) - (-3089 . 309792) (-3090 . 309743) (-3091 . 309676) (-3092 . 309601) - (-3093 . 309411) (-3094 . 309339) (-3095 . 309264) (-3096 . 309192) - (-3097 . 309075) (-3098 . 309024) (-3099 . 308945) (-3100 . 308866) - (-3101 . 308787) (-3102 . 308736) (-3103 . 308492) (-3104 . 308190) - (-3105 . 308108) (-3106 . 308026) (-3107 . 307965) (-3108 . 307576) - (-3109 . 306710) (-3110 . 306137) (-3111 . 304920) (-3112 . 304113) - (-3113 . 303863) (-3114 . 303613) (-3115 . 303190) (-3116 . 302946) - (-3117 . 302702) (-3118 . 302458) (-3119 . 302214) (-3120 . 301970) - (-3121 . 301726) (-3122 . 301484) (-3123 . 301242) (-3124 . 301000) - (-3125 . 300758) (-3126 . 300180) (-3127 . 300064) (-3128 . 300010) - (-3129 . 299168) (-3130 . 299137) (-3131 . 298792) (-3132 . 298566) - (-3133 . 298467) (-3134 . 298368) (-3135 . 296602) (-3136 . 296490) - (-3137 . 295440) (-3138 . 295348) (-3139 . 294426) (-3140 . 294093) - (-3141 . 293760) (-3142 . 293657) (-3143 . 293546) (-3144 . 293435) - (-3145 . 293324) (-3146 . 293213) (-3147 . 292126) (-3148 . 292006) - (-3149 . 291871) (-3150 . 291739) (-3151 . 291607) (-3152 . 291313) - (-3153 . 291019) (-3154 . 290674) (-3155 . 290448) (-3156 . 290222) - (-3157 . 290111) (-3158 . 290000) (-3159 . 288538) (-3160 . 286834) - (-3161 . 286525) (-3162 . 286373) (-3163 . 285850) (-3164 . 285521) - (-3165 . 285328) (-3166 . 285135) (-3167 . 284942) (-3168 . 284749) - (-3169 . 284636) (-3170 . 284513) (-3171 . 284399) (-3172 . 284285) - (-3173 . 284192) (-3174 . 284099) (-3175 . 283989) (-3176 . 283788) - (-3177 . 282644) (-3178 . 282551) (-3179 . 282437) (-3180 . 282344) - (-3181 . 282097) (-3182 . 281986) (-3183 . 281772) (-3184 . 281654) - (-3185 . 281357) (-3186 . 280629) (-3187 . 280053) (-3188 . 279575) - (-3189 . 279331) (-3190 . 279087) (-3191 . 278744) (-3192 . 278138) - (-3193 . 277695) (-3194 . 277540) (-3195 . 277396) (-3196 . 277076) - (-3197 . 276921) (-3198 . 276781) (-3199 . 276641) (-3200 . 276501) - (-3201 . 276226) (-3202 . 276007) (-3203 . 275488) (-3204 . 275276) - (-3205 . 275064) (-3206 . 274684) (-3207 . 274510) (-3208 . 274301) - (-3209 . 273993) (-3210 . 273801) (-3211 . 273628) (-3212 . 272492) - (-3213 . 272127) (-3214 . 271927) (-3215 . 271727) (-3216 . 270891) - (-3217 . 270863) (-3218 . 270795) (-3219 . 270725) (-3220 . 270561) - (-3221 . 270533) (-3222 . 270505) (-3223 . 270451) (-3224 . 270301) - (-3225 . 270242) (-3226 . 269546) (-3227 . 268160) (-3228 . 268099) - (-3229 . 267775) (-3230 . 267703) (-3231 . 267646) (-3232 . 267589) - (-3233 . 267532) (-3234 . 267475) (-3235 . 267400) (-3236 . 266810) - (-3237 . 266450) (-3238 . 266376) (-3239 . 266316) (-3240 . 266198) - (-3241 . 265255) (-3242 . 265128) (-3243 . 264915) (-3244 . 264841) - (-3245 . 264787) (-3246 . 264733) (-3247 . 264624) (-3248 . 264341) - (-3249 . 264233) (-3250 . 264130) (-3251 . 263969) (-3252 . 263868) - (-3253 . 263770) (-3254 . 263632) (-3255 . 263494) (-3256 . 263356) - (-3257 . 263094) (-3258 . 262885) (-3259 . 262747) (-3260 . 262456) - (-3261 . 262304) (-3262 . 262029) (-3263 . 261809) (-3264 . 261657) - (-3265 . 261505) (-3266 . 261353) (-3267 . 261201) (-3268 . 261049) - (-3269 . 260842) (-3270 . 260455) (-3271 . 260124) (-3272 . 259785) - (-3273 . 259438) (-3274 . 259099) (-3275 . 258760) (-3276 . 258379) - (-3277 . 257998) (-3278 . 257617) (-3279 . 257252) (-3280 . 256534) - (-3281 . 256187) (-3282 . 255742) (-3283 . 255317) (-3284 . 254706) - (-3285 . 254114) (-3286 . 253727) (-3287 . 253396) (-3288 . 253009) - (-3289 . 252678) (-3290 . 252458) (-3291 . 251937) (-3292 . 251724) - (-3293 . 251511) (-3294 . 251298) (-3295 . 251120) (-3296 . 250907) - (-3297 . 250729) (-3298 . 250347) (-3299 . 250169) (-3300 . 249959) - (-3301 . 249869) (-3302 . 249779) (-3303 . 249688) (-3304 . 249576) - (-3305 . 249486) (-3306 . 249379) (-3307 . 249190) (-3308 . 249134) - (-3309 . 249053) (-3310 . 248972) (-3311 . 248891) (-3312 . 248814) - (-3313 . 248679) (-3314 . 248544) (-3315 . 248420) (-3316 . 248299) - (-3317 . 248181) (-3318 . 248045) (-3319 . 247912) (-3320 . 247793) - (-3321 . 247535) (-3322 . 247250) (-3323 . 247178) (-3324 . 247082) - (-3325 . 246941) (-3326 . 246884) (-3327 . 246827) (-3328 . 246767) - (-3329 . 246688) (-3330 . 246293) (-3331 . 245771) (-3332 . 245494) - (-3333 . 245074) (-3334 . 244962) (-3335 . 244524) (-3336 . 244294) - (-3337 . 244091) (-3338 . 243909) (-3339 . 243779) (-3340 . 243573) - (-3341 . 243366) (-3342 . 243176) (-3343 . 242629) (-3344 . 242373) - (-3345 . 242082) (-3346 . 241788) (-3347 . 241491) (-3348 . 241191) - (-3349 . 241061) (-3350 . 240928) (-3351 . 240792) (-3352 . 240653) - (-3353 . 239436) (-3354 . 239128) (-3355 . 238764) (-3356 . 238667) - (-3357 . 238427) (-3358 . 238152) (-3359 . 237877) (-3360 . 237618) - (-3361 . 237444) (-3362 . 237366) (-3363 . 237279) (-3364 . 237179) - (-3365 . 237085) (-3366 . 237004) (-3367 . 236934) (-3368 . 236143) - (-3369 . 236073) (-3370 . 235745) (-3371 . 235675) (-3372 . 235347) - (-3373 . 235277) (-3374 . 234832) (-3375 . 234762) (-3376 . 234658) - (-3377 . 234584) (-3378 . 234510) (-3379 . 234439) (-3380 . 234097) - (-3381 . 233969) (-3382 . 233892) (-3383 . 233661) (-3384 . 233518) - (-3385 . 233375) (-3386 . 233036) (-3387 . 232706) (-3388 . 232493) - (-3389 . 232238) (-3390 . 231888) (-3391 . 231663) (-3392 . 231438) - (-3393 . 231213) (-3394 . 230988) (-3395 . 230775) (-3396 . 230562) - (-3397 . 230412) (-3398 . 230231) (-3399 . 230126) (-3400 . 230004) - (-3401 . 229896) (-3402 . 229788) (-3403 . 229463) (-3404 . 229199) - (-3405 . 228888) (-3406 . 228586) (-3407 . 228277) (-3408 . 227558) - (-3409 . 226982) (-3410 . 226807) (-3411 . 226663) (-3412 . 226508) - (-3413 . 226385) (-3414 . 226280) (-3415 . 226165) (-3416 . 226070) - (-3417 . 225589) (-3418 . 225479) (-3419 . 225369) (-3420 . 225259) - (-3421 . 224187) (-3422 . 223680) (-3423 . 223613) (-3424 . 223540) - (-3425 . 222667) (-3426 . 222594) (-3427 . 222539) (-3428 . 222484) - (-3429 . 222452) (-3430 . 222366) (-3431 . 222334) (-3432 . 222248) - (-3433 . 221828) (-3434 . 221408) (-3435 . 220856) (-3436 . 219752) - (-3437 . 218042) (-3438 . 216492) (-3439 . 215700) (-3440 . 215200) - (-3441 . 214714) (-3442 . 214312) (-3443 . 213662) (-3444 . 213587) - (-3445 . 213496) (-3446 . 213425) (-3447 . 213354) (-3448 . 213298) - (-3449 . 213178) (-3450 . 213124) (-3451 . 213063) (-3452 . 213009) - (-3453 . 212906) (-3454 . 212466) (-3455 . 212026) (-3456 . 211586) - (-3457 . 211064) (-3458 . 210903) (-3459 . 210742) (-3460 . 210431) - (-3461 . 210345) (-3462 . 210255) (-3463 . 209897) (-3464 . 209780) - (-3465 . 209699) (-3466 . 209541) (-3467 . 209428) (-3468 . 209353) - (-3469 . 208507) (-3470 . 207325) (-3471 . 207226) (-3472 . 207127) - (-3473 . 206798) (-3474 . 206720) (-3475 . 206645) (-3476 . 206539) - (-3477 . 206383) (-3478 . 206276) (-3479 . 206141) (-3480 . 206006) - (-3481 . 205884) (-3482 . 205789) (-3483 . 205641) (-3484 . 205546) - (-3485 . 205391) (-3486 . 205236) (-3487 . 204684) (-3488 . 204132) - (-3489 . 203517) (-3490 . 202965) (-3491 . 202413) (-3492 . 201861) - (-3493 . 201308) (-3494 . 200755) (-3495 . 200202) (-3496 . 199649) - (-3497 . 199096) (-3498 . 198543) (-3499 . 197991) (-3500 . 197439) - (-3501 . 196887) (-3502 . 196335) (-3503 . 195783) (-3504 . 195231) - (-3505 . 195127) (-3506 . 194542) (-3507 . 194437) (-3508 . 194362) - (-3509 . 194220) (-3510 . 194128) (-3511 . 194037) (-3512 . 193945) - (-3513 . 193850) (-3514 . 193745) (-3515 . 193622) (-3516 . 193500) - (-3517 . 193136) (-3518 . 193014) (-3519 . 192916) (-3520 . 192555) - (-3521 . 192026) (-3522 . 191951) (-3523 . 191876) (-3524 . 191784) - (-3525 . 191603) (-3526 . 191508) (-3527 . 191433) (-3528 . 191342) - (-3529 . 191251) (-3530 . 191092) (-3531 . 190543) (-3532 . 189994) - (-3533 . 187287) (-3534 . 187115) (-3535 . 185705) (-3536 . 185145) - (-3537 . 185030) (-3538 . 184658) (-3539 . 184595) (-3540 . 184532) - (-3541 . 184469) (-3542 . 184191) (-3543 . 183924) (-3544 . 183872) - (-3545 . 183231) (-3546 . 183180) (-3547 . 182992) (-3548 . 182919) - (-3549 . 182839) (-3550 . 182726) (-3551 . 182536) (-3552 . 182172) - (-3553 . 181900) (-3554 . 181849) (-3555 . 181798) (-3556 . 181728) - (-3557 . 181609) (-3558 . 181580) (-3559 . 181476) (-3560 . 181354) - (-3561 . 181300) (-3562 . 181123) (-3563 . 181062) (-3564 . 180881) - (-3565 . 180820) (-3566 . 180748) (-3567 . 180273) (-3568 . 179899) - (-3569 . 176367) (-3570 . 176315) (-3571 . 176187) (-3572 . 176037) - (-3573 . 175985) (-3574 . 175844) (-3575 . 173786) (-3576 . 166179) - (-3577 . 166028) (-3578 . 165958) (-3579 . 165907) (-3580 . 165857) - (-3581 . 165806) (-3582 . 165755) (-3583 . 165559) (-3584 . 165417) - (-3585 . 165303) (-3586 . 165182) (-3587 . 165064) (-3588 . 164952) - (-3589 . 164834) (-3590 . 164729) (-3591 . 164648) (-3592 . 164544) - (-3593 . 163610) (-3594 . 163390) (-3595 . 163153) (-3596 . 163071) - (-3597 . 162727) (-3598 . 161588) (-3599 . 161514) (-3600 . 161419) - (-3601 . 161345) (-3602 . 161141) (-3603 . 161050) (-3604 . 160934) - (-3605 . 160821) (-3606 . 160730) (-3607 . 160639) (-3608 . 160550) - (-3609 . 160461) (-3610 . 160372) (-3611 . 160284) (-3612 . 159796) - (-3613 . 159732) (-3614 . 159668) (-3615 . 159604) (-3616 . 159543) - (-3617 . 158803) (-3618 . 158742) (-3619 . 158681) (-3620 . 158055) - (-3621 . 158003) (-3622 . 157875) (-3623 . 157811) (-3624 . 157757) - (-3625 . 157648) (-3626 . 156351) (-3627 . 156270) (-3628 . 156181) - (-3629 . 156123) (-3630 . 155983) (-3631 . 155898) (-3632 . 155824) - (-3633 . 155739) (-3634 . 155682) (-3635 . 155466) (-3636 . 155327) - (-3637 . 154720) (-3638 . 154166) (-3639 . 153612) (-3640 . 153058) - (-3641 . 152451) (-3642 . 151897) (-3643 . 151337) (-3644 . 150777) - (-3645 . 150515) (-3646 . 150076) (-3647 . 149743) (-3648 . 149404) - (-3649 . 149099) (-3650 . 148966) (-3651 . 148833) (-3652 . 148445) - (-3653 . 148352) (-3654 . 148259) (-3655 . 148166) (-3656 . 148073) - (-3657 . 147980) (-3658 . 147887) (-3659 . 147794) (-3660 . 147701) - (-3661 . 147608) (-3662 . 147515) (-3663 . 147422) (-3664 . 147329) - (-3665 . 147236) (-3666 . 147143) (-3667 . 147050) (-3668 . 146957) - (-3669 . 146864) (-3670 . 146771) (-3671 . 146678) (-3672 . 146585) - (-3673 . 146492) (-3674 . 146399) (-3675 . 146306) (-3676 . 146213) - (-3677 . 146120) (-3678 . 145935) (-3679 . 145625) (-3680 . 143997) - (-3681 . 143843) (-3682 . 143706) (-3683 . 143564) (-3684 . 143362) - (-3685 . 141435) (-3686 . 141308) (-3687 . 141184) (-3688 . 141057) - (-3689 . 140836) (-3690 . 140615) (-3691 . 140488) (-3692 . 140287) - (-3693 . 140111) (-3694 . 139594) (-3695 . 139077) (-3696 . 138800) - (-3697 . 138391) (-3698 . 137874) (-3699 . 137690) (-3700 . 137548) - (-3701 . 137053) (-3702 . 136422) (-3703 . 136366) (-3704 . 136272) - (-3705 . 136153) (-3706 . 136083) (-3707 . 136010) (-3708 . 135780) - (-3709 . 135161) (-3710 . 134731) (-3711 . 134649) (-3712 . 134507) - (-3713 . 134037) (-3714 . 133915) (-3715 . 133793) (-3716 . 133653) - (-3717 . 133466) (-3718 . 133350) (-3719 . 133070) (-3720 . 133002) - (-3721 . 132804) (-3722 . 132624) (-3723 . 132469) (-3724 . 132362) - (-3725 . 132311) (-3726 . 131934) (-3727 . 131406) (-3728 . 131184) - (-3729 . 130962) (-3730 . 130723) (-3731 . 130633) (-3732 . 128891) - (-3733 . 128309) (-3734 . 128231) (-3735 . 122771) (-3736 . 121981) - (-3737 . 121604) (-3738 . 121533) (-3739 . 121268) (-3740 . 121093) - (-3741 . 120608) (-3742 . 120186) (-3743 . 119746) (-3744 . 118883) - (-3745 . 118759) (-3746 . 118632) (-3747 . 118523) (-3748 . 118371) - (-3749 . 118257) (-3750 . 118118) (-3751 . 118037) (-3752 . 117956) - (-3753 . 117852) (-3754 . 117434) (-3755 . 117013) (-3756 . 116939) - (-3757 . 116676) (-3758 . 116412) (-3759 . 116033) (-3760 . 115334) - (-3761 . 114297) (-3762 . 114238) (-3763 . 114164) (-3764 . 114090) - (-3765 . 113968) (-3766 . 113718) (-3767 . 113632) (-3768 . 113557) - (-3769 . 113482) (-3770 . 113387) (-3771 . 109612) (-3772 . 108442) - (-3773 . 107782) (-3774 . 107598) (-3775 . 105393) (-3776 . 105068) - (-3777 . 104586) (-3778 . 104145) (-3779 . 103910) (-3780 . 103665) - (-3781 . 103575) (-3782 . 102140) (-3783 . 102062) (-3784 . 101957) - (-3785 . 100481) (-3786 . 100076) (-3787 . 99675) (-3788 . 99579) - (-3789 . 99500) (-3790 . 99345) (-3791 . 98232) (-3792 . 98153) - (-3793 . 98077) (-3794 . 97731) (-3795 . 97674) (-3796 . 97602) - (-3797 . 97545) (-3798 . 97488) (-3799 . 97358) (-3800 . 97156) - (-3801 . 96788) (-3802 . 96367) (-3803 . 92559) (-3804 . 91959) - (-3805 . 91492) (-3806 . 91279) (-3807 . 91066) (-3808 . 90900) - (-3809 . 90687) (-3810 . 90521) (-3811 . 90355) (-3812 . 90189) - (-3813 . 90023) (-3814 . 89753) (-3815 . 84339) (** . 81386) (-3817 . 80970) - (-3818 . 80729) (-3819 . 80673) (-3820 . 80181) (-3821 . 77373) - (-3822 . 77223) (-3823 . 77059) (-3824 . 76895) (-3825 . 76799) - (-3826 . 76681) (-3827 . 76557) (-3828 . 76414) (-3829 . 76243) - (-3830 . 76117) (-3831 . 75973) (-3832 . 75821) (-3833 . 75662) - (-3834 . 75149) (-3835 . 75060) (-3836 . 74395) (-3837 . 74203) - (-3838 . 74108) (-3839 . 73800) (-3840 . 72628) (-3841 . 72422) - (-3842 . 71247) (-3843 . 71172) (-3844 . 69991) (-3845 . 66489) - (-3846 . 53985) (-3847 . 53621) (-3848 . 53344) (-3849 . 53252) - (-3850 . 53159) (-3851 . 52882) (-3852 . 52789) (-3853 . 52696) - (-3854 . 52603) (-3855 . 52219) (-3856 . 52148) (-3857 . 52056) - (-3858 . 51898) (-3859 . 51544) (-3860 . 51386) (-3861 . 51278) - (-3862 . 51249) (-3863 . 51182) (-3864 . 51028) (-3865 . 50870) - (-3866 . 50476) (-3867 . 50401) (-3868 . 50295) (-3869 . 50223) - (-3870 . 50145) (-3871 . 50072) (-3872 . 49999) (-3873 . 49926) - (-3874 . 49854) (-3875 . 49782) (-3876 . 49709) (-3877 . 49468) - (-3878 . 49128) (-3879 . 48980) (-3880 . 48907) (-3881 . 48834) - (-3882 . 48761) (-3883 . 48507) (-3884 . 48363) (-3885 . 47027) - (-3886 . 46833) (-3887 . 46562) (-3888 . 46414) (-3889 . 46266) - (-3890 . 46026) (-3891 . 45832) (-3892 . 45564) (-3893 . 45368) - (-3894 . 45339) (-3895 . 45238) (-3896 . 45137) (-3897 . 45036) - (-3898 . 44935) (-3899 . 44834) (-3900 . 44733) (-3901 . 44632) - (-3902 . 44531) (-3903 . 44430) (-3904 . 44329) (-3905 . 44214) - (-3906 . 44099) (-3907 . 44048) (-3908 . 43931) (-3909 . 43873) - (-3910 . 43772) (-3911 . 43671) (-3912 . 43570) (-3913 . 43454) - (-3914 . 43425) (-3915 . 42694) (-3916 . 42569) (-3917 . 42444) - (-3918 . 42304) (-3919 . 42186) (-3920 . 42061) (-3921 . 41906) - (-3922 . 40923) (-3923 . 40064) (-3924 . 40010) (-3925 . 39956) - (-3926 . 39748) (-3927 . 39376) (-3928 . 38965) (-3929 . 38607) - (-3930 . 38249) (-3931 . 38097) (-3932 . 37795) (-3933 . 37639) - (-3934 . 37313) (-3935 . 37243) (-3936 . 37173) (-3937 . 36964) - (-3938 . 36355) (-3939 . 36151) (-3940 . 35778) (-3941 . 35269) - (-3942 . 35004) (-3943 . 34523) (-3944 . 34042) (-3945 . 33917) - (-3946 . 32817) (-3947 . 31741) (-3948 . 31168) (-3949 . 30950) - (-3950 . 22624) (-3951 . 22439) (-3952 . 20356) (-3953 . 18188) - (-3954 . 18042) (-3955 . 17864) (-3956 . 17457) (-3957 . 17162) - (-3958 . 16814) (-3959 . 16648) (-3960 . 16482) (-3961 . 16071) - (-3962 . 14964) (* . 10917) (-3964 . 10663) (-3965 . 10479) (-3966 . 9522) - (-3967 . 9469) (-3968 . 9409) (-3969 . 9140) (-3970 . 8513) (-3971 . 7240) - (-3972 . 5996) (-3973 . 5127) (-3974 . 3864) (-3975 . 420) (-3976 . 306) - (-3977 . 173) (-3978 . 30))
\ No newline at end of file +((-1218 . 628672) (-1219 . 628276) (-1220 . 627974) (-1221 . 627578) + (-1222 . 627457) (-1223 . 627355) (-1224 . 627242) (-1225 . 627126) + (-1226 . 627073) (-1227 . 626939) (-1228 . 626864) (-1229 . 626708) + (-1230 . 626480) (-1231 . 625516) (-1232 . 625269) (-1233 . 624985) + (-1234 . 624701) (-1235 . 624417) (-1236 . 624098) (-1237 . 624006) + (-1238 . 623914) (-1239 . 623822) (-1240 . 623730) (-1241 . 623638) + (-1242 . 623546) (-1243 . 623451) (-1244 . 623356) (-1245 . 623264) + (-1246 . 623172) (-1247 . 623080) (-1248 . 622988) (-1249 . 622896) + (-1250 . 622794) (-1251 . 622692) (-1252 . 622590) (-1253 . 622498) + (-1254 . 622447) (-1255 . 622395) (-1256 . 622325) (-1257 . 621905) + (-1258 . 621711) (-1259 . 621684) (-1260 . 621561) (-1261 . 621438) + (-1262 . 621294) (-1263 . 621124) (-1264 . 621000) (-1265 . 620761) + (-1266 . 620688) (-1267 . 620463) (-1268 . 620217) (-1269 . 620164) + (-1270 . 619986) (-1271 . 619817) (-1272 . 619741) (-1273 . 619668) + (-1274 . 619515) (-1275 . 619362) (-1276 . 619178) (-1277 . 618997) + (-1278 . 618942) (-1279 . 618887) (-1280 . 618814) (-1281 . 618738) + (-1282 . 618661) (-1283 . 618593) (-1284 . 618450) (-1285 . 618343) + (-1286 . 618275) (-1287 . 618205) (-1288 . 618135) (-1289 . 618085) + (-1290 . 618035) (-1291 . 617985) (-1292 . 617864) (-1293 . 617548) + (-1294 . 617479) (-1295 . 617400) (-1296 . 617281) (-1297 . 617204) + (-1298 . 617127) (-1299 . 616974) (-1300 . 616825) (-1301 . 616749) + (-1302 . 616692) (-1303 . 616620) (-1304 . 616557) (-1305 . 616494) + (-1306 . 616433) (-1307 . 616361) (-1308 . 616245) (-1309 . 616193) + (-1310 . 616138) (-1311 . 616086) (-1312 . 616034) (-1313 . 616006) + (-1314 . 615978) (-1315 . 615950) (-1316 . 615906) (-1317 . 615835) + (-1318 . 615784) (-1319 . 615736) (-1320 . 615685) (-1321 . 615633) + (-1322 . 615517) (-1323 . 615401) (-1324 . 615309) (-1325 . 615217) + (-1326 . 615094) (-1327 . 615028) (-1328 . 614962) (-1329 . 614903) + (-1330 . 614875) (-1331 . 614847) (-1332 . 614819) (-1333 . 614791) + (-1334 . 614681) (-1335 . 614630) (-1336 . 614579) (-1337 . 614528) + (-1338 . 614477) (-1339 . 614426) (-1340 . 614375) (-1341 . 614347) + (-1342 . 614319) (-1343 . 614291) (-1344 . 614263) (-1345 . 614235) + (-1346 . 614207) (-1347 . 614179) (-1348 . 614151) (-1349 . 614123) + (-1350 . 614020) (-1351 . 613968) (-1352 . 613802) (-1353 . 613618) + (-1354 . 613407) (-1355 . 613292) (-1356 . 613059) (-1357 . 612969) + (-1358 . 612854) (-1359 . 612456) (-1360 . 612238) (-1361 . 612189) + (-1362 . 612161) (-1363 . 612085) (-1364 . 611986) (-1365 . 611887) + (-1366 . 611788) (-1367 . 611689) (-1368 . 611590) (-1369 . 611491) + (-1370 . 611333) (-1371 . 611257) (-1372 . 611090) (-1373 . 611032) + (-1374 . 610974) (-1375 . 610665) (-1376 . 610411) (-1377 . 610327) + (-1378 . 610251) (-1379 . 610119) (-1380 . 610061) (-1381 . 610009) + (-1382 . 609927) (-1383 . 609852) (-1384 . 609781) (-1385 . 609727) + (-1386 . 609676) (-1387 . 609602) (-1388 . 609528) (-1389 . 609447) + (-1390 . 609366) (-1391 . 609311) (-1392 . 609237) (-1393 . 609163) + (-1394 . 609089) (-1395 . 609012) (-1396 . 608958) (-1397 . 608900) + (-1398 . 608801) (-1399 . 608702) (-1400 . 608603) (-1401 . 608504) + (-1402 . 608405) (-1403 . 608306) (-1404 . 608207) (-1405 . 608093) + (-1406 . 607979) (-1407 . 607865) (-1408 . 607751) (-1409 . 607637) + (-1410 . 607523) (-1411 . 607406) (-1412 . 607330) (-1413 . 607254) + (-1414 . 606867) (-1415 . 606522) (-1416 . 606420) (-1417 . 606159) + (-1418 . 606057) (-1419 . 605852) (-1420 . 605739) (-1421 . 605637) + (-1422 . 605480) (-1423 . 605391) (-1424 . 605297) (-1425 . 605217) + (-1426 . 605143) (-1427 . 605065) (-1428 . 605006) (-1429 . 604948) + (-1430 . 604846) (-7 . 604818) (-8 . 604790) (-9 . 604762) (-1434 . 604643) + (-1435 . 604561) (-1436 . 604479) (-1437 . 604397) (-1438 . 604315) + (-1439 . 604233) (-1440 . 604139) (-1441 . 604069) (-1442 . 603999) + (-1443 . 603908) (-1444 . 603814) (-1445 . 603732) (-1446 . 603650) + (-1447 . 603552) (-1448 . 603392) (-1449 . 603194) (-1450 . 603058) + (-1451 . 602958) (-1452 . 602858) (-1453 . 602765) (-1454 . 602706) + (-1455 . 602373) (-1456 . 602273) (-1457 . 602155) (-1458 . 601943) + (-1459 . 601764) (-1460 . 601606) (-1461 . 601403) (-1462 . 600985) + (-1463 . 600934) (-1464 . 600825) (-1465 . 600710) (-1466 . 600641) + (-1467 . 600572) (-1468 . 600503) (-1469 . 600437) (-1470 . 600312) + (-1471 . 600095) (-1472 . 600017) (-1473 . 599967) (-1474 . 599896) + (-1475 . 599753) (-1476 . 599612) (-1477 . 599534) (-1478 . 599456) + (-1479 . 599400) (-1480 . 599344) (-1481 . 599271) (-1482 . 599131) + (-1483 . 599078) (-1484 . 599019) (-1485 . 598960) (-1486 . 598805) + (-1487 . 598753) (-1488 . 598636) (-1489 . 598519) (-1490 . 598402) + (-1491 . 598271) (-1492 . 597992) (-1493 . 597857) (-1494 . 597801) + (-1495 . 597745) (-1496 . 597686) (-1497 . 597627) (-1498 . 597571) + (-1499 . 597515) (-1500 . 597318) (-1501 . 594976) (-1502 . 594849) + (-1503 . 594704) (-1504 . 594576) (-1505 . 594524) (-1506 . 594472) + (-1507 . 594420) (-1508 . 590382) (-1509 . 590288) (-1510 . 590149) + (-1511 . 589940) (-1512 . 589838) (-1513 . 589736) (-1514 . 588821) + (-1515 . 588745) (-1516 . 588616) (-1517 . 588491) (-1518 . 588414) + (-1519 . 588337) (-1520 . 588210) (-1521 . 588083) (-1522 . 587917) + (-1523 . 587790) (-1524 . 587663) (-1525 . 587446) (-1526 . 587012) + (-1527 . 586648) (-1528 . 586596) (-1529 . 586537) (-1530 . 586449) + (-1531 . 586361) (-1532 . 586270) (-1533 . 586179) (-1534 . 586088) + (-1535 . 585997) (-1536 . 585906) (-1537 . 585815) (-1538 . 585724) + (-1539 . 585633) (-1540 . 585542) (-1541 . 585451) (-1542 . 585360) + (-1543 . 585269) (-1544 . 585178) (-1545 . 585087) (-1546 . 584996) + (-1547 . 584905) (-1548 . 584814) (-1549 . 584723) (-1550 . 584632) + (-1551 . 584541) (-1552 . 584450) (-1553 . 584359) (-1554 . 584268) + (-1555 . 584177) (-1556 . 584086) (-1557 . 583995) (-1558 . 583833) + (-1559 . 583725) (-1560 . 583482) (-1561 . 583195) (-1562 . 583000) + (-1563 . 582844) (-1564 . 582684) (-1565 . 582633) (-1566 . 582571) + (-1567 . 582520) (-1568 . 582457) (-1569 . 582404) (-1570 . 582352) + (-1571 . 582300) (-1572 . 582248) (-1573 . 582158) (-1574 . 581975) + (-1575 . 581821) (-1576 . 581741) (-1577 . 581661) (-1578 . 581581) + (-1579 . 581451) (-1580 . 581227) (-1581 . 581199) (-1582 . 581171) + (-1583 . 581143) (-1584 . 581063) (-1585 . 580986) (-1586 . 580909) + (-1587 . 580828) (-1588 . 580768) (-1589 . 580610) (-1590 . 580417) + (-1591 . 579932) (-1592 . 579690) (-1593 . 579428) (-1594 . 579327) + (-1595 . 579246) (-1596 . 579165) (-1597 . 579095) (-1598 . 579025) + (-1599 . 578867) (-1600 . 578563) (-1601 . 578335) (-1602 . 578213) + (-1603 . 578155) (-1604 . 578093) (-1605 . 578031) (-1606 . 577966) + (-1607 . 577904) (-1608 . 577625) (-1609 . 577557) (-1610 . 577347) + (-1611 . 577295) (-1612 . 577241) (-1613 . 577150) (-1614 . 577063) + (-1615 . 575316) (-1616 . 575237) (-1617 . 574492) (-1618 . 574375) + (-1619 . 574169) (-1620 . 574008) (-1621 . 573847) (-1622 . 573687) + (-1623 . 573549) (-1624 . 573455) (-1625 . 573357) (-1626 . 573263) + (-1627 . 573149) (-1628 . 573067) (-1629 . 572970) (-1630 . 572774) + (-1631 . 572683) (-1632 . 572589) (-1633 . 572522) (-1634 . 572453) + (-1635 . 572401) (-1636 . 572342) (-1637 . 572268) (-1638 . 572216) + (-1639 . 572059) (-1640 . 571902) (-1641 . 571750) (-1642 . 570992) + (-1643 . 570681) (-1644 . 570329) (-1645 . 570112) (-1646 . 569849) + (-1647 . 569474) (-1648 . 569290) (-1649 . 569156) (-1650 . 568990) + (-1651 . 568824) (-1652 . 568690) (-1653 . 568556) (-1654 . 568422) + (-1655 . 568288) (-1656 . 568157) (-1657 . 568026) (-1658 . 567895) + (-1659 . 567515) (-1660 . 567389) (-1661 . 567261) (-1662 . 567011) + (-1663 . 566888) (-1664 . 566638) (-1665 . 566515) (-1666 . 566265) + (-1667 . 566142) (-1668 . 565859) (-1669 . 565588) (-1670 . 565315) + (-1671 . 565017) (-1672 . 564915) (-1673 . 564770) (-1674 . 564629) + (-1675 . 564478) (-1676 . 564317) (-1677 . 564229) (-1678 . 564201) + (-1679 . 564119) (-1680 . 564022) (-1681 . 563554) (-1682 . 563203) + (-1683 . 562770) (-1684 . 562631) (-1685 . 562561) (-1686 . 562491) + (-1687 . 562421) (-1688 . 562330) (-1689 . 562239) (-1690 . 562148) + (-1691 . 562057) (-1692 . 561966) (-1693 . 561880) (-1694 . 561794) + (-1695 . 561708) (-1696 . 561622) (-1697 . 561536) (-1698 . 561462) + (-1699 . 561357) (-1700 . 561131) (-1701 . 561053) (-1702 . 560978) + (-1703 . 560885) (-1704 . 560781) (-1705 . 560685) (-1706 . 560516) + (-1707 . 560439) (-1708 . 560362) (-1709 . 560271) (-1710 . 560180) + (-1711 . 559980) (-1712 . 559827) (-1713 . 559674) (-1714 . 559521) + (-1715 . 559368) (-1716 . 559215) (-1717 . 559062) (-1718 . 558996) + (-1719 . 558843) (-1720 . 558690) (-1721 . 558537) (-1722 . 558384) + (-1723 . 558231) (-1724 . 558078) (-1725 . 557925) (-1726 . 557772) + (-1727 . 557698) (-1728 . 557624) (-1729 . 557569) (-1730 . 557514) + (-1731 . 557459) (-1732 . 557404) (-1733 . 557333) (-1734 . 557240) + (-1735 . 557054) (-1736 . 556957) (-1737 . 556860) (-1738 . 556662) + (-1739 . 556564) (-1740 . 556376) (-1741 . 556283) (-1742 . 556156) + (-1743 . 556029) (-1744 . 555902) (-1745 . 555834) (-1746 . 555718) + (-1747 . 555602) (-1748 . 555486) (-1749 . 555433) (-1750 . 555348) + (-1751 . 555263) (-1752 . 554955) (-1753 . 554900) (-1754 . 554248) + (-1755 . 553933) (-1756 . 553649) (-1757 . 553531) (-1758 . 553412) + (-1759 . 553353) (-1760 . 553294) (-1761 . 553243) (-1762 . 553192) + (-1763 . 553141) (-1764 . 553088) (-1765 . 553035) (-1766 . 552976) + (-1767 . 552863) (-1768 . 552750) (-1769 . 552583) (-1770 . 552491) + (-1771 . 552378) (-1772 . 552294) (-1773 . 552179) (-1774 . 552088) + (-1775 . 551997) (-1776 . 551876) (-1777 . 551689) (-1778 . 551637) + (-1779 . 551582) (-1780 . 551395) (-1781 . 551272) (-1782 . 551199) + (-1783 . 551126) (-1784 . 551006) (-1785 . 550933) (-1786 . 550860) + (-1787 . 550520) (-1788 . 550447) (-1789 . 550227) (-1790 . 549894) + (-1791 . 549711) (-1792 . 549568) (-1793 . 549208) (-1794 . 549040) + (-1795 . 548872) (-1796 . 548616) (-1797 . 548360) (-1798 . 548165) + (-1799 . 547970) (-1800 . 547376) (-1801 . 547300) (-1802 . 547161) + (-1803 . 546754) (-1804 . 546627) (-1805 . 546470) (-1806 . 546153) + (-1807 . 545673) (-1808 . 545193) (-1809 . 544691) (-1810 . 544623) + (-1811 . 544552) (-1812 . 544481) (-1813 . 544309) (-1814 . 544190) + (-1815 . 544071) (-1816 . 543995) (-1817 . 543919) (-1818 . 543646) + (-1819 . 543532) (-1820 . 543481) (-1821 . 543430) (-1822 . 543379) + (-1823 . 543328) (-1824 . 543277) (-1825 . 543136) (-1826 . 542963) + (-1827 . 542732) (-1828 . 542546) (-1829 . 542518) (-1830 . 542490) + (-1831 . 542462) (-1832 . 542434) (-1833 . 542406) (-1834 . 542378) + (-1835 . 542350) (-1836 . 542299) (-1837 . 542233) (-1838 . 542143) + (-1839 . 541772) (-1840 . 541621) (-1841 . 541470) (-1842 . 541265) + (-1843 . 541143) (-1844 . 541069) (-1845 . 540992) (-1846 . 540918) + (-1847 . 540841) (-1848 . 540764) (-1849 . 540690) (-1850 . 540613) + (-1851 . 540380) (-1852 . 540227) (-1853 . 539932) (-1854 . 539779) + (-1855 . 539457) (-1856 . 539319) (-1857 . 539181) (-1858 . 539101) + (-1859 . 539021) (-1860 . 538757) (-1861 . 538026) (-1862 . 537890) + (-1863 . 537800) (-1864 . 537665) (-1865 . 537598) (-1866 . 537530) + (-1867 . 537443) (-1868 . 537356) (-1869 . 537189) (-1870 . 537115) + (-1871 . 536971) (-1872 . 536511) (-1873 . 536132) (-1874 . 535370) + (-1875 . 535226) (-1876 . 535082) (-1877 . 534920) (-1878 . 534683) + (-1879 . 534543) (-1880 . 534397) (-1881 . 534158) (-1882 . 533922) + (-1883 . 533683) (-1884 . 533491) (-1885 . 533368) (-1886 . 533164) + (-1887 . 532941) (-1888 . 532702) (-1889 . 532561) (-1890 . 532423) + (-1891 . 532284) (-1892 . 532031) (-1893 . 531775) (-1894 . 531618) + (-1895 . 531464) (-1896 . 531224) (-1897 . 530939) (-1898 . 530801) + (-1899 . 530714) (-1900 . 530048) (-1901 . 529872) (-1902 . 529690) + (-1903 . 529514) (-1904 . 529332) (-1905 . 529153) (-1906 . 528974) + (-1907 . 528787) (-1908 . 528405) (-1909 . 528226) (-1910 . 528047) + (-1911 . 527860) (-1912 . 527478) (-1913 . 526485) (-1914 . 526101) + (-1915 . 525717) (-1916 . 525599) (-1917 . 525442) (-1918 . 525300) + (-1919 . 525183) (-1920 . 525001) (-1921 . 524877) (-1922 . 524588) + (-1923 . 524299) (-1924 . 524016) (-1925 . 523733) (-1926 . 523455) + (-1927 . 523367) (-1928 . 523282) (-1929 . 523185) (-1930 . 523088) + (-1931 . 522868) (-1932 . 522768) (-1933 . 522665) (-1934 . 522587) + (-1935 . 522262) (-1936 . 521970) (-1937 . 521897) (-1938 . 521512) + (-1939 . 521484) (-1940 . 521285) (-1941 . 521111) (-1942 . 520870) + (-1943 . 520815) (-1944 . 520740) (-1945 . 520372) (-1946 . 520257) + (-1947 . 520180) (-1948 . 520107) (-1949 . 520026) (-1950 . 519945) + (-1951 . 519864) (-1952 . 519763) (-1953 . 519704) (-1954 . 519651) + (-1955 . 519597) (-1956 . 519265) (-1957 . 518941) (-1958 . 518753) + (-1959 . 518562) (-1960 . 518398) (-1961 . 518063) (-1962 . 517896) + (-1963 . 517655) (-1964 . 517331) (-1965 . 517141) (-1966 . 516926) + (-1967 . 516755) (-1968 . 516333) (-1969 . 516106) (-1970 . 515835) + (-1971 . 515698) (-1972 . 515557) (-1973 . 515080) (-1974 . 514957) + (-1975 . 514721) (-1976 . 514467) (-1977 . 514217) (-1978 . 513924) + (-1979 . 513784) (-1980 . 513644) (-1981 . 513504) (-1982 . 513315) + (-1983 . 513126) (-1984 . 512951) (-1985 . 512677) (-1986 . 512242) + (-1987 . 512214) (-1988 . 512142) (-1989 . 512009) (-1990 . 511934) + (-1991 . 511775) (-1992 . 511612) (-1993 . 511451) (-1994 . 511284) + (-1995 . 511231) (-1996 . 511178) (-1997 . 511049) (-1998 . 510989) + (-1999 . 510936) (-2000 . 510866) (-2001 . 510806) (-2002 . 510747) + (-2003 . 510687) (-2004 . 510628) (-2005 . 510568) (-2006 . 510509) + (-2007 . 510450) (-2008 . 510308) (-2009 . 510213) (-2010 . 510122) + (-2011 . 510006) (-2012 . 509912) (-2013 . 509814) (-2014 . 509720) + (-2015 . 509579) (-2016 . 509317) (-2017 . 508461) (-2018 . 508305) + (-2019 . 507936) (-2020 . 507880) (-2021 . 507829) (-2022 . 507726) + (-2023 . 507641) (-2024 . 507553) (-2025 . 507407) (-2026 . 507258) + (-2027 . 506968) (-2028 . 506890) (-2029 . 506815) (-2030 . 506762) + (-2031 . 506709) (-2032 . 506678) (-2033 . 506615) (-2034 . 506497) + (-2035 . 506408) (-2036 . 506288) (-2037 . 505993) (-2038 . 505799) + (-2039 . 505611) (-2040 . 505466) (-2041 . 505321) (-2042 . 505035) + (-2043 . 504593) (-2044 . 504559) (-2045 . 504522) (-2046 . 504485) + (-2047 . 504448) (-2048 . 504411) (-2049 . 504380) (-2050 . 504349) + (-2051 . 504318) (-2052 . 504284) (-2053 . 504250) (-2054 . 504196) + (-2055 . 504020) (-2056 . 503786) (-2057 . 503552) (-2058 . 503323) + (-2059 . 503271) (-2060 . 503216) (-2061 . 503147) (-2062 . 503059) + (-2063 . 502990) (-2064 . 502918) (-2065 . 502688) (-2066 . 502637) + (-2067 . 502583) (-2068 . 502552) (-2069 . 502446) (-2070 . 502221) + (-2071 . 501911) (-2072 . 501737) (-2073 . 501555) (-2074 . 501284) + (-2075 . 501211) (-2076 . 501146) (-2077 . 500670) (-2078 . 500108) + (-2079 . 499382) (-2080 . 498821) (-2081 . 498193) (-2082 . 497614) + (-2083 . 497540) (-2084 . 497488) (-2085 . 497436) (-2086 . 497362) + (-2087 . 497307) (-2088 . 497255) (-2089 . 497203) (-2090 . 497151) + (-2091 . 497081) (-2092 . 496633) (-2093 . 496427) (-2094 . 496178) + (-2095 . 495844) (-2096 . 495590) (-2097 . 495288) (-2098 . 495085) + (-2099 . 494796) (-2100 . 494248) (-2101 . 494111) (-2102 . 493909) + (-2103 . 493629) (-2104 . 493544) (-2105 . 493211) (-2106 . 493070) + (-2107 . 492779) (-2108 . 492559) (-2109 . 492433) (-2110 . 492308) + (-2111 . 492161) (-2112 . 492017) (-2113 . 491901) (-2114 . 491770) + (-2115 . 491398) (-2116 . 491138) (-2117 . 490868) (-2118 . 490628) + (-2119 . 490298) (-2120 . 489958) (-2121 . 489550) (-2122 . 489132) + (-2123 . 488935) (-2124 . 488660) (-2125 . 488492) (-2126 . 488296) + (-2127 . 488074) (-2128 . 487919) (-2129 . 487734) (-2130 . 487631) + (-2131 . 487603) (-2132 . 487575) (-2133 . 487401) (-2134 . 487327) + (-2135 . 487266) (-2136 . 487213) (-2137 . 487144) (-2138 . 487075) + (-2139 . 486956) (-2140 . 486778) (-2141 . 486723) (-2142 . 486477) + (-2143 . 486404) (-2144 . 486334) (-2145 . 486264) (-2146 . 486175) + (-2147 . 485985) (-2148 . 485912) (-2149 . 485843) (-2150 . 485778) + (-2151 . 485723) (-2152 . 485632) (-2153 . 485341) (-2154 . 485015) + (-2155 . 484941) (-2156 . 484619) (-2157 . 484414) (-2158 . 484329) + (-2159 . 484244) (-2160 . 484159) (-2161 . 484074) (-2162 . 483989) + (-2163 . 483904) (-2164 . 483819) (-2165 . 483734) (-2166 . 483649) + (-2167 . 483564) (-2168 . 483479) (-2169 . 483394) (-2170 . 483309) + (-2171 . 483224) (-2172 . 483139) (-2173 . 483054) (-2174 . 482969) + (-2175 . 482884) (-2176 . 482799) (-2177 . 482714) (-2178 . 482629) + (-2179 . 482544) (-2180 . 482459) (-2181 . 482374) (-2182 . 482289) + (-2183 . 482204) (-2184 . 482102) (-2185 . 482014) (-2186 . 481806) + (-2187 . 481748) (-2188 . 481693) (-2189 . 481606) (-2190 . 481495) + (-2191 . 481409) (-2192 . 481263) (-2193 . 481201) (-2194 . 481173) + (-2195 . 481145) (-2196 . 481117) (-2197 . 481089) (-2198 . 480920) + (-2199 . 480769) (-2200 . 480618) (-2201 . 480446) (-2202 . 480238) + (-2203 . 480119) (-2204 . 479919) (-2205 . 479829) (-2206 . 479739) + (-2207 . 479612) (-2208 . 479519) (-2209 . 479427) (-2210 . 479334) + (-2211 . 479210) (-2212 . 479182) (-2213 . 479154) (-2214 . 479126) + (-2215 . 479098) (-2216 . 479070) (-2217 . 479042) (-2218 . 479014) + (-2219 . 478986) (-2220 . 478958) (-2221 . 478930) (-2222 . 478902) + (-2223 . 478874) (-2224 . 478846) (-2225 . 478818) (-2226 . 478790) + (-2227 . 478762) (-2228 . 478709) (-2229 . 478681) (-2230 . 478653) + (-2231 . 478575) (-2232 . 478522) (-2233 . 478469) (-2234 . 478416) + (-2235 . 478338) (-2236 . 478248) (-2237 . 478153) (-2238 . 478059) + (-2239 . 477977) (-2240 . 477671) (-2241 . 477475) (-2242 . 477380) + (-2243 . 477272) (-2244 . 476861) (-2245 . 476833) (-2246 . 476669) + (-2247 . 476592) (-2248 . 476405) (-2249 . 476226) (-2250 . 475802) + (-2251 . 475650) (-2252 . 475470) (-2253 . 475297) (-2254 . 475037) + (-2255 . 474785) (-2256 . 473974) (-2257 . 473807) (-2258 . 473589) + (-2259 . 472765) (-2260 . 472634) (-2261 . 472503) (-2262 . 472372) + (-2263 . 472241) (-2264 . 472110) (-2265 . 471979) (-2266 . 471784) + (-2267 . 471590) (-2268 . 471447) (-2269 . 471132) (-2270 . 471017) + (-2271 . 470677) (-2272 . 470517) (-2273 . 470378) (-2274 . 470239) + (-2275 . 470110) (-2276 . 470025) (-2277 . 469973) (-2278 . 469493) + (-2279 . 468231) (-2280 . 468104) (-2281 . 467962) (-2282 . 467626) + (-2283 . 467521) (-2284 . 467272) (-2285 . 467040) (-2286 . 466935) + (-2287 . 466860) (-2288 . 466785) (-2289 . 466710) (-2290 . 466651) + (-2291 . 466581) (-2292 . 466528) (-2293 . 466466) (-2294 . 466396) + (-2295 . 466033) (-2296 . 465746) (-2297 . 465636) (-2298 . 465449) + (-2299 . 465356) (-2300 . 465263) (-2301 . 465176) (-2302 . 464959) + (-2303 . 464740) (-2304 . 464322) (-2305 . 464050) (-2306 . 463907) + (-2307 . 463814) (-2308 . 463671) (-2309 . 463519) (-2310 . 463365) + (-2311 . 463295) (-2312 . 463088) (-2313 . 462911) (-2314 . 462702) + (-2315 . 462525) (-2316 . 462491) (-2317 . 462457) (-2318 . 462426) + (-2319 . 462308) (-2320 . 462013) (-2321 . 461735) (-2322 . 461614) + (-2323 . 461487) (-2324 . 461402) (-2325 . 461329) (-2326 . 461240) + (-2327 . 461169) (-2328 . 461113) (-2329 . 461057) (-2330 . 461001) + (-2331 . 460931) (-2332 . 460861) (-2333 . 460791) (-2334 . 460693) + (-2335 . 460615) (-2336 . 460537) (-2337 . 460394) (-2338 . 460315) + (-2339 . 460243) (-2340 . 460040) (-2341 . 459984) (-2342 . 459796) + (-2343 . 459697) (-2344 . 459579) (-2345 . 459458) (-2346 . 459315) + (-2347 . 459172) (-2348 . 459032) (-2349 . 458892) (-2350 . 458749) + (-2351 . 458623) (-2352 . 458494) (-2353 . 458371) (-2354 . 458248) + (-2355 . 458143) (-2356 . 458038) (-2357 . 457936) (-2358 . 457786) + (-2359 . 457633) (-2360 . 457480) (-2361 . 457336) (-2362 . 457182) + (-2363 . 457106) (-2364 . 457027) (-2365 . 456874) (-2366 . 456795) + (-2367 . 456716) (-2368 . 456637) (-2369 . 456535) (-2370 . 456476) + (-2371 . 456414) (-2372 . 456297) (-2373 . 456173) (-2374 . 456096) + (-2375 . 455964) (-2376 . 455658) (-2377 . 455475) (-2378 . 454930) + (-2379 . 454710) (-2380 . 454536) (-2381 . 454366) (-2382 . 454293) + (-2383 . 454217) (-2384 . 454138) (-2385 . 453841) (-2386 . 453679) + (-2387 . 453445) (-2388 . 453003) (-2389 . 452873) (-2390 . 452733) + (-2391 . 452424) (-2392 . 452122) (-2393 . 451806) (-2394 . 451400) + (-2395 . 451332) (-2396 . 451264) (-2397 . 451196) (-2398 . 451102) + (-2399 . 450995) (-2400 . 450888) (-2401 . 450787) (-2402 . 450686) + (-2403 . 450585) (-2404 . 450508) (-2405 . 450115) (-2406 . 449698) + (-2407 . 449071) (-2408 . 449007) (-2409 . 448888) (-2410 . 448769) + (-2411 . 448661) (-2412 . 448553) (-2413 . 448397) (-2414 . 447797) + (-2415 . 447514) (-2416 . 447435) (-2417 . 447381) (-2418 . 447213) + (-2419 . 447091) (-2420 . 446695) (-2421 . 446459) (-2422 . 446258) + (-2423 . 446050) (-2424 . 445857) (-2425 . 445590) (-2426 . 445516) + (-2427 . 445337) (-2428 . 445268) (-2429 . 445192) (-2430 . 445051) + (-2431 . 444848) (-2432 . 444704) (-2433 . 444454) (-2434 . 444146) + (-2435 . 443790) (-2436 . 443631) (-2437 . 443425) (-2438 . 443265) + (-2439 . 443192) (-2440 . 443158) (-2441 . 443093) (-2442 . 443056) + (-2443 . 442919) (-2444 . 442681) (-2445 . 442611) (-2446 . 442425) + (-2447 . 442176) (-2448 . 442020) (-2449 . 441497) (-2450 . 441300) + (-2451 . 441088) (-2452 . 440926) (-2453 . 440527) (-2454 . 440360) + (-2455 . 439285) (-2456 . 439162) (-2457 . 438945) (-2458 . 438815) + (-2459 . 438685) (-2460 . 438528) (-2461 . 438425) (-2462 . 438367) + (-2463 . 438309) (-2464 . 438203) (-2465 . 438097) (-2466 . 437181) + (-2467 . 435054) (-2468 . 434240) (-2469 . 432437) (-2470 . 432369) + (-2471 . 432301) (-2472 . 432233) (-2473 . 432165) (-2474 . 432097) + (-2475 . 432019) (-2476 . 431663) (-2477 . 431481) (-2478 . 430942) + (-2479 . 430766) (-2480 . 430545) (-2481 . 430324) (-2482 . 430103) + (-2483 . 429885) (-2484 . 429667) (-2485 . 429449) (-2486 . 429231) + (-2487 . 429013) (-2488 . 428795) (-2489 . 428694) (-2490 . 427961) + (-2491 . 427906) (-2492 . 427851) (-2493 . 427796) (-2494 . 427741) + (-2495 . 427591) (-2496 . 427343) (-2497 . 427182) (-2498 . 427002) + (-2499 . 426715) (-2500 . 426329) (-2501 . 425457) (-2502 . 425117) + (-2503 . 424949) (-2504 . 424727) (-2505 . 424477) (-2506 . 424129) + (-2507 . 423119) (-2508 . 422808) (-2509 . 422596) (-2510 . 422032) + (-2511 . 421519) (-2512 . 419763) (-2513 . 419291) (-2514 . 418692) + (-2515 . 418442) (-2516 . 418308) (-2517 . 418096) (-2518 . 418020) + (-2519 . 417944) (-2520 . 417837) (-2521 . 417655) (-2522 . 417490) + (-2523 . 417312) (-2524 . 416731) (-2525 . 416570) (-2526 . 415997) + (-2527 . 415927) (-2528 . 415852) (-2529 . 415780) (-2530 . 415642) + (-2531 . 415455) (-2532 . 415348) (-2533 . 415241) (-2534 . 415126) + (-2535 . 415011) (-2536 . 414896) (-2537 . 414618) (-2538 . 414468) + (-2539 . 414325) (-2540 . 414252) (-2541 . 414167) (-2542 . 414094) + (-2543 . 414021) (-2544 . 413948) (-2545 . 413805) (-2546 . 413655) + (-2547 . 413481) (-2548 . 413331) (-2549 . 413181) (-2550 . 413055) + (-2551 . 412669) (-2552 . 412385) (-2553 . 412101) (-2554 . 411692) + (-2555 . 411408) (-2556 . 411335) (-2557 . 411188) (-2558 . 411082) + (-2559 . 411008) (-2560 . 410938) (-2561 . 410859) (-2562 . 410782) + (-2563 . 410705) (-2564 . 410556) (-2565 . 410453) (-2566 . 410395) + (-2567 . 410331) (-2568 . 410267) (-2569 . 410170) (-2570 . 410073) + (-2571 . 409913) (-2572 . 409827) (-2573 . 409741) (-2574 . 409656) + (-2575 . 409597) (-2576 . 409538) (-2577 . 409479) (-2578 . 409420) + (-2579 . 409250) (-2580 . 409162) (-2581 . 409065) (-2582 . 409031) + (-2583 . 409000) (-2584 . 408916) (-2585 . 408860) (-2586 . 408798) + (-2587 . 408764) (-2588 . 408730) (-2589 . 408696) (-2590 . 408662) + (-2591 . 408628) (-2592 . 408594) (-2593 . 408560) (-2594 . 408526) + (-2595 . 408492) (-2596 . 408380) (-2597 . 408346) (-2598 . 408295) + (-2599 . 408261) (-2600 . 408164) (-2601 . 408102) (-2602 . 408011) + (-2603 . 407920) (-2604 . 407865) (-2605 . 407813) (-2606 . 407761) + (-2607 . 407709) (-2608 . 407657) (-2609 . 407234) (-2610 . 407068) + (-2611 . 407015) (-2612 . 406946) (-2613 . 406893) (-2614 . 406762) + (-2615 . 406606) (-2616 . 406085) (-2617 . 405944) (-2618 . 405910) + (-2619 . 405855) (-2620 . 405145) (-2621 . 404830) (-2622 . 404326) + (-2623 . 404248) (-2624 . 404196) (-2625 . 404144) (-2626 . 403960) + (-2627 . 403908) (-2628 . 403856) (-2629 . 403780) (-2630 . 403718) + (-2631 . 403500) (-2632 . 403433) (-2633 . 403339) (-2634 . 403245) + (-2635 . 403062) (-2636 . 402980) (-2637 . 402858) (-2638 . 402712) + (-2639 . 402061) (-2640 . 401359) (-2641 . 401255) (-2642 . 401154) + (-2643 . 401053) (-2644 . 400942) (-2645 . 400774) (-2646 . 400570) + (-2647 . 400477) (-2648 . 400400) (-2649 . 400344) (-2650 . 400274) + (-2651 . 400154) (-2652 . 400053) (-2653 . 399956) (-2654 . 399876) + (-2655 . 399796) (-2656 . 399719) (-2657 . 399649) (-2658 . 399579) + (-2659 . 399509) (-2660 . 399439) (-2661 . 399369) (-2662 . 399299) + (-2663 . 399206) (-2664 . 399078) (-2665 . 398836) (-2666 . 398666) + (-2667 . 398297) (-2668 . 398128) (-2669 . 398012) (-2670 . 397516) + (-2671 . 397135) (-2672 . 396889) (-2673 . 396797) (-2674 . 396700) + (-2675 . 396044) (-2676 . 395931) (-2677 . 395857) (-2678 . 395765) + (-2679 . 395575) (-2680 . 395385) (-2681 . 395314) (-2682 . 395243) + (-2683 . 395162) (-2684 . 395081) (-2685 . 394956) (-2686 . 394823) + (-2687 . 394742) (-2688 . 394668) (-2689 . 394503) (-2690 . 394346) + (-2691 . 394118) (-2692 . 393970) (-2693 . 393866) (-2694 . 393762) + (-2695 . 393677) (-2696 . 393309) (-2697 . 393228) (-2698 . 393141) + (-2699 . 393060) (-2700 . 392864) (-2701 . 392644) (-2702 . 392457) + (-2703 . 392135) (-2704 . 391842) (-2705 . 391549) (-2706 . 391239) + (-2707 . 390922) (-2708 . 390770) (-2709 . 390582) (-2710 . 390109) + (-2711 . 390027) (-2712 . 389811) (-2713 . 389595) (-2714 . 389336) + (-2715 . 388915) (-2716 . 388402) (-2717 . 388272) (-2718 . 387998) + (-2719 . 387819) (-2720 . 387704) (-2721 . 387600) (-2722 . 387545) + (-2723 . 387468) (-2724 . 387398) (-2725 . 387325) (-2726 . 387270) + (-2727 . 387197) (-2728 . 387142) (-2729 . 386787) (-2730 . 386379) + (-2731 . 386226) (-2732 . 386073) (-2733 . 385992) (-2734 . 385839) + (-2735 . 385686) (-2736 . 385551) (-2737 . 385416) (-2738 . 385281) + (-2739 . 385146) (-2740 . 385011) (-2741 . 384876) (-2742 . 384820) + (-2743 . 384667) (-2744 . 384556) (-2745 . 384445) (-2746 . 384360) + (-2747 . 384250) (-2748 . 384147) (-2749 . 379996) (-2750 . 379548) + (-2751 . 379121) (-2752 . 378504) (-2753 . 377903) (-2754 . 377685) + (-2755 . 377507) (-2756 . 377248) (-2757 . 376837) (-2758 . 376543) + (-2759 . 376100) (-2760 . 375922) (-2761 . 375529) (-2762 . 375136) + (-2763 . 374951) (-2764 . 374744) (-2765 . 374524) (-2766 . 374218) + (-2767 . 374019) (-2768 . 373390) (-2769 . 373233) (-2770 . 372844) + (-2771 . 372793) (-2772 . 372744) (-2773 . 372693) (-2774 . 372645) + (-2775 . 372593) (-2776 . 372447) (-2777 . 372395) (-2778 . 372249) + (-2779 . 372197) (-2780 . 372051) (-2781 . 372000) (-2782 . 371625) + (-2783 . 371574) (-2784 . 371525) (-2785 . 371474) (-2786 . 371426) + (-2787 . 371374) (-2788 . 371325) (-2789 . 371273) (-2790 . 371224) + (-2791 . 371172) (-2792 . 371123) (-2793 . 371057) (-2794 . 370939) + (-2795 . 369777) (-2796 . 369360) (-2797 . 369252) (-2798 . 369010) + (-2799 . 368860) (-2800 . 368710) (-2801 . 368549) (-2802 . 366342) + (-2803 . 366081) (-2804 . 365927) (-2805 . 365781) (-2806 . 365635) + (-2807 . 365416) (-2808 . 365284) (-2809 . 365209) (-2810 . 365134) + (-2811 . 364999) (-2812 . 364870) (-2813 . 364741) (-2814 . 364615) + (-2815 . 364489) (-2816 . 364363) (-2817 . 364237) (-2818 . 364134) + (-2819 . 364034) (-2820 . 363940) (-2821 . 363810) (-2822 . 363659) + (-2823 . 363283) (-2824 . 363169) (-2825 . 362928) (-2826 . 362470) + (-2827 . 362160) (-2828 . 361593) (-2829 . 361024) (-2830 . 360014) + (-2831 . 359472) (-2832 . 359159) (-2833 . 358821) (-2834 . 358490) + (-2835 . 358170) (-2836 . 358117) (-2837 . 357990) (-2838 . 357488) + (-2839 . 356345) (-2840 . 356290) (-2841 . 356235) (-2842 . 356159) + (-2843 . 356040) (-2844 . 355965) (-2845 . 355890) (-2846 . 355812) + (-2847 . 355589) (-2848 . 355530) (-2849 . 355471) (-2850 . 355368) + (-2851 . 355265) (-2852 . 355162) (-2853 . 355059) (-2854 . 354978) + (-2855 . 354904) (-2856 . 354689) (-2857 . 354455) (-2858 . 354421) + (-2859 . 354387) (-2860 . 354359) (-2861 . 354331) (-2862 . 354114) + (-2863 . 353836) (-2864 . 353686) (-2865 . 353556) (-2866 . 353426) + (-2867 . 353326) (-2868 . 353149) (-2869 . 352989) (-2870 . 352889) + (-2871 . 352712) (-2872 . 352552) (-2873 . 352393) (-2874 . 352254) + (-2875 . 352104) (-2876 . 351974) (-2877 . 351844) (-2878 . 351697) + (-2879 . 351570) (-2880 . 351467) (-2881 . 351360) (-2882 . 351263) + (-2883 . 351098) (-2884 . 350950) (-2885 . 350535) (-2886 . 350435) + (-2887 . 350332) (-2888 . 350244) (-2889 . 350164) (-2890 . 350014) + (-2891 . 349884) (-2892 . 349832) (-2893 . 349759) (-2894 . 349684) + (-2895 . 349625) (-2896 . 349513) (-2897 . 349201) (-2898 . 349024) + (-2899 . 347426) (-2900 . 346798) (-2901 . 346738) (-2902 . 346620) + (-2903 . 346502) (-2904 . 346358) (-2905 . 346206) (-2906 . 346047) + (-2907 . 345888) (-2908 . 345682) (-2909 . 345495) (-2910 . 345343) + (-2911 . 345188) (-2912 . 345033) (-2913 . 344881) (-2914 . 344744) + (-2915 . 344321) (-2916 . 344195) (-2917 . 344069) (-2918 . 343943) + (-2919 . 343803) (-2920 . 343662) (-2921 . 343521) (-2922 . 343377) + (-2923 . 342629) (-2924 . 342471) (-2925 . 342285) (-2926 . 342130) + (-2927 . 341892) (-2928 . 341647) (-2929 . 341402) (-2930 . 341192) + (-2931 . 341055) (-2932 . 340845) (-2933 . 340708) (-2934 . 340498) + (-2935 . 340361) (-2936 . 340151) (-2937 . 339848) (-2938 . 339704) + (-2939 . 339563) (-2940 . 339340) (-2941 . 339199) (-2942 . 338977) + (-2943 . 338780) (-2944 . 338624) (-2945 . 338297) (-2946 . 338138) + (-2947 . 337979) (-2948 . 337820) (-2949 . 337649) (-2950 . 337478) + (-2951 . 337304) (-2952 . 336952) (-2953 . 336829) (-2954 . 336667) + (-2955 . 336594) (-2956 . 336521) (-2957 . 336448) (-2958 . 336375) + (-2959 . 336302) (-2960 . 336229) (-2961 . 336106) (-2962 . 335933) + (-2963 . 335810) (-2964 . 335724) (-2965 . 335658) (-2966 . 335592) + (-2967 . 335526) (-2968 . 335460) (-2969 . 335394) (-2970 . 335328) + (-2971 . 335262) (-2972 . 335196) (-2973 . 335130) (-2974 . 335064) + (-2975 . 334998) (-2976 . 334932) (-2977 . 334866) (-2978 . 334800) + (-2979 . 334734) (-2980 . 334668) (-2981 . 334602) (-2982 . 334536) + (-2983 . 334470) (-2984 . 334404) (-2985 . 334338) (-2986 . 334272) + (-2987 . 334206) (-2988 . 334140) (-2989 . 334074) (-2990 . 334008) + (-2991 . 333361) (-2992 . 332714) (-2993 . 332586) (-2994 . 332463) + (-2995 . 332340) (-2996 . 332199) (-2997 . 332045) (-2998 . 331901) + (-2999 . 331726) (-3000 . 331116) (-3001 . 330992) (-3002 . 330868) + (-3003 . 330190) (-3004 . 329493) (-3005 . 329392) (-3006 . 329336) + (-3007 . 329280) (-3008 . 329224) (-3009 . 329168) (-3010 . 329109) + (-3011 . 329045) (-3012 . 328937) (-3013 . 328829) (-3014 . 328721) + (-3015 . 328442) (-3016 . 328368) (-3017 . 328142) (-3018 . 328061) + (-3019 . 327983) (-3020 . 327905) (-3021 . 327827) (-3022 . 327748) + (-3023 . 327670) (-3024 . 327577) (-3025 . 327478) (-3026 . 327410) + (-3027 . 327361) (-3028 . 326670) (-3029 . 326030) (-3030 . 325239) + (-3031 . 325161) (-3032 . 325063) (-3033 . 324974) (-3034 . 324885) + (-3035 . 324811) (-3036 . 324737) (-3037 . 324663) (-3038 . 324608) + (-3039 . 324553) (-3040 . 324487) (-3041 . 324421) (-3042 . 324359) + (-3043 . 324084) (-3044 . 323592) (-3045 . 323134) (-3046 . 322881) + (-3047 . 322693) (-3048 . 322352) (-3049 . 322056) (-3050 . 321888) + (-3051 . 321757) (-3052 . 321617) (-3053 . 321462) (-3054 . 321293) + (-3055 . 319907) (-3056 . 319774) (-3057 . 319633) (-3058 . 319404) + (-3059 . 319345) (-3060 . 319289) (-3061 . 319233) (-3062 . 318968) + (-3063 . 318756) (-3064 . 318617) (-3065 . 318510) (-3066 . 318393) + (-3067 . 318327) (-3068 . 318254) (-3069 . 318140) (-3070 . 317887) + (-3071 . 317787) (-3072 . 317593) (-3073 . 317285) (-3074 . 316819) + (-3075 . 316714) (-3076 . 316608) (-3077 . 316459) (-3078 . 316319) + (-3079 . 315907) (-3080 . 315663) (-3081 . 315005) (-3082 . 314852) + (-3083 . 314738) (-3084 . 314628) (-3085 . 313808) (-3086 . 313614) + (-3087 . 312588) (-3088 . 312140) (-3089 . 310751) (-3090 . 309900) + (-3091 . 309851) (-3092 . 309802) (-3093 . 309753) (-3094 . 309686) + (-3095 . 309611) (-3096 . 309421) (-3097 . 309349) (-3098 . 309274) + (-3099 . 309202) (-3100 . 309085) (-3101 . 309034) (-3102 . 308955) + (-3103 . 308876) (-3104 . 308797) (-3105 . 308746) (-3106 . 308502) + (-3107 . 308200) (-3108 . 308118) (-3109 . 308036) (-3110 . 307975) + (-3111 . 307586) (-3112 . 306720) (-3113 . 306147) (-3114 . 304930) + (-3115 . 304123) (-3116 . 303873) (-3117 . 303623) (-3118 . 303200) + (-3119 . 302956) (-3120 . 302712) (-3121 . 302468) (-3122 . 302224) + (-3123 . 301980) (-3124 . 301736) (-3125 . 301494) (-3126 . 301252) + (-3127 . 301010) (-3128 . 300768) (-3129 . 300190) (-3130 . 300074) + (-3131 . 300020) (-3132 . 299178) (-3133 . 299147) (-3134 . 298802) + (-3135 . 298576) (-3136 . 298477) (-3137 . 298378) (-3138 . 296612) + (-3139 . 296500) (-3140 . 295450) (-3141 . 295358) (-3142 . 294436) + (-3143 . 294103) (-3144 . 293770) (-3145 . 293667) (-3146 . 293556) + (-3147 . 293445) (-3148 . 293334) (-3149 . 293223) (-3150 . 292136) + (-3151 . 292016) (-3152 . 291881) (-3153 . 291749) (-3154 . 291617) + (-3155 . 291323) (-3156 . 291029) (-3157 . 290684) (-3158 . 290458) + (-3159 . 290232) (-3160 . 290121) (-3161 . 290010) (-3162 . 288548) + (-3163 . 286844) (-3164 . 286535) (-3165 . 286383) (-3166 . 285860) + (-3167 . 285531) (-3168 . 285338) (-3169 . 285145) (-3170 . 284952) + (-3171 . 284759) (-3172 . 284646) (-3173 . 284523) (-3174 . 284409) + (-3175 . 284295) (-3176 . 284202) (-3177 . 284109) (-3178 . 283999) + (-3179 . 283798) (-3180 . 282654) (-3181 . 282561) (-3182 . 282447) + (-3183 . 282354) (-3184 . 282107) (-3185 . 281996) (-3186 . 281782) + (-3187 . 281664) (-3188 . 281367) (-3189 . 280639) (-3190 . 280063) + (-3191 . 279585) (-3192 . 279341) (-3193 . 279097) (-3194 . 278754) + (-3195 . 278148) (-3196 . 277705) (-3197 . 277550) (-3198 . 277406) + (-3199 . 277086) (-3200 . 276931) (-3201 . 276791) (-3202 . 276651) + (-3203 . 276511) (-3204 . 276236) (-3205 . 276017) (-3206 . 275498) + (-3207 . 275286) (-3208 . 275074) (-3209 . 274694) (-3210 . 274520) + (-3211 . 274311) (-3212 . 274003) (-3213 . 273811) (-3214 . 273638) + (-3215 . 272502) (-3216 . 272137) (-3217 . 271937) (-3218 . 271737) + (-3219 . 270901) (-3220 . 270873) (-3221 . 270804) (-3222 . 270733) + (-3223 . 270567) (-3224 . 270538) (-3225 . 270509) (-3226 . 270454) + (-3227 . 270303) (-3228 . 270243) (-3229 . 269547) (-3230 . 268161) + (-3231 . 268100) (-3232 . 267776) (-3233 . 267704) (-3234 . 267647) + (-3235 . 267590) (-3236 . 267533) (-3237 . 267476) (-3238 . 267401) + (-3239 . 266811) (-3240 . 266451) (-3241 . 266377) (-3242 . 266317) + (-3243 . 266199) (-3244 . 265256) (-3245 . 265129) (-3246 . 264916) + (-3247 . 264842) (-3248 . 264788) (-3249 . 264734) (-3250 . 264625) + (-3251 . 264342) (-3252 . 264234) (-3253 . 264131) (-3254 . 263970) + (-3255 . 263869) (-3256 . 263771) (-3257 . 263633) (-3258 . 263495) + (-3259 . 263357) (-3260 . 263095) (-3261 . 262886) (-3262 . 262748) + (-3263 . 262457) (-3264 . 262305) (-3265 . 262030) (-3266 . 261810) + (-3267 . 261658) (-3268 . 261506) (-3269 . 261354) (-3270 . 261202) + (-3271 . 261050) (-3272 . 260843) (-3273 . 260456) (-3274 . 260125) + (-3275 . 259786) (-3276 . 259439) (-3277 . 259100) (-3278 . 258761) + (-3279 . 258380) (-3280 . 257999) (-3281 . 257618) (-3282 . 257253) + (-3283 . 256535) (-3284 . 256188) (-3285 . 255743) (-3286 . 255318) + (-3287 . 254707) (-3288 . 254115) (-3289 . 253728) (-3290 . 253397) + (-3291 . 253010) (-3292 . 252679) (-3293 . 252459) (-3294 . 251938) + (-3295 . 251725) (-3296 . 251512) (-3297 . 251299) (-3298 . 251121) + (-3299 . 250908) (-3300 . 250730) (-3301 . 250348) (-3302 . 250170) + (-3303 . 249960) (-3304 . 249870) (-3305 . 249780) (-3306 . 249689) + (-3307 . 249577) (-3308 . 249487) (-3309 . 249380) (-3310 . 249191) + (-3311 . 249135) (-3312 . 249054) (-3313 . 248973) (-3314 . 248892) + (-3315 . 248815) (-3316 . 248680) (-3317 . 248545) (-3318 . 248421) + (-3319 . 248300) (-3320 . 248182) (-3321 . 248046) (-3322 . 247913) + (-3323 . 247794) (-3324 . 247536) (-3325 . 247251) (-3326 . 247179) + (-3327 . 247083) (-3328 . 246942) (-3329 . 246885) (-3330 . 246828) + (-3331 . 246768) (-3332 . 246689) (-3333 . 246294) (-3334 . 245772) + (-3335 . 245495) (-3336 . 245075) (-3337 . 244963) (-3338 . 244525) + (-3339 . 244295) (-3340 . 244092) (-3341 . 243910) (-3342 . 243780) + (-3343 . 243574) (-3344 . 243367) (-3345 . 243177) (-3346 . 242630) + (-3347 . 242374) (-3348 . 242083) (-3349 . 241789) (-3350 . 241492) + (-3351 . 241192) (-3352 . 241062) (-3353 . 240929) (-3354 . 240793) + (-3355 . 240654) (-3356 . 239437) (-3357 . 239129) (-3358 . 238765) + (-3359 . 238668) (-3360 . 238428) (-3361 . 238153) (-3362 . 237878) + (-3363 . 237619) (-3364 . 237445) (-3365 . 237367) (-3366 . 237280) + (-3367 . 237180) (-3368 . 237086) (-3369 . 237005) (-3370 . 236935) + (-3371 . 236144) (-3372 . 236074) (-3373 . 235746) (-3374 . 235676) + (-3375 . 235348) (-3376 . 235278) (-3377 . 234833) (-3378 . 234763) + (-3379 . 234659) (-3380 . 234585) (-3381 . 234511) (-3382 . 234440) + (-3383 . 234098) (-3384 . 233970) (-3385 . 233893) (-3386 . 233662) + (-3387 . 233519) (-3388 . 233376) (-3389 . 233037) (-3390 . 232707) + (-3391 . 232494) (-3392 . 232239) (-3393 . 231889) (-3394 . 231664) + (-3395 . 231439) (-3396 . 231214) (-3397 . 230989) (-3398 . 230776) + (-3399 . 230563) (-3400 . 230413) (-3401 . 230232) (-3402 . 230127) + (-3403 . 230005) (-3404 . 229897) (-3405 . 229789) (-3406 . 229464) + (-3407 . 229200) (-3408 . 228889) (-3409 . 228587) (-3410 . 228278) + (-3411 . 227559) (-3412 . 226983) (-3413 . 226808) (-3414 . 226664) + (-3415 . 226509) (-3416 . 226386) (-3417 . 226281) (-3418 . 226166) + (-3419 . 226071) (-3420 . 225590) (-3421 . 225480) (-3422 . 225370) + (-3423 . 225260) (-3424 . 224188) (-3425 . 223681) (-3426 . 223614) + (-3427 . 223541) (-3428 . 222668) (-3429 . 222595) (-3430 . 222540) + (-3431 . 222485) (-3432 . 222453) (-3433 . 222367) (-3434 . 222335) + (-3435 . 222249) (-3436 . 221829) (-3437 . 221409) (-3438 . 220857) + (-3439 . 219753) (-3440 . 218043) (-3441 . 216493) (-3442 . 215701) + (-3443 . 215201) (-3444 . 214715) (-3445 . 214313) (-3446 . 213663) + (-3447 . 213588) (-3448 . 213497) (-3449 . 213426) (-3450 . 213355) + (-3451 . 213299) (-3452 . 213179) (-3453 . 213125) (-3454 . 213064) + (-3455 . 213010) (-3456 . 212907) (-3457 . 212467) (-3458 . 212027) + (-3459 . 211587) (-3460 . 211065) (-3461 . 210904) (-3462 . 210743) + (-3463 . 210432) (-3464 . 210346) (-3465 . 210256) (-3466 . 209898) + (-3467 . 209781) (-3468 . 209700) (-3469 . 209542) (-3470 . 209429) + (-3471 . 209354) (-3472 . 208508) (-3473 . 207326) (-3474 . 207227) + (-3475 . 207128) (-3476 . 206799) (-3477 . 206721) (-3478 . 206646) + (-3479 . 206540) (-3480 . 206384) (-3481 . 206277) (-3482 . 206142) + (-3483 . 206007) (-3484 . 205885) (-3485 . 205790) (-3486 . 205642) + (-3487 . 205547) (-3488 . 205392) (-3489 . 205237) (-3490 . 204685) + (-3491 . 204133) (-3492 . 203518) (-3493 . 202966) (-3494 . 202414) + (-3495 . 201862) (-3496 . 201309) (-3497 . 200756) (-3498 . 200203) + (-3499 . 199650) (-3500 . 199097) (-3501 . 198544) (-3502 . 197992) + (-3503 . 197440) (-3504 . 196888) (-3505 . 196336) (-3506 . 195784) + (-3507 . 195232) (-3508 . 195128) (-3509 . 194543) (-3510 . 194438) + (-3511 . 194363) (-3512 . 194221) (-3513 . 194129) (-3514 . 194038) + (-3515 . 193946) (-3516 . 193851) (-3517 . 193746) (-3518 . 193623) + (-3519 . 193501) (-3520 . 193137) (-3521 . 193015) (-3522 . 192917) + (-3523 . 192556) (-3524 . 192027) (-3525 . 191952) (-3526 . 191877) + (-3527 . 191785) (-3528 . 191604) (-3529 . 191509) (-3530 . 191434) + (-3531 . 191343) (-3532 . 191252) (-3533 . 191093) (-3534 . 190544) + (-3535 . 189995) (-3536 . 187288) (-3537 . 187116) (-3538 . 185706) + (-3539 . 185146) (-3540 . 185031) (-3541 . 184659) (-3542 . 184596) + (-3543 . 184533) (-3544 . 184470) (-3545 . 184192) (-3546 . 183925) + (-3547 . 183873) (-3548 . 183232) (-3549 . 183181) (-3550 . 182993) + (-3551 . 182920) (-3552 . 182840) (-3553 . 182727) (-3554 . 182537) + (-3555 . 182173) (-3556 . 181901) (-3557 . 181850) (-3558 . 181799) + (-3559 . 181729) (-3560 . 181610) (-3561 . 181581) (-3562 . 181477) + (-3563 . 181355) (-3564 . 181301) (-3565 . 181124) (-3566 . 181063) + (-3567 . 180882) (-3568 . 180821) (-3569 . 180749) (-3570 . 180274) + (-3571 . 179899) (-3572 . 176367) (-3573 . 176315) (-3574 . 176187) + (-3575 . 176037) (-3576 . 175985) (-3577 . 175844) (-3578 . 173786) + (-3579 . 166179) (-3580 . 166028) (-3581 . 165958) (-3582 . 165907) + (-3583 . 165857) (-3584 . 165806) (-3585 . 165755) (-3586 . 165559) + (-3587 . 165417) (-3588 . 165303) (-3589 . 165182) (-3590 . 165064) + (-3591 . 164952) (-3592 . 164834) (-3593 . 164729) (-3594 . 164648) + (-3595 . 164544) (-3596 . 163610) (-3597 . 163390) (-3598 . 163153) + (-3599 . 163071) (-3600 . 162727) (-3601 . 161588) (-3602 . 161514) + (-3603 . 161419) (-3604 . 161345) (-3605 . 161141) (-3606 . 161050) + (-3607 . 160934) (-3608 . 160821) (-3609 . 160730) (-3610 . 160639) + (-3611 . 160550) (-3612 . 160461) (-3613 . 160372) (-3614 . 160284) + (-3615 . 159796) (-3616 . 159732) (-3617 . 159668) (-3618 . 159604) + (-3619 . 159543) (-3620 . 158803) (-3621 . 158742) (-3622 . 158681) + (-3623 . 158055) (-3624 . 158003) (-3625 . 157875) (-3626 . 157811) + (-3627 . 157757) (-3628 . 157648) (-3629 . 156351) (-3630 . 156270) + (-3631 . 156181) (-3632 . 156123) (-3633 . 155983) (-3634 . 155898) + (-3635 . 155824) (-3636 . 155739) (-3637 . 155682) (-3638 . 155466) + (-3639 . 155327) (-3640 . 154720) (-3641 . 154166) (-3642 . 153612) + (-3643 . 153058) (-3644 . 152451) (-3645 . 151897) (-3646 . 151337) + (-3647 . 150777) (-3648 . 150515) (-3649 . 150076) (-3650 . 149743) + (-3651 . 149404) (-3652 . 149099) (-3653 . 148966) (-3654 . 148833) + (-3655 . 148445) (-3656 . 148352) (-3657 . 148259) (-3658 . 148166) + (-3659 . 148073) (-3660 . 147980) (-3661 . 147887) (-3662 . 147794) + (-3663 . 147701) (-3664 . 147608) (-3665 . 147515) (-3666 . 147422) + (-3667 . 147329) (-3668 . 147236) (-3669 . 147143) (-3670 . 147050) + (-3671 . 146957) (-3672 . 146864) (-3673 . 146771) (-3674 . 146678) + (-3675 . 146585) (-3676 . 146492) (-3677 . 146399) (-3678 . 146306) + (-3679 . 146213) (-3680 . 146120) (-3681 . 145935) (-3682 . 145625) + (-3683 . 143997) (-3684 . 143843) (-3685 . 143706) (-3686 . 143564) + (-3687 . 143362) (-3688 . 141435) (-3689 . 141308) (-3690 . 141184) + (-3691 . 141057) (-3692 . 140836) (-3693 . 140615) (-3694 . 140488) + (-3695 . 140287) (-3696 . 140111) (-3697 . 139594) (-3698 . 139077) + (-3699 . 138800) (-3700 . 138391) (-3701 . 137874) (-3702 . 137690) + (-3703 . 137548) (-3704 . 137053) (-3705 . 136422) (-3706 . 136366) + (-3707 . 136272) (-3708 . 136153) (-3709 . 136083) (-3710 . 136010) + (-3711 . 135780) (-3712 . 135161) (-3713 . 134731) (-3714 . 134649) + (-3715 . 134507) (-3716 . 134037) (-3717 . 133915) (-3718 . 133793) + (-3719 . 133653) (-3720 . 133466) (-3721 . 133350) (-3722 . 133070) + (-3723 . 133002) (-3724 . 132804) (-3725 . 132624) (-3726 . 132469) + (-3727 . 132362) (-3728 . 132311) (-3729 . 131934) (-3730 . 131406) + (-3731 . 131184) (-3732 . 130962) (-3733 . 130723) (-3734 . 130633) + (-3735 . 128891) (-3736 . 128309) (-3737 . 128231) (-3738 . 122771) + (-3739 . 121981) (-3740 . 121604) (-3741 . 121533) (-3742 . 121268) + (-3743 . 121093) (-3744 . 120608) (-3745 . 120186) (-3746 . 119746) + (-3747 . 118883) (-3748 . 118759) (-3749 . 118632) (-3750 . 118523) + (-3751 . 118371) (-3752 . 118257) (-3753 . 118118) (-3754 . 118037) + (-3755 . 117956) (-3756 . 117852) (-3757 . 117434) (-3758 . 117013) + (-3759 . 116939) (-3760 . 116676) (-3761 . 116412) (-3762 . 116033) + (-3763 . 115334) (-3764 . 114297) (-3765 . 114238) (-3766 . 114164) + (-3767 . 114090) (-3768 . 113968) (-3769 . 113718) (-3770 . 113632) + (-3771 . 113557) (-3772 . 113482) (-3773 . 113387) (-3774 . 109612) + (-3775 . 108442) (-3776 . 107782) (-3777 . 107598) (-3778 . 105393) + (-3779 . 105068) (-3780 . 104586) (-3781 . 104145) (-3782 . 103910) + (-3783 . 103665) (-3784 . 103575) (-3785 . 102140) (-3786 . 102062) + (-3787 . 101957) (-3788 . 100481) (-3789 . 100076) (-3790 . 99675) + (-3791 . 99579) (-3792 . 99500) (-3793 . 99345) (-3794 . 98232) + (-3795 . 98153) (-3796 . 98077) (-3797 . 97731) (-3798 . 97674) + (-3799 . 97602) (-3800 . 97545) (-3801 . 97488) (-3802 . 97358) + (-3803 . 97156) (-3804 . 96788) (-3805 . 96367) (-3806 . 92559) + (-3807 . 91959) (-3808 . 91492) (-3809 . 91279) (-3810 . 91066) + (-3811 . 90900) (-3812 . 90687) (-3813 . 90521) (-3814 . 90355) + (-3815 . 90189) (-3816 . 90023) (-3817 . 89753) (-3818 . 84339) (** . 81386) + (-3820 . 80970) (-3821 . 80729) (-3822 . 80673) (-3823 . 80181) + (-3824 . 77373) (-3825 . 77223) (-3826 . 77059) (-3827 . 76895) + (-3828 . 76799) (-3829 . 76681) (-3830 . 76557) (-3831 . 76414) + (-3832 . 76243) (-3833 . 76117) (-3834 . 75973) (-3835 . 75821) + (-3836 . 75662) (-3837 . 75149) (-3838 . 75060) (-3839 . 74395) + (-3840 . 74203) (-3841 . 74108) (-3842 . 73800) (-3843 . 72628) + (-3844 . 72422) (-3845 . 71247) (-3846 . 71172) (-3847 . 69991) + (-3848 . 66489) (-3849 . 53985) (-3850 . 53621) (-3851 . 53344) + (-3852 . 53252) (-3853 . 53159) (-3854 . 52882) (-3855 . 52789) + (-3856 . 52696) (-3857 . 52603) (-3858 . 52219) (-3859 . 52148) + (-3860 . 52056) (-3861 . 51898) (-3862 . 51544) (-3863 . 51386) + (-3864 . 51278) (-3865 . 51249) (-3866 . 51182) (-3867 . 51028) + (-3868 . 50870) (-3869 . 50476) (-3870 . 50401) (-3871 . 50295) + (-3872 . 50223) (-3873 . 50145) (-3874 . 50072) (-3875 . 49999) + (-3876 . 49926) (-3877 . 49854) (-3878 . 49782) (-3879 . 49709) + (-3880 . 49468) (-3881 . 49128) (-3882 . 48980) (-3883 . 48907) + (-3884 . 48834) (-3885 . 48761) (-3886 . 48507) (-3887 . 48363) + (-3888 . 47027) (-3889 . 46833) (-3890 . 46562) (-3891 . 46414) + (-3892 . 46266) (-3893 . 46026) (-3894 . 45832) (-3895 . 45564) + (-3896 . 45368) (-3897 . 45339) (-3898 . 45238) (-3899 . 45137) + (-3900 . 45036) (-3901 . 44935) (-3902 . 44834) (-3903 . 44733) + (-3904 . 44632) (-3905 . 44531) (-3906 . 44430) (-3907 . 44329) + (-3908 . 44214) (-3909 . 44099) (-3910 . 44048) (-3911 . 43931) + (-3912 . 43873) (-3913 . 43772) (-3914 . 43671) (-3915 . 43570) + (-3916 . 43454) (-3917 . 43425) (-3918 . 42694) (-3919 . 42569) + (-3920 . 42444) (-3921 . 42304) (-3922 . 42186) (-3923 . 42061) + (-3924 . 41906) (-3925 . 40923) (-3926 . 40064) (-3927 . 40010) + (-3928 . 39956) (-3929 . 39748) (-3930 . 39376) (-3931 . 38965) + (-3932 . 38607) (-3933 . 38249) (-3934 . 38097) (-3935 . 37795) + (-3936 . 37639) (-3937 . 37313) (-3938 . 37243) (-3939 . 37173) + (-3940 . 36964) (-3941 . 36355) (-3942 . 36151) (-3943 . 35778) + (-3944 . 35269) (-3945 . 35004) (-3946 . 34523) (-3947 . 34042) + (-3948 . 33917) (-3949 . 32817) (-3950 . 31741) (-3951 . 31168) + (-3952 . 30950) (-3953 . 22624) (-3954 . 22439) (-3955 . 20356) + (-3956 . 18188) (-3957 . 18042) (-3958 . 17864) (-3959 . 17457) + (-3960 . 17162) (-3961 . 16814) (-3962 . 16648) (-3963 . 16482) + (-3964 . 16071) (-3965 . 14964) (* . 10917) (-3967 . 10663) (-3968 . 10479) + (-3969 . 9522) (-3970 . 9469) (-3971 . 9409) (-3972 . 9140) (-3973 . 8513) + (-3974 . 7240) (-3975 . 5996) (-3976 . 5127) (-3977 . 3864) (-3978 . 420) + (-3979 . 306) (-3980 . 173) (-3981 . 30))
\ No newline at end of file |